Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright 2015-2017 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/acpi.h>
  25#include "kfd_crat.h"
  26#include "kfd_priv.h"
  27#include "kfd_topology.h"
  28#include "kfd_iommu.h"
 
  29#include "amdgpu_amdkfd.h"
  30
  31/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
  32 * GPU processor ID are expressed with Bit[31]=1.
  33 * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
  34 * used in the CRAT.
  35 */
  36static uint32_t gpu_processor_id_low = 0x80001000;
  37
  38/* Return the next available gpu_processor_id and increment it for next GPU
  39 *	@total_cu_count - Total CUs present in the GPU including ones
  40 *			  masked off
  41 */
  42static inline unsigned int get_and_inc_gpu_processor_id(
  43				unsigned int total_cu_count)
  44{
  45	int current_id = gpu_processor_id_low;
  46
  47	gpu_processor_id_low += total_cu_count;
  48	return current_id;
  49}
  50
  51/* Static table to describe GPU Cache information */
  52struct kfd_gpu_cache_info {
  53	uint32_t	cache_size;
  54	uint32_t	cache_level;
  55	uint32_t	flags;
  56	/* Indicates how many Compute Units share this cache
  57	 * Value = 1 indicates the cache is not shared
  58	 */
  59	uint32_t	num_cu_shared;
  60};
  61
  62static struct kfd_gpu_cache_info kaveri_cache_info[] = {
  63	{
  64		/* TCP L1 Cache per CU */
  65		.cache_size = 16,
  66		.cache_level = 1,
  67		.flags = (CRAT_CACHE_FLAGS_ENABLED |
  68				CRAT_CACHE_FLAGS_DATA_CACHE |
  69				CRAT_CACHE_FLAGS_SIMD_CACHE),
  70		.num_cu_shared = 1,
  71
  72	},
  73	{
  74		/* Scalar L1 Instruction Cache (in SQC module) per bank */
  75		.cache_size = 16,
  76		.cache_level = 1,
  77		.flags = (CRAT_CACHE_FLAGS_ENABLED |
  78				CRAT_CACHE_FLAGS_INST_CACHE |
  79				CRAT_CACHE_FLAGS_SIMD_CACHE),
  80		.num_cu_shared = 2,
  81	},
  82	{
  83		/* Scalar L1 Data Cache (in SQC module) per bank */
  84		.cache_size = 8,
  85		.cache_level = 1,
  86		.flags = (CRAT_CACHE_FLAGS_ENABLED |
  87				CRAT_CACHE_FLAGS_DATA_CACHE |
  88				CRAT_CACHE_FLAGS_SIMD_CACHE),
  89		.num_cu_shared = 2,
  90	},
  91
  92	/* TODO: Add L2 Cache information */
  93};
  94
  95
  96static struct kfd_gpu_cache_info carrizo_cache_info[] = {
  97	{
  98		/* TCP L1 Cache per CU */
  99		.cache_size = 16,
 100		.cache_level = 1,
 101		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 102				CRAT_CACHE_FLAGS_DATA_CACHE |
 103				CRAT_CACHE_FLAGS_SIMD_CACHE),
 104		.num_cu_shared = 1,
 105	},
 106	{
 107		/* Scalar L1 Instruction Cache (in SQC module) per bank */
 108		.cache_size = 8,
 109		.cache_level = 1,
 110		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 111				CRAT_CACHE_FLAGS_INST_CACHE |
 112				CRAT_CACHE_FLAGS_SIMD_CACHE),
 113		.num_cu_shared = 4,
 114	},
 115	{
 116		/* Scalar L1 Data Cache (in SQC module) per bank. */
 117		.cache_size = 4,
 118		.cache_level = 1,
 119		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 120				CRAT_CACHE_FLAGS_DATA_CACHE |
 121				CRAT_CACHE_FLAGS_SIMD_CACHE),
 122		.num_cu_shared = 4,
 123	},
 124
 125	/* TODO: Add L2 Cache information */
 126};
 127
 128/* NOTE: In future if more information is added to struct kfd_gpu_cache_info
 129 * the following ASICs may need a separate table.
 130 */
 131#define hawaii_cache_info kaveri_cache_info
 132#define tonga_cache_info carrizo_cache_info
 133#define fiji_cache_info  carrizo_cache_info
 134#define polaris10_cache_info carrizo_cache_info
 135#define polaris11_cache_info carrizo_cache_info
 136#define polaris12_cache_info carrizo_cache_info
 137#define vegam_cache_info carrizo_cache_info
 138/* TODO - check & update Vega10 cache details */
 139#define vega10_cache_info carrizo_cache_info
 140#define raven_cache_info carrizo_cache_info
 141#define renoir_cache_info carrizo_cache_info
 142/* TODO - check & update Navi10 cache details */
 143#define navi10_cache_info carrizo_cache_info
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144
 145static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
 146		struct crat_subtype_computeunit *cu)
 147{
 148	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
 149	dev->node_props.cpu_core_id_base = cu->processor_id_low;
 150	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
 151		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
 152
 153	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
 154			cu->processor_id_low);
 155}
 156
 157static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
 158		struct crat_subtype_computeunit *cu)
 159{
 160	dev->node_props.simd_id_base = cu->processor_id_low;
 161	dev->node_props.simd_count = cu->num_simd_cores;
 162	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
 163	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
 164	dev->node_props.wave_front_size = cu->wave_front_size;
 165	dev->node_props.array_count = cu->array_count;
 166	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
 167	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
 168	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
 169	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
 170		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
 171	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
 172}
 173
 174/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
 175 * topology device present in the device_list
 176 */
 177static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
 178				struct list_head *device_list)
 179{
 180	struct kfd_topology_device *dev;
 181
 182	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
 183			cu->proximity_domain, cu->hsa_capability);
 184	list_for_each_entry(dev, device_list, list) {
 185		if (cu->proximity_domain == dev->proximity_domain) {
 186			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
 187				kfd_populated_cu_info_cpu(dev, cu);
 188
 189			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
 190				kfd_populated_cu_info_gpu(dev, cu);
 191			break;
 192		}
 193	}
 194
 195	return 0;
 196}
 197
 198static struct kfd_mem_properties *
 199find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
 200		struct kfd_topology_device *dev)
 201{
 202	struct kfd_mem_properties *props;
 203
 204	list_for_each_entry(props, &dev->mem_props, list) {
 205		if (props->heap_type == heap_type
 206				&& props->flags == flags
 207				&& props->width == width)
 208			return props;
 209	}
 210
 211	return NULL;
 212}
 213/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
 214 * topology device present in the device_list
 215 */
 216static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
 217				struct list_head *device_list)
 218{
 219	struct kfd_mem_properties *props;
 220	struct kfd_topology_device *dev;
 221	uint32_t heap_type;
 222	uint64_t size_in_bytes;
 223	uint32_t flags = 0;
 224	uint32_t width;
 225
 226	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
 227			mem->proximity_domain);
 228	list_for_each_entry(dev, device_list, list) {
 229		if (mem->proximity_domain == dev->proximity_domain) {
 230			/* We're on GPU node */
 231			if (dev->node_props.cpu_cores_count == 0) {
 232				/* APU */
 233				if (mem->visibility_type == 0)
 234					heap_type =
 235						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
 236				/* dGPU */
 237				else
 238					heap_type = mem->visibility_type;
 239			} else
 240				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
 241
 242			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
 243				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
 244			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
 245				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
 246
 247			size_in_bytes =
 248				((uint64_t)mem->length_high << 32) +
 249							mem->length_low;
 250			width = mem->width;
 251
 252			/* Multiple banks of the same type are aggregated into
 253			 * one. User mode doesn't care about multiple physical
 254			 * memory segments. It's managed as a single virtual
 255			 * heap for user mode.
 256			 */
 257			props = find_subtype_mem(heap_type, flags, width, dev);
 258			if (props) {
 259				props->size_in_bytes += size_in_bytes;
 260				break;
 261			}
 262
 263			props = kfd_alloc_struct(props);
 264			if (!props)
 265				return -ENOMEM;
 266
 267			props->heap_type = heap_type;
 268			props->flags = flags;
 269			props->size_in_bytes = size_in_bytes;
 270			props->width = width;
 271
 272			dev->node_props.mem_banks_count++;
 273			list_add_tail(&props->list, &dev->mem_props);
 274
 275			break;
 276		}
 277	}
 278
 279	return 0;
 280}
 281
 282/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
 283 * topology device present in the device_list
 284 */
 285static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
 286			struct list_head *device_list)
 287{
 288	struct kfd_cache_properties *props;
 289	struct kfd_topology_device *dev;
 290	uint32_t id;
 291	uint32_t total_num_of_cu;
 292
 293	id = cache->processor_id_low;
 294
 295	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
 296	list_for_each_entry(dev, device_list, list) {
 297		total_num_of_cu = (dev->node_props.array_count *
 298					dev->node_props.cu_per_simd_array);
 299
 300		/* Cache infomration in CRAT doesn't have proximity_domain
 301		 * information as it is associated with a CPU core or GPU
 302		 * Compute Unit. So map the cache using CPU core Id or SIMD
 303		 * (GPU) ID.
 304		 * TODO: This works because currently we can safely assume that
 305		 *  Compute Units are parsed before caches are parsed. In
 306		 *  future, remove this dependency
 307		 */
 308		if ((id >= dev->node_props.cpu_core_id_base &&
 309			id <= dev->node_props.cpu_core_id_base +
 310				dev->node_props.cpu_cores_count) ||
 311			(id >= dev->node_props.simd_id_base &&
 312			id < dev->node_props.simd_id_base +
 313				total_num_of_cu)) {
 314			props = kfd_alloc_struct(props);
 315			if (!props)
 316				return -ENOMEM;
 317
 318			props->processor_id_low = id;
 319			props->cache_level = cache->cache_level;
 320			props->cache_size = cache->cache_size;
 321			props->cacheline_size = cache->cache_line_size;
 322			props->cachelines_per_tag = cache->lines_per_tag;
 323			props->cache_assoc = cache->associativity;
 324			props->cache_latency = cache->cache_latency;
 325			memcpy(props->sibling_map, cache->sibling_map,
 326					sizeof(props->sibling_map));
 327
 328			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
 329				props->cache_type |= HSA_CACHE_TYPE_DATA;
 330			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
 331				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
 332			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
 333				props->cache_type |= HSA_CACHE_TYPE_CPU;
 334			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
 335				props->cache_type |= HSA_CACHE_TYPE_HSACU;
 336
 337			dev->cache_count++;
 338			dev->node_props.caches_count++;
 339			list_add_tail(&props->list, &dev->cache_props);
 340
 341			break;
 342		}
 343	}
 344
 345	return 0;
 346}
 347
 348/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
 349 * topology device present in the device_list
 350 */
 351static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
 352					struct list_head *device_list)
 353{
 354	struct kfd_iolink_properties *props = NULL, *props2;
 355	struct kfd_topology_device *dev, *to_dev;
 356	uint32_t id_from;
 357	uint32_t id_to;
 358
 359	id_from = iolink->proximity_domain_from;
 360	id_to = iolink->proximity_domain_to;
 361
 362	pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
 363			id_from, id_to);
 364	list_for_each_entry(dev, device_list, list) {
 365		if (id_from == dev->proximity_domain) {
 366			props = kfd_alloc_struct(props);
 367			if (!props)
 368				return -ENOMEM;
 369
 370			props->node_from = id_from;
 371			props->node_to = id_to;
 372			props->ver_maj = iolink->version_major;
 373			props->ver_min = iolink->version_minor;
 374			props->iolink_type = iolink->io_interface_type;
 375
 376			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
 377				props->weight = 20;
 378			else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
 379				props->weight = 15 * iolink->num_hops_xgmi;
 380			else
 381				props->weight = node_distance(id_from, id_to);
 382
 383			props->min_latency = iolink->minimum_latency;
 384			props->max_latency = iolink->maximum_latency;
 385			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
 386			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
 387			props->rec_transfer_size =
 388					iolink->recommended_transfer_size;
 389
 390			dev->io_link_count++;
 391			dev->node_props.io_links_count++;
 392			list_add_tail(&props->list, &dev->io_link_props);
 393			break;
 394		}
 395	}
 396
 397	/* CPU topology is created before GPUs are detected, so CPU->GPU
 398	 * links are not built at that time. If a PCIe type is discovered, it
 399	 * means a GPU is detected and we are adding GPU->CPU to the topology.
 400	 * At this time, also add the corresponded CPU->GPU link if GPU
 401	 * is large bar.
 402	 * For xGMI, we only added the link with one direction in the crat
 403	 * table, add corresponded reversed direction link now.
 404	 */
 405	if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
 406		to_dev = kfd_topology_device_by_proximity_domain(id_to);
 407		if (!to_dev)
 408			return -ENODEV;
 409		/* same everything but the other direction */
 410		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
 411		props2->node_from = id_to;
 412		props2->node_to = id_from;
 413		props2->kobj = NULL;
 414		to_dev->io_link_count++;
 415		to_dev->node_props.io_links_count++;
 416		list_add_tail(&props2->list, &to_dev->io_link_props);
 417	}
 418
 419	return 0;
 420}
 421
 422/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
 423 * present in the device_list
 424 *	@sub_type_hdr - subtype section of crat_image
 425 *	@device_list - list of topology devices present in this crat_image
 426 */
 427static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
 428				struct list_head *device_list)
 429{
 430	struct crat_subtype_computeunit *cu;
 431	struct crat_subtype_memory *mem;
 432	struct crat_subtype_cache *cache;
 433	struct crat_subtype_iolink *iolink;
 434	int ret = 0;
 435
 436	switch (sub_type_hdr->type) {
 437	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
 438		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
 439		ret = kfd_parse_subtype_cu(cu, device_list);
 440		break;
 441	case CRAT_SUBTYPE_MEMORY_AFFINITY:
 442		mem = (struct crat_subtype_memory *)sub_type_hdr;
 443		ret = kfd_parse_subtype_mem(mem, device_list);
 444		break;
 445	case CRAT_SUBTYPE_CACHE_AFFINITY:
 446		cache = (struct crat_subtype_cache *)sub_type_hdr;
 447		ret = kfd_parse_subtype_cache(cache, device_list);
 448		break;
 449	case CRAT_SUBTYPE_TLB_AFFINITY:
 450		/*
 451		 * For now, nothing to do here
 452		 */
 453		pr_debug("Found TLB entry in CRAT table (not processing)\n");
 454		break;
 455	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
 456		/*
 457		 * For now, nothing to do here
 458		 */
 459		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
 460		break;
 461	case CRAT_SUBTYPE_IOLINK_AFFINITY:
 462		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
 463		ret = kfd_parse_subtype_iolink(iolink, device_list);
 464		break;
 465	default:
 466		pr_warn("Unknown subtype %d in CRAT\n",
 467				sub_type_hdr->type);
 468	}
 469
 470	return ret;
 471}
 472
 473/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
 474 * create a kfd_topology_device and add in to device_list. Also parse
 475 * CRAT subtypes and attach it to appropriate kfd_topology_device
 476 *	@crat_image - input image containing CRAT
 477 *	@device_list - [OUT] list of kfd_topology_device generated after
 478 *		       parsing crat_image
 479 *	@proximity_domain - Proximity domain of the first device in the table
 480 *
 481 *	Return - 0 if successful else -ve value
 482 */
 483int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
 484			 uint32_t proximity_domain)
 485{
 486	struct kfd_topology_device *top_dev = NULL;
 487	struct crat_subtype_generic *sub_type_hdr;
 488	uint16_t node_id;
 489	int ret = 0;
 490	struct crat_header *crat_table = (struct crat_header *)crat_image;
 491	uint16_t num_nodes;
 492	uint32_t image_len;
 493
 494	if (!crat_image)
 495		return -EINVAL;
 496
 497	if (!list_empty(device_list)) {
 498		pr_warn("Error device list should be empty\n");
 499		return -EINVAL;
 500	}
 501
 502	num_nodes = crat_table->num_domains;
 503	image_len = crat_table->length;
 504
 505	pr_debug("Parsing CRAT table with %d nodes\n", num_nodes);
 506
 507	for (node_id = 0; node_id < num_nodes; node_id++) {
 508		top_dev = kfd_create_topology_device(device_list);
 509		if (!top_dev)
 510			break;
 511		top_dev->proximity_domain = proximity_domain++;
 512	}
 513
 514	if (!top_dev) {
 515		ret = -ENOMEM;
 516		goto err;
 517	}
 518
 519	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
 520	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
 521			CRAT_OEMTABLEID_LENGTH);
 522	top_dev->oem_revision = crat_table->oem_revision;
 523
 524	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
 525	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
 526			((char *)crat_image) + image_len) {
 527		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
 528			ret = kfd_parse_subtype(sub_type_hdr, device_list);
 529			if (ret)
 530				break;
 531		}
 532
 533		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
 534				sub_type_hdr->length);
 535	}
 536
 537err:
 538	if (ret)
 539		kfd_release_topology_device_list(device_list);
 540
 541	return ret;
 542}
 543
 544/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
 545static int fill_in_pcache(struct crat_subtype_cache *pcache,
 546				struct kfd_gpu_cache_info *pcache_info,
 547				struct kfd_cu_info *cu_info,
 548				int mem_available,
 549				int cu_bitmask,
 550				int cache_type, unsigned int cu_processor_id,
 551				int cu_block)
 552{
 553	unsigned int cu_sibling_map_mask;
 554	int first_active_cu;
 555
 556	/* First check if enough memory is available */
 557	if (sizeof(struct crat_subtype_cache) > mem_available)
 558		return -ENOMEM;
 559
 560	cu_sibling_map_mask = cu_bitmask;
 561	cu_sibling_map_mask >>= cu_block;
 562	cu_sibling_map_mask &=
 563		((1 << pcache_info[cache_type].num_cu_shared) - 1);
 564	first_active_cu = ffs(cu_sibling_map_mask);
 565
 566	/* CU could be inactive. In case of shared cache find the first active
 567	 * CU. and incase of non-shared cache check if the CU is inactive. If
 568	 * inactive active skip it
 569	 */
 570	if (first_active_cu) {
 571		memset(pcache, 0, sizeof(struct crat_subtype_cache));
 572		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
 573		pcache->length = sizeof(struct crat_subtype_cache);
 574		pcache->flags = pcache_info[cache_type].flags;
 575		pcache->processor_id_low = cu_processor_id
 576					 + (first_active_cu - 1);
 577		pcache->cache_level = pcache_info[cache_type].cache_level;
 578		pcache->cache_size = pcache_info[cache_type].cache_size;
 579
 580		/* Sibling map is w.r.t processor_id_low, so shift out
 581		 * inactive CU
 582		 */
 583		cu_sibling_map_mask =
 584			cu_sibling_map_mask >> (first_active_cu - 1);
 585
 586		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
 587		pcache->sibling_map[1] =
 588				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
 589		pcache->sibling_map[2] =
 590				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
 591		pcache->sibling_map[3] =
 592				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
 593		return 0;
 594	}
 595	return 1;
 596}
 597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598/* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
 599 * tables
 600 *
 601 *	@kdev - [IN] GPU device
 602 *	@gpu_processor_id - [IN] GPU processor ID to which these caches
 603 *			    associate
 604 *	@available_size - [IN] Amount of memory available in pcache
 605 *	@cu_info - [IN] Compute Unit info obtained from KGD
 606 *	@pcache - [OUT] memory into which cache data is to be filled in.
 607 *	@size_filled - [OUT] amount of data used up in pcache.
 608 *	@num_of_entries - [OUT] number of caches added
 609 */
 610static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
 611			int gpu_processor_id,
 612			int available_size,
 613			struct kfd_cu_info *cu_info,
 614			struct crat_subtype_cache *pcache,
 615			int *size_filled,
 616			int *num_of_entries)
 617{
 618	struct kfd_gpu_cache_info *pcache_info;
 619	int num_of_cache_types = 0;
 620	int i, j, k;
 621	int ct = 0;
 622	int mem_available = available_size;
 623	unsigned int cu_processor_id;
 624	int ret;
 
