Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *  			- Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *  			- Added support for C3 on SMP
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
 
  19#include <linux/tick.h>
  20#include <linux/cpuidle.h>
  21#include <linux/cpu.h>
  22#include <acpi/processor.h>
  23
  24/*
  25 * Include the apic definitions for x86 to have the APIC timer related defines
  26 * available also for UP (on SMP it gets magically included via linux/smp.h).
  27 * asm/acpi.h is not an option, as it would require more include magic. Also
  28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  29 */
  30#ifdef CONFIG_X86
  31#include <asm/apic.h>
 
  32#endif
  33
  34#define ACPI_PROCESSOR_CLASS            "processor"
  35#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  36ACPI_MODULE_NAME("processor_idle");
  37
  38#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  39
  40static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  41module_param(max_cstate, uint, 0000);
  42static unsigned int nocst __read_mostly;
  43module_param(nocst, uint, 0000);
  44static int bm_check_disable __read_mostly;
  45module_param(bm_check_disable, uint, 0000);
  46
  47static unsigned int latency_factor __read_mostly = 2;
  48module_param(latency_factor, uint, 0644);
  49
  50static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  51
  52struct cpuidle_driver acpi_idle_driver = {
  53	.name =		"acpi_idle",
  54	.owner =	THIS_MODULE,
  55};
  56
  57#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  58static
  59DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  60
  61static int disabled_by_idle_boot_param(void)
  62{
  63	return boot_option_idle_override == IDLE_POLL ||
  64		boot_option_idle_override == IDLE_HALT;
  65}
  66
  67/*
  68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  69 * For now disable this. Probably a bug somewhere else.
  70 *
  71 * To skip this limit, boot/load with a large max_cstate limit.
  72 */
  73static int set_max_cstate(const struct dmi_system_id *id)
  74{
  75	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  76		return 0;
  77
  78	pr_notice("%s detected - limiting to C%ld max_cstate."
  79		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  80		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  81
  82	max_cstate = (long)id->driver_data;
  83
  84	return 0;
  85}
  86
  87static const struct dmi_system_id processor_power_dmi_table[] = {
  88	{ set_max_cstate, "Clevo 5600D", {
  89	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  90	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  91	 (void *)2},
  92	{ set_max_cstate, "Pavilion zv5000", {
  93	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  94	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  95	 (void *)1},
  96	{ set_max_cstate, "Asus L8400B", {
  97	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  98	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  99	 (void *)1},
 100	{},
 101};
 102
 103
 104/*
 105 * Callers should disable interrupts before the call and enable
 106 * interrupts after return.
 107 */
 108static void __cpuidle acpi_safe_halt(void)
 109{
 110	if (!tif_need_resched()) {
 111		safe_halt();
 112		local_irq_disable();
 113	}
 114}
 115
 116#ifdef ARCH_APICTIMER_STOPS_ON_C3
 117
 118/*
 119 * Some BIOS implementations switch to C3 in the published C2 state.
 120 * This seems to be a common problem on AMD boxen, but other vendors
 121 * are affected too. We pick the most conservative approach: we assume
 122 * that the local APIC stops in both C2 and C3.
 123 */
 124static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 125				   struct acpi_processor_cx *cx)
 126{
 127	struct acpi_processor_power *pwr = &pr->power;
 128	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 129
 130	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 131		return;
 132
 133	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 134		type = ACPI_STATE_C1;
 135
 136	/*
 137	 * Check, if one of the previous states already marked the lapic
 138	 * unstable
 139	 */
 140	if (pwr->timer_broadcast_on_state < state)
 141		return;
 142
 143	if (cx->type >= type)
 144		pr->power.timer_broadcast_on_state = state;
 145}
 146
 147static void __lapic_timer_propagate_broadcast(void *arg)
 148{
 149	struct acpi_processor *pr = (struct acpi_processor *) arg;
 150
 151	if (pr->power.timer_broadcast_on_state < INT_MAX)
 152		tick_broadcast_enable();
 153	else
 154		tick_broadcast_disable();
 155}
 156
 157static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 158{
 159	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 160				 (void *)pr, 1);
 161}
 162
 163/* Power(C) State timer broadcast control */
 164static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 165					struct acpi_processor_cx *cx)
 166{
 167	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
 168}
 169
 170#else
 171
 172static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 173				   struct acpi_processor_cx *cstate) { }
 174static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 175
 176static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 177					struct acpi_processor_cx *cx)
 178{
 179	return false;
 180}
 181
 182#endif
 183
 184#if defined(CONFIG_X86)
 185static void tsc_check_state(int state)
 186{
 187	switch (boot_cpu_data.x86_vendor) {
 188	case X86_VENDOR_HYGON:
 189	case X86_VENDOR_AMD:
 190	case X86_VENDOR_INTEL:
 191	case X86_VENDOR_CENTAUR:
 192	case X86_VENDOR_ZHAOXIN:
 193		/*
 194		 * AMD Fam10h TSC will tick in all
 195		 * C/P/S0/S1 states when this bit is set.
 196		 */
 197		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 198			return;
 199		fallthrough;
 200	default:
 201		/* TSC could halt in idle, so notify users */
 202		if (state > ACPI_STATE_C1)
 203			mark_tsc_unstable("TSC halts in idle");
 204	}
 205}
 206#else
 207static void tsc_check_state(int state) { return; }
 208#endif
 209
 210static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 211{
 212
 213	if (!pr->pblk)
 214		return -ENODEV;
 215
 216	/* if info is obtained from pblk/fadt, type equals state */
 217	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 218	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 219
 220#ifndef CONFIG_HOTPLUG_CPU
 221	/*
 222	 * Check for P_LVL2_UP flag before entering C2 and above on
 223	 * an SMP system.
 224	 */
 225	if ((num_online_cpus() > 1) &&
 226	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 227		return -ENODEV;
 228#endif
 229
 230	/* determine C2 and C3 address from pblk */
 231	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 232	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 233
 234	/* determine latencies from FADT */
 235	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 236	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 237
 238	/*
 239	 * FADT specified C2 latency must be less than or equal to
 240	 * 100 microseconds.
 241	 */
 242	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 243		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 244			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 245		/* invalidate C2 */
 246		pr->power.states[ACPI_STATE_C2].address = 0;
 247	}
 248
 249	/*
 250	 * FADT supplied C3 latency must be less than or equal to
 251	 * 1000 microseconds.
 252	 */
 253	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 254		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 255			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 256		/* invalidate C3 */
 257		pr->power.states[ACPI_STATE_C3].address = 0;
 258	}
 259
 260	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 261			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 262			  pr->power.states[ACPI_STATE_C2].address,
 263			  pr->power.states[ACPI_STATE_C3].address));
 264
 265	snprintf(pr->power.states[ACPI_STATE_C2].desc,
 266			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 267			 pr->power.states[ACPI_STATE_C2].address);
 268	snprintf(pr->power.states[ACPI_STATE_C3].desc,
 269			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 270			 pr->power.states[ACPI_STATE_C3].address);
 271
 272	return 0;
 273}
 274
 275static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 276{
 277	if (!pr->power.states[ACPI_STATE_C1].valid) {
 278		/* set the first C-State to C1 */
 279		/* all processors need to support C1 */
 280		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 281		pr->power.states[ACPI_STATE_C1].valid = 1;
 282		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 283
 284		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 285			 ACPI_CX_DESC_LEN, "ACPI HLT");
 286	}
 287	/* the C0 state only exists as a filler in our array */
 288	pr->power.states[ACPI_STATE_C0].valid = 1;
 289	return 0;
 290}
 291
 292static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 293{
 294	int ret;
 295
 296	if (nocst)
 297		return -ENODEV;
 298
 299	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
 300	if (ret)
 301		return ret;
 302
 303	if (!pr->power.count)
 304		return -EFAULT;
 305
 306	pr->flags.has_cst = 1;
 307	return 0;
 308}
 309
 310static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 311					   struct acpi_processor_cx *cx)
 312{
 313	static int bm_check_flag = -1;
 314	static int bm_control_flag = -1;
 315
 316
 317	if (!cx->address)
 318		return;
 319
 320	/*
 321	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 322	 * DMA transfers are used by any ISA device to avoid livelock.
 323	 * Note that we could disable Type-F DMA (as recommended by
 324	 * the erratum), but this is known to disrupt certain ISA
 325	 * devices thus we take the conservative approach.
 326	 */
 327	else if (errata.piix4.fdma) {
 328		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 329				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 330		return;
 331	}
 332
 333	/* All the logic here assumes flags.bm_check is same across all CPUs */
 334	if (bm_check_flag == -1) {
 335		/* Determine whether bm_check is needed based on CPU  */
 336		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 337		bm_check_flag = pr->flags.bm_check;
 338		bm_control_flag = pr->flags.bm_control;
 339	} else {
 340		pr->flags.bm_check = bm_check_flag;
 341		pr->flags.bm_control = bm_control_flag;
 342	}
 343
 344	if (pr->flags.bm_check) {
 345		if (!pr->flags.bm_control) {
 346			if (pr->flags.has_cst != 1) {
 347				/* bus mastering control is necessary */
 348				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 349					"C3 support requires BM control\n"));
 350				return;
 351			} else {
 352				/* Here we enter C3 without bus mastering */
 353				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 354					"C3 support without BM control\n"));
 355			}
 356		}
 357	} else {
 358		/*
 359		 * WBINVD should be set in fadt, for C3 state to be
 360		 * supported on when bm_check is not required.
 361		 */
 362		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 363			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 364					  "Cache invalidation should work properly"
 365					  " for C3 to be enabled on SMP systems\n"));
 366			return;
 367		}
 368	}
 369
 370	/*
 371	 * Otherwise we've met all of our C3 requirements.
 372	 * Normalize the C3 latency to expidite policy.  Enable
 373	 * checking of bus mastering status (bm_check) so we can
 374	 * use this in our C3 policy
 375	 */
 376	cx->valid = 1;
 377
 378	/*
 379	 * On older chipsets, BM_RLD needs to be set
 380	 * in order for Bus Master activity to wake the
 381	 * system from C3.  Newer chipsets handle DMA
 382	 * during C3 automatically and BM_RLD is a NOP.
 383	 * In either case, the proper way to
 384	 * handle BM_RLD is to set it and leave it set.
 385	 */
 386	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 387
 388	return;
 389}
 390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391static int acpi_processor_power_verify(struct acpi_processor *pr)
 392{
 393	unsigned int i;
 394	unsigned int working = 0;
 
