Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9#include <linux/clk.h>
10#include <linux/crypto.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/iopoll.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/of_device.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/reset.h>
22
23#include <crypto/engine.h>
24#include <crypto/hash.h>
25#include <crypto/md5.h>
26#include <crypto/scatterwalk.h>
27#include <crypto/sha.h>
28#include <crypto/internal/hash.h>
29
30#define HASH_CR 0x00
31#define HASH_DIN 0x04
32#define HASH_STR 0x08
33#define HASH_IMR 0x20
34#define HASH_SR 0x24
35#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
36#define HASH_HREG(x) (0x310 + ((x) * 0x04))
37#define HASH_HWCFGR 0x3F0
38#define HASH_VER 0x3F4
39#define HASH_ID 0x3F8
40
41/* Control Register */
42#define HASH_CR_INIT BIT(2)
43#define HASH_CR_DMAE BIT(3)
44#define HASH_CR_DATATYPE_POS 4
45#define HASH_CR_MODE BIT(6)
46#define HASH_CR_MDMAT BIT(13)
47#define HASH_CR_DMAA BIT(14)
48#define HASH_CR_LKEY BIT(16)
49
50#define HASH_CR_ALGO_SHA1 0x0
51#define HASH_CR_ALGO_MD5 0x80
52#define HASH_CR_ALGO_SHA224 0x40000
53#define HASH_CR_ALGO_SHA256 0x40080
54
55/* Interrupt */
56#define HASH_DINIE BIT(0)
57#define HASH_DCIE BIT(1)
58
59/* Interrupt Mask */
60#define HASH_MASK_CALC_COMPLETION BIT(0)
61#define HASH_MASK_DATA_INPUT BIT(1)
62
63/* Context swap register */
64#define HASH_CSR_REGISTER_NUMBER 53
65
66/* Status Flags */
67#define HASH_SR_DATA_INPUT_READY BIT(0)
68#define HASH_SR_OUTPUT_READY BIT(1)
69#define HASH_SR_DMA_ACTIVE BIT(2)
70#define HASH_SR_BUSY BIT(3)
71
72/* STR Register */
73#define HASH_STR_NBLW_MASK GENMASK(4, 0)
74#define HASH_STR_DCAL BIT(8)
75
76#define HASH_FLAGS_INIT BIT(0)
77#define HASH_FLAGS_OUTPUT_READY BIT(1)
78#define HASH_FLAGS_CPU BIT(2)
79#define HASH_FLAGS_DMA_READY BIT(3)
80#define HASH_FLAGS_DMA_ACTIVE BIT(4)
81#define HASH_FLAGS_HMAC_INIT BIT(5)
82#define HASH_FLAGS_HMAC_FINAL BIT(6)
83#define HASH_FLAGS_HMAC_KEY BIT(7)
84
85#define HASH_FLAGS_FINAL BIT(15)
86#define HASH_FLAGS_FINUP BIT(16)
87#define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
88#define HASH_FLAGS_MD5 BIT(18)
89#define HASH_FLAGS_SHA1 BIT(19)
90#define HASH_FLAGS_SHA224 BIT(20)
91#define HASH_FLAGS_SHA256 BIT(21)
92#define HASH_FLAGS_ERRORS BIT(22)
93#define HASH_FLAGS_HMAC BIT(23)
94
95#define HASH_OP_UPDATE 1
96#define HASH_OP_FINAL 2
97
98enum stm32_hash_data_format {
99 HASH_DATA_32_BITS = 0x0,
100 HASH_DATA_16_BITS = 0x1,
101 HASH_DATA_8_BITS = 0x2,
102 HASH_DATA_1_BIT = 0x3
103};
104
105#define HASH_BUFLEN 256
106#define HASH_LONG_KEY 64
107#define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
108#define HASH_QUEUE_LENGTH 16
109#define HASH_DMA_THRESHOLD 50
110
111#define HASH_AUTOSUSPEND_DELAY 50
112
113struct stm32_hash_ctx {
114 struct crypto_engine_ctx enginectx;
115 struct stm32_hash_dev *hdev;
116 unsigned long flags;
117
118 u8 key[HASH_MAX_KEY_SIZE];
119 int keylen;
120};
121
122struct stm32_hash_request_ctx {
123 struct stm32_hash_dev *hdev;
124 unsigned long flags;
125 unsigned long op;
126
127 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
128 size_t digcnt;
129 size_t bufcnt;
130 size_t buflen;
131
132 /* DMA */
133 struct scatterlist *sg;
134 unsigned int offset;
135 unsigned int total;
136 struct scatterlist sg_key;
137
138 dma_addr_t dma_addr;
139 size_t dma_ct;
140 int nents;
141
142 u8 data_type;
143
144 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
145
146 /* Export Context */
147 u32 *hw_context;
148};
149
150struct stm32_hash_algs_info {
151 struct ahash_alg *algs_list;
152 size_t size;
153};
154
155struct stm32_hash_pdata {
156 struct stm32_hash_algs_info *algs_info;
157 size_t algs_info_size;
158};
159
160struct stm32_hash_dev {
161 struct list_head list;
162 struct device *dev;
163 struct clk *clk;
164 struct reset_control *rst;
165 void __iomem *io_base;
166 phys_addr_t phys_base;
167 u32 dma_mode;
168 u32 dma_maxburst;
169
170 struct ahash_request *req;
171 struct crypto_engine *engine;
172
173 int err;
174 unsigned long flags;
175
176 struct dma_chan *dma_lch;
177 struct completion dma_completion;
178
179 const struct stm32_hash_pdata *pdata;
180};
181
182struct stm32_hash_drv {
183 struct list_head dev_list;
184 spinlock_t lock; /* List protection access */
185};
186
187static struct stm32_hash_drv stm32_hash = {
188 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
189 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
190};
191
192static void stm32_hash_dma_callback(void *param);
193
194static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
195{
196 return readl_relaxed(hdev->io_base + offset);
197}
198
199static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
200 u32 offset, u32 value)
201{
202 writel_relaxed(value, hdev->io_base + offset);
203}
204
205static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
206{
207 u32 status;
208
209 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
210 !(status & HASH_SR_BUSY), 10, 10000);
211}
212
213static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
214{
215 u32 reg;
216
217 reg = stm32_hash_read(hdev, HASH_STR);
218 reg &= ~(HASH_STR_NBLW_MASK);
219 reg |= (8U * ((length) % 4U));
220 stm32_hash_write(hdev, HASH_STR, reg);
221}
222
223static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
224{
225 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
226 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
227 u32 reg;
228 int keylen = ctx->keylen;
229 void *key = ctx->key;
230
231 if (keylen) {
232 stm32_hash_set_nblw(hdev, keylen);
233
234 while (keylen > 0) {
235 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
236 keylen -= 4;
237 key += 4;
238 }
239
240 reg = stm32_hash_read(hdev, HASH_STR);
241 reg |= HASH_STR_DCAL;
242 stm32_hash_write(hdev, HASH_STR, reg);
243
244 return -EINPROGRESS;
245 }
246
247 return 0;
248}
249
250static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
251{
252 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
253 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
254 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
255
256 u32 reg = HASH_CR_INIT;
257
258 if (!(hdev->flags & HASH_FLAGS_INIT)) {
259 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
260 case HASH_FLAGS_MD5:
261 reg |= HASH_CR_ALGO_MD5;
262 break;
263 case HASH_FLAGS_SHA1:
264 reg |= HASH_CR_ALGO_SHA1;
265 break;
266 case HASH_FLAGS_SHA224:
267 reg |= HASH_CR_ALGO_SHA224;
268 break;
269 case HASH_FLAGS_SHA256:
270 reg |= HASH_CR_ALGO_SHA256;
271 break;
272 default:
273 reg |= HASH_CR_ALGO_MD5;
274 }
275
276 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
277
278 if (rctx->flags & HASH_FLAGS_HMAC) {
279 hdev->flags |= HASH_FLAGS_HMAC;
280 reg |= HASH_CR_MODE;
281 if (ctx->keylen > HASH_LONG_KEY)
282 reg |= HASH_CR_LKEY;
283 }
284
285 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
286
287 stm32_hash_write(hdev, HASH_CR, reg);
288
289 hdev->flags |= HASH_FLAGS_INIT;
290
291 dev_dbg(hdev->dev, "Write Control %x\n", reg);
292 }
293}
294
295static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
296{
297 size_t count;
298
299 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
300 count = min(rctx->sg->length - rctx->offset, rctx->total);
301 count = min(count, rctx->buflen - rctx->bufcnt);
302
303 if (count <= 0) {
304 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
305 rctx->sg = sg_next(rctx->sg);
306 continue;
307 } else {
308 break;
309 }
310 }
311
312 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
313 rctx->offset, count, 0);
314
315 rctx->bufcnt += count;
316 rctx->offset += count;
317 rctx->total -= count;
318
319 if (rctx->offset == rctx->sg->length) {
320 rctx->sg = sg_next(rctx->sg);
321 if (rctx->sg)
322 rctx->offset = 0;
323 else
324 rctx->total = 0;
325 }
326 }
327}
328
329static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
330 const u8 *buf, size_t length, int final)
331{
332 unsigned int count, len32;
333 const u32 *buffer = (const u32 *)buf;
334 u32 reg;
335
336 if (final)
337 hdev->flags |= HASH_FLAGS_FINAL;
338
339 len32 = DIV_ROUND_UP(length, sizeof(u32));
340
341 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
342 __func__, length, final, len32);
343
344 hdev->flags |= HASH_FLAGS_CPU;
345
346 stm32_hash_write_ctrl(hdev);
347
348 if (stm32_hash_wait_busy(hdev))
349 return -ETIMEDOUT;
350
351 if ((hdev->flags & HASH_FLAGS_HMAC) &&
352 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
353 hdev->flags |= HASH_FLAGS_HMAC_KEY;
354 stm32_hash_write_key(hdev);
355 if (stm32_hash_wait_busy(hdev))
356 return -ETIMEDOUT;
357 }
358
359 for (count = 0; count < len32; count++)
360 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
361
362 if (final) {
363 stm32_hash_set_nblw(hdev, length);
364 reg = stm32_hash_read(hdev, HASH_STR);
365 reg |= HASH_STR_DCAL;
366 stm32_hash_write(hdev, HASH_STR, reg);
367 if (hdev->flags & HASH_FLAGS_HMAC) {
368 if (stm32_hash_wait_busy(hdev))
369 return -ETIMEDOUT;
370 stm32_hash_write_key(hdev);
371 }
372 return -EINPROGRESS;
373 }
374
375 return 0;
376}
377
378static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
379{
380 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
381 int bufcnt, err = 0, final;
382
383 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
384
385 final = (rctx->flags & HASH_FLAGS_FINUP);
386
387 while ((rctx->total >= rctx->buflen) ||
388 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
389 stm32_hash_append_sg(rctx);
390 bufcnt = rctx->bufcnt;
391 rctx->bufcnt = 0;
392 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
393 }
394
395 stm32_hash_append_sg(rctx);
396
397 if (final) {
398 bufcnt = rctx->bufcnt;
399 rctx->bufcnt = 0;
400 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
401 (rctx->flags & HASH_FLAGS_FINUP));
402 }
403
404 return err;
405}
406
407static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
408 struct scatterlist *sg, int length, int mdma)
409{
410 struct dma_async_tx_descriptor *in_desc;
411 dma_cookie_t cookie;
412 u32 reg;
413 int err;
414
415 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
416 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
417 DMA_CTRL_ACK);
418 if (!in_desc) {
419 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
420 return -ENOMEM;
421 }
422
423 reinit_completion(&hdev->dma_completion);
424 in_desc->callback = stm32_hash_dma_callback;
425 in_desc->callback_param = hdev;
426
427 hdev->flags |= HASH_FLAGS_FINAL;
428 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
429
430 reg = stm32_hash_read(hdev, HASH_CR);
431
432 if (mdma)
433 reg |= HASH_CR_MDMAT;
434 else
435 reg &= ~HASH_CR_MDMAT;
436
437 reg |= HASH_CR_DMAE;
438
439 stm32_hash_write(hdev, HASH_CR, reg);
440
441 stm32_hash_set_nblw(hdev, length);
442
443 cookie = dmaengine_submit(in_desc);
444 err = dma_submit_error(cookie);
445 if (err)
446 return -ENOMEM;
447
448 dma_async_issue_pending(hdev->dma_lch);
449
450 if (!wait_for_completion_timeout(&hdev->dma_completion,
451 msecs_to_jiffies(100)))
452 err = -ETIMEDOUT;
453
454 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
455 NULL, NULL) != DMA_COMPLETE)
456 err = -ETIMEDOUT;
457
458 if (err) {
459 dev_err(hdev->dev, "DMA Error %i\n", err);
460 dmaengine_terminate_all(hdev->dma_lch);
461 return err;
462 }
463
464 return -EINPROGRESS;
465}
466
467static void stm32_hash_dma_callback(void *param)
468{
469 struct stm32_hash_dev *hdev = param;
470
471 complete(&hdev->dma_completion);
472
473 hdev->flags |= HASH_FLAGS_DMA_READY;
474}
475
476static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
477{
478 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
479 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
480 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
481 int err;
482
483 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
484 err = stm32_hash_write_key(hdev);
485 if (stm32_hash_wait_busy(hdev))
486 return -ETIMEDOUT;
487 } else {
488 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
489 sg_init_one(&rctx->sg_key, ctx->key,
490 ALIGN(ctx->keylen, sizeof(u32)));
491
492 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
493 DMA_TO_DEVICE);
494 if (rctx->dma_ct == 0) {
495 dev_err(hdev->dev, "dma_map_sg error\n");
496 return -ENOMEM;
497 }
498
499 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
500
501 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
502 }
503
504 return err;
505}
506
507static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
508{
509 struct dma_slave_config dma_conf;
510 struct dma_chan *chan;
511 int err;
512
513 memset(&dma_conf, 0, sizeof(dma_conf));
514
515 dma_conf.direction = DMA_MEM_TO_DEV;
516 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
517 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
518 dma_conf.src_maxburst = hdev->dma_maxburst;
519 dma_conf.dst_maxburst = hdev->dma_maxburst;
520 dma_conf.device_fc = false;
521
522 chan = dma_request_chan(hdev->dev, "in");
523 if (IS_ERR(chan))
524 return PTR_ERR(chan);
525
526 hdev->dma_lch = chan;
527
528 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
529 if (err) {
530 dma_release_channel(hdev->dma_lch);
531 hdev->dma_lch = NULL;
532 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
533 return err;
534 }
535
536 init_completion(&hdev->dma_completion);
537
538 return 0;
539}
540
541static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
542{
543 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
544 struct scatterlist sg[1], *tsg;
545 int err = 0, len = 0, reg, ncp = 0;
546 unsigned int i;
547 u32 *buffer = (void *)rctx->buffer;
548
549 rctx->sg = hdev->req->src;
550 rctx->total = hdev->req->nbytes;
551
552 rctx->nents = sg_nents(rctx->sg);
553
554 if (rctx->nents < 0)
555 return -EINVAL;
556
557 stm32_hash_write_ctrl(hdev);
558
559 if (hdev->flags & HASH_FLAGS_HMAC) {
560 err = stm32_hash_hmac_dma_send(hdev);
561 if (err != -EINPROGRESS)
562 return err;
563 }
564
565 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
566 len = sg->length;
567
568 sg[0] = *tsg;
569 if (sg_is_last(sg)) {
570 if (hdev->dma_mode == 1) {
571 len = (ALIGN(sg->length, 16) - 16);
572
573 ncp = sg_pcopy_to_buffer(
574 rctx->sg, rctx->nents,
575 rctx->buffer, sg->length - len,
576 rctx->total - sg->length + len);
577
578 sg->length = len;
579 } else {
580 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
581 len = sg->length;
582 sg->length = ALIGN(sg->length,
583 sizeof(u32));
584 }
585 }
586 }
587
588 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
589 DMA_TO_DEVICE);
590 if (rctx->dma_ct == 0) {
591 dev_err(hdev->dev, "dma_map_sg error\n");
592 return -ENOMEM;
593 }
594
595 err = stm32_hash_xmit_dma(hdev, sg, len,
596 !sg_is_last(sg));
597
598 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
599
600 if (err == -ENOMEM)
601 return err;
602 }
603
604 if (hdev->dma_mode == 1) {
605 if (stm32_hash_wait_busy(hdev))
606 return -ETIMEDOUT;
607 reg = stm32_hash_read(hdev, HASH_CR);
608 reg &= ~HASH_CR_DMAE;
609 reg |= HASH_CR_DMAA;
610 stm32_hash_write(hdev, HASH_CR, reg);
611
612 if (ncp) {
613 memset(buffer + ncp, 0,
614 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