 625
 626	switch (kdev->device_info->asic_family) {
 627	case CHIP_KAVERI:
 628		pcache_info = kaveri_cache_info;
 629		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
 630		break;
 631	case CHIP_HAWAII:
 632		pcache_info = hawaii_cache_info;
 633		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
 634		break;
 635	case CHIP_CARRIZO:
 636		pcache_info = carrizo_cache_info;
 637		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
 638		break;
 639	case CHIP_TONGA:
 640		pcache_info = tonga_cache_info;
 641		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
 642		break;
 643	case CHIP_FIJI:
 644		pcache_info = fiji_cache_info;
 645		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
 646		break;
 647	case CHIP_POLARIS10:
 648		pcache_info = polaris10_cache_info;
 649		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
 650		break;
 651	case CHIP_POLARIS11:
 652		pcache_info = polaris11_cache_info;
 653		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
 654		break;
 655	case CHIP_POLARIS12:
 656		pcache_info = polaris12_cache_info;
 657		num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
 658		break;
 659	case CHIP_VEGAM:
 660		pcache_info = vegam_cache_info;
 661		num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
 662		break;
 663	case CHIP_VEGA10:
 
 
 
 664	case CHIP_VEGA12:
 
 
 
 665	case CHIP_VEGA20:
 666	case CHIP_ARCTURUS:
 667		pcache_info = vega10_cache_info;
 668		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
 
 
 
 
 669		break;
 670	case CHIP_RAVEN:
 671		pcache_info = raven_cache_info;
 672		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
 673		break;
 674	case CHIP_RENOIR:
 675		pcache_info = renoir_cache_info;
 676		num_of_cache_types = ARRAY_SIZE(renoir_cache_info);
 677		break;
 678	case CHIP_NAVI10:
 679	case CHIP_NAVI12:
 
 
 
 680	case CHIP_NAVI14:
 
 
 
 681	case CHIP_SIENNA_CICHLID:
 
 
 
 682	case CHIP_NAVY_FLOUNDER:
 683		pcache_info = navi10_cache_info;
 684		num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 685		break;
 686	default:
 687		return -EINVAL;
 688	}
 689
 690	*size_filled = 0;
 691	*num_of_entries = 0;
 692
 693	/* For each type of cache listed in the kfd_gpu_cache_info table,
 694	 * go through all available Compute Units.
 695	 * The [i,j,k] loop will
 696	 *		if kfd_gpu_cache_info.num_cu_shared = 1
 697	 *			will parse through all available CU
 698	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
 699	 *			then it will consider only one CU from
 700	 *			the shared unit
 701	 */
 702
 703	for (ct = 0; ct < num_of_cache_types; ct++) {
 704		cu_processor_id = gpu_processor_id;
 705		for (i = 0; i < cu_info->num_shader_engines; i++) {
 706			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
 707				j++) {
 708				for (k = 0; k < cu_info->num_cu_per_sh;
 709					k += pcache_info[ct].num_cu_shared) {
 
 
 
 
 
 
 
 
 710
 711					ret = fill_in_pcache(pcache,
 712						pcache_info,
 713						cu_info,
 714						mem_available,
 715						cu_info->cu_bitmap[i % 4][j + i / 4],
 716						ct,
 717						cu_processor_id,
 718						k);
 719
 720					if (ret < 0)
 721						break;
 722
 723					if (!ret) {
 724						pcache++;
 725						(*num_of_entries)++;
 726						mem_available -=
 727							sizeof(*pcache);
 728						(*size_filled) +=
 729							sizeof(*pcache);
 730					}
 731
 732					/* Move to next CU block */
 733					cu_processor_id +=
 734						pcache_info[ct].num_cu_shared;
 735				}
 736			}
 737		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738	}
 739
 740	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
 741
 742	return 0;
 743}
 744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745/*
 746 * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
 747 * copies CRAT from ACPI (if available).
 748 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
 749 *
 750 *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
 751 *		     crat_image will be NULL
 752 *	@size: [OUT] size of crat_image
 753 *
 754 *	Return 0 if successful else return error code
 755 */
 756int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
 757{
 758	struct acpi_table_header *crat_table;
 759	acpi_status status;
 760	void *pcrat_image;
 
 761
 762	if (!crat_image)
 763		return -EINVAL;
 764
 765	*crat_image = NULL;
 766
 
 
 
 
 
 767	/* Fetch the CRAT table from ACPI */
 768	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
 769	if (status == AE_NOT_FOUND) {
 770		pr_warn("CRAT table not found\n");
 771		return -ENODATA;
 772	} else if (ACPI_FAILURE(status)) {
 773		const char *err = acpi_format_exception(status);
 774
 775		pr_err("CRAT table error: %s\n", err);
 776		return -EINVAL;
 777	}
 778
 779	if (ignore_crat) {
 780		pr_info("CRAT table disabled by module option\n");
 781		return -ENODATA;
 
 782	}
 783
 784	pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL);
 785	if (!pcrat_image)
 786		return -ENOMEM;
 787
 788	*crat_image = pcrat_image;
 789	*size = crat_table->length;
 790
 791	return 0;
 
 792}
 793
 794/* Memory required to create Virtual CRAT.
 795 * Since there is no easy way to predict the amount of memory required, the
 796 * following amount are allocated for CPU and GPU Virtual CRAT. This is
 797 * expected to cover all known conditions. But to be safe additional check
 798 * is put in the code to ensure we don't overwrite.
 799 */
 800#define VCRAT_SIZE_FOR_CPU	(2 * PAGE_SIZE)
 801#define VCRAT_SIZE_FOR_GPU	(4 * PAGE_SIZE)
 802
 803/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
 804 *
 805 *	@numa_node_id: CPU NUMA node id
 806 *	@avail_size: Available size in the memory
 807 *	@sub_type_hdr: Memory into which compute info will be filled in
 808 *
 809 *	Return 0 if successful else return -ve value
 810 */
 811static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
 812				int proximity_domain,
 813				struct crat_subtype_computeunit *sub_type_hdr)
 814{
 815	const struct cpumask *cpumask;
 816
 817	*avail_size -= sizeof(struct crat_subtype_computeunit);
 818	if (*avail_size < 0)
 819		return -ENOMEM;
 820
 821	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
 822
 823	/* Fill in subtype header data */
 824	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
 825	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
 826	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
 827
 828	cpumask = cpumask_of_node(numa_node_id);
 829
 830	/* Fill in CU data */
 831	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
 832	sub_type_hdr->proximity_domain = proximity_domain;
 833	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
 834	if (sub_type_hdr->processor_id_low == -1)
 835		return -EINVAL;
 836
 837	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
 838
 839	return 0;
 840}
 841
 842/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
 843 *
 844 *	@numa_node_id: CPU NUMA node id
 845 *	@avail_size: Available size in the memory
 846 *	@sub_type_hdr: Memory into which compute info will be filled in
 847 *
 848 *	Return 0 if successful else return -ve value
 849 */
 850static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
 851			int proximity_domain,
 852			struct crat_subtype_memory *sub_type_hdr)
 853{
 854	uint64_t mem_in_bytes = 0;
 855	pg_data_t *pgdat;
 856	int zone_type;
 857
 858	*avail_size -= sizeof(struct crat_subtype_memory);
 859	if (*avail_size < 0)
 860		return -ENOMEM;
 861
 862	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
 863
 864	/* Fill in subtype header data */
 865	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
 866	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
 867	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
 868
 869	/* Fill in Memory Subunit data */
 870
 871	/* Unlike si_meminfo, si_meminfo_node is not exported. So
 872	 * the following lines are duplicated from si_meminfo_node
 873	 * function
 874	 */
 875	pgdat = NODE_DATA(numa_node_id);
 876	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
 877		mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
 878	mem_in_bytes <<= PAGE_SHIFT;
 879
 880	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
 881	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
 882	sub_type_hdr->proximity_domain = proximity_domain;
 883
 884	return 0;
 885}
 886
 887#ifdef CONFIG_X86_64
 888static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
 889				uint32_t *num_entries,
 890				struct crat_subtype_iolink *sub_type_hdr)
 891{
 892	int nid;
 893	struct cpuinfo_x86 *c = &cpu_data(0);
 894	uint8_t link_type;
 895
 896	if (c->x86_vendor == X86_VENDOR_AMD)
 897		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
 898	else
 899		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
 900
 901	*num_entries = 0;
 902
 903	/* Create IO links from this node to other CPU nodes */
 904	for_each_online_node(nid) {
 905		if (nid == numa_node_id) /* node itself */
 906			continue;
 907
 908		*avail_size -= sizeof(struct crat_subtype_iolink);
 909		if (*avail_size < 0)
 910			return -ENOMEM;
 911
 912		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
 913
 914		/* Fill in subtype header data */
 915		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
 916		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
 917		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
 918
 919		/* Fill in IO link data */
 920		sub_type_hdr->proximity_domain_from = numa_node_id;
 921		sub_type_hdr->proximity_domain_to = nid;
 922		sub_type_hdr->io_interface_type = link_type;
 923
 924		(*num_entries)++;
 925		sub_type_hdr++;
 926	}
 927
 928	return 0;
 929}
 930#endif
 931
 932/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
 933 *
 934 *	@pcrat_image: Fill in VCRAT for CPU
 935 *	@size:	[IN] allocated size of crat_image.
 936 *		[OUT] actual size of data filled in crat_image
 937 */
 938static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
 939{
 940	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
 941	struct acpi_table_header *acpi_table;
 942	acpi_status status;
 943	struct crat_subtype_generic *sub_type_hdr;
 944	int avail_size = *size;
 945	int numa_node_id;
 946#ifdef CONFIG_X86_64
 947	uint32_t entries = 0;
 948#endif
 949	int ret = 0;
 950
 951	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
 952		return -EINVAL;
 953
 954	/* Fill in CRAT Header.
 955	 * Modify length and total_entries as subunits are added.
 956	 */
 957	avail_size -= sizeof(struct crat_header);
 958	if (avail_size < 0)
 959		return -ENOMEM;
 960
 961	memset(crat_table, 0, sizeof(struct crat_header));
 962	memcpy(&crat_table->signature, CRAT_SIGNATURE,
 963			sizeof(crat_table->signature));
 964	crat_table->length = sizeof(struct crat_header);
 965
 966	status = acpi_get_table("DSDT", 0, &acpi_table);
 967	if (status != AE_OK)
 968		pr_warn("DSDT table not found for OEM information\n");
 969	else {
 970		crat_table->oem_revision = acpi_table->revision;
 971		memcpy(crat_table->oem_id, acpi_table->oem_id,
 972				CRAT_OEMID_LENGTH);
 973		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
 974				CRAT_OEMTABLEID_LENGTH);
 
