Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43
44 u32 idx;
45
46 bool registered;
47 bool persistent;
48 bool polling_paused;
49 bool suspended;
50
51 const struct rfkill_ops *ops;
52 void *data;
53
54#ifdef CONFIG_RFKILL_LEDS
55 struct led_trigger led_trigger;
56 const char *ledtrigname;
57#endif
58
59 struct device dev;
60 struct list_head node;
61
62 struct delayed_work poll_work;
63 struct work_struct uevent_work;
64 struct work_struct sync_work;
65 char name[];
66};
67#define to_rfkill(d) container_of(d, struct rfkill, dev)
68
69struct rfkill_int_event {
70 struct list_head list;
71 struct rfkill_event ev;
72};
73
74struct rfkill_data {
75 struct list_head list;
76 struct list_head events;
77 struct mutex mtx;
78 wait_queue_head_t read_wait;
79 bool input_handler;
80};
81
82
83MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
84MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
85MODULE_DESCRIPTION("RF switch support");
86MODULE_LICENSE("GPL");
87
88
89/*
90 * The locking here should be made much smarter, we currently have
91 * a bit of a stupid situation because drivers might want to register
92 * the rfkill struct under their own lock, and take this lock during
93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
94 *
95 * To fix that, we need to rework this code here to be mostly lock-free
96 * and only use the mutex for list manipulations, not to protect the
97 * various other global variables. Then we can avoid holding the mutex
98 * around driver operations, and all is happy.
99 */
100static LIST_HEAD(rfkill_list); /* list of registered rf switches */
101static DEFINE_MUTEX(rfkill_global_mutex);
102static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
103
104static unsigned int rfkill_default_state = 1;
105module_param_named(default_state, rfkill_default_state, uint, 0444);
106MODULE_PARM_DESC(default_state,
107 "Default initial state for all radio types, 0 = radio off");
108
109static struct {
110 bool cur, sav;
111} rfkill_global_states[NUM_RFKILL_TYPES];
112
113static bool rfkill_epo_lock_active;
114
115
116#ifdef CONFIG_RFKILL_LEDS
117static void rfkill_led_trigger_event(struct rfkill *rfkill)
118{
119 struct led_trigger *trigger;
120
121 if (!rfkill->registered)
122 return;
123
124 trigger = &rfkill->led_trigger;
125
126 if (rfkill->state & RFKILL_BLOCK_ANY)
127 led_trigger_event(trigger, LED_OFF);
128 else
129 led_trigger_event(trigger, LED_FULL);
130}
131
132static int rfkill_led_trigger_activate(struct led_classdev *led)
133{
134 struct rfkill *rfkill;
135
136 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
137
138 rfkill_led_trigger_event(rfkill);
139
140 return 0;
141}
142
143const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
144{
145 return rfkill->led_trigger.name;
146}
147EXPORT_SYMBOL(rfkill_get_led_trigger_name);
148
149void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
150{
151 BUG_ON(!rfkill);
152
153 rfkill->ledtrigname = name;
154}
155EXPORT_SYMBOL(rfkill_set_led_trigger_name);
156
157static int rfkill_led_trigger_register(struct rfkill *rfkill)
158{
159 rfkill->led_trigger.name = rfkill->ledtrigname
160 ? : dev_name(&rfkill->dev);
161 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
162 return led_trigger_register(&rfkill->led_trigger);
163}
164
165static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
166{
167 led_trigger_unregister(&rfkill->led_trigger);
168}
169
170static struct led_trigger rfkill_any_led_trigger;
171static struct led_trigger rfkill_none_led_trigger;
172static struct work_struct rfkill_global_led_trigger_work;
173
174static void rfkill_global_led_trigger_worker(struct work_struct *work)
175{
176 enum led_brightness brightness = LED_OFF;
177 struct rfkill *rfkill;
178
179 mutex_lock(&rfkill_global_mutex);
180 list_for_each_entry(rfkill, &rfkill_list, node) {
181 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
182 brightness = LED_FULL;
183 break;
184 }
185 }
186 mutex_unlock(&rfkill_global_mutex);
187
188 led_trigger_event(&rfkill_any_led_trigger, brightness);
189 led_trigger_event(&rfkill_none_led_trigger,
190 brightness == LED_OFF ? LED_FULL : LED_OFF);
191}
192
193static void rfkill_global_led_trigger_event(void)
194{
195 schedule_work(&rfkill_global_led_trigger_work);
196}
197
198static int rfkill_global_led_trigger_register(void)
199{
200 int ret;
201
202 INIT_WORK(&rfkill_global_led_trigger_work,
203 rfkill_global_led_trigger_worker);
204
205 rfkill_any_led_trigger.name = "rfkill-any";
206 ret = led_trigger_register(&rfkill_any_led_trigger);
207 if (ret)
208 return ret;
209
210 rfkill_none_led_trigger.name = "rfkill-none";
211 ret = led_trigger_register(&rfkill_none_led_trigger);
212 if (ret)
213 led_trigger_unregister(&rfkill_any_led_trigger);
214 else
215 /* Delay activation until all global triggers are registered */
216 rfkill_global_led_trigger_event();
217
218 return ret;
219}
220
221static void rfkill_global_led_trigger_unregister(void)
222{
223 led_trigger_unregister(&rfkill_none_led_trigger);
224 led_trigger_unregister(&rfkill_any_led_trigger);
225 cancel_work_sync(&rfkill_global_led_trigger_work);
226}
227#else
228static void rfkill_led_trigger_event(struct rfkill *rfkill)
229{
230}
231
232static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
233{
234 return 0;
235}
236
237static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
238{
239}
240
241static void rfkill_global_led_trigger_event(void)
242{
243}
244
245static int rfkill_global_led_trigger_register(void)
246{
247 return 0;
248}
249
250static void rfkill_global_led_trigger_unregister(void)
251{
252}
253#endif /* CONFIG_RFKILL_LEDS */
254
255static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
256 enum rfkill_operation op)
257{
258 unsigned long flags;
259
260 ev->idx = rfkill->idx;
261 ev->type = rfkill->type;
262 ev->op = op;
263
264 spin_lock_irqsave(&rfkill->lock, flags);
265 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
266 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
267 RFKILL_BLOCK_SW_PREV));
268 spin_unlock_irqrestore(&rfkill->lock, flags);
269}
270
271static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
272{
273 struct rfkill_data *data;
274 struct rfkill_int_event *ev;
275
276 list_for_each_entry(data, &rfkill_fds, list) {
277 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
278 if (!ev)
279 continue;
280 rfkill_fill_event(&ev->ev, rfkill, op);
281 mutex_lock(&data->mtx);
282 list_add_tail(&ev->list, &data->events);
283 mutex_unlock(&data->mtx);
284 wake_up_interruptible(&data->read_wait);
285 }
286}
287
288static void rfkill_event(struct rfkill *rfkill)
289{
290 if (!rfkill->registered)
291 return;
292
293 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
294
295 /* also send event to /dev/rfkill */
296 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
297}
298
299/**
300 * rfkill_set_block - wrapper for set_block method
301 *
302 * @rfkill: the rfkill struct to use
303 * @blocked: the new software state
304 *
305 * Calls the set_block method (when applicable) and handles notifications
306 * etc. as well.
307 */
308static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
309{
310 unsigned long flags;
311 bool prev, curr;
312 int err;
313
314 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
315 return;
316
317 /*
318 * Some platforms (...!) generate input events which affect the
319 * _hard_ kill state -- whenever something tries to change the
320 * current software state query the hardware state too.
321 */
322 if (rfkill->ops->query)
323 rfkill->ops->query(rfkill, rfkill->data);
324
325 spin_lock_irqsave(&rfkill->lock, flags);
326 prev = rfkill->state & RFKILL_BLOCK_SW;
327
328 if (prev)
329 rfkill->state |= RFKILL_BLOCK_SW_PREV;
330 else
331 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
332
333 if (blocked)
334 rfkill->state |= RFKILL_BLOCK_SW;
335 else
336 rfkill->state &= ~RFKILL_BLOCK_SW;
337
338 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
339 spin_unlock_irqrestore(&rfkill->lock, flags);
340
341 err = rfkill->ops->set_block(rfkill->data, blocked);
342
343 spin_lock_irqsave(&rfkill->lock, flags);
344 if (err) {
345 /*
346 * Failed -- reset status to _PREV, which may be different
347 * from what we have set _PREV to earlier in this function
348 * if rfkill_set_sw_state was invoked.
349 */
350 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
351 rfkill->state |= RFKILL_BLOCK_SW;
352 else
353 rfkill->state &= ~RFKILL_BLOCK_SW;
354 }
355 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
356 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
357 curr = rfkill->state & RFKILL_BLOCK_SW;
358 spin_unlock_irqrestore(&rfkill->lock, flags);
359
360 rfkill_led_trigger_event(rfkill);
361 rfkill_global_led_trigger_event();
362
363 if (prev != curr)
364 rfkill_event(rfkill);
365}
366
367static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
368{
369 int i;
370
371 if (type != RFKILL_TYPE_ALL) {
372 rfkill_global_states[type].cur = blocked;
373 return;
374 }
375
376 for (i = 0; i < NUM_RFKILL_TYPES; i++)
377 rfkill_global_states[i].cur = blocked;
378}
379
380#ifdef CONFIG_RFKILL_INPUT
381static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
382
383/**
384 * __rfkill_switch_all - Toggle state of all switches of given type
385 * @type: type of interfaces to be affected
386 * @blocked: the new state
387 *
388 * This function sets the state of all switches of given type,
389 * unless a specific switch is suspended.