 
 
 395
 396	pr->power.timer_broadcast_on_state = INT_MAX;
 397
 398	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 399		struct acpi_processor_cx *cx = &pr->power.states[i];
 400
 401		switch (cx->type) {
 402		case ACPI_STATE_C1:
 403			cx->valid = 1;
 404			break;
 405
 406		case ACPI_STATE_C2:
 407			if (!cx->address)
 408				break;
 409			cx->valid = 1;
 410			break;
 411
 412		case ACPI_STATE_C3:
 413			acpi_processor_power_verify_c3(pr, cx);
 414			break;
 415		}
 416		if (!cx->valid)
 417			continue;
 
 
 
 
 418
 419		lapic_timer_check_state(i, pr, cx);
 420		tsc_check_state(cx->type);
 421		working++;
 422	}
 423
 
 
 
 
 
 
 
 
 424	lapic_timer_propagate_broadcast(pr);
 425
 426	return (working);
 427}
 428
 429static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 430{
 431	unsigned int i;
 432	int result;
 433
 434
 435	/* NOTE: the idle thread may not be running while calling
 436	 * this function */
 437
 438	/* Zero initialize all the C-states info. */
 439	memset(pr->power.states, 0, sizeof(pr->power.states));
 440
 441	result = acpi_processor_get_power_info_cst(pr);
 442	if (result == -ENODEV)
 443		result = acpi_processor_get_power_info_fadt(pr);
 444
 445	if (result)
 446		return result;
 447
 448	acpi_processor_get_power_info_default(pr);
 449
 450	pr->power.count = acpi_processor_power_verify(pr);
 451
 452	/*
 453	 * if one state of type C2 or C3 is available, mark this
 454	 * CPU as being "idle manageable"
 455	 */
 456	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 457		if (pr->power.states[i].valid) {
 458			pr->power.count = i;
 459			pr->flags.power = 1;
 460		}
 461	}
 462
 463	return 0;
 464}
 465
 466/**
 467 * acpi_idle_bm_check - checks if bus master activity was detected
 468 */
 469static int acpi_idle_bm_check(void)
 470{
 471	u32 bm_status = 0;
 472
 473	if (bm_check_disable)
 474		return 0;
 475
 476	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 477	if (bm_status)
 478		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 479	/*
 480	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 481	 * the true state of bus mastering activity; forcing us to
 482	 * manually check the BMIDEA bit of each IDE channel.
 483	 */
 484	else if (errata.piix4.bmisx) {
 485		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 486		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 487			bm_status = 1;
 488	}
 489	return bm_status;
 490}
 491
 492static void wait_for_freeze(void)
 493{
 494#ifdef	CONFIG_X86
 495	/* No delay is needed if we are in guest */
 496	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 497		return;
 498#endif
 499	/* Dummy wait op - must do something useless after P_LVL2 read
 500	   because chipsets cannot guarantee that STPCLK# signal
 501	   gets asserted in time to freeze execution properly. */
 502	inl(acpi_gbl_FADT.xpm_timer_block.address);
 503}
 504
 505/**
 506 * acpi_idle_do_entry - enter idle state using the appropriate method
 507 * @cx: cstate data
 508 *
 509 * Caller disables interrupt before call and enables interrupt after return.
 510 */
 511static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 512{
 513	if (cx->entry_method == ACPI_CSTATE_FFH) {
 514		/* Call into architectural FFH based C-state */
 515		acpi_processor_ffh_cstate_enter(cx);
 516	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 517		acpi_safe_halt();
 518	} else {
 519		/* IO port based C-state */
 520		inb(cx->address);
 521		wait_for_freeze();
 522	}
 523}
 524
 525/**
 526 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 527 * @dev: the target CPU
 528 * @index: the index of suggested state
 529 */
 530static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 531{
 532	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 533
 534	ACPI_FLUSH_CPU_CACHE();
 535
 536	while (1) {
 537
 538		if (cx->entry_method == ACPI_CSTATE_HALT)
 539			safe_halt();
 540		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 541			inb(cx->address);
 542			wait_for_freeze();
 543		} else
 544			return -ENODEV;
 
 
 