 975	}
 976	crat_table->total_entries = 0;
 977	crat_table->num_domains = 0;
 978
 979	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
 980
 981	for_each_online_node(numa_node_id) {
 982		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
 983			continue;
 984
 985		/* Fill in Subtype: Compute Unit */
 986		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
 987			crat_table->num_domains,
 988			(struct crat_subtype_computeunit *)sub_type_hdr);
 989		if (ret < 0)
 990			return ret;
 991		crat_table->length += sub_type_hdr->length;
 992		crat_table->total_entries++;
 993
 994		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
 995			sub_type_hdr->length);
 996
 997		/* Fill in Subtype: Memory */
 998		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
 999			crat_table->num_domains,
1000			(struct crat_subtype_memory *)sub_type_hdr);
1001		if (ret < 0)
1002			return ret;
1003		crat_table->length += sub_type_hdr->length;
1004		crat_table->total_entries++;
1005
1006		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1007			sub_type_hdr->length);
1008
1009		/* Fill in Subtype: IO Link */
1010#ifdef CONFIG_X86_64
1011		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
1012				&entries,
1013				(struct crat_subtype_iolink *)sub_type_hdr);
1014		if (ret < 0)
1015			return ret;
1016		crat_table->length += (sub_type_hdr->length * entries);
1017		crat_table->total_entries += entries;
1018
1019		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1020				sub_type_hdr->length * entries);
 
 
 
 
 
1021#else
1022		pr_info("IO link not available for non x86 platforms\n");
1023#endif
1024
1025		crat_table->num_domains++;
1026	}
1027
1028	/* TODO: Add cache Subtype for CPU.
1029	 * Currently, CPU cache information is available in function
1030	 * detect_cache_attributes(cpu) defined in the file
1031	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
1032	 * exported and to get the same information the code needs to be
1033	 * duplicated.
1034	 */
1035
1036	*size = crat_table->length;
1037	pr_info("Virtual CRAT table created for CPU\n");
1038
1039	return 0;
1040}
1041
1042static int kfd_fill_gpu_memory_affinity(int *avail_size,
1043		struct kfd_dev *kdev, uint8_t type, uint64_t size,
1044		struct crat_subtype_memory *sub_type_hdr,
1045		uint32_t proximity_domain,
1046		const struct kfd_local_mem_info *local_mem_info)
1047{
1048	*avail_size -= sizeof(struct crat_subtype_memory);
1049	if (*avail_size < 0)
1050		return -ENOMEM;
1051
1052	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1053	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1054	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1055	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1056
1057	sub_type_hdr->proximity_domain = proximity_domain;
1058
1059	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1060			type, size);
1061
1062	sub_type_hdr->length_low = lower_32_bits(size);
1063	sub_type_hdr->length_high = upper_32_bits(size);
1064
1065	sub_type_hdr->width = local_mem_info->vram_width;
1066	sub_type_hdr->visibility_type = type;
1067
1068	return 0;
1069}
1070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1072 * to its NUMA node
1073 *	@avail_size: Available size in the memory
1074 *	@kdev - [IN] GPU device
1075 *	@sub_type_hdr: Memory into which io link info will be filled in
1076 *	@proximity_domain - proximity domain of the GPU node
1077 *
1078 *	Return 0 if successful else return -ve value
1079 */
1080static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1081			struct kfd_dev *kdev,
1082			struct crat_subtype_iolink *sub_type_hdr,
1083			uint32_t proximity_domain)
1084{
 
 
1085	*avail_size -= sizeof(struct crat_subtype_iolink);
1086	if (*avail_size < 0)
1087		return -ENOMEM;
1088
1089	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1090
1091	/* Fill in subtype header data */
1092	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1093	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1094	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1095	if (kfd_dev_is_large_bar(kdev))
1096		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1097
1098	/* Fill in IOLINK subtype.
1099	 * TODO: Fill-in other fields of iolink subtype
1100	 */
1101	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
 
 
 
 
 
 
 
 
 
 
 
 
1102	sub_type_hdr->proximity_domain_from = proximity_domain;
 
 
 
 
 
1103#ifdef CONFIG_NUMA
1104	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1105		sub_type_hdr->proximity_domain_to = 0;
1106	else
1107		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1108#else
1109	sub_type_hdr->proximity_domain_to = 0;
1110#endif
1111	return 0;
1112}
1113
1114static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
1115			struct kfd_dev *kdev,
1116			struct kfd_dev *peer_kdev,
1117			struct crat_subtype_iolink *sub_type_hdr,
1118			uint32_t proximity_domain_from,
1119			uint32_t proximity_domain_to)
1120{
1121	*avail_size -= sizeof(struct crat_subtype_iolink);
1122	if (*avail_size < 0)
1123		return -ENOMEM;
1124
1125	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1126
1127	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1128	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1129	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
1130			       CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1131
1132	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1133	sub_type_hdr->proximity_domain_from = proximity_domain_from;
1134	sub_type_hdr->proximity_domain_to = proximity_domain_to;
1135	sub_type_hdr->num_hops_xgmi =
1136		amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
1137	return 0;
1138}
1139
1140/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1141 *
1142 *	@pcrat_image: Fill in VCRAT for GPU
1143 *	@size:	[IN] allocated size of crat_image.
1144 *		[OUT] actual size of data filled in crat_image
1145 */
1146static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1147				      size_t *size, struct kfd_dev *kdev,
1148				      uint32_t proximity_domain)
1149{
1150	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1151	struct crat_subtype_generic *sub_type_hdr;
1152	struct kfd_local_mem_info local_mem_info;
1153	struct kfd_topology_device *peer_dev;
1154	struct crat_subtype_computeunit *cu;
1155	struct kfd_cu_info cu_info;
1156	int avail_size = *size;
1157	uint32_t total_num_of_cu;
1158	int num_of_cache_entries = 0;
1159	int cache_mem_filled = 0;
1160	uint32_t nid = 0;
1161	int ret = 0;
1162
1163	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1164		return -EINVAL;
1165
1166	/* Fill the CRAT Header.
1167	 * Modify length and total_entries as subunits are added.
1168	 */
1169	avail_size -= sizeof(struct crat_header);
1170	if (avail_size < 0)
1171		return -ENOMEM;
1172
1173	memset(crat_table, 0, sizeof(struct crat_header));
1174
1175	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1176			sizeof(crat_table->signature));
1177	/* Change length as we add more subtypes*/
1178	crat_table->length = sizeof(struct crat_header);
1179	crat_table->num_domains = 1;
1180	crat_table->total_entries = 0;
1181
1182	/* Fill in Subtype: Compute Unit
1183	 * First fill in the sub type header and then sub type data
1184	 */
1185	avail_size -= sizeof(struct crat_subtype_computeunit);
1186	if (avail_size < 0)
1187		return -ENOMEM;
1188
1189	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1190	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1191
1192	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1193	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1194	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1195
1196	/* Fill CU subtype data */
1197	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1198	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1199	cu->proximity_domain = proximity_domain;
1200
1201	amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
1202	cu->num_simd_per_cu = cu_info.simd_per_cu;
1203	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1204	cu->max_waves_simd = cu_info.max_waves_per_simd;
1205
1206	cu->wave_front_size = cu_info.wave_front_size;
1207	cu->array_count = cu_info.num_shader_arrays_per_engine *
1208		cu_info.num_shader_engines;
1209	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1210	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1211	cu->num_cu_per_array = cu_info.num_cu_per_sh;
1212	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1213	cu->num_banks = cu_info.num_shader_engines;
1214	cu->lds_size_in_kb = cu_info.lds_size;
1215
1216	cu->hsa_capability = 0;
1217
1218	/* Check if this node supports IOMMU. During parsing this flag will
1219	 * translate to HSA_CAP_ATS_PRESENT
1220	 */
1221	if (!kfd_iommu_check_device(kdev))
1222		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1223
1224	crat_table->length += sub_type_hdr->length;
1225	crat_table->total_entries++;
1226
1227	/* Fill in Subtype: Memory. Only on systems with large BAR (no
1228	 * private FB), report memory as public. On other systems
1229	 * report the total FB size (public+private) as a single
1230	 * private heap.
1231	 */
1232	amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
1233	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1234			sub_type_hdr->length);
1235
1236	if (debug_largebar)
1237		local_mem_info.local_mem_size_private = 0;
1238
1239	if (local_mem_info.local_mem_size_private == 0)
1240		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1241				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1242				local_mem_info.local_mem_size_public,
1243				(struct crat_subtype_memory *)sub_type_hdr,
1244				proximity_domain,
1245				&local_mem_info);
1246	else
1247		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1248				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1249				local_mem_info.local_mem_size_public +
1250				local_mem_info.local_mem_size_private,
1251				(struct crat_subtype_memory *)sub_type_hdr,
1252				proximity_domain,
1253				&local_mem_info);
1254	if (ret < 0)
1255		return ret;
1256
1257	crat_table->length += sizeof(struct crat_subtype_memory);
1258	crat_table->total_entries++;
1259
1260	/* TODO: Fill in cache information. This information is NOT readily
1261	 * available in KGD
1262	 */
1263	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1264		sub_type_hdr->length);
1265	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1266				avail_size,
1267				&cu_info,
1268				(struct crat_subtype_cache *)sub_type_hdr,
1269				&cache_mem_filled,
1270				&num_of_cache_entries);
1271
1272	if (ret < 0)
1273		return ret;
1274
1275	crat_table->length += cache_mem_filled;
1276	crat_table->total_entries += num_of_cache_entries;
1277	avail_size -= cache_mem_filled;
1278
1279	/* Fill in Subtype: IO_LINKS
1280	 *  Only direct links are added here which is Link from GPU to
1281	 *  to its NUMA node. Indirect links are added by userspace.
1282	 */
1283	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1284		cache_mem_filled);
1285	ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
1286		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1287
1288	if (ret < 0)
1289		return ret;
1290
1291	crat_table->length += sub_type_hdr->length;
1292	crat_table->total_entries++;
1293
1294
1295	/* Fill in Subtype: IO_LINKS
1296	 * Direct links from GPU to other GPUs through xGMI.
1297	 * We will loop GPUs that already be processed (with lower value
1298	 * of proximity_domain), add the link for the GPUs with same
1299	 * hive id (from this GPU to other GPU) . The reversed iolink
1300	 * (from other GPU to this GPU) will be added
1301	 * in kfd_parse_subtype_iolink.
1302	 */
1303	if (kdev->hive_id) {
1304		for (nid = 0; nid < proximity_domain; ++nid) {
1305			peer_dev = kfd_topology_device_by_proximity_domain(nid);
1306			if (!peer_dev->gpu)
1307				continue;
1308			if (peer_dev->gpu->hive_id != kdev->hive_id)
1309				continue;
1310			sub_type_hdr = (typeof(sub_type_hdr))(
1311				(char *)sub_type_hdr +
1312				sizeof(struct crat_subtype_iolink));
1313			ret = kfd_fill_gpu_xgmi_link_to_gpu(
1314				&avail_size, kdev, peer_dev->gpu,
1315				(struct crat_subtype_iolink *)sub_type_hdr,
1316				proximity_domain, nid);
1317			if (ret < 0)
1318				return ret;
1319			crat_table->length += sub_type_hdr->length;
1320			crat_table->total_entries++;
1321		}
1322	}
1323	*size = crat_table->length;
1324	pr_info("Virtual CRAT table created for GPU\n");
1325
1326	return ret;
1327}
1328
1329/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1330 *		creates a Virtual CRAT (VCRAT) image
1331 *
1332 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1333 *
1334 *	@crat_image: VCRAT image created because ACPI does not have a
1335 *		     CRAT for this device
1336 *	@size: [OUT] size of virtual crat_image
1337 *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1338 *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
1339 *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1340 *			-- this option is not currently implemented.
1341 *			The assumption is that all AMD APUs will have CRAT
1342 *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1343 *
1344 *	Return 0 if successful else return -ve value
1345 */
1346int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1347				  int flags, struct kfd_dev *kdev,
1348				  uint32_t proximity_domain)
1349{
1350	void *pcrat_image = NULL;
1351	int ret = 0;
 
1352
1353	if (!crat_image)
1354		return -EINVAL;
1355
1356	*crat_image = NULL;
1357
1358	/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1359	 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1360	 * all the current conditions. A check is put not to overwrite beyond
1361	 * allocated size
1362	 */
1363	switch (flags) {
1364	case COMPUTE_UNIT_CPU:
1365		pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
 
 
 
 
 
1366		if (!pcrat_image)
1367			return -ENOMEM;
1368		*size = VCRAT_SIZE_FOR_CPU;
 
1369		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1370		break;
1371	case COMPUTE_UNIT_GPU:
1372		if (!kdev)
1373			return -EINVAL;
1374		pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1375		if (!pcrat_image)
1376			return -ENOMEM;
1377		*size = VCRAT_SIZE_FOR_GPU;
1378		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1379						 proximity_domain);
1380		break;
1381	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1382		/* TODO: */
1383		ret = -EINVAL;
1384		pr_err("VCRAT not implemented for APU\n");
1385		break;
1386	default:
1387		ret = -EINVAL;
1388	}
1389
1390	if (!ret)
1391		*crat_image = pcrat_image;
1392	else
1393		kfree(pcrat_image);
1394
1395	return ret;
1396}
1397
1398
1399/* kfd_destroy_crat_image
1400 *
1401 *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1402 *
1403 */
1404void kfd_destroy_crat_image(void *crat_image)
1405{
1406	kfree(crat_image);
1407}
v5.14.15
   1/*
   2 * Copyright 2015-2017 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/acpi.h>
  25#include "kfd_crat.h"
  26#include "kfd_priv.h"
  27#include "kfd_topology.h"
  28#include "kfd_iommu.h"
  29#include "amdgpu.h"
  30#include "amdgpu_amdkfd.h"
  31
  32/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
  33 * GPU processor ID are expressed with Bit[31]=1.
  34 * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
  35 * used in the CRAT.
  36 */
  37static uint32_t gpu_processor_id_low = 0x80001000;
  38
  39/* Return the next available gpu_processor_id and increment it for next GPU
  40 *	@total_cu_count - Total CUs present in the GPU including ones
  41 *			  masked off
  42 */
  43static inline unsigned int get_and_inc_gpu_processor_id(
  44				unsigned int total_cu_count)
  45{
  46	int current_id = gpu_processor_id_low;
  47
  48	gpu_processor_id_low += total_cu_count;
  49	return current_id;
  50}
  51
  52/* Static table to describe GPU Cache information */
  53struct kfd_gpu_cache_info {
  54	uint32_t	cache_size;
  55	uint32_t	cache_level;
  56	uint32_t	flags;
  57	/* Indicates how many Compute Units share this cache
  58	 * within a SA. Value = 1 indicates the cache is not shared
  59	 */
  60	uint32_t	num_cu_shared;
  61};
  62
  63static struct kfd_gpu_cache_info kaveri_cache_info[] = {
  64	{
  65		/* TCP L1 Cache per CU */
  66		.cache_size = 16,
  67		.cache_level = 1,
  68		.flags = (CRAT_CACHE_FLAGS_ENABLED |
  69				CRAT_CACHE_FLAGS_DATA_CACHE |
  70				CRAT_CACHE_FLAGS_SIMD_CACHE),
  71		.num_cu_shared = 1,
 