390 *
391 * Caller must have acquired rfkill_global_mutex.
392 */
393static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
394{
395 struct rfkill *rfkill;
396
397 rfkill_update_global_state(type, blocked);
398 list_for_each_entry(rfkill, &rfkill_list, node) {
399 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
400 continue;
401
402 rfkill_set_block(rfkill, blocked);
403 }
404}
405
406/**
407 * rfkill_switch_all - Toggle state of all switches of given type
408 * @type: type of interfaces to be affected
409 * @blocked: the new state
410 *
411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
412 * Please refer to __rfkill_switch_all() for details.
413 *
414 * Does nothing if the EPO lock is active.
415 */
416void rfkill_switch_all(enum rfkill_type type, bool blocked)
417{
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422
423 if (!rfkill_epo_lock_active)
424 __rfkill_switch_all(type, blocked);
425
426 mutex_unlock(&rfkill_global_mutex);
427}
428
429/**
430 * rfkill_epo - emergency power off all transmitters
431 *
432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
434 *
435 * The global state before the EPO is saved and can be restored later
436 * using rfkill_restore_states().
437 */
438void rfkill_epo(void)
439{
440 struct rfkill *rfkill;
441 int i;
442
443 if (atomic_read(&rfkill_input_disabled))
444 return;
445
446 mutex_lock(&rfkill_global_mutex);
447
448 rfkill_epo_lock_active = true;
449 list_for_each_entry(rfkill, &rfkill_list, node)
450 rfkill_set_block(rfkill, true);
451
452 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
453 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
454 rfkill_global_states[i].cur = true;
455 }
456
457 mutex_unlock(&rfkill_global_mutex);
458}
459
460/**
461 * rfkill_restore_states - restore global states
462 *
463 * Restore (and sync switches to) the global state from the
464 * states in rfkill_default_states. This can undo the effects of
465 * a call to rfkill_epo().
466 */
467void rfkill_restore_states(void)
468{
469 int i;
470
471 if (atomic_read(&rfkill_input_disabled))
472 return;
473
474 mutex_lock(&rfkill_global_mutex);
475
476 rfkill_epo_lock_active = false;
477 for (i = 0; i < NUM_RFKILL_TYPES; i++)
478 __rfkill_switch_all(i, rfkill_global_states[i].sav);
479 mutex_unlock(&rfkill_global_mutex);
480}
481
482/**
483 * rfkill_remove_epo_lock - unlock state changes
484 *
485 * Used by rfkill-input manually unlock state changes, when
486 * the EPO switch is deactivated.
487 */
488void rfkill_remove_epo_lock(void)
489{
490 if (atomic_read(&rfkill_input_disabled))
491 return;
492
493 mutex_lock(&rfkill_global_mutex);
494 rfkill_epo_lock_active = false;
495 mutex_unlock(&rfkill_global_mutex);
496}
497
498/**
499 * rfkill_is_epo_lock_active - returns true EPO is active
500 *
501 * Returns 0 (false) if there is NOT an active EPO condition,
502 * and 1 (true) if there is an active EPO condition, which
503 * locks all radios in one of the BLOCKED states.
504 *
505 * Can be called in atomic context.
506 */
507bool rfkill_is_epo_lock_active(void)
508{
509 return rfkill_epo_lock_active;
510}
511
512/**
513 * rfkill_get_global_sw_state - returns global state for a type
514 * @type: the type to get the global state of
515 *
516 * Returns the current global state for a given wireless
517 * device type.
518 */
519bool rfkill_get_global_sw_state(const enum rfkill_type type)
520{
521 return rfkill_global_states[type].cur;
522}
523#endif
524
525bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
526{
527 unsigned long flags;
528 bool ret, prev;
529
530 BUG_ON(!rfkill);
531
532 spin_lock_irqsave(&rfkill->lock, flags);
533 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
534 if (blocked)
535 rfkill->state |= RFKILL_BLOCK_HW;
536 else
537 rfkill->state &= ~RFKILL_BLOCK_HW;
538 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
539 spin_unlock_irqrestore(&rfkill->lock, flags);
540
541 rfkill_led_trigger_event(rfkill);
542 rfkill_global_led_trigger_event();
543
544 if (rfkill->registered && prev != blocked)
545 schedule_work(&rfkill->uevent_work);
546
547 return ret;
548}
549EXPORT_SYMBOL(rfkill_set_hw_state);
550
551static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
552{
553 u32 bit = RFKILL_BLOCK_SW;
554
555 /* if in a ops->set_block right now, use other bit */
556 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
557 bit = RFKILL_BLOCK_SW_PREV;
558
559 if (blocked)
560 rfkill->state |= bit;
561 else
562 rfkill->state &= ~bit;
563}
564
565bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566{
567 unsigned long flags;
568 bool prev, hwblock;
569
570 BUG_ON(!rfkill);
571
572 spin_lock_irqsave(&rfkill->lock, flags);
573 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
574 __rfkill_set_sw_state(rfkill, blocked);
575 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
576 blocked = blocked || hwblock;
577 spin_unlock_irqrestore(&rfkill->lock, flags);
578
579 if (!rfkill->registered)
580 return blocked;
581
582 if (prev != blocked && !hwblock)
583 schedule_work(&rfkill->uevent_work);
584
585 rfkill_led_trigger_event(rfkill);
586 rfkill_global_led_trigger_event();
587
588 return blocked;
589}
590EXPORT_SYMBOL(rfkill_set_sw_state);
591
592void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
593{
594 unsigned long flags;
595
596 BUG_ON(!rfkill);
597 BUG_ON(rfkill->registered);
598
599 spin_lock_irqsave(&rfkill->lock, flags);
600 __rfkill_set_sw_state(rfkill, blocked);
601 rfkill->persistent = true;
602 spin_unlock_irqrestore(&rfkill->lock, flags);
603}
604EXPORT_SYMBOL(rfkill_init_sw_state);
605
606void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
607{
608 unsigned long flags;
609 bool swprev, hwprev;
610
611 BUG_ON(!rfkill);
612
613 spin_lock_irqsave(&rfkill->lock, flags);
614
615 /*
616 * No need to care about prev/setblock ... this is for uevent only
617 * and that will get triggered by rfkill_set_block anyway.
618 */
619 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
620 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
621 __rfkill_set_sw_state(rfkill, sw);
622 if (hw)
623 rfkill->state |= RFKILL_BLOCK_HW;
624 else
625 rfkill->state &= ~RFKILL_BLOCK_HW;
626
627 spin_unlock_irqrestore(&rfkill->lock, flags);
628
629 if (!rfkill->registered) {
630 rfkill->persistent = true;
631 } else {
632 if (swprev != sw || hwprev != hw)
633 schedule_work(&rfkill->uevent_work);
634
635 rfkill_led_trigger_event(rfkill);
636 rfkill_global_led_trigger_event();
637 }
638}
639EXPORT_SYMBOL(rfkill_set_states);
640
641static const char * const rfkill_types[] = {
642 NULL, /* RFKILL_TYPE_ALL */
643 "wlan",
644 "bluetooth",
645 "ultrawideband",
646 "wimax",
647 "wwan",
648 "gps",
649 "fm",
650 "nfc",
651};
652
653enum rfkill_type rfkill_find_type(const char *name)
654{
655 int i;
656
657 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
658
659 if (!name)
660 return RFKILL_TYPE_ALL;
661
662 for (i = 1; i < NUM_RFKILL_TYPES; i++)
663 if (!strcmp(name, rfkill_types[i]))
664 return i;
665 return RFKILL_TYPE_ALL;
666}
667EXPORT_SYMBOL(rfkill_find_type);
668
669static ssize_t name_show(struct device *dev, struct device_attribute *attr,
670 char *buf)
671{
672 struct rfkill *rfkill = to_rfkill(dev);
673
674 return sprintf(buf, "%s\n", rfkill->name);
675}
676static DEVICE_ATTR_RO(name);
677
678static ssize_t type_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct rfkill *rfkill = to_rfkill(dev);
682
683 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
684}
685static DEVICE_ATTR_RO(type);
686
687static ssize_t index_show(struct device *dev, struct device_attribute *attr,
688 char *buf)
689{
690 struct rfkill *rfkill = to_rfkill(dev);
691
692 return sprintf(buf, "%d\n", rfkill->idx);
693}
694static DEVICE_ATTR_RO(index);
695
696static ssize_t persistent_show(struct device *dev,
697 struct device_attribute *attr, char *buf)
698{
699 struct rfkill *rfkill = to_rfkill(dev);
700
701 return sprintf(buf, "%d\n", rfkill->persistent);
702}
703static DEVICE_ATTR_RO(persistent);
704
705static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
706 char *buf)
707{
708 struct rfkill *rfkill = to_rfkill(dev);
709
710 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
711}
712static DEVICE_ATTR_RO(hard);
713
714static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
715 char *buf)
716{
717 struct rfkill *rfkill = to_rfkill(dev);
718
719 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
720}
721
722static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
723 const char *buf, size_t count)
724{