 
 545	}
 546
 547	/* Never reached */
 548	return 0;
 549}
 550
 551static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 552{
 553	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 554		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 555}
 556
 557static int c3_cpu_count;
 558static DEFINE_RAW_SPINLOCK(c3_lock);
 559
 560/**
 561 * acpi_idle_enter_bm - enters C3 with proper BM handling
 562 * @drv: cpuidle driver
 563 * @pr: Target processor
 564 * @cx: Target state context
 565 * @index: index of target state
 566 */
 567static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
 568			       struct acpi_processor *pr,
 569			       struct acpi_processor_cx *cx,
 570			       int index)
 571{
 572	static struct acpi_processor_cx safe_cx = {
 573		.entry_method = ACPI_CSTATE_HALT,
 574	};
 575
 576	/*
 577	 * disable bus master
 578	 * bm_check implies we need ARB_DIS
 579	 * bm_control implies whether we can do ARB_DIS
 580	 *
 581	 * That leaves a case where bm_check is set and bm_control is not set.
 582	 * In that case we cannot do much, we enter C3 without doing anything.
 583	 */
 584	bool dis_bm = pr->flags.bm_control;
 585
 586	/* If we can skip BM, demote to a safe state. */
 587	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 588		dis_bm = false;
 589		index = drv->safe_state_index;
 590		if (index >= 0) {
 591			cx = this_cpu_read(acpi_cstate[index]);
 592		} else {
 593			cx = &safe_cx;
 594			index = -EBUSY;
 595		}
 596	}
 597
 598	if (dis_bm) {
 599		raw_spin_lock(&c3_lock);
 600		c3_cpu_count++;
 601		/* Disable bus master arbitration when all CPUs are in C3 */
 602		if (c3_cpu_count == num_online_cpus())
 603			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 604		raw_spin_unlock(&c3_lock);
 605	}
 606
 607	rcu_idle_enter();
 608
 609	acpi_idle_do_entry(cx);
 610
 611	rcu_idle_exit();
 612
 613	/* Re-enable bus master arbitration */
 614	if (dis_bm) {
 615		raw_spin_lock(&c3_lock);
 616		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 617		c3_cpu_count--;
 618		raw_spin_unlock(&c3_lock);
 619	}
 620
 621	return index;
 622}
 623
 624static int acpi_idle_enter(struct cpuidle_device *dev,
 625			   struct cpuidle_driver *drv, int index)
 626{
 627	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 628	struct acpi_processor *pr;
 629
 630	pr = __this_cpu_read(processors);
 631	if (unlikely(!pr))
 632		return -EINVAL;
 633
 634	if (cx->type != ACPI_STATE_C1) {
 635		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
 636			return acpi_idle_enter_bm(drv, pr, cx, index);
 637
 638		/* C2 to C1 demotion. */
 639		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 640			index = ACPI_IDLE_STATE_START;
 641			cx = per_cpu(acpi_cstate[index], dev->cpu);
 642		}
 643	}
 644
 645	if (cx->type == ACPI_STATE_C3)
 646		ACPI_FLUSH_CPU_CACHE();
 647
 648	acpi_idle_do_entry(cx);
 649
 650	return index;
 651}
 652
 653static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 654				  struct cpuidle_driver *drv, int index)
 655{
 656	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 657
 658	if (cx->type == ACPI_STATE_C3) {
 659		struct acpi_processor *pr = __this_cpu_read(processors);
 660
 661		if (unlikely(!pr))
 662			return 0;
 663
 664		if (pr->flags.bm_check) {
 665			u8 bm_sts_skip = cx->bm_sts_skip;
 666
 667			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
 668			cx->bm_sts_skip = 1;
 669			acpi_idle_enter_bm(drv, pr, cx, index);
 670			cx->bm_sts_skip = bm_sts_skip;
 671
 672			return 0;
 673		} else {
 674			ACPI_FLUSH_CPU_CACHE();
 675		}
 676	}
 677	acpi_idle_do_entry(cx);
 678
 679	return 0;
 680}
 681
 682static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 683					   struct cpuidle_device *dev)
 684{
 685	int i, count = ACPI_IDLE_STATE_START;
 686	struct acpi_processor_cx *cx;
 687	struct cpuidle_state *state;
 688
 689	if (max_cstate == 0)
 690		max_cstate = 1;
 691
 692	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 693		state = &acpi_idle_driver.states[count];
 694		cx = &pr->power.states[i];
 695
 696		if (!cx->valid)
 697			continue;
 698
 699		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 700
 701		if (lapic_timer_needs_broadcast(pr, cx))
 702			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 703
 704		if (cx->type == ACPI_STATE_C3) {
 705			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
 706			if (pr->flags.bm_check)
 707				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
 708		}
 709
 710		count++;
 711		if (count == CPUIDLE_STATE_MAX)
 712			break;
 713	}
 714
 715	if (!count)
 716		return -EINVAL;
 717
 718	return 0;
 719}
 720
 721static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 722{
 723	int i, count;
 724	struct acpi_processor_cx *cx;
 725	struct cpuidle_state *state;
 726	struct cpuidle_driver *drv = &acpi_idle_driver;
 727
 728	if (max_cstate == 0)
 729		max_cstate = 1;
 730
 731	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 732		cpuidle_poll_state_init(drv);
 733		count = 1;
 734	} else {
 735		count = 0;
 736	}
 737
 738	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 739		cx = &pr->power.states[i];
 740
 741		if (!cx->valid)
 742			continue;
 743
 744		state = &drv->states[count];
 745		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 746		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 747		state->exit_latency = cx->latency;
 748		state->target_residency = cx->latency * latency_factor;
 749		state->enter = acpi_idle_enter;
 750
 751		state->flags = 0;
 752		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 753			state->enter_dead = acpi_idle_play_dead;
 754			drv->safe_state_index = count;
 755		}
 756		/*
 757		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 758		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 759		 * particularly interesting from the suspend-to-idle angle, so
 760		 * avoid C1 and the situations in which we may need to fall back
 761		 * to it altogether.
 762		 */
 763		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 764			state->enter_s2idle = acpi_idle_enter_s2idle;
 765
 766		count++;
 767		if (count == CPUIDLE_STATE_MAX)
 768			break;
 769	}
 770
 771	drv->state_count = count;
 772
 773	if (!count)
 774		return -EINVAL;
 775
 776	return 0;
 777}
 778
 779static inline void acpi_processor_cstate_first_run_checks(void)
 780{
 781	static int first_run;
 782
 783	if (first_run)
 784		return;
 785	dmi_check_system(processor_power_dmi_table);
 786	max_cstate = acpi_processor_cstate_check(max_cstate);
 787	if (max_cstate < ACPI_C_STATES_MAX)
 788		pr_notice("ACPI: processor limited to max C-state %d\n",
 789			  max_cstate);
 790	first_run++;
 791
 792	if (nocst)
 793		return;
 794
 795	acpi_processor_claim_cst_control();
 796}
 797#else
 798
 799static inline int disabled_by_idle_boot_param(void) { return 0; }
 800static inline void acpi_processor_cstate_first_run_checks(void) { }
 801static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 802{
 803	return -ENODEV;
 804}
 805
 806static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 807					   struct cpuidle_device *dev)
 808{
 809	return -EINVAL;
 810}
 811
 812static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 813{
 814	return -EINVAL;
 815}
 816
 817#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 818
 819struct acpi_lpi_states_array {
 820	unsigned int size;
 821	unsigned int composite_states_size;
 822	struct acpi_lpi_state *entries;
 823	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 824};
 825
 826static int obj_get_integer(union acpi_object *obj, u32 *value)
 827{
 828	if (obj->type != ACPI_TYPE_INTEGER)
 829		return -EINVAL;
 830
 831	*value = obj->integer.value;
 832	return 0;
 833}
 834
 835static int acpi_processor_evaluate_lpi(acpi_handle handle,
 836				       struct acpi_lpi_states_array *info)
 837{
 838	acpi_status status;
 839	int ret = 0;
 840	int pkg_count, state_idx = 1, loop;
 841	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 842	union acpi_object *lpi_data;
 843	struct acpi_lpi_state *lpi_state;
 844
 845	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 846	if (ACPI_FAILURE(status)) {
 847		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 848		return -ENODEV;
 849	}
 850
 851	lpi_data = buffer.pointer;
 852
 853	/* There must be at least 4 elements = 3 elements + 1 package */
 854	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 855	    lpi_data->package.count < 4) {
 856		pr_debug("not enough elements in _LPI\n");
 857		ret = -ENODATA;
 858		goto end;
 859	}
 860
 861	pkg_count = lpi_data->package.elements[2].integer.value;
 862
 863	/* Validate number of power states. */
 864	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 865		pr_debug("count given by _LPI is not valid\n");
 866		ret = -ENODATA;
 867		goto end;
 868	}
 869
 870	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 871	if (!lpi_state) {
 872		ret = -ENOMEM;
 873		goto end;
 874	}
 875
 876	info->size = pkg_count;
 877	info->entries = lpi_state;
 878
 879	/* LPI States start at index 3 */
 880	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 881		union acpi_object *element, *pkg_elem, *obj;
 882
 883		element = &lpi_data->package.elements[loop];
 884		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
 885			continue;
 886
 887		pkg_elem = element->package.elements;
 888
 889		obj = pkg_elem + 6;
 890		if (obj->type == ACPI_TYPE_BUFFER) {
 891			struct acpi_power_register *reg;
 892
 893			reg = (struct acpi_power_register *)obj->buffer.pointer;
 894			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 895			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
 896				continue;
 897
 898			lpi_state->address = reg->address;
 899			lpi_state->entry_method =
 900				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
 901				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
 902		} else if (obj->type == ACPI_TYPE_INTEGER) {
 903			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
 904			lpi_state->address = obj->integer.value;
 905		} else {
 906			continue;
 907		}
 908
 909		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
 910
 911		obj = pkg_elem + 9;
 912		if (obj->type == ACPI_TYPE_STRING)
 913			strlcpy(lpi_state->desc, obj->string.pointer,
 914				ACPI_CX_DESC_LEN);
 915
 916		lpi_state->index = state_idx;
 917		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
 918			pr_debug("No min. residency found, assuming 10 us\n");
 919			lpi_state->min_residency = 10;
 920		}
 921
 922		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
 923			pr_debug("No wakeup residency found, assuming 10 us\n");
 924			lpi_state->wake_latency = 10;
 925		}
 926
 927		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
 928			lpi_state->flags = 0;
 929
 930		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
 931			lpi_state->arch_flags = 0;
 932
 933		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
 934			lpi_state->res_cnt_freq = 1;
 935
 936		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
 937			lpi_state->enable_parent_state = 0;
 938	}
 939
 940	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
 941end:
 942	kfree(buffer.pointer);
 943	return ret;
 944}
 945
 946/*
 947 * flat_state_cnt - the number of composite LPI states after the process of flattening
 948 */
 949static int flat_state_cnt;
 950
 951/**
 952 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
 953 *
 954 * @local: local LPI state
 955 * @parent: parent LPI state
 956 * @result: composite LPI state
 957 */
 958static bool combine_lpi_states(struct acpi_lpi_state *local,
 959			       struct acpi_lpi_state *parent,
 960			       struct acpi_lpi_state *result)
 961{
 962	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
 963		if (!parent->address) /* 0 means autopromotable */
 964			return false;
 965		result->address = local->address + parent->address;
 966	} else {
 967		result->address = parent->address;
 968	}
 969
