Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
 
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43
  44	u32			idx;
  45
  46	bool			registered;
  47	bool			persistent;
  48	bool			polling_paused;
  49	bool			suspended;
  50
  51	const struct rfkill_ops	*ops;
  52	void			*data;
  53
  54#ifdef CONFIG_RFKILL_LEDS
  55	struct led_trigger	led_trigger;
  56	const char		*ledtrigname;
  57#endif
  58
  59	struct device		dev;
  60	struct list_head	node;
  61
  62	struct delayed_work	poll_work;
  63	struct work_struct	uevent_work;
  64	struct work_struct	sync_work;
  65	char			name[];
  66};
  67#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  68
  69struct rfkill_int_event {
  70	struct list_head	list;
  71	struct rfkill_event	ev;
  72};
  73
  74struct rfkill_data {
  75	struct list_head	list;
  76	struct list_head	events;
  77	struct mutex		mtx;
  78	wait_queue_head_t	read_wait;
  79	bool			input_handler;
  80};
  81
  82
  83MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  84MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  85MODULE_DESCRIPTION("RF switch support");
  86MODULE_LICENSE("GPL");
  87
  88
  89/*
  90 * The locking here should be made much smarter, we currently have
  91 * a bit of a stupid situation because drivers might want to register
  92 * the rfkill struct under their own lock, and take this lock during
  93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  94 *
  95 * To fix that, we need to rework this code here to be mostly lock-free
  96 * and only use the mutex for list manipulations, not to protect the
  97 * various other global variables. Then we can avoid holding the mutex
  98 * around driver operations, and all is happy.
  99 */
 100static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 101static DEFINE_MUTEX(rfkill_global_mutex);
 102static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 103
 104static unsigned int rfkill_default_state = 1;
 105module_param_named(default_state, rfkill_default_state, uint, 0444);
 106MODULE_PARM_DESC(default_state,
 107		 "Default initial state for all radio types, 0 = radio off");
 108
 109static struct {
 110	bool cur, sav;
 111} rfkill_global_states[NUM_RFKILL_TYPES];
 112
 113static bool rfkill_epo_lock_active;
 114
 115
 116#ifdef CONFIG_RFKILL_LEDS
 117static void rfkill_led_trigger_event(struct rfkill *rfkill)
 118{
 119	struct led_trigger *trigger;
 120
 121	if (!rfkill->registered)
 122		return;
 123
 124	trigger = &rfkill->led_trigger;
 125
 126	if (rfkill->state & RFKILL_BLOCK_ANY)
 127		led_trigger_event(trigger, LED_OFF);
 128	else
 129		led_trigger_event(trigger, LED_FULL);
 130}
 131
 132static int rfkill_led_trigger_activate(struct led_classdev *led)
 133{
 134	struct rfkill *rfkill;
 135
 136	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 137
 138	rfkill_led_trigger_event(rfkill);
 139
 140	return 0;
 141}
 142
 143const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 144{
 145	return rfkill->led_trigger.name;
 146}
 147EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 148
 149void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 150{
 151	BUG_ON(!rfkill);
 152
 153	rfkill->ledtrigname = name;
 154}
 155EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 156
 157static int rfkill_led_trigger_register(struct rfkill *rfkill)
 158{
 159	rfkill->led_trigger.name = rfkill->ledtrigname
 160					? : dev_name(&rfkill->dev);
 161	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 162	return led_trigger_register(&rfkill->led_trigger);
 163}
 164
 165static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 166{
 167	led_trigger_unregister(&rfkill->led_trigger);
 168}
 169
 170static struct led_trigger rfkill_any_led_trigger;
 171static struct led_trigger rfkill_none_led_trigger;
 172static struct work_struct rfkill_global_led_trigger_work;
 173
 174static void rfkill_global_led_trigger_worker(struct work_struct *work)
 175{
 176	enum led_brightness brightness = LED_OFF;
 177	struct rfkill *rfkill;
 178
 179	mutex_lock(&rfkill_global_mutex);
 180	list_for_each_entry(rfkill, &rfkill_list, node) {
 181		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 182			brightness = LED_FULL;
 183			break;
 184		}
 185	}
 186	mutex_unlock(&rfkill_global_mutex);
 187
 188	led_trigger_event(&rfkill_any_led_trigger, brightness);
 189	led_trigger_event(&rfkill_none_led_trigger,
 190			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 191}
 192
 193static void rfkill_global_led_trigger_event(void)
 194{
 195	schedule_work(&rfkill_global_led_trigger_work);
 196}
 197
 198static int rfkill_global_led_trigger_register(void)
 199{
 200	int ret;
 201
 202	INIT_WORK(&rfkill_global_led_trigger_work,
 203			rfkill_global_led_trigger_worker);
 204
 205	rfkill_any_led_trigger.name = "rfkill-any";
 206	ret = led_trigger_register(&rfkill_any_led_trigger);
 207	if (ret)
 208		return ret;
 209
 210	rfkill_none_led_trigger.name = "rfkill-none";
 211	ret = led_trigger_register(&rfkill_none_led_trigger);
 212	if (ret)
 213		led_trigger_unregister(&rfkill_any_led_trigger);
 214	else
 215		/* Delay activation until all global triggers are registered */
 216		rfkill_global_led_trigger_event();
 217
 218	return ret;
 219}
 220
 221static void rfkill_global_led_trigger_unregister(void)
 222{
 223	led_trigger_unregister(&rfkill_none_led_trigger);
 224	led_trigger_unregister(&rfkill_any_led_trigger);
 225	cancel_work_sync(&rfkill_global_led_trigger_work);
 226}
 227#else
 228static void rfkill_led_trigger_event(struct rfkill *rfkill)
 229{
 230}
 231
 232static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 233{
 234	return 0;
 235}
 236
 237static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 238{
 239}
 240
 241static void rfkill_global_led_trigger_event(void)
 242{
 243}
 244
 245static int rfkill_global_led_trigger_register(void)
 246{
 247	return 0;
 248}
 249
 250static void rfkill_global_led_trigger_unregister(void)
 251{
 252}
 253#endif /* CONFIG_RFKILL_LEDS */
 254
 255static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 256			      enum rfkill_operation op)
 257{
 258	unsigned long flags;
 259
 260	ev->idx = rfkill->idx;
 261	ev->type = rfkill->type;
 262	ev->op = op;
 263
 264	spin_lock_irqsave(&rfkill->lock, flags);
 265	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 266	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 267					RFKILL_BLOCK_SW_PREV));
 268	spin_unlock_irqrestore(&rfkill->lock, flags);
 269}
 270
 271static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 272{
 273	struct rfkill_data *data;
 274	struct rfkill_int_event *ev;
 275
 276	list_for_each_entry(data, &rfkill_fds, list) {
 277		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 278		if (!ev)
 279			continue;
 280		rfkill_fill_event(&ev->ev, rfkill, op);
 281		mutex_lock(&data->mtx);
 282		list_add_tail(&ev->list, &data->events);
 283		mutex_unlock(&data->mtx);
 284		wake_up_interruptible(&data->read_wait);
 285	}
 286}
 287
 288static void rfkill_event(struct rfkill *rfkill)
 289{
 290	if (!rfkill->registered)
 291		return;
 292
 293	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 294
 295	/* also send event to /dev/rfkill */
 296	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 297}
 298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299/**
 300 * rfkill_set_block - wrapper for set_block method
 301 *
 302 * @rfkill: the rfkill struct to use
 303 * @blocked: the new software state
 304 *
 305 * Calls the set_block method (when applicable) and handles notifications
 306 * etc. as well.
 307 */
 308static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 309{
 310	unsigned long flags;
 311	bool prev, curr;
 312	int err;
 313
 314	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 315		return;
 316
 317	/*
 318	 * Some platforms (...!) generate input events which affect the
 319	 * _hard_ kill state -- whenever something tries to change the
 320	 * current software state query the hardware state too.
 321	 */
 322	if (rfkill->ops->query)
 323		rfkill->ops->query(rfkill, rfkill->data);
 324
 325	spin_lock_irqsave(&rfkill->lock, flags);
 326	prev = rfkill->state & RFKILL_BLOCK_SW;
 327
 328	if (prev)
 329		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 330	else
 331		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 332
 333	if (blocked)
 334		rfkill->state |= RFKILL_BLOCK_SW;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW;
 337
 338	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 339	spin_unlock_irqrestore(&rfkill->lock, flags);
 340
 341	err = rfkill->ops->set_block(rfkill->data, blocked);
 342
 343	spin_lock_irqsave(&rfkill->lock, flags);
 344	if (err) {
 345		/*
 346		 * Failed -- reset status to _PREV, which may be different
 347		 * from what we have set _PREV to earlier in this function
 348		 * if rfkill_set_sw_state was invoked.
 349		 */
 350		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 351			rfkill->state |= RFKILL_BLOCK_SW;
 352		else
 353			rfkill->state &= ~RFKILL_BLOCK_SW;
 354	}
 355	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 356	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 357	curr = rfkill->state & RFKILL_BLOCK_SW;
 358	spin_unlock_irqrestore(&rfkill->lock, flags);
 359
 360	rfkill_led_trigger_event(rfkill);
 361	rfkill_global_led_trigger_event();
 362
 363	if (prev != curr)
 364		rfkill_event(rfkill);
 365}
 366
 367static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 368{
 369	int i;
 370
 371	if (type != RFKILL_TYPE_ALL) {
 372		rfkill_global_states[type].cur = blocked;
 373		return;
 374	}
 375
 376	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 377		rfkill_global_states[i].cur = blocked;
 378}
 379
 380#ifdef CONFIG_RFKILL_INPUT
 381static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 382
 383/**
 384 * __rfkill_switch_all - Toggle state of all switches of given type
 385 * @type: type of interfaces to be affected
 386 * @blocked: the new state
 387 *
 388 * This function sets the state of all switches of given type,
 389 * unless a specific switch is suspended.
 