615 writesl(hdev->io_base + HASH_DIN, buffer,
616 DIV_ROUND_UP(ncp, sizeof(u32)));
617 }
618 stm32_hash_set_nblw(hdev, ncp);
619 reg = stm32_hash_read(hdev, HASH_STR);
620 reg |= HASH_STR_DCAL;
621 stm32_hash_write(hdev, HASH_STR, reg);
622 err = -EINPROGRESS;
623 }
624
625 if (hdev->flags & HASH_FLAGS_HMAC) {
626 if (stm32_hash_wait_busy(hdev))
627 return -ETIMEDOUT;
628 err = stm32_hash_hmac_dma_send(hdev);
629 }
630
631 return err;
632}
633
634static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
635{
636 struct stm32_hash_dev *hdev = NULL, *tmp;
637
638 spin_lock_bh(&stm32_hash.lock);
639 if (!ctx->hdev) {
640 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
641 hdev = tmp;
642 break;
643 }
644 ctx->hdev = hdev;
645 } else {
646 hdev = ctx->hdev;
647 }
648
649 spin_unlock_bh(&stm32_hash.lock);
650
651 return hdev;
652}
653
654static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
655{
656 struct scatterlist *sg;
657 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
658 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
659 int i;
660
661 if (req->nbytes <= HASH_DMA_THRESHOLD)
662 return false;
663
664 if (sg_nents(req->src) > 1) {
665 if (hdev->dma_mode == 1)
666 return false;
667 for_each_sg(req->src, sg, sg_nents(req->src), i) {
668 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
669 (!sg_is_last(sg)))
670 return false;
671 }
672 }
673
674 if (req->src->offset % 4)
675 return false;
676
677 return true;
678}
679
680static int stm32_hash_init(struct ahash_request *req)
681{
682 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
683 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
684 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
685 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
686
687 rctx->hdev = hdev;
688
689 rctx->flags = HASH_FLAGS_CPU;
690
691 rctx->digcnt = crypto_ahash_digestsize(tfm);
692 switch (rctx->digcnt) {
693 case MD5_DIGEST_SIZE:
694 rctx->flags |= HASH_FLAGS_MD5;
695 break;
696 case SHA1_DIGEST_SIZE:
697 rctx->flags |= HASH_FLAGS_SHA1;
698 break;
699 case SHA224_DIGEST_SIZE:
700 rctx->flags |= HASH_FLAGS_SHA224;
701 break;
702 case SHA256_DIGEST_SIZE:
703 rctx->flags |= HASH_FLAGS_SHA256;
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 rctx->bufcnt = 0;
710 rctx->buflen = HASH_BUFLEN;
711 rctx->total = 0;
712 rctx->offset = 0;
713 rctx->data_type = HASH_DATA_8_BITS;
714
715 memset(rctx->buffer, 0, HASH_BUFLEN);
716
717 if (ctx->flags & HASH_FLAGS_HMAC)
718 rctx->flags |= HASH_FLAGS_HMAC;
719
720 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
721
722 return 0;
723}
724
725static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
726{
727 return stm32_hash_update_cpu(hdev);
728}
729
730static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
731{
732 struct ahash_request *req = hdev->req;
733 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
734 int err;
735 int buflen = rctx->bufcnt;
736
737 rctx->bufcnt = 0;
738
739 if (!(rctx->flags & HASH_FLAGS_CPU))
740 err = stm32_hash_dma_send(hdev);
741 else
742 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
743
744
745 return err;
746}
747
748static void stm32_hash_copy_hash(struct ahash_request *req)
749{
750 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
751 u32 *hash = (u32 *)rctx->digest;
752 unsigned int i, hashsize;
753
754 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
755 case HASH_FLAGS_MD5:
756 hashsize = MD5_DIGEST_SIZE;
757 break;
758 case HASH_FLAGS_SHA1:
759 hashsize = SHA1_DIGEST_SIZE;
760 break;
761 case HASH_FLAGS_SHA224:
762 hashsize = SHA224_DIGEST_SIZE;
763 break;
764 case HASH_FLAGS_SHA256:
765 hashsize = SHA256_DIGEST_SIZE;
766 break;
767 default:
768 return;
769 }
770
771 for (i = 0; i < hashsize / sizeof(u32); i++)
772 hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
773 HASH_HREG(i)));
774}
775
776static int stm32_hash_finish(struct ahash_request *req)
777{
778 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
779
780 if (!req->result)
781 return -EINVAL;
782
783 memcpy(req->result, rctx->digest, rctx->digcnt);
784
785 return 0;
786}
787
788static void stm32_hash_finish_req(struct ahash_request *req, int err)
789{
790 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
791 struct stm32_hash_dev *hdev = rctx->hdev;
792
793 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
794 stm32_hash_copy_hash(req);
795 err = stm32_hash_finish(req);
796 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
797 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
798 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
799 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
800 HASH_FLAGS_HMAC_KEY);
801 } else {
802 rctx->flags |= HASH_FLAGS_ERRORS;
803 }
804
805 pm_runtime_mark_last_busy(hdev->dev);
806 pm_runtime_put_autosuspend(hdev->dev);
807
808 crypto_finalize_hash_request(hdev->engine, req, err);
809}
810
811static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
812 struct stm32_hash_request_ctx *rctx)
813{
814 pm_runtime_get_sync(hdev->dev);
815
816 if (!(HASH_FLAGS_INIT & hdev->flags)) {
817 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
818 stm32_hash_write(hdev, HASH_STR, 0);
819 stm32_hash_write(hdev, HASH_DIN, 0);
820 stm32_hash_write(hdev, HASH_IMR, 0);
821 hdev->err = 0;
822 }
823
824 return 0;
825}
826
827static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
828static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
829
830static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
831 struct ahash_request *req)
832{
833 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
834}
835
836static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
837{
838 struct ahash_request *req = container_of(areq, struct ahash_request,
839 base);
840 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
841 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
842 struct stm32_hash_request_ctx *rctx;
843
844 if (!hdev)
845 return -ENODEV;
846
847 hdev->req = req;
848
849 rctx = ahash_request_ctx(req);
850
851 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
852 rctx->op, req->nbytes);
853
854 return stm32_hash_hw_init(hdev, rctx);
855}
856
857static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
858{
859 struct ahash_request *req = container_of(areq, struct ahash_request,
860 base);
861 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
862 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
863 struct stm32_hash_request_ctx *rctx;
864 int err = 0;
865
866 if (!hdev)
867 return -ENODEV;
868
869 hdev->req = req;
870
871 rctx = ahash_request_ctx(req);
872
873 if (rctx->op == HASH_OP_UPDATE)
874 err = stm32_hash_update_req(hdev);
875 else if (rctx->op == HASH_OP_FINAL)
876 err = stm32_hash_final_req(hdev);
877
878 if (err != -EINPROGRESS)
879 /* done task will not finish it, so do it here */
880 stm32_hash_finish_req(req, err);
881
882 return 0;
883}
884
885static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
886{
887 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
888 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
889 struct stm32_hash_dev *hdev = ctx->hdev;
890
891 rctx->op = op;
892
893 return stm32_hash_handle_queue(hdev, req);
894}
895
896static int stm32_hash_update(struct ahash_request *req)
897{
898 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
899
900 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
901 return 0;
902
903 rctx->total = req->nbytes;
904 rctx->sg = req->src;
905 rctx->offset = 0;
906
907 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
908 stm32_hash_append_sg(rctx);
909 return 0;
910 }
911
912 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
913}
914
915static int stm32_hash_final(struct ahash_request *req)
916{
917 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
918
919 rctx->flags |= HASH_FLAGS_FINUP;
920
921 return stm32_hash_enqueue(req, HASH_OP_FINAL);
922}
923
924static int stm32_hash_finup(struct ahash_request *req)
925{
926 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
927 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
928 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
929 int err1, err2;
930
931 rctx->flags |= HASH_FLAGS_FINUP;
932
933 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
934 rctx->flags &= ~HASH_FLAGS_CPU;
935
936 err1 = stm32_hash_update(req);
937
938 if (err1 == -EINPROGRESS || err1 == -EBUSY)
939 return err1;
940
941 /*
942 * final() has to be always called to cleanup resources
943 * even if update() failed, except EINPROGRESS
944 */
945 err2 = stm32_hash_final(req);
946
947 return err1 ?: err2;
948}
949
950static int stm32_hash_digest(struct ahash_request *req)
951{
952 return stm32_hash_init(req) ?: stm32_hash_finup(req);
953}
954
955static int stm32_hash_export(struct ahash_request *req, void *out)
956{
957 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
958 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
959 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
960 u32 *preg;
961 unsigned int i;
962
963 pm_runtime_get_sync(hdev->dev);
964
965 while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
966 cpu_relax();
967
968 rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
969 sizeof(u32),
970 GFP_KERNEL);
971
972 preg = rctx->hw_context;
973
974 *preg++ = stm32_hash_read(hdev, HASH_IMR);
975 *preg++ = stm32_hash_read(hdev, HASH_STR);
976 *preg++ = stm32_hash_read(hdev, HASH_CR);
977 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
978 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
979
980 pm_runtime_mark_last_busy(hdev->dev);
981 pm_runtime_put_autosuspend(hdev->dev);
982
983 memcpy(out, rctx, sizeof(*rctx));
984
985 return 0;
986}
987
988static int stm32_hash_import(struct ahash_request *req, const void *in)
989{
990 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
991 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
992 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
993 const u32 *preg = in;
994 u32 reg;
995 unsigned int i;
996
997 memcpy(rctx, in, sizeof(*rctx));
998
999 preg = rctx->hw_context;
1000
1001 pm_runtime_get_sync(hdev->dev);
1002
1003 stm32_hash_write(hdev, HASH_IMR, *preg++);
1004 stm32_hash_write(hdev, HASH_STR, *preg++);
1005 stm32_hash_write(hdev, HASH_CR, *preg);
1006 reg = *preg++ | HASH_CR_INIT;
1007 stm32_hash_write(hdev, HASH_CR, reg);
1008
1009 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1010 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1011
1012 pm_runtime_mark_last_busy(hdev->dev);
1013 pm_runtime_put_autosuspend(hdev->dev);
1014
1015 kfree(rctx->hw_context);
1016
1017 return 0;
1018}
1019
1020static int stm32_hash_setkey(struct crypto_ahash *tfm,
1021 const u8 *key, unsigned int keylen)
1022{
1023 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1024
1025 if (keylen <= HASH_MAX_KEY_SIZE) {
1026 memcpy(ctx->key, key, keylen);
1027 ctx->keylen = keylen;
1028 } else {
1029 return -ENOMEM;
1030 }
1031
1032 return 0;
1033}
1034
1035static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1036 const char *algs_hmac_name)
1037{
1038 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1039
1040 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1041 sizeof(struct stm32_hash_request_ctx));
1042
1043 ctx->keylen = 0;
1044
1045 if (algs_hmac_name)
1046 ctx->flags |= HASH_FLAGS_HMAC;
1047
1048 ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1049 ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1050 ctx->enginectx.op.unprepare_request = NULL;
1051 return 0;
1052}
1053
1054static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1055{
1056 return stm32_hash_cra_init_algs(tfm, NULL);
1057}
1058
1059static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1060{
1061 return stm32_hash_cra_init_algs(tfm, "md5");
1062}
1063
1064static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1065{
1066 return stm32_hash_cra_init_algs(tfm, "sha1");
1067}
1068
1069static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1070{
1071 return stm32_hash_cra_init_algs(tfm, "sha224");
1072}
1073
1074static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1075{
1076 return stm32_hash_cra_init_algs(tfm, "sha256");
1077}
1078
1079static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1080{
1081 struct stm32_hash_dev *hdev = dev_id;
1082
1083 if (HASH_FLAGS_CPU & hdev->flags) {
1084 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1085 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1086 goto finish;
1087 }
1088 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1089 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1090 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1091 goto finish;
1092 }
1093 }
1094
1095 return IRQ_HANDLED;
1096
1097finish:
1098 /* Finish current request */
1099 stm32_hash_finish_req(hdev->req, 0);
1100
1101 return IRQ_HANDLED;
1102}
1103
1104static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1105{
1106 struct stm32_hash_dev *hdev = dev_id;
1107 u32 reg;
1108
1109 reg = stm32_hash_read(hdev, HASH_SR);
1110 if (reg & HASH_SR_OUTPUT_READY) {
1111 reg &= ~HASH_SR_OUTPUT_READY;
1112 stm32_hash_write(hdev, HASH_SR, reg);
1113 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1114 /* Disable IT*/
1115 stm32_hash_write(hdev, HASH_IMR, 0);
1116 return IRQ_WAKE_THREAD;
1117 }
1118
1119 return IRQ_NONE;
1120}
1121
1122static struct ahash_alg algs_md5_sha1[] = {
1123 {
1124 .init = stm32_hash_init,
1125 .update = stm32_hash_update,
1126 .final = stm32_hash_final,
1127 .finup = stm32_hash_finup,
1128 .digest = stm32_hash_digest,
1129 .export = stm32_hash_export,
1130 .import = stm32_hash_import,
1131 .halg = {
1132 .digestsize = MD5_DIGEST_SIZE,
1133 .statesize = sizeof(struct stm32_hash_request_ctx),
1134 .base = {
1135 .cra_name = "md5",
1136 .cra_driver_name = "stm32-md5",
1137 .cra_priority = 200,
1138 .cra_flags = CRYPTO_ALG_ASYNC |
1139 CRYPTO_ALG_KERN_DRIVER_ONLY,
1140 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1141 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1142 .cra_alignmask = 3,
1143 .cra_init = stm32_hash_cra_init,
1144 .cra_module = THIS_MODULE,
1145 }
1146 }
1147 },
1148 {
1149 .init = stm32_hash_init,
1150 .update = stm32_hash_update,
1151 .final = stm32_hash_final,
1152 .finup = stm32_hash_finup,
1153 .digest = stm32_hash_digest,
1154 .export = stm32_hash_export,
1155 .import = stm32_hash_import,
1156 .setkey = stm32_hash_setkey,
1157 .halg = {
1158 .digestsize = MD5_DIGEST_SIZE,
1159 .statesize = sizeof(struct stm32_hash_request_ctx),
1160 .base = {
1161 .cra_name = "hmac(md5)",
1162 .cra_driver_name = "stm32-hmac-md5",
1163 .cra_priority = 200,
1164 .cra_flags = CRYPTO_ALG_ASYNC |
1165 CRYPTO_ALG_KERN_DRIVER_ONLY,
1166 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1167 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1168 .cra_alignmask = 3,
1169 .cra_init = stm32_hash_cra_md5_init,
1170 .cra_module = THIS_MODULE,
1171 }
1172 }
1173 },
1174 {
1175 .init = stm32_hash_init,
1176 .update = stm32_hash_update,
1177 .final = stm32_hash_final,
1178 .finup = stm32_hash_finup,
1179 .digest = stm32_hash_digest,
