Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 
 16
 17#include "internal.h"
 18#include <asm/dma.h>
 19
 20/*
 21 * Permanent SPARSEMEM data:
 22 *
 23 * 1) mem_section	- memory sections, mem_map's for valid memory
 24 */
 25#ifdef CONFIG_SPARSEMEM_EXTREME
 26struct mem_section **mem_section;
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available()) {
 69		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 70	} else {
 71		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 72					      nid);
 73		if (!section)
 74			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 75			      __func__, array_size, nid);
 76	}
 77
 78	return section;
 79}
 80
 81static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 82{
 83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 84	struct mem_section *section;
 85
 86	/*
 87	 * An existing section is possible in the sub-section hotplug
 88	 * case. First hot-add instantiates, follow-on hot-add reuses
 89	 * the existing section.
 90	 *
 91	 * The mem_hotplug_lock resolves the apparent race below.
 92	 */
 93	if (mem_section[root])
 94		return 0;
 95
 96	section = sparse_index_alloc(nid);
 97	if (!section)
 98		return -ENOMEM;
 99
100	mem_section[root] = section;
101
102	return 0;
103}
104#else /* !SPARSEMEM_EXTREME */
105static inline int sparse_index_init(unsigned long section_nr, int nid)
106{
107	return 0;
108}
109#endif
110
111#ifdef CONFIG_SPARSEMEM_EXTREME
112unsigned long __section_nr(struct mem_section *ms)
113{
114	unsigned long root_nr;
115	struct mem_section *root = NULL;
116
117	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119		if (!root)
120			continue;
121
122		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123		     break;
124	}
125
126	VM_BUG_ON(!root);
127
128	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129}
130#else
131unsigned long __section_nr(struct mem_section *ms)
132{
133	return (unsigned long)(ms - mem_section[0]);
134}
135#endif
136
137/*
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node.  This keeps us from having to use another data structure.  The
141 * node information is cleared just before we store the real mem_map.
142 */
143static inline unsigned long sparse_encode_early_nid(int nid)
144{
145	return (nid << SECTION_NID_SHIFT);
146}
147
148static inline int sparse_early_nid(struct mem_section *section)
149{
150	return (section->section_mem_map >> SECTION_NID_SHIFT);
151}
152
153/* Validate the physical addressing limitations of the model */
154void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155						unsigned long *end_pfn)
156{
157	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158
159	/*
160	 * Sanity checks - do not allow an architecture to pass
161	 * in larger pfns than the maximum scope of sparsemem:
162	 */
163	if (*start_pfn > max_sparsemem_pfn) {
164		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166			*start_pfn, *end_pfn, max_sparsemem_pfn);
167		WARN_ON_ONCE(1);
168		*start_pfn = max_sparsemem_pfn;
169		*end_pfn = max_sparsemem_pfn;
170	} else if (*end_pfn > max_sparsemem_pfn) {
171		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173			*start_pfn, *end_pfn, max_sparsemem_pfn);
174		WARN_ON_ONCE(1);
175		*end_pfn = max_sparsemem_pfn;
176	}
177}
178
179/*
180 * There are a number of times that we loop over NR_MEM_SECTIONS,
181 * looking for section_present() on each.  But, when we have very
182 * large physical address spaces, NR_MEM_SECTIONS can also be
183 * very large which makes the loops quite long.
184 *
185 * Keeping track of this gives us an easy way to break out of
186 * those loops early.
187 */
188unsigned long __highest_present_section_nr;
189static void section_mark_present(struct mem_section *ms)
190{
191	unsigned long section_nr = __section_nr(ms);
192
193	if (section_nr > __highest_present_section_nr)
194		__highest_present_section_nr = section_nr;
195
196	ms->section_mem_map |= SECTION_MARKED_PRESENT;
197}
198
199#define for_each_present_section_nr(start, section_nr)		\
200	for (section_nr = next_present_section_nr(start-1);	\
201	     ((section_nr != -1) &&				\
202	      (section_nr <= __highest_present_section_nr));	\
203	     section_nr = next_present_section_nr(section_nr))
204
205static inline unsigned long first_present_section_nr(void)
206{
207	return next_present_section_nr(-1);
208}
209
210#ifdef CONFIG_SPARSEMEM_VMEMMAP
211static void subsection_mask_set(unsigned long *map, unsigned long pfn,
212		unsigned long nr_pages)
213{
214	int idx = subsection_map_index(pfn);
215	int end = subsection_map_index(pfn + nr_pages - 1);
216
217	bitmap_set(map, idx, end - idx + 1);
218}
219
220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221{
222	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
223	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
224
225	if (!nr_pages)
226		return;
227
228	for (nr = start_sec; nr <= end_sec; nr++) {
229		struct mem_section *ms;
230		unsigned long pfns;
231
232		pfns = min(nr_pages, PAGES_PER_SECTION
233				- (pfn & ~PAGE_SECTION_MASK));
234		ms = __nr_to_section(nr);
235		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
236
237		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
238				pfns, subsection_map_index(pfn),
239				subsection_map_index(pfn + pfns - 1));
240
241		pfn += pfns;
242		nr_pages -= pfns;
243	}
244}
245#else
246void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
247{
248}
249#endif
250
251/* Record a memory area against a node. */
252static void __init memory_present(int nid, unsigned long start, unsigned long end)
253{
254	unsigned long pfn;
255
256#ifdef CONFIG_SPARSEMEM_EXTREME
257	if (unlikely(!mem_section)) {
258		unsigned long size, align;
259
260		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
261		align = 1 << (INTERNODE_CACHE_SHIFT);
262		mem_section = memblock_alloc(size, align);
263		if (!mem_section)
264			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265			      __func__, size, align);
266	}
267#endif
268
269	start &= PAGE_SECTION_MASK;
270	mminit_validate_memmodel_limits(&start, &end);
271	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
272		unsigned long section = pfn_to_section_nr(pfn);
273		struct mem_section *ms;
274
275		sparse_index_init(section, nid);
276		set_section_nid(section, nid);
277
278		ms = __nr_to_section(section);
279		if (!ms->section_mem_map) {
280			ms->section_mem_map = sparse_encode_early_nid(nid) |
281							SECTION_IS_ONLINE;
282			section_mark_present(ms);
283		}
284	}
285}
286
287/*
288 * Mark all memblocks as present using memory_present().
289 * This is a convenience function that is useful to mark all of the systems
290 * memory as present during initialization.