 390 *
 391 * Caller must have acquired rfkill_global_mutex.
 392 */
 393static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 394{
 395	struct rfkill *rfkill;
 396
 397	rfkill_update_global_state(type, blocked);
 398	list_for_each_entry(rfkill, &rfkill_list, node) {
 399		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 400			continue;
 401
 402		rfkill_set_block(rfkill, blocked);
 403	}
 404}
 405
 406/**
 407 * rfkill_switch_all - Toggle state of all switches of given type
 408 * @type: type of interfaces to be affected
 409 * @blocked: the new state
 410 *
 411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 412 * Please refer to __rfkill_switch_all() for details.
 413 *
 414 * Does nothing if the EPO lock is active.
 415 */
 416void rfkill_switch_all(enum rfkill_type type, bool blocked)
 417{
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422
 423	if (!rfkill_epo_lock_active)
 424		__rfkill_switch_all(type, blocked);
 425
 426	mutex_unlock(&rfkill_global_mutex);
 427}
 428
 429/**
 430 * rfkill_epo - emergency power off all transmitters
 431 *
 432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 434 *
 435 * The global state before the EPO is saved and can be restored later
 436 * using rfkill_restore_states().
 437 */
 438void rfkill_epo(void)
 439{
 440	struct rfkill *rfkill;
 441	int i;
 442
 443	if (atomic_read(&rfkill_input_disabled))
 444		return;
 445
 446	mutex_lock(&rfkill_global_mutex);
 447
 448	rfkill_epo_lock_active = true;
 449	list_for_each_entry(rfkill, &rfkill_list, node)
 450		rfkill_set_block(rfkill, true);
 451
 452	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 453		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 454		rfkill_global_states[i].cur = true;
 455	}
 456
 457	mutex_unlock(&rfkill_global_mutex);
 458}
 459
 460/**
 461 * rfkill_restore_states - restore global states
 462 *
 463 * Restore (and sync switches to) the global state from the
 464 * states in rfkill_default_states.  This can undo the effects of
 465 * a call to rfkill_epo().
 466 */
 467void rfkill_restore_states(void)
 468{
 469	int i;
 470
 471	if (atomic_read(&rfkill_input_disabled))
 472		return;
 473
 474	mutex_lock(&rfkill_global_mutex);
 475
 476	rfkill_epo_lock_active = false;
 477	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 478		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 479	mutex_unlock(&rfkill_global_mutex);
 480}
 481
 482/**
 483 * rfkill_remove_epo_lock - unlock state changes
 484 *
 485 * Used by rfkill-input manually unlock state changes, when
 486 * the EPO switch is deactivated.
 487 */
 488void rfkill_remove_epo_lock(void)
 489{
 490	if (atomic_read(&rfkill_input_disabled))
 491		return;
 492
 493	mutex_lock(&rfkill_global_mutex);
 494	rfkill_epo_lock_active = false;
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_is_epo_lock_active - returns true EPO is active
 500 *
 501 * Returns 0 (false) if there is NOT an active EPO condition,
 502 * and 1 (true) if there is an active EPO condition, which
 503 * locks all radios in one of the BLOCKED states.
 504 *
 505 * Can be called in atomic context.
 506 */
 507bool rfkill_is_epo_lock_active(void)
 508{
 509	return rfkill_epo_lock_active;
 510}
 511
 512/**
 513 * rfkill_get_global_sw_state - returns global state for a type
 514 * @type: the type to get the global state of
 515 *
 516 * Returns the current global state for a given wireless
 517 * device type.
 518 */
 519bool rfkill_get_global_sw_state(const enum rfkill_type type)
 520{
 521	return rfkill_global_states[type].cur;
 522}
 523#endif
 524
 
 525bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 526{
 527	unsigned long flags;
 528	bool ret, prev;
 529
 530	BUG_ON(!rfkill);
 531
 532	spin_lock_irqsave(&rfkill->lock, flags);
 533	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 534	if (blocked)
 535		rfkill->state |= RFKILL_BLOCK_HW;
 536	else
 537		rfkill->state &= ~RFKILL_BLOCK_HW;
 538	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 539	spin_unlock_irqrestore(&rfkill->lock, flags);
 540
 541	rfkill_led_trigger_event(rfkill);
 542	rfkill_global_led_trigger_event();
 543
 544	if (rfkill->registered && prev != blocked)
 545		schedule_work(&rfkill->uevent_work);
 546
 547	return ret;
 548}
 549EXPORT_SYMBOL(rfkill_set_hw_state);
 550
 551static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 552{
 553	u32 bit = RFKILL_BLOCK_SW;
 554
 555	/* if in a ops->set_block right now, use other bit */
 556	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 557		bit = RFKILL_BLOCK_SW_PREV;
 558
 559	if (blocked)
 560		rfkill->state |= bit;
 561	else
 562		rfkill->state &= ~bit;
 563}
 564
 565bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 566{
 567	unsigned long flags;
 568	bool prev, hwblock;
 569
 570	BUG_ON(!rfkill);
 571
 572	spin_lock_irqsave(&rfkill->lock, flags);
 573	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 574	__rfkill_set_sw_state(rfkill, blocked);
 575	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 576	blocked = blocked || hwblock;
 577	spin_unlock_irqrestore(&rfkill->lock, flags);
 578
 579	if (!rfkill->registered)
 580		return blocked;
 581
 582	if (prev != blocked && !hwblock)
 583		schedule_work(&rfkill->uevent_work);
 584
 585	rfkill_led_trigger_event(rfkill);
 586	rfkill_global_led_trigger_event();
 587
 588	return blocked;
 589}
 590EXPORT_SYMBOL(rfkill_set_sw_state);
 591
 592void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 593{
 594	unsigned long flags;
 595
 596	BUG_ON(!rfkill);
 597	BUG_ON(rfkill->registered);
 598
 599	spin_lock_irqsave(&rfkill->lock, flags);
 600	__rfkill_set_sw_state(rfkill, blocked);
 601	rfkill->persistent = true;
 602	spin_unlock_irqrestore(&rfkill->lock, flags);
 603}
 604EXPORT_SYMBOL(rfkill_init_sw_state);
 605
 606void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 607{
 608	unsigned long flags;
 609	bool swprev, hwprev;
 610
 611	BUG_ON(!rfkill);
 612
 613	spin_lock_irqsave(&rfkill->lock, flags);
 614
 615	/*
 616	 * No need to care about prev/setblock ... this is for uevent only
 617	 * and that will get triggered by rfkill_set_block anyway.
 618	 */
 619	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 620	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 621	__rfkill_set_sw_state(rfkill, sw);
 622	if (hw)
 623		rfkill->state |= RFKILL_BLOCK_HW;
 624	else
 625		rfkill->state &= ~RFKILL_BLOCK_HW;
 626
 627	spin_unlock_irqrestore(&rfkill->lock, flags);
 628
 629	if (!rfkill->registered) {
 630		rfkill->persistent = true;
 631	} else {
 632		if (swprev != sw || hwprev != hw)
 633			schedule_work(&rfkill->uevent_work);
 634
 635		rfkill_led_trigger_event(rfkill);
 636		rfkill_global_led_trigger_event();
 637	}
 638}
 639EXPORT_SYMBOL(rfkill_set_states);
 640
 641static const char * const rfkill_types[] = {
 642	NULL, /* RFKILL_TYPE_ALL */
 643	"wlan",
 644	"bluetooth",
 645	"ultrawideband",
 646	"wimax",
 647	"wwan",
 648	"gps",
 649	"fm",
 650	"nfc",
 651};
 652
 653enum rfkill_type rfkill_find_type(const char *name)
 654{
 655	int i;
 656
 657	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 658
 659	if (!name)
 660		return RFKILL_TYPE_ALL;
 661
 662	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 663		if (!strcmp(name, rfkill_types[i]))
 664			return i;
 665	return RFKILL_TYPE_ALL;
 666}
 667EXPORT_SYMBOL(rfkill_find_type);
 668
 669static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 670			 char *buf)
 671{
 672	struct rfkill *rfkill = to_rfkill(dev);
 673
 674	return sprintf(buf, "%s\n", rfkill->name);
 675}
 676static DEVICE_ATTR_RO(name);
 677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct rfkill *rfkill = to_rfkill(dev);
 682
 683	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
 684}
 685static DEVICE_ATTR_RO(type);
 686
 687static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 688			  char *buf)
 689{
 690	struct rfkill *rfkill = to_rfkill(dev);
 691
 692	return sprintf(buf, "%d\n", rfkill->idx);
 693}
 694static DEVICE_ATTR_RO(index);
 695
 696static ssize_t persistent_show(struct device *dev,
 697			       struct device_attribute *attr, char *buf)
 698{
 699	struct rfkill *rfkill = to_rfkill(dev);
 700
 701	return sprintf(buf, "%d\n", rfkill->persistent);
 702}
 703static DEVICE_ATTR_RO(persistent);
 704
 705static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 706			 char *buf)
 707{
 708	struct rfkill *rfkill = to_rfkill(dev);
 709
 710	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 711}
 712static DEVICE_ATTR_RO(hard);
 713
 714static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 715			 char *buf)
 716{
 717	struct rfkill *rfkill = to_rfkill(dev);
 718
 719	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 720}
 721
 722static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 723			  const char *buf, size_t count)
 724{
 725	struct rfkill *rfkill = to_rfkill(dev);
 726	unsigned long state;
 727	int err;
 728
 729	if (!capable(CAP_NET_ADMIN))
 730		return -EPERM;
 731
 732	err = kstrtoul(buf, 0, &state);
 733	if (err)
 734		return err;
 735
 736	if (state > 1 )
 737		return -EINVAL;
 738
 739	mutex_lock(&rfkill_global_mutex);
 740	rfkill_set_block(rfkill, state);
 741	mutex_unlock(&rfkill_global_mutex);
 742
 743	return count;
 744}
 745static DEVICE_ATTR_RW(soft);
 746
 747static u8 user_state_from_blocked(unsigned long state)
 748{
 749	if (state & RFKILL_BLOCK_HW)
 750		return RFKILL_USER_STATE_HARD_BLOCKED;
 751	if (state & RFKILL_BLOCK_SW)
 752		return RFKILL_USER_STATE_SOFT_BLOCKED;
 753
 754	return RFKILL_USER_STATE_UNBLOCKED;
 755}
 756
 757static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 758			  char *buf)
 759{
 760	struct rfkill *rfkill = to_rfkill(dev);
 761
 762	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 763}
 764
 765static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 766			   const char *buf, size_t count)
 767{
 768	struct rfkill *rfkill = to_rfkill(dev);
 769	unsigned long state;
 770	int err;
 771
 772	if (!capable(CAP_NET_ADMIN))
 773		return -EPERM;
 774
 775	err = kstrtoul(buf, 0, &state);
 776	if (err)
 777		return err;
 778
 779	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 780	    state != RFKILL_USER_STATE_UNBLOCKED)
 781		return -EINVAL;
 782
 783	mutex_lock(&rfkill_global_mutex);
 784	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 785	mutex_unlock(&rfkill_global_mutex);
 786
 787	return count;
 788}
 789static DEVICE_ATTR_RW(state);
 790
 