  72	},
  73	{
  74		/* Scalar L1 Instruction Cache (in SQC module) per bank */
  75		.cache_size = 16,
  76		.cache_level = 1,
  77		.flags = (CRAT_CACHE_FLAGS_ENABLED |
  78				CRAT_CACHE_FLAGS_INST_CACHE |
  79				CRAT_CACHE_FLAGS_SIMD_CACHE),
  80		.num_cu_shared = 2,
  81	},
  82	{
  83		/* Scalar L1 Data Cache (in SQC module) per bank */
  84		.cache_size = 8,
  85		.cache_level = 1,
  86		.flags = (CRAT_CACHE_FLAGS_ENABLED |
  87				CRAT_CACHE_FLAGS_DATA_CACHE |
  88				CRAT_CACHE_FLAGS_SIMD_CACHE),
  89		.num_cu_shared = 2,
  90	},
  91
  92	/* TODO: Add L2 Cache information */
  93};
  94
  95
  96static struct kfd_gpu_cache_info carrizo_cache_info[] = {
  97	{
  98		/* TCP L1 Cache per CU */
  99		.cache_size = 16,
 100		.cache_level = 1,
 101		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 102				CRAT_CACHE_FLAGS_DATA_CACHE |
 103				CRAT_CACHE_FLAGS_SIMD_CACHE),
 104		.num_cu_shared = 1,
 105	},
 106	{
 107		/* Scalar L1 Instruction Cache (in SQC module) per bank */
 108		.cache_size = 8,
 109		.cache_level = 1,
 110		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 111				CRAT_CACHE_FLAGS_INST_CACHE |
 112				CRAT_CACHE_FLAGS_SIMD_CACHE),
 113		.num_cu_shared = 4,
 114	},
 115	{
 116		/* Scalar L1 Data Cache (in SQC module) per bank. */
 117		.cache_size = 4,
 118		.cache_level = 1,
 119		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 120				CRAT_CACHE_FLAGS_DATA_CACHE |
 121				CRAT_CACHE_FLAGS_SIMD_CACHE),
 122		.num_cu_shared = 4,
 123	},
 124
 125	/* TODO: Add L2 Cache information */
 126};
 127
 
 
 