1180 .export = stm32_hash_export,
1181 .import = stm32_hash_import,
1182 .halg = {
1183 .digestsize = SHA1_DIGEST_SIZE,
1184 .statesize = sizeof(struct stm32_hash_request_ctx),
1185 .base = {
1186 .cra_name = "sha1",
1187 .cra_driver_name = "stm32-sha1",
1188 .cra_priority = 200,
1189 .cra_flags = CRYPTO_ALG_ASYNC |
1190 CRYPTO_ALG_KERN_DRIVER_ONLY,
1191 .cra_blocksize = SHA1_BLOCK_SIZE,
1192 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1193 .cra_alignmask = 3,
1194 .cra_init = stm32_hash_cra_init,
1195 .cra_module = THIS_MODULE,
1196 }
1197 }
1198 },
1199 {
1200 .init = stm32_hash_init,
1201 .update = stm32_hash_update,
1202 .final = stm32_hash_final,
1203 .finup = stm32_hash_finup,
1204 .digest = stm32_hash_digest,
1205 .export = stm32_hash_export,
1206 .import = stm32_hash_import,
1207 .setkey = stm32_hash_setkey,
1208 .halg = {
1209 .digestsize = SHA1_DIGEST_SIZE,
1210 .statesize = sizeof(struct stm32_hash_request_ctx),
1211 .base = {
1212 .cra_name = "hmac(sha1)",
1213 .cra_driver_name = "stm32-hmac-sha1",
1214 .cra_priority = 200,
1215 .cra_flags = CRYPTO_ALG_ASYNC |
1216 CRYPTO_ALG_KERN_DRIVER_ONLY,
1217 .cra_blocksize = SHA1_BLOCK_SIZE,
1218 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1219 .cra_alignmask = 3,
1220 .cra_init = stm32_hash_cra_sha1_init,
1221 .cra_module = THIS_MODULE,
1222 }
1223 }
1224 },
1225};
1226
1227static struct ahash_alg algs_sha224_sha256[] = {
1228 {
1229 .init = stm32_hash_init,
1230 .update = stm32_hash_update,
1231 .final = stm32_hash_final,
1232 .finup = stm32_hash_finup,
1233 .digest = stm32_hash_digest,
1234 .export = stm32_hash_export,
1235 .import = stm32_hash_import,
1236 .halg = {
1237 .digestsize = SHA224_DIGEST_SIZE,
1238 .statesize = sizeof(struct stm32_hash_request_ctx),
1239 .base = {
1240 .cra_name = "sha224",
1241 .cra_driver_name = "stm32-sha224",
1242 .cra_priority = 200,
1243 .cra_flags = CRYPTO_ALG_ASYNC |
1244 CRYPTO_ALG_KERN_DRIVER_ONLY,
1245 .cra_blocksize = SHA224_BLOCK_SIZE,
1246 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1247 .cra_alignmask = 3,
1248 .cra_init = stm32_hash_cra_init,
1249 .cra_module = THIS_MODULE,
1250 }
1251 }
1252 },
1253 {
1254 .init = stm32_hash_init,
1255 .update = stm32_hash_update,
1256 .final = stm32_hash_final,
1257 .finup = stm32_hash_finup,
1258 .digest = stm32_hash_digest,
1259 .setkey = stm32_hash_setkey,
1260 .export = stm32_hash_export,
1261 .import = stm32_hash_import,
1262 .halg = {
1263 .digestsize = SHA224_DIGEST_SIZE,
1264 .statesize = sizeof(struct stm32_hash_request_ctx),
1265 .base = {
1266 .cra_name = "hmac(sha224)",
1267 .cra_driver_name = "stm32-hmac-sha224",
1268 .cra_priority = 200,
1269 .cra_flags = CRYPTO_ALG_ASYNC |
1270 CRYPTO_ALG_KERN_DRIVER_ONLY,
1271 .cra_blocksize = SHA224_BLOCK_SIZE,
1272 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1273 .cra_alignmask = 3,
1274 .cra_init = stm32_hash_cra_sha224_init,
1275 .cra_module = THIS_MODULE,
1276 }
1277 }
1278 },
1279 {
1280 .init = stm32_hash_init,
1281 .update = stm32_hash_update,
1282 .final = stm32_hash_final,
1283 .finup = stm32_hash_finup,
1284 .digest = stm32_hash_digest,
1285 .export = stm32_hash_export,
1286 .import = stm32_hash_import,
1287 .halg = {
1288 .digestsize = SHA256_DIGEST_SIZE,
1289 .statesize = sizeof(struct stm32_hash_request_ctx),
1290 .base = {
1291 .cra_name = "sha256",
1292 .cra_driver_name = "stm32-sha256",
1293 .cra_priority = 200,
1294 .cra_flags = CRYPTO_ALG_ASYNC |
1295 CRYPTO_ALG_KERN_DRIVER_ONLY,
1296 .cra_blocksize = SHA256_BLOCK_SIZE,
1297 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1298 .cra_alignmask = 3,
1299 .cra_init = stm32_hash_cra_init,
1300 .cra_module = THIS_MODULE,
1301 }
1302 }
1303 },
1304 {
1305 .init = stm32_hash_init,
1306 .update = stm32_hash_update,
1307 .final = stm32_hash_final,
1308 .finup = stm32_hash_finup,
1309 .digest = stm32_hash_digest,
1310 .export = stm32_hash_export,
1311 .import = stm32_hash_import,
1312 .setkey = stm32_hash_setkey,
1313 .halg = {
1314 .digestsize = SHA256_DIGEST_SIZE,
1315 .statesize = sizeof(struct stm32_hash_request_ctx),
1316 .base = {
1317 .cra_name = "hmac(sha256)",
1318 .cra_driver_name = "stm32-hmac-sha256",
1319 .cra_priority = 200,
1320 .cra_flags = CRYPTO_ALG_ASYNC |
1321 CRYPTO_ALG_KERN_DRIVER_ONLY,
1322 .cra_blocksize = SHA256_BLOCK_SIZE,
1323 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1324 .cra_alignmask = 3,
1325 .cra_init = stm32_hash_cra_sha256_init,
1326 .cra_module = THIS_MODULE,
1327 }
1328 }
1329 },
1330};
1331
1332static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1333{
1334 unsigned int i, j;
1335 int err;
1336
1337 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1338 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1339 err = crypto_register_ahash(
1340 &hdev->pdata->algs_info[i].algs_list[j]);
1341 if (err)
1342 goto err_algs;
1343 }
1344 }
1345
1346 return 0;
1347err_algs:
1348 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1349 for (; i--; ) {
1350 for (; j--;)
1351 crypto_unregister_ahash(
1352 &hdev->pdata->algs_info[i].algs_list[j]);
1353 }
1354
1355 return err;
1356}
1357
1358static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1359{
1360 unsigned int i, j;
1361
1362 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1363 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1364 crypto_unregister_ahash(
1365 &hdev->pdata->algs_info[i].algs_list[j]);
1366 }
1367
1368 return 0;
1369}
1370
1371static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1372 {
1373 .algs_list = algs_md5_sha1,
1374 .size = ARRAY_SIZE(algs_md5_sha1),
1375 },
1376};
1377
1378static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1379 .algs_info = stm32_hash_algs_info_stm32f4,
1380 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1381};
1382
1383static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1384 {
1385 .algs_list = algs_md5_sha1,
1386 .size = ARRAY_SIZE(algs_md5_sha1),
1387 },
1388 {
1389 .algs_list = algs_sha224_sha256,
1390 .size = ARRAY_SIZE(algs_sha224_sha256),
1391 },
1392};
1393
1394static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1395 .algs_info = stm32_hash_algs_info_stm32f7,
1396 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1397};
1398
1399static const struct of_device_id stm32_hash_of_match[] = {
1400 {
1401 .compatible = "st,stm32f456-hash",
1402 .data = &stm32_hash_pdata_stm32f4,
1403 },
1404 {
1405 .compatible = "st,stm32f756-hash",
1406 .data = &stm32_hash_pdata_stm32f7,
1407 },
1408 {},
1409};
1410
1411MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1412
1413static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1414 struct device *dev)
1415{
1416 hdev->pdata = of_device_get_match_data(dev);
1417 if (!hdev->pdata) {
1418 dev_err(dev, "no compatible OF match\n");
1419 return -EINVAL;
1420 }
1421
1422 if (of_property_read_u32(dev->of_node, "dma-maxburst",
1423 &hdev->dma_maxburst)) {
1424 dev_info(dev, "dma-maxburst not specified, using 0\n");
1425 hdev->dma_maxburst = 0;
1426 }
1427
1428 return 0;
1429}
1430
1431static int stm32_hash_probe(struct platform_device *pdev)
1432{
1433 struct stm32_hash_dev *hdev;
1434 struct device *dev = &pdev->dev;
1435 struct resource *res;
1436 int ret, irq;
1437
1438 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1439 if (!hdev)
1440 return -ENOMEM;
1441
1442 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1443 hdev->io_base = devm_ioremap_resource(dev, res);
1444 if (IS_ERR(hdev->io_base))
1445 return PTR_ERR(hdev->io_base);
1446
1447 hdev->phys_base = res->start;
1448
1449 ret = stm32_hash_get_of_match(hdev, dev);
1450 if (ret)
1451 return ret;
1452
1453 irq = platform_get_irq(pdev, 0);
1454 if (irq < 0)
1455 return irq;
1456
1457 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1458 stm32_hash_irq_thread, IRQF_ONESHOT,
1459 dev_name(dev), hdev);
1460 if (ret) {
1461 dev_err(dev, "Cannot grab IRQ\n");
1462 return ret;
1463 }
1464
1465 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1466 if (IS_ERR(hdev->clk)) {
1467 if (PTR_ERR(hdev->clk) != -EPROBE_DEFER) {
1468 dev_err(dev, "failed to get clock for hash (%lu)\n",
1469 PTR_ERR(hdev->clk));
1470 }
1471
1472 return PTR_ERR(hdev->clk);
1473 }
1474
1475 ret = clk_prepare_enable(hdev->clk);
1476 if (ret) {
1477 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1478 return ret;
1479 }
1480
1481 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1482 pm_runtime_use_autosuspend(dev);
1483
1484 pm_runtime_get_noresume(dev);
1485 pm_runtime_set_active(dev);
1486 pm_runtime_enable(dev);
1487
1488 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1489 if (IS_ERR(hdev->rst)) {
1490 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
1491 ret = -EPROBE_DEFER;
1492 goto err_reset;
1493 }
1494 } else {
1495 reset_control_assert(hdev->rst);
1496 udelay(2);
1497 reset_control_deassert(hdev->rst);
1498 }
1499
1500 hdev->dev = dev;
1501
1502 platform_set_drvdata(pdev, hdev);
1503
1504 ret = stm32_hash_dma_init(hdev);
1505 switch (ret) {
1506 case 0:
1507 break;
1508 case -ENOENT:
1509 dev_dbg(dev, "DMA mode not available\n");
1510 break;
1511 default:
1512 goto err_dma;
1513 }
1514
1515 spin_lock(&stm32_hash.lock);
1516 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1517 spin_unlock(&stm32_hash.lock);
1518
1519 /* Initialize crypto engine */
1520 hdev->engine = crypto_engine_alloc_init(dev, 1);
1521 if (!hdev->engine) {
1522 ret = -ENOMEM;
1523 goto err_engine;
1524 }
1525
1526 ret = crypto_engine_start(hdev->engine);
1527 if (ret)
1528 goto err_engine_start;
1529
1530 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1531
1532 /* Register algos */
1533 ret = stm32_hash_register_algs(hdev);
1534 if (ret)
1535 goto err_algs;
1536
1537 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1538 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1539
1540 pm_runtime_put_sync(dev);
1541
1542 return 0;
1543
1544err_algs:
1545err_engine_start:
1546 crypto_engine_exit(hdev->engine);
1547err_engine:
1548 spin_lock(&stm32_hash.lock);
1549 list_del(&hdev->list);
1550 spin_unlock(&stm32_hash.lock);
1551err_dma:
1552 if (hdev->dma_lch)
1553 dma_release_channel(hdev->dma_lch);
1554err_reset:
1555 pm_runtime_disable(dev);
1556 pm_runtime_put_noidle(dev);
1557
1558 clk_disable_unprepare(hdev->clk);
1559
1560 return ret;
1561}
1562
1563static int stm32_hash_remove(struct platform_device *pdev)
1564{
1565 struct stm32_hash_dev *hdev;
1566 int ret;
1567
1568 hdev = platform_get_drvdata(pdev);
1569 if (!hdev)
1570 return -ENODEV;
1571
1572 ret = pm_runtime_get_sync(hdev->dev);
1573 if (ret < 0)
1574 return ret;
1575
1576 stm32_hash_unregister_algs(hdev);
1577
1578 crypto_engine_exit(hdev->engine);
1579
1580 spin_lock(&stm32_hash.lock);
1581 list_del(&hdev->list);
1582 spin_unlock(&stm32_hash.lock);
1583
1584 if (hdev->dma_lch)
1585 dma_release_channel(hdev->dma_lch);
1586
1587 pm_runtime_disable(hdev->dev);
1588 pm_runtime_put_noidle(hdev->dev);
1589
1590 clk_disable_unprepare(hdev->clk);
1591
1592 return 0;
1593}
1594
1595#ifdef CONFIG_PM
1596static int stm32_hash_runtime_suspend(struct device *dev)
1597{
1598 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1599
1600 clk_disable_unprepare(hdev->clk);
1601
1602 return 0;
1603}
1604
1605static int stm32_hash_runtime_resume(struct device *dev)
1606{
1607 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1608 int ret;
1609
1610 ret = clk_prepare_enable(hdev->clk);
1611 if (ret) {
1612 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1613 return ret;
1614 }
1615
1616 return 0;
1617}
1618#endif
1619
1620static const struct dev_pm_ops stm32_hash_pm_ops = {
1621 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1622 pm_runtime_force_resume)
1623 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1624 stm32_hash_runtime_resume, NULL)
1625};
1626
1627static struct platform_driver stm32_hash_driver = {
1628 .probe = stm32_hash_probe,
1629 .remove = stm32_hash_remove,
1630 .driver = {
1631 .name = "stm32-hash",
1632 .pm = &stm32_hash_pm_ops,
1633 .of_match_table = stm32_hash_of_match,
1634 }
1635};
1636
1637module_platform_driver(stm32_hash_driver);
1638
1639MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1640MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1641MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9#include <crypto/engine.h>
10#include <crypto/internal/hash.h>
11#include <crypto/md5.h>
12#include <crypto/scatterwalk.h>
13#include <crypto/sha1.h>
14#include <crypto/sha2.h>
15#include <crypto/sha3.h>
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
20#include <linux/interrupt.h>
21#include <linux/iopoll.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/string.h>
29
30#define HASH_CR 0x00
31#define HASH_DIN 0x04
32#define HASH_STR 0x08
33#define HASH_UX500_HREG(x) (0x0c + ((x) * 0x04))
34#define HASH_IMR 0x20
35#define HASH_SR 0x24
36#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
37#define HASH_HREG(x) (0x310 + ((x) * 0x04))
38#define HASH_HWCFGR 0x3F0
39#define HASH_VER 0x3F4
40#define HASH_ID 0x3F8
41
42/* Control Register */
43#define HASH_CR_INIT BIT(2)
44#define HASH_CR_DMAE BIT(3)
45#define HASH_CR_DATATYPE_POS 4
46#define HASH_CR_MODE BIT(6)
47#define HASH_CR_ALGO_POS 7
48#define HASH_CR_MDMAT BIT(13)
49#define HASH_CR_DMAA BIT(14)
50#define HASH_CR_LKEY BIT(16)
51
52/* Interrupt */
53#define HASH_DINIE BIT(0)
54#define HASH_DCIE BIT(1)
55
56/* Interrupt Mask */
57#define HASH_MASK_CALC_COMPLETION BIT(0)
58#define HASH_MASK_DATA_INPUT BIT(1)
59
60/* Status Flags */
61#define HASH_SR_DATA_INPUT_READY BIT(0)
62#define HASH_SR_OUTPUT_READY BIT(1)
63#define HASH_SR_DMA_ACTIVE BIT(2)
64#define HASH_SR_BUSY BIT(3)
65
66/* STR Register */
67#define HASH_STR_NBLW_MASK GENMASK(4, 0)
68#define HASH_STR_DCAL BIT(8)
69
70/* HWCFGR Register */
71#define HASH_HWCFG_DMA_MASK GENMASK(3, 0)
72
73/* Context swap register */
74#define HASH_CSR_NB_SHA256_HMAC 54
75#define HASH_CSR_NB_SHA256 38
76#define HASH_CSR_NB_SHA512_HMAC 103
77#define HASH_CSR_NB_SHA512 91
78#define HASH_CSR_NB_SHA3_HMAC 88
79#define HASH_CSR_NB_SHA3 72
80#define HASH_CSR_NB_MAX HASH_CSR_NB_SHA512_HMAC
81
82#define HASH_FLAGS_INIT BIT(0)
83#define HASH_FLAGS_OUTPUT_READY BIT(1)
84#define HASH_FLAGS_CPU BIT(2)
85#define HASH_FLAGS_DMA_ACTIVE BIT(3)
86#define HASH_FLAGS_HMAC_INIT BIT(4)
87#define HASH_FLAGS_HMAC_FINAL BIT(5)
88#define HASH_FLAGS_HMAC_KEY BIT(6)
89#define HASH_FLAGS_SHA3_MODE BIT(7)
90#define HASH_FLAGS_FINAL BIT(15)
91#define HASH_FLAGS_FINUP BIT(16)
92#define HASH_FLAGS_ALGO_MASK GENMASK(20, 17)
93#define HASH_FLAGS_ALGO_SHIFT 17
94#define HASH_FLAGS_ERRORS BIT(21)
95#define HASH_FLAGS_EMPTY BIT(22)
96#define HASH_FLAGS_HMAC BIT(23)
97#define HASH_FLAGS_SGS_COPIED BIT(24)
98
99#define HASH_OP_UPDATE 1
100#define HASH_OP_FINAL 2
101
102#define HASH_BURST_LEVEL 4
103
104enum stm32_hash_data_format {
105 HASH_DATA_32_BITS = 0x0,
106 HASH_DATA_16_BITS = 0x1,
107 HASH_DATA_8_BITS = 0x2,
108 HASH_DATA_1_BIT = 0x3
109};
110
111#define HASH_BUFLEN (SHA3_224_BLOCK_SIZE + 4)
112#define HASH_MAX_KEY_SIZE (SHA512_BLOCK_SIZE * 8)
113
114enum stm32_hash_algo {
115 HASH_SHA1 = 0,
116 HASH_MD5 = 1,
117 HASH_SHA224 = 2,