 
 
 
 
 
 
 791static struct attribute *rfkill_dev_attrs[] = {
 792	&dev_attr_name.attr,
 793	&dev_attr_type.attr,
 794	&dev_attr_index.attr,
 795	&dev_attr_persistent.attr,
 796	&dev_attr_state.attr,
 
 797	&dev_attr_soft.attr,
 798	&dev_attr_hard.attr,
 799	NULL,
 800};
 801ATTRIBUTE_GROUPS(rfkill_dev);
 802
 803static void rfkill_release(struct device *dev)
 804{
 805	struct rfkill *rfkill = to_rfkill(dev);
 806
 807	kfree(rfkill);
 808}
 809
 810static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 811{
 812	struct rfkill *rfkill = to_rfkill(dev);
 813	unsigned long flags;
 814	u32 state;
 815	int error;
 816
 817	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 818	if (error)
 819		return error;
 820	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 821			       rfkill_types[rfkill->type]);
 822	if (error)
 823		return error;
 824	spin_lock_irqsave(&rfkill->lock, flags);
 825	state = rfkill->state;
 826	spin_unlock_irqrestore(&rfkill->lock, flags);
 827	error = add_uevent_var(env, "RFKILL_STATE=%d",
 828			       user_state_from_blocked(state));
 829	return error;
 830}
 831
 832void rfkill_pause_polling(struct rfkill *rfkill)
 833{
 834	BUG_ON(!rfkill);
 835
 836	if (!rfkill->ops->poll)
 837		return;
 838
 839	rfkill->polling_paused = true;
 840	cancel_delayed_work_sync(&rfkill->poll_work);
 841}
 842EXPORT_SYMBOL(rfkill_pause_polling);
 843
 844void rfkill_resume_polling(struct rfkill *rfkill)
 845{
 846	BUG_ON(!rfkill);
 847
 848	if (!rfkill->ops->poll)
 849		return;
 850
 851	rfkill->polling_paused = false;
 852
 853	if (rfkill->suspended)
 854		return;
 855
 856	queue_delayed_work(system_power_efficient_wq,
 857			   &rfkill->poll_work, 0);
 858}
 859EXPORT_SYMBOL(rfkill_resume_polling);
 860
 861#ifdef CONFIG_PM_SLEEP
 862static int rfkill_suspend(struct device *dev)
 863{
 864	struct rfkill *rfkill = to_rfkill(dev);
 865
 866	rfkill->suspended = true;
 867	cancel_delayed_work_sync(&rfkill->poll_work);
 868
 869	return 0;
 870}
 871
 872static int rfkill_resume(struct device *dev)
 873{
 874	struct rfkill *rfkill = to_rfkill(dev);
 875	bool cur;
 876
 877	rfkill->suspended = false;
 878
 879	if (!rfkill->persistent) {
 880		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 881		rfkill_set_block(rfkill, cur);
 882	}
 883
 884	if (rfkill->ops->poll && !rfkill->polling_paused)
 885		queue_delayed_work(system_power_efficient_wq,
 886				   &rfkill->poll_work, 0);
 887
 888	return 0;
 889}
 890
 891static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 892#define RFKILL_PM_OPS (&rfkill_pm_ops)
 893#else
 894#define RFKILL_PM_OPS NULL
 895#endif
 896
 897static struct class rfkill_class = {
 898	.name		= "rfkill",
 899	.dev_release	= rfkill_release,
 900	.dev_groups	= rfkill_dev_groups,
 901	.dev_uevent	= rfkill_dev_uevent,
 902	.pm		= RFKILL_PM_OPS,
 
 903};
 904
 905bool rfkill_blocked(struct rfkill *rfkill)
 906{
 907	unsigned long flags;
 908	u32 state;
 909
 910	spin_lock_irqsave(&rfkill->lock, flags);
 911	state = rfkill->state;
 912	spin_unlock_irqrestore(&rfkill->lock, flags);
 913
 914	return !!(state & RFKILL_BLOCK_ANY);
 915}
 916EXPORT_SYMBOL(rfkill_blocked);
 917
 918
 919struct rfkill * __must_check rfkill_alloc(const char *name,
 920					  struct device *parent,
 921					  const enum rfkill_type type,
 922					  const struct rfkill_ops *ops,
 923					  void *ops_data)
 924{
 925	struct rfkill *rfkill;
 926	struct device *dev;
 927
 928	if (WARN_ON(!ops))
 929		return NULL;
 930
 931	if (WARN_ON(!ops->set_block))
 932		return NULL;
 933
 934	if (WARN_ON(!name))
 935		return NULL;
 936
 937	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 938		return NULL;
 939
 940	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
 941	if (!rfkill)
 942		return NULL;
 943
 944	spin_lock_init(&rfkill->lock);
 945	INIT_LIST_HEAD(&rfkill->node);
 946	rfkill->type = type;
 947	strcpy(rfkill->name, name);
 948	rfkill->ops = ops;
 949	rfkill->data = ops_data;
 950
 951	dev = &rfkill->dev;
 952	dev->class = &rfkill_class;
 953	dev->parent = parent;
 954	device_initialize(dev);
 955
 956	return rfkill;
 957}
 958EXPORT_SYMBOL(rfkill_alloc);
 959
 960static void rfkill_poll(struct work_struct *work)
 961{
 962	struct rfkill *rfkill;
 963
 964	rfkill = container_of(work, struct rfkill, poll_work.work);
 965
 966	/*
 967	 * Poll hardware state -- driver will use one of the
 968	 * rfkill_set{,_hw,_sw}_state functions and use its
 969	 * return value to update the current status.
 970	 */
 971	rfkill->ops->poll(rfkill, rfkill->data);
 972
 973	queue_delayed_work(system_power_efficient_wq,
 974		&rfkill->poll_work,
 975		round_jiffies_relative(POLL_INTERVAL));
 976}
 977
 978static void rfkill_uevent_work(struct work_struct *work)
 979{
 980	struct rfkill *rfkill;
 981
 982	rfkill = container_of(work, struct rfkill, uevent_work);
 983
 984	mutex_lock(&rfkill_global_mutex);
 985	rfkill_event(rfkill);
 986	mutex_unlock(&rfkill_global_mutex);
 987}
 988
 989static void rfkill_sync_work(struct work_struct *work)
 990{
 991	struct rfkill *rfkill;
 992	bool cur;
 993
 994	rfkill = container_of(work, struct rfkill, sync_work);
 995
 996	mutex_lock(&rfkill_global_mutex);
 997	cur = rfkill_global_states[rfkill->type].cur;
 998	rfkill_set_block(rfkill, cur);
 999	mutex_unlock(&rfkill_global_mutex);
1000}
1001
1002int __must_check rfkill_register(struct rfkill *rfkill)
1003{
1004	static unsigned long rfkill_no;
1005	struct device *dev;
1006	int error;
1007
1008	if (!rfkill)
1009		return -EINVAL;
1010
1011	dev = &rfkill->dev;
1012
1013	mutex_lock(&rfkill_global_mutex);
1014
1015	if (rfkill->registered) {
1016		error = -EALREADY;
1017		goto unlock;
1018	}
1019
1020	rfkill->idx = rfkill_no;
1021	dev_set_name(dev, "rfkill%lu", rfkill_no);
1022	rfkill_no++;
1023
1024	list_add_tail(&rfkill->node, &rfkill_list);
1025
1026	error = device_add(dev);
1027	if (error)
1028		goto remove;
1029
1030	error = rfkill_led_trigger_register(rfkill);
1031	if (error)
1032		goto devdel;
1033
1034	rfkill->registered = true;
1035
1036	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1037	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1038	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1039
1040	if (rfkill->ops->poll)
1041		queue_delayed_work(system_power_efficient_wq,
1042			&rfkill->poll_work,
1043			round_jiffies_relative(POLL_INTERVAL));
1044
1045	if (!rfkill->persistent || rfkill_epo_lock_active) {
1046		schedule_work(&rfkill->sync_work);
1047	} else {
1048#ifdef CONFIG_RFKILL_INPUT
1049		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1050
1051		if (!atomic_read(&rfkill_input_disabled))
1052			__rfkill_switch_all(rfkill->type, soft_blocked);
1053#endif
1054	}
1055
1056	rfkill_global_led_trigger_event();
1057	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1058
1059	mutex_unlock(&rfkill_global_mutex);
1060	return 0;
1061
1062 devdel:
1063	device_del(&rfkill->dev);
1064 remove:
1065	list_del_init(&rfkill->node);
1066 unlock:
1067	mutex_unlock(&rfkill_global_mutex);
1068	return error;
1069}
1070EXPORT_SYMBOL(rfkill_register);
1071
1072void rfkill_unregister(struct rfkill *rfkill)
1073{
1074	BUG_ON(!rfkill);
1075
1076	if (rfkill->ops->poll)
1077		cancel_delayed_work_sync(&rfkill->poll_work);
1078
1079	cancel_work_sync(&rfkill->uevent_work);
1080	cancel_work_sync(&rfkill->sync_work);
1081
1082	rfkill->registered = false;
1083
1084	device_del(&rfkill->dev);
1085
1086	mutex_lock(&rfkill_global_mutex);
1087	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1088	list_del_init(&rfkill->node);
1089	rfkill_global_led_trigger_event();
1090	mutex_unlock(&rfkill_global_mutex);
1091
1092	rfkill_led_trigger_unregister(rfkill);
1093}
1094EXPORT_SYMBOL(rfkill_unregister);
1095
1096void rfkill_destroy(struct rfkill *rfkill)
1097{
1098	if (rfkill)
1099		put_device(&rfkill->dev);
1100}
1101EXPORT_SYMBOL(rfkill_destroy);
1102
1103static int rfkill_fop_open(struct inode *inode, struct file *file)
1104{
1105	struct rfkill_data *data;
1106	struct rfkill *rfkill;
1107	struct rfkill_int_event *ev, *tmp;
1108
1109	data = kzalloc(sizeof(*data), GFP_KERNEL);
1110	if (!data)
1111		return -ENOMEM;
1112
1113	INIT_LIST_HEAD(&data->events);
1114	mutex_init(&data->mtx);
1115	init_waitqueue_head(&data->read_wait);
1116
1117	mutex_lock(&rfkill_global_mutex);
1118	mutex_lock(&data->mtx);
1119	/*
1120	 * start getting events from elsewhere but hold mtx to get
1121	 * startup events added first
1122	 */
1123
1124	list_for_each_entry(rfkill, &rfkill_list, node) {
1125		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1126		if (!ev)
1127			goto free;
1128		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1129		list_add_tail(&ev->list, &data->events);
1130	}
1131	list_add(&data->list, &rfkill_fds);
1132	mutex_unlock(&data->mtx);
1133	mutex_unlock(&rfkill_global_mutex);
1134
1135	file->private_data = data;
1136
1137	return stream_open(inode, file);
1138
1139 free:
1140	mutex_unlock(&data->mtx);
1141	mutex_unlock(&rfkill_global_mutex);
1142	mutex_destroy(&data->mtx);
1143	list_for_each_entry_safe(ev, tmp, &data->events, list)
1144		kfree(ev);
1145	kfree(data);
1146	return -ENOMEM;
1147}
1148
1149static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1150{
1151	struct rfkill_data *data = file->private_data;
1152	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1153
1154	poll_wait(file, &data->read_wait, wait);
1155
1156	mutex_lock(&data->mtx);
1157	if (!list_empty(&data->events))
1158		res = EPOLLIN | EPOLLRDNORM;
1159	mutex_unlock(&data->mtx);
1160
1161	return res;
1162}
1163
 