 128#define hawaii_cache_info kaveri_cache_info
 129#define tonga_cache_info carrizo_cache_info
 130#define fiji_cache_info  carrizo_cache_info
 131#define polaris10_cache_info carrizo_cache_info
 132#define polaris11_cache_info carrizo_cache_info
 133#define polaris12_cache_info carrizo_cache_info
 134#define vegam_cache_info carrizo_cache_info
 135
 136/* NOTE: L1 cache information has been updated and L2/L3
 137 * cache information has been added for Vega10 and
 138 * newer ASICs. The unit for cache_size is KiB.
 139 * In future,  check & update cache details
 140 * for every new ASIC is required.
 141 */
 142
 143static struct kfd_gpu_cache_info vega10_cache_info[] = {
 144	{
 145		/* TCP L1 Cache per CU */
 146		.cache_size = 16,
 147		.cache_level = 1,
 148		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 149				CRAT_CACHE_FLAGS_DATA_CACHE |
 150				CRAT_CACHE_FLAGS_SIMD_CACHE),
 151		.num_cu_shared = 1,
 152	},
 153	{
 154		/* Scalar L1 Instruction Cache per SQC */
 155		.cache_size = 32,
 156		.cache_level = 1,
 157		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 158				CRAT_CACHE_FLAGS_INST_CACHE |
 159				CRAT_CACHE_FLAGS_SIMD_CACHE),
 160		.num_cu_shared = 3,
 161	},
 162	{
 163		/* Scalar L1 Data Cache per SQC */
 164		.cache_size = 16,
 165		.cache_level = 1,
 166		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 167				CRAT_CACHE_FLAGS_DATA_CACHE |
 168				CRAT_CACHE_FLAGS_SIMD_CACHE),
 169		.num_cu_shared = 3,
 170	},
 171	{
 172		/* L2 Data Cache per GPU (Total Tex Cache) */
 173		.cache_size = 4096,
 174		.cache_level = 2,
 175		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 176				CRAT_CACHE_FLAGS_DATA_CACHE |
 177				CRAT_CACHE_FLAGS_SIMD_CACHE),
 178		.num_cu_shared = 16,
 179	},
 180};
 181
 182static struct kfd_gpu_cache_info raven_cache_info[] = {
 183	{
 184		/* TCP L1 Cache per CU */
 185		.cache_size = 16,
 186		.cache_level = 1,
 187		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 188				CRAT_CACHE_FLAGS_DATA_CACHE |
 189				CRAT_CACHE_FLAGS_SIMD_CACHE),
 190		.num_cu_shared = 1,
 191	},
 192	{
 193		/* Scalar L1 Instruction Cache per SQC */
 194		.cache_size = 32,
 195		.cache_level = 1,
 196		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 197				CRAT_CACHE_FLAGS_INST_CACHE |
 198				CRAT_CACHE_FLAGS_SIMD_CACHE),
 199		.num_cu_shared = 3,
 200	},
 201	{
 202		/* Scalar L1 Data Cache per SQC */
 203		.cache_size = 16,
 204		.cache_level = 1,
 205		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 206				CRAT_CACHE_FLAGS_DATA_CACHE |
 207				CRAT_CACHE_FLAGS_SIMD_CACHE),
 208		.num_cu_shared = 3,
 209	},
 210	{
 211		/* L2 Data Cache per GPU (Total Tex Cache) */
 212		.cache_size = 1024,
 213		.cache_level = 2,
 214		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 215				CRAT_CACHE_FLAGS_DATA_CACHE |
 216				CRAT_CACHE_FLAGS_SIMD_CACHE),
 217		.num_cu_shared = 11,
 218	},
 219};
 220
 221static struct kfd_gpu_cache_info renoir_cache_info[] = {
 222	{
 223		/* TCP L1 Cache per CU */
 224		.cache_size = 16,
 225		.cache_level = 1,
 226		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 227				CRAT_CACHE_FLAGS_DATA_CACHE |
 228				CRAT_CACHE_FLAGS_SIMD_CACHE),
 229		.num_cu_shared = 1,
 230	},
 231	{
 232		/* Scalar L1 Instruction Cache per SQC */
 233		.cache_size = 32,
 234		.cache_level = 1,
 235		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 236				CRAT_CACHE_FLAGS_INST_CACHE |
 237				CRAT_CACHE_FLAGS_SIMD_CACHE),
 238		.num_cu_shared = 3,
 239	},
 240	{
 241		/* Scalar L1 Data Cache per SQC */
 242		.cache_size = 16,
 243		.cache_level = 1,
 244		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 245				CRAT_CACHE_FLAGS_DATA_CACHE |
 246				CRAT_CACHE_FLAGS_SIMD_CACHE),
 247		.num_cu_shared = 3,
 248	},
 249	{
 250		/* L2 Data Cache per GPU (Total Tex Cache) */
 251		.cache_size = 1024,
 252		.cache_level = 2,
 253		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 254				CRAT_CACHE_FLAGS_DATA_CACHE |
 255				CRAT_CACHE_FLAGS_SIMD_CACHE),
 256		.num_cu_shared = 8,
 257	},
 258};
 259
 260static struct kfd_gpu_cache_info vega12_cache_info[] = {
 261	{
 262		/* TCP L1 Cache per CU */
 263		.cache_size = 16,
 264		.cache_level = 1,
 265		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 266				CRAT_CACHE_FLAGS_DATA_CACHE |
 267				CRAT_CACHE_FLAGS_SIMD_CACHE),
 268		.num_cu_shared = 1,
 269	},
 270	{
 271		/* Scalar L1 Instruction Cache per SQC */
 272		.cache_size = 32,
 273		.cache_level = 1,
 274		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 275				CRAT_CACHE_FLAGS_INST_CACHE |
 276				CRAT_CACHE_FLAGS_SIMD_CACHE),
 277		.num_cu_shared = 3,
 278	},
 279	{
 280		/* Scalar L1 Data Cache per SQC */
 281		.cache_size = 16,
 282		.cache_level = 1,
 283		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 284				CRAT_CACHE_FLAGS_DATA_CACHE |
 285				CRAT_CACHE_FLAGS_SIMD_CACHE),
 286		.num_cu_shared = 3,
 287	},
 288	{
 289		/* L2 Data Cache per GPU (Total Tex Cache) */
 290		.cache_size = 2048,
 291		.cache_level = 2,
 292		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 293				CRAT_CACHE_FLAGS_DATA_CACHE |
 294				CRAT_CACHE_FLAGS_SIMD_CACHE),
 295		.num_cu_shared = 5,
 296	},
 297};
 298
 299static struct kfd_gpu_cache_info vega20_cache_info[] = {
 300	{
 301		/* TCP L1 Cache per CU */
 302		.cache_size = 16,
 303		.cache_level = 1,
 304		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 305				CRAT_CACHE_FLAGS_DATA_CACHE |
 306				CRAT_CACHE_FLAGS_SIMD_CACHE),
 307		.num_cu_shared = 1,
 308	},
 309	{
 310		/* Scalar L1 Instruction Cache per SQC */
 311		.cache_size = 32,
 312		.cache_level = 1,
 313		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 314				CRAT_CACHE_FLAGS_INST_CACHE |
 315				CRAT_CACHE_FLAGS_SIMD_CACHE),
 316		.num_cu_shared = 3,
 317	},
 318	{
 319		/* Scalar L1 Data Cache per SQC */
 320		.cache_size = 16,
 321		.cache_level = 1,
 322		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 323				CRAT_CACHE_FLAGS_DATA_CACHE |
 324				CRAT_CACHE_FLAGS_SIMD_CACHE),
 325		.num_cu_shared = 3,
 326	},
 327	{
 328		/* L2 Data Cache per GPU (Total Tex Cache) */
 329		.cache_size = 8192,
 330		.cache_level = 2,
 331		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 332				CRAT_CACHE_FLAGS_DATA_CACHE |
 333				CRAT_CACHE_FLAGS_SIMD_CACHE),
 334		.num_cu_shared = 16,
 335	},
 336};
 337
 338static struct kfd_gpu_cache_info aldebaran_cache_info[] = {
 339	{
 340		/* TCP L1 Cache per CU */
 341		.cache_size = 16,
 342		.cache_level = 1,
 343		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 344				CRAT_CACHE_FLAGS_DATA_CACHE |
 345				CRAT_CACHE_FLAGS_SIMD_CACHE),
 346		.num_cu_shared = 1,
 347	},
 348	{
 349		/* Scalar L1 Instruction Cache per SQC */
 350		.cache_size = 32,
 351		.cache_level = 1,
 352		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 353				CRAT_CACHE_FLAGS_INST_CACHE |
 354				CRAT_CACHE_FLAGS_SIMD_CACHE),
 355		.num_cu_shared = 2,
 356	},
 357	{
 358		/* Scalar L1 Data Cache per SQC */
 359		.cache_size = 16,
 360		.cache_level = 1,
 361		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 362				CRAT_CACHE_FLAGS_DATA_CACHE |
 363				CRAT_CACHE_FLAGS_SIMD_CACHE),
 364		.num_cu_shared = 2,
 365	},
 366	{
 367		/* L2 Data Cache per GPU (Total Tex Cache) */
 368		.cache_size = 8192,
 369		.cache_level = 2,
 370		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 371				CRAT_CACHE_FLAGS_DATA_CACHE |
 372				CRAT_CACHE_FLAGS_SIMD_CACHE),
 373		.num_cu_shared = 14,
 374	},
 375};
 376
 377static struct kfd_gpu_cache_info navi10_cache_info[] = {
 378	{
 379		/* TCP L1 Cache per CU */
 380		.cache_size = 16,
 381		.cache_level = 1,
 382		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 383				CRAT_CACHE_FLAGS_DATA_CACHE |
 384				CRAT_CACHE_FLAGS_SIMD_CACHE),
 385		.num_cu_shared = 1,
 386	},
 387	{
 388		/* Scalar L1 Instruction Cache per SQC */
 389		.cache_size = 32,
 390		.cache_level = 1,
 391		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 392				CRAT_CACHE_FLAGS_INST_CACHE |
 393				CRAT_CACHE_FLAGS_SIMD_CACHE),
 394		.num_cu_shared = 2,
 395	},
 396	{
 397		/* Scalar L1 Data Cache per SQC */
 398		.cache_size = 16,
 399		.cache_level = 1,
 400		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 401				CRAT_CACHE_FLAGS_DATA_CACHE |
 402				CRAT_CACHE_FLAGS_SIMD_CACHE),
 403		.num_cu_shared = 2,
 404	},
 405	{
 406		/* GL1 Data Cache per SA */
 407		.cache_size = 128,
 408		.cache_level = 1,
 409		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 410				CRAT_CACHE_FLAGS_DATA_CACHE |
 411				CRAT_CACHE_FLAGS_SIMD_CACHE),
 412		.num_cu_shared = 10,
 413	},
 414	{
 415		/* L2 Data Cache per GPU (Total Tex Cache) */
 416		.cache_size = 4096,
 417		.cache_level = 2,
 418		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 419				CRAT_CACHE_FLAGS_DATA_CACHE |
 420				CRAT_CACHE_FLAGS_SIMD_CACHE),
 421		.num_cu_shared = 10,
 422	},
 423};
 424
 425static struct kfd_gpu_cache_info vangogh_cache_info[] = {
 426	{
 427		/* TCP L1 Cache per CU */
 428		.cache_size = 16,
 429		.cache_level = 1,
 430		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 431				CRAT_CACHE_FLAGS_DATA_CACHE |
 432				CRAT_CACHE_FLAGS_SIMD_CACHE),
 433		.num_cu_shared = 1,
 434	},
 435	{
 436		/* Scalar L1 Instruction Cache per SQC */
 437		.cache_size = 32,
 438		.cache_level = 1,
 439		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 440				CRAT_CACHE_FLAGS_INST_CACHE |
 441				CRAT_CACHE_FLAGS_SIMD_CACHE),
 442		.num_cu_shared = 2,
 443	},
 444	{
 445		/* Scalar L1 Data Cache per SQC */
 446		.cache_size = 16,
 447		.cache_level = 1,
 448		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 449				CRAT_CACHE_FLAGS_DATA_CACHE |
 450				CRAT_CACHE_FLAGS_SIMD_CACHE),
 451		.num_cu_shared = 2,
 452	},
 453	{
 454		/* GL1 Data Cache per SA */
 455		.cache_size = 128,
 456		.cache_level = 1,
 457		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 458				CRAT_CACHE_FLAGS_DATA_CACHE |
 459				CRAT_CACHE_FLAGS_SIMD_CACHE),
 460		.num_cu_shared = 8,
 461	},
 462	{
 463		/* L2 Data Cache per GPU (Total Tex Cache) */
 464		.cache_size = 1024,
 465		.cache_level = 2,
 466		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 467				CRAT_CACHE_FLAGS_DATA_CACHE |
 468				CRAT_CACHE_FLAGS_SIMD_CACHE),
 469		.num_cu_shared = 8,
 470	},
 471};
 472
 473static struct kfd_gpu_cache_info navi14_cache_info[] = {
 474	{
 475		/* TCP L1 Cache per CU */
 476		.cache_size = 16,
 477		.cache_level = 1,
 478		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 479				CRAT_CACHE_FLAGS_DATA_CACHE |
 480				CRAT_CACHE_FLAGS_SIMD_CACHE),
 481		.num_cu_shared = 1,
 482	},
 483	{
 484		/* Scalar L1 Instruction Cache per SQC */
 485		.cache_size = 32,
 486		.cache_level = 1,
 487		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 488				CRAT_CACHE_FLAGS_INST_CACHE |
 489				CRAT_CACHE_FLAGS_SIMD_CACHE),
 490		.num_cu_shared = 2,
 491	},
 492	{
 493		/* Scalar L1 Data Cache per SQC */
 494		.cache_size = 16,
 495		.cache_level = 1,
 496		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 497				CRAT_CACHE_FLAGS_DATA_CACHE |
 498				CRAT_CACHE_FLAGS_SIMD_CACHE),
 499		.num_cu_shared = 2,
 500	},
 501	{
 502		/* GL1 Data Cache per SA */
 503		.cache_size = 128,
 504		.cache_level = 1,
 505		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 506				CRAT_CACHE_FLAGS_DATA_CACHE |
 507				CRAT_CACHE_FLAGS_SIMD_CACHE),
 508		.num_cu_shared = 12,
 509	},
 510	{
 511		/* L2 Data Cache per GPU (Total Tex Cache) */
 512		.cache_size = 2048,
 513		.cache_level = 2,
 514		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 515				CRAT_CACHE_FLAGS_DATA_CACHE |
 516				CRAT_CACHE_FLAGS_SIMD_CACHE),
 517		.num_cu_shared = 12,
 518	},
 519};
 520
 521static struct kfd_gpu_cache_info sienna_cichlid_cache_info[] = {
 522	{
 523		/* TCP L1 Cache per CU */
 524		.cache_size = 16,
 525		.cache_level = 1,
 526		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 527				CRAT_CACHE_FLAGS_DATA_CACHE |
 528				CRAT_CACHE_FLAGS_SIMD_CACHE),
 529		.num_cu_shared = 1,
 530	},
 531	{
 532		/* Scalar L1 Instruction Cache per SQC */
 533		.cache_size = 32,
 534		.cache_level = 1,
 535		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 536				CRAT_CACHE_FLAGS_INST_CACHE |
 537				CRAT_CACHE_FLAGS_SIMD_CACHE),
 538		.num_cu_shared = 2,
 539	},
 540	{
 541		/* Scalar L1 Data Cache per SQC */
 542		.cache_size = 16,
 543		.cache_level = 1,
 544		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 545				CRAT_CACHE_FLAGS_DATA_CACHE |
 546				CRAT_CACHE_FLAGS_SIMD_CACHE),
 547		.num_cu_shared = 2,
 548	},
 549	{
 550		/* GL1 Data Cache per SA */
 551		.cache_size = 128,
 552		.cache_level = 1,
 553		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 554				CRAT_CACHE_FLAGS_DATA_CACHE |
 555				CRAT_CACHE_FLAGS_SIMD_CACHE),
 556		.num_cu_shared = 10,
 557	},
 558	{
 559		/* L2 Data Cache per GPU (Total Tex Cache) */
 560		.cache_size = 4096,
 561		.cache_level = 2,
 562		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 563				CRAT_CACHE_FLAGS_DATA_CACHE |
 564				CRAT_CACHE_FLAGS_SIMD_CACHE),
 565		.num_cu_shared = 10,
 566	},
 567	{
 568		/* L3 Data Cache per GPU */
 569		.cache_size = 128*1024,
 570		.cache_level = 3,
 571		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 572				CRAT_CACHE_FLAGS_DATA_CACHE |
 573				CRAT_CACHE_FLAGS_SIMD_CACHE),
 574		.num_cu_shared = 10,
 575	},
 576};
 577
 578static struct kfd_gpu_cache_info navy_flounder_cache_info[] = {
 579	{
 580		/* TCP L1 Cache per CU */
 581		.cache_size = 16,
 582		.cache_level = 1,
 583		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 584				CRAT_CACHE_FLAGS_DATA_CACHE |
 585				CRAT_CACHE_FLAGS_SIMD_CACHE),
 586		.num_cu_shared = 1,
 587	},
 588	{
 589		/* Scalar L1 Instruction Cache per SQC */
 590		.cache_size = 32,
 591		.cache_level = 1,
 592		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 593				CRAT_CACHE_FLAGS_INST_CACHE |
 594				CRAT_CACHE_FLAGS_SIMD_CACHE),
 595		.num_cu_shared = 2,
 596	},
 597	{
 598		/* Scalar L1 Data Cache per SQC */
 599		.cache_size = 16,
 600		.cache_level = 1,
 601		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 602				CRAT_CACHE_FLAGS_DATA_CACHE |
 603				CRAT_CACHE_FLAGS_SIMD_CACHE),
 604		.num_cu_shared = 2,
 605	},
 606	{
 607		/* GL1 Data Cache per SA */
 608		.cache_size = 128,
 609		.cache_level = 1,
 610		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 611				CRAT_CACHE_FLAGS_DATA_CACHE |
 612				CRAT_CACHE_FLAGS_SIMD_CACHE),
 613		.num_cu_shared = 10,
 614	},
 615	{
 616		/* L2 Data Cache per GPU (Total Tex Cache) */
 617		.cache_size = 3072,
 618		.cache_level = 2,
 619		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 620				CRAT_CACHE_FLAGS_DATA_CACHE |
 621				CRAT_CACHE_FLAGS_SIMD_CACHE),
 622		.num_cu_shared = 10,
 623	},
 624	{
 625		/* L3 Data Cache per GPU */
 626		.cache_size = 96*1024,
 627		.cache_level = 3,
 628		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 629				CRAT_CACHE_FLAGS_DATA_CACHE |
 630				CRAT_CACHE_FLAGS_SIMD_CACHE),
 631		.num_cu_shared = 10,
 632	},
 633};
 634
 635static struct kfd_gpu_cache_info dimgrey_cavefish_cache_info[] = {
 636	{
 637		/* TCP L1 Cache per CU */
 638		.cache_size = 16,
 639		.cache_level = 1,
 640		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 641				CRAT_CACHE_FLAGS_DATA_CACHE |
 642				CRAT_CACHE_FLAGS_SIMD_CACHE),
 643		.num_cu_shared = 1,
 644	},
 645	{
 646		/* Scalar L1 Instruction Cache per SQC */
 647		.cache_size = 32,
 648		.cache_level = 1,
 649		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 650				CRAT_CACHE_FLAGS_INST_CACHE |
 651				CRAT_CACHE_FLAGS_SIMD_CACHE),
 652		.num_cu_shared = 2,
 653	},
 654	{
 655		/* Scalar L1 Data Cache per SQC */
 656		.cache_size = 16,
 657		.cache_level = 1,
 658		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 659				CRAT_CACHE_FLAGS_DATA_CACHE |
 660				CRAT_CACHE_FLAGS_SIMD_CACHE),
 661		.num_cu_shared = 2,
 662	},
 663	{
 664		/* GL1 Data Cache per SA */
 665		.cache_size = 128,
 666		.cache_level = 1,
 667		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 668				CRAT_CACHE_FLAGS_DATA_CACHE |
 669				CRAT_CACHE_FLAGS_SIMD_CACHE),
 670		.num_cu_shared = 8,
 671	},
 672	{
 673		/* L2 Data Cache per GPU (Total Tex Cache) */
 674		.cache_size = 2048,
 675		.cache_level = 2,
 676		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 677				CRAT_CACHE_FLAGS_DATA_CACHE |
 678				CRAT_CACHE_FLAGS_SIMD_CACHE),
 679		.num_cu_shared = 8,
 680	},
 681	{
 682		/* L3 Data Cache per GPU */
 683		.cache_size = 32*1024,
 684		.cache_level = 3,
 685		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 686				CRAT_CACHE_FLAGS_DATA_CACHE |
 687				CRAT_CACHE_FLAGS_SIMD_CACHE),
 688		.num_cu_shared = 8,
 689	},
 690};
 691
 692static struct kfd_gpu_cache_info beige_goby_cache_info[] = {
 693	{
 694		/* TCP L1 Cache per CU */
 695		.cache_size = 16,
 696		.cache_level = 1,
 697		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 698				CRAT_CACHE_FLAGS_DATA_CACHE |
 699				CRAT_CACHE_FLAGS_SIMD_CACHE),
 700		.num_cu_shared = 1,
 701	},
 702	{
 703		/* Scalar L1 Instruction Cache per SQC */
 704		.cache_size = 32,
 705		.cache_level = 1,
 706		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 707				CRAT_CACHE_FLAGS_INST_CACHE |
 708				CRAT_CACHE_FLAGS_SIMD_CACHE),
 709		.num_cu_shared = 2,
 710	},
 711	{
 712		/* Scalar L1 Data Cache per SQC */
 713		.cache_size = 16,
 714		.cache_level = 1,
 715		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 716				CRAT_CACHE_FLAGS_DATA_CACHE |
 717				CRAT_CACHE_FLAGS_SIMD_CACHE),
 718		.num_cu_shared = 2,
 719	},
 720	{
 721		/* GL1 Data Cache per SA */
 722		.cache_size = 128,
 723		.cache_level = 1,
 724		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 725				CRAT_CACHE_FLAGS_DATA_CACHE |
 726				CRAT_CACHE_FLAGS_SIMD_CACHE),
 727		.num_cu_shared = 8,
 728	},
 729	{
 730		/* L2 Data Cache per GPU (Total Tex Cache) */
 731		.cache_size = 1024,
 732		.cache_level = 2,
 733		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 734				CRAT_CACHE_FLAGS_DATA_CACHE |
 735				CRAT_CACHE_FLAGS_SIMD_CACHE),
 736		.num_cu_shared = 8,
 737	},
 738	{
 739		/* L3 Data Cache per GPU */
 740		.cache_size = 16*1024,
 741		.cache_level = 3,
 742		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 743				CRAT_CACHE_FLAGS_DATA_CACHE |
 744				CRAT_CACHE_FLAGS_SIMD_CACHE),
 745		.num_cu_shared = 8,
 746	},
 747};
 748
 749static struct kfd_gpu_cache_info yellow_carp_cache_info[] = {
 750	{
 751		/* TCP L1 Cache per CU */
 752		.cache_size = 16,
 753		.cache_level = 1,
 754		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 755				CRAT_CACHE_FLAGS_DATA_CACHE |
 756				CRAT_CACHE_FLAGS_SIMD_CACHE),
 757		.num_cu_shared = 1,
 758	},
 759	{
 760		/* Scalar L1 Instruction Cache per SQC */
 761		.cache_size = 32,
 762		.cache_level = 1,
 763		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 764				CRAT_CACHE_FLAGS_INST_CACHE |
 765				CRAT_CACHE_FLAGS_SIMD_CACHE),
 766		.num_cu_shared = 2,
 767	},
 768	{
 769		/* Scalar L1 Data Cache per SQC */
 770		.cache_size = 16,
 771		.cache_level = 1,
 772		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 773				CRAT_CACHE_FLAGS_DATA_CACHE |
 774				CRAT_CACHE_FLAGS_SIMD_CACHE),
 775		.num_cu_shared = 2,
 776	},
 777	{
 778		/* GL1 Data Cache per SA */
 779		.cache_size = 128,
 780		.cache_level = 1,
 781		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 782				CRAT_CACHE_FLAGS_DATA_CACHE |
 783				CRAT_CACHE_FLAGS_SIMD_CACHE),
 784		.num_cu_shared = 6,
 785	},
 786	{
 787		/* L2 Data Cache per GPU (Total Tex Cache) */
 788		.cache_size = 2048,
 789		.cache_level = 2,
 790		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 791				CRAT_CACHE_FLAGS_DATA_CACHE |
 792				CRAT_CACHE_FLAGS_SIMD_CACHE),
 793		.num_cu_shared = 6,
 794	},
 795};
 796
 797static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
 798		struct crat_subtype_computeunit *cu)
 799{
 800	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
 801	dev->node_props.cpu_core_id_base = cu->processor_id_low;
 802	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
 803		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
 804
 805	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
 806			cu->processor_id_low);
 807}
 808
 809static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
 810		struct crat_subtype_computeunit *cu)
 811{
 812	dev->node_props.simd_id_base = cu->processor_id_low;
 813	dev->node_props.simd_count = cu->num_simd_cores;
 814	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
 815	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
 816	dev->node_props.wave_front_size = cu->wave_front_size;
 817	dev->node_props.array_count = cu->array_count;
 818	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
 819	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
 820	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
 821	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
 822		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
 823	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
 824}
 825
 826/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
 827 * topology device present in the device_list
 828 */
 829static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
 830				struct list_head *device_list)
 831{
 832	struct kfd_topology_device *dev;
 833
 834	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
 835			cu->proximity_domain, cu->hsa_capability);
 836	list_for_each_entry(dev, device_list, list) {
 837		if (cu->proximity_domain == dev->proximity_domain) {
 838			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
 839				kfd_populated_cu_info_cpu(dev, cu);
 840
 841			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
 842				kfd_populated_cu_info_gpu(dev, cu);
 843			break;
 844		}
 845	}
 846
 847	return 0;
 848}
 849
