Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16
 17#include "internal.h"
 18#include <asm/dma.h>
 
 
 19
 20/*
 21 * Permanent SPARSEMEM data:
 22 *
 23 * 1) mem_section	- memory sections, mem_map's for valid memory
 24 */
 25#ifdef CONFIG_SPARSEMEM_EXTREME
 26struct mem_section **mem_section;
 
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available()) {
 69		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 70	} else {
 71		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 72					      nid);
 73		if (!section)
 74			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 75			      __func__, array_size, nid);
 76	}
 
 77
 78	return section;
 79}
 80
 81static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 82{
 
 83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 84	struct mem_section *section;
 
 85
 86	/*
 87	 * An existing section is possible in the sub-section hotplug
 88	 * case. First hot-add instantiates, follow-on hot-add reuses
 89	 * the existing section.
 90	 *
 91	 * The mem_hotplug_lock resolves the apparent race below.
 92	 */
 93	if (mem_section[root])
 94		return 0;
 95
 96	section = sparse_index_alloc(nid);
 97	if (!section)
 98		return -ENOMEM;
 
 
 
 
 
 99
100	mem_section[root] = section;
 
 
 
101
102	return 0;
 
 
 
103}
104#else /* !SPARSEMEM_EXTREME */
105static inline int sparse_index_init(unsigned long section_nr, int nid)
106{
107	return 0;
108}
109#endif
110
111#ifdef CONFIG_SPARSEMEM_EXTREME
112unsigned long __section_nr(struct mem_section *ms)
 
 
 
 
113{
114	unsigned long root_nr;
115	struct mem_section *root = NULL;
116
117	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119		if (!root)
120			continue;
121
122		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123		     break;
124	}
125
126	VM_BUG_ON(!root);
127
128	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129}
130#else
131unsigned long __section_nr(struct mem_section *ms)
132{
133	return (unsigned long)(ms - mem_section[0]);
134}
135#endif
136
137/*
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node.  This keeps us from having to use another data structure.  The
141 * node information is cleared just before we store the real mem_map.
142 */
143static inline unsigned long sparse_encode_early_nid(int nid)
144{
145	return (nid << SECTION_NID_SHIFT);
146}
147
148static inline int sparse_early_nid(struct mem_section *section)
149{
150	return (section->section_mem_map >> SECTION_NID_SHIFT);
151}
152
153/* Validate the physical addressing limitations of the model */
154void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155						unsigned long *end_pfn)
156{
157	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158
159	/*
160	 * Sanity checks - do not allow an architecture to pass
161	 * in larger pfns than the maximum scope of sparsemem:
162	 */
163	if (*start_pfn > max_sparsemem_pfn) {
164		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166			*start_pfn, *end_pfn, max_sparsemem_pfn);
167		WARN_ON_ONCE(1);
168		*start_pfn = max_sparsemem_pfn;
169		*end_pfn = max_sparsemem_pfn;
170	} else if (*end_pfn > max_sparsemem_pfn) {
171		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173			*start_pfn, *end_pfn, max_sparsemem_pfn);
174		WARN_ON_ONCE(1);
175		*end_pfn = max_sparsemem_pfn;
176	}
177}
178
179/*
180 * There are a number of times that we loop over NR_MEM_SECTIONS,
181 * looking for section_present() on each.  But, when we have very
182 * large physical address spaces, NR_MEM_SECTIONS can also be
183 * very large which makes the loops quite long.
184 *
185 * Keeping track of this gives us an easy way to break out of
186 * those loops early.
187 */
188unsigned long __highest_present_section_nr;
189static void section_mark_present(struct mem_section *ms)
190{
191	unsigned long section_nr = __section_nr(ms);
192
193	if (section_nr > __highest_present_section_nr)
194		__highest_present_section_nr = section_nr;
195
196	ms->section_mem_map |= SECTION_MARKED_PRESENT;
197}
198
199#define for_each_present_section_nr(start, section_nr)		\
200	for (section_nr = next_present_section_nr(start-1);	\
201	     ((section_nr != -1) &&				\
202	      (section_nr <= __highest_present_section_nr));	\
203	     section_nr = next_present_section_nr(section_nr))
204
205static inline unsigned long first_present_section_nr(void)
206{
207	return next_present_section_nr(-1);
208}
209
210#ifdef CONFIG_SPARSEMEM_VMEMMAP
211static void subsection_mask_set(unsigned long *map, unsigned long pfn,
212		unsigned long nr_pages)
213{
214	int idx = subsection_map_index(pfn);
215	int end = subsection_map_index(pfn + nr_pages - 1);
216
217	bitmap_set(map, idx, end - idx + 1);
218}
219
220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221{
222	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
223	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
224
225	if (!nr_pages)
226		return;
227
228	for (nr = start_sec; nr <= end_sec; nr++) {
229		struct mem_section *ms;
230		unsigned long pfns;
231
232		pfns = min(nr_pages, PAGES_PER_SECTION
233				- (pfn & ~PAGE_SECTION_MASK));
234		ms = __nr_to_section(nr);
235		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
236
237		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
238				pfns, subsection_map_index(pfn),
239				subsection_map_index(pfn + pfns - 1));
240
241		pfn += pfns;
242		nr_pages -= pfns;
243	}
244}
245#else
246void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
247{
248}
249#endif
250
251/* Record a memory area against a node. */
252static void __init memory_present(int nid, unsigned long start, unsigned long end)
253{
254	unsigned long pfn;
255
256#ifdef CONFIG_SPARSEMEM_EXTREME
257	if (unlikely(!mem_section)) {
258		unsigned long size, align;
259
260		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
261		align = 1 << (INTERNODE_CACHE_SHIFT);
262		mem_section = memblock_alloc(size, align);
263		if (!mem_section)
264			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265			      __func__, size, align);
266	}
267#endif
268
269	start &= PAGE_SECTION_MASK;
270	mminit_validate_memmodel_limits(&start, &end);
271	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
272		unsigned long section = pfn_to_section_nr(pfn);
273		struct mem_section *ms;
274
275		sparse_index_init(section, nid);
276		set_section_nid(section, nid);
277
278		ms = __nr_to_section(section);
279		if (!ms->section_mem_map) {
280			ms->section_mem_map = sparse_encode_early_nid(nid) |
281							SECTION_IS_ONLINE;
282			section_mark_present(ms);
283		}
284	}
285}
286
287/*
288 * Mark all memblocks as present using memory_present().
289 * This is a convenience function that is useful to mark all of the systems
290 * memory as present during initialization.
291 */
292static void __init memblocks_present(void)
 