118 HASH_SHA256 = 3,
119 HASH_SHA3_224 = 4,
120 HASH_SHA3_256 = 5,
121 HASH_SHA3_384 = 6,
122 HASH_SHA3_512 = 7,
123 HASH_SHA384 = 12,
124 HASH_SHA512 = 15,
125};
126
127enum ux500_hash_algo {
128 HASH_SHA256_UX500 = 0,
129 HASH_SHA1_UX500 = 1,
130};
131
132#define HASH_AUTOSUSPEND_DELAY 50
133
134struct stm32_hash_ctx {
135 struct stm32_hash_dev *hdev;
136 struct crypto_shash *xtfm;
137 unsigned long flags;
138
139 u8 key[HASH_MAX_KEY_SIZE];
140 int keylen;
141};
142
143struct stm32_hash_state {
144 u32 flags;
145
146 u16 bufcnt;
147 u16 blocklen;
148
149 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
150
151 /* hash state */
152 u32 hw_context[3 + HASH_CSR_NB_MAX];
153};
154
155struct stm32_hash_request_ctx {
156 struct stm32_hash_dev *hdev;
157 unsigned long op;
158
159 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
160 size_t digcnt;
161
162 struct scatterlist *sg;
163 struct scatterlist sgl[2]; /* scatterlist used to realize alignment */
164 unsigned int offset;
165 unsigned int total;
166 struct scatterlist sg_key;
167
168 dma_addr_t dma_addr;
169 size_t dma_ct;
170 int nents;
171
172 u8 data_type;
173
174 struct stm32_hash_state state;
175};
176
177struct stm32_hash_algs_info {
178 struct ahash_engine_alg *algs_list;
179 size_t size;
180};
181
182struct stm32_hash_pdata {
183 const int alg_shift;
184 const struct stm32_hash_algs_info *algs_info;
185 size_t algs_info_size;
186 bool has_sr;
187 bool has_mdmat;
188 bool context_secured;
189 bool broken_emptymsg;
190 bool ux500;
191};
192
193struct stm32_hash_dev {
194 struct list_head list;
195 struct device *dev;
196 struct clk *clk;
197 struct reset_control *rst;
198 void __iomem *io_base;
199 phys_addr_t phys_base;
200 u8 xmit_buf[HASH_BUFLEN] __aligned(sizeof(u32));
201 u32 dma_mode;
202 bool polled;
203
204 struct ahash_request *req;
205 struct crypto_engine *engine;
206
207 unsigned long flags;
208
209 struct dma_chan *dma_lch;
210 struct completion dma_completion;
211
212 const struct stm32_hash_pdata *pdata;
213};
214
215struct stm32_hash_drv {
216 struct list_head dev_list;
217 spinlock_t lock; /* List protection access */
218};
219
220static struct stm32_hash_drv stm32_hash = {
221 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
222 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
223};
224
225static void stm32_hash_dma_callback(void *param);
226static int stm32_hash_prepare_request(struct ahash_request *req);
227static void stm32_hash_unprepare_request(struct ahash_request *req);
228
229static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
230{
231 return readl_relaxed(hdev->io_base + offset);
232}
233
234static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
235 u32 offset, u32 value)
236{
237 writel_relaxed(value, hdev->io_base + offset);
238}
239
240/**
241 * stm32_hash_wait_busy - wait until hash processor is available. It return an
242 * error if the hash core is processing a block of data for more than 10 ms.
243 * @hdev: the stm32_hash_dev device.
244 */
245static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
246{
247 u32 status;
248
249 /* The Ux500 lacks the special status register, we poll the DCAL bit instead */
250 if (!hdev->pdata->has_sr)
251 return readl_relaxed_poll_timeout(hdev->io_base + HASH_STR, status,
252 !(status & HASH_STR_DCAL), 10, 10000);
253
254 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
255 !(status & HASH_SR_BUSY), 10, 10000);
256}
257
258/**
259 * stm32_hash_set_nblw - set the number of valid bytes in the last word.
260 * @hdev: the stm32_hash_dev device.
261 * @length: the length of the final word.
262 */
263static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
264{
265 u32 reg;
266
267 reg = stm32_hash_read(hdev, HASH_STR);
268 reg &= ~(HASH_STR_NBLW_MASK);
269 reg |= (8U * ((length) % 4U));
270 stm32_hash_write(hdev, HASH_STR, reg);
271}
272
273static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
274{
275 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
276 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
277 u32 reg;
278 int keylen = ctx->keylen;
279 void *key = ctx->key;
280
281 if (keylen) {
282 stm32_hash_set_nblw(hdev, keylen);
283
284 while (keylen > 0) {
285 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
286 keylen -= 4;
287 key += 4;
288 }
289
290 reg = stm32_hash_read(hdev, HASH_STR);
291 reg |= HASH_STR_DCAL;
292 stm32_hash_write(hdev, HASH_STR, reg);
293
294 return -EINPROGRESS;
295 }
296
297 return 0;
298}
299
300/**
301 * stm32_hash_write_ctrl - Initialize the hash processor, only if
302 * HASH_FLAGS_INIT is set.
303 * @hdev: the stm32_hash_dev device
304 */
305static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
306{
307 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
308 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
309 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
310 struct stm32_hash_state *state = &rctx->state;
311 u32 alg = (state->flags & HASH_FLAGS_ALGO_MASK) >> HASH_FLAGS_ALGO_SHIFT;
312
313 u32 reg = HASH_CR_INIT;
314
315 if (!(hdev->flags & HASH_FLAGS_INIT)) {
316 if (hdev->pdata->ux500) {
317 reg |= ((alg & BIT(0)) << HASH_CR_ALGO_POS);
318 } else {
319 if (hdev->pdata->alg_shift == HASH_CR_ALGO_POS)
320 reg |= ((alg & BIT(1)) << 17) |
321 ((alg & BIT(0)) << HASH_CR_ALGO_POS);
322 else
323 reg |= alg << hdev->pdata->alg_shift;
324 }
325
326 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
327
328 if (state->flags & HASH_FLAGS_HMAC) {
329 hdev->flags |= HASH_FLAGS_HMAC;
330 reg |= HASH_CR_MODE;
331 if (ctx->keylen > crypto_ahash_blocksize(tfm))
332 reg |= HASH_CR_LKEY;
333 }
334
335 if (!hdev->polled)
336 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
337
338 stm32_hash_write(hdev, HASH_CR, reg);
339
340 hdev->flags |= HASH_FLAGS_INIT;
341
342 /*
343 * After first block + 1 words are fill up,
344 * we only need to fill 1 block to start partial computation
345 */
346 rctx->state.blocklen -= sizeof(u32);
347
348 dev_dbg(hdev->dev, "Write Control %x\n", reg);
349 }
350}
351
352static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
353{
354 struct stm32_hash_state *state = &rctx->state;
355 size_t count;
356
357 while ((state->bufcnt < state->blocklen) && rctx->total) {
358 count = min(rctx->sg->length - rctx->offset, rctx->total);
359 count = min_t(size_t, count, state->blocklen - state->bufcnt);
360
361 if (count <= 0) {
362 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
363 rctx->sg = sg_next(rctx->sg);
364 continue;
365 } else {
366 break;
367 }
368 }
369
370 scatterwalk_map_and_copy(state->buffer + state->bufcnt,
371 rctx->sg, rctx->offset, count, 0);
372
373 state->bufcnt += count;
374 rctx->offset += count;
375 rctx->total -= count;
376
377 if (rctx->offset == rctx->sg->length) {
378 rctx->sg = sg_next(rctx->sg);
379 if (rctx->sg)
380 rctx->offset = 0;
381 else
382 rctx->total = 0;
383 }
384 }
385}
386
387static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
388 const u8 *buf, size_t length, int final)
389{
390 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
391 struct stm32_hash_state *state = &rctx->state;
392 unsigned int count, len32;
393 const u32 *buffer = (const u32 *)buf;
394 u32 reg;
395
396 if (final) {
397 hdev->flags |= HASH_FLAGS_FINAL;
398
399 /* Do not process empty messages if hw is buggy. */
400 if (!(hdev->flags & HASH_FLAGS_INIT) && !length &&
401 hdev->pdata->broken_emptymsg) {
402 state->flags |= HASH_FLAGS_EMPTY;
403 return 0;
404 }
405 }
406
407 len32 = DIV_ROUND_UP(length, sizeof(u32));
408
409 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
410 __func__, length, final, len32);
411
412 hdev->flags |= HASH_FLAGS_CPU;
413
414 stm32_hash_write_ctrl(hdev);
415
416 if (stm32_hash_wait_busy(hdev))
417 return -ETIMEDOUT;
418
419 if ((hdev->flags & HASH_FLAGS_HMAC) &&
420 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
421 hdev->flags |= HASH_FLAGS_HMAC_KEY;
422 stm32_hash_write_key(hdev);
423 if (stm32_hash_wait_busy(hdev))
424 return -ETIMEDOUT;
425 }
426
427 for (count = 0; count < len32; count++)
428 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
429
430 if (final) {
431 if (stm32_hash_wait_busy(hdev))
432 return -ETIMEDOUT;
433
434 stm32_hash_set_nblw(hdev, length);
435 reg = stm32_hash_read(hdev, HASH_STR);
436 reg |= HASH_STR_DCAL;
437 stm32_hash_write(hdev, HASH_STR, reg);
438 if (hdev->flags & HASH_FLAGS_HMAC) {
439 if (stm32_hash_wait_busy(hdev))
440 return -ETIMEDOUT;
441 stm32_hash_write_key(hdev);
442 }
443 return -EINPROGRESS;
444 }
445
446 return 0;
447}
448
449static int hash_swap_reg(struct stm32_hash_request_ctx *rctx)
450{
451 struct stm32_hash_state *state = &rctx->state;
452
453 switch ((state->flags & HASH_FLAGS_ALGO_MASK) >>
454 HASH_FLAGS_ALGO_SHIFT) {
455 case HASH_MD5:
456 case HASH_SHA1:
457 case HASH_SHA224:
458 case HASH_SHA256:
459 if (state->flags & HASH_FLAGS_HMAC)
460 return HASH_CSR_NB_SHA256_HMAC;
461 else
462 return HASH_CSR_NB_SHA256;
463 break;
464
465 case HASH_SHA384:
466 case HASH_SHA512:
467 if (state->flags & HASH_FLAGS_HMAC)
468 return HASH_CSR_NB_SHA512_HMAC;
469 else
470 return HASH_CSR_NB_SHA512;
471 break;
472
473 case HASH_SHA3_224:
474 case HASH_SHA3_256:
475 case HASH_SHA3_384:
476 case HASH_SHA3_512:
477 if (state->flags & HASH_FLAGS_HMAC)
478 return HASH_CSR_NB_SHA3_HMAC;
479 else
480 return HASH_CSR_NB_SHA3;
481 break;
482
483 default:
484 return -EINVAL;
485 }
486}
487
488static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
489{
490 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
491 struct stm32_hash_state *state = &rctx->state;
492 int bufcnt, err = 0, final;
493
494 dev_dbg(hdev->dev, "%s flags %x\n", __func__, state->flags);
495
496 final = state->flags & HASH_FLAGS_FINAL;
497
498 while ((rctx->total >= state->blocklen) ||
499 (state->bufcnt + rctx->total >= state->blocklen)) {
500 stm32_hash_append_sg(rctx);
501 bufcnt = state->bufcnt;
502 state->bufcnt = 0;
503 err = stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 0);
504 if (err)
505 return err;
506 }
507
508 stm32_hash_append_sg(rctx);
509
510 if (final) {
511 bufcnt = state->bufcnt;
512 state->bufcnt = 0;
513 return stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 1);
514 }
515
516 return err;
517}
518
519static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
520 struct scatterlist *sg, int length, int mdmat)
521{
522 struct dma_async_tx_descriptor *in_desc;
523 dma_cookie_t cookie;
524 u32 reg;
525 int err;
526
527 dev_dbg(hdev->dev, "%s mdmat: %x length: %d\n", __func__, mdmat, length);
528
529 /* do not use dma if there is no data to send */
530 if (length <= 0)
531 return 0;
532
533 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
534 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
535 DMA_CTRL_ACK);
536 if (!in_desc) {
537 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
538 return -ENOMEM;
539 }
540
541 reinit_completion(&hdev->dma_completion);
542 in_desc->callback = stm32_hash_dma_callback;
543 in_desc->callback_param = hdev;
544
545 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
546
547 reg = stm32_hash_read(hdev, HASH_CR);
548
549 if (hdev->pdata->has_mdmat) {
550 if (mdmat)
551 reg |= HASH_CR_MDMAT;
552 else
553 reg &= ~HASH_CR_MDMAT;
554 }
555 reg |= HASH_CR_DMAE;
556
557 stm32_hash_write(hdev, HASH_CR, reg);
558
559
560 cookie = dmaengine_submit(in_desc);
561 err = dma_submit_error(cookie);
562 if (err)
563 return -ENOMEM;
564
565 dma_async_issue_pending(hdev->dma_lch);
566
567 if (!wait_for_completion_timeout(&hdev->dma_completion,
568 msecs_to_jiffies(100)))
569 err = -ETIMEDOUT;
570
571 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
572 NULL, NULL) != DMA_COMPLETE)
573 err = -ETIMEDOUT;
574
575 if (err) {
576 dev_err(hdev->dev, "DMA Error %i\n", err);
577 dmaengine_terminate_all(hdev->dma_lch);
578 return err;
579 }
580
581 return -EINPROGRESS;
582}
583
584static void stm32_hash_dma_callback(void *param)
585{
586 struct stm32_hash_dev *hdev = param;
587
588 complete(&hdev->dma_completion);
589}
590
591static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
592{
593 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
594 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
595 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
596 int err;
597
598 if (ctx->keylen < rctx->state.blocklen || hdev->dma_mode > 0) {
599 err = stm32_hash_write_key(hdev);
600 if (stm32_hash_wait_busy(hdev))
601 return -ETIMEDOUT;
602 } else {
603 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
604 sg_init_one(&rctx->sg_key, ctx->key,
605 ALIGN(ctx->keylen, sizeof(u32)));
606
607 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
608 DMA_TO_DEVICE);
609 if (rctx->dma_ct == 0) {
610 dev_err(hdev->dev, "dma_map_sg error\n");
611 return -ENOMEM;
612 }
613
614 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
615
616 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
617 }
618
619 return err;
620}
621
622static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
623{
624 struct dma_slave_config dma_conf;
625 struct dma_chan *chan;
626 int err;
627
628 memset(&dma_conf, 0, sizeof(dma_conf));
629
630 dma_conf.direction = DMA_MEM_TO_DEV;
631 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
632 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
633 dma_conf.src_maxburst = HASH_BURST_LEVEL;
634 dma_conf.dst_maxburst = HASH_BURST_LEVEL;
635 dma_conf.device_fc = false;
636
637 chan = dma_request_chan(hdev->dev, "in");
638 if (IS_ERR(chan))
639 return PTR_ERR(chan);
640
641 hdev->dma_lch = chan;
642
643 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
644 if (err) {
645 dma_release_channel(hdev->dma_lch);
646 hdev->dma_lch = NULL;
647 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
648 return err;
649 }
650
651 init_completion(&hdev->dma_completion);
652
653 return 0;
654}
655
656static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
657{
658 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
659 u32 *buffer = (void *)rctx->state.buffer;
660 struct scatterlist sg[1], *tsg;
661 int err = 0, reg, ncp = 0;
662 unsigned int i, len = 0, bufcnt = 0;
663 bool final = hdev->flags & HASH_FLAGS_FINAL;
664 bool is_last = false;
665 u32 last_word;
666
667 dev_dbg(hdev->dev, "%s total: %d bufcnt: %d final: %d\n",
668 __func__, rctx->total, rctx->state.bufcnt, final);
669
670 if (rctx->nents < 0)
671 return -EINVAL;
672
673 stm32_hash_write_ctrl(hdev);
674
675 if (hdev->flags & HASH_FLAGS_HMAC && (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
676 hdev->flags |= HASH_FLAGS_HMAC_KEY;
677 err = stm32_hash_hmac_dma_send(hdev);
678 if (err != -EINPROGRESS)
679 return err;
680 }
681
682 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
683 sg[0] = *tsg;
684 len = sg->length;
685
686 if (sg_is_last(sg) || (bufcnt + sg[0].length) >= rctx->total) {
687 if (!final) {
688 /* Always manually put the last word of a non-final transfer. */
689 len -= sizeof(u32);
690 sg_pcopy_to_buffer(rctx->sg, rctx->nents, &last_word, 4, len);
691 sg->length -= sizeof(u32);
692 } else {
693 /*
694 * In Multiple DMA mode, DMA must be aborted before the final
695 * transfer.
