Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
 
  43
  44	u32			idx;
  45
  46	bool			registered;
  47	bool			persistent;
  48	bool			polling_paused;
  49	bool			suspended;
  50
  51	const struct rfkill_ops	*ops;
  52	void			*data;
  53
  54#ifdef CONFIG_RFKILL_LEDS
  55	struct led_trigger	led_trigger;
  56	const char		*ledtrigname;
  57#endif
  58
  59	struct device		dev;
  60	struct list_head	node;
  61
  62	struct delayed_work	poll_work;
  63	struct work_struct	uevent_work;
  64	struct work_struct	sync_work;
  65	char			name[];
  66};
  67#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  68
  69struct rfkill_int_event {
  70	struct list_head	list;
  71	struct rfkill_event	ev;
  72};
  73
  74struct rfkill_data {
  75	struct list_head	list;
  76	struct list_head	events;
  77	struct mutex		mtx;
  78	wait_queue_head_t	read_wait;
  79	bool			input_handler;
  80};
  81
  82
  83MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  84MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  85MODULE_DESCRIPTION("RF switch support");
  86MODULE_LICENSE("GPL");
  87
  88
  89/*
  90 * The locking here should be made much smarter, we currently have
  91 * a bit of a stupid situation because drivers might want to register
  92 * the rfkill struct under their own lock, and take this lock during
  93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  94 *
  95 * To fix that, we need to rework this code here to be mostly lock-free
  96 * and only use the mutex for list manipulations, not to protect the
  97 * various other global variables. Then we can avoid holding the mutex
  98 * around driver operations, and all is happy.
  99 */
 100static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 101static DEFINE_MUTEX(rfkill_global_mutex);
 102static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 103
 104static unsigned int rfkill_default_state = 1;
 105module_param_named(default_state, rfkill_default_state, uint, 0444);
 106MODULE_PARM_DESC(default_state,
 107		 "Default initial state for all radio types, 0 = radio off");
 108
 109static struct {
 110	bool cur, sav;
 111} rfkill_global_states[NUM_RFKILL_TYPES];
 112
 113static bool rfkill_epo_lock_active;
 114
 115
 116#ifdef CONFIG_RFKILL_LEDS
 117static void rfkill_led_trigger_event(struct rfkill *rfkill)
 118{
 119	struct led_trigger *trigger;
 120
 121	if (!rfkill->registered)
 122		return;
 123
 124	trigger = &rfkill->led_trigger;
 125
 126	if (rfkill->state & RFKILL_BLOCK_ANY)
 127		led_trigger_event(trigger, LED_OFF);
 128	else
 129		led_trigger_event(trigger, LED_FULL);
 130}
 131
 132static int rfkill_led_trigger_activate(struct led_classdev *led)
 133{
 134	struct rfkill *rfkill;
 135
 136	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 137
 138	rfkill_led_trigger_event(rfkill);
 139
 140	return 0;
 141}
 142
 143const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 144{
 145	return rfkill->led_trigger.name;
 146}
 147EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 148
 149void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 150{
 151	BUG_ON(!rfkill);
 152
 153	rfkill->ledtrigname = name;
 154}
 155EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 156
 157static int rfkill_led_trigger_register(struct rfkill *rfkill)
 158{
 159	rfkill->led_trigger.name = rfkill->ledtrigname
 160					? : dev_name(&rfkill->dev);
 161	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 162	return led_trigger_register(&rfkill->led_trigger);
 163}
 164
 165static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 166{
 167	led_trigger_unregister(&rfkill->led_trigger);
 168}
 169
 170static struct led_trigger rfkill_any_led_trigger;
 171static struct led_trigger rfkill_none_led_trigger;
 172static struct work_struct rfkill_global_led_trigger_work;
 173
 174static void rfkill_global_led_trigger_worker(struct work_struct *work)
 175{
 176	enum led_brightness brightness = LED_OFF;
 177	struct rfkill *rfkill;
 178
 179	mutex_lock(&rfkill_global_mutex);
 180	list_for_each_entry(rfkill, &rfkill_list, node) {
 181		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 182			brightness = LED_FULL;
 183			break;
 184		}
 185	}
 186	mutex_unlock(&rfkill_global_mutex);
 187
 188	led_trigger_event(&rfkill_any_led_trigger, brightness);
 189	led_trigger_event(&rfkill_none_led_trigger,
 190			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 191}
 192
 193static void rfkill_global_led_trigger_event(void)
 194{
 195	schedule_work(&rfkill_global_led_trigger_work);
 196}
 197
 198static int rfkill_global_led_trigger_register(void)
 199{
 200	int ret;
 201
 202	INIT_WORK(&rfkill_global_led_trigger_work,
 203			rfkill_global_led_trigger_worker);
 204
 205	rfkill_any_led_trigger.name = "rfkill-any";
 206	ret = led_trigger_register(&rfkill_any_led_trigger);
 207	if (ret)
 208		return ret;
 209
 210	rfkill_none_led_trigger.name = "rfkill-none";
 211	ret = led_trigger_register(&rfkill_none_led_trigger);
 212	if (ret)
 213		led_trigger_unregister(&rfkill_any_led_trigger);
 214	else
 215		/* Delay activation until all global triggers are registered */
 216		rfkill_global_led_trigger_event();
 217
 218	return ret;
 219}
 220
 221static void rfkill_global_led_trigger_unregister(void)
 222{
 223	led_trigger_unregister(&rfkill_none_led_trigger);
 224	led_trigger_unregister(&rfkill_any_led_trigger);
 225	cancel_work_sync(&rfkill_global_led_trigger_work);
 226}
 227#else
 228static void rfkill_led_trigger_event(struct rfkill *rfkill)
 229{
 230}
 231
 232static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 233{
 234	return 0;
 235}
 236
 237static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 238{
 239}
 240
 241static void rfkill_global_led_trigger_event(void)
 242{
 243}
 244
 245static int rfkill_global_led_trigger_register(void)
 246{
 247	return 0;
 248}
 249
 250static void rfkill_global_led_trigger_unregister(void)
 251{
 252}
 253#endif /* CONFIG_RFKILL_LEDS */
 254
 255static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 
 256			      enum rfkill_operation op)
 257{
 258	unsigned long flags;
 259
 260	ev->idx = rfkill->idx;
 261	ev->type = rfkill->type;
 262	ev->op = op;
 263
 264	spin_lock_irqsave(&rfkill->lock, flags);
 265	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 266	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 267					RFKILL_BLOCK_SW_PREV));
 