 
 
 
 
 
 
 
 
 
 
1164static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1165			       size_t count, loff_t *pos)
1166{
1167	struct rfkill_data *data = file->private_data;
1168	struct rfkill_int_event *ev;
1169	unsigned long sz;
1170	int ret;
1171
1172	mutex_lock(&data->mtx);
1173
1174	while (list_empty(&data->events)) {
1175		if (file->f_flags & O_NONBLOCK) {
1176			ret = -EAGAIN;
1177			goto out;
1178		}
1179		mutex_unlock(&data->mtx);
1180		/* since we re-check and it just compares pointers,
1181		 * using !list_empty() without locking isn't a problem
1182		 */
1183		ret = wait_event_interruptible(data->read_wait,
1184					       !list_empty(&data->events));
1185		mutex_lock(&data->mtx);
1186
1187		if (ret)
1188			goto out;
1189	}
1190
1191	ev = list_first_entry(&data->events, struct rfkill_int_event,
1192				list);
1193
1194	sz = min_t(unsigned long, sizeof(ev->ev), count);
1195	ret = sz;
1196	if (copy_to_user(buf, &ev->ev, sz))
1197		ret = -EFAULT;
1198
1199	list_del(&ev->list);
1200	kfree(ev);
1201 out:
1202	mutex_unlock(&data->mtx);
1203	return ret;
1204}
1205
1206static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1207				size_t count, loff_t *pos)
1208{
1209	struct rfkill *rfkill;
1210	struct rfkill_event ev;
1211	int ret;
1212
1213	/* we don't need the 'hard' variable but accept it */
1214	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1215		return -EINVAL;
1216
1217	/*
1218	 * Copy as much data as we can accept into our 'ev' buffer,
1219	 * but tell userspace how much we've copied so it can determine
1220	 * our API version even in a write() call, if it cares.
1221	 */
1222	count = min(count, sizeof(ev));
1223	if (copy_from_user(&ev, buf, count))
1224		return -EFAULT;
1225
 
 
 
1226	if (ev.type >= NUM_RFKILL_TYPES)
1227		return -EINVAL;
1228
1229	mutex_lock(&rfkill_global_mutex);
1230
1231	switch (ev.op) {
1232	case RFKILL_OP_CHANGE_ALL:
1233		rfkill_update_global_state(ev.type, ev.soft);
1234		list_for_each_entry(rfkill, &rfkill_list, node)
1235			if (rfkill->type == ev.type ||
1236			    ev.type == RFKILL_TYPE_ALL)
1237				rfkill_set_block(rfkill, ev.soft);
1238		ret = 0;
1239		break;
1240	case RFKILL_OP_CHANGE:
1241		list_for_each_entry(rfkill, &rfkill_list, node)
1242			if (rfkill->idx == ev.idx &&
1243			    (rfkill->type == ev.type ||
1244			     ev.type == RFKILL_TYPE_ALL))
1245				rfkill_set_block(rfkill, ev.soft);
1246		ret = 0;
1247		break;
1248	default:
1249		ret = -EINVAL;
1250		break;
1251	}
1252
 
 
 
 
 
 
 
 
 
1253	mutex_unlock(&rfkill_global_mutex);
1254
1255	return ret ?: count;
1256}
1257
1258static int rfkill_fop_release(struct inode *inode, struct file *file)
1259{
1260	struct rfkill_data *data = file->private_data;
1261	struct rfkill_int_event *ev, *tmp;
1262
1263	mutex_lock(&rfkill_global_mutex);
1264	list_del(&data->list);
1265	mutex_unlock(&rfkill_global_mutex);
1266
1267	mutex_destroy(&data->mtx);
1268	list_for_each_entry_safe(ev, tmp, &data->events, list)
1269		kfree(ev);
1270
1271#ifdef CONFIG_RFKILL_INPUT
1272	if (data->input_handler)
1273		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1274			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1275#endif
1276
1277	kfree(data);
1278
1279	return 0;
1280}
1281
1282#ifdef CONFIG_RFKILL_INPUT
1283static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1284			     unsigned long arg)
1285{
1286	struct rfkill_data *data = file->private_data;
1287
1288	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1289		return -ENOSYS;
1290
1291	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1292		return -ENOSYS;
1293
1294	mutex_lock(&data->mtx);
1295
1296	if (!data->input_handler) {
1297		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1298			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1299		data->input_handler = true;
1300	}
1301
1302	mutex_unlock(&data->mtx);
1303
1304	return 0;
1305}
1306#endif
1307
1308static const struct file_operations rfkill_fops = {
1309	.owner		= THIS_MODULE,
1310	.open		= rfkill_fop_open,
1311	.read		= rfkill_fop_read,
1312	.write		= rfkill_fop_write,
1313	.poll		= rfkill_fop_poll,
1314	.release	= rfkill_fop_release,
1315#ifdef CONFIG_RFKILL_INPUT
1316	.unlocked_ioctl	= rfkill_fop_ioctl,
1317	.compat_ioctl	= compat_ptr_ioctl,
1318#endif
1319	.llseek		= no_llseek,
1320};
1321
1322#define RFKILL_NAME "rfkill"
1323
1324static struct miscdevice rfkill_miscdev = {
 
1325	.fops	= &rfkill_fops,
1326	.name	= RFKILL_NAME,
1327	.minor	= RFKILL_MINOR,
1328};
1329
1330static int __init rfkill_init(void)
1331{
1332	int error;
 
1333
1334	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
 
1335
1336	error = class_register(&rfkill_class);
1337	if (error)
1338		goto error_class;
1339
1340	error = misc_register(&rfkill_miscdev);
1341	if (error)
1342		goto error_misc;
1343
1344	error = rfkill_global_led_trigger_register();
1345	if (error)
1346		goto error_led_trigger;
1347
1348#ifdef CONFIG_RFKILL_INPUT
1349	error = rfkill_handler_init();
1350	if (error)
1351		goto error_input;
 
 
 