291 */
292static void __init memblocks_present(void)
293{
294	struct memblock_region *reg;
 
295
296	for_each_memblock(memory, reg) {
297		memory_present(memblock_get_region_node(reg),
298			       memblock_region_memory_base_pfn(reg),
299			       memblock_region_memory_end_pfn(reg));
300	}
301}
302
303/*
304 * Subtle, we encode the real pfn into the mem_map such that
305 * the identity pfn - section_mem_map will return the actual
306 * physical page frame number.
307 */
308static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
309{
310	unsigned long coded_mem_map =
311		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
312	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
313	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
314	return coded_mem_map;
315}
316
 
317/*
318 * Decode mem_map from the coded memmap
319 */
320struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
321{
322	/* mask off the extra low bits of information */
323	coded_mem_map &= SECTION_MAP_MASK;
324	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
325}
 
326
327static void __meminit sparse_init_one_section(struct mem_section *ms,
328		unsigned long pnum, struct page *mem_map,
329		struct mem_section_usage *usage, unsigned long flags)
330{
331	ms->section_mem_map &= ~SECTION_MAP_MASK;
332	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
333		| SECTION_HAS_MEM_MAP | flags;
334	ms->usage = usage;
335}
336
337static unsigned long usemap_size(void)
338{
339	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
340}
341
342size_t mem_section_usage_size(void)
343{
344	return sizeof(struct mem_section_usage) + usemap_size();
345}
346
 
 
 
 
 
 
 
 
 
347#ifdef CONFIG_MEMORY_HOTREMOVE
348static struct mem_section_usage * __init
349sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
350					 unsigned long size)
351{
352	struct mem_section_usage *usage;
353	unsigned long goal, limit;
354	int nid;
355	/*
356	 * A page may contain usemaps for other sections preventing the
357	 * page being freed and making a section unremovable while
358	 * other sections referencing the usemap remain active. Similarly,
359	 * a pgdat can prevent a section being removed. If section A
360	 * contains a pgdat and section B contains the usemap, both
361	 * sections become inter-dependent. This allocates usemaps
362	 * from the same section as the pgdat where possible to avoid
363	 * this problem.
364	 */
365	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
366	limit = goal + (1UL << PA_SECTION_SHIFT);
367	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
368again:
369	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
370	if (!usage && limit) {
371		limit = 0;
372		goto again;
373	}
374	return usage;
375}
376
377static void __init check_usemap_section_nr(int nid,
378		struct mem_section_usage *usage)
379{
380	unsigned long usemap_snr, pgdat_snr;
381	static unsigned long old_usemap_snr;
382	static unsigned long old_pgdat_snr;
383	struct pglist_data *pgdat = NODE_DATA(nid);
384	int usemap_nid;
385
386	/* First call */
387	if (!old_usemap_snr) {
388		old_usemap_snr = NR_MEM_SECTIONS;
389		old_pgdat_snr = NR_MEM_SECTIONS;
390	}
391
392	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
393	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
394	if (usemap_snr == pgdat_snr)
395		return;
396
397	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
398		/* skip redundant message */
399		return;
400
401	old_usemap_snr = usemap_snr;
402	old_pgdat_snr = pgdat_snr;
403
404	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
405	if (usemap_nid != nid) {
406		pr_info("node %d must be removed before remove section %ld\n",
407			nid, usemap_snr);
408		return;
409	}
410	/*
411	 * There is a circular dependency.
412	 * Some platforms allow un-removable section because they will just
413	 * gather other removable sections for dynamic partitioning.
414	 * Just notify un-removable section's number here.
415	 */
416	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
417		usemap_snr, pgdat_snr, nid);
418}
419#else
420static struct mem_section_usage * __init
421sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
422					 unsigned long size)
423{
424	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
425}
426
427static void __init check_usemap_section_nr(int nid,
428		struct mem_section_usage *usage)
429{
430}
431#endif /* CONFIG_MEMORY_HOTREMOVE */
432
433#ifdef CONFIG_SPARSEMEM_VMEMMAP
434static unsigned long __init section_map_size(void)
435{
436	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
437}
438
439#else
440static unsigned long __init section_map_size(void)
441{
442	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
443}
444
445struct page __init *__populate_section_memmap(unsigned long pfn,
446		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
447{
448	unsigned long size = section_map_size();
449	struct page *map = sparse_buffer_alloc(size);
450	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
451
452	if (map)
453		return map;
454
455	map = memblock_alloc_try_nid_raw(size, size, addr,
456					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
457	if (!map)
458		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
459		      __func__, size, PAGE_SIZE, nid, &addr);
460
461	return map;
462}
463#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
464
465static void *sparsemap_buf __meminitdata;
466static void *sparsemap_buf_end __meminitdata;
467
468static inline void __meminit sparse_buffer_free(unsigned long size)
469{
470	WARN_ON(!sparsemap_buf || size == 0);
471	memblock_free_early(__pa(sparsemap_buf), size);
472}
473
474static void __init sparse_buffer_init(unsigned long size, int nid)
475{
476	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
477	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
478	/*
479	 * Pre-allocated buffer is mainly used by __populate_section_memmap
480	 * and we want it to be properly aligned to the section size - this is
481	 * especially the case for VMEMMAP which maps memmap to PMDs
482	 */
483	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
484					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
485	sparsemap_buf_end = sparsemap_buf + size;
486}
487
488static void __init sparse_buffer_fini(void)
489{
490	unsigned long size = sparsemap_buf_end - sparsemap_buf;
491
492	if (sparsemap_buf && size > 0)
493		sparse_buffer_free(size);
494	sparsemap_buf = NULL;
495}
496
497void * __meminit sparse_buffer_alloc(unsigned long size)
498{
499	void *ptr = NULL;
500
501	if (sparsemap_buf) {
502		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
503		if (ptr + size > sparsemap_buf_end)
504			ptr = NULL;
505		else {
506			/* Free redundant aligned space */
507			if ((unsigned long)(ptr - sparsemap_buf) > 0)
508				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
509			sparsemap_buf = ptr + size;
510		}
511	}
512	return ptr;
513}
514
515void __weak __meminit vmemmap_populate_print_last(void)
516{
517}
518
519/*
520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
521 * And number of present sections in this node is map_count.