 268	spin_unlock_irqrestore(&rfkill->lock, flags);
 269}
 270
 271static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 272{
 273	struct rfkill_data *data;
 274	struct rfkill_int_event *ev;
 275
 276	list_for_each_entry(data, &rfkill_fds, list) {
 277		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 278		if (!ev)
 279			continue;
 280		rfkill_fill_event(&ev->ev, rfkill, op);
 281		mutex_lock(&data->mtx);
 282		list_add_tail(&ev->list, &data->events);
 283		mutex_unlock(&data->mtx);
 284		wake_up_interruptible(&data->read_wait);
 285	}
 286}
 287
 288static void rfkill_event(struct rfkill *rfkill)
 289{
 290	if (!rfkill->registered)
 291		return;
 292
 293	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 294
 295	/* also send event to /dev/rfkill */
 296	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 297}
 298
 299/**
 300 * rfkill_set_block - wrapper for set_block method
 301 *
 302 * @rfkill: the rfkill struct to use
 303 * @blocked: the new software state
 304 *
 305 * Calls the set_block method (when applicable) and handles notifications
 306 * etc. as well.
 307 */
 308static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 309{
 310	unsigned long flags;
 311	bool prev, curr;
 312	int err;
 313
 314	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 315		return;
 316
 317	/*
 318	 * Some platforms (...!) generate input events which affect the
 319	 * _hard_ kill state -- whenever something tries to change the
 320	 * current software state query the hardware state too.
 321	 */
 322	if (rfkill->ops->query)
 323		rfkill->ops->query(rfkill, rfkill->data);
 324
 325	spin_lock_irqsave(&rfkill->lock, flags);
 326	prev = rfkill->state & RFKILL_BLOCK_SW;
 327
 328	if (prev)
 329		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 330	else
 331		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 332
 333	if (blocked)
 334		rfkill->state |= RFKILL_BLOCK_SW;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW;
 337
 338	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 339	spin_unlock_irqrestore(&rfkill->lock, flags);
 340
 341	err = rfkill->ops->set_block(rfkill->data, blocked);
 342
 343	spin_lock_irqsave(&rfkill->lock, flags);
 344	if (err) {
 345		/*
 346		 * Failed -- reset status to _PREV, which may be different
 347		 * from what we have set _PREV to earlier in this function
 348		 * if rfkill_set_sw_state was invoked.
 349		 */
 350		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 351			rfkill->state |= RFKILL_BLOCK_SW;
 352		else
 353			rfkill->state &= ~RFKILL_BLOCK_SW;
 354	}
 355	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 356	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 357	curr = rfkill->state & RFKILL_BLOCK_SW;
 358	spin_unlock_irqrestore(&rfkill->lock, flags);
 359
 360	rfkill_led_trigger_event(rfkill);
 361	rfkill_global_led_trigger_event();
 362
 363	if (prev != curr)
 364		rfkill_event(rfkill);
 365}
 366
 367static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 368{
 369	int i;
 370
 371	if (type != RFKILL_TYPE_ALL) {
 372		rfkill_global_states[type].cur = blocked;
 373		return;
 374	}
 375
 376	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 377		rfkill_global_states[i].cur = blocked;
 378}
 379
 380#ifdef CONFIG_RFKILL_INPUT
 381static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 382
 383/**
 384 * __rfkill_switch_all - Toggle state of all switches of given type
 385 * @type: type of interfaces to be affected
 386 * @blocked: the new state
 387 *
 388 * This function sets the state of all switches of given type,
 389 * unless a specific switch is suspended.
 390 *
 391 * Caller must have acquired rfkill_global_mutex.
 392 */
 393static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 394{
 395	struct rfkill *rfkill;
 396
 397	rfkill_update_global_state(type, blocked);
 398	list_for_each_entry(rfkill, &rfkill_list, node) {
 399		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 400			continue;
 401
 402		rfkill_set_block(rfkill, blocked);
 403	}
 404}
 405
 406/**
 407 * rfkill_switch_all - Toggle state of all switches of given type
 408 * @type: type of interfaces to be affected
 409 * @blocked: the new state
 410 *
 411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 412 * Please refer to __rfkill_switch_all() for details.
 413 *
 414 * Does nothing if the EPO lock is active.
 415 */
 416void rfkill_switch_all(enum rfkill_type type, bool blocked)
 417{
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422
 423	if (!rfkill_epo_lock_active)
 424		__rfkill_switch_all(type, blocked);
 425
 426	mutex_unlock(&rfkill_global_mutex);
 427}
 428
 429/**
 430 * rfkill_epo - emergency power off all transmitters
 431 *
 432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 434 *
 435 * The global state before the EPO is saved and can be restored later
 436 * using rfkill_restore_states().
 437 */
 438void rfkill_epo(void)
 439{
 440	struct rfkill *rfkill;
 441	int i;
 442
 443	if (atomic_read(&rfkill_input_disabled))
 444		return;
 445
 446	mutex_lock(&rfkill_global_mutex);
 447
 448	rfkill_epo_lock_active = true;
 449	list_for_each_entry(rfkill, &rfkill_list, node)
 450		rfkill_set_block(rfkill, true);
 451
 452	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 453		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 454		rfkill_global_states[i].cur = true;
 455	}
 456
 457	mutex_unlock(&rfkill_global_mutex);
 458}
 459
 460/**
 461 * rfkill_restore_states - restore global states
 462 *
 463 * Restore (and sync switches to) the global state from the
 464 * states in rfkill_default_states.  This can undo the effects of
 465 * a call to rfkill_epo().
 466 */
 467void rfkill_restore_states(void)
 468{
 469	int i;
 470
 471	if (atomic_read(&rfkill_input_disabled))
 472		return;
 473
 474	mutex_lock(&rfkill_global_mutex);
 475
 476	rfkill_epo_lock_active = false;
 477	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 478		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 479	mutex_unlock(&rfkill_global_mutex);
 480}
 481
 482/**
 483 * rfkill_remove_epo_lock - unlock state changes
 484 *
 485 * Used by rfkill-input manually unlock state changes, when
 486 * the EPO switch is deactivated.
 487 */
 488void rfkill_remove_epo_lock(void)
 489{
 490	if (atomic_read(&rfkill_input_disabled))
 491		return;
 492
 493	mutex_lock(&rfkill_global_mutex);
 494	rfkill_epo_lock_active = false;
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_is_epo_lock_active - returns true EPO is active
 500 *
 501 * Returns 0 (false) if there is NOT an active EPO condition,
 502 * and 1 (true) if there is an active EPO condition, which
 503 * locks all radios in one of the BLOCKED states.
 504 *
 505 * Can be called in atomic context.
 506 */
 507bool rfkill_is_epo_lock_active(void)
 508{
 509	return rfkill_epo_lock_active;
 510}
 511
 512/**
 513 * rfkill_get_global_sw_state - returns global state for a type
 514 * @type: the type to get the global state of
 515 *
 516 * Returns the current global state for a given wireless
 517 * device type.
 518 */
 519bool rfkill_get_global_sw_state(const enum rfkill_type type)
 520{
 521	return rfkill_global_states[type].cur;
 522}
 523#endif
 524
 525bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 
 526{
 527	unsigned long flags;
 528	bool ret, prev;
 529
 530	BUG_ON(!rfkill);
 531
 
 
 
 
 
 532	spin_lock_irqsave(&rfkill->lock, flags);
 533	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 534	if (blocked)
 535		rfkill->state |= RFKILL_BLOCK_HW;
 536	else
 537		rfkill->state &= ~RFKILL_BLOCK_HW;
 
 
 
 
 538	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 539	spin_unlock_irqrestore(&rfkill->lock, flags);
 540
 541	rfkill_led_trigger_event(rfkill);
 542	rfkill_global_led_trigger_event();
 543
 544	if (rfkill->registered && prev != blocked)
 545		schedule_work(&rfkill->uevent_work);
 546
 547	return ret;
 548}
 549EXPORT_SYMBOL(rfkill_set_hw_state);
 550
 551static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 552{
 553	u32 bit = RFKILL_BLOCK_SW;
 554
 555	/* if in a ops->set_block right now, use other bit */
 556	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 557		bit = RFKILL_BLOCK_SW_PREV;
 558
 559	if (blocked)
 560		rfkill->state |= bit;
 561	else
 562		rfkill->state &= ~bit;
 563}
 564
 565bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 566{
 567	unsigned long flags;
 568	bool prev, hwblock;
 569
 570	BUG_ON(!rfkill);
 571
 572	spin_lock_irqsave(&rfkill->lock, flags);
 573	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 574	__rfkill_set_sw_state(rfkill, blocked);
 575	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 576	blocked = blocked || hwblock;
 577	spin_unlock_irqrestore(&rfkill->lock, flags);
 578
 579	if (!rfkill->registered)
 580		return blocked;
 581
 582	if (prev != blocked && !hwblock)
 583		schedule_work(&rfkill->uevent_work);
 584
 585	rfkill_led_trigger_event(rfkill);
 586	rfkill_global_led_trigger_event();
 587
 588	return blocked;
 589}
 590EXPORT_SYMBOL(rfkill_set_sw_state);
 591
 592void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 593{
 594	unsigned long flags;
 595
 596	BUG_ON(!rfkill);
 597	BUG_ON(rfkill->registered);
 598
 599	spin_lock_irqsave(&rfkill->lock, flags);
 600	__rfkill_set_sw_state(rfkill, blocked);
 601	rfkill->persistent = true;
 602	spin_unlock_irqrestore(&rfkill->lock, flags);
 603}
 604EXPORT_SYMBOL(rfkill_init_sw_state);
 605
 606void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 607{
 608	unsigned long flags;
 609	bool swprev, hwprev;
 610
 611	BUG_ON(!rfkill);
 612
 613	spin_lock_irqsave(&rfkill->lock, flags);
 614
 615	/*
 616	 * No need to care about prev/setblock ... this is for uevent only
 617	 * and that will get triggered by rfkill_set_block anyway.
 618	 */
 619	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 620	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 621	__rfkill_set_sw_state(rfkill, sw);
 622	if (hw)
 623		rfkill->state |= RFKILL_BLOCK_HW;
 624	else
 625		rfkill->state &= ~RFKILL_BLOCK_HW;
 626
 627	spin_unlock_irqrestore(&rfkill->lock, flags);
 628
 629	if (!rfkill->registered) {
 630		rfkill->persistent = true;
 631	} else {
 632		if (swprev != sw || hwprev != hw)
 633			schedule_work(&rfkill->uevent_work);
 634
 635		rfkill_led_trigger_event(rfkill);
 636		rfkill_global_led_trigger_event();
 637	}
 638}
 639EXPORT_SYMBOL(rfkill_set_states);
 640
 641static const char * const rfkill_types[] = {
 642	NULL, /* RFKILL_TYPE_ALL */
 643	"wlan",
 644	"bluetooth",
 645	"ultrawideband",
 646	"wimax",
 647	"wwan",
 648	"gps",
 649	"fm",
 650	"nfc",
 651};
 652
 653enum rfkill_type rfkill_find_type(const char *name)
 654{
 655	int i;
 656
 657	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 658
 659	if (!name)
 660		return RFKILL_TYPE_ALL;
 661
 662	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 663		if (!strcmp(name, rfkill_types[i]))
 664			return i;
 665	return RFKILL_TYPE_ALL;
 666}
 667EXPORT_SYMBOL(rfkill_find_type);
 668
 669static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 670			 char *buf)
 671{
 672	struct rfkill *rfkill = to_rfkill(dev);
 673
 674	return sprintf(buf, "%s\n", rfkill->name);
 675}
 676static DEVICE_ATTR_RO(name);
 677
 678static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct rfkill *rfkill = to_rfkill(dev);
 682
 683	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 684}
 685static DEVICE_ATTR_RO(type);
 686
 687static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 688			  char *buf)
 689{
 690	struct rfkill *rfkill = to_rfkill(dev);
 691
 692	return sprintf(buf, "%d\n", rfkill->idx);
 693}
 694static DEVICE_ATTR_RO(index);
 695
 696static ssize_t persistent_show(struct device *dev,
 697			       struct device_attribute *attr, char *buf)
 698{
 699	struct rfkill *rfkill = to_rfkill(dev);
 700
 701	return sprintf(buf, "%d\n", rfkill->persistent);
 702}
 703static DEVICE_ATTR_RO(persistent);
 704
 705static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 706			 char *buf)
 707{
 708	struct rfkill *rfkill = to_rfkill(dev);
 709
 710	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 711}
 712static DEVICE_ATTR_RO(hard);
 713
 714static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 715			 char *buf)
 716{
 717	struct rfkill *rfkill = to_rfkill(dev);
 718
 719	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 720}
 721
 722static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 723			  const char *buf, size_t count)
 724{
 725	struct rfkill *rfkill = to_rfkill(dev);
 726	unsigned long state;
 727	int err;
 728
 729	if (!capable(CAP_NET_ADMIN))
 730		return -EPERM;
 731
 732	err = kstrtoul(buf, 0, &state);
 733	if (err)
 734		return err;
 735
 736	if (state > 1 )
 737		return -EINVAL;
 738
 739	mutex_lock(&rfkill_global_mutex);
 740	rfkill_set_block(rfkill, state);
 741	mutex_unlock(&rfkill_global_mutex);
 742
 743	return count;
 744}
 745static DEVICE_ATTR_RW(soft);
 746
 
 
 
 
 
 
 
 
 