1352#endif
1353
1354	return 0;
1355
1356#ifdef CONFIG_RFKILL_INPUT
1357error_input:
1358	rfkill_global_led_trigger_unregister();
1359#endif
1360error_led_trigger:
1361	misc_deregister(&rfkill_miscdev);
1362error_misc:
1363	class_unregister(&rfkill_class);
1364error_class:
1365	return error;
1366}
1367subsys_initcall(rfkill_init);
1368
1369static void __exit rfkill_exit(void)
1370{
1371#ifdef CONFIG_RFKILL_INPUT
1372	rfkill_handler_exit();
1373#endif
1374	rfkill_global_led_trigger_unregister();
1375	misc_deregister(&rfkill_miscdev);
1376	class_unregister(&rfkill_class);
1377}
1378module_exit(rfkill_exit);
1379
1380MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1381MODULE_ALIAS("devname:" RFKILL_NAME);
v3.15
 
   1/*
   2 * Copyright (C) 2006 - 2007 Ivo van Doorn
   3 * Copyright (C) 2007 Dmitry Torokhov
   4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23#include <linux/workqueue.h>
  24#include <linux/capability.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/rfkill.h>
  28#include <linux/sched.h>
  29#include <linux/spinlock.h>
  30#include <linux/device.h>
  31#include <linux/miscdevice.h>
  32#include <linux/wait.h>
  33#include <linux/poll.h>
  34#include <linux/fs.h>
  35#include <linux/slab.h>
  36
  37#include "rfkill.h"
  38
  39#define POLL_INTERVAL		(5 * HZ)
  40
  41#define RFKILL_BLOCK_HW		BIT(0)
  42#define RFKILL_BLOCK_SW		BIT(1)
  43#define RFKILL_BLOCK_SW_PREV	BIT(2)
  44#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  45				 RFKILL_BLOCK_SW |\
  46				 RFKILL_BLOCK_SW_PREV)
  47#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  48
  49struct rfkill {
  50	spinlock_t		lock;
  51
  52	const char		*name;
  53	enum rfkill_type	type;
  54
  55	unsigned long		state;
  56
  57	u32			idx;
  58
  59	bool			registered;
  60	bool			persistent;
 
 
  61
  62	const struct rfkill_ops	*ops;
  63	void			*data;
  64
  65#ifdef CONFIG_RFKILL_LEDS
  66	struct led_trigger	led_trigger;
  67	const char		*ledtrigname;
  68#endif
  69
  70	struct device		dev;
  71	struct list_head	node;
  72
  73	struct delayed_work	poll_work;
  74	struct work_struct	uevent_work;
  75	struct work_struct	sync_work;
 
  76};
  77#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  78
  79struct rfkill_int_event {
  80	struct list_head	list;
  81	struct rfkill_event	ev;
  82};
  83
  84struct rfkill_data {
  85	struct list_head	list;
  86	struct list_head	events;
  87	struct mutex		mtx;
  88	wait_queue_head_t	read_wait;
  89	bool			input_handler;
  90};
  91
  92
  93MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  94MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  95MODULE_DESCRIPTION("RF switch support");
  96MODULE_LICENSE("GPL");
  97
  98
  99/*
 100 * The locking here should be made much smarter, we currently have
 101 * a bit of a stupid situation because drivers might want to register
 102 * the rfkill struct under their own lock, and take this lock during
 103 * rfkill method calls -- which will cause an AB-BA deadlock situation.
 104 *
 105 * To fix that, we need to rework this code here to be mostly lock-free
 106 * and only use the mutex for list manipulations, not to protect the
 107 * various other global variables. Then we can avoid holding the mutex
 108 * around driver operations, and all is happy.
 109 */
 110static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 111static DEFINE_MUTEX(rfkill_global_mutex);
 112static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 113
 114static unsigned int rfkill_default_state = 1;
 115module_param_named(default_state, rfkill_default_state, uint, 0444);
 116MODULE_PARM_DESC(default_state,
 117		 "Default initial state for all radio types, 0 = radio off");
 118
 119static struct {
 120	bool cur, sav;
 121} rfkill_global_states[NUM_RFKILL_TYPES];
 122
 123static bool rfkill_epo_lock_active;
 124
 125
 126#ifdef CONFIG_RFKILL_LEDS
 127static void rfkill_led_trigger_event(struct rfkill *rfkill)
 128{
 129	struct led_trigger *trigger;
 130
 131	if (!rfkill->registered)
 132		return;
 133
 134	trigger = &rfkill->led_trigger;
 135
 136	if (rfkill->state & RFKILL_BLOCK_ANY)
 137		led_trigger_event(trigger, LED_OFF);
 138	else
 139		led_trigger_event(trigger, LED_FULL);
 140}
 141
 142static void rfkill_led_trigger_activate(struct led_classdev *led)
 143{
 144	struct rfkill *rfkill;
 145
 146	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 147
 148	rfkill_led_trigger_event(rfkill);
 
 
 149}
 150
 151const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 152{
 153	return rfkill->led_trigger.name;
 154}
 155EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 156
 157void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 158{
 159	BUG_ON(!rfkill);
 160
 161	rfkill->ledtrigname = name;
 162}
 163EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 164
 165static int rfkill_led_trigger_register(struct rfkill *rfkill)
 166{
 167	rfkill->led_trigger.name = rfkill->ledtrigname
 168					? : dev_name(&rfkill->dev);
 169	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 170	return led_trigger_register(&rfkill->led_trigger);
 171}
 172
 173static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 174{
 175	led_trigger_unregister(&rfkill->led_trigger);
 176}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177#else
 178static void rfkill_led_trigger_event(struct rfkill *rfkill)
 179{
 180}
 181
 182static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 183{
 184	return 0;
 185}
 186
 187static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 188{
 189}
 
 
 
 
 
 
 
 
 
 
 
 
 
 190#endif /* CONFIG_RFKILL_LEDS */
 191
 192static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 193			      enum rfkill_operation op)
 194{
 195	unsigned long flags;
 196
 197	ev->idx = rfkill->idx;
 198	ev->type = rfkill->type;
 199	ev->op = op;
 200
 201	spin_lock_irqsave(&rfkill->lock, flags);
 202	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 203	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 204					RFKILL_BLOCK_SW_PREV));
 205	spin_unlock_irqrestore(&rfkill->lock, flags);
 206}
 207
 208static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 209{
 210	struct rfkill_data *data;
 211	struct rfkill_int_event *ev;
 212
 213	list_for_each_entry(data, &rfkill_fds, list) {
 214		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 215		if (!ev)
 216			continue;
 217		rfkill_fill_event(&ev->ev, rfkill, op);
 218		mutex_lock(&data->mtx);
 219		list_add_tail(&ev->list, &data->events);
 220		mutex_unlock(&data->mtx);
 221		wake_up_interruptible(&data->read_wait);
 222	}
 223}
 224
 225static void rfkill_event(struct rfkill *rfkill)
 226{
 227	if (!rfkill->registered)
 228		return;
 229
 230	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 231
 232	/* also send event to /dev/rfkill */
 233	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 234}
 235
 236static bool __rfkill_set_hw_state(struct rfkill *rfkill,
 237				  bool blocked, bool *change)
 238{
 239	unsigned long flags;
 240	bool prev, any;
 241
 242	BUG_ON(!rfkill);
 243
 244	spin_lock_irqsave(&rfkill->lock, flags);
 245	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 246	if (blocked)
 247		rfkill->state |= RFKILL_BLOCK_HW;
 248	else
 249		rfkill->state &= ~RFKILL_BLOCK_HW;
 250	*change = prev != blocked;
 251	any = !!(rfkill->state & RFKILL_BLOCK_ANY);
 252	spin_unlock_irqrestore(&rfkill->lock, flags);
 253
 254	rfkill_led_trigger_event(rfkill);
 255
 256	return any;
 257}
 258
 259/**
 260 * rfkill_set_block - wrapper for set_block method
 261 *
 262 * @rfkill: the rfkill struct to use
 263 * @blocked: the new software state
 264 *
 265 * Calls the set_block method (when applicable) and handles notifications
 266 * etc. as well.
 267 */
 268static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 269{
 270	unsigned long flags;
 271	bool prev, curr;
 272	int err;
 273
 274	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 275		return;
 276
 277	/*
 278	 * Some platforms (...!) generate input events which affect the
 279	 * _hard_ kill state -- whenever something tries to change the
 280	 * current software state query the hardware state too.
 281	 */
 282	if (rfkill->ops->query)
 283		rfkill->ops->query(rfkill, rfkill->data);
 284
 285	spin_lock_irqsave(&rfkill->lock, flags);
 286	prev = rfkill->state & RFKILL_BLOCK_SW;
 287
 288	if (rfkill->state & RFKILL_BLOCK_SW)
 289		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 290	else
 291		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 292
 293	if (blocked)
 294		rfkill->state |= RFKILL_BLOCK_SW;
 295	else
 296		rfkill->state &= ~RFKILL_BLOCK_SW;
 297
 298	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 299	spin_unlock_irqrestore(&rfkill->lock, flags);
 300
 301	err = rfkill->ops->set_block(rfkill->data, blocked);
 302
 303	spin_lock_irqsave(&rfkill->lock, flags);
 304	if (err) {
 305		/*
 306		 * Failed -- reset status to _prev, this may be different
 307		 * from what set set _PREV to earlier in this function
 308		 * if rfkill_set_sw_state was invoked.
 309		 */
 310		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 311			rfkill->state |= RFKILL_BLOCK_SW;
 312		else
 313			rfkill->state &= ~RFKILL_BLOCK_SW;
 314	}
 315	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 316	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 317	curr = rfkill->state & RFKILL_BLOCK_SW;
 318	spin_unlock_irqrestore(&rfkill->lock, flags);
 319
 320	rfkill_led_trigger_event(rfkill);
 