 850static struct kfd_mem_properties *
 851find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
 852		struct kfd_topology_device *dev)
 853{
 854	struct kfd_mem_properties *props;
 855
 856	list_for_each_entry(props, &dev->mem_props, list) {
 857		if (props->heap_type == heap_type
 858				&& props->flags == flags
 859				&& props->width == width)
 860			return props;
 861	}
 862
 863	return NULL;
 864}
 865/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
 866 * topology device present in the device_list
 867 */
 868static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
 869				struct list_head *device_list)
 870{
 871	struct kfd_mem_properties *props;
 872	struct kfd_topology_device *dev;
 873	uint32_t heap_type;
 874	uint64_t size_in_bytes;
 875	uint32_t flags = 0;
 876	uint32_t width;
 877
 878	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
 879			mem->proximity_domain);
 880	list_for_each_entry(dev, device_list, list) {
 881		if (mem->proximity_domain == dev->proximity_domain) {
 882			/* We're on GPU node */
 883			if (dev->node_props.cpu_cores_count == 0) {
 884				/* APU */
 885				if (mem->visibility_type == 0)
 886					heap_type =
 887						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
 888				/* dGPU */
 889				else
 890					heap_type = mem->visibility_type;
 891			} else
 892				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
 893
 894			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
 895				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
 896			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
 897				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
 898
 899			size_in_bytes =
 900				((uint64_t)mem->length_high << 32) +
 901							mem->length_low;
 902			width = mem->width;
 903
 904			/* Multiple banks of the same type are aggregated into
 905			 * one. User mode doesn't care about multiple physical
 906			 * memory segments. It's managed as a single virtual
 907			 * heap for user mode.
 908			 */
 909			props = find_subtype_mem(heap_type, flags, width, dev);
 910			if (props) {
 911				props->size_in_bytes += size_in_bytes;
 912				break;
 913			}
 914
 915			props = kfd_alloc_struct(props);
 916			if (!props)
 917				return -ENOMEM;
 918
 919			props->heap_type = heap_type;
 920			props->flags = flags;
 921			props->size_in_bytes = size_in_bytes;
 922			props->width = width;
 923
 924			dev->node_props.mem_banks_count++;
 925			list_add_tail(&props->list, &dev->mem_props);
 926
 927			break;
 928		}
 929	}
 930
 931	return 0;
 932}
 933
 934/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
 935 * topology device present in the device_list
 936 */
 937static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
 938			struct list_head *device_list)
 939{
 940	struct kfd_cache_properties *props;
 941	struct kfd_topology_device *dev;
 942	uint32_t id;
 943	uint32_t total_num_of_cu;
 944
 945	id = cache->processor_id_low;
 946
 947	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
 948	list_for_each_entry(dev, device_list, list) {
 949		total_num_of_cu = (dev->node_props.array_count *
 950					dev->node_props.cu_per_simd_array);
 951
 952		/* Cache infomration in CRAT doesn't have proximity_domain
 953		 * information as it is associated with a CPU core or GPU
 954		 * Compute Unit. So map the cache using CPU core Id or SIMD
 955		 * (GPU) ID.
 956		 * TODO: This works because currently we can safely assume that
 957		 *  Compute Units are parsed before caches are parsed. In
 958		 *  future, remove this dependency
 959		 */
 960		if ((id >= dev->node_props.cpu_core_id_base &&
 961			id <= dev->node_props.cpu_core_id_base +
 962				dev->node_props.cpu_cores_count) ||
 963			(id >= dev->node_props.simd_id_base &&
 964			id < dev->node_props.simd_id_base +
 965				total_num_of_cu)) {
 966			props = kfd_alloc_struct(props);
 967			if (!props)
 968				return -ENOMEM;
 969
 970			props->processor_id_low = id;
 971			props->cache_level = cache->cache_level;
 972			props->cache_size = cache->cache_size;
 973			props->cacheline_size = cache->cache_line_size;
 974			props->cachelines_per_tag = cache->lines_per_tag;
 975			props->cache_assoc = cache->associativity;
 976			props->cache_latency = cache->cache_latency;
 977			memcpy(props->sibling_map, cache->sibling_map,
 978					sizeof(props->sibling_map));
 979
 980			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
 981				props->cache_type |= HSA_CACHE_TYPE_DATA;
 982			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
 983				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
 984			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
 985				props->cache_type |= HSA_CACHE_TYPE_CPU;
 986			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
 987				props->cache_type |= HSA_CACHE_TYPE_HSACU;
 988
 989			dev->cache_count++;
 990			dev->node_props.caches_count++;
 991			list_add_tail(&props->list, &dev->cache_props);
 992
 993			break;
 994		}
 995	}
 996
 997	return 0;
 998}
 999
1000/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
1001 * topology device present in the device_list
1002 */
1003static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
1004					struct list_head *device_list)
1005{
1006	struct kfd_iolink_properties *props = NULL, *props2;
1007	struct kfd_topology_device *dev, *to_dev;
1008	uint32_t id_from;
1009	uint32_t id_to;
1010
1011	id_from = iolink->proximity_domain_from;
1012	id_to = iolink->proximity_domain_to;
1013
1014	pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
1015			id_from, id_to);
1016	list_for_each_entry(dev, device_list, list) {
1017		if (id_from == dev->proximity_domain) {
1018			props = kfd_alloc_struct(props);
1019			if (!props)
1020				return -ENOMEM;
1021
1022			props->node_from = id_from;
1023			props->node_to = id_to;
1024			props->ver_maj = iolink->version_major;
1025			props->ver_min = iolink->version_minor;
1026			props->iolink_type = iolink->io_interface_type;
1027
1028			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1029				props->weight = 20;
1030			else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1031				props->weight = 15 * iolink->num_hops_xgmi;
1032			else
1033				props->weight = node_distance(id_from, id_to);
1034
1035			props->min_latency = iolink->minimum_latency;
1036			props->max_latency = iolink->maximum_latency;
1037			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
1038			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
1039			props->rec_transfer_size =
1040					iolink->recommended_transfer_size;
1041
1042			dev->io_link_count++;
1043			dev->node_props.io_links_count++;
1044			list_add_tail(&props->list, &dev->io_link_props);
1045			break;
1046		}
1047	}
1048
1049	/* CPU topology is created before GPUs are detected, so CPU->GPU
1050	 * links are not built at that time. If a PCIe type is discovered, it
1051	 * means a GPU is detected and we are adding GPU->CPU to the topology.
1052	 * At this time, also add the corresponded CPU->GPU link if GPU
1053	 * is large bar.
1054	 * For xGMI, we only added the link with one direction in the crat
1055	 * table, add corresponded reversed direction link now.
1056	 */
1057	if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
1058		to_dev = kfd_topology_device_by_proximity_domain(id_to);
1059		if (!to_dev)
1060			return -ENODEV;
1061		/* same everything but the other direction */
1062		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
1063		props2->node_from = id_to;
1064		props2->node_to = id_from;
1065		props2->kobj = NULL;
1066		to_dev->io_link_count++;
1067		to_dev->node_props.io_links_count++;
1068		list_add_tail(&props2->list, &to_dev->io_link_props);
1069	}
1070
1071	return 0;
1072}
1073
1074/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
1075 * present in the device_list
1076 *	@sub_type_hdr - subtype section of crat_image
1077 *	@device_list - list of topology devices present in this crat_image
1078 */
1079static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
1080				struct list_head *device_list)
1081{
1082	struct crat_subtype_computeunit *cu;
1083	struct crat_subtype_memory *mem;
1084	struct crat_subtype_cache *cache;
1085	struct crat_subtype_iolink *iolink;
1086	int ret = 0;
1087
1088	switch (sub_type_hdr->type) {
1089	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
1090		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1091		ret = kfd_parse_subtype_cu(cu, device_list);
1092		break;
1093	case CRAT_SUBTYPE_MEMORY_AFFINITY:
1094		mem = (struct crat_subtype_memory *)sub_type_hdr;
1095		ret = kfd_parse_subtype_mem(mem, device_list);
1096		break;
1097	case CRAT_SUBTYPE_CACHE_AFFINITY:
1098		cache = (struct crat_subtype_cache *)sub_type_hdr;
1099		ret = kfd_parse_subtype_cache(cache, device_list);
1100		break;
1101	case CRAT_SUBTYPE_TLB_AFFINITY:
1102		/*
1103		 * For now, nothing to do here
1104		 */
1105		pr_debug("Found TLB entry in CRAT table (not processing)\n");
1106		break;
1107	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
1108		/*
1109		 * For now, nothing to do here
1110		 */
1111		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
1112		break;
1113	case CRAT_SUBTYPE_IOLINK_AFFINITY:
1114		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
1115		ret = kfd_parse_subtype_iolink(iolink, device_list);
1116		break;
1117	default:
1118		pr_warn("Unknown subtype %d in CRAT\n",
1119				sub_type_hdr->type);
1120	}
1121
1122	return ret;
1123}
1124
1125/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
1126 * create a kfd_topology_device and add in to device_list. Also parse
1127 * CRAT subtypes and attach it to appropriate kfd_topology_device
1128 *	@crat_image - input image containing CRAT
1129 *	@device_list - [OUT] list of kfd_topology_device generated after
1130 *		       parsing crat_image
1131 *	@proximity_domain - Proximity domain of the first device in the table
1132 *
1133 *	Return - 0 if successful else -ve value
1134 */
1135int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
1136			 uint32_t proximity_domain)
1137{
1138	struct kfd_topology_device *top_dev = NULL;
1139	struct crat_subtype_generic *sub_type_hdr;
1140	uint16_t node_id;
1141	int ret = 0;
1142	struct crat_header *crat_table = (struct crat_header *)crat_image;
1143	uint16_t num_nodes;
1144	uint32_t image_len;
1145
1146	if (!crat_image)
1147		return -EINVAL;
1148
1149	if (!list_empty(device_list)) {
1150		pr_warn("Error device list should be empty\n");
1151		return -EINVAL;
1152	}
1153
1154	num_nodes = crat_table->num_domains;
1155	image_len = crat_table->length;
1156
1157	pr_debug("Parsing CRAT table with %d nodes\n", num_nodes);
1158
1159	for (node_id = 0; node_id < num_nodes; node_id++) {
1160		top_dev = kfd_create_topology_device(device_list);
1161		if (!top_dev)
1162			break;
1163		top_dev->proximity_domain = proximity_domain++;
1164	}
1165
1166	if (!top_dev) {
1167		ret = -ENOMEM;
1168		goto err;
1169	}
1170
1171	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
1172	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
1173			CRAT_OEMTABLEID_LENGTH);
1174	top_dev->oem_revision = crat_table->oem_revision;
1175
1176	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
1177	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
1178			((char *)crat_image) + image_len) {
1179		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
1180			ret = kfd_parse_subtype(sub_type_hdr, device_list);
1181			if (ret)
1182				break;
1183		}
1184
1185		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1186				sub_type_hdr->length);
1187	}
1188
1189err:
1190	if (ret)
1191		kfd_release_topology_device_list(device_list);
1192
1193	return ret;
1194}
1195
1196/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1197static int fill_in_l1_pcache(struct crat_subtype_cache *pcache,
1198				struct kfd_gpu_cache_info *pcache_info,
1199				struct kfd_cu_info *cu_info,
1200				int mem_available,
1201				int cu_bitmask,
1202				int cache_type, unsigned int cu_processor_id,
1203				int cu_block)
1204{
1205	unsigned int cu_sibling_map_mask;
1206	int first_active_cu;
1207
1208	/* First check if enough memory is available */
1209	if (sizeof(struct crat_subtype_cache) > mem_available)
1210		return -ENOMEM;
1211
1212	cu_sibling_map_mask = cu_bitmask;
1213	cu_sibling_map_mask >>= cu_block;
1214	cu_sibling_map_mask &=
1215		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1216	first_active_cu = ffs(cu_sibling_map_mask);
1217
1218	/* CU could be inactive. In case of shared cache find the first active
1219	 * CU. and incase of non-shared cache check if the CU is inactive. If
1220	 * inactive active skip it
1221	 */
1222	if (first_active_cu) {
1223		memset(pcache, 0, sizeof(struct crat_subtype_cache));
1224		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
1225		pcache->length = sizeof(struct crat_subtype_cache);
1226		pcache->flags = pcache_info[cache_type].flags;
1227		pcache->processor_id_low = cu_processor_id
1228					 + (first_active_cu - 1);
1229		pcache->cache_level = pcache_info[cache_type].cache_level;
1230		pcache->cache_size = pcache_info[cache_type].cache_size;
1231
1232		/* Sibling map is w.r.t processor_id_low, so shift out
1233		 * inactive CU
1234		 */
1235		cu_sibling_map_mask =
1236			cu_sibling_map_mask >> (first_active_cu - 1);
1237
1238		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1239		pcache->sibling_map[1] =
1240				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1241		pcache->sibling_map[2] =
1242				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1243		pcache->sibling_map[3] =
1244				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1245		return 0;
1246	}
1247	return 1;
1248}
1249
1250/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1251static int fill_in_l2_l3_pcache(struct crat_subtype_cache *pcache,
1252				struct kfd_gpu_cache_info *pcache_info,
1253				struct kfd_cu_info *cu_info,
1254				int mem_available,
1255				int cache_type, unsigned int cu_processor_id)
1256{
1257	unsigned int cu_sibling_map_mask;
1258	int first_active_cu;
1259	int i, j, k;
1260
1261	/* First check if enough memory is available */
1262	if (sizeof(struct crat_subtype_cache) > mem_available)
1263		return -ENOMEM;
1264
1265	cu_sibling_map_mask = cu_info->cu_bitmap[0][0];
1266	cu_sibling_map_mask &=
1267		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1268	first_active_cu = ffs(cu_sibling_map_mask);
1269
1270	/* CU could be inactive. In case of shared cache find the first active
1271	 * CU. and incase of non-shared cache check if the CU is inactive. If
1272	 * inactive active skip it
1273	 */
1274	if (first_active_cu) {
1275		memset(pcache, 0, sizeof(struct crat_subtype_cache));
1276		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
1277		pcache->length = sizeof(struct crat_subtype_cache);
1278		pcache->flags = pcache_info[cache_type].flags;
1279		pcache->processor_id_low = cu_processor_id
1280					 + (first_active_cu - 1);
1281		pcache->cache_level = pcache_info[cache_type].cache_level;
1282		pcache->cache_size = pcache_info[cache_type].cache_size;
1283
1284		/* Sibling map is w.r.t processor_id_low, so shift out
1285		 * inactive CU
1286		 */
1287		cu_sibling_map_mask =
1288			cu_sibling_map_mask >> (first_active_cu - 1);
1289		k = 0;
1290		for (i = 0; i < cu_info->num_shader_engines; i++) {
1291			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
1292				j++) {
1293				pcache->sibling_map[k] =
1294				 (uint8_t)(cu_sibling_map_mask & 0xFF);
1295				pcache->sibling_map[k+1] =
1296				 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1297				pcache->sibling_map[k+2] =
1298				 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1299				pcache->sibling_map[k+3] =
1300				 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1301				k += 4;
1302				cu_sibling_map_mask =
1303					cu_info->cu_bitmap[i % 4][j + i / 4];
1304				cu_sibling_map_mask &= (
1305				 (1 << pcache_info[cache_type].num_cu_shared)
1306				 - 1);
1307			}
1308		}
1309		return 0;
1310	}
1311	return 1;
1312}
1313
1314/* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
1315 * tables
1316 *
1317 *	@kdev - [IN] GPU device
1318 *	@gpu_processor_id - [IN] GPU processor ID to which these caches
1319 *			    associate
1320 *	@available_size - [IN] Amount of memory available in pcache
1321 *	@cu_info - [IN] Compute Unit info obtained from KGD
1322 *	@pcache - [OUT] memory into which cache data is to be filled in.
1323 *	@size_filled - [OUT] amount of data used up in pcache.
1324 *	@num_of_entries - [OUT] number of caches added
1325 */
1326static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
1327			int gpu_processor_id,
1328			int available_size,
1329			struct kfd_cu_info *cu_info,
1330			struct crat_subtype_cache *pcache,
1331			int *size_filled,
1332			int *num_of_entries)
1333{
1334	struct kfd_gpu_cache_info *pcache_info;
1335	int num_of_cache_types = 0;
1336	int i, j, k;
1337	int ct = 0;
1338	int mem_available = available_size;
1339	unsigned int cu_processor_id;
1340	int ret;
1341	unsigned int num_cu_shared;
1342
1343	switch (kdev->device_info->asic_family) {
1344	case CHIP_KAVERI:
1345		pcache_info = kaveri_cache_info;
1346		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
1347		break;
1348	case CHIP_HAWAII:
1349		pcache_info = hawaii_cache_info;
1350		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
1351		break;
1352	case CHIP_CARRIZO:
1353		pcache_info = carrizo_cache_info;
1354		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
1355		break;
1356	case CHIP_TONGA:
1357		pcache_info = tonga_cache_info;
1358		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
1359		break;
1360	case CHIP_FIJI:
1361		pcache_info = fiji_cache_info;
1362		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
1363		break;
1364	case CHIP_POLARIS10:
1365		pcache_info = polaris10_cache_info;
1366		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
1367		break;
1368	case CHIP_POLARIS11:
1369		pcache_info = polaris11_cache_info;
1370		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
1371		break;
1372	case CHIP_POLARIS12:
1373		pcache_info = polaris12_cache_info;
1374		num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
1375		break;
1376	case CHIP_VEGAM:
1377		pcache_info = vegam_cache_info;
1378		num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
1379		break;
1380	case CHIP_VEGA10:
1381		pcache_info = vega10_cache_info;
1382		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
1383		break;
1384	case CHIP_VEGA12:
1385		pcache_info = vega12_cache_info;
1386		num_of_cache_types = ARRAY_SIZE(vega12_cache_info);
1387		break;
1388	case CHIP_VEGA20:
1389	case CHIP_ARCTURUS:
1390		pcache_info = vega20_cache_info;
1391		num_of_cache_types = ARRAY_SIZE(vega20_cache_info);
1392		break;
1393	case CHIP_ALDEBARAN:
1394		pcache_info = aldebaran_cache_info;
1395		num_of_cache_types = ARRAY_SIZE(aldebaran_cache_info);
1396		break;
1397	case CHIP_RAVEN:
1398		pcache_info = raven_cache_info;
1399		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
1400		break;
1401	case CHIP_RENOIR:
1402		pcache_info = renoir_cache_info;
1403		num_of_cache_types = ARRAY_SIZE(renoir_cache_info);
1404		break;
1405	case CHIP_NAVI10:
1406	case CHIP_NAVI12:
1407		pcache_info = navi10_cache_info;
1408		num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
1409		break;
1410	case CHIP_NAVI14:
1411		pcache_info = navi14_cache_info;
1412		num_of_cache_types = ARRAY_SIZE(navi14_cache_info);
1413		break;
1414	case CHIP_SIENNA_CICHLID:
1415		pcache_info = sienna_cichlid_cache_info;
1416		num_of_cache_types = ARRAY_SIZE(sienna_cichlid_cache_info);
1417		break;
1418	case CHIP_NAVY_FLOUNDER:
1419		pcache_info = navy_flounder_cache_info;
1420		num_of_cache_types = ARRAY_SIZE(navy_flounder_cache_info);
1421		break;
1422	case CHIP_DIMGREY_CAVEFISH:
1423		pcache_info = dimgrey_cavefish_cache_info;
1424		num_of_cache_types = ARRAY_SIZE(dimgrey_cavefish_cache_info);
1425		break;
1426	case CHIP_VANGOGH:
1427		pcache_info = vangogh_cache_info;
1428		num_of_cache_types = ARRAY_SIZE(vangogh_cache_info);
1429		break;
1430	case CHIP_BEIGE_GOBY:
1431		pcache_info = beige_goby_cache_info;
1432		num_of_cache_types = ARRAY_SIZE(beige_goby_cache_info);
1433		break;
1434	case CHIP_YELLOW_CARP:
1435		pcache_info = yellow_carp_cache_info;
1436		num_of_cache_types = ARRAY_SIZE(yellow_carp_cache_info);
1437		break;
1438	default:
1439		return -EINVAL;
1440	}
1441
1442	*size_filled = 0;
1443	*num_of_entries = 0;
1444
1445	/* For each type of cache listed in the kfd_gpu_cache_info table,
1446	 * go through all available Compute Units.
1447	 * The [i,j,k] loop will
1448	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1449	 *			will parse through all available CU
1450	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1451	 *			then it will consider only one CU from
1452	 *			the shared unit
1453	 */
1454
1455	for (ct = 0; ct < num_of_cache_types; ct++) {
1456	  cu_processor_id = gpu_processor_id;
1457	  if (pcache_info[ct].cache_level == 1) {
1458	    for (i = 0; i < cu_info->num_shader_engines; i++) {
1459	      for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1460	        for (k = 0; k < cu_info->num_cu_per_sh;
1461		  k += pcache_info[ct].num_cu_shared) {
1462		  ret = fill_in_l1_pcache(pcache,
1463					pcache_info,
1464					cu_info,
1465					mem_available,
1466					cu_info->cu_bitmap[i % 4][j + i / 4],
1467					ct,
1468					cu_processor_id,
1469					k);
1470
1471		  if (ret < 0)
1472			break;
1473
1474		  if (!ret) {
1475				pcache++;
1476				(*num_of_entries)++;
1477				mem_available -= sizeof(*pcache);
1478				(*size_filled) += sizeof(*pcache);
1479		  }
1480
1481		  /* Move to next CU block */
1482		  num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1483					cu_info->num_cu_per_sh) ?
1484					pcache_info[ct].num_cu_shared :
1485					(cu_info->num_cu_per_sh - k);
1486		  cu_processor_id += num_cu_shared;
 