 
 747static u8 user_state_from_blocked(unsigned long state)
 748{
 749	if (state & RFKILL_BLOCK_HW)
 750		return RFKILL_USER_STATE_HARD_BLOCKED;
 751	if (state & RFKILL_BLOCK_SW)
 752		return RFKILL_USER_STATE_SOFT_BLOCKED;
 753
 754	return RFKILL_USER_STATE_UNBLOCKED;
 755}
 756
 757static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 758			  char *buf)
 759{
 760	struct rfkill *rfkill = to_rfkill(dev);
 761
 762	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 763}
 764
 765static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 766			   const char *buf, size_t count)
 767{
 768	struct rfkill *rfkill = to_rfkill(dev);
 769	unsigned long state;
 770	int err;
 771
 772	if (!capable(CAP_NET_ADMIN))
 773		return -EPERM;
 774
 775	err = kstrtoul(buf, 0, &state);
 776	if (err)
 777		return err;
 778
 779	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 780	    state != RFKILL_USER_STATE_UNBLOCKED)
 781		return -EINVAL;
 782
 783	mutex_lock(&rfkill_global_mutex);
 784	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 785	mutex_unlock(&rfkill_global_mutex);
 786
 787	return count;
 788}
 789static DEVICE_ATTR_RW(state);
 790
 791static struct attribute *rfkill_dev_attrs[] = {
 792	&dev_attr_name.attr,
 793	&dev_attr_type.attr,
 794	&dev_attr_index.attr,
 795	&dev_attr_persistent.attr,
 796	&dev_attr_state.attr,
 797	&dev_attr_soft.attr,
 798	&dev_attr_hard.attr,
 
 799	NULL,
 800};
 801ATTRIBUTE_GROUPS(rfkill_dev);
 802
 803static void rfkill_release(struct device *dev)
 804{
 805	struct rfkill *rfkill = to_rfkill(dev);
 806
 807	kfree(rfkill);
 808}
 809
 810static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 811{
 812	struct rfkill *rfkill = to_rfkill(dev);
 813	unsigned long flags;
 
 814	u32 state;
 815	int error;
 816
 817	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 818	if (error)
 819		return error;
 820	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 821			       rfkill_types[rfkill->type]);
 822	if (error)
 823		return error;
 824	spin_lock_irqsave(&rfkill->lock, flags);
 825	state = rfkill->state;
 
 826	spin_unlock_irqrestore(&rfkill->lock, flags);
 827	error = add_uevent_var(env, "RFKILL_STATE=%d",
 828			       user_state_from_blocked(state));
 829	return error;
 
 
 830}
 831
 832void rfkill_pause_polling(struct rfkill *rfkill)
 833{
 834	BUG_ON(!rfkill);
 835
 836	if (!rfkill->ops->poll)
 837		return;
 838
 839	rfkill->polling_paused = true;
 840	cancel_delayed_work_sync(&rfkill->poll_work);
 841}
 842EXPORT_SYMBOL(rfkill_pause_polling);
 843
 844void rfkill_resume_polling(struct rfkill *rfkill)
 845{
 846	BUG_ON(!rfkill);
 847
 848	if (!rfkill->ops->poll)
 849		return;
 850
 851	rfkill->polling_paused = false;
 852
 853	if (rfkill->suspended)
 854		return;
 855
 856	queue_delayed_work(system_power_efficient_wq,
 857			   &rfkill->poll_work, 0);
 858}
 859EXPORT_SYMBOL(rfkill_resume_polling);
 860
 861#ifdef CONFIG_PM_SLEEP
 862static int rfkill_suspend(struct device *dev)
 863{
 864	struct rfkill *rfkill = to_rfkill(dev);
 865
 866	rfkill->suspended = true;
 867	cancel_delayed_work_sync(&rfkill->poll_work);
 868
 869	return 0;
 870}
 871
 872static int rfkill_resume(struct device *dev)
 873{
 874	struct rfkill *rfkill = to_rfkill(dev);
 875	bool cur;
 876
 877	rfkill->suspended = false;
 878
 
 
 