725 struct rfkill *rfkill = to_rfkill(dev);
726 unsigned long state;
727 int err;
728
729 if (!capable(CAP_NET_ADMIN))
730 return -EPERM;
731
732 err = kstrtoul(buf, 0, &state);
733 if (err)
734 return err;
735
736 if (state > 1 )
737 return -EINVAL;
738
739 mutex_lock(&rfkill_global_mutex);
740 rfkill_set_block(rfkill, state);
741 mutex_unlock(&rfkill_global_mutex);
742
743 return count;
744}
745static DEVICE_ATTR_RW(soft);
746
747static u8 user_state_from_blocked(unsigned long state)
748{
749 if (state & RFKILL_BLOCK_HW)
750 return RFKILL_USER_STATE_HARD_BLOCKED;
751 if (state & RFKILL_BLOCK_SW)
752 return RFKILL_USER_STATE_SOFT_BLOCKED;
753
754 return RFKILL_USER_STATE_UNBLOCKED;
755}
756
757static ssize_t state_show(struct device *dev, struct device_attribute *attr,
758 char *buf)
759{
760 struct rfkill *rfkill = to_rfkill(dev);
761
762 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
763}
764
765static ssize_t state_store(struct device *dev, struct device_attribute *attr,
766 const char *buf, size_t count)
767{
768 struct rfkill *rfkill = to_rfkill(dev);
769 unsigned long state;
770 int err;
771
772 if (!capable(CAP_NET_ADMIN))
773 return -EPERM;
774
775 err = kstrtoul(buf, 0, &state);
776 if (err)
777 return err;
778
779 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
780 state != RFKILL_USER_STATE_UNBLOCKED)
781 return -EINVAL;
782
783 mutex_lock(&rfkill_global_mutex);
784 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
785 mutex_unlock(&rfkill_global_mutex);
786
787 return count;
788}
789static DEVICE_ATTR_RW(state);
790
791static struct attribute *rfkill_dev_attrs[] = {
792 &dev_attr_name.attr,
793 &dev_attr_type.attr,
794 &dev_attr_index.attr,
795 &dev_attr_persistent.attr,
796 &dev_attr_state.attr,
797 &dev_attr_soft.attr,
798 &dev_attr_hard.attr,
799 NULL,
800};
801ATTRIBUTE_GROUPS(rfkill_dev);
802
803static void rfkill_release(struct device *dev)
804{
805 struct rfkill *rfkill = to_rfkill(dev);
806
807 kfree(rfkill);
808}
809
810static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
811{
812 struct rfkill *rfkill = to_rfkill(dev);
813 unsigned long flags;
814 u32 state;
815 int error;
816
817 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
818 if (error)
819 return error;
820 error = add_uevent_var(env, "RFKILL_TYPE=%s",
821 rfkill_types[rfkill->type]);
822 if (error)
823 return error;
824 spin_lock_irqsave(&rfkill->lock, flags);
825 state = rfkill->state;
826 spin_unlock_irqrestore(&rfkill->lock, flags);
827 error = add_uevent_var(env, "RFKILL_STATE=%d",
828 user_state_from_blocked(state));
829 return error;
830}
831
832void rfkill_pause_polling(struct rfkill *rfkill)
833{
834 BUG_ON(!rfkill);
835
836 if (!rfkill->ops->poll)
837 return;
838
839 rfkill->polling_paused = true;
840 cancel_delayed_work_sync(&rfkill->poll_work);
841}
842EXPORT_SYMBOL(rfkill_pause_polling);
843
844void rfkill_resume_polling(struct rfkill *rfkill)
845{
846 BUG_ON(!rfkill);
847
848 if (!rfkill->ops->poll)
849 return;
850
851 rfkill->polling_paused = false;
852
853 if (rfkill->suspended)
854 return;
855
856 queue_delayed_work(system_power_efficient_wq,
857 &rfkill->poll_work, 0);
858}
859EXPORT_SYMBOL(rfkill_resume_polling);
860
861#ifdef CONFIG_PM_SLEEP
862static int rfkill_suspend(struct device *dev)
863{
864 struct rfkill *rfkill = to_rfkill(dev);
865
866 rfkill->suspended = true;
867 cancel_delayed_work_sync(&rfkill->poll_work);
868
869 return 0;
870}
871
872static int rfkill_resume(struct device *dev)
873{
874 struct rfkill *rfkill = to_rfkill(dev);
875 bool cur;
876
877 rfkill->suspended = false;
878
879 if (!rfkill->persistent) {
880 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
881 rfkill_set_block(rfkill, cur);
882 }
883
884 if (rfkill->ops->poll && !rfkill->polling_paused)
885 queue_delayed_work(system_power_efficient_wq,
886 &rfkill->poll_work, 0);
887
888 return 0;
889}
890
891static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
892#define RFKILL_PM_OPS (&rfkill_pm_ops)
893#else
894#define RFKILL_PM_OPS NULL
895#endif
896
897static struct class rfkill_class = {
898 .name = "rfkill",
899 .dev_release = rfkill_release,
900 .dev_groups = rfkill_dev_groups,
901 .dev_uevent = rfkill_dev_uevent,
902 .pm = RFKILL_PM_OPS,
903};
904
905bool rfkill_blocked(struct rfkill *rfkill)
906{
907 unsigned long flags;
908 u32 state;
909
910 spin_lock_irqsave(&rfkill->lock, flags);
911 state = rfkill->state;
912 spin_unlock_irqrestore(&rfkill->lock, flags);
913
914 return !!(state & RFKILL_BLOCK_ANY);
915}
916EXPORT_SYMBOL(rfkill_blocked);
917
918
919struct rfkill * __must_check rfkill_alloc(const char *name,
920 struct device *parent,
921 const enum rfkill_type type,
922 const struct rfkill_ops *ops,
923 void *ops_data)
924{
925 struct rfkill *rfkill;
926 struct device *dev;
927
928 if (WARN_ON(!ops))
929 return NULL;
930
931 if (WARN_ON(!ops->set_block))
932 return NULL;
933
934 if (WARN_ON(!name))
935 return NULL;
936
937 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
938 return NULL;
939
940 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
941 if (!rfkill)
942 return NULL;
943
944 spin_lock_init(&rfkill->lock);
945 INIT_LIST_HEAD(&rfkill->node);
946 rfkill->type = type;
947 strcpy(rfkill->name, name);
948 rfkill->ops = ops;
949 rfkill->data = ops_data;
950
951 dev = &rfkill->dev;
952 dev->class = &rfkill_class;
953 dev->parent = parent;
954 device_initialize(dev);
955
956 return rfkill;
957}
958EXPORT_SYMBOL(rfkill_alloc);
959
960static void rfkill_poll(struct work_struct *work)
961{
962 struct rfkill *rfkill;
963
964 rfkill = container_of(work, struct rfkill, poll_work.work);
965
966 /*
967 * Poll hardware state -- driver will use one of the
968 * rfkill_set{,_hw,_sw}_state functions and use its
969 * return value to update the current status.
970 */
971 rfkill->ops->poll(rfkill, rfkill->data);
972
973 queue_delayed_work(system_power_efficient_wq,
974 &rfkill->poll_work,
975 round_jiffies_relative(POLL_INTERVAL));
976}
977
978static void rfkill_uevent_work(struct work_struct *work)
979{
980 struct rfkill *rfkill;
981
982 rfkill = container_of(work, struct rfkill, uevent_work);
983
984 mutex_lock(&rfkill_global_mutex);
985 rfkill_event(rfkill);
986 mutex_unlock(&rfkill_global_mutex);
987}
988
989static void rfkill_sync_work(struct work_struct *work)
990{
991 struct rfkill *rfkill;
992 bool cur;
993
994 rfkill = container_of(work, struct rfkill, sync_work);
995
996 mutex_lock(&rfkill_global_mutex);
997 cur = rfkill_global_states[rfkill->type].cur;
998 rfkill_set_block(rfkill, cur);
999 mutex_unlock(&rfkill_global_mutex);
1000}
1001
1002int __must_check rfkill_register(struct rfkill *rfkill)
1003{
1004 static unsigned long rfkill_no;
1005 struct device *dev;
1006 int error;
1007
1008 if (!rfkill)
1009 return -EINVAL;
1010
1011 dev = &rfkill->dev;
1012
1013 mutex_lock(&rfkill_global_mutex);
1014
1015 if (rfkill->registered) {
1016 error = -EALREADY;
1017 goto unlock;
1018 }
1019
1020 rfkill->idx = rfkill_no;
1021 dev_set_name(dev, "rfkill%lu", rfkill_no);
1022 rfkill_no++;
1023
1024 list_add_tail(&rfkill->node, &rfkill_list);
1025
1026 error = device_add(dev);
1027 if (error)
1028 goto remove;
1029
1030 error = rfkill_led_trigger_register(rfkill);
1031 if (error)
1032 goto devdel;
1033
1034 rfkill->registered = true;
1035
1036 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1037 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1038 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1039
1040 if (rfkill->ops->poll)
1041 queue_delayed_work(system_power_efficient_wq,
1042 &rfkill->poll_work,
1043 round_jiffies_relative(POLL_INTERVAL));
1044
1045 if (!rfkill->persistent || rfkill_epo_lock_active) {
1046 schedule_work(&rfkill->sync_work);
1047 } else {
1048#ifdef CONFIG_RFKILL_INPUT
1049 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1050
1051 if (!atomic_read(&rfkill_input_disabled))
1052 __rfkill_switch_all(rfkill->type, soft_blocked);
1053#endif
1054 }
1055
1056 rfkill_global_led_trigger_event();
1057 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1058
1059 mutex_unlock(&rfkill_global_mutex);
1060 return 0;
1061
1062 devdel:
1063 device_del(&rfkill->dev);
1064 remove:
1065 list_del_init(&rfkill->node);
1066 unlock:
1067 mutex_unlock(&rfkill_global_mutex);
1068 return error;
1069}
1070EXPORT_SYMBOL(rfkill_register);
1071
1072void rfkill_unregister(struct rfkill *rfkill)
1073{
1074 BUG_ON(!rfkill);
1075
1076 if (rfkill->ops->poll)
1077 cancel_delayed_work_sync(&rfkill->poll_work);
1078
1079 cancel_work_sync(&rfkill->uevent_work);
1080 cancel_work_sync(&rfkill->sync_work);