 
 
 
 
 
 
 
 
 
1487		}
1488	      }
1489	    }
1490	  } else {
1491			ret = fill_in_l2_l3_pcache(pcache,
1492				pcache_info,
1493				cu_info,
1494				mem_available,
1495				ct,
1496				cu_processor_id);
1497
1498			if (ret < 0)
1499				break;
1500
1501			if (!ret) {
1502				pcache++;
1503				(*num_of_entries)++;
1504				mem_available -= sizeof(*pcache);
1505				(*size_filled) += sizeof(*pcache);
1506			}
1507	  }
1508	}
1509
1510	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
1511
1512	return 0;
1513}
1514
1515static bool kfd_ignore_crat(void)
1516{
1517	bool ret;
1518
1519	if (ignore_crat)
1520		return true;
1521
1522#ifndef KFD_SUPPORT_IOMMU_V2
1523	ret = true;
1524#else
1525	ret = false;
1526#endif
1527
1528	return ret;
1529}
1530
1531/*
1532 * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
1533 * copies CRAT from ACPI (if available).
1534 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1535 *
1536 *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
1537 *		     crat_image will be NULL
1538 *	@size: [OUT] size of crat_image
1539 *
1540 *	Return 0 if successful else return error code
1541 */
1542int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
1543{
1544	struct acpi_table_header *crat_table;
1545	acpi_status status;
1546	void *pcrat_image;
1547	int rc = 0;
1548
1549	if (!crat_image)
1550		return -EINVAL;
1551
1552	*crat_image = NULL;
1553
1554	if (kfd_ignore_crat()) {
1555		pr_info("CRAT table disabled by module option\n");
1556		return -ENODATA;
1557	}
1558
1559	/* Fetch the CRAT table from ACPI */
1560	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
1561	if (status == AE_NOT_FOUND) {
1562		pr_warn("CRAT table not found\n");
1563		return -ENODATA;
1564	} else if (ACPI_FAILURE(status)) {
1565		const char *err = acpi_format_exception(status);
1566
1567		pr_err("CRAT table error: %s\n", err);
1568		return -EINVAL;
1569	}
1570
1571	pcrat_image = kvmalloc(crat_table->length, GFP_KERNEL);
1572	if (!pcrat_image) {
1573		rc = -ENOMEM;
1574		goto out;
1575	}
1576
1577	memcpy(pcrat_image, crat_table, crat_table->length);
 
 
 
1578	*crat_image = pcrat_image;
1579	*size = crat_table->length;
1580out:
1581	acpi_put_table(crat_table);
1582	return rc;
1583}
1584
1585/* Memory required to create Virtual CRAT.
1586 * Since there is no easy way to predict the amount of memory required, the
1587 * following amount is allocated for GPU Virtual CRAT. This is
1588 * expected to cover all known conditions. But to be safe additional check
1589 * is put in the code to ensure we don't overwrite.
1590 */
 
1591#define VCRAT_SIZE_FOR_GPU	(4 * PAGE_SIZE)
1592
1593/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
1594 *
1595 *	@numa_node_id: CPU NUMA node id
1596 *	@avail_size: Available size in the memory
1597 *	@sub_type_hdr: Memory into which compute info will be filled in
1598 *
1599 *	Return 0 if successful else return -ve value
1600 */
1601static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
1602				int proximity_domain,
1603				struct crat_subtype_computeunit *sub_type_hdr)
1604{
1605	const struct cpumask *cpumask;
1606
1607	*avail_size -= sizeof(struct crat_subtype_computeunit);
1608	if (*avail_size < 0)
1609		return -ENOMEM;
1610
1611	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1612
1613	/* Fill in subtype header data */
1614	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1615	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1616	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1617
1618	cpumask = cpumask_of_node(numa_node_id);
1619
1620	/* Fill in CU data */
1621	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
1622	sub_type_hdr->proximity_domain = proximity_domain;
1623	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
1624	if (sub_type_hdr->processor_id_low == -1)
1625		return -EINVAL;
1626
1627	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
1628
1629	return 0;
1630}
1631
1632/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
1633 *
1634 *	@numa_node_id: CPU NUMA node id
1635 *	@avail_size: Available size in the memory
1636 *	@sub_type_hdr: Memory into which compute info will be filled in
1637 *
1638 *	Return 0 if successful else return -ve value
1639 */
1640static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
1641			int proximity_domain,
1642			struct crat_subtype_memory *sub_type_hdr)
1643{
1644	uint64_t mem_in_bytes = 0;
1645	pg_data_t *pgdat;
1646	int zone_type;
1647
1648	*avail_size -= sizeof(struct crat_subtype_memory);
1649	if (*avail_size < 0)
1650		return -ENOMEM;
1651
1652	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1653
1654	/* Fill in subtype header data */
1655	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1656	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1657	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1658
1659	/* Fill in Memory Subunit data */
1660
1661	/* Unlike si_meminfo, si_meminfo_node is not exported. So
1662	 * the following lines are duplicated from si_meminfo_node
1663	 * function
1664	 */
1665	pgdat = NODE_DATA(numa_node_id);
1666	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
1667		mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
1668	mem_in_bytes <<= PAGE_SHIFT;
1669
1670	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
1671	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
1672	sub_type_hdr->proximity_domain = proximity_domain;
1673
1674	return 0;
1675}
1676
1677#ifdef CONFIG_X86_64
1678static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
1679				uint32_t *num_entries,
1680				struct crat_subtype_iolink *sub_type_hdr)
1681{
1682	int nid;
1683	struct cpuinfo_x86 *c = &cpu_data(0);
1684	uint8_t link_type;
1685
1686	if (c->x86_vendor == X86_VENDOR_AMD)
1687		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
1688	else
1689		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
1690
1691	*num_entries = 0;
1692
1693	/* Create IO links from this node to other CPU nodes */
1694	for_each_online_node(nid) {
1695		if (nid == numa_node_id) /* node itself */
1696			continue;
1697
1698		*avail_size -= sizeof(struct crat_subtype_iolink);
1699		if (*avail_size < 0)
1700			return -ENOMEM;
1701
1702		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1703
1704		/* Fill in subtype header data */
1705		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1706		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1707		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1708
1709		/* Fill in IO link data */
1710		sub_type_hdr->proximity_domain_from = numa_node_id;
1711		sub_type_hdr->proximity_domain_to = nid;
1712		sub_type_hdr->io_interface_type = link_type;
1713
1714		(*num_entries)++;
1715		sub_type_hdr++;
1716	}
1717
1718	return 0;
1719}
1720#endif
1721
1722/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
1723 *
1724 *	@pcrat_image: Fill in VCRAT for CPU
1725 *	@size:	[IN] allocated size of crat_image.
1726 *		[OUT] actual size of data filled in crat_image
1727 */
1728static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
1729{
1730	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1731	struct acpi_table_header *acpi_table;
1732	acpi_status status;
1733	struct crat_subtype_generic *sub_type_hdr;
1734	int avail_size = *size;
1735	int numa_node_id;
1736#ifdef CONFIG_X86_64
1737	uint32_t entries = 0;
1738#endif
1739	int ret = 0;
1740
1741	if (!pcrat_image)
1742		return -EINVAL;
1743
1744	/* Fill in CRAT Header.
1745	 * Modify length and total_entries as subunits are added.
1746	 */
1747	avail_size -= sizeof(struct crat_header);
1748	if (avail_size < 0)
1749		return -ENOMEM;
1750
1751	memset(crat_table, 0, sizeof(struct crat_header));
1752	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1753			sizeof(crat_table->signature));
1754	crat_table->length = sizeof(struct crat_header);
1755
1756	status = acpi_get_table("DSDT", 0, &acpi_table);
1757	if (status != AE_OK)
1758		pr_warn("DSDT table not found for OEM information\n");
1759	else {
1760		crat_table->oem_revision = acpi_table->revision;
1761		memcpy(crat_table->oem_id, acpi_table->oem_id,
1762				CRAT_OEMID_LENGTH);
1763		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
1764				CRAT_OEMTABLEID_LENGTH);
1765		acpi_put_table(acpi_table);
1766	}
1767	crat_table->total_entries = 0;
1768	crat_table->num_domains = 0;
1769
1770	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
1771
1772	for_each_online_node(numa_node_id) {
1773		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
1774			continue;
1775
1776		/* Fill in Subtype: Compute Unit */
1777		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
1778			crat_table->num_domains,
1779			(struct crat_subtype_computeunit *)sub_type_hdr);
1780		if (ret < 0)
1781			return ret;
1782		crat_table->length += sub_type_hdr->length;
1783		crat_table->total_entries++;
1784
1785		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1786			sub_type_hdr->length);
1787
1788		/* Fill in Subtype: Memory */
1789		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
1790			crat_table->num_domains,
1791			(struct crat_subtype_memory *)sub_type_hdr);
1792		if (ret < 0)
1793			return ret;
1794		crat_table->length += sub_type_hdr->length;
1795		crat_table->total_entries++;
1796
1797		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1798			sub_type_hdr->length);
1799
1800		/* Fill in Subtype: IO Link */
1801#ifdef CONFIG_X86_64
1802		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
1803				&entries,
1804				(struct crat_subtype_iolink *)sub_type_hdr);
1805		if (ret < 0)
1806			return ret;
 