293{
294	struct memblock_region *reg;
 
 
 
 
 
 
295
296	for_each_memblock(memory, reg) {
297		memory_present(memblock_get_region_node(reg),
298			       memblock_region_memory_base_pfn(reg),
299			       memblock_region_memory_end_pfn(reg));
300	}
 
 
301}
302
303/*
304 * Subtle, we encode the real pfn into the mem_map such that
305 * the identity pfn - section_mem_map will return the actual
306 * physical page frame number.
307 */
308static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
309{
310	unsigned long coded_mem_map =
311		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
312	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
313	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
314	return coded_mem_map;
315}
316
317/*
318 * Decode mem_map from the coded memmap
319 */
320struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
321{
322	/* mask off the extra low bits of information */
323	coded_mem_map &= SECTION_MAP_MASK;
324	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
325}
326
327static void __meminit sparse_init_one_section(struct mem_section *ms,
328		unsigned long pnum, struct page *mem_map,
329		struct mem_section_usage *usage, unsigned long flags)
330{
 
 
 
331	ms->section_mem_map &= ~SECTION_MAP_MASK;
332	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
333		| SECTION_HAS_MEM_MAP | flags;
334	ms->usage = usage;
 
 
335}
336
337static unsigned long usemap_size(void)
338{
339	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
 
 
 
340}
341
342size_t mem_section_usage_size(void)
 
343{
344	return sizeof(struct mem_section_usage) + usemap_size();
345}
 
346
347#ifdef CONFIG_MEMORY_HOTREMOVE
348static struct mem_section_usage * __init
349sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
350					 unsigned long size)
351{
352	struct mem_section_usage *usage;
353	unsigned long goal, limit;
354	int nid;
355	/*
356	 * A page may contain usemaps for other sections preventing the
357	 * page being freed and making a section unremovable while
358	 * other sections referencing the usemap remain active. Similarly,
359	 * a pgdat can prevent a section being removed. If section A
360	 * contains a pgdat and section B contains the usemap, both
361	 * sections become inter-dependent. This allocates usemaps
362	 * from the same section as the pgdat where possible to avoid
363	 * this problem.
364	 */
365	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
366	limit = goal + (1UL << PA_SECTION_SHIFT);
367	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
368again:
369	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
370	if (!usage && limit) {
371		limit = 0;
372		goto again;
373	}
374	return usage;
375}
376
377static void __init check_usemap_section_nr(int nid,
378		struct mem_section_usage *usage)
379{
380	unsigned long usemap_snr, pgdat_snr;
381	static unsigned long old_usemap_snr;
382	static unsigned long old_pgdat_snr;
383	struct pglist_data *pgdat = NODE_DATA(nid);
384	int usemap_nid;
385
386	/* First call */
387	if (!old_usemap_snr) {
388		old_usemap_snr = NR_MEM_SECTIONS;
389		old_pgdat_snr = NR_MEM_SECTIONS;
390	}
391
392	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
393	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
394	if (usemap_snr == pgdat_snr)
395		return;
396
397	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
398		/* skip redundant message */
399		return;
400
401	old_usemap_snr = usemap_snr;
402	old_pgdat_snr = pgdat_snr;
403
404	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
405	if (usemap_nid != nid) {
406		pr_info("node %d must be removed before remove section %ld\n",
407			nid, usemap_snr);
 
408		return;
409	}
410	/*
411	 * There is a circular dependency.
412	 * Some platforms allow un-removable section because they will just
413	 * gather other removable sections for dynamic partitioning.
414	 * Just notify un-removable section's number here.
415	 */
416	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
417		usemap_snr, pgdat_snr, nid);
 
 
418}
419#else
420static struct mem_section_usage * __init
421sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
422					 unsigned long size)
423{
424	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
425}
426
427static void __init check_usemap_section_nr(int nid,
428		struct mem_section_usage *usage)
429{
430}
431#endif /* CONFIG_MEMORY_HOTREMOVE */
432
433#ifdef CONFIG_SPARSEMEM_VMEMMAP
434static unsigned long __init section_map_size(void)
 
 
435{
436	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
437}
 
438
439#else
440static unsigned long __init section_map_size(void)
441{
442	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443}
444
445struct page __init *__populate_section_memmap(unsigned long pfn,
446		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
447{
448	unsigned long size = section_map_size();
449	struct page *map = sparse_buffer_alloc(size);
450	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
451
 
452	if (map)
453		return map;
454
455	map = memblock_alloc_try_nid_raw(size, size, addr,
456					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
457	if (!map)
458		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
459		      __func__, size, PAGE_SIZE, nid, &addr);
460
461	return map;
462}
463#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 
 
 
 
 
 
 
464
465static void *sparsemap_buf __meminitdata;
466static void *sparsemap_buf_end __meminitdata;
 
 
 
 
 
 
 
 
467
468static inline void __meminit sparse_buffer_free(unsigned long size)
469{
470	WARN_ON(!sparsemap_buf || size == 0);
471	memblock_free_early(__pa(sparsemap_buf), size);
472}
 
 
 
 
 
 
 