 879	if (!rfkill->persistent) {
 880		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 881		rfkill_set_block(rfkill, cur);
 882	}
 883
 884	if (rfkill->ops->poll && !rfkill->polling_paused)
 885		queue_delayed_work(system_power_efficient_wq,
 886				   &rfkill->poll_work, 0);
 887
 888	return 0;
 889}
 890
 891static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 892#define RFKILL_PM_OPS (&rfkill_pm_ops)
 893#else
 894#define RFKILL_PM_OPS NULL
 895#endif
 896
 897static struct class rfkill_class = {
 898	.name		= "rfkill",
 899	.dev_release	= rfkill_release,
 900	.dev_groups	= rfkill_dev_groups,
 901	.dev_uevent	= rfkill_dev_uevent,
 902	.pm		= RFKILL_PM_OPS,
 903};
 904
 905bool rfkill_blocked(struct rfkill *rfkill)
 906{
 907	unsigned long flags;
 908	u32 state;
 909
 910	spin_lock_irqsave(&rfkill->lock, flags);
 911	state = rfkill->state;
 912	spin_unlock_irqrestore(&rfkill->lock, flags);
 913
 914	return !!(state & RFKILL_BLOCK_ANY);
 915}
 916EXPORT_SYMBOL(rfkill_blocked);
 917
 918
 919struct rfkill * __must_check rfkill_alloc(const char *name,
 920					  struct device *parent,
 921					  const enum rfkill_type type,
 922					  const struct rfkill_ops *ops,
 923					  void *ops_data)
 924{
 925	struct rfkill *rfkill;
 926	struct device *dev;
 927
 928	if (WARN_ON(!ops))
 929		return NULL;
 930
 931	if (WARN_ON(!ops->set_block))
 932		return NULL;
 933
 934	if (WARN_ON(!name))
 935		return NULL;
 936
 937	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 938		return NULL;
 939
 940	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 941	if (!rfkill)
 942		return NULL;
 943
 944	spin_lock_init(&rfkill->lock);
 945	INIT_LIST_HEAD(&rfkill->node);
 946	rfkill->type = type;
 947	strcpy(rfkill->name, name);
 948	rfkill->ops = ops;
 949	rfkill->data = ops_data;
 950
 951	dev = &rfkill->dev;
 952	dev->class = &rfkill_class;
 953	dev->parent = parent;
 954	device_initialize(dev);
 955
 956	return rfkill;
 957}
 958EXPORT_SYMBOL(rfkill_alloc);
 959
 960static void rfkill_poll(struct work_struct *work)
 961{
 962	struct rfkill *rfkill;
 963
 964	rfkill = container_of(work, struct rfkill, poll_work.work);
 965
 966	/*
 967	 * Poll hardware state -- driver will use one of the
 968	 * rfkill_set{,_hw,_sw}_state functions and use its
 969	 * return value to update the current status.
 970	 */
 971	rfkill->ops->poll(rfkill, rfkill->data);
 972
 973	queue_delayed_work(system_power_efficient_wq,
 974		&rfkill->poll_work,
 975		round_jiffies_relative(POLL_INTERVAL));
 976}
 977
 978static void rfkill_uevent_work(struct work_struct *work)
 979{
 980	struct rfkill *rfkill;
 981
 982	rfkill = container_of(work, struct rfkill, uevent_work);
 983
 984	mutex_lock(&rfkill_global_mutex);
 985	rfkill_event(rfkill);
 986	mutex_unlock(&rfkill_global_mutex);
 987}
 988
 989static void rfkill_sync_work(struct work_struct *work)
 990{
 991	struct rfkill *rfkill;
 992	bool cur;
 993
 994	rfkill = container_of(work, struct rfkill, sync_work);
 995
 996	mutex_lock(&rfkill_global_mutex);
 997	cur = rfkill_global_states[rfkill->type].cur;
 998	rfkill_set_block(rfkill, cur);
 999	mutex_unlock(&rfkill_global_mutex);
1000}
1001
1002int __must_check rfkill_register(struct rfkill *rfkill)
1003{
1004	static unsigned long rfkill_no;
1005	struct device *dev;
1006	int error;
1007
1008	if (!rfkill)
1009		return -EINVAL;
1010
1011	dev = &rfkill->dev;
1012
1013	mutex_lock(&rfkill_global_mutex);
1014
1015	if (rfkill->registered) {
1016		error = -EALREADY;
1017		goto unlock;
1018	}
1019
1020	rfkill->idx = rfkill_no;
1021	dev_set_name(dev, "rfkill%lu", rfkill_no);
1022	rfkill_no++;
1023
1024	list_add_tail(&rfkill->node, &rfkill_list);
1025
1026	error = device_add(dev);
1027	if (error)
1028		goto remove;
1029
1030	error = rfkill_led_trigger_register(rfkill);
1031	if (error)
1032		goto devdel;
1033
1034	rfkill->registered = true;
1035
1036	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1037	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1038	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1039
1040	if (rfkill->ops->poll)
1041		queue_delayed_work(system_power_efficient_wq,
1042			&rfkill->poll_work,
1043			round_jiffies_relative(POLL_INTERVAL));
1044
1045	if (!rfkill->persistent || rfkill_epo_lock_active) {
1046		schedule_work(&rfkill->sync_work);
1047	} else {
1048#ifdef CONFIG_RFKILL_INPUT
1049		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1050
1051		if (!atomic_read(&rfkill_input_disabled))
1052			__rfkill_switch_all(rfkill->type, soft_blocked);
1053#endif
1054	}
1055
1056	rfkill_global_led_trigger_event();
1057	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1058
1059	mutex_unlock(&rfkill_global_mutex);
1060	return 0;
1061
1062 devdel:
1063	device_del(&rfkill->dev);
1064 remove:
1065	list_del_init(&rfkill->node);
1066 unlock:
1067	mutex_unlock(&rfkill_global_mutex);
1068	return error;
1069}
1070EXPORT_SYMBOL(rfkill_register);
1071
1072void rfkill_unregister(struct rfkill *rfkill)
1073{
1074	BUG_ON(!rfkill);
1075
1076	if (rfkill->ops->poll)
1077		cancel_delayed_work_sync(&rfkill->poll_work);
1078
1079	cancel_work_sync(&rfkill->uevent_work);
1080	cancel_work_sync(&rfkill->sync_work);
1081
1082	rfkill->registered = false;
1083
1084	device_del(&rfkill->dev);
1085
1086	mutex_lock(&rfkill_global_mutex);
1087	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1088	list_del_init(&rfkill->node);
1089	rfkill_global_led_trigger_event();
1090	mutex_unlock(&rfkill_global_mutex);
1091
1092	rfkill_led_trigger_unregister(rfkill);
1093}
1094EXPORT_SYMBOL(rfkill_unregister);
1095
1096void rfkill_destroy(struct rfkill *rfkill)
1097{
1098	if (rfkill)
1099		put_device(&rfkill->dev);
1100}
1101EXPORT_SYMBOL(rfkill_destroy);
1102
1103static int rfkill_fop_open(struct inode *inode, struct file *file)
1104{
1105	struct rfkill_data *data;
1106	struct rfkill *rfkill;
1107	struct rfkill_int_event *ev, *tmp;
1108
1109	data = kzalloc(sizeof(*data), GFP_KERNEL);
1110	if (!data)
1111		return -ENOMEM;
1112
1113	INIT_LIST_HEAD(&data->events);
1114	mutex_init(&data->mtx);
1115	init_waitqueue_head(&data->read_wait);
1116
1117	mutex_lock(&rfkill_global_mutex);
1118	mutex_lock(&data->mtx);
1119	/*
1120	 * start getting events from elsewhere but hold mtx to get
1121	 * startup events added first
1122	 */
1123
1124	list_for_each_entry(rfkill, &rfkill_list, node) {
1125		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1126		if (!ev)
1127			goto free;
1128		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1129		list_add_tail(&ev->list, &data->events);
1130	}
1131	list_add(&data->list, &rfkill_fds);
1132	mutex_unlock(&data->mtx);
1133	mutex_unlock(&rfkill_global_mutex);
1134
1135	file->private_data = data;
1136
1137	return stream_open(inode, file);
1138
1139 free:
1140	mutex_unlock(&data->mtx);
1141	mutex_unlock(&rfkill_global_mutex);
1142	mutex_destroy(&data->mtx);
1143	list_for_each_entry_safe(ev, tmp, &data->events, list)
1144		kfree(ev);
1145	kfree(data);
1146	return -ENOMEM;
1147}
1148
1149static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1150{
1151	struct rfkill_data *data = file->private_data;
1152	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1153
1154	poll_wait(file, &data->read_wait, wait);
1155
1156	mutex_lock(&data->mtx);
1157	if (!list_empty(&data->events))
1158		res = EPOLLIN | EPOLLRDNORM;
1159	mutex_unlock(&data->mtx);
1160
1161	return res;
1162}
1163
1164static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1165			       size_t count, loff_t *pos)
1166{
1167	struct rfkill_data *data = file->private_data;
1168	struct rfkill_int_event *ev;
1169	unsigned long sz;
1170	int ret;
1171
1172	mutex_lock(&data->mtx);
1173
1174	while (list_empty(&data->events)) {
1175		if (file->f_flags & O_NONBLOCK) {
1176			ret = -EAGAIN;
1177			goto out;
1178		}
1179		mutex_unlock(&data->mtx);
1180		/* since we re-check and it just compares pointers,
1181		 * using !list_empty() without locking isn't a problem
1182		 */
1183		ret = wait_event_interruptible(data->read_wait,
1184					       !list_empty(&data->events));
1185		mutex_lock(&data->mtx);
1186
1187		if (ret)
1188			goto out;
1189	}
1190
1191	ev = list_first_entry(&data->events, struct rfkill_int_event,
1192				list);
1193
1194	sz = min_t(unsigned long, sizeof(ev->ev), count);
1195	ret = sz;
1196	if (copy_to_user(buf, &ev->ev, sz))
1197		ret = -EFAULT;
1198
1199	list_del(&ev->list);
1200	kfree(ev);
1201 out:
1202	mutex_unlock(&data->mtx);
1203	return ret;
1204}
1205
1206static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1207				size_t count, loff_t *pos)
1208{
1209	struct rfkill *rfkill;
1210	struct rfkill_event ev;
1211	int ret;
1212
1213	/* we don't need the 'hard' variable but accept it */
1214	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1215		return -EINVAL;
1216
1217	/*
1218	 * Copy as much data as we can accept into our 'ev' buffer,
1219	 * but tell userspace how much we've copied so it can determine
1220	 * our API version even in a write() call, if it cares.
1221	 */
1222	count = min(count, sizeof(ev));
1223	if (copy_from_user(&ev, buf, count))
1224		return -EFAULT;
1225
1226	if (ev.type >= NUM_RFKILL_TYPES)
1227		return -EINVAL;
1228
1229	mutex_lock(&rfkill_global_mutex);
1230
1231	switch (ev.op) {
1232	case RFKILL_OP_CHANGE_ALL:
1233		rfkill_update_global_state(ev.type, ev.soft);
1234		list_for_each_entry(rfkill, &rfkill_list, node)
1235			if (rfkill->type == ev.type ||
1236			    ev.type == RFKILL_TYPE_ALL)
1237				rfkill_set_block(rfkill, ev.soft);
1238		ret = 0;
1239		break;
1240	case RFKILL_OP_CHANGE:
1241		list_for_each_entry(rfkill, &rfkill_list, node)
1242			if (rfkill->idx == ev.idx &&
1243			    (rfkill->type == ev.type ||
1244			     ev.type == RFKILL_TYPE_ALL))
1245				rfkill_set_block(rfkill, ev.soft);
1246		ret = 0;
1247		break;
1248	default:
1249		ret = -EINVAL;
1250		break;
1251	}
1252
1253	mutex_unlock(&rfkill_global_mutex);
1254
1255	return ret ?: count;
1256}
1257