 
1807
1808		if (entries) {
1809			crat_table->length += (sub_type_hdr->length * entries);
1810			crat_table->total_entries += entries;
1811
1812			sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1813					sub_type_hdr->length * entries);
1814		}
1815#else
1816		pr_info("IO link not available for non x86 platforms\n");
1817#endif
1818
1819		crat_table->num_domains++;
1820	}
1821
1822	/* TODO: Add cache Subtype for CPU.
1823	 * Currently, CPU cache information is available in function
1824	 * detect_cache_attributes(cpu) defined in the file
1825	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
1826	 * exported and to get the same information the code needs to be
1827	 * duplicated.
1828	 */
1829
1830	*size = crat_table->length;
1831	pr_info("Virtual CRAT table created for CPU\n");
1832
1833	return 0;
1834}
1835
1836static int kfd_fill_gpu_memory_affinity(int *avail_size,
1837		struct kfd_dev *kdev, uint8_t type, uint64_t size,
1838		struct crat_subtype_memory *sub_type_hdr,
1839		uint32_t proximity_domain,
1840		const struct kfd_local_mem_info *local_mem_info)
1841{
1842	*avail_size -= sizeof(struct crat_subtype_memory);
1843	if (*avail_size < 0)
1844		return -ENOMEM;
1845
1846	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1847	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1848	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1849	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1850
1851	sub_type_hdr->proximity_domain = proximity_domain;
1852
1853	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1854			type, size);
1855
1856	sub_type_hdr->length_low = lower_32_bits(size);
1857	sub_type_hdr->length_high = upper_32_bits(size);
1858
1859	sub_type_hdr->width = local_mem_info->vram_width;
1860	sub_type_hdr->visibility_type = type;
1861
1862	return 0;
1863}
1864
1865#ifdef CONFIG_ACPI_NUMA
1866static void kfd_find_numa_node_in_srat(struct kfd_dev *kdev)
1867{
1868	struct acpi_table_header *table_header = NULL;
1869	struct acpi_subtable_header *sub_header = NULL;
1870	unsigned long table_end, subtable_len;
1871	u32 pci_id = pci_domain_nr(kdev->pdev->bus) << 16 |
1872			pci_dev_id(kdev->pdev);
1873	u32 bdf;
1874	acpi_status status;
1875	struct acpi_srat_cpu_affinity *cpu;
1876	struct acpi_srat_generic_affinity *gpu;
1877	int pxm = 0, max_pxm = 0;
1878	int numa_node = NUMA_NO_NODE;
1879	bool found = false;
1880
1881	/* Fetch the SRAT table from ACPI */
1882	status = acpi_get_table(ACPI_SIG_SRAT, 0, &table_header);
1883	if (status == AE_NOT_FOUND) {
1884		pr_warn("SRAT table not found\n");
1885		return;
1886	} else if (ACPI_FAILURE(status)) {
1887		const char *err = acpi_format_exception(status);
1888		pr_err("SRAT table error: %s\n", err);
1889		return;
1890	}
1891
1892	table_end = (unsigned long)table_header + table_header->length;
1893
1894	/* Parse all entries looking for a match. */
1895	sub_header = (struct acpi_subtable_header *)
1896			((unsigned long)table_header +
1897			sizeof(struct acpi_table_srat));
1898	subtable_len = sub_header->length;
1899
1900	while (((unsigned long)sub_header) + subtable_len  < table_end) {
1901		/*
1902		 * If length is 0, break from this loop to avoid
1903		 * infinite loop.
1904		 */
1905		if (subtable_len == 0) {
1906			pr_err("SRAT invalid zero length\n");
1907			break;
1908		}
1909
1910		switch (sub_header->type) {
1911		case ACPI_SRAT_TYPE_CPU_AFFINITY:
1912			cpu = (struct acpi_srat_cpu_affinity *)sub_header;
1913			pxm = *((u32 *)cpu->proximity_domain_hi) << 8 |
1914					cpu->proximity_domain_lo;
1915			if (pxm > max_pxm)
1916				max_pxm = pxm;
1917			break;
1918		case ACPI_SRAT_TYPE_GENERIC_AFFINITY:
1919			gpu = (struct acpi_srat_generic_affinity *)sub_header;
1920			bdf = *((u16 *)(&gpu->device_handle[0])) << 16 |
1921					*((u16 *)(&gpu->device_handle[2]));
1922			if (bdf == pci_id) {
1923				found = true;
1924				numa_node = pxm_to_node(gpu->proximity_domain);
1925			}
1926			break;
1927		default:
1928			break;
1929		}
1930
1931		if (found)
1932			break;
1933
1934		sub_header = (struct acpi_subtable_header *)
1935				((unsigned long)sub_header + subtable_len);
1936		subtable_len = sub_header->length;
1937	}
1938
1939	acpi_put_table(table_header);
1940
1941	/* Workaround bad cpu-gpu binding case */
1942	if (found && (numa_node < 0 ||
1943			numa_node > pxm_to_node(max_pxm)))
1944		numa_node = 0;
1945
1946	if (numa_node != NUMA_NO_NODE)
1947		set_dev_node(&kdev->pdev->dev, numa_node);
1948}
1949#endif
1950
1951/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1952 * to its NUMA node
1953 *	@avail_size: Available size in the memory
1954 *	@kdev - [IN] GPU device
1955 *	@sub_type_hdr: Memory into which io link info will be filled in
1956 *	@proximity_domain - proximity domain of the GPU node
1957 *
1958 *	Return 0 if successful else return -ve value
1959 */
1960static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1961			struct kfd_dev *kdev,
1962			struct crat_subtype_iolink *sub_type_hdr,
1963			uint32_t proximity_domain)
1964{
1965	struct amdgpu_device *adev = (struct amdgpu_device *)kdev->kgd;
1966
1967	*avail_size -= sizeof(struct crat_subtype_iolink);
1968	if (*avail_size < 0)
1969		return -ENOMEM;
1970
1971	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1972
1973	/* Fill in subtype header data */
1974	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1975	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1976	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1977	if (kfd_dev_is_large_bar(kdev))
1978		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1979
1980	/* Fill in IOLINK subtype.
1981	 * TODO: Fill-in other fields of iolink subtype
1982	 */
1983	if (adev->gmc.xgmi.connected_to_cpu) {
1984		/*
1985		 * with host gpu xgmi link, host can access gpu memory whether
1986		 * or not pcie bar type is large, so always create bidirectional
1987		 * io link.
1988		 */
1989		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1990		sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1991		sub_type_hdr->num_hops_xgmi = 1;
1992	} else {
1993		sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1994	}
1995
1996	sub_type_hdr->proximity_domain_from = proximity_domain;
1997
1998#ifdef CONFIG_ACPI_NUMA
1999	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
2000		kfd_find_numa_node_in_srat(kdev);
2001#endif
2002#ifdef CONFIG_NUMA
2003	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
2004		sub_type_hdr->proximity_domain_to = 0;
2005	else
2006		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
2007#else
2008	sub_type_hdr->proximity_domain_to = 0;
2009#endif
2010	return 0;
2011}
2012
2013static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
2014			struct kfd_dev *kdev,
2015			struct kfd_dev *peer_kdev,
2016			struct crat_subtype_iolink *sub_type_hdr,
2017			uint32_t proximity_domain_from,
2018			uint32_t proximity_domain_to)
2019{
2020	*avail_size -= sizeof(struct crat_subtype_iolink);
2021	if (*avail_size < 0)
2022		return -ENOMEM;
2023
2024	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
2025
2026	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
2027	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
2028	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
2029			       CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
2030
2031	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
2032	sub_type_hdr->proximity_domain_from = proximity_domain_from;
2033	sub_type_hdr->proximity_domain_to = proximity_domain_to;
2034	sub_type_hdr->num_hops_xgmi =
2035		amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
2036	return 0;
2037}
2038
2039/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
2040 *
2041 *	@pcrat_image: Fill in VCRAT for GPU
2042 *	@size:	[IN] allocated size of crat_image.
2043 *		[OUT] actual size of data filled in crat_image
2044 */
2045static int kfd_create_vcrat_image_gpu(void *pcrat_image,
2046				      size_t *size, struct kfd_dev *kdev,
2047				      uint32_t proximity_domain)
2048{
2049	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
2050	struct crat_subtype_generic *sub_type_hdr;
2051	struct kfd_local_mem_info local_mem_info;
2052	struct kfd_topology_device *peer_dev;
2053	struct crat_subtype_computeunit *cu;
2054	struct kfd_cu_info cu_info;
2055	int avail_size = *size;
2056	uint32_t total_num_of_cu;
2057	int num_of_cache_entries = 0;
2058	int cache_mem_filled = 0;
2059	uint32_t nid = 0;
2060	int ret = 0;
2061
2062	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
2063		return -EINVAL;
2064
2065	/* Fill the CRAT Header.
2066	 * Modify length and total_entries as subunits are added.
2067	 */
2068	avail_size -= sizeof(struct crat_header);
2069	if (avail_size < 0)
2070		return -ENOMEM;
2071
2072	memset(crat_table, 0, sizeof(struct crat_header));
2073
2074	memcpy(&crat_table->signature, CRAT_SIGNATURE,
2075			sizeof(crat_table->signature));
2076	/* Change length as we add more subtypes*/
2077	crat_table->length = sizeof(struct crat_header);
2078	crat_table->num_domains = 1;
2079	crat_table->total_entries = 0;
2080
2081	/* Fill in Subtype: Compute Unit
2082	 * First fill in the sub type header and then sub type data
2083	 */
2084	avail_size -= sizeof(struct crat_subtype_computeunit);
2085	if (avail_size < 0)
2086		return -ENOMEM;
2087
2088	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
2089	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
2090
2091	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
2092	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
2093	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
2094
2095	/* Fill CU subtype data */
2096	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
2097	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
2098	cu->proximity_domain = proximity_domain;
2099
2100	amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
2101	cu->num_simd_per_cu = cu_info.simd_per_cu;
2102	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
2103	cu->max_waves_simd = cu_info.max_waves_per_simd;
2104
2105	cu->wave_front_size = cu_info.wave_front_size;
2106	cu->array_count = cu_info.num_shader_arrays_per_engine *
2107		cu_info.num_shader_engines;
2108	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
2109	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
2110	cu->num_cu_per_array = cu_info.num_cu_per_sh;
2111	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
2112	cu->num_banks = cu_info.num_shader_engines;
2113	cu->lds_size_in_kb = cu_info.lds_size;
2114
2115	cu->hsa_capability = 0;
2116
2117	/* Check if this node supports IOMMU. During parsing this flag will
2118	 * translate to HSA_CAP_ATS_PRESENT
2119	 */
2120	if (!kfd_iommu_check_device(kdev))
2121		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
2122
2123	crat_table->length += sub_type_hdr->length;
2124	crat_table->total_entries++;
2125
2126	/* Fill in Subtype: Memory. Only on systems with large BAR (no
2127	 * private FB), report memory as public. On other systems
2128	 * report the total FB size (public+private) as a single
2129	 * private heap.
2130	 */
2131	amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
2132	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
2133			sub_type_hdr->length);
2134
2135	if (debug_largebar)
2136		local_mem_info.local_mem_size_private = 0;
2137
2138	if (local_mem_info.local_mem_size_private == 0)
2139		ret = kfd_fill_gpu_memory_affinity(&avail_size,
2140				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
2141				local_mem_info.local_mem_size_public,
2142				(struct crat_subtype_memory *)sub_type_hdr,
2143				proximity_domain,
2144				&local_mem_info);
2145	else
2146		ret = kfd_fill_gpu_memory_affinity(&avail_size,
2147				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
2148				local_mem_info.local_mem_size_public +
2149				local_mem_info.local_mem_size_private,
2150				(struct crat_subtype_memory *)sub_type_hdr,
2151				proximity_domain,
2152				&local_mem_info);
2153	if (ret < 0)
2154		return ret;
2155
2156	crat_table->length += sizeof(struct crat_subtype_memory);
2157	crat_table->total_entries++;
2158
2159	/* TODO: Fill in cache information. This information is NOT readily
2160	 * available in KGD
2161	 */
2162	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
2163		sub_type_hdr->length);
2164	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
2165				avail_size,
2166				&cu_info,
2167				(struct crat_subtype_cache *)sub_type_hdr,
2168				&cache_mem_filled,
2169				&num_of_cache_entries);
2170
2171	if (ret < 0)
2172		return ret;
2173
2174	crat_table->length += cache_mem_filled;
2175	crat_table->total_entries += num_of_cache_entries;
2176	avail_size -= cache_mem_filled;
2177
2178	/* Fill in Subtype: IO_LINKS
2179	 *  Only direct links are added here which is Link from GPU to
2180	 *  to its NUMA node. Indirect links are added by userspace.
2181	 */
2182	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
2183		cache_mem_filled);
2184	ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
2185		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
2186
2187	if (ret < 0)
2188		return ret;
2189
2190	crat_table->length += sub_type_hdr->length;
2191	crat_table->total_entries++;
2192
2193
2194	/* Fill in Subtype: IO_LINKS
2195	 * Direct links from GPU to other GPUs through xGMI.
2196	 * We will loop GPUs that already be processed (with lower value
2197	 * of proximity_domain), add the link for the GPUs with same
2198	 * hive id (from this GPU to other GPU) . The reversed iolink
2199	 * (from other GPU to this GPU) will be added
2200	 * in kfd_parse_subtype_iolink.
2201	 */
2202	if (kdev->hive_id) {
2203		for (nid = 0; nid < proximity_domain; ++nid) {
2204			peer_dev = kfd_topology_device_by_proximity_domain(nid);
2205			if (!peer_dev->gpu)
2206				continue;
2207			if (peer_dev->gpu->hive_id != kdev->hive_id)
2208				continue;
2209			sub_type_hdr = (typeof(sub_type_hdr))(
2210				(char *)sub_type_hdr +
2211				sizeof(struct crat_subtype_iolink));
2212			ret = kfd_fill_gpu_xgmi_link_to_gpu(
2213				&avail_size, kdev, peer_dev->gpu,
2214				(struct crat_subtype_iolink *)sub_type_hdr,
2215				proximity_domain, nid);
2216			if (ret < 0)
2217				return ret;
2218			crat_table->length += sub_type_hdr->length;
2219			crat_table->total_entries++;
2220		}
2221	}
2222	*size = crat_table->length;
2223	pr_info("Virtual CRAT table created for GPU\n");
2224
2225	return ret;
2226}
2227
2228/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
2229 *		creates a Virtual CRAT (VCRAT) image
2230 *
2231 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
2232 *
2233 *	@crat_image: VCRAT image created because ACPI does not have a
2234 *		     CRAT for this device
2235 *	@size: [OUT] size of virtual crat_image
2236 *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
2237 *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
2238 *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
2239 *			-- this option is not currently implemented.
2240 *			The assumption is that all AMD APUs will have CRAT
2241 *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
2242 *
2243 *	Return 0 if successful else return -ve value
2244 */
2245int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
2246				  int flags, struct kfd_dev *kdev,
2247				  uint32_t proximity_domain)
2248{
2249	void *pcrat_image = NULL;
2250	int ret = 0, num_nodes;
2251	size_t dyn_size;
2252
2253	if (!crat_image)
2254		return -EINVAL;
2255
2256	*crat_image = NULL;
2257
2258	/* Allocate the CPU Virtual CRAT size based on the number of online
2259	 * nodes. Allocate VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image.
2260	 * This should cover all the current conditions. A check is put not
2261	 * to overwrite beyond allocated size for GPUs
2262	 */
2263	switch (flags) {
2264	case COMPUTE_UNIT_CPU:
2265		num_nodes = num_online_nodes();
2266		dyn_size = sizeof(struct crat_header) +
2267			num_nodes * (sizeof(struct crat_subtype_computeunit) +
2268			sizeof(struct crat_subtype_memory) +
2269			(num_nodes - 1) * sizeof(struct crat_subtype_iolink));
2270		pcrat_image = kvmalloc(dyn_size, GFP_KERNEL);
2271		if (!pcrat_image)
2272			return -ENOMEM;
2273		*size = dyn_size;
2274		pr_debug("CRAT size is %ld", dyn_size);
2275		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
2276		break;
2277	case COMPUTE_UNIT_GPU:
2278		if (!kdev)
2279			return -EINVAL;
2280		pcrat_image = kvmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
2281		if (!pcrat_image)
2282			return -ENOMEM;
2283		*size = VCRAT_SIZE_FOR_GPU;
2284		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
2285						 proximity_domain);
2286		break;
2287	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
2288		/* TODO: */
2289		ret = -EINVAL;
2290		pr_err("VCRAT not implemented for APU\n");
2291		break;
2292	default:
2293		ret = -EINVAL;
2294	}
2295
2296	if (!ret)
2297		*crat_image = pcrat_image;
2298	else
2299		kvfree(pcrat_image);
2300
2301	return ret;
2302}
2303
2304
2305/* kfd_destroy_crat_image
2306 *
2307 *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
2308 *
2309 */
2310void kfd_destroy_crat_image(void *crat_image)
2311{
2312	kvfree(crat_image);
2313}