473
474static void __init sparse_buffer_init(unsigned long size, int nid)
475{
476	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
477	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
478	/*
479	 * Pre-allocated buffer is mainly used by __populate_section_memmap
480	 * and we want it to be properly aligned to the section size - this is
481	 * especially the case for VMEMMAP which maps memmap to PMDs
482	 */
483	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
484					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
485	sparsemap_buf_end = sparsemap_buf + size;
 
 
486}
 
487
488static void __init sparse_buffer_fini(void)
 
 
 
 
489{
490	unsigned long size = sparsemap_buf_end - sparsemap_buf;
491
492	if (sparsemap_buf && size > 0)
493		sparse_buffer_free(size);
494	sparsemap_buf = NULL;
495}
496
497void * __meminit sparse_buffer_alloc(unsigned long size)
498{
499	void *ptr = NULL;
 
 
500
501	if (sparsemap_buf) {
502		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
503		if (ptr + size > sparsemap_buf_end)
504			ptr = NULL;
505		else {
506			/* Free redundant aligned space */
507			if ((unsigned long)(ptr - sparsemap_buf) > 0)
508				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
509			sparsemap_buf = ptr + size;
510		}
511	}
512	return ptr;
513}
 
514
515void __weak __meminit vmemmap_populate_print_last(void)
516{
517}
518
519/*
520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
521 * And number of present sections in this node is map_count.
522 */
523static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
524				   unsigned long pnum_end,
525				   unsigned long map_count)
526{
527	struct mem_section_usage *usage;
528	unsigned long pnum;
529	struct page *map;
 
 
 
 
 
 
 
 
 
 
 
530
531	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
532			mem_section_usage_size() * map_count);
533	if (!usage) {
534		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
535		goto failed;
536	}
537	sparse_buffer_init(map_count * section_map_size(), nid);
538	for_each_present_section_nr(pnum_begin, pnum) {
539		unsigned long pfn = section_nr_to_pfn(pnum);
540
541		if (pnum >= pnum_end)
542			break;
543
544		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
545				nid, NULL);
546		if (!map) {
547			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
548			       __func__, nid);
549			pnum_begin = pnum;
550			goto failed;
551		}
552		check_usemap_section_nr(nid, usage);
553		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
554				SECTION_IS_EARLY);
555		usage = (void *) usage + mem_section_usage_size();
556	}
557	sparse_buffer_fini();
558	return;
559failed:
560	/* We failed to allocate, mark all the following pnums as not present */
561	for_each_present_section_nr(pnum_begin, pnum) {
562		struct mem_section *ms;
563
564		if (pnum >= pnum_end)
565			break;
566		ms = __nr_to_section(pnum);
567		ms->section_mem_map = 0;
 
 
568	}
569}
570
571/*
572 * Allocate the accumulated non-linear sections, allocate a mem_map
573 * for each and record the physical to section mapping.
574 */
575void __init sparse_init(void)
576{
577	unsigned long pnum_end, pnum_begin, map_count = 1;
578	int nid_begin;
579
580	memblocks_present();
581
582	pnum_begin = first_present_section_nr();
583	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584
585	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
586	set_pageblock_order();
587
588	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
589		int nid = sparse_early_nid(__nr_to_section(pnum_end));
 
 
 
 
 
 
 
 
 
590
591		if (nid == nid_begin) {
 
 
 
 
592			map_count++;
593			continue;
594		}
595		/* Init node with sections in range [pnum_begin, pnum_end) */
596		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
597		nid_begin = nid;
598		pnum_begin = pnum_end;
 
 
599		map_count = 1;
600	}
601	/* cover the last node */
602	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
603	vmemmap_populate_print_last();
604}
605
606#ifdef CONFIG_MEMORY_HOTPLUG
607
608/* Mark all memory sections within the pfn range as online */
609void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610{
611	unsigned long pfn;
612
613	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614		unsigned long section_nr = pfn_to_section_nr(pfn);
615		struct mem_section *ms;
616
617		/* onlining code should never touch invalid ranges */
618		if (WARN_ON(!valid_section_nr(section_nr)))
 
 
 
 
619			continue;
620
621		ms = __nr_to_section(section_nr);
622		ms->section_mem_map |= SECTION_IS_ONLINE;
623	}
624}
625
626#ifdef CONFIG_MEMORY_HOTREMOVE
627/* Mark all memory sections within the pfn range as offline */
628void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629{
630	unsigned long pfn;
631
632	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633		unsigned long section_nr = pfn_to_section_nr(pfn);
634		struct mem_section *ms;
635
636		/*
637		 * TODO this needs some double checking. Offlining code makes
638		 * sure to check pfn_valid but those checks might be just bogus
639		 */
640		if (WARN_ON(!valid_section_nr(section_nr)))
641			continue;
642
643		ms = __nr_to_section(section_nr);
644		ms->section_mem_map &= ~SECTION_IS_ONLINE;
645	}
646}
647#endif
 
 
648
 
649#ifdef CONFIG_SPARSEMEM_VMEMMAP
650static struct page * __meminit populate_section_memmap(unsigned long pfn,
651		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
652{
653	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
 
654}
655
656static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
657		struct vmem_altmap *altmap)
658{
659	unsigned long start = (unsigned long) pfn_to_page(pfn);
660	unsigned long end = start + nr_pages * sizeof(struct page);
661
662	vmemmap_free(start, end, altmap);
663}
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
671
672static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
673{
674	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
675	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
676	struct mem_section *ms = __pfn_to_section(pfn);
677	unsigned long *subsection_map = ms->usage
678		? &ms->usage->subsection_map[0] : NULL;
679
680	subsection_mask_set(map, pfn, nr_pages);
681	if (subsection_map)
682		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
683
684	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
685				"section already deactivated (%#lx + %ld)\n",
686				pfn, nr_pages))
687		return -EINVAL;
688
689	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
690	return 0;
691}
 