1081
1082 rfkill->registered = false;
1083
1084 device_del(&rfkill->dev);
1085
1086 mutex_lock(&rfkill_global_mutex);
1087 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1088 list_del_init(&rfkill->node);
1089 rfkill_global_led_trigger_event();
1090 mutex_unlock(&rfkill_global_mutex);
1091
1092 rfkill_led_trigger_unregister(rfkill);
1093}
1094EXPORT_SYMBOL(rfkill_unregister);
1095
1096void rfkill_destroy(struct rfkill *rfkill)
1097{
1098 if (rfkill)
1099 put_device(&rfkill->dev);
1100}
1101EXPORT_SYMBOL(rfkill_destroy);
1102
1103static int rfkill_fop_open(struct inode *inode, struct file *file)
1104{
1105 struct rfkill_data *data;
1106 struct rfkill *rfkill;
1107 struct rfkill_int_event *ev, *tmp;
1108
1109 data = kzalloc(sizeof(*data), GFP_KERNEL);
1110 if (!data)
1111 return -ENOMEM;
1112
1113 INIT_LIST_HEAD(&data->events);
1114 mutex_init(&data->mtx);
1115 init_waitqueue_head(&data->read_wait);
1116
1117 mutex_lock(&rfkill_global_mutex);
1118 mutex_lock(&data->mtx);
1119 /*
1120 * start getting events from elsewhere but hold mtx to get
1121 * startup events added first
1122 */
1123
1124 list_for_each_entry(rfkill, &rfkill_list, node) {
1125 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1126 if (!ev)
1127 goto free;
1128 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1129 list_add_tail(&ev->list, &data->events);
1130 }
1131 list_add(&data->list, &rfkill_fds);
1132 mutex_unlock(&data->mtx);
1133 mutex_unlock(&rfkill_global_mutex);
1134
1135 file->private_data = data;
1136
1137 return stream_open(inode, file);
1138
1139 free:
1140 mutex_unlock(&data->mtx);
1141 mutex_unlock(&rfkill_global_mutex);
1142 mutex_destroy(&data->mtx);
1143 list_for_each_entry_safe(ev, tmp, &data->events, list)
1144 kfree(ev);
1145 kfree(data);
1146 return -ENOMEM;
1147}
1148
1149static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1150{
1151 struct rfkill_data *data = file->private_data;
1152 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1153
1154 poll_wait(file, &data->read_wait, wait);
1155
1156 mutex_lock(&data->mtx);
1157 if (!list_empty(&data->events))
1158 res = EPOLLIN | EPOLLRDNORM;
1159 mutex_unlock(&data->mtx);
1160
1161 return res;
1162}
1163
1164static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1165 size_t count, loff_t *pos)
1166{
1167 struct rfkill_data *data = file->private_data;
1168 struct rfkill_int_event *ev;
1169 unsigned long sz;
1170 int ret;
1171
1172 mutex_lock(&data->mtx);
1173
1174 while (list_empty(&data->events)) {
1175 if (file->f_flags & O_NONBLOCK) {
1176 ret = -EAGAIN;
1177 goto out;
1178 }
1179 mutex_unlock(&data->mtx);
1180 /* since we re-check and it just compares pointers,
1181 * using !list_empty() without locking isn't a problem
1182 */
1183 ret = wait_event_interruptible(data->read_wait,
1184 !list_empty(&data->events));
1185 mutex_lock(&data->mtx);
1186
1187 if (ret)
1188 goto out;
1189 }
1190
1191 ev = list_first_entry(&data->events, struct rfkill_int_event,
1192 list);
1193
1194 sz = min_t(unsigned long, sizeof(ev->ev), count);
1195 ret = sz;
1196 if (copy_to_user(buf, &ev->ev, sz))
1197 ret = -EFAULT;
1198
1199 list_del(&ev->list);
1200 kfree(ev);
1201 out:
1202 mutex_unlock(&data->mtx);
1203 return ret;
1204}
1205
1206static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1207 size_t count, loff_t *pos)
1208{
1209 struct rfkill *rfkill;
1210 struct rfkill_event ev;
1211 int ret;
1212
1213 /* we don't need the 'hard' variable but accept it */
1214 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1215 return -EINVAL;
1216
1217 /*
1218 * Copy as much data as we can accept into our 'ev' buffer,
1219 * but tell userspace how much we've copied so it can determine
1220 * our API version even in a write() call, if it cares.
1221 */
1222 count = min(count, sizeof(ev));
1223 if (copy_from_user(&ev, buf, count))
1224 return -EFAULT;
1225
1226 if (ev.type >= NUM_RFKILL_TYPES)
1227 return -EINVAL;
1228
1229 mutex_lock(&rfkill_global_mutex);
1230
1231 switch (ev.op) {
1232 case RFKILL_OP_CHANGE_ALL:
1233 rfkill_update_global_state(ev.type, ev.soft);
1234 list_for_each_entry(rfkill, &rfkill_list, node)
1235 if (rfkill->type == ev.type ||
1236 ev.type == RFKILL_TYPE_ALL)
1237 rfkill_set_block(rfkill, ev.soft);
1238 ret = 0;
1239 break;
1240 case RFKILL_OP_CHANGE:
1241 list_for_each_entry(rfkill, &rfkill_list, node)
1242 if (rfkill->idx == ev.idx &&
1243 (rfkill->type == ev.type ||
1244 ev.type == RFKILL_TYPE_ALL))
1245 rfkill_set_block(rfkill, ev.soft);
1246 ret = 0;
1247 break;
1248 default:
1249 ret = -EINVAL;
1250 break;
1251 }
1252
1253 mutex_unlock(&rfkill_global_mutex);
1254
1255 return ret ?: count;
1256}
1257
1258static int rfkill_fop_release(struct inode *inode, struct file *file)
1259{
1260 struct rfkill_data *data = file->private_data;
1261 struct rfkill_int_event *ev, *tmp;
1262
1263 mutex_lock(&rfkill_global_mutex);
1264 list_del(&data->list);
1265 mutex_unlock(&rfkill_global_mutex);
1266
1267 mutex_destroy(&data->mtx);
1268 list_for_each_entry_safe(ev, tmp, &data->events, list)
1269 kfree(ev);
1270
1271#ifdef CONFIG_RFKILL_INPUT
1272 if (data->input_handler)
1273 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1274 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1275#endif
1276
1277 kfree(data);
1278
1279 return 0;
1280}
1281
1282#ifdef CONFIG_RFKILL_INPUT
1283static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1284 unsigned long arg)
1285{
1286 struct rfkill_data *data = file->private_data;
1287
1288 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1289 return -ENOSYS;
1290
1291 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1292 return -ENOSYS;
1293
1294 mutex_lock(&data->mtx);
1295
1296 if (!data->input_handler) {
1297 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1298 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1299 data->input_handler = true;
1300 }
1301
1302 mutex_unlock(&data->mtx);
1303
1304 return 0;
1305}
1306#endif
1307
1308static const struct file_operations rfkill_fops = {
1309 .owner = THIS_MODULE,
1310 .open = rfkill_fop_open,
1311 .read = rfkill_fop_read,
1312 .write = rfkill_fop_write,
1313 .poll = rfkill_fop_poll,
1314 .release = rfkill_fop_release,
1315#ifdef CONFIG_RFKILL_INPUT
1316 .unlocked_ioctl = rfkill_fop_ioctl,
1317 .compat_ioctl = compat_ptr_ioctl,
1318#endif
1319 .llseek = no_llseek,
1320};
1321
1322#define RFKILL_NAME "rfkill"
1323
1324static struct miscdevice rfkill_miscdev = {
1325 .fops = &rfkill_fops,
1326 .name = RFKILL_NAME,
1327 .minor = RFKILL_MINOR,
1328};
1329
1330static int __init rfkill_init(void)
1331{
1332 int error;
1333
1334 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1335
1336 error = class_register(&rfkill_class);
1337 if (error)
1338 goto error_class;
1339
1340 error = misc_register(&rfkill_miscdev);
1341 if (error)
1342 goto error_misc;
1343
1344 error = rfkill_global_led_trigger_register();
1345 if (error)
1346 goto error_led_trigger;
1347
1348#ifdef CONFIG_RFKILL_INPUT
1349 error = rfkill_handler_init();
1350 if (error)
1351 goto error_input;
1352#endif
1353
1354 return 0;
1355
1356#ifdef CONFIG_RFKILL_INPUT
1357error_input:
1358 rfkill_global_led_trigger_unregister();
1359#endif
1360error_led_trigger:
1361 misc_deregister(&rfkill_miscdev);
1362error_misc:
1363 class_unregister(&rfkill_class);
1364error_class:
1365 return error;
1366}
1367subsys_initcall(rfkill_init);
1368
1369static void __exit rfkill_exit(void)
1370{
1371#ifdef CONFIG_RFKILL_INPUT
1372 rfkill_handler_exit();
1373#endif
1374 rfkill_global_led_trigger_unregister();
1375 misc_deregister(&rfkill_miscdev);
1376 class_unregister(&rfkill_class);
1377}
1378module_exit(rfkill_exit);
1379
1380MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1381MODULE_ALIAS("devname:" RFKILL_NAME);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55#ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58#endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67};
68#define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73};
74
75struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81};
82
83
84MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
85MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
86MODULE_DESCRIPTION("RF switch support");
87MODULE_LICENSE("GPL");
88
89
90/*
91 * The locking here should be made much smarter, we currently have
92 * a bit of a stupid situation because drivers might want to register
93 * the rfkill struct under their own lock, and take this lock during
94 * rfkill method calls -- which will cause an AB-BA deadlock situation.