 321
 322	if (prev != curr)
 323		rfkill_event(rfkill);
 324}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 326#ifdef CONFIG_RFKILL_INPUT
 327static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 328
 329/**
 330 * __rfkill_switch_all - Toggle state of all switches of given type
 331 * @type: type of interfaces to be affected
 332 * @state: the new state
 333 *
 334 * This function sets the state of all switches of given type,
 335 * unless a specific switch is claimed by userspace (in which case,
 336 * that switch is left alone) or suspended.
 337 *
 338 * Caller must have acquired rfkill_global_mutex.
 339 */
 340static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 341{
 342	struct rfkill *rfkill;
 343
 344	rfkill_global_states[type].cur = blocked;
 345	list_for_each_entry(rfkill, &rfkill_list, node) {
 346		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 347			continue;
 348
 349		rfkill_set_block(rfkill, blocked);
 350	}
 351}
 352
 353/**
 354 * rfkill_switch_all - Toggle state of all switches of given type
 355 * @type: type of interfaces to be affected
 356 * @state: the new state
 357 *
 358 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 359 * Please refer to __rfkill_switch_all() for details.
 360 *
 361 * Does nothing if the EPO lock is active.
 362 */
 363void rfkill_switch_all(enum rfkill_type type, bool blocked)
 364{
 365	if (atomic_read(&rfkill_input_disabled))
 366		return;
 367
 368	mutex_lock(&rfkill_global_mutex);
 369
 370	if (!rfkill_epo_lock_active)
 371		__rfkill_switch_all(type, blocked);
 372
 373	mutex_unlock(&rfkill_global_mutex);
 374}
 375
 376/**
 377 * rfkill_epo - emergency power off all transmitters
 378 *
 379 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 380 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 381 *
 382 * The global state before the EPO is saved and can be restored later
 383 * using rfkill_restore_states().
 384 */
 385void rfkill_epo(void)
 386{
 387	struct rfkill *rfkill;
 388	int i;
 389
 390	if (atomic_read(&rfkill_input_disabled))
 391		return;
 392
 393	mutex_lock(&rfkill_global_mutex);
 394
 395	rfkill_epo_lock_active = true;
 396	list_for_each_entry(rfkill, &rfkill_list, node)
 397		rfkill_set_block(rfkill, true);
 398
 399	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 400		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 401		rfkill_global_states[i].cur = true;
 402	}
 403
 404	mutex_unlock(&rfkill_global_mutex);
 405}
 406
 407/**
 408 * rfkill_restore_states - restore global states
 409 *
 410 * Restore (and sync switches to) the global state from the
 411 * states in rfkill_default_states.  This can undo the effects of
 412 * a call to rfkill_epo().
 413 */
 414void rfkill_restore_states(void)
 415{
 416	int i;
 417
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422
 423	rfkill_epo_lock_active = false;
 424	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 425		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 426	mutex_unlock(&rfkill_global_mutex);
 427}
 428
 429/**
 430 * rfkill_remove_epo_lock - unlock state changes
 431 *
 432 * Used by rfkill-input manually unlock state changes, when
 433 * the EPO switch is deactivated.
 434 */
 435void rfkill_remove_epo_lock(void)
 436{
 437	if (atomic_read(&rfkill_input_disabled))
 438		return;
 439
 440	mutex_lock(&rfkill_global_mutex);
 441	rfkill_epo_lock_active = false;
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_is_epo_lock_active - returns true EPO is active
 447 *
 448 * Returns 0 (false) if there is NOT an active EPO contidion,
 449 * and 1 (true) if there is an active EPO contition, which
 450 * locks all radios in one of the BLOCKED states.
 451 *
 452 * Can be called in atomic context.
 453 */
 454bool rfkill_is_epo_lock_active(void)
 455{
 456	return rfkill_epo_lock_active;
 457}
 458
 459/**
 460 * rfkill_get_global_sw_state - returns global state for a type
 461 * @type: the type to get the global state of
 462 *
 463 * Returns the current global state for a given wireless
 464 * device type.
 465 */
 466bool rfkill_get_global_sw_state(const enum rfkill_type type)
 467{
 468	return rfkill_global_states[type].cur;
 469}
 470#endif
 471
 472
 473bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 474{
 475	bool ret, change;
 
 476
 477	ret = __rfkill_set_hw_state(rfkill, blocked, &change);
 478
 479	if (!rfkill->registered)
 480		return ret;
 
 
 
 
 
 
 
 
 
 481
 482	if (change)
 483		schedule_work(&rfkill->uevent_work);
 484
 485	return ret;
 486}
 487EXPORT_SYMBOL(rfkill_set_hw_state);
 488
 489static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 490{
 491	u32 bit = RFKILL_BLOCK_SW;
 492
 493	/* if in a ops->set_block right now, use other bit */
 494	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 495		bit = RFKILL_BLOCK_SW_PREV;
 496
 497	if (blocked)
 498		rfkill->state |= bit;
 499	else
 500		rfkill->state &= ~bit;
 501}
 502
 503bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 504{
 505	unsigned long flags;
 506	bool prev, hwblock;
 507
 508	BUG_ON(!rfkill);
 509
 510	spin_lock_irqsave(&rfkill->lock, flags);
 511	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 512	__rfkill_set_sw_state(rfkill, blocked);
 513	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 514	blocked = blocked || hwblock;
 515	spin_unlock_irqrestore(&rfkill->lock, flags);
 516
 517	if (!rfkill->registered)
 518		return blocked;
 519
 520	if (prev != blocked && !hwblock)
 521		schedule_work(&rfkill->uevent_work);
 522
 523	rfkill_led_trigger_event(rfkill);
 
 524
 525	return blocked;
 526}
 527EXPORT_SYMBOL(rfkill_set_sw_state);
 528
 529void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 530{
 531	unsigned long flags;
 532
 533	BUG_ON(!rfkill);
 534	BUG_ON(rfkill->registered);
 535
 536	spin_lock_irqsave(&rfkill->lock, flags);
 537	__rfkill_set_sw_state(rfkill, blocked);
 538	rfkill->persistent = true;
 539	spin_unlock_irqrestore(&rfkill->lock, flags);
 540}
 541EXPORT_SYMBOL(rfkill_init_sw_state);
 542
 543void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 544{
 545	unsigned long flags;
 546	bool swprev, hwprev;
 547
 548	BUG_ON(!rfkill);
 549
 550	spin_lock_irqsave(&rfkill->lock, flags);
 551
 552	/*
 553	 * No need to care about prev/setblock ... this is for uevent only
 554	 * and that will get triggered by rfkill_set_block anyway.
 555	 */
 556	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 557	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 558	__rfkill_set_sw_state(rfkill, sw);
 559	if (hw)
 560		rfkill->state |= RFKILL_BLOCK_HW;
 561	else
 562		rfkill->state &= ~RFKILL_BLOCK_HW;
 563
 564	spin_unlock_irqrestore(&rfkill->lock, flags);
 565
 566	if (!rfkill->registered) {
 567		rfkill->persistent = true;
 568	} else {
 569		if (swprev != sw || hwprev != hw)
 570			schedule_work(&rfkill->uevent_work);
 571
 572		rfkill_led_trigger_event(rfkill);
 