 
692
693static bool is_subsection_map_empty(struct mem_section *ms)
694{
695	return bitmap_empty(&ms->usage->subsection_map[0],
696			    SUBSECTIONS_PER_SECTION);
697}
698
699static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
700{
701	struct mem_section *ms = __pfn_to_section(pfn);
702	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
703	unsigned long *subsection_map;
704	int rc = 0;
705
706	subsection_mask_set(map, pfn, nr_pages);
707
708	subsection_map = &ms->usage->subsection_map[0];
709
710	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
711		rc = -EINVAL;
712	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
713		rc = -EEXIST;
714	else
715		bitmap_or(subsection_map, map, subsection_map,
716				SUBSECTIONS_PER_SECTION);
717
718	return rc;
719}
720#else
721struct page * __meminit populate_section_memmap(unsigned long pfn,
722		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
723{
724	return kvmalloc_node(array_size(sizeof(struct page),
725					PAGES_PER_SECTION), GFP_KERNEL, nid);
726}
727
728static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
729		struct vmem_altmap *altmap)
730{
731	kvfree(pfn_to_page(pfn));
 
 
 
 
732}
733
734static void free_map_bootmem(struct page *memmap)
735{
736	unsigned long maps_section_nr, removing_section_nr, i;
737	unsigned long magic, nr_pages;
738	struct page *page = virt_to_page(memmap);
739
740	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
741		>> PAGE_SHIFT;
742
743	for (i = 0; i < nr_pages; i++, page++) {
744		magic = (unsigned long) page->freelist;
745
746		BUG_ON(magic == NODE_INFO);
747
748		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
749		removing_section_nr = page_private(page);
750
751		/*
752		 * When this function is called, the removing section is
753		 * logical offlined state. This means all pages are isolated
754		 * from page allocator. If removing section's memmap is placed
755		 * on the same section, it must not be freed.
756		 * If it is freed, page allocator may allocate it which will
757		 * be removed physically soon.
758		 */
759		if (maps_section_nr != removing_section_nr)
760			put_page_bootmem(page);
761	}
762}
763
764static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
765{
766	return 0;
767}
768
769static bool is_subsection_map_empty(struct mem_section *ms)
770{
771	return true;
772}
773
774static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
775{
776	return 0;
777}
778#endif /* CONFIG_SPARSEMEM_VMEMMAP */
779
780/*
781 * To deactivate a memory region, there are 3 cases to handle across
782 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
783 *
784 * 1. deactivation of a partial hot-added section (only possible in
785 *    the SPARSEMEM_VMEMMAP=y case).
786 *      a) section was present at memory init.
787 *      b) section was hot-added post memory init.
788 * 2. deactivation of a complete hot-added section.
789 * 3. deactivation of a complete section from memory init.
790 *
791 * For 1, when subsection_map does not empty we will not be freeing the
792 * usage map, but still need to free the vmemmap range.
793 *
794 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
795 */
796static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
797		struct vmem_altmap *altmap)
798{
799	struct mem_section *ms = __pfn_to_section(pfn);
800	bool section_is_early = early_section(ms);
801	struct page *memmap = NULL;
802	bool empty;
803
804	if (clear_subsection_map(pfn, nr_pages))
805		return;
806
807	empty = is_subsection_map_empty(ms);
808	if (empty) {
809		unsigned long section_nr = pfn_to_section_nr(pfn);
810
811		/*
812		 * When removing an early section, the usage map is kept (as the
813		 * usage maps of other sections fall into the same page). It
814		 * will be re-used when re-adding the section - which is then no
815		 * longer an early section. If the usage map is PageReserved, it
816		 * was allocated during boot.
817		 */
818		if (!PageReserved(virt_to_page(ms->usage))) {
819			kfree(ms->usage);
820			ms->usage = NULL;
821		}
822		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
823		/*
824		 * Mark the section invalid so that valid_section()
825		 * return false. This prevents code from dereferencing
826		 * ms->usage array.
827		 */
828		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
829	}
830
831	/*
832	 * The memmap of early sections is always fully populated. See
833	 * section_activate() and pfn_valid() .
834	 */
835	if (!section_is_early)
836		depopulate_section_memmap(pfn, nr_pages, altmap);
837	else if (memmap)
838		free_map_bootmem(memmap);
839
840	if (empty)
841		ms->section_mem_map = (unsigned long)NULL;
842}
843
844static struct page * __meminit section_activate(int nid, unsigned long pfn,
845		unsigned long nr_pages, struct vmem_altmap *altmap)
846{
847	struct mem_section *ms = __pfn_to_section(pfn);
848	struct mem_section_usage *usage = NULL;
849	struct page *memmap;
850	int rc = 0;
851
852	if (!ms->usage) {
853		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
854		if (!usage)
855			return ERR_PTR(-ENOMEM);
856		ms->usage = usage;
857	}
858
859	rc = fill_subsection_map(pfn, nr_pages);
860	if (rc) {
861		if (usage)
862			ms->usage = NULL;
863		kfree(usage);
864		return ERR_PTR(rc);
865	}
866
867	/*
868	 * The early init code does not consider partially populated
869	 * initial sections, it simply assumes that memory will never be
870	 * referenced.  If we hot-add memory into such a section then we
871	 * do not need to populate the memmap and can simply reuse what
872	 * is already there.
873	 */
874	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
875		return pfn_to_page(pfn);
876
877	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
878	if (!memmap) {
879		section_deactivate(pfn, nr_pages, altmap);
880		return ERR_PTR(-ENOMEM);
881	}
882
883	return memmap;
 
 
 
 
884}
885
886/**
887 * sparse_add_section - add a memory section, or populate an existing one
888 * @nid: The node to add section on
889 * @start_pfn: start pfn of the memory range
890 * @nr_pages: number of pfns to add in the section
891 * @altmap: device page map
892 *
893 * This is only intended for hotplug.
894 *
895 * Note that only VMEMMAP supports sub-section aligned hotplug,
896 * the proper alignment and size are gated by check_pfn_span().
897 *
898 *
899 * Return:
900 * * 0		- On success.
901 * * -EEXIST	- Section has been present.
902 * * -ENOMEM	- Out of memory.
903 */
904int __meminit sparse_add_section(int nid, unsigned long start_pfn,
905		unsigned long nr_pages, struct vmem_altmap *altmap)
906{
907	unsigned long section_nr = pfn_to_section_nr(start_pfn);
 