 970	result->min_residency = max(local->min_residency, parent->min_residency);
 971	result->wake_latency = local->wake_latency + parent->wake_latency;
 972	result->enable_parent_state = parent->enable_parent_state;
 973	result->entry_method = local->entry_method;
 974
 975	result->flags = parent->flags;
 976	result->arch_flags = parent->arch_flags;
 977	result->index = parent->index;
 978
 979	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
 980	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
 981	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
 982	return true;
 983}
 984
 985#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
 986
 987static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
 988				  struct acpi_lpi_state *t)
 989{
 990	curr_level->composite_states[curr_level->composite_states_size++] = t;
 991}
 992
 993static int flatten_lpi_states(struct acpi_processor *pr,
 994			      struct acpi_lpi_states_array *curr_level,
 995			      struct acpi_lpi_states_array *prev_level)
 996{
 997	int i, j, state_count = curr_level->size;
 998	struct acpi_lpi_state *p, *t = curr_level->entries;
 999
1000	curr_level->composite_states_size = 0;
1001	for (j = 0; j < state_count; j++, t++) {
1002		struct acpi_lpi_state *flpi;
1003
1004		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1005			continue;
1006
1007		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1008			pr_warn("Limiting number of LPI states to max (%d)\n",
1009				ACPI_PROCESSOR_MAX_POWER);
1010			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1011			break;
1012		}
1013
1014		flpi = &pr->power.lpi_states[flat_state_cnt];
1015
1016		if (!prev_level) { /* leaf/processor node */
1017			memcpy(flpi, t, sizeof(*t));
1018			stash_composite_state(curr_level, flpi);
1019			flat_state_cnt++;
1020			continue;
1021		}
1022
1023		for (i = 0; i < prev_level->composite_states_size; i++) {
1024			p = prev_level->composite_states[i];
1025			if (t->index <= p->enable_parent_state &&
1026			    combine_lpi_states(p, t, flpi)) {
1027				stash_composite_state(curr_level, flpi);
1028				flat_state_cnt++;
1029				flpi++;
1030			}
1031		}
1032	}
1033
1034	kfree(curr_level->entries);
1035	return 0;
1036}
1037
1038static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1039{
1040	int ret, i;
1041	acpi_status status;
1042	acpi_handle handle = pr->handle, pr_ahandle;
1043	struct acpi_device *d = NULL;
1044	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1045
1046	if (!osc_pc_lpi_support_confirmed)
1047		return -EOPNOTSUPP;
1048
1049	if (!acpi_has_method(handle, "_LPI"))
1050		return -EINVAL;
1051
1052	flat_state_cnt = 0;
1053	prev = &info[0];
1054	curr = &info[1];
1055	handle = pr->handle;
1056	ret = acpi_processor_evaluate_lpi(handle, prev);
1057	if (ret)
1058		return ret;
1059	flatten_lpi_states(pr, prev, NULL);
1060
1061	status = acpi_get_parent(handle, &pr_ahandle);
1062	while (ACPI_SUCCESS(status)) {
1063		acpi_bus_get_device(pr_ahandle, &d);
1064		handle = pr_ahandle;
1065
1066		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1067			break;
1068
1069		/* can be optional ? */
1070		if (!acpi_has_method(handle, "_LPI"))
1071			break;
1072
1073		ret = acpi_processor_evaluate_lpi(handle, curr);
1074		if (ret)
1075			break;
1076
1077		/* flatten all the LPI states in this level of hierarchy */
1078		flatten_lpi_states(pr, curr, prev);
1079
1080		tmp = prev, prev = curr, curr = tmp;
1081
1082		status = acpi_get_parent(handle, &pr_ahandle);
1083	}
1084
1085	pr->power.count = flat_state_cnt;
1086	/* reset the index after flattening */
1087	for (i = 0; i < pr->power.count; i++)
1088		pr->power.lpi_states[i].index = i;
1089
1090	/* Tell driver that _LPI is supported. */
1091	pr->flags.has_lpi = 1;
1092	pr->flags.power = 1;
1093
1094	return 0;
1095}
1096
1097int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1098{
1099	return -ENODEV;
1100}
1101
1102int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1103{
1104	return -ENODEV;
1105}
1106
1107/**
1108 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1109 * @dev: the target CPU
1110 * @drv: cpuidle driver containing cpuidle state info
1111 * @index: index of target state
1112 *
1113 * Return: 0 for success or negative value for error
1114 */
1115static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1116			       struct cpuidle_driver *drv, int index)
1117{
1118	struct acpi_processor *pr;
1119	struct acpi_lpi_state *lpi;
1120
1121	pr = __this_cpu_read(processors);
1122
1123	if (unlikely(!pr))
1124		return -EINVAL;
1125
1126	lpi = &pr->power.lpi_states[index];
1127	if (lpi->entry_method == ACPI_CSTATE_FFH)
1128		return acpi_processor_ffh_lpi_enter(lpi);
1129
1130	return -EINVAL;
1131}
1132
1133static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1134{
1135	int i;
1136	struct acpi_lpi_state *lpi;
1137	struct cpuidle_state *state;
1138	struct cpuidle_driver *drv = &acpi_idle_driver;
1139
1140	if (!pr->flags.has_lpi)
1141		return -EOPNOTSUPP;
1142
1143	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1144		lpi = &pr->power.lpi_states[i];
1145
1146		state = &drv->states[i];
1147		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1148		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1149		state->exit_latency = lpi->wake_latency;
1150		state->target_residency = lpi->min_residency;
1151		if (lpi->arch_flags)
1152			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1153		state->enter = acpi_idle_lpi_enter;
1154		drv->safe_state_index = i;
1155	}
1156
1157	drv->state_count = i;
1158
1159	return 0;
1160}
1161
1162/**
1163 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1164 * global state data i.e. idle routines
1165 *
1166 * @pr: the ACPI processor
1167 */
1168static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1169{
1170	int i;
1171	struct cpuidle_driver *drv = &acpi_idle_driver;
1172
1173	if (!pr->flags.power_setup_done || !pr->flags.power)
1174		return -EINVAL;
1175
1176	drv->safe_state_index = -1;
1177	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1178		drv->states[i].name[0] = '\0';
1179		drv->states[i].desc[0] = '\0';
1180	}
1181
1182	if (pr->flags.has_lpi)
1183		return acpi_processor_setup_lpi_states(pr);
1184
1185	return acpi_processor_setup_cstates(pr);
1186}
1187
1188/**
1189 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1190 * device i.e. per-cpu data
1191 *
1192 * @pr: the ACPI processor
1193 * @dev : the cpuidle device
1194 */
1195static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1196					    struct cpuidle_device *dev)
1197{
1198	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1199		return -EINVAL;
1200
1201	dev->cpu = pr->id;
1202	if (pr->flags.has_lpi)
1203		return acpi_processor_ffh_lpi_probe(pr->id);
1204
1205	return acpi_processor_setup_cpuidle_cx(pr, dev);
1206}
1207
1208static int acpi_processor_get_power_info(struct acpi_processor *pr)
1209{
1210	int ret;
1211
1212	ret = acpi_processor_get_lpi_info(pr);
1213	if (ret)
1214		ret = acpi_processor_get_cstate_info(pr);
1215
1216	return ret;
1217}
1218
1219int acpi_processor_hotplug(struct acpi_processor *pr)
1220{
1221	int ret = 0;
1222	struct cpuidle_device *dev;
1223
1224	if (disabled_by_idle_boot_param())
1225		return 0;
1226
1227	if (!pr->flags.power_setup_done)
1228		return -ENODEV;
1229
1230	dev = per_cpu(acpi_cpuidle_device, pr->id);
1231	cpuidle_pause_and_lock();
1232	cpuidle_disable_device(dev);
1233	ret = acpi_processor_get_power_info(pr);
1234	if (!ret && pr->flags.power) {
1235		acpi_processor_setup_cpuidle_dev(pr, dev);
1236		ret = cpuidle_enable_device(dev);
1237	}
1238	cpuidle_resume_and_unlock();
1239
1240	return ret;
1241}
1242
1243int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1244{
1245	int cpu;
1246	struct acpi_processor *_pr;
1247	struct cpuidle_device *dev;
1248
1249	if (disabled_by_idle_boot_param())
1250		return 0;
1251
1252	if (!pr->flags.power_setup_done)
1253		return -ENODEV;
1254
1255	/*
1256	 * FIXME:  Design the ACPI notification to make it once per
1257	 * system instead of once per-cpu.  This condition is a hack
1258	 * to make the code that updates C-States be called once.
1259	 */
1260
1261	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1262
1263		/* Protect against cpu-hotplug */
1264		get_online_cpus();
1265		cpuidle_pause_and_lock();
1266
1267		/* Disable all cpuidle devices */
1268		for_each_online_cpu(cpu) {
1269			_pr = per_cpu(processors, cpu);
1270			if (!_pr || !_pr->flags.power_setup_done)
1271				continue;
1272			dev = per_cpu(acpi_cpuidle_device, cpu);
1273			cpuidle_disable_device(dev);
1274		}
1275
1276		/* Populate Updated C-state information */
1277		acpi_processor_get_power_info(pr);
1278		acpi_processor_setup_cpuidle_states(pr);
1279
1280		/* Enable all cpuidle devices */
1281		for_each_online_cpu(cpu) {
1282			_pr = per_cpu(processors, cpu);
1283			if (!_pr || !_pr->flags.power_setup_done)
1284				continue;
1285			acpi_processor_get_power_info(_pr);
1286			if (_pr->flags.power) {
1287				dev = per_cpu(acpi_cpuidle_device, cpu);
1288				acpi_processor_setup_cpuidle_dev(_pr, dev);
1289				cpuidle_enable_device(dev);
1290			}
1291		}
1292		cpuidle_resume_and_unlock();
1293		put_online_cpus();
1294	}
1295
1296	return 0;
1297}
1298
1299static int acpi_processor_registered;
1300
1301int acpi_processor_power_init(struct acpi_processor *pr)
1302{
1303	int retval;
1304	struct cpuidle_device *dev;
1305
1306	if (disabled_by_idle_boot_param())
1307		return 0;
1308
1309	acpi_processor_cstate_first_run_checks();
1310
1311	if (!acpi_processor_get_power_info(pr))
1312		pr->flags.power_setup_done = 1;
1313
1314	/*
1315	 * Install the idle handler if processor power management is supported.
1316	 * Note that we use previously set idle handler will be used on
1317	 * platforms that only support C1.
1318	 */
1319	if (pr->flags.power) {
1320		/* Register acpi_idle_driver if not already registered */
1321		if (!acpi_processor_registered) {
1322			acpi_processor_setup_cpuidle_states(pr);
1323			retval = cpuidle_register_driver(&acpi_idle_driver);
1324			if (retval)
1325				return retval;
1326			pr_debug("%s registered with cpuidle\n",
1327				 acpi_idle_driver.name);
1328		}
1329
1330		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1331		if (!dev)
1332			return -ENOMEM;
1333		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1334
1335		acpi_processor_setup_cpuidle_dev(pr, dev);
1336
1337		/* Register per-cpu cpuidle_device. Cpuidle driver
1338		 * must already be registered before registering device
1339		 */
1340		retval = cpuidle_register_device(dev);
1341		if (retval) {
1342			if (acpi_processor_registered == 0)
1343				cpuidle_unregister_driver(&acpi_idle_driver);
1344			return retval;
1345		}
1346		acpi_processor_registered++;
1347	}
1348	return 0;
1349}
1350
1351int acpi_processor_power_exit(struct acpi_processor *pr)
1352{
1353	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1354
1355	if (disabled_by_idle_boot_param())
1356		return 0;
1357
1358	if (pr->flags.power) {
1359		cpuidle_unregister_device(dev);
1360		acpi_processor_registered--;
1361		if (acpi_processor_registered == 0)
1362			cpuidle_unregister_driver(&acpi_idle_driver);
1363	}
1364
1365	pr->flags.power_setup_done = 0;
1366	return 0;
1367}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *  			- Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *  			- Added support for C3 on SMP
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
  19#include <linux/sort.h>
  20#include <linux/tick.h>
  21#include <linux/cpuidle.h>
  22#include <linux/cpu.h>
  23#include <acpi/processor.h>
  24
  25/*
  26 * Include the apic definitions for x86 to have the APIC timer related defines
  27 * available also for UP (on SMP it gets magically included via linux/smp.h).
  28 * asm/acpi.h is not an option, as it would require more include magic. Also
  29 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  30 */
  31#ifdef CONFIG_X86
  32#include <asm/apic.h>
  33#include <asm/cpu.h>
  34#endif
  35
 