522 */
523static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
524				   unsigned long pnum_end,
525				   unsigned long map_count)
526{
527	struct mem_section_usage *usage;
528	unsigned long pnum;
529	struct page *map;
530
531	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
532			mem_section_usage_size() * map_count);
533	if (!usage) {
534		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
535		goto failed;
536	}
537	sparse_buffer_init(map_count * section_map_size(), nid);
538	for_each_present_section_nr(pnum_begin, pnum) {
539		unsigned long pfn = section_nr_to_pfn(pnum);
540
541		if (pnum >= pnum_end)
542			break;
543
544		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
545				nid, NULL);
546		if (!map) {
547			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
548			       __func__, nid);
549			pnum_begin = pnum;
 
550			goto failed;
551		}
552		check_usemap_section_nr(nid, usage);
553		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
554				SECTION_IS_EARLY);
555		usage = (void *) usage + mem_section_usage_size();
556	}
557	sparse_buffer_fini();
558	return;
559failed:
560	/* We failed to allocate, mark all the following pnums as not present */
561	for_each_present_section_nr(pnum_begin, pnum) {
562		struct mem_section *ms;
563
564		if (pnum >= pnum_end)
565			break;
566		ms = __nr_to_section(pnum);
567		ms->section_mem_map = 0;
568	}
569}
570
571/*
572 * Allocate the accumulated non-linear sections, allocate a mem_map
573 * for each and record the physical to section mapping.
574 */
575void __init sparse_init(void)
576{
577	unsigned long pnum_end, pnum_begin, map_count = 1;
578	int nid_begin;
579
580	memblocks_present();
581
582	pnum_begin = first_present_section_nr();
583	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
584
585	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
586	set_pageblock_order();
587
588	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
589		int nid = sparse_early_nid(__nr_to_section(pnum_end));
590
591		if (nid == nid_begin) {
592			map_count++;
593			continue;
594		}
595		/* Init node with sections in range [pnum_begin, pnum_end) */
596		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
597		nid_begin = nid;
598		pnum_begin = pnum_end;
599		map_count = 1;
600	}
601	/* cover the last node */
602	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
603	vmemmap_populate_print_last();
604}
605
606#ifdef CONFIG_MEMORY_HOTPLUG
607
608/* Mark all memory sections within the pfn range as online */
609void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610{
611	unsigned long pfn;
612
613	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614		unsigned long section_nr = pfn_to_section_nr(pfn);
615		struct mem_section *ms;
616
617		/* onlining code should never touch invalid ranges */
618		if (WARN_ON(!valid_section_nr(section_nr)))
619			continue;
620
621		ms = __nr_to_section(section_nr);
622		ms->section_mem_map |= SECTION_IS_ONLINE;
623	}
624}
625
626#ifdef CONFIG_MEMORY_HOTREMOVE
627/* Mark all memory sections within the pfn range as offline */
628void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629{
630	unsigned long pfn;
631
632	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633		unsigned long section_nr = pfn_to_section_nr(pfn);
634		struct mem_section *ms;
635
636		/*
637		 * TODO this needs some double checking. Offlining code makes
638		 * sure to check pfn_valid but those checks might be just bogus
639		 */
640		if (WARN_ON(!valid_section_nr(section_nr)))
641			continue;
642
643		ms = __nr_to_section(section_nr);
644		ms->section_mem_map &= ~SECTION_IS_ONLINE;
645	}
646}
647#endif
648
649#ifdef CONFIG_SPARSEMEM_VMEMMAP
650static struct page * __meminit populate_section_memmap(unsigned long pfn,
651		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
652{
653	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
654}
655
656static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
657		struct vmem_altmap *altmap)
658{
659	unsigned long start = (unsigned long) pfn_to_page(pfn);
660	unsigned long end = start + nr_pages * sizeof(struct page);
661
662	vmemmap_free(start, end, altmap);
663}
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
671
672static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
673{
674	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
675	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
676	struct mem_section *ms = __pfn_to_section(pfn);
677	unsigned long *subsection_map = ms->usage
678		? &ms->usage->subsection_map[0] : NULL;
679
680	subsection_mask_set(map, pfn, nr_pages);
681	if (subsection_map)
682		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
683
684	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
685				"section already deactivated (%#lx + %ld)\n",
686				pfn, nr_pages))
687		return -EINVAL;
688
689	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
690	return 0;
691}
692
693static bool is_subsection_map_empty(struct mem_section *ms)
694{
695	return bitmap_empty(&ms->usage->subsection_map[0],
696			    SUBSECTIONS_PER_SECTION);
697}
698
699static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
700{
701	struct mem_section *ms = __pfn_to_section(pfn);
702	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
703	unsigned long *subsection_map;
704	int rc = 0;
705
706	subsection_mask_set(map, pfn, nr_pages);
707
708	subsection_map = &ms->usage->subsection_map[0];
709
710	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
711		rc = -EINVAL;
712	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
713		rc = -EEXIST;
714	else
715		bitmap_or(subsection_map, map, subsection_map,
716				SUBSECTIONS_PER_SECTION);
717
718	return rc;
719}
720#else
721struct page * __meminit populate_section_memmap(unsigned long pfn,
722		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
723{
724	return kvmalloc_node(array_size(sizeof(struct page),
725					PAGES_PER_SECTION), GFP_KERNEL, nid);
726}
727
728static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
729		struct vmem_altmap *altmap)
730{
731	kvfree(pfn_to_page(pfn));
732}
733
734static void free_map_bootmem(struct page *memmap)
735{
736	unsigned long maps_section_nr, removing_section_nr, i;
737	unsigned long magic, nr_pages;
738	struct page *page = virt_to_page(memmap);
739
740	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
741		>> PAGE_SHIFT;
742
743	for (i = 0; i < nr_pages; i++, page++) {
744		magic = (unsigned long) page->freelist;
745
746		BUG_ON(magic == NODE_INFO);
747
748		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
749		removing_section_nr = page_private(page);
750
751		/*
752		 * When this function is called, the removing section is
753		 * logical offlined state. This means all pages are isolated
754		 * from page allocator. If removing section's memmap is placed
755		 * on the same section, it must not be freed.
756		 * If it is freed, page allocator may allocate it which will
757		 * be removed physically soon.
758		 */
759		if (maps_section_nr != removing_section_nr)
760			put_page_bootmem(page);
761	}
762}
763
764static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
765{
766	return 0;
767}
768
769static bool is_subsection_map_empty(struct mem_section *ms)
770{
771	return true;
772}
773
774static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
775{
776	return 0;
777}
778#endif /* CONFIG_SPARSEMEM_VMEMMAP */
779
780/*
781 * To deactivate a memory region, there are 3 cases to handle across
782 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
783 *
784 * 1. deactivation of a partial hot-added section (only possible in
785 *    the SPARSEMEM_VMEMMAP=y case).