908	struct mem_section *ms;
909	struct page *memmap;
 
 
910	int ret;
911
912	ret = sparse_index_init(section_nr, nid);
913	if (ret < 0)
914		return ret;
915
916	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
917	if (IS_ERR(memmap))
918		return PTR_ERR(memmap);
919
920	/*
921	 * Poison uninitialized struct pages in order to catch invalid flags
922	 * combinations.
923	 */
924	page_init_poison(memmap, sizeof(struct page) * nr_pages);
 
 
 
 
 
 
 
 
 
 
925
926	ms = __nr_to_section(section_nr);
927	set_section_nid(section_nr, nid);
928	section_mark_present(ms);
929
930	/* Align memmap to section boundary in the subsection case */
931	if (section_nr_to_pfn(section_nr) != start_pfn)
932		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
933	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
934
935	return 0;
936}
 
 
 
937
938#ifdef CONFIG_MEMORY_FAILURE
939static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
940{
941	int i;
942
943	/*
944	 * A further optimization is to have per section refcounted
945	 * num_poisoned_pages.  But that would need more space per memmap, so
946	 * for now just do a quick global check to speed up this routine in the
947	 * absence of bad pages.
948	 */
949	if (atomic_long_read(&num_poisoned_pages) == 0)
950		return;
951
952	for (i = 0; i < nr_pages; i++) {
953		if (PageHWPoison(&memmap[i])) {
954			num_poisoned_pages_dec();
955			ClearPageHWPoison(&memmap[i]);
956		}
957	}
 
958}
959#else
960static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
961{
962}
963#endif
 
 
 
 
 
 
 
 
964
965void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
966		unsigned long nr_pages, unsigned long map_offset,
967		struct vmem_altmap *altmap)
968{
969	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
970			nr_pages - map_offset);
971	section_deactivate(pfn, nr_pages, altmap);
972}
973#endif /* CONFIG_MEMORY_HOTPLUG */
v3.1
 
  1/*
  2 * sparse memory mappings.
  3 */
  4#include <linux/mm.h>
  5#include <linux/slab.h>
  6#include <linux/mmzone.h>
  7#include <linux/bootmem.h>
 
  8#include <linux/highmem.h>
  9#include <linux/module.h>
 10#include <linux/spinlock.h>
 11#include <linux/vmalloc.h>
 
 
 
 12#include "internal.h"
 13#include <asm/dma.h>
 14#include <asm/pgalloc.h>
 15#include <asm/pgtable.h>
 16
 17/*
 18 * Permanent SPARSEMEM data:
 19 *
 20 * 1) mem_section	- memory sections, mem_map's for valid memory
 21 */
 22#ifdef CONFIG_SPARSEMEM_EXTREME
 23struct mem_section *mem_section[NR_SECTION_ROOTS]
 24	____cacheline_internodealigned_in_smp;
 25#else
 26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 27	____cacheline_internodealigned_in_smp;
 28#endif
 29EXPORT_SYMBOL(mem_section);
 30
 31#ifdef NODE_NOT_IN_PAGE_FLAGS
 32/*
 33 * If we did not store the node number in the page then we have to
 34 * do a lookup in the section_to_node_table in order to find which
 35 * node the page belongs to.
 36 */
 37#if MAX_NUMNODES <= 256
 38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 39#else
 40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#endif
 42
 43int page_to_nid(const struct page *page)
 44{
 45	return section_to_node_table[page_to_section(page)];
 46}
 47EXPORT_SYMBOL(page_to_nid);
 48
 49static void set_section_nid(unsigned long section_nr, int nid)
 50{
 51	section_to_node_table[section_nr] = nid;
 52}
 53#else /* !NODE_NOT_IN_PAGE_FLAGS */
 54static inline void set_section_nid(unsigned long section_nr, int nid)
 55{
 56}
 57#endif
 58
 59#ifdef CONFIG_SPARSEMEM_EXTREME
 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 61{
 62	struct mem_section *section = NULL;
 63	unsigned long array_size = SECTIONS_PER_ROOT *
 64				   sizeof(struct mem_section);
 65
 66	if (slab_is_available()) {
 67		if (node_state(nid, N_HIGH_MEMORY))
 68			section = kmalloc_node(array_size, GFP_KERNEL, nid);
 69		else
 70			section = kmalloc(array_size, GFP_KERNEL);
 71	} else
 72		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
 73
 74	if (section)
 75		memset(section, 0, array_size);
 76
 77	return section;
 78}
 79
 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 81{
 82	static DEFINE_SPINLOCK(index_init_lock);
 83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 84	struct mem_section *section;
 85	int ret = 0;
 86
 
 
 
 
 
 
 
 87	if (mem_section[root])
 88		return -EEXIST;
 89
 90	section = sparse_index_alloc(nid);
 91	if (!section)
 92		return -ENOMEM;
 93	/*
 94	 * This lock keeps two different sections from
 95	 * reallocating for the same index
 96	 */
 97	spin_lock(&index_init_lock);
 98
 99	if (mem_section[root]) {
100		ret = -EEXIST;
101		goto out;
102	}
103
104	mem_section[root] = section;
105out:
106	spin_unlock(&index_init_lock);
107	return ret;
108}
109#else /* !SPARSEMEM_EXTREME */
110static inline int sparse_index_init(unsigned long section_nr, int nid)
111{
112	return 0;
113}
114#endif
115
116/*
117 * Although written for the SPARSEMEM_EXTREME case, this happens
118 * to also work for the flat array case because
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 */
121int __section_nr(struct mem_section* ms)
122{
123	unsigned long root_nr;
124	struct mem_section* root;
125
126	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128		if (!root)
129			continue;
130
131		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132		     break;
133	}
134
 