1258static int rfkill_fop_release(struct inode *inode, struct file *file)
1259{
1260	struct rfkill_data *data = file->private_data;
1261	struct rfkill_int_event *ev, *tmp;
1262
1263	mutex_lock(&rfkill_global_mutex);
1264	list_del(&data->list);
1265	mutex_unlock(&rfkill_global_mutex);
1266
1267	mutex_destroy(&data->mtx);
1268	list_for_each_entry_safe(ev, tmp, &data->events, list)
1269		kfree(ev);
1270
1271#ifdef CONFIG_RFKILL_INPUT
1272	if (data->input_handler)
1273		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1274			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1275#endif
1276
1277	kfree(data);
1278
1279	return 0;
1280}
1281
1282#ifdef CONFIG_RFKILL_INPUT
1283static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1284			     unsigned long arg)
1285{
1286	struct rfkill_data *data = file->private_data;
1287
1288	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1289		return -ENOSYS;
1290
1291	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1292		return -ENOSYS;
1293
1294	mutex_lock(&data->mtx);
1295
1296	if (!data->input_handler) {
1297		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1298			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1299		data->input_handler = true;
1300	}
1301
1302	mutex_unlock(&data->mtx);
1303
1304	return 0;
1305}
1306#endif
1307
1308static const struct file_operations rfkill_fops = {
1309	.owner		= THIS_MODULE,
1310	.open		= rfkill_fop_open,
1311	.read		= rfkill_fop_read,
1312	.write		= rfkill_fop_write,
1313	.poll		= rfkill_fop_poll,
1314	.release	= rfkill_fop_release,
1315#ifdef CONFIG_RFKILL_INPUT
1316	.unlocked_ioctl	= rfkill_fop_ioctl,
1317	.compat_ioctl	= compat_ptr_ioctl,
1318#endif
1319	.llseek		= no_llseek,
1320};
1321
1322#define RFKILL_NAME "rfkill"
1323
1324static struct miscdevice rfkill_miscdev = {
1325	.fops	= &rfkill_fops,
1326	.name	= RFKILL_NAME,
1327	.minor	= RFKILL_MINOR,
1328};
1329
1330static int __init rfkill_init(void)
1331{
1332	int error;
1333
1334	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1335
1336	error = class_register(&rfkill_class);
1337	if (error)
1338		goto error_class;
1339
1340	error = misc_register(&rfkill_miscdev);
1341	if (error)
1342		goto error_misc;
1343
1344	error = rfkill_global_led_trigger_register();
1345	if (error)
1346		goto error_led_trigger;
1347
1348#ifdef CONFIG_RFKILL_INPUT
1349	error = rfkill_handler_init();
1350	if (error)
1351		goto error_input;
1352#endif
1353
1354	return 0;
1355
1356#ifdef CONFIG_RFKILL_INPUT
1357error_input:
1358	rfkill_global_led_trigger_unregister();
1359#endif
1360error_led_trigger:
1361	misc_deregister(&rfkill_miscdev);
1362error_misc:
1363	class_unregister(&rfkill_class);
1364error_class:
1365	return error;
1366}
1367subsys_initcall(rfkill_init);
1368
1369static void __exit rfkill_exit(void)
1370{
1371#ifdef CONFIG_RFKILL_INPUT
1372	rfkill_handler_exit();
1373#endif
1374	rfkill_global_led_trigger_unregister();
1375	misc_deregister(&rfkill_miscdev);
1376	class_unregister(&rfkill_class);
1377}
1378module_exit(rfkill_exit);
1379
1380MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1381MODULE_ALIAS("devname:" RFKILL_NAME);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51
  52	const struct rfkill_ops	*ops;
  53	void			*data;
  54
  55#ifdef CONFIG_RFKILL_LEDS
  56	struct led_trigger	led_trigger;
  57	const char		*ledtrigname;
  58#endif
  59
  60	struct device		dev;
  61	struct list_head	node;
  62
  63	struct delayed_work	poll_work;
  64	struct work_struct	uevent_work;
  65	struct work_struct	sync_work;
  66	char			name[];
  67};
  68#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  69
  70struct rfkill_int_event {
  71	struct list_head	list;
  72	struct rfkill_event_ext	ev;
  73};
  74
  75struct rfkill_data {
  76	struct list_head	list;
  77	struct list_head	events;
  78	struct mutex		mtx;
  79	wait_queue_head_t	read_wait;
  80	bool			input_handler;
  81};
  82
  83
  84MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  85MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  86MODULE_DESCRIPTION("RF switch support");
  87MODULE_LICENSE("GPL");
  88
  89
  90/*
  91 * The locking here should be made much smarter, we currently have
  92 * a bit of a stupid situation because drivers might want to register
  93 * the rfkill struct under their own lock, and take this lock during
  94 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  95 *
  96 * To fix that, we need to rework this code here to be mostly lock-free
  97 * and only use the mutex for list manipulations, not to protect the
  98 * various other global variables. Then we can avoid holding the mutex
  99 * around driver operations, and all is happy.
 100 */
 101static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 102static DEFINE_MUTEX(rfkill_global_mutex);
 103static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 104
 105static unsigned int rfkill_default_state = 1;
 106module_param_named(default_state, rfkill_default_state, uint, 0444);
 107MODULE_PARM_DESC(default_state,
 108		 "Default initial state for all radio types, 0 = radio off");
 109
 110static struct {
 111	bool cur, sav;
 112} rfkill_global_states[NUM_RFKILL_TYPES];
 113
 114static bool rfkill_epo_lock_active;
 115
 116
 117#ifdef CONFIG_RFKILL_LEDS
 118static void rfkill_led_trigger_event(struct rfkill *rfkill)
 119{
 120	struct led_trigger *trigger;
 121
 122	if (!rfkill->registered)
 123		return;
 124
 125	trigger = &rfkill->led_trigger;
 126
 127	if (rfkill->state & RFKILL_BLOCK_ANY)
 128		led_trigger_event(trigger, LED_OFF);
 129	else
 130		led_trigger_event(trigger, LED_FULL);
 131}
 132
 133static int rfkill_led_trigger_activate(struct led_classdev *led)
 134{
 135	struct rfkill *rfkill;
 136
 137	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 138
 139	rfkill_led_trigger_event(rfkill);
 140
 141	return 0;
 142}
 143
 144const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 145{
 146	return rfkill->led_trigger.name;
 147}
 148EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 149
 150void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 151{
 152	BUG_ON(!rfkill);
 153
 154	rfkill->ledtrigname = name;
 155}
 156EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 157
 158static int rfkill_led_trigger_register(struct rfkill *rfkill)
 159{
 160	rfkill->led_trigger.name = rfkill->ledtrigname
 161					? : dev_name(&rfkill->dev);
 162	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 163	return led_trigger_register(&rfkill->led_trigger);
 164}
 165
 166static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 167{
 168	led_trigger_unregister(&rfkill->led_trigger);
 169}
 170
 171static struct led_trigger rfkill_any_led_trigger;
 172static struct led_trigger rfkill_none_led_trigger;
 173static struct work_struct rfkill_global_led_trigger_work;
 174
 175static void rfkill_global_led_trigger_worker(struct work_struct *work)
 176{
 177	enum led_brightness brightness = LED_OFF;
 178	struct rfkill *rfkill;
 179
 180	mutex_lock(&rfkill_global_mutex);
 181	list_for_each_entry(rfkill, &rfkill_list, node) {
 182		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 183			brightness = LED_FULL;
 184			break;
 185		}
 186	}
 187	mutex_unlock(&rfkill_global_mutex);
 188
 189	led_trigger_event(&rfkill_any_led_trigger, brightness);
 190	led_trigger_event(&rfkill_none_led_trigger,
 191			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 192}
 193
 194static void rfkill_global_led_trigger_event(void)
 195{
 196	schedule_work(&rfkill_global_led_trigger_work);
 197}
 198
 199static int rfkill_global_led_trigger_register(void)
 200{
 201	int ret;
 202
 203	INIT_WORK(&rfkill_global_led_trigger_work,
 204			rfkill_global_led_trigger_worker);
 205
 206	rfkill_any_led_trigger.name = "rfkill-any";
 207	ret = led_trigger_register(&rfkill_any_led_trigger);
 208	if (ret)
 209		return ret;
 210
 211	rfkill_none_led_trigger.name = "rfkill-none";
 212	ret = led_trigger_register(&rfkill_none_led_trigger);
 213	if (ret)
 214		led_trigger_unregister(&rfkill_any_led_trigger);
 215	else
 216		/* Delay activation until all global triggers are registered */
 217		rfkill_global_led_trigger_event();
 218
 219	return ret;
 220}
 221
 222static void rfkill_global_led_trigger_unregister(void)
 223{
 224	led_trigger_unregister(&rfkill_none_led_trigger);
 225	led_trigger_unregister(&rfkill_any_led_trigger);
 226	cancel_work_sync(&rfkill_global_led_trigger_work);
 227}
 228#else
 229static void rfkill_led_trigger_event(struct rfkill *rfkill)
 230{
 231}
 232
 233static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 234{
 235	return 0;
 236}
 237
 238static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 239{
 240}
 241
 242static void rfkill_global_led_trigger_event(void)
 243{
 244}
 245
 246static int rfkill_global_led_trigger_register(void)
 247{
 248	return 0;
 249}
 250
 251static void rfkill_global_led_trigger_unregister(void)
 252{
 253}
 254#endif /* CONFIG_RFKILL_LEDS */
 255
 256static void rfkill_fill_event(struct rfkill_event_ext *ev,
 257			      struct rfkill *rfkill,
 258			      enum rfkill_operation op)
 259{
 260	unsigned long flags;
 261
 262	ev->idx = rfkill->idx;
 263	ev->type = rfkill->type;
 264	ev->op = op;
 265
 266	spin_lock_irqsave(&rfkill->lock, flags);
 267	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 268	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 269					RFKILL_BLOCK_SW_PREV));
 270	ev->hard_block_reasons = rfkill->hard_block_reasons;
 271	spin_unlock_irqrestore(&rfkill->lock, flags);
 272}
 273
 274static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 275{
 276	struct rfkill_data *data;
 277	struct rfkill_int_event *ev;
 278
 279	list_for_each_entry(data, &rfkill_fds, list) {
 280		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 281		if (!ev)
 282			continue;
 283		rfkill_fill_event(&ev->ev, rfkill, op);
 284		mutex_lock(&data->mtx);
 285		list_add_tail(&ev->list, &data->events);
 286		mutex_unlock(&data->mtx);