696 */
697 sg->length = rctx->total - bufcnt;
698 if (hdev->dma_mode > 0) {
699 len = (ALIGN(sg->length, 16) - 16);
700
701 ncp = sg_pcopy_to_buffer(rctx->sg, rctx->nents,
702 rctx->state.buffer,
703 sg->length - len,
704 rctx->total - sg->length + len);
705
706 if (!len)
707 break;
708
709 sg->length = len;
710 } else {
711 is_last = true;
712 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
713 len = sg->length;
714 sg->length = ALIGN(sg->length,
715 sizeof(u32));
716 }
717 }
718 }
719 }
720
721 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
722 DMA_TO_DEVICE);
723 if (rctx->dma_ct == 0) {
724 dev_err(hdev->dev, "dma_map_sg error\n");
725 return -ENOMEM;
726 }
727
728 err = stm32_hash_xmit_dma(hdev, sg, len, !is_last);
729
730 /* The last word of a non final transfer is sent manually. */
731 if (!final) {
732 stm32_hash_write(hdev, HASH_DIN, last_word);
733 len += sizeof(u32);
734 }
735
736 rctx->total -= len;
737
738 bufcnt += sg[0].length;
739 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
740
741 if (err == -ENOMEM || err == -ETIMEDOUT)
742 return err;
743 if (is_last)
744 break;
745 }
746
747 /*
748 * When the second last block transfer of 4 words is performed by the DMA,
749 * the software must set the DMA Abort bit (DMAA) to 1 before completing the
750 * last transfer of 4 words or less.
751 */
752 if (final) {
753 if (hdev->dma_mode > 0) {
754 if (stm32_hash_wait_busy(hdev))
755 return -ETIMEDOUT;
756 reg = stm32_hash_read(hdev, HASH_CR);
757 reg &= ~HASH_CR_DMAE;
758 reg |= HASH_CR_DMAA;
759 stm32_hash_write(hdev, HASH_CR, reg);
760
761 if (ncp) {
762 memset(buffer + ncp, 0, 4 - DIV_ROUND_UP(ncp, sizeof(u32)));
763 writesl(hdev->io_base + HASH_DIN, buffer,
764 DIV_ROUND_UP(ncp, sizeof(u32)));
765 }
766
767 stm32_hash_set_nblw(hdev, ncp);
768 reg = stm32_hash_read(hdev, HASH_STR);
769 reg |= HASH_STR_DCAL;
770 stm32_hash_write(hdev, HASH_STR, reg);
771 err = -EINPROGRESS;
772 }
773
774 /*
775 * The hash processor needs the key to be loaded a second time in order
776 * to process the HMAC.
777 */
778 if (hdev->flags & HASH_FLAGS_HMAC) {
779 if (stm32_hash_wait_busy(hdev))
780 return -ETIMEDOUT;
781 err = stm32_hash_hmac_dma_send(hdev);
782 }
783
784 return err;
785 }
786
787 if (err != -EINPROGRESS)
788 return err;
789
790 return 0;
791}
792
793static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
794{
795 struct stm32_hash_dev *hdev = NULL, *tmp;
796
797 spin_lock_bh(&stm32_hash.lock);
798 if (!ctx->hdev) {
799 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
800 hdev = tmp;
801 break;
802 }
803 ctx->hdev = hdev;
804 } else {
805 hdev = ctx->hdev;
806 }
807
808 spin_unlock_bh(&stm32_hash.lock);
809
810 return hdev;
811}
812
813static int stm32_hash_init(struct ahash_request *req)
814{
815 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
816 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
817 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
818 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
819 struct stm32_hash_state *state = &rctx->state;
820 bool sha3_mode = ctx->flags & HASH_FLAGS_SHA3_MODE;
821
822 rctx->hdev = hdev;
823 state->flags = 0;
824
825 if (!(hdev->dma_lch && hdev->pdata->has_mdmat))
826 state->flags |= HASH_FLAGS_CPU;
827
828 if (sha3_mode)
829 state->flags |= HASH_FLAGS_SHA3_MODE;
830
831 rctx->digcnt = crypto_ahash_digestsize(tfm);
832 switch (rctx->digcnt) {
833 case MD5_DIGEST_SIZE:
834 state->flags |= HASH_MD5 << HASH_FLAGS_ALGO_SHIFT;
835 break;
836 case SHA1_DIGEST_SIZE:
837 if (hdev->pdata->ux500)
838 state->flags |= HASH_SHA1_UX500 << HASH_FLAGS_ALGO_SHIFT;
839 else
840 state->flags |= HASH_SHA1 << HASH_FLAGS_ALGO_SHIFT;
841 break;
842 case SHA224_DIGEST_SIZE:
843 if (sha3_mode)
844 state->flags |= HASH_SHA3_224 << HASH_FLAGS_ALGO_SHIFT;
845 else
846 state->flags |= HASH_SHA224 << HASH_FLAGS_ALGO_SHIFT;
847 break;
848 case SHA256_DIGEST_SIZE:
849 if (sha3_mode) {
850 state->flags |= HASH_SHA3_256 << HASH_FLAGS_ALGO_SHIFT;
851 } else {
852 if (hdev->pdata->ux500)
853 state->flags |= HASH_SHA256_UX500 << HASH_FLAGS_ALGO_SHIFT;
854 else
855 state->flags |= HASH_SHA256 << HASH_FLAGS_ALGO_SHIFT;
856 }
857 break;
858 case SHA384_DIGEST_SIZE:
859 if (sha3_mode)
860 state->flags |= HASH_SHA3_384 << HASH_FLAGS_ALGO_SHIFT;
861 else
862 state->flags |= HASH_SHA384 << HASH_FLAGS_ALGO_SHIFT;
863 break;
864 case SHA512_DIGEST_SIZE:
865 if (sha3_mode)
866 state->flags |= HASH_SHA3_512 << HASH_FLAGS_ALGO_SHIFT;
867 else
868 state->flags |= HASH_SHA512 << HASH_FLAGS_ALGO_SHIFT;
869 break;
870 default:
871 return -EINVAL;
872 }
873
874 rctx->state.bufcnt = 0;
875 rctx->state.blocklen = crypto_ahash_blocksize(tfm) + sizeof(u32);
876 if (rctx->state.blocklen > HASH_BUFLEN) {
877 dev_err(hdev->dev, "Error, block too large");
878 return -EINVAL;
879 }
880 rctx->nents = 0;
881 rctx->total = 0;
882 rctx->offset = 0;
883 rctx->data_type = HASH_DATA_8_BITS;
884
885 if (ctx->flags & HASH_FLAGS_HMAC)
886 state->flags |= HASH_FLAGS_HMAC;
887
888 dev_dbg(hdev->dev, "%s Flags %x\n", __func__, state->flags);
889
890 return 0;
891}
892
893static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
894{
895 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
896 struct stm32_hash_state *state = &rctx->state;
897
898 dev_dbg(hdev->dev, "update_req: total: %u, digcnt: %zd, final: 0",
899 rctx->total, rctx->digcnt);
900
901 if (!(state->flags & HASH_FLAGS_CPU))
902 return stm32_hash_dma_send(hdev);
903
904 return stm32_hash_update_cpu(hdev);
905}
906
907static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
908{
909 struct ahash_request *req = hdev->req;
910 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
911 struct stm32_hash_state *state = &rctx->state;
912 int buflen = state->bufcnt;
913
914 if (!(state->flags & HASH_FLAGS_CPU)) {
915 hdev->flags |= HASH_FLAGS_FINAL;
916 return stm32_hash_dma_send(hdev);
917 }
918
919 if (state->flags & HASH_FLAGS_FINUP)
920 return stm32_hash_update_req(hdev);
921
922 state->bufcnt = 0;
923
924 return stm32_hash_xmit_cpu(hdev, state->buffer, buflen, 1);
925}
926
927static void stm32_hash_emptymsg_fallback(struct ahash_request *req)
928{
929 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
930 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(ahash);
931 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
932 struct stm32_hash_dev *hdev = rctx->hdev;
933 int ret;
934
935 dev_dbg(hdev->dev, "use fallback message size 0 key size %d\n",
936 ctx->keylen);
937
938 if (!ctx->xtfm) {
939 dev_err(hdev->dev, "no fallback engine\n");
940 return;
941 }
942
943 if (ctx->keylen) {
944 ret = crypto_shash_setkey(ctx->xtfm, ctx->key, ctx->keylen);
945 if (ret) {
946 dev_err(hdev->dev, "failed to set key ret=%d\n", ret);
947 return;
948 }
949 }
950
951 ret = crypto_shash_tfm_digest(ctx->xtfm, NULL, 0, rctx->digest);
952 if (ret)
953 dev_err(hdev->dev, "shash digest error\n");
954}
955
956static void stm32_hash_copy_hash(struct ahash_request *req)
957{
958 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
959 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
960 struct stm32_hash_state *state = &rctx->state;
961 struct stm32_hash_dev *hdev = rctx->hdev;
962 __be32 *hash = (void *)rctx->digest;
963 unsigned int i, hashsize;
964
965 if (hdev->pdata->broken_emptymsg && (state->flags & HASH_FLAGS_EMPTY))
966 return stm32_hash_emptymsg_fallback(req);
967
968 hashsize = crypto_ahash_digestsize(tfm);
969
970 for (i = 0; i < hashsize / sizeof(u32); i++) {
971 if (hdev->pdata->ux500)
972 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
973 HASH_UX500_HREG(i)));
974 else
975 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
976 HASH_HREG(i)));
977 }
978}
979
980static int stm32_hash_finish(struct ahash_request *req)
981{
982 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
983 u32 reg;
984
985 reg = stm32_hash_read(rctx->hdev, HASH_SR);
986 reg &= ~HASH_SR_OUTPUT_READY;
987 stm32_hash_write(rctx->hdev, HASH_SR, reg);
988
989 if (!req->result)
990 return -EINVAL;
991
992 memcpy(req->result, rctx->digest, rctx->digcnt);
993
994 return 0;
995}
996
997static void stm32_hash_finish_req(struct ahash_request *req, int err)
998{
999 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1000 struct stm32_hash_state *state = &rctx->state;
1001 struct stm32_hash_dev *hdev = rctx->hdev;
1002
1003 if (hdev->flags & HASH_FLAGS_DMA_ACTIVE)
1004 state->flags |= HASH_FLAGS_DMA_ACTIVE;
1005 else
1006 state->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1007
1008 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
1009 stm32_hash_copy_hash(req);
1010 err = stm32_hash_finish(req);
1011 }
1012
1013 /* Finalized request mist be unprepared here */
1014 stm32_hash_unprepare_request(req);
1015
1016 crypto_finalize_hash_request(hdev->engine, req, err);
1017}
1018
1019static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
1020 struct ahash_request *req)
1021{
1022 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
1023}
1024
1025static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
1026{
1027 struct ahash_request *req = container_of(areq, struct ahash_request,
1028 base);
1029 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1030 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1031 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1032 struct stm32_hash_state *state = &rctx->state;
1033 int swap_reg;
1034 int err = 0;
1035
1036 if (!hdev)
1037 return -ENODEV;
1038
1039 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
1040 rctx->op, req->nbytes);
1041
1042 pm_runtime_get_sync(hdev->dev);
1043
1044 err = stm32_hash_prepare_request(req);
1045 if (err)
1046 return err;
1047
1048 hdev->req = req;
1049 hdev->flags = 0;
1050 swap_reg = hash_swap_reg(rctx);
1051
1052 if (state->flags & HASH_FLAGS_INIT) {
1053 u32 *preg = rctx->state.hw_context;
1054 u32 reg;
1055 int i;
1056
1057 if (!hdev->pdata->ux500)
1058 stm32_hash_write(hdev, HASH_IMR, *preg++);
1059 stm32_hash_write(hdev, HASH_STR, *preg++);
1060 stm32_hash_write(hdev, HASH_CR, *preg);
1061 reg = *preg++ | HASH_CR_INIT;
1062 stm32_hash_write(hdev, HASH_CR, reg);
1063
1064 for (i = 0; i < swap_reg; i++)
1065 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1066
1067 hdev->flags |= HASH_FLAGS_INIT;
1068
1069 if (state->flags & HASH_FLAGS_HMAC)
1070 hdev->flags |= HASH_FLAGS_HMAC |
1071 HASH_FLAGS_HMAC_KEY;
1072
1073 if (state->flags & HASH_FLAGS_CPU)
1074 hdev->flags |= HASH_FLAGS_CPU;
1075
1076 if (state->flags & HASH_FLAGS_DMA_ACTIVE)
1077 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
1078 }
1079
1080 if (rctx->op == HASH_OP_UPDATE)
1081 err = stm32_hash_update_req(hdev);
1082 else if (rctx->op == HASH_OP_FINAL)
1083 err = stm32_hash_final_req(hdev);
1084
1085 /* If we have an IRQ, wait for that, else poll for completion */
1086 if (err == -EINPROGRESS && hdev->polled) {
1087 if (stm32_hash_wait_busy(hdev))
1088 err = -ETIMEDOUT;
1089 else {
1090 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1091 err = 0;
1092 }
1093 }
1094
1095 if (err != -EINPROGRESS)
1096 /* done task will not finish it, so do it here */
1097 stm32_hash_finish_req(req, err);
1098
1099 return 0;
1100}
1101
1102static int stm32_hash_copy_sgs(struct stm32_hash_request_ctx *rctx,
1103 struct scatterlist *sg, int bs,
1104 unsigned int new_len)
1105{
1106 struct stm32_hash_state *state = &rctx->state;
1107 int pages;
1108 void *buf;
1109
1110 pages = get_order(new_len);
1111
1112 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1113 if (!buf) {
1114 pr_err("Couldn't allocate pages for unaligned cases.\n");
1115 return -ENOMEM;
1116 }
1117
1118 if (state->bufcnt)
1119 memcpy(buf, rctx->hdev->xmit_buf, state->bufcnt);
1120
1121 scatterwalk_map_and_copy(buf + state->bufcnt, sg, rctx->offset,
1122 min(new_len, rctx->total) - state->bufcnt, 0);
1123 sg_init_table(rctx->sgl, 1);
1124 sg_set_buf(rctx->sgl, buf, new_len);
1125 rctx->sg = rctx->sgl;
1126 state->flags |= HASH_FLAGS_SGS_COPIED;
1127 rctx->nents = 1;
1128 rctx->offset += new_len - state->bufcnt;
1129 state->bufcnt = 0;
1130 rctx->total = new_len;
1131
1132 return 0;
1133}
1134
1135static int stm32_hash_align_sgs(struct scatterlist *sg,
1136 int nbytes, int bs, bool init, bool final,
1137 struct stm32_hash_request_ctx *rctx)
1138{
1139 struct stm32_hash_state *state = &rctx->state;
1140 struct stm32_hash_dev *hdev = rctx->hdev;
1141 struct scatterlist *sg_tmp = sg;
1142 int offset = rctx->offset;
1143 int new_len;
1144 int n = 0;
1145 int bufcnt = state->bufcnt;
1146 bool secure_ctx = hdev->pdata->context_secured;
1147 bool aligned = true;
1148
1149 if (!sg || !sg->length || !nbytes) {
1150 if (bufcnt) {
1151 bufcnt = DIV_ROUND_UP(bufcnt, bs) * bs;
1152 sg_init_table(rctx->sgl, 1);
1153 sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, bufcnt);
1154 rctx->sg = rctx->sgl;
1155 rctx->nents = 1;
1156 }
1157
1158 return 0;
1159 }
1160
1161 new_len = nbytes;
1162
1163 if (offset)
1164 aligned = false;
1165
1166 if (final) {
1167 new_len = DIV_ROUND_UP(new_len, bs) * bs;
1168 } else {
1169 new_len = (new_len - 1) / bs * bs; // return n block - 1 block
1170
1171 /*
1172 * Context save in some version of HASH IP can only be done when the
1173 * FIFO is ready to get a new block. This implies to send n block plus a
1174 * 32 bit word in the first DMA send.