95 *
96 * To fix that, we need to rework this code here to be mostly lock-free
97 * and only use the mutex for list manipulations, not to protect the
98 * various other global variables. Then we can avoid holding the mutex
99 * around driver operations, and all is happy.
100 */
101static LIST_HEAD(rfkill_list); /* list of registered rf switches */
102static DEFINE_MUTEX(rfkill_global_mutex);
103static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
104
105static unsigned int rfkill_default_state = 1;
106module_param_named(default_state, rfkill_default_state, uint, 0444);
107MODULE_PARM_DESC(default_state,
108 "Default initial state for all radio types, 0 = radio off");
109
110static struct {
111 bool cur, sav;
112} rfkill_global_states[NUM_RFKILL_TYPES];
113
114static bool rfkill_epo_lock_active;
115
116
117#ifdef CONFIG_RFKILL_LEDS
118static void rfkill_led_trigger_event(struct rfkill *rfkill)
119{
120 struct led_trigger *trigger;
121
122 if (!rfkill->registered)
123 return;
124
125 trigger = &rfkill->led_trigger;
126
127 if (rfkill->state & RFKILL_BLOCK_ANY)
128 led_trigger_event(trigger, LED_OFF);
129 else
130 led_trigger_event(trigger, LED_FULL);
131}
132
133static int rfkill_led_trigger_activate(struct led_classdev *led)
134{
135 struct rfkill *rfkill;
136
137 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
138
139 rfkill_led_trigger_event(rfkill);
140
141 return 0;
142}
143
144const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
145{
146 return rfkill->led_trigger.name;
147}
148EXPORT_SYMBOL(rfkill_get_led_trigger_name);
149
150void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
151{
152 BUG_ON(!rfkill);
153
154 rfkill->ledtrigname = name;
155}
156EXPORT_SYMBOL(rfkill_set_led_trigger_name);
157
158static int rfkill_led_trigger_register(struct rfkill *rfkill)
159{
160 rfkill->led_trigger.name = rfkill->ledtrigname
161 ? : dev_name(&rfkill->dev);
162 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
163 return led_trigger_register(&rfkill->led_trigger);
164}
165
166static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
167{
168 led_trigger_unregister(&rfkill->led_trigger);
169}
170
171static struct led_trigger rfkill_any_led_trigger;
172static struct led_trigger rfkill_none_led_trigger;
173static struct work_struct rfkill_global_led_trigger_work;
174
175static void rfkill_global_led_trigger_worker(struct work_struct *work)
176{
177 enum led_brightness brightness = LED_OFF;
178 struct rfkill *rfkill;
179
180 mutex_lock(&rfkill_global_mutex);
181 list_for_each_entry(rfkill, &rfkill_list, node) {
182 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
183 brightness = LED_FULL;
184 break;
185 }
186 }
187 mutex_unlock(&rfkill_global_mutex);
188
189 led_trigger_event(&rfkill_any_led_trigger, brightness);
190 led_trigger_event(&rfkill_none_led_trigger,
191 brightness == LED_OFF ? LED_FULL : LED_OFF);
192}
193
194static void rfkill_global_led_trigger_event(void)
195{
196 schedule_work(&rfkill_global_led_trigger_work);
197}
198
199static int rfkill_global_led_trigger_register(void)
200{
201 int ret;
202
203 INIT_WORK(&rfkill_global_led_trigger_work,
204 rfkill_global_led_trigger_worker);
205
206 rfkill_any_led_trigger.name = "rfkill-any";
207 ret = led_trigger_register(&rfkill_any_led_trigger);
208 if (ret)
209 return ret;
210
211 rfkill_none_led_trigger.name = "rfkill-none";
212 ret = led_trigger_register(&rfkill_none_led_trigger);
213 if (ret)
214 led_trigger_unregister(&rfkill_any_led_trigger);
215 else
216 /* Delay activation until all global triggers are registered */
217 rfkill_global_led_trigger_event();
218
219 return ret;
220}
221
222static void rfkill_global_led_trigger_unregister(void)
223{
224 led_trigger_unregister(&rfkill_none_led_trigger);
225 led_trigger_unregister(&rfkill_any_led_trigger);
226 cancel_work_sync(&rfkill_global_led_trigger_work);
227}
228#else
229static void rfkill_led_trigger_event(struct rfkill *rfkill)
230{
231}
232
233static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
234{
235 return 0;
236}
237
238static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
239{
240}
241
242static void rfkill_global_led_trigger_event(void)
243{
244}
245
246static int rfkill_global_led_trigger_register(void)
247{
248 return 0;
249}
250
251static void rfkill_global_led_trigger_unregister(void)
252{
253}
254#endif /* CONFIG_RFKILL_LEDS */
255
256static void rfkill_fill_event(struct rfkill_event_ext *ev,
257 struct rfkill *rfkill,
258 enum rfkill_operation op)
259{
260 unsigned long flags;
261
262 ev->idx = rfkill->idx;
263 ev->type = rfkill->type;
264 ev->op = op;
265
266 spin_lock_irqsave(&rfkill->lock, flags);
267 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
268 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
269 RFKILL_BLOCK_SW_PREV));
270 ev->hard_block_reasons = rfkill->hard_block_reasons;
271 spin_unlock_irqrestore(&rfkill->lock, flags);
272}
273
274static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
275{
276 struct rfkill_data *data;
277 struct rfkill_int_event *ev;
278
279 list_for_each_entry(data, &rfkill_fds, list) {
280 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
281 if (!ev)
282 continue;
283 rfkill_fill_event(&ev->ev, rfkill, op);
284 mutex_lock(&data->mtx);
285 list_add_tail(&ev->list, &data->events);
286 mutex_unlock(&data->mtx);
287 wake_up_interruptible(&data->read_wait);
288 }
289}
290
291static void rfkill_event(struct rfkill *rfkill)
292{
293 if (!rfkill->registered)
294 return;
295
296 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
297
298 /* also send event to /dev/rfkill */
299 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
300}
301
302/**
303 * rfkill_set_block - wrapper for set_block method
304 *
305 * @rfkill: the rfkill struct to use
306 * @blocked: the new software state
307 *
308 * Calls the set_block method (when applicable) and handles notifications
309 * etc. as well.
310 */
311static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
312{
313 unsigned long flags;
314 bool prev, curr;
315 int err;
316
317 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
318 return;
319
320 /*
321 * Some platforms (...!) generate input events which affect the
322 * _hard_ kill state -- whenever something tries to change the
323 * current software state query the hardware state too.
324 */
325 if (rfkill->ops->query)
326 rfkill->ops->query(rfkill, rfkill->data);
327
328 spin_lock_irqsave(&rfkill->lock, flags);
329 prev = rfkill->state & RFKILL_BLOCK_SW;
330
331 if (prev)
332 rfkill->state |= RFKILL_BLOCK_SW_PREV;
333 else
334 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
335
336 if (blocked)
337 rfkill->state |= RFKILL_BLOCK_SW;
338 else
339 rfkill->state &= ~RFKILL_BLOCK_SW;
340
341 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
342 spin_unlock_irqrestore(&rfkill->lock, flags);
343
344 err = rfkill->ops->set_block(rfkill->data, blocked);
345
346 spin_lock_irqsave(&rfkill->lock, flags);
347 if (err) {
348 /*
349 * Failed -- reset status to _PREV, which may be different
350 * from what we have set _PREV to earlier in this function
351 * if rfkill_set_sw_state was invoked.
352 */
353 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
354 rfkill->state |= RFKILL_BLOCK_SW;
355 else
356 rfkill->state &= ~RFKILL_BLOCK_SW;
357 }
358 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
359 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
360 curr = rfkill->state & RFKILL_BLOCK_SW;
361 spin_unlock_irqrestore(&rfkill->lock, flags);
362
363 rfkill_led_trigger_event(rfkill);
364 rfkill_global_led_trigger_event();
365
366 if (prev != curr)
367 rfkill_event(rfkill);
368}
369
370static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
371{
372 int i;
373
374 if (type != RFKILL_TYPE_ALL) {
375 rfkill_global_states[type].cur = blocked;
376 return;
377 }
378
379 for (i = 0; i < NUM_RFKILL_TYPES; i++)
380 rfkill_global_states[i].cur = blocked;
381}
382
383#ifdef CONFIG_RFKILL_INPUT
384static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
385
386/**
387 * __rfkill_switch_all - Toggle state of all switches of given type
388 * @type: type of interfaces to be affected
389 * @blocked: the new state
390 *
391 * This function sets the state of all switches of given type,
392 * unless a specific switch is suspended.
393 *
394 * Caller must have acquired rfkill_global_mutex.
395 */
396static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
397{
398 struct rfkill *rfkill;
399
400 rfkill_update_global_state(type, blocked);
401 list_for_each_entry(rfkill, &rfkill_list, node) {
402 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
403 continue;
404
405 rfkill_set_block(rfkill, blocked);
406 }
407}
408
409/**
410 * rfkill_switch_all - Toggle state of all switches of given type
411 * @type: type of interfaces to be affected
412 * @blocked: the new state
413 *
414 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
415 * Please refer to __rfkill_switch_all() for details.
416 *
417 * Does nothing if the EPO lock is active.