 287		wake_up_interruptible(&data->read_wait);
 288	}
 289}
 290
 291static void rfkill_event(struct rfkill *rfkill)
 292{
 293	if (!rfkill->registered)
 294		return;
 295
 296	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 297
 298	/* also send event to /dev/rfkill */
 299	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 300}
 301
 302/**
 303 * rfkill_set_block - wrapper for set_block method
 304 *
 305 * @rfkill: the rfkill struct to use
 306 * @blocked: the new software state
 307 *
 308 * Calls the set_block method (when applicable) and handles notifications
 309 * etc. as well.
 310 */
 311static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 312{
 313	unsigned long flags;
 314	bool prev, curr;
 315	int err;
 316
 317	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 318		return;
 319
 320	/*
 321	 * Some platforms (...!) generate input events which affect the
 322	 * _hard_ kill state -- whenever something tries to change the
 323	 * current software state query the hardware state too.
 324	 */
 325	if (rfkill->ops->query)
 326		rfkill->ops->query(rfkill, rfkill->data);
 327
 328	spin_lock_irqsave(&rfkill->lock, flags);
 329	prev = rfkill->state & RFKILL_BLOCK_SW;
 330
 331	if (prev)
 332		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 333	else
 334		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 335
 336	if (blocked)
 337		rfkill->state |= RFKILL_BLOCK_SW;
 338	else
 339		rfkill->state &= ~RFKILL_BLOCK_SW;
 340
 341	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 342	spin_unlock_irqrestore(&rfkill->lock, flags);
 343
 344	err = rfkill->ops->set_block(rfkill->data, blocked);
 345
 346	spin_lock_irqsave(&rfkill->lock, flags);
 347	if (err) {
 348		/*
 349		 * Failed -- reset status to _PREV, which may be different
 350		 * from what we have set _PREV to earlier in this function
 351		 * if rfkill_set_sw_state was invoked.
 352		 */
 353		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 354			rfkill->state |= RFKILL_BLOCK_SW;
 355		else
 356			rfkill->state &= ~RFKILL_BLOCK_SW;
 357	}
 358	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 359	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 360	curr = rfkill->state & RFKILL_BLOCK_SW;
 361	spin_unlock_irqrestore(&rfkill->lock, flags);
 362
 363	rfkill_led_trigger_event(rfkill);
 364	rfkill_global_led_trigger_event();
 365
 366	if (prev != curr)
 367		rfkill_event(rfkill);
 368}
 369
 370static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 371{
 372	int i;
 373
 374	if (type != RFKILL_TYPE_ALL) {
 375		rfkill_global_states[type].cur = blocked;
 376		return;
 377	}
 378
 379	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 380		rfkill_global_states[i].cur = blocked;
 381}
 382
 383#ifdef CONFIG_RFKILL_INPUT
 384static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 385
 386/**
 387 * __rfkill_switch_all - Toggle state of all switches of given type
 388 * @type: type of interfaces to be affected
 389 * @blocked: the new state
 390 *
 391 * This function sets the state of all switches of given type,
 392 * unless a specific switch is suspended.
 393 *
 394 * Caller must have acquired rfkill_global_mutex.
 395 */
 396static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 397{
 398	struct rfkill *rfkill;
 399
 400	rfkill_update_global_state(type, blocked);
 401	list_for_each_entry(rfkill, &rfkill_list, node) {
 402		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 403			continue;
 404
 405		rfkill_set_block(rfkill, blocked);
 406	}
 407}
 408
 409/**
 410 * rfkill_switch_all - Toggle state of all switches of given type
 411 * @type: type of interfaces to be affected
 412 * @blocked: the new state
 413 *
 414 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 415 * Please refer to __rfkill_switch_all() for details.
 416 *
 417 * Does nothing if the EPO lock is active.
 418 */
 419void rfkill_switch_all(enum rfkill_type type, bool blocked)
 420{
 421	if (atomic_read(&rfkill_input_disabled))
 422		return;
 423
 424	mutex_lock(&rfkill_global_mutex);
 425
 426	if (!rfkill_epo_lock_active)
 427		__rfkill_switch_all(type, blocked);
 428
 429	mutex_unlock(&rfkill_global_mutex);
 430}
 431
 432/**
 433 * rfkill_epo - emergency power off all transmitters
 434 *
 435 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 436 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 437 *
 438 * The global state before the EPO is saved and can be restored later
 439 * using rfkill_restore_states().
 440 */
 441void rfkill_epo(void)
 442{
 443	struct rfkill *rfkill;
 444	int i;
 445
 446	if (atomic_read(&rfkill_input_disabled))
 447		return;
 448
 449	mutex_lock(&rfkill_global_mutex);
 450
 451	rfkill_epo_lock_active = true;
 452	list_for_each_entry(rfkill, &rfkill_list, node)
 453		rfkill_set_block(rfkill, true);
 454
 455	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 456		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 457		rfkill_global_states[i].cur = true;
 458	}
 459
 460	mutex_unlock(&rfkill_global_mutex);
 461}
 462
 463/**
 464 * rfkill_restore_states - restore global states
 465 *
 466 * Restore (and sync switches to) the global state from the
 467 * states in rfkill_default_states.  This can undo the effects of
 468 * a call to rfkill_epo().
 469 */
 470void rfkill_restore_states(void)
 471{
 472	int i;
 473
 474	if (atomic_read(&rfkill_input_disabled))
 475		return;
 476
 477	mutex_lock(&rfkill_global_mutex);
 478
 479	rfkill_epo_lock_active = false;
 480	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 481		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 482	mutex_unlock(&rfkill_global_mutex);
 483}
 484
 485/**
 486 * rfkill_remove_epo_lock - unlock state changes
 487 *
 488 * Used by rfkill-input manually unlock state changes, when
 489 * the EPO switch is deactivated.
 490 */
 491void rfkill_remove_epo_lock(void)
 492{
 493	if (atomic_read(&rfkill_input_disabled))
 494		return;
 495
 496	mutex_lock(&rfkill_global_mutex);
 497	rfkill_epo_lock_active = false;
 498	mutex_unlock(&rfkill_global_mutex);
 499}
 500
 501/**
 502 * rfkill_is_epo_lock_active - returns true EPO is active
 503 *
 504 * Returns 0 (false) if there is NOT an active EPO condition,
 505 * and 1 (true) if there is an active EPO condition, which
 506 * locks all radios in one of the BLOCKED states.
 507 *
 508 * Can be called in atomic context.
 509 */
 510bool rfkill_is_epo_lock_active(void)
 511{
 512	return rfkill_epo_lock_active;
 513}
 514
 515/**
 516 * rfkill_get_global_sw_state - returns global state for a type
 517 * @type: the type to get the global state of
 518 *
 519 * Returns the current global state for a given wireless
 520 * device type.
 521 */
 522bool rfkill_get_global_sw_state(const enum rfkill_type type)
 523{
 524	return rfkill_global_states[type].cur;
 525}
 526#endif
 527
 528bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 529				bool blocked, unsigned long reason)
 530{
 531	unsigned long flags;
 532	bool ret, prev;
 533
 534	BUG_ON(!rfkill);
 535
 536	if (WARN(reason &
 537	    ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
 538	    "hw_state reason not supported: 0x%lx", reason))
 539		return blocked;
 540
 541	spin_lock_irqsave(&rfkill->lock, flags);
 542	prev = !!(rfkill->hard_block_reasons & reason);
 543	if (blocked) {
 544		rfkill->state |= RFKILL_BLOCK_HW;
 545		rfkill->hard_block_reasons |= reason;
 546	} else {
 547		rfkill->hard_block_reasons &= ~reason;
 548		if (!rfkill->hard_block_reasons)
 549			rfkill->state &= ~RFKILL_BLOCK_HW;
 550	}
 551	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 552	spin_unlock_irqrestore(&rfkill->lock, flags);
 553
 554	rfkill_led_trigger_event(rfkill);
 555	rfkill_global_led_trigger_event();
 556
 557	if (rfkill->registered && prev != blocked)
 558		schedule_work(&rfkill->uevent_work);
 559
 560	return ret;
 561}
 562EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 563
 564static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 565{
 566	u32 bit = RFKILL_BLOCK_SW;
 567
 568	/* if in a ops->set_block right now, use other bit */
 569	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 570		bit = RFKILL_BLOCK_SW_PREV;
 571
 572	if (blocked)
 573		rfkill->state |= bit;
 574	else
 575		rfkill->state &= ~bit;
 576}
 577
 578bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 579{
 580	unsigned long flags;
 581	bool prev, hwblock;
 582
 583	BUG_ON(!rfkill);
 584
 585	spin_lock_irqsave(&rfkill->lock, flags);
 586	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 587	__rfkill_set_sw_state(rfkill, blocked);
 588	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 589	blocked = blocked || hwblock;
 590	spin_unlock_irqrestore(&rfkill->lock, flags);
 591
 592	if (!rfkill->registered)
 593		return blocked;
 594
 595	if (prev != blocked && !hwblock)
 596		schedule_work(&rfkill->uevent_work);
 597
 598	rfkill_led_trigger_event(rfkill);
 599	rfkill_global_led_trigger_event();
 600
 601	return blocked;
 602}
 603EXPORT_SYMBOL(rfkill_set_sw_state);
 604
 605void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 606{
 607	unsigned long flags;
 608
 609	BUG_ON(!rfkill);
 610	BUG_ON(rfkill->registered);
 611
 612	spin_lock_irqsave(&rfkill->lock, flags);
 613	__rfkill_set_sw_state(rfkill, blocked);
 614	rfkill->persistent = true;
 615	spin_unlock_irqrestore(&rfkill->lock, flags);
 616}
 617EXPORT_SYMBOL(rfkill_init_sw_state);
 618
 619void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 620{
 621	unsigned long flags;
 622	bool swprev, hwprev;
 623
 624	BUG_ON(!rfkill);
 625
 626	spin_lock_irqsave(&rfkill->lock, flags);
 627
 628	/*
 629	 * No need to care about prev/setblock ... this is for uevent only
 630	 * and that will get triggered by rfkill_set_block anyway.
 631	 */
 632	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 633	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 634	__rfkill_set_sw_state(rfkill, sw);
 635	if (hw)
 636		rfkill->state |= RFKILL_BLOCK_HW;