1175 */
1176 if (init && secure_ctx) {
1177 new_len += sizeof(u32);
1178 if (unlikely(new_len > nbytes))
1179 new_len -= bs;
1180 }
1181 }
1182
1183 if (!new_len)
1184 return 0;
1185
1186 if (nbytes != new_len)
1187 aligned = false;
1188
1189 while (nbytes > 0 && sg_tmp) {
1190 n++;
1191
1192 if (bufcnt) {
1193 if (!IS_ALIGNED(bufcnt, bs)) {
1194 aligned = false;
1195 break;
1196 }
1197 nbytes -= bufcnt;
1198 bufcnt = 0;
1199 if (!nbytes)
1200 aligned = false;
1201
1202 continue;
1203 }
1204
1205 if (offset < sg_tmp->length) {
1206 if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
1207 aligned = false;
1208 break;
1209 }
1210
1211 if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
1212 aligned = false;
1213 break;
1214 }
1215 }
1216
1217 if (offset) {
1218 offset -= sg_tmp->length;
1219 if (offset < 0) {
1220 nbytes += offset;
1221 offset = 0;
1222 }
1223 } else {
1224 nbytes -= sg_tmp->length;
1225 }
1226
1227 sg_tmp = sg_next(sg_tmp);
1228
1229 if (nbytes < 0) {
1230 aligned = false;
1231 break;
1232 }
1233 }
1234
1235 if (!aligned)
1236 return stm32_hash_copy_sgs(rctx, sg, bs, new_len);
1237
1238 rctx->total = new_len;
1239 rctx->offset += new_len;
1240 rctx->nents = n;
1241 if (state->bufcnt) {
1242 sg_init_table(rctx->sgl, 2);
1243 sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, state->bufcnt);
1244 sg_chain(rctx->sgl, 2, sg);
1245 rctx->sg = rctx->sgl;
1246 } else {
1247 rctx->sg = sg;
1248 }
1249
1250 return 0;
1251}
1252
1253static int stm32_hash_prepare_request(struct ahash_request *req)
1254{
1255 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1256 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1257 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1258 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1259 struct stm32_hash_state *state = &rctx->state;
1260 unsigned int nbytes;
1261 int ret, hash_later, bs;
1262 bool update = rctx->op & HASH_OP_UPDATE;
1263 bool init = !(state->flags & HASH_FLAGS_INIT);
1264 bool finup = state->flags & HASH_FLAGS_FINUP;
1265 bool final = state->flags & HASH_FLAGS_FINAL;
1266
1267 if (!hdev->dma_lch || state->flags & HASH_FLAGS_CPU)
1268 return 0;
1269
1270 bs = crypto_ahash_blocksize(tfm);
1271
1272 nbytes = state->bufcnt;
1273
1274 /*
1275 * In case of update request nbytes must correspond to the content of the
1276 * buffer + the offset minus the content of the request already in the
1277 * buffer.
1278 */
1279 if (update || finup)
1280 nbytes += req->nbytes - rctx->offset;
1281
1282 dev_dbg(hdev->dev,
1283 "%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%d\n",
1284 __func__, nbytes, bs, rctx->total, rctx->offset, state->bufcnt);
1285
1286 if (!nbytes)
1287 return 0;
1288
1289 rctx->total = nbytes;
1290
1291 if (update && req->nbytes && (!IS_ALIGNED(state->bufcnt, bs))) {
1292 int len = bs - state->bufcnt % bs;
1293
1294 if (len > req->nbytes)
1295 len = req->nbytes;
1296 scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
1297 0, len, 0);
1298 state->bufcnt += len;
1299 rctx->offset = len;
1300 }
1301
1302 /* copy buffer in a temporary one that is used for sg alignment */
1303 if (state->bufcnt)
1304 memcpy(hdev->xmit_buf, state->buffer, state->bufcnt);
1305
1306 ret = stm32_hash_align_sgs(req->src, nbytes, bs, init, final, rctx);
1307 if (ret)
1308 return ret;
1309
1310 hash_later = nbytes - rctx->total;
1311 if (hash_later < 0)
1312 hash_later = 0;
1313
1314 if (hash_later && hash_later <= state->blocklen) {
1315 scatterwalk_map_and_copy(state->buffer,
1316 req->src,
1317 req->nbytes - hash_later,
1318 hash_later, 0);
1319
1320 state->bufcnt = hash_later;
1321 } else {
1322 state->bufcnt = 0;
1323 }
1324
1325 if (hash_later > state->blocklen) {
1326 /* FIXME: add support of this case */
1327 pr_err("Buffer contains more than one block.\n");
1328 return -ENOMEM;
1329 }
1330
1331 rctx->total = min(nbytes, rctx->total);
1332
1333 return 0;
1334}
1335
1336static void stm32_hash_unprepare_request(struct ahash_request *req)
1337{
1338 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1339 struct stm32_hash_state *state = &rctx->state;
1340 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1341 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1342 u32 *preg = state->hw_context;
1343 int swap_reg, i;
1344
1345 if (hdev->dma_lch)
1346 dmaengine_terminate_sync(hdev->dma_lch);
1347
1348 if (state->flags & HASH_FLAGS_SGS_COPIED)
1349 free_pages((unsigned long)sg_virt(rctx->sg), get_order(rctx->sg->length));
1350
1351 rctx->sg = NULL;
1352 rctx->offset = 0;
1353
1354 state->flags &= ~(HASH_FLAGS_SGS_COPIED);
1355
1356 if (!(hdev->flags & HASH_FLAGS_INIT))
1357 goto pm_runtime;
1358
1359 state->flags |= HASH_FLAGS_INIT;
1360
1361 if (stm32_hash_wait_busy(hdev)) {
1362 dev_warn(hdev->dev, "Wait busy failed.");
1363 return;
1364 }
1365
1366 swap_reg = hash_swap_reg(rctx);
1367
1368 if (!hdev->pdata->ux500)
1369 *preg++ = stm32_hash_read(hdev, HASH_IMR);
1370 *preg++ = stm32_hash_read(hdev, HASH_STR);
1371 *preg++ = stm32_hash_read(hdev, HASH_CR);
1372 for (i = 0; i < swap_reg; i++)
1373 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
1374
1375pm_runtime:
1376 pm_runtime_mark_last_busy(hdev->dev);
1377 pm_runtime_put_autosuspend(hdev->dev);
1378}
1379
1380static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
1381{
1382 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1383 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1384 struct stm32_hash_dev *hdev = ctx->hdev;
1385
1386 rctx->op = op;
1387
1388 return stm32_hash_handle_queue(hdev, req);
1389}
1390
1391static int stm32_hash_update(struct ahash_request *req)
1392{
1393 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1394 struct stm32_hash_state *state = &rctx->state;
1395
1396 if (!req->nbytes)
1397 return 0;
1398
1399
1400 if (state->flags & HASH_FLAGS_CPU) {
1401 rctx->total = req->nbytes;
1402 rctx->sg = req->src;
1403 rctx->offset = 0;
1404
1405 if ((state->bufcnt + rctx->total < state->blocklen)) {
1406 stm32_hash_append_sg(rctx);
1407 return 0;
1408 }
1409 } else { /* DMA mode */
1410 if (state->bufcnt + req->nbytes <= state->blocklen) {
1411 scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
1412 0, req->nbytes, 0);
1413 state->bufcnt += req->nbytes;
1414 return 0;
1415 }
1416 }
1417
1418 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
1419}
1420
1421static int stm32_hash_final(struct ahash_request *req)
1422{
1423 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1424 struct stm32_hash_state *state = &rctx->state;
1425
1426 state->flags |= HASH_FLAGS_FINAL;
1427
1428 return stm32_hash_enqueue(req, HASH_OP_FINAL);
1429}
1430
1431static int stm32_hash_finup(struct ahash_request *req)
1432{
1433 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1434 struct stm32_hash_state *state = &rctx->state;
1435
1436 if (!req->nbytes)
1437 goto out;
1438
1439 state->flags |= HASH_FLAGS_FINUP;
1440
1441 if ((state->flags & HASH_FLAGS_CPU)) {
1442 rctx->total = req->nbytes;
1443 rctx->sg = req->src;
1444 rctx->offset = 0;
1445 }
1446
1447out:
1448 return stm32_hash_final(req);
1449}
1450
1451static int stm32_hash_digest(struct ahash_request *req)
1452{
1453 return stm32_hash_init(req) ?: stm32_hash_finup(req);
1454}
1455
1456static int stm32_hash_export(struct ahash_request *req, void *out)
1457{
1458 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1459
1460 memcpy(out, &rctx->state, sizeof(rctx->state));
1461
1462 return 0;
1463}
1464
1465static int stm32_hash_import(struct ahash_request *req, const void *in)
1466{
1467 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1468
1469 stm32_hash_init(req);
1470 memcpy(&rctx->state, in, sizeof(rctx->state));
1471
1472 return 0;
1473}
1474
1475static int stm32_hash_setkey(struct crypto_ahash *tfm,
1476 const u8 *key, unsigned int keylen)
1477{
1478 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1479
1480 if (keylen <= HASH_MAX_KEY_SIZE) {
1481 memcpy(ctx->key, key, keylen);
1482 ctx->keylen = keylen;
1483 } else {
1484 return -ENOMEM;
1485 }
1486
1487 return 0;
1488}
1489
1490static int stm32_hash_init_fallback(struct crypto_tfm *tfm)
1491{
1492 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1493 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1494 const char *name = crypto_tfm_alg_name(tfm);
1495 struct crypto_shash *xtfm;
1496
1497 /* The fallback is only needed on Ux500 */
1498 if (!hdev->pdata->ux500)
1499 return 0;
1500
1501 xtfm = crypto_alloc_shash(name, 0, CRYPTO_ALG_NEED_FALLBACK);
1502 if (IS_ERR(xtfm)) {
1503 dev_err(hdev->dev, "failed to allocate %s fallback\n",
1504 name);
1505 return PTR_ERR(xtfm);
1506 }
1507 dev_info(hdev->dev, "allocated %s fallback\n", name);
1508 ctx->xtfm = xtfm;
1509
1510 return 0;
1511}
1512
1513static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm, u32 algs_flags)
1514{
1515 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1516
1517 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1518 sizeof(struct stm32_hash_request_ctx));
1519
1520 ctx->keylen = 0;
1521
1522 if (algs_flags)
1523 ctx->flags |= algs_flags;
1524
1525 return stm32_hash_init_fallback(tfm);
1526}
1527
1528static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1529{
1530 return stm32_hash_cra_init_algs(tfm, 0);
1531}
1532
1533static int stm32_hash_cra_hmac_init(struct crypto_tfm *tfm)
1534{
1535 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_HMAC);
1536}
1537
1538static int stm32_hash_cra_sha3_init(struct crypto_tfm *tfm)
1539{
1540 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE);
1541}
1542
1543static int stm32_hash_cra_sha3_hmac_init(struct crypto_tfm *tfm)
1544{
1545 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE |
1546 HASH_FLAGS_HMAC);
1547}
1548
1549static void stm32_hash_cra_exit(struct crypto_tfm *tfm)
1550{
1551 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1552
1553 if (ctx->xtfm)
1554 crypto_free_shash(ctx->xtfm);
1555}
1556
1557static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1558{
1559 struct stm32_hash_dev *hdev = dev_id;
1560
1561 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1562 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1563 goto finish;
1564 }
1565
1566 return IRQ_HANDLED;
1567
1568finish:
1569 /* Finish current request */
1570 stm32_hash_finish_req(hdev->req, 0);
1571
1572 return IRQ_HANDLED;
1573}
1574
1575static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1576{
1577 struct stm32_hash_dev *hdev = dev_id;
1578 u32 reg;
1579
1580 reg = stm32_hash_read(hdev, HASH_SR);
1581 if (reg & HASH_SR_OUTPUT_READY) {
1582 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1583 /* Disable IT*/
1584 stm32_hash_write(hdev, HASH_IMR, 0);
1585 return IRQ_WAKE_THREAD;
1586 }
1587
1588 return IRQ_NONE;
1589}
1590
1591static struct ahash_engine_alg algs_md5[] = {
1592 {
1593 .base.init = stm32_hash_init,
1594 .base.update = stm32_hash_update,
1595 .base.final = stm32_hash_final,
1596 .base.finup = stm32_hash_finup,
1597 .base.digest = stm32_hash_digest,
1598 .base.export = stm32_hash_export,
1599 .base.import = stm32_hash_import,
1600 .base.halg = {
1601 .digestsize = MD5_DIGEST_SIZE,
1602 .statesize = sizeof(struct stm32_hash_state),
1603 .base = {
1604 .cra_name = "md5",
1605 .cra_driver_name = "stm32-md5",
1606 .cra_priority = 200,
1607 .cra_flags = CRYPTO_ALG_ASYNC |
1608 CRYPTO_ALG_KERN_DRIVER_ONLY,
1609 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1610 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1611 .cra_init = stm32_hash_cra_init,
1612 .cra_exit = stm32_hash_cra_exit,
1613 .cra_module = THIS_MODULE,
1614 }
1615 },
1616 .op = {
1617 .do_one_request = stm32_hash_one_request,
1618 },
1619 },
1620 {
1621 .base.init = stm32_hash_init,
1622 .base.update = stm32_hash_update,
1623 .base.final = stm32_hash_final,
1624 .base.finup = stm32_hash_finup,
1625 .base.digest = stm32_hash_digest,
1626 .base.export = stm32_hash_export,
1627 .base.import = stm32_hash_import,
1628 .base.setkey = stm32_hash_setkey,
1629 .base.halg = {
1630 .digestsize = MD5_DIGEST_SIZE,
1631 .statesize = sizeof(struct stm32_hash_state),
1632 .base = {
1633 .cra_name = "hmac(md5)",
1634 .cra_driver_name = "stm32-hmac-md5",
1635 .cra_priority = 200,
1636 .cra_flags = CRYPTO_ALG_ASYNC |
1637 CRYPTO_ALG_KERN_DRIVER_ONLY,
1638 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1639 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1640 .cra_init = stm32_hash_cra_hmac_init,
1641 .cra_exit = stm32_hash_cra_exit,
1642 .cra_module = THIS_MODULE,
1643 }
1644 },
1645 .op = {
1646 .do_one_request = stm32_hash_one_request,
1647 },
1648 }
1649};
1650
1651static struct ahash_engine_alg algs_sha1[] = {
1652 {
1653 .base.init = stm32_hash_init,
1654 .base.update = stm32_hash_update,
1655 .base.final = stm32_hash_final,
1656 .base.finup = stm32_hash_finup,
1657 .base.digest = stm32_hash_digest,
1658 .base.export = stm32_hash_export,