786 *      a) section was present at memory init.
787 *      b) section was hot-added post memory init.
788 * 2. deactivation of a complete hot-added section.
789 * 3. deactivation of a complete section from memory init.
790 *
791 * For 1, when subsection_map does not empty we will not be freeing the
792 * usage map, but still need to free the vmemmap range.
793 *
794 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
795 */
796static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
797		struct vmem_altmap *altmap)
798{
799	struct mem_section *ms = __pfn_to_section(pfn);
800	bool section_is_early = early_section(ms);
801	struct page *memmap = NULL;
802	bool empty;
803
804	if (clear_subsection_map(pfn, nr_pages))
805		return;
806
807	empty = is_subsection_map_empty(ms);
808	if (empty) {
809		unsigned long section_nr = pfn_to_section_nr(pfn);
810
811		/*
812		 * When removing an early section, the usage map is kept (as the
813		 * usage maps of other sections fall into the same page). It
814		 * will be re-used when re-adding the section - which is then no
815		 * longer an early section. If the usage map is PageReserved, it
816		 * was allocated during boot.
817		 */
818		if (!PageReserved(virt_to_page(ms->usage))) {
819			kfree(ms->usage);
820			ms->usage = NULL;
821		}
822		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
823		/*
824		 * Mark the section invalid so that valid_section()
825		 * return false. This prevents code from dereferencing
826		 * ms->usage array.
827		 */
828		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
829	}
830
831	/*
832	 * The memmap of early sections is always fully populated. See
833	 * section_activate() and pfn_valid() .
834	 */
835	if (!section_is_early)
836		depopulate_section_memmap(pfn, nr_pages, altmap);
837	else if (memmap)
838		free_map_bootmem(memmap);
839
840	if (empty)
841		ms->section_mem_map = (unsigned long)NULL;
842}
843
844static struct page * __meminit section_activate(int nid, unsigned long pfn,
845		unsigned long nr_pages, struct vmem_altmap *altmap)
846{
847	struct mem_section *ms = __pfn_to_section(pfn);
848	struct mem_section_usage *usage = NULL;
849	struct page *memmap;
850	int rc = 0;
851
852	if (!ms->usage) {
853		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
854		if (!usage)
855			return ERR_PTR(-ENOMEM);
856		ms->usage = usage;
857	}
858
859	rc = fill_subsection_map(pfn, nr_pages);
860	if (rc) {
861		if (usage)
862			ms->usage = NULL;
863		kfree(usage);
864		return ERR_PTR(rc);
865	}
866
867	/*
868	 * The early init code does not consider partially populated
869	 * initial sections, it simply assumes that memory will never be
870	 * referenced.  If we hot-add memory into such a section then we
871	 * do not need to populate the memmap and can simply reuse what
872	 * is already there.
873	 */
874	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
875		return pfn_to_page(pfn);
876
877	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
878	if (!memmap) {
879		section_deactivate(pfn, nr_pages, altmap);
880		return ERR_PTR(-ENOMEM);
881	}
882
883	return memmap;
884}
885
886/**
887 * sparse_add_section - add a memory section, or populate an existing one
888 * @nid: The node to add section on
889 * @start_pfn: start pfn of the memory range
890 * @nr_pages: number of pfns to add in the section
891 * @altmap: device page map
892 *
893 * This is only intended for hotplug.
894 *
895 * Note that only VMEMMAP supports sub-section aligned hotplug,
896 * the proper alignment and size are gated by check_pfn_span().
897 *
898 *
899 * Return:
900 * * 0		- On success.
901 * * -EEXIST	- Section has been present.
902 * * -ENOMEM	- Out of memory.
903 */
904int __meminit sparse_add_section(int nid, unsigned long start_pfn,
905		unsigned long nr_pages, struct vmem_altmap *altmap)
906{
907	unsigned long section_nr = pfn_to_section_nr(start_pfn);
908	struct mem_section *ms;
909	struct page *memmap;
910	int ret;
911
912	ret = sparse_index_init(section_nr, nid);
913	if (ret < 0)
914		return ret;
915
916	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
917	if (IS_ERR(memmap))
918		return PTR_ERR(memmap);
919
920	/*
921	 * Poison uninitialized struct pages in order to catch invalid flags
922	 * combinations.
923	 */
924	page_init_poison(memmap, sizeof(struct page) * nr_pages);
925
926	ms = __nr_to_section(section_nr);
927	set_section_nid(section_nr, nid);
928	section_mark_present(ms);
929
930	/* Align memmap to section boundary in the subsection case */
931	if (section_nr_to_pfn(section_nr) != start_pfn)
932		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
933	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
934
935	return 0;
936}
937
938#ifdef CONFIG_MEMORY_FAILURE
939static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
940{
941	int i;
942
943	/*
944	 * A further optimization is to have per section refcounted
945	 * num_poisoned_pages.  But that would need more space per memmap, so
946	 * for now just do a quick global check to speed up this routine in the
947	 * absence of bad pages.
948	 */
949	if (atomic_long_read(&num_poisoned_pages) == 0)
950		return;
951
952	for (i = 0; i < nr_pages; i++) {
953		if (PageHWPoison(&memmap[i])) {
954			num_poisoned_pages_dec();
955			ClearPageHWPoison(&memmap[i]);
956		}
957	}
958}
959#else
960static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
961{
962}
963#endif
964
965void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
966		unsigned long nr_pages, unsigned long map_offset,
967		struct vmem_altmap *altmap)
968{
969	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
970			nr_pages - map_offset);
971	section_deactivate(pfn, nr_pages, altmap);
972}
973#endif /* CONFIG_MEMORY_HOTPLUG */
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/bootmem_info.h>
 17
 18#include "internal.h"
 19#include <asm/dma.h>
 20
 21/*
 22 * Permanent SPARSEMEM data:
 23 *
 24 * 1) mem_section	- memory sections, mem_map's for valid memory
 25 */
 26#ifdef CONFIG_SPARSEMEM_EXTREME
 27struct mem_section **mem_section;
 28#else
 29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 30	____cacheline_internodealigned_in_smp;
 31#endif
 32EXPORT_SYMBOL(mem_section);
 33
 34#ifdef NODE_NOT_IN_PAGE_FLAGS
 35/*
 36 * If we did not store the node number in the page then we have to
 37 * do a lookup in the section_to_node_table in order to find which
 38 * node the page belongs to.