 
 
 
  36#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  37
  38static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  39module_param(max_cstate, uint, 0000);
  40static unsigned int nocst __read_mostly;
  41module_param(nocst, uint, 0000);
  42static int bm_check_disable __read_mostly;
  43module_param(bm_check_disable, uint, 0000);
  44
  45static unsigned int latency_factor __read_mostly = 2;
  46module_param(latency_factor, uint, 0644);
  47
  48static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  49
  50struct cpuidle_driver acpi_idle_driver = {
  51	.name =		"acpi_idle",
  52	.owner =	THIS_MODULE,
  53};
  54
  55#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  56static
  57DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  58
  59static int disabled_by_idle_boot_param(void)
  60{
  61	return boot_option_idle_override == IDLE_POLL ||
  62		boot_option_idle_override == IDLE_HALT;
  63}
  64
  65/*
  66 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  67 * For now disable this. Probably a bug somewhere else.
  68 *
  69 * To skip this limit, boot/load with a large max_cstate limit.
  70 */
  71static int set_max_cstate(const struct dmi_system_id *id)
  72{
  73	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  74		return 0;
  75
  76	pr_notice("%s detected - limiting to C%ld max_cstate."
  77		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  78		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  79
  80	max_cstate = (long)id->driver_data;
  81
  82	return 0;
  83}
  84
  85static const struct dmi_system_id processor_power_dmi_table[] = {
  86	{ set_max_cstate, "Clevo 5600D", {
  87	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  88	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  89	 (void *)2},
  90	{ set_max_cstate, "Pavilion zv5000", {
  91	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  92	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  93	 (void *)1},
  94	{ set_max_cstate, "Asus L8400B", {
  95	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  96	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  97	 (void *)1},
  98	{},
  99};
 100
 101
 102/*
 103 * Callers should disable interrupts before the call and enable
 104 * interrupts after return.
 105 */
 106static void __cpuidle acpi_safe_halt(void)
 107{
 108	if (!tif_need_resched()) {
 109		safe_halt();
 110		local_irq_disable();
 111	}
 112}
 113
 114#ifdef ARCH_APICTIMER_STOPS_ON_C3
 115
 116/*
 117 * Some BIOS implementations switch to C3 in the published C2 state.
 118 * This seems to be a common problem on AMD boxen, but other vendors
 119 * are affected too. We pick the most conservative approach: we assume
 120 * that the local APIC stops in both C2 and C3.
 121 */
 122static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 123				   struct acpi_processor_cx *cx)
 124{
 125	struct acpi_processor_power *pwr = &pr->power;
 126	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 127
 128	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 129		return;
 130
 131	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 132		type = ACPI_STATE_C1;
 133
 134	/*
 135	 * Check, if one of the previous states already marked the lapic
 136	 * unstable
 137	 */
 138	if (pwr->timer_broadcast_on_state < state)
 139		return;
 140
 141	if (cx->type >= type)
 142		pr->power.timer_broadcast_on_state = state;
 143}
 144
 145static void __lapic_timer_propagate_broadcast(void *arg)
 146{
 147	struct acpi_processor *pr = (struct acpi_processor *) arg;
 148
 149	if (pr->power.timer_broadcast_on_state < INT_MAX)
 150		tick_broadcast_enable();
 151	else
 152		tick_broadcast_disable();
 153}
 154
 155static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 156{
 157	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 158				 (void *)pr, 1);
 159}
 160
 161/* Power(C) State timer broadcast control */
 162static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 163					struct acpi_processor_cx *cx)
 164{
 165	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
 166}
 167
 168#else
 169
 170static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 171				   struct acpi_processor_cx *cstate) { }
 172static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 173
 174static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 175					struct acpi_processor_cx *cx)
 176{
 177	return false;
 178}
 179
 180#endif
 181
 182#if defined(CONFIG_X86)
 183static void tsc_check_state(int state)
 184{
 185	switch (boot_cpu_data.x86_vendor) {
 186	case X86_VENDOR_HYGON:
 187	case X86_VENDOR_AMD:
 188	case X86_VENDOR_INTEL:
 189	case X86_VENDOR_CENTAUR:
 190	case X86_VENDOR_ZHAOXIN:
 191		/*
 192		 * AMD Fam10h TSC will tick in all
 193		 * C/P/S0/S1 states when this bit is set.
 194		 */
 195		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 196			return;
 197		fallthrough;
 198	default:
 199		/* TSC could halt in idle, so notify users */
 200		if (state > ACPI_STATE_C1)
 201			mark_tsc_unstable("TSC halts in idle");
 202	}
 203}
 204#else
 205static void tsc_check_state(int state) { return; }
 206#endif
 207
 208static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 209{
 210
 211	if (!pr->pblk)
 212		return -ENODEV;
 213
 214	/* if info is obtained from pblk/fadt, type equals state */
 215	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 216	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 217
 218#ifndef CONFIG_HOTPLUG_CPU
 219	/*
 220	 * Check for P_LVL2_UP flag before entering C2 and above on
 221	 * an SMP system.
 222	 */
 223	if ((num_online_cpus() > 1) &&
 224	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 225		return -ENODEV;
 226#endif
 227
 228	/* determine C2 and C3 address from pblk */
 229	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 230	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 231
 232	/* determine latencies from FADT */
 233	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 234	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 235
 236	/*
 237	 * FADT specified C2 latency must be less than or equal to
 238	 * 100 microseconds.
 239	 */
 240	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 241		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
 242				  acpi_gbl_FADT.c2_latency);
 243		/* invalidate C2 */
 244		pr->power.states[ACPI_STATE_C2].address = 0;
 245	}
 246
 247	/*
 248	 * FADT supplied C3 latency must be less than or equal to
 249	 * 1000 microseconds.
 250	 */
 251	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 252		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
 253				  acpi_gbl_FADT.c3_latency);
 254		/* invalidate C3 */
 255		pr->power.states[ACPI_STATE_C3].address = 0;
 256	}
 257
 258	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
 