1659 .base.import = stm32_hash_import,
1660 .base.halg = {
1661 .digestsize = SHA1_DIGEST_SIZE,
1662 .statesize = sizeof(struct stm32_hash_state),
1663 .base = {
1664 .cra_name = "sha1",
1665 .cra_driver_name = "stm32-sha1",
1666 .cra_priority = 200,
1667 .cra_flags = CRYPTO_ALG_ASYNC |
1668 CRYPTO_ALG_KERN_DRIVER_ONLY,
1669 .cra_blocksize = SHA1_BLOCK_SIZE,
1670 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1671 .cra_init = stm32_hash_cra_init,
1672 .cra_exit = stm32_hash_cra_exit,
1673 .cra_module = THIS_MODULE,
1674 }
1675 },
1676 .op = {
1677 .do_one_request = stm32_hash_one_request,
1678 },
1679 },
1680 {
1681 .base.init = stm32_hash_init,
1682 .base.update = stm32_hash_update,
1683 .base.final = stm32_hash_final,
1684 .base.finup = stm32_hash_finup,
1685 .base.digest = stm32_hash_digest,
1686 .base.export = stm32_hash_export,
1687 .base.import = stm32_hash_import,
1688 .base.setkey = stm32_hash_setkey,
1689 .base.halg = {
1690 .digestsize = SHA1_DIGEST_SIZE,
1691 .statesize = sizeof(struct stm32_hash_state),
1692 .base = {
1693 .cra_name = "hmac(sha1)",
1694 .cra_driver_name = "stm32-hmac-sha1",
1695 .cra_priority = 200,
1696 .cra_flags = CRYPTO_ALG_ASYNC |
1697 CRYPTO_ALG_KERN_DRIVER_ONLY,
1698 .cra_blocksize = SHA1_BLOCK_SIZE,
1699 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1700 .cra_init = stm32_hash_cra_hmac_init,
1701 .cra_exit = stm32_hash_cra_exit,
1702 .cra_module = THIS_MODULE,
1703 }
1704 },
1705 .op = {
1706 .do_one_request = stm32_hash_one_request,
1707 },
1708 },
1709};
1710
1711static struct ahash_engine_alg algs_sha224[] = {
1712 {
1713 .base.init = stm32_hash_init,
1714 .base.update = stm32_hash_update,
1715 .base.final = stm32_hash_final,
1716 .base.finup = stm32_hash_finup,
1717 .base.digest = stm32_hash_digest,
1718 .base.export = stm32_hash_export,
1719 .base.import = stm32_hash_import,
1720 .base.halg = {
1721 .digestsize = SHA224_DIGEST_SIZE,
1722 .statesize = sizeof(struct stm32_hash_state),
1723 .base = {
1724 .cra_name = "sha224",
1725 .cra_driver_name = "stm32-sha224",
1726 .cra_priority = 200,
1727 .cra_flags = CRYPTO_ALG_ASYNC |
1728 CRYPTO_ALG_KERN_DRIVER_ONLY,
1729 .cra_blocksize = SHA224_BLOCK_SIZE,
1730 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1731 .cra_init = stm32_hash_cra_init,
1732 .cra_exit = stm32_hash_cra_exit,
1733 .cra_module = THIS_MODULE,
1734 }
1735 },
1736 .op = {
1737 .do_one_request = stm32_hash_one_request,
1738 },
1739 },
1740 {
1741 .base.init = stm32_hash_init,
1742 .base.update = stm32_hash_update,
1743 .base.final = stm32_hash_final,
1744 .base.finup = stm32_hash_finup,
1745 .base.digest = stm32_hash_digest,
1746 .base.setkey = stm32_hash_setkey,
1747 .base.export = stm32_hash_export,
1748 .base.import = stm32_hash_import,
1749 .base.halg = {
1750 .digestsize = SHA224_DIGEST_SIZE,
1751 .statesize = sizeof(struct stm32_hash_state),
1752 .base = {
1753 .cra_name = "hmac(sha224)",
1754 .cra_driver_name = "stm32-hmac-sha224",
1755 .cra_priority = 200,
1756 .cra_flags = CRYPTO_ALG_ASYNC |
1757 CRYPTO_ALG_KERN_DRIVER_ONLY,
1758 .cra_blocksize = SHA224_BLOCK_SIZE,
1759 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1760 .cra_init = stm32_hash_cra_hmac_init,
1761 .cra_exit = stm32_hash_cra_exit,
1762 .cra_module = THIS_MODULE,
1763 }
1764 },
1765 .op = {
1766 .do_one_request = stm32_hash_one_request,
1767 },
1768 },
1769};
1770
1771static struct ahash_engine_alg algs_sha256[] = {
1772 {
1773 .base.init = stm32_hash_init,
1774 .base.update = stm32_hash_update,
1775 .base.final = stm32_hash_final,
1776 .base.finup = stm32_hash_finup,
1777 .base.digest = stm32_hash_digest,
1778 .base.export = stm32_hash_export,
1779 .base.import = stm32_hash_import,
1780 .base.halg = {
1781 .digestsize = SHA256_DIGEST_SIZE,
1782 .statesize = sizeof(struct stm32_hash_state),
1783 .base = {
1784 .cra_name = "sha256",
1785 .cra_driver_name = "stm32-sha256",
1786 .cra_priority = 200,
1787 .cra_flags = CRYPTO_ALG_ASYNC |
1788 CRYPTO_ALG_KERN_DRIVER_ONLY,
1789 .cra_blocksize = SHA256_BLOCK_SIZE,
1790 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1791 .cra_init = stm32_hash_cra_init,
1792 .cra_exit = stm32_hash_cra_exit,
1793 .cra_module = THIS_MODULE,
1794 }
1795 },
1796 .op = {
1797 .do_one_request = stm32_hash_one_request,
1798 },
1799 },
1800 {
1801 .base.init = stm32_hash_init,
1802 .base.update = stm32_hash_update,
1803 .base.final = stm32_hash_final,
1804 .base.finup = stm32_hash_finup,
1805 .base.digest = stm32_hash_digest,
1806 .base.export = stm32_hash_export,
1807 .base.import = stm32_hash_import,
1808 .base.setkey = stm32_hash_setkey,
1809 .base.halg = {
1810 .digestsize = SHA256_DIGEST_SIZE,
1811 .statesize = sizeof(struct stm32_hash_state),
1812 .base = {
1813 .cra_name = "hmac(sha256)",
1814 .cra_driver_name = "stm32-hmac-sha256",
1815 .cra_priority = 200,
1816 .cra_flags = CRYPTO_ALG_ASYNC |
1817 CRYPTO_ALG_KERN_DRIVER_ONLY,
1818 .cra_blocksize = SHA256_BLOCK_SIZE,
1819 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1820 .cra_init = stm32_hash_cra_hmac_init,
1821 .cra_exit = stm32_hash_cra_exit,
1822 .cra_module = THIS_MODULE,
1823 }
1824 },
1825 .op = {
1826 .do_one_request = stm32_hash_one_request,
1827 },
1828 },
1829};
1830
1831static struct ahash_engine_alg algs_sha384_sha512[] = {
1832 {
1833 .base.init = stm32_hash_init,
1834 .base.update = stm32_hash_update,
1835 .base.final = stm32_hash_final,
1836 .base.finup = stm32_hash_finup,
1837 .base.digest = stm32_hash_digest,
1838 .base.export = stm32_hash_export,
1839 .base.import = stm32_hash_import,
1840 .base.halg = {
1841 .digestsize = SHA384_DIGEST_SIZE,
1842 .statesize = sizeof(struct stm32_hash_state),
1843 .base = {
1844 .cra_name = "sha384",
1845 .cra_driver_name = "stm32-sha384",
1846 .cra_priority = 200,
1847 .cra_flags = CRYPTO_ALG_ASYNC |
1848 CRYPTO_ALG_KERN_DRIVER_ONLY,
1849 .cra_blocksize = SHA384_BLOCK_SIZE,
1850 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1851 .cra_init = stm32_hash_cra_init,
1852 .cra_exit = stm32_hash_cra_exit,
1853 .cra_module = THIS_MODULE,
1854 }
1855 },
1856 .op = {
1857 .do_one_request = stm32_hash_one_request,
1858 },
1859 },
1860 {
1861 .base.init = stm32_hash_init,
1862 .base.update = stm32_hash_update,
1863 .base.final = stm32_hash_final,
1864 .base.finup = stm32_hash_finup,
1865 .base.digest = stm32_hash_digest,
1866 .base.setkey = stm32_hash_setkey,
1867 .base.export = stm32_hash_export,
1868 .base.import = stm32_hash_import,
1869 .base.halg = {
1870 .digestsize = SHA384_DIGEST_SIZE,
1871 .statesize = sizeof(struct stm32_hash_state),
1872 .base = {
1873 .cra_name = "hmac(sha384)",
1874 .cra_driver_name = "stm32-hmac-sha384",
1875 .cra_priority = 200,
1876 .cra_flags = CRYPTO_ALG_ASYNC |
1877 CRYPTO_ALG_KERN_DRIVER_ONLY,
1878 .cra_blocksize = SHA384_BLOCK_SIZE,
1879 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1880 .cra_init = stm32_hash_cra_hmac_init,
1881 .cra_exit = stm32_hash_cra_exit,
1882 .cra_module = THIS_MODULE,
1883 }
1884 },
1885 .op = {
1886 .do_one_request = stm32_hash_one_request,
1887 },
1888 },
1889 {
1890 .base.init = stm32_hash_init,
1891 .base.update = stm32_hash_update,
1892 .base.final = stm32_hash_final,
1893 .base.finup = stm32_hash_finup,
1894 .base.digest = stm32_hash_digest,
1895 .base.export = stm32_hash_export,
1896 .base.import = stm32_hash_import,
1897 .base.halg = {
1898 .digestsize = SHA512_DIGEST_SIZE,
1899 .statesize = sizeof(struct stm32_hash_state),
1900 .base = {
1901 .cra_name = "sha512",
1902 .cra_driver_name = "stm32-sha512",
1903 .cra_priority = 200,
1904 .cra_flags = CRYPTO_ALG_ASYNC |
1905 CRYPTO_ALG_KERN_DRIVER_ONLY,
1906 .cra_blocksize = SHA512_BLOCK_SIZE,
1907 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1908 .cra_init = stm32_hash_cra_init,
1909 .cra_exit = stm32_hash_cra_exit,
1910 .cra_module = THIS_MODULE,
1911 }
1912 },
1913 .op = {
1914 .do_one_request = stm32_hash_one_request,
1915 },
1916 },
1917 {
1918 .base.init = stm32_hash_init,
1919 .base.update = stm32_hash_update,
1920 .base.final = stm32_hash_final,
1921 .base.finup = stm32_hash_finup,
1922 .base.digest = stm32_hash_digest,
1923 .base.export = stm32_hash_export,
1924 .base.import = stm32_hash_import,
1925 .base.setkey = stm32_hash_setkey,
1926 .base.halg = {
1927 .digestsize = SHA512_DIGEST_SIZE,
1928 .statesize = sizeof(struct stm32_hash_state),
1929 .base = {
1930 .cra_name = "hmac(sha512)",
1931 .cra_driver_name = "stm32-hmac-sha512",
1932 .cra_priority = 200,
1933 .cra_flags = CRYPTO_ALG_ASYNC |
1934 CRYPTO_ALG_KERN_DRIVER_ONLY,
1935 .cra_blocksize = SHA512_BLOCK_SIZE,
1936 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1937 .cra_init = stm32_hash_cra_hmac_init,
1938 .cra_exit = stm32_hash_cra_exit,
1939 .cra_module = THIS_MODULE,
1940 }
1941 },
1942 .op = {
1943 .do_one_request = stm32_hash_one_request,
1944 },
1945 },
1946};
1947
1948static struct ahash_engine_alg algs_sha3[] = {
1949 {
1950 .base.init = stm32_hash_init,
1951 .base.update = stm32_hash_update,
1952 .base.final = stm32_hash_final,
1953 .base.finup = stm32_hash_finup,
1954 .base.digest = stm32_hash_digest,
1955 .base.export = stm32_hash_export,
1956 .base.import = stm32_hash_import,
1957 .base.halg = {
1958 .digestsize = SHA3_224_DIGEST_SIZE,
1959 .statesize = sizeof(struct stm32_hash_state),
1960 .base = {
1961 .cra_name = "sha3-224",
1962 .cra_driver_name = "stm32-sha3-224",
1963 .cra_priority = 200,
1964 .cra_flags = CRYPTO_ALG_ASYNC |
1965 CRYPTO_ALG_KERN_DRIVER_ONLY,
1966 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1967 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1968 .cra_init = stm32_hash_cra_sha3_init,
1969 .cra_exit = stm32_hash_cra_exit,
1970 .cra_module = THIS_MODULE,
1971 }
1972 },
1973 .op = {
1974 .do_one_request = stm32_hash_one_request,
1975 },
1976 },
1977 {
1978 .base.init = stm32_hash_init,
1979 .base.update = stm32_hash_update,
1980 .base.final = stm32_hash_final,
1981 .base.finup = stm32_hash_finup,
1982 .base.digest = stm32_hash_digest,
1983 .base.export = stm32_hash_export,
1984 .base.import = stm32_hash_import,
1985 .base.setkey = stm32_hash_setkey,
1986 .base.halg = {
1987 .digestsize = SHA3_224_DIGEST_SIZE,
1988 .statesize = sizeof(struct stm32_hash_state),
1989 .base = {
1990 .cra_name = "hmac(sha3-224)",
1991 .cra_driver_name = "stm32-hmac-sha3-224",
1992 .cra_priority = 200,
1993 .cra_flags = CRYPTO_ALG_ASYNC |
1994 CRYPTO_ALG_KERN_DRIVER_ONLY,
1995 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1996 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1997 .cra_init = stm32_hash_cra_sha3_hmac_init,
1998 .cra_exit = stm32_hash_cra_exit,
1999 .cra_module = THIS_MODULE,
2000 }
2001 },
2002 .op = {
2003 .do_one_request = stm32_hash_one_request,
2004 },
2005 },
2006 {
2007 .base.init = stm32_hash_init,
2008 .base.update = stm32_hash_update,
2009 .base.final = stm32_hash_final,
2010 .base.finup = stm32_hash_finup,
2011 .base.digest = stm32_hash_digest,
2012 .base.export = stm32_hash_export,
2013 .base.import = stm32_hash_import,
2014 .base.halg = {
2015 .digestsize = SHA3_256_DIGEST_SIZE,
2016 .statesize = sizeof(struct stm32_hash_state),
2017 .base = {
2018 .cra_name = "sha3-256",
2019 .cra_driver_name = "stm32-sha3-256",
2020 .cra_priority = 200,
2021 .cra_flags = CRYPTO_ALG_ASYNC |
2022 CRYPTO_ALG_KERN_DRIVER_ONLY,
2023 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2024 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2025 .cra_init = stm32_hash_cra_sha3_init,
2026 .cra_exit = stm32_hash_cra_exit,
2027 .cra_module = THIS_MODULE,
2028 }
2029 },
2030 .op = {
2031 .do_one_request = stm32_hash_one_request,
2032 },
2033 },
2034 {
2035 .base.init = stm32_hash_init,
2036 .base.update = stm32_hash_update,
2037 .base.final = stm32_hash_final,
2038 .base.finup = stm32_hash_finup,
2039 .base.digest = stm32_hash_digest,
2040 .base.export = stm32_hash_export,
2041 .base.import = stm32_hash_import,
2042 .base.setkey = stm32_hash_setkey,
2043 .base.halg = {
2044 .digestsize = SHA3_256_DIGEST_SIZE,
2045 .statesize = sizeof(struct stm32_hash_state),
2046 .base = {
2047 .cra_name = "hmac(sha3-256)",
2048 .cra_driver_name = "stm32-hmac-sha3-256",
2049 .cra_priority = 200,
2050 .cra_flags = CRYPTO_ALG_ASYNC |
2051 CRYPTO_ALG_KERN_DRIVER_ONLY,
2052 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2053 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2054 .cra_init = stm32_hash_cra_sha3_hmac_init,
2055 .cra_exit = stm32_hash_cra_exit,
2056 .cra_module = THIS_MODULE,
2057 }
2058 },
2059 .op = {
2060 .do_one_request = stm32_hash_one_request,
2061 },
2062 },
2063 {
2064 .base.init = stm32_hash_init,
2065 .base.update = stm32_hash_update,
2066 .base.final = stm32_hash_final,
2067 .base.finup = stm32_hash_finup,
2068 .base.digest = stm32_hash_digest,
2069 .base.export = stm32_hash_export,
2070 .base.import = stm32_hash_import,
2071 .base.halg = {