418 */
419void rfkill_switch_all(enum rfkill_type type, bool blocked)
420{
421 if (atomic_read(&rfkill_input_disabled))
422 return;
423
424 mutex_lock(&rfkill_global_mutex);
425
426 if (!rfkill_epo_lock_active)
427 __rfkill_switch_all(type, blocked);
428
429 mutex_unlock(&rfkill_global_mutex);
430}
431
432/**
433 * rfkill_epo - emergency power off all transmitters
434 *
435 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
436 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
437 *
438 * The global state before the EPO is saved and can be restored later
439 * using rfkill_restore_states().
440 */
441void rfkill_epo(void)
442{
443 struct rfkill *rfkill;
444 int i;
445
446 if (atomic_read(&rfkill_input_disabled))
447 return;
448
449 mutex_lock(&rfkill_global_mutex);
450
451 rfkill_epo_lock_active = true;
452 list_for_each_entry(rfkill, &rfkill_list, node)
453 rfkill_set_block(rfkill, true);
454
455 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
456 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
457 rfkill_global_states[i].cur = true;
458 }
459
460 mutex_unlock(&rfkill_global_mutex);
461}
462
463/**
464 * rfkill_restore_states - restore global states
465 *
466 * Restore (and sync switches to) the global state from the
467 * states in rfkill_default_states. This can undo the effects of
468 * a call to rfkill_epo().
469 */
470void rfkill_restore_states(void)
471{
472 int i;
473
474 if (atomic_read(&rfkill_input_disabled))
475 return;
476
477 mutex_lock(&rfkill_global_mutex);
478
479 rfkill_epo_lock_active = false;
480 for (i = 0; i < NUM_RFKILL_TYPES; i++)
481 __rfkill_switch_all(i, rfkill_global_states[i].sav);
482 mutex_unlock(&rfkill_global_mutex);
483}
484
485/**
486 * rfkill_remove_epo_lock - unlock state changes
487 *
488 * Used by rfkill-input manually unlock state changes, when
489 * the EPO switch is deactivated.
490 */
491void rfkill_remove_epo_lock(void)
492{
493 if (atomic_read(&rfkill_input_disabled))
494 return;
495
496 mutex_lock(&rfkill_global_mutex);
497 rfkill_epo_lock_active = false;
498 mutex_unlock(&rfkill_global_mutex);
499}
500
501/**
502 * rfkill_is_epo_lock_active - returns true EPO is active
503 *
504 * Returns 0 (false) if there is NOT an active EPO condition,
505 * and 1 (true) if there is an active EPO condition, which
506 * locks all radios in one of the BLOCKED states.
507 *
508 * Can be called in atomic context.
509 */
510bool rfkill_is_epo_lock_active(void)
511{
512 return rfkill_epo_lock_active;
513}
514
515/**
516 * rfkill_get_global_sw_state - returns global state for a type
517 * @type: the type to get the global state of
518 *
519 * Returns the current global state for a given wireless
520 * device type.
521 */
522bool rfkill_get_global_sw_state(const enum rfkill_type type)
523{
524 return rfkill_global_states[type].cur;
525}
526#endif
527
528bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
529 bool blocked, unsigned long reason)
530{
531 unsigned long flags;
532 bool ret, prev;
533
534 BUG_ON(!rfkill);
535
536 if (WARN(reason &
537 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
538 "hw_state reason not supported: 0x%lx", reason))
539 return blocked;
540
541 spin_lock_irqsave(&rfkill->lock, flags);
542 prev = !!(rfkill->hard_block_reasons & reason);
543 if (blocked) {
544 rfkill->state |= RFKILL_BLOCK_HW;
545 rfkill->hard_block_reasons |= reason;
546 } else {
547 rfkill->hard_block_reasons &= ~reason;
548 if (!rfkill->hard_block_reasons)
549 rfkill->state &= ~RFKILL_BLOCK_HW;
550 }
551 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
552 spin_unlock_irqrestore(&rfkill->lock, flags);
553
554 rfkill_led_trigger_event(rfkill);
555 rfkill_global_led_trigger_event();
556
557 if (rfkill->registered && prev != blocked)
558 schedule_work(&rfkill->uevent_work);
559
560 return ret;
561}
562EXPORT_SYMBOL(rfkill_set_hw_state_reason);
563
564static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
565{
566 u32 bit = RFKILL_BLOCK_SW;
567
568 /* if in a ops->set_block right now, use other bit */
569 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
570 bit = RFKILL_BLOCK_SW_PREV;
571
572 if (blocked)
573 rfkill->state |= bit;
574 else
575 rfkill->state &= ~bit;
576}
577
578bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
579{
580 unsigned long flags;
581 bool prev, hwblock;
582
583 BUG_ON(!rfkill);
584
585 spin_lock_irqsave(&rfkill->lock, flags);
586 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
587 __rfkill_set_sw_state(rfkill, blocked);
588 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
589 blocked = blocked || hwblock;
590 spin_unlock_irqrestore(&rfkill->lock, flags);
591
592 if (!rfkill->registered)
593 return blocked;
594
595 if (prev != blocked && !hwblock)
596 schedule_work(&rfkill->uevent_work);
597
598 rfkill_led_trigger_event(rfkill);
599 rfkill_global_led_trigger_event();
600
601 return blocked;
602}
603EXPORT_SYMBOL(rfkill_set_sw_state);
604
605void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
606{
607 unsigned long flags;
608
609 BUG_ON(!rfkill);
610 BUG_ON(rfkill->registered);
611
612 spin_lock_irqsave(&rfkill->lock, flags);
613 __rfkill_set_sw_state(rfkill, blocked);
614 rfkill->persistent = true;
615 spin_unlock_irqrestore(&rfkill->lock, flags);
616}
617EXPORT_SYMBOL(rfkill_init_sw_state);
618
619void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
620{
621 unsigned long flags;
622 bool swprev, hwprev;
623
624 BUG_ON(!rfkill);
625
626 spin_lock_irqsave(&rfkill->lock, flags);
627
628 /*
629 * No need to care about prev/setblock ... this is for uevent only
630 * and that will get triggered by rfkill_set_block anyway.
631 */
632 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
633 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
634 __rfkill_set_sw_state(rfkill, sw);
635 if (hw)
636 rfkill->state |= RFKILL_BLOCK_HW;
637 else
638 rfkill->state &= ~RFKILL_BLOCK_HW;
639
640 spin_unlock_irqrestore(&rfkill->lock, flags);
641
642 if (!rfkill->registered) {
643 rfkill->persistent = true;
644 } else {
645 if (swprev != sw || hwprev != hw)
646 schedule_work(&rfkill->uevent_work);
647
648 rfkill_led_trigger_event(rfkill);
649 rfkill_global_led_trigger_event();
650 }
651}
652EXPORT_SYMBOL(rfkill_set_states);
653
654static const char * const rfkill_types[] = {
655 NULL, /* RFKILL_TYPE_ALL */
656 "wlan",
657 "bluetooth",
658 "ultrawideband",
659 "wimax",
660 "wwan",
661 "gps",
662 "fm",
663 "nfc",
664};
665
666enum rfkill_type rfkill_find_type(const char *name)
667{
668 int i;
669
670 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
671
672 if (!name)
673 return RFKILL_TYPE_ALL;
674
675 for (i = 1; i < NUM_RFKILL_TYPES; i++)
676 if (!strcmp(name, rfkill_types[i]))
677 return i;
678 return RFKILL_TYPE_ALL;
679}
680EXPORT_SYMBOL(rfkill_find_type);
681
682static ssize_t name_show(struct device *dev, struct device_attribute *attr,
683 char *buf)
684{
685 struct rfkill *rfkill = to_rfkill(dev);
686
687 return sprintf(buf, "%s\n", rfkill->name);
688}
689static DEVICE_ATTR_RO(name);
690
691static ssize_t type_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693{
694 struct rfkill *rfkill = to_rfkill(dev);
695
696 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
697}
698static DEVICE_ATTR_RO(type);
699