 573	}
 574}
 575EXPORT_SYMBOL(rfkill_set_states);
 576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 578			 char *buf)
 579{
 580	struct rfkill *rfkill = to_rfkill(dev);
 581
 582	return sprintf(buf, "%s\n", rfkill->name);
 583}
 584static DEVICE_ATTR_RO(name);
 585
 586static const char *rfkill_get_type_str(enum rfkill_type type)
 587{
 588	BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
 589
 590	switch (type) {
 591	case RFKILL_TYPE_WLAN:
 592		return "wlan";
 593	case RFKILL_TYPE_BLUETOOTH:
 594		return "bluetooth";
 595	case RFKILL_TYPE_UWB:
 596		return "ultrawideband";
 597	case RFKILL_TYPE_WIMAX:
 598		return "wimax";
 599	case RFKILL_TYPE_WWAN:
 600		return "wwan";
 601	case RFKILL_TYPE_GPS:
 602		return "gps";
 603	case RFKILL_TYPE_FM:
 604		return "fm";
 605	case RFKILL_TYPE_NFC:
 606		return "nfc";
 607	default:
 608		BUG();
 609	}
 610}
 611
 612static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 613			 char *buf)
 614{
 615	struct rfkill *rfkill = to_rfkill(dev);
 616
 617	return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
 618}
 619static DEVICE_ATTR_RO(type);
 620
 621static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 622			  char *buf)
 623{
 624	struct rfkill *rfkill = to_rfkill(dev);
 625
 626	return sprintf(buf, "%d\n", rfkill->idx);
 627}
 628static DEVICE_ATTR_RO(index);
 629
 630static ssize_t persistent_show(struct device *dev,
 631			       struct device_attribute *attr, char *buf)
 632{
 633	struct rfkill *rfkill = to_rfkill(dev);
 634
 635	return sprintf(buf, "%d\n", rfkill->persistent);
 636}
 637static DEVICE_ATTR_RO(persistent);
 638
 639static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 640			 char *buf)
 641{
 642	struct rfkill *rfkill = to_rfkill(dev);
 643
 644	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 645}
 646static DEVICE_ATTR_RO(hard);
 647
 648static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 649			 char *buf)
 650{
 651	struct rfkill *rfkill = to_rfkill(dev);
 652
 653	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 654}
 655
 656static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 657			  const char *buf, size_t count)
 658{
 659	struct rfkill *rfkill = to_rfkill(dev);
 660	unsigned long state;
 661	int err;
 662
 663	if (!capable(CAP_NET_ADMIN))
 664		return -EPERM;
 665
 666	err = kstrtoul(buf, 0, &state);
 667	if (err)
 668		return err;
 669
 670	if (state > 1 )
 671		return -EINVAL;
 672
 673	mutex_lock(&rfkill_global_mutex);
 674	rfkill_set_block(rfkill, state);
 675	mutex_unlock(&rfkill_global_mutex);
 676
 677	return count;
 678}
 679static DEVICE_ATTR_RW(soft);
 680
 681static u8 user_state_from_blocked(unsigned long state)
 682{
 683	if (state & RFKILL_BLOCK_HW)
 684		return RFKILL_USER_STATE_HARD_BLOCKED;
 685	if (state & RFKILL_BLOCK_SW)
 686		return RFKILL_USER_STATE_SOFT_BLOCKED;
 687
 688	return RFKILL_USER_STATE_UNBLOCKED;
 689}
 690
 691static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 692			  char *buf)
 693{
 694	struct rfkill *rfkill = to_rfkill(dev);
 695
 696	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 697}
 698
 699static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 700			   const char *buf, size_t count)
 701{
 702	struct rfkill *rfkill = to_rfkill(dev);
 703	unsigned long state;
 704	int err;
 705
 706	if (!capable(CAP_NET_ADMIN))
 707		return -EPERM;
 708
 709	err = kstrtoul(buf, 0, &state);
 710	if (err)
 711		return err;
 712
 713	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 714	    state != RFKILL_USER_STATE_UNBLOCKED)
 715		return -EINVAL;
 716
 717	mutex_lock(&rfkill_global_mutex);
 718	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 719	mutex_unlock(&rfkill_global_mutex);
 720
 721	return count;
 722}
 723static DEVICE_ATTR_RW(state);
 724
 725static ssize_t claim_show(struct device *dev, struct device_attribute *attr,
 726			  char *buf)
 727{
 728	return sprintf(buf, "%d\n", 0);
 729}
 730static DEVICE_ATTR_RO(claim);
 731
 732static struct attribute *rfkill_dev_attrs[] = {
 733	&dev_attr_name.attr,
 734	&dev_attr_type.attr,
 735	&dev_attr_index.attr,
 736	&dev_attr_persistent.attr,
 737	&dev_attr_state.attr,
 738	&dev_attr_claim.attr,
 739	&dev_attr_soft.attr,
 740	&dev_attr_hard.attr,
 741	NULL,
 742};
 743ATTRIBUTE_GROUPS(rfkill_dev);
 744
 745static void rfkill_release(struct device *dev)
 746{
 747	struct rfkill *rfkill = to_rfkill(dev);
 748
 749	kfree(rfkill);
 750}
 751
 752static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 753{
 754	struct rfkill *rfkill = to_rfkill(dev);
 755	unsigned long flags;
 756	u32 state;
 757	int error;
 758
 759	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 760	if (error)
 761		return error;
 762	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 763			       rfkill_get_type_str(rfkill->type));
 764	if (error)
 765		return error;
 766	spin_lock_irqsave(&rfkill->lock, flags);
 767	state = rfkill->state;
 768	spin_unlock_irqrestore(&rfkill->lock, flags);
 769	error = add_uevent_var(env, "RFKILL_STATE=%d",
 770			       user_state_from_blocked(state));
 771	return error;
 772}
 773
 774void rfkill_pause_polling(struct rfkill *rfkill)
 775{
 776	BUG_ON(!rfkill);
 777
 778	if (!rfkill->ops->poll)
 779		return;
 780
 
 781	cancel_delayed_work_sync(&rfkill->poll_work);
 782}
 783EXPORT_SYMBOL(rfkill_pause_polling);
 784
 785void rfkill_resume_polling(struct rfkill *rfkill)
 786{
 787	BUG_ON(!rfkill);
 788
 789	if (!rfkill->ops->poll)
 790		return;
 791
 
 
 
 
 
 792	queue_delayed_work(system_power_efficient_wq,
 793			   &rfkill->poll_work, 0);
 794}
 795EXPORT_SYMBOL(rfkill_resume_polling);
 796
 797static int rfkill_suspend(struct device *dev, pm_message_t state)
 
 798{
 799	struct rfkill *rfkill = to_rfkill(dev);
 800
 801	rfkill_pause_polling(rfkill);
 
 802
 803	return 0;
 804}
 805
 806static int rfkill_resume(struct device *dev)
 807{
 808	struct rfkill *rfkill = to_rfkill(dev);
 809	bool cur;
 810
 
 
 811	if (!rfkill->persistent) {
 812		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 813		rfkill_set_block(rfkill, cur);
 814	}
 815
 816	rfkill_resume_polling(rfkill);
 
 
 817
 818	return 0;
 819}
 820
 
 
 
 
 
 
 821static struct class rfkill_class = {
 822	.name		= "rfkill",
 823	.dev_release	= rfkill_release,
 824	.dev_groups	= rfkill_dev_groups,
 825	.dev_uevent	= rfkill_dev_uevent,
 826	.suspend	= rfkill_suspend,
 827	.resume		= rfkill_resume,
 828};
 829
 830bool rfkill_blocked(struct rfkill *rfkill)
 831{
 832	unsigned long flags;
 833	u32 state;
 834
 835	spin_lock_irqsave(&rfkill->lock, flags);
 836	state = rfkill->state;
 837	spin_unlock_irqrestore(&rfkill->lock, flags);
 838
 839	return !!(state & RFKILL_BLOCK_ANY);
 840}
 841EXPORT_SYMBOL(rfkill_blocked);
 842
 843
 844struct rfkill * __must_check rfkill_alloc(const char *name,
 845					  struct device *parent,
 846					  const enum rfkill_type type,
 847					  const struct rfkill_ops *ops,
 848					  void *ops_data)
 849{
 850	struct rfkill *rfkill;
 851	struct device *dev;
 852
 853	if (WARN_ON(!ops))
 854		return NULL;
 855
 856	if (WARN_ON(!ops->set_block))
 857		return NULL;
 858
 859	if (WARN_ON(!name))
 860		return NULL;
 861
 862	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 863		return NULL;
 864
 865	rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
 866	if (!rfkill)
 867		return NULL;
 868
 869	spin_lock_init(&rfkill->lock);
 870	INIT_LIST_HEAD(&rfkill->node);
 871	rfkill->type = type;
 872	rfkill->name = name;
 873	rfkill->ops = ops;
 874	rfkill->data = ops_data;
 875
 876	dev = &rfkill->dev;
 877	dev->class = &rfkill_class;
 878	dev->parent = parent;
 879	device_initialize(dev);
 880
 881	return rfkill;
 882}
 883EXPORT_SYMBOL(rfkill_alloc);
 884
 885static void rfkill_poll(struct work_struct *work)
 886{
 887	struct rfkill *rfkill;
 888
 889	rfkill = container_of(work, struct rfkill, poll_work.work);
 890
 891	/*
 892	 * Poll hardware state -- driver will use one of the
 893	 * rfkill_set{,_hw,_sw}_state functions and use its
 894	 * return value to update the current status.
 895	 */
 896	rfkill->ops->poll(rfkill, rfkill->data);
 897
 898	queue_delayed_work(system_power_efficient_wq,
 899		&rfkill->poll_work,
 900		round_jiffies_relative(POLL_INTERVAL));
 901}
 902
 903static void rfkill_uevent_work(struct work_struct *work)
 904{
 905	struct rfkill *rfkill;
 906
 907	rfkill = container_of(work, struct rfkill, uevent_work);
 908
 909	mutex_lock(&rfkill_global_mutex);
 910	rfkill_event(rfkill);
 911	mutex_unlock(&rfkill_global_mutex);
 912}
 913
 914static void rfkill_sync_work(struct work_struct *work)
 915{
 916	struct rfkill *rfkill;
 917	bool cur;
 918
 919	rfkill = container_of(work, struct rfkill, sync_work);
 920
 921	mutex_lock(&rfkill_global_mutex);
 922	cur = rfkill_global_states[rfkill->type].cur;
 923	rfkill_set_block(rfkill, cur);
 924	mutex_unlock(&rfkill_global_mutex);
 925}
 926
 927int __must_check rfkill_register(struct rfkill *rfkill)
 928{
 929	static unsigned long rfkill_no;
 930	struct device *dev = &rfkill->dev;
 931	int error;
 932
 933	BUG_ON(!rfkill);
 
 
 
 934
 935	mutex_lock(&rfkill_global_mutex);
 936
 937	if (rfkill->registered) {
 938		error = -EALREADY;
 939		goto unlock;
 940	}
 941
 942	rfkill->idx = rfkill_no;
 943	dev_set_name(dev, "rfkill%lu", rfkill_no);
 944	rfkill_no++;
 945
 946	list_add_tail(&rfkill->node, &rfkill_list);
 947
 948	error = device_add(dev);
 949	if (error)
 950		goto remove;
 951
 952	error = rfkill_led_trigger_register(rfkill);
 953	if (error)
 954		goto devdel;
 955
 956	rfkill->registered = true;
 957
 958	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
 959	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
 960	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
 961
 962	if (rfkill->ops->poll)
 963		queue_delayed_work(system_power_efficient_wq,
 964			&rfkill->poll_work,
 965			round_jiffies_relative(POLL_INTERVAL));
 966
 967	if (!rfkill->persistent || rfkill_epo_lock_active) {
 968		schedule_work(&rfkill->sync_work);
 969	} else {
 970#ifdef CONFIG_RFKILL_INPUT
 971		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
 972
 973		if (!atomic_read(&rfkill_input_disabled))
 974			__rfkill_switch_all(rfkill->type, soft_blocked);
 975#endif
 976	}
 977
 