 637	else
 638		rfkill->state &= ~RFKILL_BLOCK_HW;
 639
 640	spin_unlock_irqrestore(&rfkill->lock, flags);
 641
 642	if (!rfkill->registered) {
 643		rfkill->persistent = true;
 644	} else {
 645		if (swprev != sw || hwprev != hw)
 646			schedule_work(&rfkill->uevent_work);
 647
 648		rfkill_led_trigger_event(rfkill);
 649		rfkill_global_led_trigger_event();
 650	}
 651}
 652EXPORT_SYMBOL(rfkill_set_states);
 653
 654static const char * const rfkill_types[] = {
 655	NULL, /* RFKILL_TYPE_ALL */
 656	"wlan",
 657	"bluetooth",
 658	"ultrawideband",
 659	"wimax",
 660	"wwan",
 661	"gps",
 662	"fm",
 663	"nfc",
 664};
 665
 666enum rfkill_type rfkill_find_type(const char *name)
 667{
 668	int i;
 669
 670	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 671
 672	if (!name)
 673		return RFKILL_TYPE_ALL;
 674
 675	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 676		if (!strcmp(name, rfkill_types[i]))
 677			return i;
 678	return RFKILL_TYPE_ALL;
 679}
 680EXPORT_SYMBOL(rfkill_find_type);
 681
 682static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 683			 char *buf)
 684{
 685	struct rfkill *rfkill = to_rfkill(dev);
 686
 687	return sprintf(buf, "%s\n", rfkill->name);
 688}
 689static DEVICE_ATTR_RO(name);
 690
 691static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 692			 char *buf)
 693{
 694	struct rfkill *rfkill = to_rfkill(dev);
 695
 696	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 697}
 698static DEVICE_ATTR_RO(type);
 699
 700static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 701			  char *buf)
 702{
 703	struct rfkill *rfkill = to_rfkill(dev);
 704
 705	return sprintf(buf, "%d\n", rfkill->idx);
 706}
 707static DEVICE_ATTR_RO(index);
 708
 709static ssize_t persistent_show(struct device *dev,
 710			       struct device_attribute *attr, char *buf)
 711{
 712	struct rfkill *rfkill = to_rfkill(dev);
 713
 714	return sprintf(buf, "%d\n", rfkill->persistent);
 715}
 716static DEVICE_ATTR_RO(persistent);
 717
 718static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 719			 char *buf)
 720{
 721	struct rfkill *rfkill = to_rfkill(dev);
 722
 723	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 724}
 725static DEVICE_ATTR_RO(hard);
 726
 727static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 728			 char *buf)
 729{
 730	struct rfkill *rfkill = to_rfkill(dev);
 731
 732	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 733}
 734
 735static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 736			  const char *buf, size_t count)
 737{
 738	struct rfkill *rfkill = to_rfkill(dev);
 739	unsigned long state;
 740	int err;
 741
 742	if (!capable(CAP_NET_ADMIN))
 743		return -EPERM;
 744
 745	err = kstrtoul(buf, 0, &state);
 746	if (err)
 747		return err;
 748
 749	if (state > 1 )
 750		return -EINVAL;
 751
 752	mutex_lock(&rfkill_global_mutex);
 753	rfkill_set_block(rfkill, state);
 754	mutex_unlock(&rfkill_global_mutex);
 755
 756	return count;
 757}
 758static DEVICE_ATTR_RW(soft);
 759
 760static ssize_t hard_block_reasons_show(struct device *dev,
 761				       struct device_attribute *attr,
 762				       char *buf)
 763{
 764	struct rfkill *rfkill = to_rfkill(dev);
 765
 766	return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
 767}
 768static DEVICE_ATTR_RO(hard_block_reasons);
 769
 770static u8 user_state_from_blocked(unsigned long state)
 771{
 772	if (state & RFKILL_BLOCK_HW)
 773		return RFKILL_USER_STATE_HARD_BLOCKED;
 774	if (state & RFKILL_BLOCK_SW)
 775		return RFKILL_USER_STATE_SOFT_BLOCKED;
 776
 777	return RFKILL_USER_STATE_UNBLOCKED;
 778}
 779
 780static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 781			  char *buf)
 782{
 783	struct rfkill *rfkill = to_rfkill(dev);
 784
 785	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 786}
 787
 788static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 789			   const char *buf, size_t count)
 790{
 791	struct rfkill *rfkill = to_rfkill(dev);
 792	unsigned long state;
 793	int err;
 794
 795	if (!capable(CAP_NET_ADMIN))
 796		return -EPERM;
 797
 798	err = kstrtoul(buf, 0, &state);
 799	if (err)
 800		return err;
 801
 802	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 803	    state != RFKILL_USER_STATE_UNBLOCKED)
 804		return -EINVAL;
 805
 806	mutex_lock(&rfkill_global_mutex);
 807	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 808	mutex_unlock(&rfkill_global_mutex);
 809
 810	return count;
 811}
 812static DEVICE_ATTR_RW(state);
 813
 814static struct attribute *rfkill_dev_attrs[] = {
 815	&dev_attr_name.attr,
 816	&dev_attr_type.attr,
 817	&dev_attr_index.attr,
 818	&dev_attr_persistent.attr,
 819	&dev_attr_state.attr,
 820	&dev_attr_soft.attr,
 821	&dev_attr_hard.attr,
 822	&dev_attr_hard_block_reasons.attr,
 823	NULL,
 824};
 825ATTRIBUTE_GROUPS(rfkill_dev);
 826
 827static void rfkill_release(struct device *dev)
 828{
 829	struct rfkill *rfkill = to_rfkill(dev);
 830
 831	kfree(rfkill);
 832}
 833
 834static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 835{
 836	struct rfkill *rfkill = to_rfkill(dev);
 837	unsigned long flags;
 838	unsigned long reasons;
 839	u32 state;
 840	int error;
 841
 842	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 843	if (error)
 844		return error;
 845	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 846			       rfkill_types[rfkill->type]);
 847	if (error)
 848		return error;
 849	spin_lock_irqsave(&rfkill->lock, flags);
 850	state = rfkill->state;
 851	reasons = rfkill->hard_block_reasons;
 852	spin_unlock_irqrestore(&rfkill->lock, flags);
 853	error = add_uevent_var(env, "RFKILL_STATE=%d",
 854			       user_state_from_blocked(state));
 855	if (error)
 856		return error;
 857	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 858}
 859
 860void rfkill_pause_polling(struct rfkill *rfkill)
 861{
 862	BUG_ON(!rfkill);
 863
 864	if (!rfkill->ops->poll)
 865		return;
 866
 867	rfkill->polling_paused = true;
 868	cancel_delayed_work_sync(&rfkill->poll_work);
 869}
 870EXPORT_SYMBOL(rfkill_pause_polling);
 871
 872void rfkill_resume_polling(struct rfkill *rfkill)
 873{
 874	BUG_ON(!rfkill);
 875
 876	if (!rfkill->ops->poll)
 877		return;
 878
 879	rfkill->polling_paused = false;
 880
 881	if (rfkill->suspended)
 882		return;
 883
 884	queue_delayed_work(system_power_efficient_wq,
 885			   &rfkill->poll_work, 0);
 886}
 887EXPORT_SYMBOL(rfkill_resume_polling);
 888
 889#ifdef CONFIG_PM_SLEEP
 890static int rfkill_suspend(struct device *dev)
 891{
 892	struct rfkill *rfkill = to_rfkill(dev);
 893
 894	rfkill->suspended = true;
 895	cancel_delayed_work_sync(&rfkill->poll_work);
 896
 897	return 0;
 898}
 899
 900static int rfkill_resume(struct device *dev)
 901{
 902	struct rfkill *rfkill = to_rfkill(dev);
 903	bool cur;
 904
 905	rfkill->suspended = false;
 906
 907	if (!rfkill->registered)
 908		return 0;
 909
 910	if (!rfkill->persistent) {
 911		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 912		rfkill_set_block(rfkill, cur);
 913	}
 914
 915	if (rfkill->ops->poll && !rfkill->polling_paused)
 916		queue_delayed_work(system_power_efficient_wq,
 917				   &rfkill->poll_work, 0);
 918
 919	return 0;
 920}
 921
 922static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 923#define RFKILL_PM_OPS (&rfkill_pm_ops)
 924#else
 925#define RFKILL_PM_OPS NULL
 926#endif
 927
 928static struct class rfkill_class = {
 929	.name		= "rfkill",
 930	.dev_release	= rfkill_release,
 931	.dev_groups	= rfkill_dev_groups,
 932	.dev_uevent	= rfkill_dev_uevent,
 933	.pm		= RFKILL_PM_OPS,
 934};
 935
 936bool rfkill_blocked(struct rfkill *rfkill)
 937{
 938	unsigned long flags;
 939	u32 state;
 940
 941	spin_lock_irqsave(&rfkill->lock, flags);
 942	state = rfkill->state;
 943	spin_unlock_irqrestore(&rfkill->lock, flags);
 944
 945	return !!(state & RFKILL_BLOCK_ANY);
 946}
 947EXPORT_SYMBOL(rfkill_blocked);
 948
 949
 950struct rfkill * __must_check rfkill_alloc(const char *name,
 951					  struct device *parent,
 952					  const enum rfkill_type type,
 953					  const struct rfkill_ops *ops,
 954					  void *ops_data)
 955{
 956	struct rfkill *rfkill;
 957	struct device *dev;
 958
 959	if (WARN_ON(!ops))
 960		return NULL;
 961
 962	if (WARN_ON(!ops->set_block))
 963		return NULL;
 964
 965	if (WARN_ON(!name))
 966		return NULL;
 967
 968	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 969		return NULL;
 970
 971	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 972	if (!rfkill)
 973		return NULL;
 974
 975	spin_lock_init(&rfkill->lock);
 976	INIT_LIST_HEAD(&rfkill->node);
 977	rfkill->type = type;
 978	strcpy(rfkill->name, name);
 979	rfkill->ops = ops;
 980	rfkill->data = ops_data;
 981
 982	dev = &rfkill->dev;
 983	dev->class = &rfkill_class;
 984	dev->parent = parent;
 985	device_initialize(dev);
 986
 987	return rfkill;
 988}
 989EXPORT_SYMBOL(rfkill_alloc);
 990
 991static void rfkill_poll(struct work_struct *work)
 992{
 993	struct rfkill *rfkill;
 994
 995	rfkill = container_of(work, struct rfkill, poll_work.work);
 996
 997	/*
 998	 * Poll hardware state -- driver will use one of the
 999	 * rfkill_set{,_hw,_sw}_state functions and use its
1000	 * return value to update the current status.
1001	 */
1002	rfkill->ops->poll(rfkill, rfkill->data);
1003
1004	queue_delayed_work(system_power_efficient_wq,
1005		&rfkill->poll_work,
1006		round_jiffies_relative(POLL_INTERVAL));
1007}
1008
1009static void rfkill_uevent_work(struct work_struct *work)
1010{
1011	struct rfkill *rfkill;
1012
1013	rfkill = container_of(work, struct rfkill, uevent_work);
1014
1015	mutex_lock(&rfkill_global_mutex);
1016	rfkill_event(rfkill);
1017	mutex_unlock(&rfkill_global_mutex);
1018}
1019
1020static void rfkill_sync_work(struct work_struct *work)
1021{
1022	struct rfkill *rfkill;
1023	bool cur;
1024
1025	rfkill = container_of(work, struct rfkill, sync_work);
1026
1027	mutex_lock(&rfkill_global_mutex);
1028	cur = rfkill_global_states[rfkill->type].cur;
1029	rfkill_set_block(rfkill, cur);