 259			  pr->power.states[ACPI_STATE_C2].address,
 260			  pr->power.states[ACPI_STATE_C3].address);
 261
 262	snprintf(pr->power.states[ACPI_STATE_C2].desc,
 263			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 264			 pr->power.states[ACPI_STATE_C2].address);
 265	snprintf(pr->power.states[ACPI_STATE_C3].desc,
 266			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 267			 pr->power.states[ACPI_STATE_C3].address);
 268
 269	return 0;
 270}
 271
 272static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 273{
 274	if (!pr->power.states[ACPI_STATE_C1].valid) {
 275		/* set the first C-State to C1 */
 276		/* all processors need to support C1 */
 277		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 278		pr->power.states[ACPI_STATE_C1].valid = 1;
 279		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 280
 281		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 282			 ACPI_CX_DESC_LEN, "ACPI HLT");
 283	}
 284	/* the C0 state only exists as a filler in our array */
 285	pr->power.states[ACPI_STATE_C0].valid = 1;
 286	return 0;
 287}
 288
 289static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 290{
 291	int ret;
 292
 293	if (nocst)
 294		return -ENODEV;
 295
 296	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
 297	if (ret)
 298		return ret;
 299
 300	if (!pr->power.count)
 301		return -EFAULT;
 302
 303	pr->flags.has_cst = 1;
 304	return 0;
 305}
 306
 307static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 308					   struct acpi_processor_cx *cx)
 309{
 310	static int bm_check_flag = -1;
 311	static int bm_control_flag = -1;
 312
 313
 314	if (!cx->address)
 315		return;
 316
 317	/*
 318	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 319	 * DMA transfers are used by any ISA device to avoid livelock.
 320	 * Note that we could disable Type-F DMA (as recommended by
 321	 * the erratum), but this is known to disrupt certain ISA
 322	 * devices thus we take the conservative approach.
 323	 */
 324	else if (errata.piix4.fdma) {
 325		acpi_handle_debug(pr->handle,
 326				  "C3 not supported on PIIX4 with Type-F DMA\n");
 327		return;
 328	}
 329
 330	/* All the logic here assumes flags.bm_check is same across all CPUs */
 331	if (bm_check_flag == -1) {
 332		/* Determine whether bm_check is needed based on CPU  */
 333		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 334		bm_check_flag = pr->flags.bm_check;
 335		bm_control_flag = pr->flags.bm_control;
 336	} else {
 337		pr->flags.bm_check = bm_check_flag;
 338		pr->flags.bm_control = bm_control_flag;
 339	}
 340
 341	if (pr->flags.bm_check) {
 342		if (!pr->flags.bm_control) {
 343			if (pr->flags.has_cst != 1) {
 344				/* bus mastering control is necessary */
 345				acpi_handle_debug(pr->handle,
 346						  "C3 support requires BM control\n");
 347				return;
 348			} else {
 349				/* Here we enter C3 without bus mastering */
 350				acpi_handle_debug(pr->handle,
 351						  "C3 support without BM control\n");
 352			}
 353		}
 354	} else {
 355		/*
 356		 * WBINVD should be set in fadt, for C3 state to be
 357		 * supported on when bm_check is not required.
 358		 */
 359		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 360			acpi_handle_debug(pr->handle,
 361					  "Cache invalidation should work properly"
 362					  " for C3 to be enabled on SMP systems\n");
 363			return;
 364		}
 365	}
 366
 367	/*
 368	 * Otherwise we've met all of our C3 requirements.
 369	 * Normalize the C3 latency to expidite policy.  Enable
 370	 * checking of bus mastering status (bm_check) so we can
 371	 * use this in our C3 policy
 372	 */
 373	cx->valid = 1;
 374
 375	/*
 376	 * On older chipsets, BM_RLD needs to be set
 377	 * in order for Bus Master activity to wake the
 378	 * system from C3.  Newer chipsets handle DMA
 379	 * during C3 automatically and BM_RLD is a NOP.
 380	 * In either case, the proper way to
 381	 * handle BM_RLD is to set it and leave it set.
 382	 */
 383	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 384
 385	return;
 386}
 387
 388static int acpi_cst_latency_cmp(const void *a, const void *b)
 389{
 390	const struct acpi_processor_cx *x = a, *y = b;
 391
 392	if (!(x->valid && y->valid))
 393		return 0;
 394	if (x->latency > y->latency)
 395		return 1;
 396	if (x->latency < y->latency)
 397		return -1;
 398	return 0;
 399}
 400static void acpi_cst_latency_swap(void *a, void *b, int n)
 401{
 402	struct acpi_processor_cx *x = a, *y = b;
 403	u32 tmp;
 404
 405	if (!(x->valid && y->valid))
 406		return;
 407	tmp = x->latency;
 408	x->latency = y->latency;
 409	y->latency = tmp;
 410}
 411
 412static int acpi_processor_power_verify(struct acpi_processor *pr)
 413{
 414	unsigned int i;
 415	unsigned int working = 0;
 416	unsigned int last_latency = 0;
 417	unsigned int last_type = 0;
 418	bool buggy_latency = false;
 419
 420	pr->power.timer_broadcast_on_state = INT_MAX;
 421
 422	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 423		struct acpi_processor_cx *cx = &pr->power.states[i];
 424
 425		switch (cx->type) {
 426		case ACPI_STATE_C1:
 427			cx->valid = 1;
 428			break;
 429
 430		case ACPI_STATE_C2:
 431			if (!cx->address)
 432				break;
 433			cx->valid = 1;
 434			break;
 435
 436		case ACPI_STATE_C3:
 437			acpi_processor_power_verify_c3(pr, cx);
 438			break;
 439		}
 440		if (!cx->valid)
 441			continue;
 442		if (cx->type >= last_type && cx->latency < last_latency)
 443			buggy_latency = true;
 444		last_latency = cx->latency;
 445		last_type = cx->type;
 446
 447		lapic_timer_check_state(i, pr, cx);
 448		tsc_check_state(cx->type);
 449		working++;
 450	}
 451
 452	if (buggy_latency) {
 453		pr_notice("FW issue: working around C-state latencies out of order\n");
 454		sort(&pr->power.states[1], max_cstate,
 455		     sizeof(struct acpi_processor_cx),
 456		     acpi_cst_latency_cmp,
 457		     acpi_cst_latency_swap);
 458	}
 459
 460	lapic_timer_propagate_broadcast(pr);
 461
 462	return (working);
 463}
 464
 465static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 466{
 467	unsigned int i;
 468	int result;
 469
 470
 471	/* NOTE: the idle thread may not be running while calling
 472	 * this function */
 473
 474	/* Zero initialize all the C-states info. */
 475	memset(pr->power.states, 0, sizeof(pr->power.states));
 476
 477	result = acpi_processor_get_power_info_cst(pr);
 478	if (result == -ENODEV)
 479		result = acpi_processor_get_power_info_fadt(pr);
 480
 481	if (result)
 482		return result;
 483
 484	acpi_processor_get_power_info_default(pr);
 485
 486	pr->power.count = acpi_processor_power_verify(pr);
 487
 488	/*
 489	 * if one state of type C2 or C3 is available, mark this
 490	 * CPU as being "idle manageable"
 491	 */
 492	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 493		if (pr->power.states[i].valid) {
 494			pr->power.count = i;
 495			pr->flags.power = 1;
 496		}
 497	}
 498
 499	return 0;
 500}
 501
 502/**
 503 * acpi_idle_bm_check - checks if bus master activity was detected
 504 */
 505static int acpi_idle_bm_check(void)
 506{
 507	u32 bm_status = 0;
 508
 509	if (bm_check_disable)
 510		return 0;
 511
 512	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 513	if (bm_status)
 514		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 515	/*
 516	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 517	 * the true state of bus mastering activity; forcing us to
 518	 * manually check the BMIDEA bit of each IDE channel.
 519	 */
 520	else if (errata.piix4.bmisx) {
 521		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 522		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 523			bm_status = 1;
 524	}
 525	return bm_status;
 526}
 527
 528static void wait_for_freeze(void)
 529{
 530#ifdef	CONFIG_X86
 531	/* No delay is needed if we are in guest */
 532	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 533		return;
 534#endif
 535	/* Dummy wait op - must do something useless after P_LVL2 read
 536	   because chipsets cannot guarantee that STPCLK# signal
 537	   gets asserted in time to freeze execution properly. */
 538	inl(acpi_gbl_FADT.xpm_timer_block.address);
 539}
 540
 541/**
 542 * acpi_idle_do_entry - enter idle state using the appropriate method
 543 * @cx: cstate data
 544 *
 545 * Caller disables interrupt before call and enables interrupt after return.
 546 */
 547static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 548{
 549	if (cx->entry_method == ACPI_CSTATE_FFH) {
 550		/* Call into architectural FFH based C-state */
 551		acpi_processor_ffh_cstate_enter(cx);
 552	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 553		acpi_safe_halt();
 554	} else {
 555		/* IO port based C-state */
 556		inb(cx->address);
 557		wait_for_freeze();
 558	}
 559}
 560
 561/**
 562 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 563 * @dev: the target CPU
 564 * @index: the index of suggested state
 565 */
 566static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 567{
 568	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 569
 570	ACPI_FLUSH_CPU_CACHE();
 571
 572	while (1) {
 573
 574		if (cx->entry_method == ACPI_CSTATE_HALT)
 575			safe_halt();
 576		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 577			inb(cx->address);
 578			wait_for_freeze();
 579		} else
 580			return -ENODEV;
 581
 582#if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
 583		cond_wakeup_cpu0();
 584#endif
 585	}
 586
 587	/* Never reached */
 588	return 0;
 589}
 590
 591static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 592{
 593	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 594		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 595}
 596
 597static int c3_cpu_count;
 598static DEFINE_RAW_SPINLOCK(c3_lock);
 599
 600/**
 601 * acpi_idle_enter_bm - enters C3 with proper BM handling
 602 * @drv: cpuidle driver
 603 * @pr: Target processor
 604 * @cx: Target state context
 605 * @index: index of target state
 606 */
 607static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
 608			       struct acpi_processor *pr,
 609			       struct acpi_processor_cx *cx,
 610			       int index)
 611{
 612	static struct acpi_processor_cx safe_cx = {
 613		.entry_method = ACPI_CSTATE_HALT,
 614	};
 615
 616	/*
 617	 * disable bus master
 618	 * bm_check implies we need ARB_DIS
 619	 * bm_control implies whether we can do ARB_DIS
 620	 *
 621	 * That leaves a case where bm_check is set and bm_control is not set.
 622	 * In that case we cannot do much, we enter C3 without doing anything.
 623	 */
 624	bool dis_bm = pr->flags.bm_control;
 625
 626	/* If we can skip BM, demote to a safe state. */
 627	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 628		dis_bm = false;
 629		index = drv->safe_state_index;
 630		if (index >= 0) {
 631			cx = this_cpu_read(acpi_cstate[index]);
 632		} else {
 633			cx = &safe_cx;
 634			index = -EBUSY;