 978	rfkill_send_events(rfkill, RFKILL_OP_ADD);
 979
 980	mutex_unlock(&rfkill_global_mutex);
 981	return 0;
 982
 983 devdel:
 984	device_del(&rfkill->dev);
 985 remove:
 986	list_del_init(&rfkill->node);
 987 unlock:
 988	mutex_unlock(&rfkill_global_mutex);
 989	return error;
 990}
 991EXPORT_SYMBOL(rfkill_register);
 992
 993void rfkill_unregister(struct rfkill *rfkill)
 994{
 995	BUG_ON(!rfkill);
 996
 997	if (rfkill->ops->poll)
 998		cancel_delayed_work_sync(&rfkill->poll_work);
 999
1000	cancel_work_sync(&rfkill->uevent_work);
1001	cancel_work_sync(&rfkill->sync_work);
1002
1003	rfkill->registered = false;
1004
1005	device_del(&rfkill->dev);
1006
1007	mutex_lock(&rfkill_global_mutex);
1008	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1009	list_del_init(&rfkill->node);
 
1010	mutex_unlock(&rfkill_global_mutex);
1011
1012	rfkill_led_trigger_unregister(rfkill);
1013}
1014EXPORT_SYMBOL(rfkill_unregister);
1015
1016void rfkill_destroy(struct rfkill *rfkill)
1017{
1018	if (rfkill)
1019		put_device(&rfkill->dev);
1020}
1021EXPORT_SYMBOL(rfkill_destroy);
1022
1023static int rfkill_fop_open(struct inode *inode, struct file *file)
1024{
1025	struct rfkill_data *data;
1026	struct rfkill *rfkill;
1027	struct rfkill_int_event *ev, *tmp;
1028
1029	data = kzalloc(sizeof(*data), GFP_KERNEL);
1030	if (!data)
1031		return -ENOMEM;
1032
1033	INIT_LIST_HEAD(&data->events);
1034	mutex_init(&data->mtx);
1035	init_waitqueue_head(&data->read_wait);
1036
1037	mutex_lock(&rfkill_global_mutex);
1038	mutex_lock(&data->mtx);
1039	/*
1040	 * start getting events from elsewhere but hold mtx to get
1041	 * startup events added first
1042	 */
1043
1044	list_for_each_entry(rfkill, &rfkill_list, node) {
1045		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1046		if (!ev)
1047			goto free;
1048		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1049		list_add_tail(&ev->list, &data->events);
1050	}
1051	list_add(&data->list, &rfkill_fds);
1052	mutex_unlock(&data->mtx);
1053	mutex_unlock(&rfkill_global_mutex);
1054
1055	file->private_data = data;
1056
1057	return nonseekable_open(inode, file);
1058
1059 free:
1060	mutex_unlock(&data->mtx);
1061	mutex_unlock(&rfkill_global_mutex);
1062	mutex_destroy(&data->mtx);
1063	list_for_each_entry_safe(ev, tmp, &data->events, list)
1064		kfree(ev);
1065	kfree(data);
1066	return -ENOMEM;
1067}
1068
1069static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1070{
1071	struct rfkill_data *data = file->private_data;
1072	unsigned int res = POLLOUT | POLLWRNORM;
1073
1074	poll_wait(file, &data->read_wait, wait);
1075
1076	mutex_lock(&data->mtx);
1077	if (!list_empty(&data->events))
1078		res = POLLIN | POLLRDNORM;
1079	mutex_unlock(&data->mtx);
1080
1081	return res;
1082}
1083
1084static bool rfkill_readable(struct rfkill_data *data)
1085{
1086	bool r;
1087
1088	mutex_lock(&data->mtx);
1089	r = !list_empty(&data->events);
1090	mutex_unlock(&data->mtx);
1091
1092	return r;
1093}
1094
1095static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1096			       size_t count, loff_t *pos)
1097{
1098	struct rfkill_data *data = file->private_data;
1099	struct rfkill_int_event *ev;
1100	unsigned long sz;
1101	int ret;
1102
1103	mutex_lock(&data->mtx);
1104
1105	while (list_empty(&data->events)) {
1106		if (file->f_flags & O_NONBLOCK) {
1107			ret = -EAGAIN;
1108			goto out;
1109		}
1110		mutex_unlock(&data->mtx);
 
 
 
1111		ret = wait_event_interruptible(data->read_wait,
1112					       rfkill_readable(data));
1113		mutex_lock(&data->mtx);
1114
1115		if (ret)
1116			goto out;
1117	}
1118
1119	ev = list_first_entry(&data->events, struct rfkill_int_event,
1120				list);
1121
1122	sz = min_t(unsigned long, sizeof(ev->ev), count);
1123	ret = sz;
1124	if (copy_to_user(buf, &ev->ev, sz))
1125		ret = -EFAULT;
1126
1127	list_del(&ev->list);
1128	kfree(ev);
1129 out:
1130	mutex_unlock(&data->mtx);
1131	return ret;
1132}
1133
1134static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1135				size_t count, loff_t *pos)
1136{
1137	struct rfkill *rfkill;
1138	struct rfkill_event ev;
 
1139
1140	/* we don't need the 'hard' variable but accept it */
1141	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1142		return -EINVAL;
1143
1144	/*
1145	 * Copy as much data as we can accept into our 'ev' buffer,
1146	 * but tell userspace how much we've copied so it can determine
1147	 * our API version even in a write() call, if it cares.
1148	 */
1149	count = min(count, sizeof(ev));
1150	if (copy_from_user(&ev, buf, count))
1151		return -EFAULT;
1152
1153	if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1154		return -EINVAL;
1155
1156	if (ev.type >= NUM_RFKILL_TYPES)
1157		return -EINVAL;
1158
1159	mutex_lock(&rfkill_global_mutex);
1160
1161	if (ev.op == RFKILL_OP_CHANGE_ALL) {
1162		if (ev.type == RFKILL_TYPE_ALL) {
1163			enum rfkill_type i;
1164			for (i = 0; i < NUM_RFKILL_TYPES; i++)
1165				rfkill_global_states[i].cur = ev.soft;
1166		} else {
1167			rfkill_global_states[ev.type].cur = ev.soft;
1168		}
 
 
 
 
 
 
 
 
 
 
 
 
1169	}
1170
1171	list_for_each_entry(rfkill, &rfkill_list, node) {
1172		if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1173			continue;
1174
1175		if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1176			continue;
1177
1178		rfkill_set_block(rfkill, ev.soft);
1179	}
1180	mutex_unlock(&rfkill_global_mutex);
1181
1182	return count;
1183}
1184
1185static int rfkill_fop_release(struct inode *inode, struct file *file)
1186{
1187	struct rfkill_data *data = file->private_data;
1188	struct rfkill_int_event *ev, *tmp;
1189
1190	mutex_lock(&rfkill_global_mutex);
1191	list_del(&data->list);
1192	mutex_unlock(&rfkill_global_mutex);
1193
1194	mutex_destroy(&data->mtx);
1195	list_for_each_entry_safe(ev, tmp, &data->events, list)
1196		kfree(ev);
1197
1198#ifdef CONFIG_RFKILL_INPUT
1199	if (data->input_handler)
1200		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1201			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1202#endif
1203
1204	kfree(data);
1205
1206	return 0;
1207}
1208
1209#ifdef CONFIG_RFKILL_INPUT
1210static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1211			     unsigned long arg)
1212{
1213	struct rfkill_data *data = file->private_data;
1214
1215	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1216		return -ENOSYS;
1217
1218	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1219		return -ENOSYS;
1220
1221	mutex_lock(&data->mtx);
1222
1223	if (!data->input_handler) {
1224		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1225			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1226		data->input_handler = true;
1227	}
1228
1229	mutex_unlock(&data->mtx);
1230
1231	return 0;
1232}
1233#endif
1234
1235static const struct file_operations rfkill_fops = {
1236	.owner		= THIS_MODULE,
1237	.open		= rfkill_fop_open,
1238	.read		= rfkill_fop_read,
1239	.write		= rfkill_fop_write,
1240	.poll		= rfkill_fop_poll,
1241	.release	= rfkill_fop_release,
1242#ifdef CONFIG_RFKILL_INPUT
1243	.unlocked_ioctl	= rfkill_fop_ioctl,
1244	.compat_ioctl	= rfkill_fop_ioctl,
1245#endif
1246	.llseek		= no_llseek,
1247};
1248
 
 
1249static struct miscdevice rfkill_miscdev = {
1250	.name	= "rfkill",
1251	.fops	= &rfkill_fops,
1252	.minor	= MISC_DYNAMIC_MINOR,
 
1253};
1254
1255static int __init rfkill_init(void)
1256{
1257	int error;
1258	int i;
1259
1260	for (i = 0; i < NUM_RFKILL_TYPES; i++)
1261		rfkill_global_states[i].cur = !rfkill_default_state;
1262
1263	error = class_register(&rfkill_class);
1264	if (error)
1265		goto out;
1266
1267	error = misc_register(&rfkill_miscdev);
1268	if (error) {
1269		class_unregister(&rfkill_class);
1270		goto out;
1271	}
 
 
1272
1273#ifdef CONFIG_RFKILL_INPUT
1274	error = rfkill_handler_init();
1275	if (error) {
1276		misc_deregister(&rfkill_miscdev);
1277		class_unregister(&rfkill_class);
1278		goto out;
1279	}
1280#endif
1281
1282 out:
 
 
 
 
 
 
 
 
 
 
1283	return error;
1284}
1285subsys_initcall(rfkill_init);
1286
1287static void __exit rfkill_exit(void)
1288{
1289#ifdef CONFIG_RFKILL_INPUT
1290	rfkill_handler_exit();
1291#endif
 
1292	misc_deregister(&rfkill_miscdev);
1293	class_unregister(&rfkill_class);
1294}
1295module_exit(rfkill_exit);