2072 .digestsize = SHA3_384_DIGEST_SIZE,
2073 .statesize = sizeof(struct stm32_hash_state),
2074 .base = {
2075 .cra_name = "sha3-384",
2076 .cra_driver_name = "stm32-sha3-384",
2077 .cra_priority = 200,
2078 .cra_flags = CRYPTO_ALG_ASYNC |
2079 CRYPTO_ALG_KERN_DRIVER_ONLY,
2080 .cra_blocksize = SHA3_384_BLOCK_SIZE,
2081 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2082 .cra_init = stm32_hash_cra_sha3_init,
2083 .cra_exit = stm32_hash_cra_exit,
2084 .cra_module = THIS_MODULE,
2085 }
2086 },
2087 .op = {
2088 .do_one_request = stm32_hash_one_request,
2089 },
2090 },
2091 {
2092 .base.init = stm32_hash_init,
2093 .base.update = stm32_hash_update,
2094 .base.final = stm32_hash_final,
2095 .base.finup = stm32_hash_finup,
2096 .base.digest = stm32_hash_digest,
2097 .base.export = stm32_hash_export,
2098 .base.import = stm32_hash_import,
2099 .base.setkey = stm32_hash_setkey,
2100 .base.halg = {
2101 .digestsize = SHA3_384_DIGEST_SIZE,
2102 .statesize = sizeof(struct stm32_hash_state),
2103 .base = {
2104 .cra_name = "hmac(sha3-384)",
2105 .cra_driver_name = "stm32-hmac-sha3-384",
2106 .cra_priority = 200,
2107 .cra_flags = CRYPTO_ALG_ASYNC |
2108 CRYPTO_ALG_KERN_DRIVER_ONLY,
2109 .cra_blocksize = SHA3_384_BLOCK_SIZE,
2110 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2111 .cra_init = stm32_hash_cra_sha3_hmac_init,
2112 .cra_exit = stm32_hash_cra_exit,
2113 .cra_module = THIS_MODULE,
2114 }
2115 },
2116 .op = {
2117 .do_one_request = stm32_hash_one_request,
2118 },
2119 },
2120 {
2121 .base.init = stm32_hash_init,
2122 .base.update = stm32_hash_update,
2123 .base.final = stm32_hash_final,
2124 .base.finup = stm32_hash_finup,
2125 .base.digest = stm32_hash_digest,
2126 .base.export = stm32_hash_export,
2127 .base.import = stm32_hash_import,
2128 .base.halg = {
2129 .digestsize = SHA3_512_DIGEST_SIZE,
2130 .statesize = sizeof(struct stm32_hash_state),
2131 .base = {
2132 .cra_name = "sha3-512",
2133 .cra_driver_name = "stm32-sha3-512",
2134 .cra_priority = 200,
2135 .cra_flags = CRYPTO_ALG_ASYNC |
2136 CRYPTO_ALG_KERN_DRIVER_ONLY,
2137 .cra_blocksize = SHA3_512_BLOCK_SIZE,
2138 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2139 .cra_init = stm32_hash_cra_sha3_init,
2140 .cra_exit = stm32_hash_cra_exit,
2141 .cra_module = THIS_MODULE,
2142 }
2143 },
2144 .op = {
2145 .do_one_request = stm32_hash_one_request,
2146 },
2147 },
2148 {
2149 .base.init = stm32_hash_init,
2150 .base.update = stm32_hash_update,
2151 .base.final = stm32_hash_final,
2152 .base.finup = stm32_hash_finup,
2153 .base.digest = stm32_hash_digest,
2154 .base.export = stm32_hash_export,
2155 .base.import = stm32_hash_import,
2156 .base.setkey = stm32_hash_setkey,
2157 .base.halg = {
2158 .digestsize = SHA3_512_DIGEST_SIZE,
2159 .statesize = sizeof(struct stm32_hash_state),
2160 .base = {
2161 .cra_name = "hmac(sha3-512)",
2162 .cra_driver_name = "stm32-hmac-sha3-512",
2163 .cra_priority = 200,
2164 .cra_flags = CRYPTO_ALG_ASYNC |
2165 CRYPTO_ALG_KERN_DRIVER_ONLY,
2166 .cra_blocksize = SHA3_512_BLOCK_SIZE,
2167 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2168 .cra_init = stm32_hash_cra_sha3_hmac_init,
2169 .cra_exit = stm32_hash_cra_exit,
2170 .cra_module = THIS_MODULE,
2171 }
2172 },
2173 .op = {
2174 .do_one_request = stm32_hash_one_request,
2175 },
2176 }
2177};
2178
2179static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
2180{
2181 unsigned int i, j;
2182 int err;
2183
2184 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
2185 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
2186 err = crypto_engine_register_ahash(
2187 &hdev->pdata->algs_info[i].algs_list[j]);
2188 if (err)
2189 goto err_algs;
2190 }
2191 }
2192
2193 return 0;
2194err_algs:
2195 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
2196 for (; i--; ) {
2197 for (; j--;)
2198 crypto_engine_unregister_ahash(
2199 &hdev->pdata->algs_info[i].algs_list[j]);
2200 }
2201
2202 return err;
2203}
2204
2205static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
2206{
2207 unsigned int i, j;
2208
2209 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
2210 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
2211 crypto_engine_unregister_ahash(
2212 &hdev->pdata->algs_info[i].algs_list[j]);
2213 }
2214
2215 return 0;
2216}
2217
2218static struct stm32_hash_algs_info stm32_hash_algs_info_ux500[] = {
2219 {
2220 .algs_list = algs_sha1,
2221 .size = ARRAY_SIZE(algs_sha1),
2222 },
2223 {
2224 .algs_list = algs_sha256,
2225 .size = ARRAY_SIZE(algs_sha256),
2226 },
2227};
2228
2229static const struct stm32_hash_pdata stm32_hash_pdata_ux500 = {
2230 .alg_shift = 7,
2231 .algs_info = stm32_hash_algs_info_ux500,
2232 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_ux500),
2233 .broken_emptymsg = true,
2234 .ux500 = true,
2235};
2236
2237static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
2238 {
2239 .algs_list = algs_md5,
2240 .size = ARRAY_SIZE(algs_md5),
2241 },
2242 {
2243 .algs_list = algs_sha1,
2244 .size = ARRAY_SIZE(algs_sha1),
2245 },
2246};
2247
2248static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
2249 .alg_shift = 7,
2250 .algs_info = stm32_hash_algs_info_stm32f4,
2251 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
2252 .has_sr = true,
2253 .has_mdmat = true,
2254};
2255
2256static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
2257 {
2258 .algs_list = algs_md5,
2259 .size = ARRAY_SIZE(algs_md5),
2260 },
2261 {
2262 .algs_list = algs_sha1,
2263 .size = ARRAY_SIZE(algs_sha1),
2264 },
2265 {
2266 .algs_list = algs_sha224,
2267 .size = ARRAY_SIZE(algs_sha224),
2268 },
2269 {
2270 .algs_list = algs_sha256,
2271 .size = ARRAY_SIZE(algs_sha256),
2272 },
2273};
2274
2275static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
2276 .alg_shift = 7,
2277 .algs_info = stm32_hash_algs_info_stm32f7,
2278 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
2279 .has_sr = true,
2280 .has_mdmat = true,
2281};
2282
2283static struct stm32_hash_algs_info stm32_hash_algs_info_stm32mp13[] = {
2284 {
2285 .algs_list = algs_sha1,
2286 .size = ARRAY_SIZE(algs_sha1),
2287 },
2288 {
2289 .algs_list = algs_sha224,
2290 .size = ARRAY_SIZE(algs_sha224),
2291 },
2292 {
2293 .algs_list = algs_sha256,
2294 .size = ARRAY_SIZE(algs_sha256),
2295 },
2296 {
2297 .algs_list = algs_sha384_sha512,
2298 .size = ARRAY_SIZE(algs_sha384_sha512),
2299 },
2300 {
2301 .algs_list = algs_sha3,
2302 .size = ARRAY_SIZE(algs_sha3),
2303 },
2304};
2305
2306static const struct stm32_hash_pdata stm32_hash_pdata_stm32mp13 = {
2307 .alg_shift = 17,
2308 .algs_info = stm32_hash_algs_info_stm32mp13,
2309 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32mp13),
2310 .has_sr = true,
2311 .has_mdmat = true,
2312 .context_secured = true,
2313};
2314
2315static const struct of_device_id stm32_hash_of_match[] = {
2316 { .compatible = "stericsson,ux500-hash", .data = &stm32_hash_pdata_ux500 },
2317 { .compatible = "st,stm32f456-hash", .data = &stm32_hash_pdata_stm32f4 },
2318 { .compatible = "st,stm32f756-hash", .data = &stm32_hash_pdata_stm32f7 },
2319 { .compatible = "st,stm32mp13-hash", .data = &stm32_hash_pdata_stm32mp13 },
2320 {},
2321};
2322
2323MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
2324
2325static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
2326 struct device *dev)
2327{
2328 hdev->pdata = of_device_get_match_data(dev);
2329 if (!hdev->pdata) {
2330 dev_err(dev, "no compatible OF match\n");
2331 return -EINVAL;
2332 }
2333
2334 return 0;
2335}
2336
2337static int stm32_hash_probe(struct platform_device *pdev)
2338{
2339 struct stm32_hash_dev *hdev;
2340 struct device *dev = &pdev->dev;
2341 struct resource *res;
2342 int ret, irq;
2343
2344 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
2345 if (!hdev)
2346 return -ENOMEM;
2347
2348 hdev->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2349 if (IS_ERR(hdev->io_base))
2350 return PTR_ERR(hdev->io_base);
2351
2352 hdev->phys_base = res->start;
2353
2354 ret = stm32_hash_get_of_match(hdev, dev);
2355 if (ret)
2356 return ret;
2357
2358 irq = platform_get_irq_optional(pdev, 0);
2359 if (irq < 0 && irq != -ENXIO)
2360 return irq;
2361
2362 if (irq > 0) {
2363 ret = devm_request_threaded_irq(dev, irq,
2364 stm32_hash_irq_handler,
2365 stm32_hash_irq_thread,
2366 IRQF_ONESHOT,
2367 dev_name(dev), hdev);
2368 if (ret) {
2369 dev_err(dev, "Cannot grab IRQ\n");
2370 return ret;
2371 }
2372 } else {
2373 dev_info(dev, "No IRQ, use polling mode\n");
2374 hdev->polled = true;
2375 }
2376
2377 hdev->clk = devm_clk_get(&pdev->dev, NULL);
2378 if (IS_ERR(hdev->clk))
2379 return dev_err_probe(dev, PTR_ERR(hdev->clk),
2380 "failed to get clock for hash\n");
2381
2382 ret = clk_prepare_enable(hdev->clk);
2383 if (ret) {
2384 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
2385 return ret;
2386 }
2387
2388 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
2389 pm_runtime_use_autosuspend(dev);
2390
2391 pm_runtime_get_noresume(dev);
2392 pm_runtime_set_active(dev);
2393 pm_runtime_enable(dev);
2394
2395 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
2396 if (IS_ERR(hdev->rst)) {
2397 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
2398 ret = -EPROBE_DEFER;
2399 goto err_reset;
2400 }
2401 } else {
2402 reset_control_assert(hdev->rst);
2403 udelay(2);
2404 reset_control_deassert(hdev->rst);
2405 }
2406
2407 hdev->dev = dev;
2408
2409 platform_set_drvdata(pdev, hdev);
2410
2411 ret = stm32_hash_dma_init(hdev);
2412 switch (ret) {
2413 case 0:
2414 break;
2415 case -ENOENT:
2416 case -ENODEV:
2417 dev_info(dev, "DMA mode not available\n");
2418 break;
2419 default:
2420 dev_err(dev, "DMA init error %d\n", ret);
2421 goto err_dma;
2422 }
2423
2424 spin_lock(&stm32_hash.lock);
2425 list_add_tail(&hdev->list, &stm32_hash.dev_list);
2426 spin_unlock(&stm32_hash.lock);
2427
2428 /* Initialize crypto engine */
2429 hdev->engine = crypto_engine_alloc_init(dev, 1);
2430 if (!hdev->engine) {
2431 ret = -ENOMEM;
2432 goto err_engine;
2433 }
2434
2435 ret = crypto_engine_start(hdev->engine);
2436 if (ret)
2437 goto err_engine_start;
2438
2439 if (hdev->pdata->ux500)
2440 /* FIXME: implement DMA mode for Ux500 */
2441 hdev->dma_mode = 0;
2442 else
2443 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR) & HASH_HWCFG_DMA_MASK;
2444
2445 /* Register algos */
2446 ret = stm32_hash_register_algs(hdev);
2447 if (ret)
2448 goto err_algs;
2449
2450 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
2451 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
2452
2453 pm_runtime_put_sync(dev);
2454
2455 return 0;
2456
2457err_algs:
2458err_engine_start:
2459 crypto_engine_exit(hdev->engine);
2460err_engine:
2461 spin_lock(&stm32_hash.lock);
2462 list_del(&hdev->list);
2463 spin_unlock(&stm32_hash.lock);
2464err_dma:
2465 if (hdev->dma_lch)
2466 dma_release_channel(hdev->dma_lch);
2467err_reset:
2468 pm_runtime_disable(dev);
2469 pm_runtime_put_noidle(dev);
2470
2471 clk_disable_unprepare(hdev->clk);
2472
2473 return ret;
2474}
2475
2476static void stm32_hash_remove(struct platform_device *pdev)
2477{
2478 struct stm32_hash_dev *hdev = platform_get_drvdata(pdev);
2479 int ret;
2480
2481 ret = pm_runtime_get_sync(hdev->dev);
2482
2483 stm32_hash_unregister_algs(hdev);
2484
2485 crypto_engine_exit(hdev->engine);
2486
2487 spin_lock(&stm32_hash.lock);
2488 list_del(&hdev->list);
2489 spin_unlock(&stm32_hash.lock);
2490
2491 if (hdev->dma_lch)
2492 dma_release_channel(hdev->dma_lch);
2493
2494 pm_runtime_disable(hdev->dev);
2495 pm_runtime_put_noidle(hdev->dev);
2496
2497 if (ret >= 0)
2498 clk_disable_unprepare(hdev->clk);
2499}
2500
2501#ifdef CONFIG_PM
2502static int stm32_hash_runtime_suspend(struct device *dev)
2503{
2504 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2505
2506 clk_disable_unprepare(hdev->clk);
2507
2508 return 0;
2509}
2510
2511static int stm32_hash_runtime_resume(struct device *dev)
2512{
2513 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2514 int ret;
2515
2516 ret = clk_prepare_enable(hdev->clk);
2517 if (ret) {
2518 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
2519 return ret;
2520 }
2521
2522 return 0;
2523}
2524#endif
2525
2526static const struct dev_pm_ops stm32_hash_pm_ops = {
2527 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2528 pm_runtime_force_resume)
2529 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
2530 stm32_hash_runtime_resume, NULL)
2531};
2532
2533static struct platform_driver stm32_hash_driver = {
2534 .probe = stm32_hash_probe,
2535 .remove = stm32_hash_remove,
2536 .driver = {
2537 .name = "stm32-hash",
2538 .pm = &stm32_hash_pm_ops,
2539 .of_match_table = stm32_hash_of_match,
2540 }
2541};
2542
2543module_platform_driver(stm32_hash_driver);
2544
2545MODULE_DESCRIPTION("STM32 SHA1/SHA2/SHA3 & MD5 (HMAC) hw accelerator driver");
2546MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
2547MODULE_LICENSE("GPL v2");