 
135	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136}
 
 
 
 
 
 
137
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node.  This keeps us from having to use another data structure.  The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146	return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151	return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156						unsigned long *end_pfn)
157{
158	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160	/*
161	 * Sanity checks - do not allow an architecture to pass
162	 * in larger pfns than the maximum scope of sparsemem:
163	 */
164	if (*start_pfn > max_sparsemem_pfn) {
165		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167			*start_pfn, *end_pfn, max_sparsemem_pfn);
168		WARN_ON_ONCE(1);
169		*start_pfn = max_sparsemem_pfn;
170		*end_pfn = max_sparsemem_pfn;
171	} else if (*end_pfn > max_sparsemem_pfn) {
172		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174			*start_pfn, *end_pfn, max_sparsemem_pfn);
175		WARN_ON_ONCE(1);
176		*end_pfn = max_sparsemem_pfn;
177	}
178}
179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180/* Record a memory area against a node. */
181void __init memory_present(int nid, unsigned long start, unsigned long end)
182{
183	unsigned long pfn;
184
 
 
 
 
 
 
 
 
 
 
 
 
 
185	start &= PAGE_SECTION_MASK;
186	mminit_validate_memmodel_limits(&start, &end);
187	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188		unsigned long section = pfn_to_section_nr(pfn);
189		struct mem_section *ms;
190
191		sparse_index_init(section, nid);
192		set_section_nid(section, nid);
193
194		ms = __nr_to_section(section);
195		if (!ms->section_mem_map)
196			ms->section_mem_map = sparse_encode_early_nid(nid) |
197							SECTION_MARKED_PRESENT;
 
 
198	}
199}
200
201/*
202 * Only used by the i386 NUMA architecures, but relatively
203 * generic code.
 
204 */
205unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206						     unsigned long end_pfn)
207{
208	unsigned long pfn;
209	unsigned long nr_pages = 0;
210
211	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213		if (nid != early_pfn_to_nid(pfn))
214			continue;
215
216		if (pfn_present(pfn))
217			nr_pages += PAGES_PER_SECTION;
 
 
218	}
219
220	return nr_pages * sizeof(struct page);
221}
222
223/*
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
227 */
228static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229{
230	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 
 
 
 
231}
232
233/*
234 * Decode mem_map from the coded memmap
235 */
236struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237{
238	/* mask off the extra low bits of information */
239	coded_mem_map &= SECTION_MAP_MASK;
240	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241}
242
243static int __meminit sparse_init_one_section(struct mem_section *ms,
244		unsigned long pnum, struct page *mem_map,
245		unsigned long *pageblock_bitmap)
246{
247	if (!present_section(ms))
248		return -EINVAL;
249
250	ms->section_mem_map &= ~SECTION_MAP_MASK;
251	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252							SECTION_HAS_MEM_MAP;
253 	ms->pageblock_flags = pageblock_bitmap;
254
255	return 1;
256}
257
258unsigned long usemap_size(void)
259{
260	unsigned long size_bytes;
261	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262	size_bytes = roundup(size_bytes, sizeof(unsigned long));
263	return size_bytes;
264}
265
266#ifdef CONFIG_MEMORY_HOTPLUG
267static unsigned long *__kmalloc_section_usemap(void)
268{
269	return kmalloc(usemap_size(), GFP_KERNEL);
270}
271#endif /* CONFIG_MEMORY_HOTPLUG */
272
273#ifdef CONFIG_MEMORY_HOTREMOVE
274static unsigned long * __init
275sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276					 unsigned long count)
277{
278	unsigned long section_nr;
279
 
280	/*
281	 * A page may contain usemaps for other sections preventing the
282	 * page being freed and making a section unremovable while
283	 * other sections referencing the usemap retmain active. Similarly,
284	 * a pgdat can prevent a section being removed. If section A
285	 * contains a pgdat and section B contains the usemap, both
286	 * sections become inter-dependent. This allocates usemaps
287	 * from the same section as the pgdat where possible to avoid
288	 * this problem.
289	 */
290	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
291	return alloc_bootmem_section(usemap_size() * count, section_nr);
 
 
 
 
 
 
 
 
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
295{
296	unsigned long usemap_snr, pgdat_snr;
297	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299	struct pglist_data *pgdat = NODE_DATA(nid);
300	int usemap_nid;
301
302	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
 
 
 
 
 
 
303	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304	if (usemap_snr == pgdat_snr)
305		return;
306
307	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308		/* skip redundant message */
309		return;
310
311	old_usemap_snr = usemap_snr;
312	old_pgdat_snr = pgdat_snr;
313
314	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315	if (usemap_nid != nid) {
316		printk(KERN_INFO
317		       "node %d must be removed before remove section %ld\n",
318		       nid, usemap_snr);
319		return;
320	}
321	/*
322	 * There is a circular dependency.
323	 * Some platforms allow un-removable section because they will just
324	 * gather other removable sections for dynamic partitioning.
325	 * Just notify un-removable section's number here.
326	 */
327	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328	       pgdat_snr, nid);
329	printk(KERN_CONT
330	       " have a circular dependency on usemap and pgdat allocations\n");
331}
332#else
333static unsigned long * __init
334sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335					 unsigned long count)
336{
337	return NULL;
338}
339
340static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
341{
342}
343#endif /* CONFIG_MEMORY_HOTREMOVE */
344
345static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
346				 unsigned long pnum_begin,
347				 unsigned long pnum_end,
348				 unsigned long usemap_count, int nodeid)
349{
350	void *usemap;
351	unsigned long pnum;
352	int size = usemap_size();
353
354	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
355								 usemap_count);
356	if (usemap) {
357		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
358			if (!present_section_nr(pnum))
359				continue;
360			usemap_map[pnum] = usemap;
361			usemap += size;
362		}
363		return;
364	}
365
366	usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
367	if (usemap) {
368		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
369			if (!present_section_nr(pnum))
370				continue;
371			usemap_map[pnum] = usemap;
372			usemap += size;
373			check_usemap_section_nr(nodeid, usemap_map[pnum]);
374		}
375		return;
376	}
377
378	printk(KERN_WARNING "%s: allocation failed\n", __func__);
379}
380
381#ifndef CONFIG_SPARSEMEM_VMEMMAP
382struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
383{
384	struct page *map;
385	unsigned long size;
 