1030	mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033int __must_check rfkill_register(struct rfkill *rfkill)
1034{
1035	static unsigned long rfkill_no;
1036	struct device *dev;
1037	int error;
1038
1039	if (!rfkill)
1040		return -EINVAL;
1041
1042	dev = &rfkill->dev;
1043
1044	mutex_lock(&rfkill_global_mutex);
1045
1046	if (rfkill->registered) {
1047		error = -EALREADY;
1048		goto unlock;
1049	}
1050
1051	rfkill->idx = rfkill_no;
1052	dev_set_name(dev, "rfkill%lu", rfkill_no);
1053	rfkill_no++;
1054
1055	list_add_tail(&rfkill->node, &rfkill_list);
1056
1057	error = device_add(dev);
1058	if (error)
1059		goto remove;
1060
1061	error = rfkill_led_trigger_register(rfkill);
1062	if (error)
1063		goto devdel;
1064
1065	rfkill->registered = true;
1066
1067	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1068	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1069	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1070
1071	if (rfkill->ops->poll)
1072		queue_delayed_work(system_power_efficient_wq,
1073			&rfkill->poll_work,
1074			round_jiffies_relative(POLL_INTERVAL));
1075
1076	if (!rfkill->persistent || rfkill_epo_lock_active) {
1077		schedule_work(&rfkill->sync_work);
1078	} else {
1079#ifdef CONFIG_RFKILL_INPUT
1080		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1081
1082		if (!atomic_read(&rfkill_input_disabled))
1083			__rfkill_switch_all(rfkill->type, soft_blocked);
1084#endif
1085	}
1086
1087	rfkill_global_led_trigger_event();
1088	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1089
1090	mutex_unlock(&rfkill_global_mutex);
1091	return 0;
1092
1093 devdel:
1094	device_del(&rfkill->dev);
1095 remove:
1096	list_del_init(&rfkill->node);
1097 unlock:
1098	mutex_unlock(&rfkill_global_mutex);
1099	return error;
1100}
1101EXPORT_SYMBOL(rfkill_register);
1102
1103void rfkill_unregister(struct rfkill *rfkill)
1104{
1105	BUG_ON(!rfkill);
1106
1107	if (rfkill->ops->poll)
1108		cancel_delayed_work_sync(&rfkill->poll_work);
1109
1110	cancel_work_sync(&rfkill->uevent_work);
1111	cancel_work_sync(&rfkill->sync_work);
1112
1113	rfkill->registered = false;
1114
1115	device_del(&rfkill->dev);
1116
1117	mutex_lock(&rfkill_global_mutex);
1118	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1119	list_del_init(&rfkill->node);
1120	rfkill_global_led_trigger_event();
1121	mutex_unlock(&rfkill_global_mutex);
1122
1123	rfkill_led_trigger_unregister(rfkill);
1124}
1125EXPORT_SYMBOL(rfkill_unregister);
1126
1127void rfkill_destroy(struct rfkill *rfkill)
1128{
1129	if (rfkill)
1130		put_device(&rfkill->dev);
1131}
1132EXPORT_SYMBOL(rfkill_destroy);
1133
1134static int rfkill_fop_open(struct inode *inode, struct file *file)
1135{
1136	struct rfkill_data *data;
1137	struct rfkill *rfkill;
1138	struct rfkill_int_event *ev, *tmp;
1139
1140	data = kzalloc(sizeof(*data), GFP_KERNEL);
1141	if (!data)
1142		return -ENOMEM;
1143
1144	INIT_LIST_HEAD(&data->events);
1145	mutex_init(&data->mtx);
1146	init_waitqueue_head(&data->read_wait);
1147
1148	mutex_lock(&rfkill_global_mutex);
1149	mutex_lock(&data->mtx);
1150	/*
1151	 * start getting events from elsewhere but hold mtx to get
1152	 * startup events added first
1153	 */
1154
1155	list_for_each_entry(rfkill, &rfkill_list, node) {
1156		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1157		if (!ev)
1158			goto free;
1159		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1160		list_add_tail(&ev->list, &data->events);
1161	}
1162	list_add(&data->list, &rfkill_fds);
1163	mutex_unlock(&data->mtx);
1164	mutex_unlock(&rfkill_global_mutex);
1165
1166	file->private_data = data;
1167
1168	return stream_open(inode, file);
1169
1170 free:
1171	mutex_unlock(&data->mtx);
1172	mutex_unlock(&rfkill_global_mutex);
1173	mutex_destroy(&data->mtx);
1174	list_for_each_entry_safe(ev, tmp, &data->events, list)
1175		kfree(ev);
1176	kfree(data);
1177	return -ENOMEM;
1178}
1179
1180static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1181{
1182	struct rfkill_data *data = file->private_data;
1183	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1184
1185	poll_wait(file, &data->read_wait, wait);
1186
1187	mutex_lock(&data->mtx);
1188	if (!list_empty(&data->events))
1189		res = EPOLLIN | EPOLLRDNORM;
1190	mutex_unlock(&data->mtx);
1191
1192	return res;
1193}
1194
1195static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1196			       size_t count, loff_t *pos)
1197{
1198	struct rfkill_data *data = file->private_data;
1199	struct rfkill_int_event *ev;
1200	unsigned long sz;
1201	int ret;
1202
1203	mutex_lock(&data->mtx);
1204
1205	while (list_empty(&data->events)) {
1206		if (file->f_flags & O_NONBLOCK) {
1207			ret = -EAGAIN;
1208			goto out;
1209		}
1210		mutex_unlock(&data->mtx);
1211		/* since we re-check and it just compares pointers,
1212		 * using !list_empty() without locking isn't a problem
1213		 */
1214		ret = wait_event_interruptible(data->read_wait,
1215					       !list_empty(&data->events));
1216		mutex_lock(&data->mtx);
1217
1218		if (ret)
1219			goto out;
1220	}
1221
1222	ev = list_first_entry(&data->events, struct rfkill_int_event,
1223				list);
1224
1225	sz = min_t(unsigned long, sizeof(ev->ev), count);
1226	ret = sz;
1227	if (copy_to_user(buf, &ev->ev, sz))
1228		ret = -EFAULT;
1229
1230	list_del(&ev->list);
1231	kfree(ev);
1232 out:
1233	mutex_unlock(&data->mtx);
1234	return ret;
1235}
1236
1237static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1238				size_t count, loff_t *pos)
1239{
1240	struct rfkill *rfkill;
1241	struct rfkill_event_ext ev;
1242	int ret;
1243
1244	/* we don't need the 'hard' variable but accept it */
1245	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1246		return -EINVAL;
1247
1248	/*
1249	 * Copy as much data as we can accept into our 'ev' buffer,
1250	 * but tell userspace how much we've copied so it can determine
1251	 * our API version even in a write() call, if it cares.
1252	 */
1253	count = min(count, sizeof(ev));
1254	if (copy_from_user(&ev, buf, count))
1255		return -EFAULT;
1256
1257	if (ev.type >= NUM_RFKILL_TYPES)
1258		return -EINVAL;
1259
1260	mutex_lock(&rfkill_global_mutex);
1261
1262	switch (ev.op) {
1263	case RFKILL_OP_CHANGE_ALL:
1264		rfkill_update_global_state(ev.type, ev.soft);
1265		list_for_each_entry(rfkill, &rfkill_list, node)
1266			if (rfkill->type == ev.type ||
1267			    ev.type == RFKILL_TYPE_ALL)
1268				rfkill_set_block(rfkill, ev.soft);
1269		ret = 0;
1270		break;
1271	case RFKILL_OP_CHANGE:
1272		list_for_each_entry(rfkill, &rfkill_list, node)
1273			if (rfkill->idx == ev.idx &&
1274			    (rfkill->type == ev.type ||
1275			     ev.type == RFKILL_TYPE_ALL))
1276				rfkill_set_block(rfkill, ev.soft);
1277		ret = 0;
1278		break;
1279	default:
1280		ret = -EINVAL;
1281		break;
1282	}
1283
1284	mutex_unlock(&rfkill_global_mutex);
1285
1286	return ret ?: count;
1287}
1288
1289static int rfkill_fop_release(struct inode *inode, struct file *file)
1290{
1291	struct rfkill_data *data = file->private_data;
1292	struct rfkill_int_event *ev, *tmp;
1293
1294	mutex_lock(&rfkill_global_mutex);
1295	list_del(&data->list);
1296	mutex_unlock(&rfkill_global_mutex);
1297
1298	mutex_destroy(&data->mtx);
1299	list_for_each_entry_safe(ev, tmp, &data->events, list)
1300		kfree(ev);
1301
1302#ifdef CONFIG_RFKILL_INPUT
1303	if (data->input_handler)
1304		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1305			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1306#endif
1307
1308	kfree(data);
1309
1310	return 0;
1311}
1312
1313#ifdef CONFIG_RFKILL_INPUT
1314static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1315			     unsigned long arg)
1316{
1317	struct rfkill_data *data = file->private_data;
1318
1319	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1320		return -ENOSYS;
1321
1322	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1323		return -ENOSYS;
1324
1325	mutex_lock(&data->mtx);
1326
1327	if (!data->input_handler) {
1328		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1329			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1330		data->input_handler = true;
1331	}
1332
1333	mutex_unlock(&data->mtx);
1334
1335	return 0;
1336}
1337#endif
1338
1339static const struct file_operations rfkill_fops = {
1340	.owner		= THIS_MODULE,
1341	.open		= rfkill_fop_open,
1342	.read		= rfkill_fop_read,
1343	.write		= rfkill_fop_write,
1344	.poll		= rfkill_fop_poll,
1345	.release	= rfkill_fop_release,
1346#ifdef CONFIG_RFKILL_INPUT
1347	.unlocked_ioctl	= rfkill_fop_ioctl,
1348	.compat_ioctl	= compat_ptr_ioctl,
1349#endif
1350	.llseek		= no_llseek,
1351};
1352
1353#define RFKILL_NAME "rfkill"
1354
1355static struct miscdevice rfkill_miscdev = {
1356	.fops	= &rfkill_fops,
1357	.name	= RFKILL_NAME,
1358	.minor	= RFKILL_MINOR,
1359};
1360
1361static int __init rfkill_init(void)
1362{
1363	int error;
1364
1365	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1366
1367	error = class_register(&rfkill_class);
1368	if (error)
1369		goto error_class;
1370
1371	error = misc_register(&rfkill_miscdev);
1372	if (error)
1373		goto error_misc;
1374
1375	error = rfkill_global_led_trigger_register();
1376	if (error)
1377		goto error_led_trigger;
1378
1379#ifdef CONFIG_RFKILL_INPUT
1380	error = rfkill_handler_init();
1381	if (error)
1382		goto error_input;
1383#endif
1384
1385	return 0;
1386
1387#ifdef CONFIG_RFKILL_INPUT
1388error_input:
1389	rfkill_global_led_trigger_unregister();
1390#endif
1391error_led_trigger:
1392	misc_deregister(&rfkill_miscdev);
1393error_misc:
1394	class_unregister(&rfkill_class);
1395error_class:
1396	return error;
1397}
1398subsys_initcall(rfkill_init);
1399
1400static void __exit rfkill_exit(void)
1401{
1402#ifdef CONFIG_RFKILL_INPUT
1403	rfkill_handler_exit();
1404#endif
1405	rfkill_global_led_trigger_unregister();
1406	misc_deregister(&rfkill_miscdev);
1407	class_unregister(&rfkill_class);
1408}
1409module_exit(rfkill_exit);
1410
1411MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1412MODULE_ALIAS("devname:" RFKILL_NAME);