 635		}
 636	}
 637
 638	if (dis_bm) {
 639		raw_spin_lock(&c3_lock);
 640		c3_cpu_count++;
 641		/* Disable bus master arbitration when all CPUs are in C3 */
 642		if (c3_cpu_count == num_online_cpus())
 643			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 644		raw_spin_unlock(&c3_lock);
 645	}
 646
 647	rcu_idle_enter();
 648
 649	acpi_idle_do_entry(cx);
 650
 651	rcu_idle_exit();
 652
 653	/* Re-enable bus master arbitration */
 654	if (dis_bm) {
 655		raw_spin_lock(&c3_lock);
 656		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 657		c3_cpu_count--;
 658		raw_spin_unlock(&c3_lock);
 659	}
 660
 661	return index;
 662}
 663
 664static int acpi_idle_enter(struct cpuidle_device *dev,
 665			   struct cpuidle_driver *drv, int index)
 666{
 667	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 668	struct acpi_processor *pr;
 669
 670	pr = __this_cpu_read(processors);
 671	if (unlikely(!pr))
 672		return -EINVAL;
 673
 674	if (cx->type != ACPI_STATE_C1) {
 675		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
 676			return acpi_idle_enter_bm(drv, pr, cx, index);
 677
 678		/* C2 to C1 demotion. */
 679		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 680			index = ACPI_IDLE_STATE_START;
 681			cx = per_cpu(acpi_cstate[index], dev->cpu);
 682		}
 683	}
 684
 685	if (cx->type == ACPI_STATE_C3)
 686		ACPI_FLUSH_CPU_CACHE();
 687
 688	acpi_idle_do_entry(cx);
 689
 690	return index;
 691}
 692
 693static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 694				  struct cpuidle_driver *drv, int index)
 695{
 696	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 697
 698	if (cx->type == ACPI_STATE_C3) {
 699		struct acpi_processor *pr = __this_cpu_read(processors);
 700
 701		if (unlikely(!pr))
 702			return 0;
 703
 704		if (pr->flags.bm_check) {
 705			u8 bm_sts_skip = cx->bm_sts_skip;
 706
 707			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
 708			cx->bm_sts_skip = 1;
 709			acpi_idle_enter_bm(drv, pr, cx, index);
 710			cx->bm_sts_skip = bm_sts_skip;
 711
 712			return 0;
 713		} else {
 714			ACPI_FLUSH_CPU_CACHE();
 715		}
 716	}
 717	acpi_idle_do_entry(cx);
 718
 719	return 0;
 720}
 721
 722static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 723					   struct cpuidle_device *dev)
 724{
 725	int i, count = ACPI_IDLE_STATE_START;
 726	struct acpi_processor_cx *cx;
 727	struct cpuidle_state *state;
 728
 729	if (max_cstate == 0)
 730		max_cstate = 1;
 731
 732	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 733		state = &acpi_idle_driver.states[count];
 734		cx = &pr->power.states[i];
 735
 736		if (!cx->valid)
 737			continue;
 738
 739		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 740
 741		if (lapic_timer_needs_broadcast(pr, cx))
 742			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 743
 744		if (cx->type == ACPI_STATE_C3) {
 745			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
 746			if (pr->flags.bm_check)
 747				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
 748		}
 749
 750		count++;
 751		if (count == CPUIDLE_STATE_MAX)
 752			break;
 753	}
 754
 755	if (!count)
 756		return -EINVAL;
 757
 758	return 0;
 759}
 760
 761static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 762{
 763	int i, count;
 764	struct acpi_processor_cx *cx;
 765	struct cpuidle_state *state;
 766	struct cpuidle_driver *drv = &acpi_idle_driver;
 767
 768	if (max_cstate == 0)
 769		max_cstate = 1;
 770
 771	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 772		cpuidle_poll_state_init(drv);
 773		count = 1;
 774	} else {
 775		count = 0;
 776	}
 777
 778	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 779		cx = &pr->power.states[i];
 780
 781		if (!cx->valid)
 782			continue;
 783
 784		state = &drv->states[count];
 785		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 786		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 787		state->exit_latency = cx->latency;
 788		state->target_residency = cx->latency * latency_factor;
 789		state->enter = acpi_idle_enter;
 790
 791		state->flags = 0;
 792		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 793			state->enter_dead = acpi_idle_play_dead;
 794			drv->safe_state_index = count;
 795		}
 796		/*
 797		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 798		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 799		 * particularly interesting from the suspend-to-idle angle, so
 800		 * avoid C1 and the situations in which we may need to fall back
 801		 * to it altogether.
 802		 */
 803		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 804			state->enter_s2idle = acpi_idle_enter_s2idle;
 805
 806		count++;
 807		if (count == CPUIDLE_STATE_MAX)
 808			break;
 809	}
 810
 811	drv->state_count = count;
 812
 813	if (!count)
 814		return -EINVAL;
 815
 816	return 0;
 817}
 818
 819static inline void acpi_processor_cstate_first_run_checks(void)
 820{
 821	static int first_run;
 822
 823	if (first_run)
 824		return;
 825	dmi_check_system(processor_power_dmi_table);
 826	max_cstate = acpi_processor_cstate_check(max_cstate);
 827	if (max_cstate < ACPI_C_STATES_MAX)
 828		pr_notice("processor limited to max C-state %d\n", max_cstate);
 829
 830	first_run++;
 831
 832	if (nocst)
 833		return;
 834
 835	acpi_processor_claim_cst_control();
 836}
 837#else
 838
 839static inline int disabled_by_idle_boot_param(void) { return 0; }
 840static inline void acpi_processor_cstate_first_run_checks(void) { }
 841static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 842{
 843	return -ENODEV;
 844}
 845
 846static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 847					   struct cpuidle_device *dev)
 848{
 849	return -EINVAL;
 850}
 851
 852static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 853{
 854	return -EINVAL;
 855}
 856
 857#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 858
 859struct acpi_lpi_states_array {
 860	unsigned int size;
 861	unsigned int composite_states_size;
 862	struct acpi_lpi_state *entries;
 863	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 864};
 865
 866static int obj_get_integer(union acpi_object *obj, u32 *value)
 867{
 868	if (obj->type != ACPI_TYPE_INTEGER)
 869		return -EINVAL;
 870
 871	*value = obj->integer.value;
 872	return 0;
 873}
 874
 875static int acpi_processor_evaluate_lpi(acpi_handle handle,
 876				       struct acpi_lpi_states_array *info)
 877{
 878	acpi_status status;
 879	int ret = 0;
 880	int pkg_count, state_idx = 1, loop;
 881	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 882	union acpi_object *lpi_data;
 883	struct acpi_lpi_state *lpi_state;
 884
 885	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 886	if (ACPI_FAILURE(status)) {
 887		acpi_handle_debug(handle, "No _LPI, giving up\n");
 888		return -ENODEV;
 889	}
 890
 891	lpi_data = buffer.pointer;
 892
 893	/* There must be at least 4 elements = 3 elements + 1 package */
 894	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 895	    lpi_data->package.count < 4) {
 896		pr_debug("not enough elements in _LPI\n");
 897		ret = -ENODATA;
 898		goto end;
 899	}
 900
 901	pkg_count = lpi_data->package.elements[2].integer.value;
 902
 903	/* Validate number of power states. */
 904	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 905		pr_debug("count given by _LPI is not valid\n");
 906		ret = -ENODATA;
 907		goto end;
 908	}
 909
 910	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 911	if (!lpi_state) {
 912		ret = -ENOMEM;
 913		goto end;
 914	}
 915
 916	info->size = pkg_count;
 917	info->entries = lpi_state;
 918
 919	/* LPI States start at index 3 */
 920	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 921		union acpi_object *element, *pkg_elem, *obj;
 922
 923		element = &lpi_data->package.elements[loop];
 924		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
 925			continue;
 926
 927		pkg_elem = element->package.elements;
 928
 929		obj = pkg_elem + 6;
 930		if (obj->type == ACPI_TYPE_BUFFER) {
 931			struct acpi_power_register *reg;
 932
 933			reg = (struct acpi_power_register *)obj->buffer.pointer;
 934			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 935			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
 936				continue;
 937
 938			lpi_state->address = reg->address;
 939			lpi_state->entry_method =
 940				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
 941				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
 942		} else if (obj->type == ACPI_TYPE_INTEGER) {
 943			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
 944			lpi_state->address = obj->integer.value;
 945		} else {
 946			continue;
 947		}
 948
 949		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
 950
 951		obj = pkg_elem + 9;
 952		if (obj->type == ACPI_TYPE_STRING)
 953			strlcpy(lpi_state->desc, obj->string.pointer,
 954				ACPI_CX_DESC_LEN);
 955
 956		lpi_state->index = state_idx;
 957		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
 958			pr_debug("No min. residency found, assuming 10 us\n");
 959			lpi_state->min_residency = 10;
 960		}
 961
 962		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
 963			pr_debug("No wakeup residency found, assuming 10 us\n");
 964			lpi_state->wake_latency = 10;
 965		}
 966
 967		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
 968			lpi_state->flags = 0;
 969
 970		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
 971			lpi_state->arch_flags = 0;
 972
 973		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
 974			lpi_state->res_cnt_freq = 1;
 975
 976		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
 977			lpi_state->enable_parent_state = 0;
 978	}
 979
 980	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
 981end:
 982	kfree(buffer.pointer);
 983	return ret;
 984}
 985
 986/*
 987 * flat_state_cnt - the number of composite LPI states after the process of flattening
 988 */
 989static int flat_state_cnt;
 990
 991/**
 992 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
 993 *
 994 * @local: local LPI state
 995 * @parent: parent LPI state
 996 * @result: composite LPI state
 997 */
 998static bool combine_lpi_states(struct acpi_lpi_state *local,
 999			       struct acpi_lpi_state *parent,
1000			       struct acpi_lpi_state *result)
1001{
1002	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1003		if (!parent->address) /* 0 means autopromotable */
1004			return false;
1005		result->address = local->address + parent->address;
1006	} else {
1007		result->address = parent->address;
1008	}
1009
1010	result->min_residency = max(local->min_residency, parent->min_residency);
1011	result->wake_latency = local->wake_latency + parent->wake_latency;
1012	result->enable_parent_state = parent->enable_parent_state;
1013	result->entry_method = local->entry_method;
1014
1015	result->flags = parent->flags;
1016	result->arch_flags = parent->arch_flags;
1017	result->index = parent->index;