 39 */
 40#if MAX_NUMNODES <= 256
 41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 42#else
 43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 44#endif
 45
 46int page_to_nid(const struct page *page)
 47{
 48	return section_to_node_table[page_to_section(page)];
 49}
 50EXPORT_SYMBOL(page_to_nid);
 51
 52static void set_section_nid(unsigned long section_nr, int nid)
 53{
 54	section_to_node_table[section_nr] = nid;
 55}
 56#else /* !NODE_NOT_IN_PAGE_FLAGS */
 57static inline void set_section_nid(unsigned long section_nr, int nid)
 58{
 59}
 60#endif
 61
 62#ifdef CONFIG_SPARSEMEM_EXTREME
 63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 64{
 65	struct mem_section *section = NULL;
 66	unsigned long array_size = SECTIONS_PER_ROOT *
 67				   sizeof(struct mem_section);
 68
 69	if (slab_is_available()) {
 70		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71	} else {
 72		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 73					      nid);
 74		if (!section)
 75			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 76			      __func__, array_size, nid);
 77	}
 78
 79	return section;
 80}
 81
 82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 83{
 84	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 85	struct mem_section *section;
 86
 87	/*
 88	 * An existing section is possible in the sub-section hotplug
 89	 * case. First hot-add instantiates, follow-on hot-add reuses
 90	 * the existing section.
 91	 *
 92	 * The mem_hotplug_lock resolves the apparent race below.
 93	 */
 94	if (mem_section[root])
 95		return 0;
 96
 97	section = sparse_index_alloc(nid);
 98	if (!section)
 99		return -ENOMEM;
100
101	mem_section[root] = section;
102
103	return 0;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108	return 0;
109}
110#endif
111
112#ifdef CONFIG_SPARSEMEM_EXTREME
113unsigned long __section_nr(struct mem_section *ms)
114{
115	unsigned long root_nr;
116	struct mem_section *root = NULL;
117
118	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
119		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
120		if (!root)
121			continue;
122
123		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
124		     break;
125	}
126
127	VM_BUG_ON(!root);
128
129	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
130}
131#else
132unsigned long __section_nr(struct mem_section *ms)
133{
134	return (unsigned long)(ms - mem_section[0]);
135}
136#endif
137
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node.  This keeps us from having to use another data structure.  The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146	return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151	return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156						unsigned long *end_pfn)
157{
158	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160	/*
161	 * Sanity checks - do not allow an architecture to pass
162	 * in larger pfns than the maximum scope of sparsemem:
163	 */
164	if (*start_pfn > max_sparsemem_pfn) {
165		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167			*start_pfn, *end_pfn, max_sparsemem_pfn);
168		WARN_ON_ONCE(1);
169		*start_pfn = max_sparsemem_pfn;
170		*end_pfn = max_sparsemem_pfn;
171	} else if (*end_pfn > max_sparsemem_pfn) {
172		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174			*start_pfn, *end_pfn, max_sparsemem_pfn);
175		WARN_ON_ONCE(1);
176		*end_pfn = max_sparsemem_pfn;
177	}
178}
179
180/*
181 * There are a number of times that we loop over NR_MEM_SECTIONS,
182 * looking for section_present() on each.  But, when we have very
183 * large physical address spaces, NR_MEM_SECTIONS can also be
184 * very large which makes the loops quite long.
185 *
186 * Keeping track of this gives us an easy way to break out of
187 * those loops early.
188 */
189unsigned long __highest_present_section_nr;
190static void section_mark_present(struct mem_section *ms)
191{
192	unsigned long section_nr = __section_nr(ms);
193
194	if (section_nr > __highest_present_section_nr)
195		__highest_present_section_nr = section_nr;
196
197	ms->section_mem_map |= SECTION_MARKED_PRESENT;
198}
199
200#define for_each_present_section_nr(start, section_nr)		\
201	for (section_nr = next_present_section_nr(start-1);	\
202	     ((section_nr != -1) &&				\
203	      (section_nr <= __highest_present_section_nr));	\
204	     section_nr = next_present_section_nr(section_nr))
205
206static inline unsigned long first_present_section_nr(void)
207{
208	return next_present_section_nr(-1);
209}
210
211#ifdef CONFIG_SPARSEMEM_VMEMMAP
212static void subsection_mask_set(unsigned long *map, unsigned long pfn,
213		unsigned long nr_pages)
214{
215	int idx = subsection_map_index(pfn);
216	int end = subsection_map_index(pfn + nr_pages - 1);
217
218	bitmap_set(map, idx, end - idx + 1);
219}
220
221void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222{
223	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
224	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
225
226	if (!nr_pages)
227		return;
228
229	for (nr = start_sec; nr <= end_sec; nr++) {
230		struct mem_section *ms;
231		unsigned long pfns;
232
233		pfns = min(nr_pages, PAGES_PER_SECTION
234				- (pfn & ~PAGE_SECTION_MASK));
235		ms = __nr_to_section(nr);
236		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237
238		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
239				pfns, subsection_map_index(pfn),
240				subsection_map_index(pfn + pfns - 1));
241
242		pfn += pfns;
243		nr_pages -= pfns;
244	}
245}
246#else
247void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
248{
249}
250#endif
251
252/* Record a memory area against a node. */
253static void __init memory_present(int nid, unsigned long start, unsigned long end)
254{
255	unsigned long pfn;
256
257#ifdef CONFIG_SPARSEMEM_EXTREME
258	if (unlikely(!mem_section)) {
259		unsigned long size, align;
260
261		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
262		align = 1 << (INTERNODE_CACHE_SHIFT);
263		mem_section = memblock_alloc(size, align);
264		if (!mem_section)
265			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
266			      __func__, size, align);
267	}
268#endif
269
270	start &= PAGE_SECTION_MASK;
271	mminit_validate_memmodel_limits(&start, &end);
272	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
273		unsigned long section = pfn_to_section_nr(pfn);
274		struct mem_section *ms;
275
276		sparse_index_init(section, nid);
277		set_section_nid(section, nid);
278
279		ms = __nr_to_section(section);
280		if (!ms->section_mem_map) {
281			ms->section_mem_map = sparse_encode_early_nid(nid) |
282							SECTION_IS_ONLINE;
283			section_mark_present(ms);
284		}
285	}
286}
287
288/*
289 * Mark all memblocks as present using memory_present().