700static ssize_t index_show(struct device *dev, struct device_attribute *attr,
701 char *buf)
702{
703 struct rfkill *rfkill = to_rfkill(dev);
704
705 return sprintf(buf, "%d\n", rfkill->idx);
706}
707static DEVICE_ATTR_RO(index);
708
709static ssize_t persistent_show(struct device *dev,
710 struct device_attribute *attr, char *buf)
711{
712 struct rfkill *rfkill = to_rfkill(dev);
713
714 return sprintf(buf, "%d\n", rfkill->persistent);
715}
716static DEVICE_ATTR_RO(persistent);
717
718static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
719 char *buf)
720{
721 struct rfkill *rfkill = to_rfkill(dev);
722
723 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
724}
725static DEVICE_ATTR_RO(hard);
726
727static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
728 char *buf)
729{
730 struct rfkill *rfkill = to_rfkill(dev);
731
732 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
733}
734
735static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
736 const char *buf, size_t count)
737{
738 struct rfkill *rfkill = to_rfkill(dev);
739 unsigned long state;
740 int err;
741
742 if (!capable(CAP_NET_ADMIN))
743 return -EPERM;
744
745 err = kstrtoul(buf, 0, &state);
746 if (err)
747 return err;
748
749 if (state > 1 )
750 return -EINVAL;
751
752 mutex_lock(&rfkill_global_mutex);
753 rfkill_set_block(rfkill, state);
754 mutex_unlock(&rfkill_global_mutex);
755
756 return count;
757}
758static DEVICE_ATTR_RW(soft);
759
760static ssize_t hard_block_reasons_show(struct device *dev,
761 struct device_attribute *attr,
762 char *buf)
763{
764 struct rfkill *rfkill = to_rfkill(dev);
765
766 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
767}
768static DEVICE_ATTR_RO(hard_block_reasons);
769
770static u8 user_state_from_blocked(unsigned long state)
771{
772 if (state & RFKILL_BLOCK_HW)
773 return RFKILL_USER_STATE_HARD_BLOCKED;
774 if (state & RFKILL_BLOCK_SW)
775 return RFKILL_USER_STATE_SOFT_BLOCKED;
776
777 return RFKILL_USER_STATE_UNBLOCKED;
778}
779
780static ssize_t state_show(struct device *dev, struct device_attribute *attr,
781 char *buf)
782{
783 struct rfkill *rfkill = to_rfkill(dev);
784
785 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
786}
787
788static ssize_t state_store(struct device *dev, struct device_attribute *attr,
789 const char *buf, size_t count)
790{
791 struct rfkill *rfkill = to_rfkill(dev);
792 unsigned long state;
793 int err;
794
795 if (!capable(CAP_NET_ADMIN))
796 return -EPERM;
797
798 err = kstrtoul(buf, 0, &state);
799 if (err)
800 return err;
801
802 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
803 state != RFKILL_USER_STATE_UNBLOCKED)
804 return -EINVAL;
805
806 mutex_lock(&rfkill_global_mutex);
807 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
808 mutex_unlock(&rfkill_global_mutex);
809
810 return count;
811}
812static DEVICE_ATTR_RW(state);
813
814static struct attribute *rfkill_dev_attrs[] = {
815 &dev_attr_name.attr,
816 &dev_attr_type.attr,
817 &dev_attr_index.attr,
818 &dev_attr_persistent.attr,
819 &dev_attr_state.attr,
820 &dev_attr_soft.attr,
821 &dev_attr_hard.attr,
822 &dev_attr_hard_block_reasons.attr,
823 NULL,
824};
825ATTRIBUTE_GROUPS(rfkill_dev);
826
827static void rfkill_release(struct device *dev)
828{
829 struct rfkill *rfkill = to_rfkill(dev);
830
831 kfree(rfkill);
832}
833
834static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
835{
836 struct rfkill *rfkill = to_rfkill(dev);
837 unsigned long flags;
838 unsigned long reasons;
839 u32 state;
840 int error;
841
842 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
843 if (error)
844 return error;
845 error = add_uevent_var(env, "RFKILL_TYPE=%s",
846 rfkill_types[rfkill->type]);
847 if (error)
848 return error;
849 spin_lock_irqsave(&rfkill->lock, flags);
850 state = rfkill->state;
851 reasons = rfkill->hard_block_reasons;
852 spin_unlock_irqrestore(&rfkill->lock, flags);
853 error = add_uevent_var(env, "RFKILL_STATE=%d",
854 user_state_from_blocked(state));
855 if (error)
856 return error;
857 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
858}
859
860void rfkill_pause_polling(struct rfkill *rfkill)
861{
862 BUG_ON(!rfkill);
863
864 if (!rfkill->ops->poll)
865 return;
866
867 rfkill->polling_paused = true;
868 cancel_delayed_work_sync(&rfkill->poll_work);
869}
870EXPORT_SYMBOL(rfkill_pause_polling);
871
872void rfkill_resume_polling(struct rfkill *rfkill)
873{
874 BUG_ON(!rfkill);
875
876 if (!rfkill->ops->poll)
877 return;
878
879 rfkill->polling_paused = false;
880
881 if (rfkill->suspended)
882 return;
883
884 queue_delayed_work(system_power_efficient_wq,
885 &rfkill->poll_work, 0);
886}
887EXPORT_SYMBOL(rfkill_resume_polling);
888
889#ifdef CONFIG_PM_SLEEP
890static int rfkill_suspend(struct device *dev)
891{
892 struct rfkill *rfkill = to_rfkill(dev);
893
894 rfkill->suspended = true;
895 cancel_delayed_work_sync(&rfkill->poll_work);
896
897 return 0;
898}
899
900static int rfkill_resume(struct device *dev)
901{
902 struct rfkill *rfkill = to_rfkill(dev);
903 bool cur;
904
905 rfkill->suspended = false;
906
907 if (!rfkill->registered)
908 return 0;
909
910 if (!rfkill->persistent) {
911 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
912 rfkill_set_block(rfkill, cur);
913 }
914
915 if (rfkill->ops->poll && !rfkill->polling_paused)
916 queue_delayed_work(system_power_efficient_wq,
917 &rfkill->poll_work, 0);
918
919 return 0;
920}
921
922static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
923#define RFKILL_PM_OPS (&rfkill_pm_ops)
924#else
925#define RFKILL_PM_OPS NULL
926#endif
927
928static struct class rfkill_class = {
929 .name = "rfkill",
930 .dev_release = rfkill_release,
931 .dev_groups = rfkill_dev_groups,
932 .dev_uevent = rfkill_dev_uevent,
933 .pm = RFKILL_PM_OPS,
934};
935
936bool rfkill_blocked(struct rfkill *rfkill)
937{
938 unsigned long flags;
939 u32 state;
940
941 spin_lock_irqsave(&rfkill->lock, flags);
942 state = rfkill->state;
943 spin_unlock_irqrestore(&rfkill->lock, flags);
944
945 return !!(state & RFKILL_BLOCK_ANY);
946}
947EXPORT_SYMBOL(rfkill_blocked);
948
949
950struct rfkill * __must_check rfkill_alloc(const char *name,
951 struct device *parent,
952 const enum rfkill_type type,
953 const struct rfkill_ops *ops,
954 void *ops_data)
955{
956 struct rfkill *rfkill;
957 struct device *dev;
958
959 if (WARN_ON(!ops))
960 return NULL;
961
962 if (WARN_ON(!ops->set_block))
963 return NULL;
964
965 if (WARN_ON(!name))
966 return NULL;
967
968 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
969 return NULL;
970
971 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
972 if (!rfkill)
973 return NULL;
974
975 spin_lock_init(&rfkill->lock);
976 INIT_LIST_HEAD(&rfkill->node);
977 rfkill->type = type;
978 strcpy(rfkill->name, name);
979 rfkill->ops = ops;
980 rfkill->data = ops_data;
981
982 dev = &rfkill->dev;
983 dev->class = &rfkill_class;
984 dev->parent = parent;
985 device_initialize(dev);
986
987 return rfkill;
988}
989EXPORT_SYMBOL(rfkill_alloc);
990
991static void rfkill_poll(struct work_struct *work)
992{
993 struct rfkill *rfkill;
994
995 rfkill = container_of(work, struct rfkill, poll_work.work);
996
997 /*
998 * Poll hardware state -- driver will use one of the
999 * rfkill_set{,_hw,_sw}_state functions and use its
1000 * return value to update the current status.