386
387	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
388	if (map)
389		return map;
390
391	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
392	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
393					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 
 
 
394	return map;
395}
396void __init sparse_mem_maps_populate_node(struct page **map_map,
397					  unsigned long pnum_begin,
398					  unsigned long pnum_end,
399					  unsigned long map_count, int nodeid)
400{
401	void *map;
402	unsigned long pnum;
403	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
404
405	map = alloc_remap(nodeid, size * map_count);
406	if (map) {
407		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408			if (!present_section_nr(pnum))
409				continue;
410			map_map[pnum] = map;
411			map += size;
412		}
413		return;
414	}
415
416	size = PAGE_ALIGN(size);
417	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
418					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
419	if (map) {
420		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
421			if (!present_section_nr(pnum))
422				continue;
423			map_map[pnum] = map;
424			map += size;
425		}
426		return;
427	}
428
429	/* fallback */
430	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
431		struct mem_section *ms;
432
433		if (!present_section_nr(pnum))
434			continue;
435		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
436		if (map_map[pnum])
437			continue;
438		ms = __nr_to_section(pnum);
439		printk(KERN_ERR "%s: sparsemem memory map backing failed "
440			"some memory will not be available.\n", __func__);
441		ms->section_mem_map = 0;
442	}
443}
444#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
445
446#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
447static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
448				 unsigned long pnum_begin,
449				 unsigned long pnum_end,
450				 unsigned long map_count, int nodeid)
451{
452	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
453					 map_count, nodeid);
 
 
 
454}
455#else
456static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
457{
458	struct page *map;
459	struct mem_section *ms = __nr_to_section(pnum);
460	int nid = sparse_early_nid(ms);
461
462	map = sparse_mem_map_populate(pnum, nid);
463	if (map)
464		return map;
465
466	printk(KERN_ERR "%s: sparsemem memory map backing failed "
467			"some memory will not be available.\n", __func__);
468	ms->section_mem_map = 0;
469	return NULL;
 
 
 
 
470}
471#endif
472
473void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
474{
475}
476
477/*
478 * Allocate the accumulated non-linear sections, allocate a mem_map
479 * for each and record the physical to section mapping.
480 */
481void __init sparse_init(void)
 
 
482{
 
483	unsigned long pnum;
484	struct page *map;
485	unsigned long *usemap;
486	unsigned long **usemap_map;
487	int size;
488	int nodeid_begin = 0;
489	unsigned long pnum_begin = 0;
490	unsigned long usemap_count;
491#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
492	unsigned long map_count;
493	int size2;
494	struct page **map_map;
495#endif
496
497	/*
498	 * map is using big page (aka 2M in x86 64 bit)
499	 * usemap is less one page (aka 24 bytes)
500	 * so alloc 2M (with 2M align) and 24 bytes in turn will
501	 * make next 2M slip to one more 2M later.
502	 * then in big system, the memory will have a lot of holes...
503	 * here try to allocate 2M pages continuously.
504	 *
505	 * powerpc need to call sparse_init_one_section right after each
506	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
507	 */
508	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
509	usemap_map = alloc_bootmem(size);
510	if (!usemap_map)
511		panic("can not allocate usemap_map\n");
512
513	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514		struct mem_section *ms;
515
516		if (!present_section_nr(pnum))
517			continue;
518		ms = __nr_to_section(pnum);
519		nodeid_begin = sparse_early_nid(ms);
520		pnum_begin = pnum;
521		break;
522	}
523	usemap_count = 1;
524	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
525		struct mem_section *ms;
526		int nodeid;
 
 
 
 
 
 
 
 
527
528		if (!present_section_nr(pnum))
529			continue;
530		ms = __nr_to_section(pnum);
531		nodeid = sparse_early_nid(ms);
532		if (nodeid == nodeid_begin) {
533			usemap_count++;
534			continue;
535		}
536		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
537		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
538						 usemap_count, nodeid_begin);
539		/* new start, update count etc*/
540		nodeid_begin = nodeid;
541		pnum_begin = pnum;
542		usemap_count = 1;
543	}
544	/* ok, last chunk */
545	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
546					 usemap_count, nodeid_begin);
547
548#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
549	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
550	map_map = alloc_bootmem(size2);
551	if (!map_map)
552		panic("can not allocate map_map\n");
553
554	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
555		struct mem_section *ms;
556
557		if (!present_section_nr(pnum))
558			continue;
559		ms = __nr_to_section(pnum);
560		nodeid_begin = sparse_early_nid(ms);
561		pnum_begin = pnum;
562		break;
563	}
564	map_count = 1;
565	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
566		struct mem_section *ms;
567		int nodeid;
568
569		if (!present_section_nr(pnum))
570			continue;
571		ms = __nr_to_section(pnum);
572		nodeid = sparse_early_nid(ms);
573		if (nodeid == nodeid_begin) {
574			map_count++;
575			continue;
576		}
577		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
578		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
579						 map_count, nodeid_begin);
580		/* new start, update count etc*/
581		nodeid_begin = nodeid;
582		pnum_begin = pnum;
583		map_count = 1;
584	}
585	/* ok, last chunk */
586	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
587					 map_count, nodeid_begin);
588#endif
 
 
589
590	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
591		if (!present_section_nr(pnum))
592			continue;
 