290 * This is a convenience function that is useful to mark all of the systems
291 * memory as present during initialization.
292 */
293static void __init memblocks_present(void)
294{
295	unsigned long start, end;
296	int i, nid;
297
298	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
299		memory_present(nid, start, end);
 
 
 
300}
301
302/*
303 * Subtle, we encode the real pfn into the mem_map such that
304 * the identity pfn - section_mem_map will return the actual
305 * physical page frame number.
306 */
307static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
308{
309	unsigned long coded_mem_map =
310		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
311	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
312	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
313	return coded_mem_map;
314}
315
316#ifdef CONFIG_MEMORY_HOTPLUG
317/*
318 * Decode mem_map from the coded memmap
319 */
320struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
321{
322	/* mask off the extra low bits of information */
323	coded_mem_map &= SECTION_MAP_MASK;
324	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
325}
326#endif /* CONFIG_MEMORY_HOTPLUG */
327
328static void __meminit sparse_init_one_section(struct mem_section *ms,
329		unsigned long pnum, struct page *mem_map,
330		struct mem_section_usage *usage, unsigned long flags)
331{
332	ms->section_mem_map &= ~SECTION_MAP_MASK;
333	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
334		| SECTION_HAS_MEM_MAP | flags;
335	ms->usage = usage;
336}
337
338static unsigned long usemap_size(void)
339{
340	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
341}
342
343size_t mem_section_usage_size(void)
344{
345	return sizeof(struct mem_section_usage) + usemap_size();
346}
347
348static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
349{
350#ifndef CONFIG_NUMA
351	return __pa_symbol(pgdat);
352#else
353	return __pa(pgdat);
354#endif
355}
356
357#ifdef CONFIG_MEMORY_HOTREMOVE
358static struct mem_section_usage * __init
359sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
360					 unsigned long size)
361{
362	struct mem_section_usage *usage;
363	unsigned long goal, limit;
364	int nid;
365	/*
366	 * A page may contain usemaps for other sections preventing the
367	 * page being freed and making a section unremovable while
368	 * other sections referencing the usemap remain active. Similarly,
369	 * a pgdat can prevent a section being removed. If section A
370	 * contains a pgdat and section B contains the usemap, both
371	 * sections become inter-dependent. This allocates usemaps
372	 * from the same section as the pgdat where possible to avoid
373	 * this problem.
374	 */
375	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
376	limit = goal + (1UL << PA_SECTION_SHIFT);
377	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
378again:
379	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
380	if (!usage && limit) {
381		limit = 0;
382		goto again;
383	}
384	return usage;
385}
386
387static void __init check_usemap_section_nr(int nid,
388		struct mem_section_usage *usage)
389{
390	unsigned long usemap_snr, pgdat_snr;
391	static unsigned long old_usemap_snr;
392	static unsigned long old_pgdat_snr;
393	struct pglist_data *pgdat = NODE_DATA(nid);
394	int usemap_nid;
395
396	/* First call */
397	if (!old_usemap_snr) {
398		old_usemap_snr = NR_MEM_SECTIONS;
399		old_pgdat_snr = NR_MEM_SECTIONS;
400	}
401
402	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
403	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
404	if (usemap_snr == pgdat_snr)
405		return;
406
407	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
408		/* skip redundant message */
409		return;
410
411	old_usemap_snr = usemap_snr;
412	old_pgdat_snr = pgdat_snr;
413
414	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
415	if (usemap_nid != nid) {
416		pr_info("node %d must be removed before remove section %ld\n",
417			nid, usemap_snr);
418		return;
419	}
420	/*
421	 * There is a circular dependency.
422	 * Some platforms allow un-removable section because they will just
423	 * gather other removable sections for dynamic partitioning.
424	 * Just notify un-removable section's number here.
425	 */
426	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
427		usemap_snr, pgdat_snr, nid);
428}
429#else
430static struct mem_section_usage * __init
431sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
432					 unsigned long size)
433{
434	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
435}
436
437static void __init check_usemap_section_nr(int nid,
438		struct mem_section_usage *usage)
439{
440}
441#endif /* CONFIG_MEMORY_HOTREMOVE */
442
443#ifdef CONFIG_SPARSEMEM_VMEMMAP
444static unsigned long __init section_map_size(void)
445{
446	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
447}
448
449#else
450static unsigned long __init section_map_size(void)
451{
452	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
453}
454
455struct page __init *__populate_section_memmap(unsigned long pfn,
456		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
457{
458	unsigned long size = section_map_size();
459	struct page *map = sparse_buffer_alloc(size);
460	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
461
462	if (map)
463		return map;
464
465	map = memblock_alloc_try_nid_raw(size, size, addr,
466					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
467	if (!map)
468		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
469		      __func__, size, PAGE_SIZE, nid, &addr);
470
471	return map;
472}
473#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
474
475static void *sparsemap_buf __meminitdata;
476static void *sparsemap_buf_end __meminitdata;
477
478static inline void __meminit sparse_buffer_free(unsigned long size)
479{
480	WARN_ON(!sparsemap_buf || size == 0);
481	memblock_free_early(__pa(sparsemap_buf), size);
482}
483
484static void __init sparse_buffer_init(unsigned long size, int nid)
485{
486	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
487	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
488	/*
489	 * Pre-allocated buffer is mainly used by __populate_section_memmap
490	 * and we want it to be properly aligned to the section size - this is
491	 * especially the case for VMEMMAP which maps memmap to PMDs
492	 */
493	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
494					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
495	sparsemap_buf_end = sparsemap_buf + size;
496}
497
498static void __init sparse_buffer_fini(void)
499{
500	unsigned long size = sparsemap_buf_end - sparsemap_buf;
501
502	if (sparsemap_buf && size > 0)
503		sparse_buffer_free(size);
504	sparsemap_buf = NULL;
505}
506
507void * __meminit sparse_buffer_alloc(unsigned long size)
508{
509	void *ptr = NULL;
510
511	if (sparsemap_buf) {
512		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
513		if (ptr + size > sparsemap_buf_end)
514			ptr = NULL;
515		else {
516			/* Free redundant aligned space */
517			if ((unsigned long)(ptr - sparsemap_buf) > 0)
518				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
519			sparsemap_buf = ptr + size;
520		}
521	}
522	return ptr;
523}
524
525void __weak __meminit vmemmap_populate_print_last(void)
526{
527}
528
529/*
530 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
531 * And number of present sections in this node is map_count.