1018
1019	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1020	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1021	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1022	return true;
1023}
1024
1025#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1026
1027static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1028				  struct acpi_lpi_state *t)
1029{
1030	curr_level->composite_states[curr_level->composite_states_size++] = t;
1031}
1032
1033static int flatten_lpi_states(struct acpi_processor *pr,
1034			      struct acpi_lpi_states_array *curr_level,
1035			      struct acpi_lpi_states_array *prev_level)
1036{
1037	int i, j, state_count = curr_level->size;
1038	struct acpi_lpi_state *p, *t = curr_level->entries;
1039
1040	curr_level->composite_states_size = 0;
1041	for (j = 0; j < state_count; j++, t++) {
1042		struct acpi_lpi_state *flpi;
1043
1044		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1045			continue;
1046
1047		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1048			pr_warn("Limiting number of LPI states to max (%d)\n",
1049				ACPI_PROCESSOR_MAX_POWER);
1050			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1051			break;
1052		}
1053
1054		flpi = &pr->power.lpi_states[flat_state_cnt];
1055
1056		if (!prev_level) { /* leaf/processor node */
1057			memcpy(flpi, t, sizeof(*t));
1058			stash_composite_state(curr_level, flpi);
1059			flat_state_cnt++;
1060			continue;
1061		}
1062
1063		for (i = 0; i < prev_level->composite_states_size; i++) {
1064			p = prev_level->composite_states[i];
1065			if (t->index <= p->enable_parent_state &&
1066			    combine_lpi_states(p, t, flpi)) {
1067				stash_composite_state(curr_level, flpi);
1068				flat_state_cnt++;
1069				flpi++;
1070			}
1071		}
1072	}
1073
1074	kfree(curr_level->entries);
1075	return 0;
1076}
1077
1078static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1079{
1080	int ret, i;
1081	acpi_status status;
1082	acpi_handle handle = pr->handle, pr_ahandle;
1083	struct acpi_device *d = NULL;
1084	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1085
1086	if (!osc_pc_lpi_support_confirmed)
1087		return -EOPNOTSUPP;
1088
1089	if (!acpi_has_method(handle, "_LPI"))
1090		return -EINVAL;
1091
1092	flat_state_cnt = 0;
1093	prev = &info[0];
1094	curr = &info[1];
1095	handle = pr->handle;
1096	ret = acpi_processor_evaluate_lpi(handle, prev);
1097	if (ret)
1098		return ret;
1099	flatten_lpi_states(pr, prev, NULL);
1100
1101	status = acpi_get_parent(handle, &pr_ahandle);
1102	while (ACPI_SUCCESS(status)) {
1103		acpi_bus_get_device(pr_ahandle, &d);
1104		handle = pr_ahandle;
1105
1106		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1107			break;
1108
1109		/* can be optional ? */
1110		if (!acpi_has_method(handle, "_LPI"))
1111			break;
1112
1113		ret = acpi_processor_evaluate_lpi(handle, curr);
1114		if (ret)
1115			break;
1116
1117		/* flatten all the LPI states in this level of hierarchy */
1118		flatten_lpi_states(pr, curr, prev);
1119
1120		tmp = prev, prev = curr, curr = tmp;
1121
1122		status = acpi_get_parent(handle, &pr_ahandle);
1123	}
1124
1125	pr->power.count = flat_state_cnt;
1126	/* reset the index after flattening */
1127	for (i = 0; i < pr->power.count; i++)
1128		pr->power.lpi_states[i].index = i;
1129
1130	/* Tell driver that _LPI is supported. */
1131	pr->flags.has_lpi = 1;
1132	pr->flags.power = 1;
1133
1134	return 0;
1135}
1136
1137int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1138{
1139	return -ENODEV;
1140}
1141
1142int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1143{
1144	return -ENODEV;
1145}
1146
1147/**
1148 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1149 * @dev: the target CPU
1150 * @drv: cpuidle driver containing cpuidle state info
1151 * @index: index of target state
1152 *
1153 * Return: 0 for success or negative value for error
1154 */
1155static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1156			       struct cpuidle_driver *drv, int index)
1157{
1158	struct acpi_processor *pr;
1159	struct acpi_lpi_state *lpi;
1160
1161	pr = __this_cpu_read(processors);
1162
1163	if (unlikely(!pr))
1164		return -EINVAL;
1165
1166	lpi = &pr->power.lpi_states[index];
1167	if (lpi->entry_method == ACPI_CSTATE_FFH)
1168		return acpi_processor_ffh_lpi_enter(lpi);
1169
1170	return -EINVAL;
1171}
1172
1173static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1174{
1175	int i;
1176	struct acpi_lpi_state *lpi;
1177	struct cpuidle_state *state;
1178	struct cpuidle_driver *drv = &acpi_idle_driver;
1179
1180	if (!pr->flags.has_lpi)
1181		return -EOPNOTSUPP;
1182
1183	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1184		lpi = &pr->power.lpi_states[i];
1185
1186		state = &drv->states[i];
1187		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1188		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1189		state->exit_latency = lpi->wake_latency;
1190		state->target_residency = lpi->min_residency;
1191		if (lpi->arch_flags)
1192			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1193		state->enter = acpi_idle_lpi_enter;
1194		drv->safe_state_index = i;
1195	}
1196
1197	drv->state_count = i;
1198
1199	return 0;
1200}
1201
1202/**
1203 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1204 * global state data i.e. idle routines
1205 *
1206 * @pr: the ACPI processor
1207 */
1208static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1209{
1210	int i;
1211	struct cpuidle_driver *drv = &acpi_idle_driver;
1212
1213	if (!pr->flags.power_setup_done || !pr->flags.power)
1214		return -EINVAL;
1215
1216	drv->safe_state_index = -1;
1217	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1218		drv->states[i].name[0] = '\0';
1219		drv->states[i].desc[0] = '\0';
1220	}
1221
1222	if (pr->flags.has_lpi)
1223		return acpi_processor_setup_lpi_states(pr);
1224
1225	return acpi_processor_setup_cstates(pr);
1226}
1227
1228/**
1229 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1230 * device i.e. per-cpu data
1231 *
1232 * @pr: the ACPI processor
1233 * @dev : the cpuidle device
1234 */
1235static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1236					    struct cpuidle_device *dev)
1237{
1238	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1239		return -EINVAL;
1240
1241	dev->cpu = pr->id;
1242	if (pr->flags.has_lpi)
1243		return acpi_processor_ffh_lpi_probe(pr->id);
1244
1245	return acpi_processor_setup_cpuidle_cx(pr, dev);
1246}
1247
1248static int acpi_processor_get_power_info(struct acpi_processor *pr)
1249{
1250	int ret;
1251
1252	ret = acpi_processor_get_lpi_info(pr);
1253	if (ret)
1254		ret = acpi_processor_get_cstate_info(pr);
1255
1256	return ret;
1257}
1258
1259int acpi_processor_hotplug(struct acpi_processor *pr)
1260{
1261	int ret = 0;
1262	struct cpuidle_device *dev;
1263
1264	if (disabled_by_idle_boot_param())
1265		return 0;
1266
1267	if (!pr->flags.power_setup_done)
1268		return -ENODEV;
1269
1270	dev = per_cpu(acpi_cpuidle_device, pr->id);
1271	cpuidle_pause_and_lock();
1272	cpuidle_disable_device(dev);
1273	ret = acpi_processor_get_power_info(pr);
1274	if (!ret && pr->flags.power) {
1275		acpi_processor_setup_cpuidle_dev(pr, dev);
1276		ret = cpuidle_enable_device(dev);
1277	}
1278	cpuidle_resume_and_unlock();
1279
1280	return ret;
1281}
1282
1283int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1284{
1285	int cpu;
1286	struct acpi_processor *_pr;
1287	struct cpuidle_device *dev;
1288
1289	if (disabled_by_idle_boot_param())
1290		return 0;
1291
1292	if (!pr->flags.power_setup_done)
1293		return -ENODEV;
1294
1295	/*
1296	 * FIXME:  Design the ACPI notification to make it once per
1297	 * system instead of once per-cpu.  This condition is a hack
1298	 * to make the code that updates C-States be called once.
1299	 */
1300
1301	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1302
1303		/* Protect against cpu-hotplug */
1304		get_online_cpus();
1305		cpuidle_pause_and_lock();
1306
1307		/* Disable all cpuidle devices */
1308		for_each_online_cpu(cpu) {
1309			_pr = per_cpu(processors, cpu);
1310			if (!_pr || !_pr->flags.power_setup_done)
1311				continue;
1312			dev = per_cpu(acpi_cpuidle_device, cpu);
1313			cpuidle_disable_device(dev);
1314		}
1315
1316		/* Populate Updated C-state information */
1317		acpi_processor_get_power_info(pr);
1318		acpi_processor_setup_cpuidle_states(pr);
1319
1320		/* Enable all cpuidle devices */
1321		for_each_online_cpu(cpu) {
1322			_pr = per_cpu(processors, cpu);
1323			if (!_pr || !_pr->flags.power_setup_done)
1324				continue;
1325			acpi_processor_get_power_info(_pr);
1326			if (_pr->flags.power) {
1327				dev = per_cpu(acpi_cpuidle_device, cpu);
1328				acpi_processor_setup_cpuidle_dev(_pr, dev);
1329				cpuidle_enable_device(dev);
1330			}
1331		}
1332		cpuidle_resume_and_unlock();
1333		put_online_cpus();
1334	}
1335
1336	return 0;
1337}
1338
1339static int acpi_processor_registered;
1340
1341int acpi_processor_power_init(struct acpi_processor *pr)
1342{
1343	int retval;
1344	struct cpuidle_device *dev;
1345
1346	if (disabled_by_idle_boot_param())
1347		return 0;
1348
1349	acpi_processor_cstate_first_run_checks();
1350
1351	if (!acpi_processor_get_power_info(pr))
1352		pr->flags.power_setup_done = 1;
1353
1354	/*
1355	 * Install the idle handler if processor power management is supported.
1356	 * Note that we use previously set idle handler will be used on
1357	 * platforms that only support C1.
1358	 */
1359	if (pr->flags.power) {
1360		/* Register acpi_idle_driver if not already registered */
1361		if (!acpi_processor_registered) {
1362			acpi_processor_setup_cpuidle_states(pr);
1363			retval = cpuidle_register_driver(&acpi_idle_driver);
1364			if (retval)
1365				return retval;
1366			pr_debug("%s registered with cpuidle\n",
1367				 acpi_idle_driver.name);
1368		}
1369
1370		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1371		if (!dev)
1372			return -ENOMEM;
1373		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1374
1375		acpi_processor_setup_cpuidle_dev(pr, dev);
1376
1377		/* Register per-cpu cpuidle_device. Cpuidle driver
1378		 * must already be registered before registering device
1379		 */
1380		retval = cpuidle_register_device(dev);
1381		if (retval) {
1382			if (acpi_processor_registered == 0)
1383				cpuidle_unregister_driver(&acpi_idle_driver);
1384			return retval;
1385		}
1386		acpi_processor_registered++;
1387	}
1388	return 0;
1389}
1390
1391int acpi_processor_power_exit(struct acpi_processor *pr)
1392{
1393	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1394
1395	if (disabled_by_idle_boot_param())
1396		return 0;
1397
1398	if (pr->flags.power) {
1399		cpuidle_unregister_device(dev);
1400		acpi_processor_registered--;
1401		if (acpi_processor_registered == 0)
1402			cpuidle_unregister_driver(&acpi_idle_driver);
1403	}
1404
1405	pr->flags.power_setup_done = 0;
1406	return 0;
1407}