593
594		usemap = usemap_map[pnum];
595		if (!usemap)
596			continue;
597
598#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
599		map = map_map[pnum];
600#else
601		map = sparse_early_mem_map_alloc(pnum);
602#endif
603		if (!map)
604			continue;
605
606		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
607								usemap);
608	}
 
609
610	vmemmap_populate_print_last();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611
612#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
613	free_bootmem(__pa(map_map), size2);
 
 
614#endif
615	free_bootmem(__pa(usemap_map), size);
616}
617
618#ifdef CONFIG_MEMORY_HOTPLUG
619#ifdef CONFIG_SPARSEMEM_VMEMMAP
620static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
621						 unsigned long nr_pages)
622{
623	/* This will make the necessary allocations eventually. */
624	return sparse_mem_map_populate(pnum, nid);
625}
626static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
 
 
627{
628	return; /* XXX: Not implemented yet */
 
 
 
629}
630static void free_map_bootmem(struct page *page, unsigned long nr_pages)
631{
 
 
 
 
632}
633#else
634static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
635{
636	struct page *page, *ret;
637	unsigned long memmap_size = sizeof(struct page) * nr_pages;
 
 
 
638
639	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
640	if (page)
641		goto got_map_page;
642
643	ret = vmalloc(memmap_size);
644	if (ret)
645		goto got_map_ptr;
 
646
647	return NULL;
648got_map_page:
649	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
650got_map_ptr:
651	memset(ret, 0, memmap_size);
652
653	return ret;
 
 
 
654}
655
656static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
657						  unsigned long nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
658{
659	return __kmalloc_section_memmap(nr_pages);
 
660}
661
662static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
 
663{
664	if (is_vmalloc_addr(memmap))
665		vfree(memmap);
666	else
667		free_pages((unsigned long)memmap,
668			   get_order(sizeof(struct page) * nr_pages));
669}
670
671static void free_map_bootmem(struct page *page, unsigned long nr_pages)
672{
673	unsigned long maps_section_nr, removing_section_nr, i;
674	unsigned long magic;
 
 
 
 
675
676	for (i = 0; i < nr_pages; i++, page++) {
677		magic = (unsigned long) page->lru.next;
678
679		BUG_ON(magic == NODE_INFO);
680
681		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
682		removing_section_nr = page->private;
683
684		/*
685		 * When this function is called, the removing section is
686		 * logical offlined state. This means all pages are isolated
687		 * from page allocator. If removing section's memmap is placed
688		 * on the same section, it must not be freed.
689		 * If it is freed, page allocator may allocate it which will
690		 * be removed physically soon.
691		 */
692		if (maps_section_nr != removing_section_nr)
693			put_page_bootmem(page);
694	}
695}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696#endif /* CONFIG_SPARSEMEM_VMEMMAP */
697
698static void free_section_usemap(struct page *memmap, unsigned long *usemap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699{
700	struct page *usemap_page;
701	unsigned long nr_pages;
 
 
702
703	if (!usemap)
704		return;
705
706	usemap_page = virt_to_page(usemap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707	/*
708	 * Check to see if allocation came from hot-plug-add
 
709	 */
710	if (PageSlab(usemap_page)) {
711		kfree(usemap);
712		if (memmap)
713			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
714		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715	}
716
717	/*
718	 * The usemap came from bootmem. This is packed with other usemaps
719	 * on the section which has pgdat at boot time. Just keep it as is now.
 
 
 
720	 */
 
 
721
722	if (memmap) {
723		struct page *memmap_page;
724		memmap_page = virt_to_page(memmap);
 
 
725
726		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
727			>> PAGE_SHIFT;
728
729		free_map_bootmem(memmap_page, nr_pages);
730	}
731}
732
733/*
734 * returns the number of sections whose mem_maps were properly
735 * set.  If this is <=0, then that means that the passed-in
736 * map was not consumed and must be freed.
 
 
 
 
 
 
 
 
 
 
 
 
 
737 */
738int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
739			   int nr_pages)
740{
741	unsigned long section_nr = pfn_to_section_nr(start_pfn);
742	struct pglist_data *pgdat = zone->zone_pgdat;
743	struct mem_section *ms;
744	struct page *memmap;
745	unsigned long *usemap;
746	unsigned long flags;
747	int ret;
748
 
 
 
 
 
 
 
 
749	/*
750	 * no locking for this, because it does its own
751	 * plus, it does a kmalloc
752	 */
753	ret = sparse_index_init(section_nr, pgdat->node_id);
754	if (ret < 0 && ret != -EEXIST)
755		return ret;
756	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
757	if (!memmap)
758		return -ENOMEM;
759	usemap = __kmalloc_section_usemap();
760	if (!usemap) {
761		__kfree_section_memmap(memmap, nr_pages);
762		return -ENOMEM;
763	}
764
765	pgdat_resize_lock(pgdat, &flags);
 
 
 
 
 
 
 
766
767	ms = __pfn_to_section(start_pfn);
768	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
769		ret = -EEXIST;
770		goto out;
771	}
772
773	ms->section_mem_map |= SECTION_MARKED_PRESENT;
 
 
 
774
775	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
 
 
 
 
 
 
 
776
777out:
778	pgdat_resize_unlock(pgdat, &flags);
779	if (ret <= 0) {
780		kfree(usemap);
781		__kfree_section_memmap(memmap, nr_pages);
782	}
783	return ret;
784}
785
786void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
787{
788	struct page *memmap = NULL;
789	unsigned long *usemap = NULL;
790
791	if (ms->section_mem_map) {
792		usemap = ms->pageblock_flags;
793		memmap = sparse_decode_mem_map(ms->section_mem_map,
794						__section_nr(ms));
795		ms->section_mem_map = 0;
796		ms->pageblock_flags = NULL;
797	}
798
799	free_section_usemap(memmap, usemap);
 
 
 
 
 
 
800}
801#endif