532 */
533static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
534				   unsigned long pnum_end,
535				   unsigned long map_count)
536{
537	struct mem_section_usage *usage;
538	unsigned long pnum;
539	struct page *map;
540
541	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
542			mem_section_usage_size() * map_count);
543	if (!usage) {
544		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
545		goto failed;
546	}
547	sparse_buffer_init(map_count * section_map_size(), nid);
548	for_each_present_section_nr(pnum_begin, pnum) {
549		unsigned long pfn = section_nr_to_pfn(pnum);
550
551		if (pnum >= pnum_end)
552			break;
553
554		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
555				nid, NULL);
556		if (!map) {
557			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
558			       __func__, nid);
559			pnum_begin = pnum;
560			sparse_buffer_fini();
561			goto failed;
562		}
563		check_usemap_section_nr(nid, usage);
564		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
565				SECTION_IS_EARLY);
566		usage = (void *) usage + mem_section_usage_size();
567	}
568	sparse_buffer_fini();
569	return;
570failed:
571	/* We failed to allocate, mark all the following pnums as not present */
572	for_each_present_section_nr(pnum_begin, pnum) {
573		struct mem_section *ms;
574
575		if (pnum >= pnum_end)
576			break;
577		ms = __nr_to_section(pnum);
578		ms->section_mem_map = 0;
579	}
580}
581
582/*
583 * Allocate the accumulated non-linear sections, allocate a mem_map
584 * for each and record the physical to section mapping.
585 */
586void __init sparse_init(void)
587{
588	unsigned long pnum_end, pnum_begin, map_count = 1;
589	int nid_begin;
590
591	memblocks_present();
592
593	pnum_begin = first_present_section_nr();
594	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
595
596	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
597	set_pageblock_order();
598
599	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
600		int nid = sparse_early_nid(__nr_to_section(pnum_end));
601
602		if (nid == nid_begin) {
603			map_count++;
604			continue;
605		}
606		/* Init node with sections in range [pnum_begin, pnum_end) */
607		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
608		nid_begin = nid;
609		pnum_begin = pnum_end;
610		map_count = 1;
611	}
612	/* cover the last node */
613	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
614	vmemmap_populate_print_last();
615}
616
617#ifdef CONFIG_MEMORY_HOTPLUG
618
619/* Mark all memory sections within the pfn range as online */
620void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621{
622	unsigned long pfn;
623
624	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
625		unsigned long section_nr = pfn_to_section_nr(pfn);
626		struct mem_section *ms;
627
628		/* onlining code should never touch invalid ranges */
629		if (WARN_ON(!valid_section_nr(section_nr)))
630			continue;
631
632		ms = __nr_to_section(section_nr);
633		ms->section_mem_map |= SECTION_IS_ONLINE;
634	}
635}
636
 
637/* Mark all memory sections within the pfn range as offline */
638void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
639{
640	unsigned long pfn;
641
642	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
643		unsigned long section_nr = pfn_to_section_nr(pfn);
644		struct mem_section *ms;
645
646		/*
647		 * TODO this needs some double checking. Offlining code makes
648		 * sure to check pfn_valid but those checks might be just bogus
649		 */
650		if (WARN_ON(!valid_section_nr(section_nr)))
651			continue;
652
653		ms = __nr_to_section(section_nr);
654		ms->section_mem_map &= ~SECTION_IS_ONLINE;
655	}
656}
 
657
658#ifdef CONFIG_SPARSEMEM_VMEMMAP
659static struct page * __meminit populate_section_memmap(unsigned long pfn,
660		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
661{
662	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
663}
664
665static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
666		struct vmem_altmap *altmap)
667{
668	unsigned long start = (unsigned long) pfn_to_page(pfn);
669	unsigned long end = start + nr_pages * sizeof(struct page);
670
671	vmemmap_free(start, end, altmap);
672}
673static void free_map_bootmem(struct page *memmap)
674{
675	unsigned long start = (unsigned long)memmap;
676	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
677
678	vmemmap_free(start, end, NULL);
679}
680
681static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
682{
683	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
684	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
685	struct mem_section *ms = __pfn_to_section(pfn);
686	unsigned long *subsection_map = ms->usage
687		? &ms->usage->subsection_map[0] : NULL;
688
689	subsection_mask_set(map, pfn, nr_pages);
690	if (subsection_map)
691		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
692
693	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
694				"section already deactivated (%#lx + %ld)\n",
695				pfn, nr_pages))
696		return -EINVAL;
697
698	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
699	return 0;
700}
701
702static bool is_subsection_map_empty(struct mem_section *ms)
703{
704	return bitmap_empty(&ms->usage->subsection_map[0],
705			    SUBSECTIONS_PER_SECTION);
706}
707
708static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
709{
710	struct mem_section *ms = __pfn_to_section(pfn);
711	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
712	unsigned long *subsection_map;
713	int rc = 0;
714
715	subsection_mask_set(map, pfn, nr_pages);
716
717	subsection_map = &ms->usage->subsection_map[0];
718
719	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
720		rc = -EINVAL;
721	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
722		rc = -EEXIST;
723	else
724		bitmap_or(subsection_map, map, subsection_map,
725				SUBSECTIONS_PER_SECTION);
726
727	return rc;
728}
729#else
730struct page * __meminit populate_section_memmap(unsigned long pfn,
731		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
732{
733	return kvmalloc_node(array_size(sizeof(struct page),
734					PAGES_PER_SECTION), GFP_KERNEL, nid);
735}
736
737static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
738		struct vmem_altmap *altmap)
739{
740	kvfree(pfn_to_page(pfn));
741}
742
743static void free_map_bootmem(struct page *memmap)
744{
745	unsigned long maps_section_nr, removing_section_nr, i;
746	unsigned long magic, nr_pages;
747	struct page *page = virt_to_page(memmap);
748
749	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
750		>> PAGE_SHIFT;
751
752	for (i = 0; i < nr_pages; i++, page++) {
753		magic = (unsigned long) page->freelist;
754
755		BUG_ON(magic == NODE_INFO);
756
757		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
758		removing_section_nr = page_private(page);
759
760		/*
761		 * When this function is called, the removing section is
762		 * logical offlined state. This means all pages are isolated
763		 * from page allocator. If removing section's memmap is placed
764		 * on the same section, it must not be freed.