1001 */
1002 rfkill->ops->poll(rfkill, rfkill->data);
1003
1004 queue_delayed_work(system_power_efficient_wq,
1005 &rfkill->poll_work,
1006 round_jiffies_relative(POLL_INTERVAL));
1007}
1008
1009static void rfkill_uevent_work(struct work_struct *work)
1010{
1011 struct rfkill *rfkill;
1012
1013 rfkill = container_of(work, struct rfkill, uevent_work);
1014
1015 mutex_lock(&rfkill_global_mutex);
1016 rfkill_event(rfkill);
1017 mutex_unlock(&rfkill_global_mutex);
1018}
1019
1020static void rfkill_sync_work(struct work_struct *work)
1021{
1022 struct rfkill *rfkill;
1023 bool cur;
1024
1025 rfkill = container_of(work, struct rfkill, sync_work);
1026
1027 mutex_lock(&rfkill_global_mutex);
1028 cur = rfkill_global_states[rfkill->type].cur;
1029 rfkill_set_block(rfkill, cur);
1030 mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033int __must_check rfkill_register(struct rfkill *rfkill)
1034{
1035 static unsigned long rfkill_no;
1036 struct device *dev;
1037 int error;
1038
1039 if (!rfkill)
1040 return -EINVAL;
1041
1042 dev = &rfkill->dev;
1043
1044 mutex_lock(&rfkill_global_mutex);
1045
1046 if (rfkill->registered) {
1047 error = -EALREADY;
1048 goto unlock;
1049 }
1050
1051 rfkill->idx = rfkill_no;
1052 dev_set_name(dev, "rfkill%lu", rfkill_no);
1053 rfkill_no++;
1054
1055 list_add_tail(&rfkill->node, &rfkill_list);
1056
1057 error = device_add(dev);
1058 if (error)
1059 goto remove;
1060
1061 error = rfkill_led_trigger_register(rfkill);
1062 if (error)
1063 goto devdel;
1064
1065 rfkill->registered = true;
1066
1067 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1068 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1069 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1070
1071 if (rfkill->ops->poll)
1072 queue_delayed_work(system_power_efficient_wq,
1073 &rfkill->poll_work,
1074 round_jiffies_relative(POLL_INTERVAL));
1075
1076 if (!rfkill->persistent || rfkill_epo_lock_active) {
1077 schedule_work(&rfkill->sync_work);
1078 } else {
1079#ifdef CONFIG_RFKILL_INPUT
1080 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1081
1082 if (!atomic_read(&rfkill_input_disabled))
1083 __rfkill_switch_all(rfkill->type, soft_blocked);
1084#endif
1085 }
1086
1087 rfkill_global_led_trigger_event();
1088 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1089
1090 mutex_unlock(&rfkill_global_mutex);
1091 return 0;
1092
1093 devdel:
1094 device_del(&rfkill->dev);
1095 remove:
1096 list_del_init(&rfkill->node);
1097 unlock:
1098 mutex_unlock(&rfkill_global_mutex);
1099 return error;
1100}
1101EXPORT_SYMBOL(rfkill_register);
1102
1103void rfkill_unregister(struct rfkill *rfkill)
1104{
1105 BUG_ON(!rfkill);
1106
1107 if (rfkill->ops->poll)
1108 cancel_delayed_work_sync(&rfkill->poll_work);
1109
1110 cancel_work_sync(&rfkill->uevent_work);
1111 cancel_work_sync(&rfkill->sync_work);
1112
1113 rfkill->registered = false;
1114
1115 device_del(&rfkill->dev);
1116
1117 mutex_lock(&rfkill_global_mutex);
1118 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1119 list_del_init(&rfkill->node);
1120 rfkill_global_led_trigger_event();
1121 mutex_unlock(&rfkill_global_mutex);
1122
1123 rfkill_led_trigger_unregister(rfkill);
1124}
1125EXPORT_SYMBOL(rfkill_unregister);
1126
1127void rfkill_destroy(struct rfkill *rfkill)
1128{
1129 if (rfkill)
1130 put_device(&rfkill->dev);
1131}
1132EXPORT_SYMBOL(rfkill_destroy);
1133
1134static int rfkill_fop_open(struct inode *inode, struct file *file)
1135{
1136 struct rfkill_data *data;
1137 struct rfkill *rfkill;
1138 struct rfkill_int_event *ev, *tmp;
1139
1140 data = kzalloc(sizeof(*data), GFP_KERNEL);
1141 if (!data)
1142 return -ENOMEM;
1143
1144 INIT_LIST_HEAD(&data->events);
1145 mutex_init(&data->mtx);
1146 init_waitqueue_head(&data->read_wait);
1147
1148 mutex_lock(&rfkill_global_mutex);
1149 mutex_lock(&data->mtx);
1150 /*
1151 * start getting events from elsewhere but hold mtx to get
1152 * startup events added first
1153 */
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1157 if (!ev)
1158 goto free;
1159 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1160 list_add_tail(&ev->list, &data->events);
1161 }
1162 list_add(&data->list, &rfkill_fds);
1163 mutex_unlock(&data->mtx);
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 file->private_data = data;
1167
1168 return stream_open(inode, file);
1169
1170 free:
1171 mutex_unlock(&data->mtx);
1172 mutex_unlock(&rfkill_global_mutex);
1173 mutex_destroy(&data->mtx);
1174 list_for_each_entry_safe(ev, tmp, &data->events, list)
1175 kfree(ev);
1176 kfree(data);
1177 return -ENOMEM;
1178}
1179
1180static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1181{
1182 struct rfkill_data *data = file->private_data;
1183 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1184
1185 poll_wait(file, &data->read_wait, wait);
1186
1187 mutex_lock(&data->mtx);
1188 if (!list_empty(&data->events))
1189 res = EPOLLIN | EPOLLRDNORM;
1190 mutex_unlock(&data->mtx);
1191
1192 return res;
1193}
1194
1195static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1196 size_t count, loff_t *pos)
1197{
1198 struct rfkill_data *data = file->private_data;
1199 struct rfkill_int_event *ev;
1200 unsigned long sz;
1201 int ret;
1202
1203 mutex_lock(&data->mtx);
1204
1205 while (list_empty(&data->events)) {
1206 if (file->f_flags & O_NONBLOCK) {
1207 ret = -EAGAIN;
1208 goto out;
1209 }
1210 mutex_unlock(&data->mtx);
1211 /* since we re-check and it just compares pointers,
1212 * using !list_empty() without locking isn't a problem
1213 */
1214 ret = wait_event_interruptible(data->read_wait,
1215 !list_empty(&data->events));
1216 mutex_lock(&data->mtx);
1217
1218 if (ret)
1219 goto out;
1220 }
1221
1222 ev = list_first_entry(&data->events, struct rfkill_int_event,
1223 list);
1224
1225 sz = min_t(unsigned long, sizeof(ev->ev), count);
1226 ret = sz;
1227 if (copy_to_user(buf, &ev->ev, sz))
1228 ret = -EFAULT;
1229
1230 list_del(&ev->list);
1231 kfree(ev);
1232 out:
1233 mutex_unlock(&data->mtx);
1234 return ret;
1235}
1236
1237static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1238 size_t count, loff_t *pos)
1239{
1240 struct rfkill *rfkill;
1241 struct rfkill_event_ext ev;
1242 int ret;
1243
1244 /* we don't need the 'hard' variable but accept it */
1245 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1246 return -EINVAL;
1247
1248 /*
1249 * Copy as much data as we can accept into our 'ev' buffer,
1250 * but tell userspace how much we've copied so it can determine
1251 * our API version even in a write() call, if it cares.
1252 */
1253 count = min(count, sizeof(ev));
1254 if (copy_from_user(&ev, buf, count))
1255 return -EFAULT;
1256
1257 if (ev.type >= NUM_RFKILL_TYPES)
1258 return -EINVAL;
1259
1260 mutex_lock(&rfkill_global_mutex);
1261
1262 switch (ev.op) {
1263 case RFKILL_OP_CHANGE_ALL:
1264 rfkill_update_global_state(ev.type, ev.soft);
1265 list_for_each_entry(rfkill, &rfkill_list, node)
1266 if (rfkill->type == ev.type ||
1267 ev.type == RFKILL_TYPE_ALL)
1268 rfkill_set_block(rfkill, ev.soft);
1269 ret = 0;
1270 break;
1271 case RFKILL_OP_CHANGE:
1272 list_for_each_entry(rfkill, &rfkill_list, node)
1273 if (rfkill->idx == ev.idx &&
1274 (rfkill->type == ev.type ||
1275 ev.type == RFKILL_TYPE_ALL))
1276 rfkill_set_block(rfkill, ev.soft);
1277 ret = 0;
1278 break;
1279 default:
1280 ret = -EINVAL;
1281 break;
1282 }
1283
1284 mutex_unlock(&rfkill_global_mutex);
1285
1286 return ret ?: count;
1287}
1288
1289static int rfkill_fop_release(struct inode *inode, struct file *file)
1290{
1291 struct rfkill_data *data = file->private_data;
1292 struct rfkill_int_event *ev, *tmp;
1293
1294 mutex_lock(&rfkill_global_mutex);
1295 list_del(&data->list);
1296 mutex_unlock(&rfkill_global_mutex);
1297
1298 mutex_destroy(&data->mtx);
1299 list_for_each_entry_safe(ev, tmp, &data->events, list)
1300 kfree(ev);
1301
1302#ifdef CONFIG_RFKILL_INPUT
1303 if (data->input_handler)
1304 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1305 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1306#endif
1307
1308 kfree(data);
1309
1310 return 0;
1311}
1312
1313#ifdef CONFIG_RFKILL_INPUT
1314static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1315 unsigned long arg)
1316{
1317 struct rfkill_data *data = file->private_data;
1318
1319 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1320 return -ENOSYS;
1321
1322 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1323 return -ENOSYS;
1324
1325 mutex_lock(&data->mtx);
1326
1327 if (!data->input_handler) {
1328 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1329 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1330 data->input_handler = true;
1331 }
1332
1333 mutex_unlock(&data->mtx);
1334
1335 return 0;
1336}
1337#endif
1338
1339static const struct file_operations rfkill_fops = {
1340 .owner = THIS_MODULE,
1341 .open = rfkill_fop_open,
1342 .read = rfkill_fop_read,
1343 .write = rfkill_fop_write,
1344 .poll = rfkill_fop_poll,
1345 .release = rfkill_fop_release,
1346#ifdef CONFIG_RFKILL_INPUT
1347 .unlocked_ioctl = rfkill_fop_ioctl,
1348 .compat_ioctl = compat_ptr_ioctl,
1349#endif
1350 .llseek = no_llseek,
1351};
1352
1353#define RFKILL_NAME "rfkill"
1354
1355static struct miscdevice rfkill_miscdev = {
1356 .fops = &rfkill_fops,
1357 .name = RFKILL_NAME,
1358 .minor = RFKILL_MINOR,
1359};
1360
1361static int __init rfkill_init(void)
1362{
1363 int error;
1364
1365 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1366
1367 error = class_register(&rfkill_class);
1368 if (error)
1369 goto error_class;
1370
1371 error = misc_register(&rfkill_miscdev);
1372 if (error)
1373 goto error_misc;
1374
1375 error = rfkill_global_led_trigger_register();
1376 if (error)
1377 goto error_led_trigger;
1378
1379#ifdef CONFIG_RFKILL_INPUT
1380 error = rfkill_handler_init();
1381 if (error)
1382 goto error_input;
1383#endif
1384
1385 return 0;
1386
1387#ifdef CONFIG_RFKILL_INPUT
1388error_input:
1389 rfkill_global_led_trigger_unregister();
1390#endif
1391error_led_trigger:
1392 misc_deregister(&rfkill_miscdev);
1393error_misc:
1394 class_unregister(&rfkill_class);
1395error_class:
1396 return error;
1397}
1398subsys_initcall(rfkill_init);
1399
1400static void __exit rfkill_exit(void)
1401{
1402#ifdef CONFIG_RFKILL_INPUT
1403 rfkill_handler_exit();
1404#endif
1405 rfkill_global_led_trigger_unregister();
1406 misc_deregister(&rfkill_miscdev);
1407 class_unregister(&rfkill_class);
1408}
1409module_exit(rfkill_exit);
1410
1411MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1412MODULE_ALIAS("devname:" RFKILL_NAME);