765		 * If it is freed, page allocator may allocate it which will
766		 * be removed physically soon.
767		 */
768		if (maps_section_nr != removing_section_nr)
769			put_page_bootmem(page);
770	}
771}
772
773static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
774{
775	return 0;
776}
777
778static bool is_subsection_map_empty(struct mem_section *ms)
779{
780	return true;
781}
782
783static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
784{
785	return 0;
786}
787#endif /* CONFIG_SPARSEMEM_VMEMMAP */
788
789/*
790 * To deactivate a memory region, there are 3 cases to handle across
791 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
792 *
793 * 1. deactivation of a partial hot-added section (only possible in
794 *    the SPARSEMEM_VMEMMAP=y case).
795 *      a) section was present at memory init.
796 *      b) section was hot-added post memory init.
797 * 2. deactivation of a complete hot-added section.
798 * 3. deactivation of a complete section from memory init.
799 *
800 * For 1, when subsection_map does not empty we will not be freeing the
801 * usage map, but still need to free the vmemmap range.
802 *
803 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
804 */
805static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
806		struct vmem_altmap *altmap)
807{
808	struct mem_section *ms = __pfn_to_section(pfn);
809	bool section_is_early = early_section(ms);
810	struct page *memmap = NULL;
811	bool empty;
812
813	if (clear_subsection_map(pfn, nr_pages))
814		return;
815
816	empty = is_subsection_map_empty(ms);
817	if (empty) {
818		unsigned long section_nr = pfn_to_section_nr(pfn);
819
820		/*
821		 * When removing an early section, the usage map is kept (as the
822		 * usage maps of other sections fall into the same page). It
823		 * will be re-used when re-adding the section - which is then no
824		 * longer an early section. If the usage map is PageReserved, it
825		 * was allocated during boot.
826		 */
827		if (!PageReserved(virt_to_page(ms->usage))) {
828			kfree(ms->usage);
829			ms->usage = NULL;
830		}
831		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
832		/*
833		 * Mark the section invalid so that valid_section()
834		 * return false. This prevents code from dereferencing
835		 * ms->usage array.
836		 */
837		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
838	}
839
840	/*
841	 * The memmap of early sections is always fully populated. See
842	 * section_activate() and pfn_valid() .
843	 */
844	if (!section_is_early)
845		depopulate_section_memmap(pfn, nr_pages, altmap);
846	else if (memmap)
847		free_map_bootmem(memmap);
848
849	if (empty)
850		ms->section_mem_map = (unsigned long)NULL;
851}
852
853static struct page * __meminit section_activate(int nid, unsigned long pfn,
854		unsigned long nr_pages, struct vmem_altmap *altmap)
855{
856	struct mem_section *ms = __pfn_to_section(pfn);
857	struct mem_section_usage *usage = NULL;
858	struct page *memmap;
859	int rc = 0;
860
861	if (!ms->usage) {
862		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
863		if (!usage)
864			return ERR_PTR(-ENOMEM);
865		ms->usage = usage;
866	}
867
868	rc = fill_subsection_map(pfn, nr_pages);
869	if (rc) {
870		if (usage)
871			ms->usage = NULL;
872		kfree(usage);
873		return ERR_PTR(rc);
874	}
875
876	/*
877	 * The early init code does not consider partially populated
878	 * initial sections, it simply assumes that memory will never be
879	 * referenced.  If we hot-add memory into such a section then we
880	 * do not need to populate the memmap and can simply reuse what
881	 * is already there.
882	 */
883	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
884		return pfn_to_page(pfn);
885
886	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
887	if (!memmap) {
888		section_deactivate(pfn, nr_pages, altmap);
889		return ERR_PTR(-ENOMEM);
890	}
891
892	return memmap;
893}
894
895/**
896 * sparse_add_section - add a memory section, or populate an existing one
897 * @nid: The node to add section on
898 * @start_pfn: start pfn of the memory range
899 * @nr_pages: number of pfns to add in the section
900 * @altmap: device page map
901 *
902 * This is only intended for hotplug.
903 *
904 * Note that only VMEMMAP supports sub-section aligned hotplug,
905 * the proper alignment and size are gated by check_pfn_span().
906 *
907 *
908 * Return:
909 * * 0		- On success.
910 * * -EEXIST	- Section has been present.
911 * * -ENOMEM	- Out of memory.
912 */
913int __meminit sparse_add_section(int nid, unsigned long start_pfn,
914		unsigned long nr_pages, struct vmem_altmap *altmap)
915{
916	unsigned long section_nr = pfn_to_section_nr(start_pfn);
917	struct mem_section *ms;
918	struct page *memmap;
919	int ret;
920
921	ret = sparse_index_init(section_nr, nid);
922	if (ret < 0)
923		return ret;
924
925	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
926	if (IS_ERR(memmap))
927		return PTR_ERR(memmap);
928
929	/*
930	 * Poison uninitialized struct pages in order to catch invalid flags
931	 * combinations.
932	 */
933	page_init_poison(memmap, sizeof(struct page) * nr_pages);
934
935	ms = __nr_to_section(section_nr);
936	set_section_nid(section_nr, nid);
937	section_mark_present(ms);
938
939	/* Align memmap to section boundary in the subsection case */
940	if (section_nr_to_pfn(section_nr) != start_pfn)
941		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
942	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
943
944	return 0;
945}
946
947#ifdef CONFIG_MEMORY_FAILURE
948static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
949{
950	int i;
951
952	/*
953	 * A further optimization is to have per section refcounted
954	 * num_poisoned_pages.  But that would need more space per memmap, so
955	 * for now just do a quick global check to speed up this routine in the
956	 * absence of bad pages.
957	 */
958	if (atomic_long_read(&num_poisoned_pages) == 0)
959		return;
960
961	for (i = 0; i < nr_pages; i++) {
962		if (PageHWPoison(&memmap[i])) {
963			num_poisoned_pages_dec();
964			ClearPageHWPoison(&memmap[i]);
965		}
966	}
967}
968#else
969static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
970{
971}
972#endif
973
974void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
975		unsigned long nr_pages, unsigned long map_offset,
976		struct vmem_altmap *altmap)
977{
978	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
979			nr_pages - map_offset);
980	section_deactivate(pfn, nr_pages, altmap);
981}
982#endif /* CONFIG_MEMORY_HOTPLUG */