Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  6 *               Ulrich Weigand (uweigand@de.ibm.com)
  7 *
  8 *  Derived from "arch/i386/mm/fault.c"
  9 *    Copyright (C) 1995  Linus Torvalds
 10 */
 11
 12#include <linux/kernel_stat.h>
 13#include <linux/perf_event.h>
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/ptrace.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/smp.h>
 26#include <linux/kdebug.h>
 27#include <linux/init.h>
 28#include <linux/console.h>
 29#include <linux/extable.h>
 30#include <linux/hardirq.h>
 31#include <linux/kprobes.h>
 32#include <linux/uaccess.h>
 33#include <linux/hugetlb.h>
 34#include <asm/asm-offsets.h>
 35#include <asm/diag.h>
 36#include <asm/gmap.h>
 37#include <asm/irq.h>
 38#include <asm/mmu_context.h>
 39#include <asm/facility.h>
 40#include <asm/uv.h>
 41#include "../kernel/entry.h"
 42
 43#define __FAIL_ADDR_MASK -4096L
 44#define __SUBCODE_MASK 0x0600
 45#define __PF_RES_FIELD 0x8000000000000000ULL
 46
 47#define VM_FAULT_BADCONTEXT	((__force vm_fault_t) 0x010000)
 48#define VM_FAULT_BADMAP		((__force vm_fault_t) 0x020000)
 49#define VM_FAULT_BADACCESS	((__force vm_fault_t) 0x040000)
 50#define VM_FAULT_SIGNAL		((__force vm_fault_t) 0x080000)
 51#define VM_FAULT_PFAULT		((__force vm_fault_t) 0x100000)
 52
 53enum fault_type {
 54	KERNEL_FAULT,
 55	USER_FAULT,
 56	VDSO_FAULT,
 57	GMAP_FAULT,
 58};
 59
 60static unsigned long store_indication __read_mostly;
 61
 62static int __init fault_init(void)
 63{
 64	if (test_facility(75))
 65		store_indication = 0xc00;
 66	return 0;
 67}
 68early_initcall(fault_init);
 69
 70/*
 71 * Find out which address space caused the exception.
 72 */
 73static enum fault_type get_fault_type(struct pt_regs *regs)
 74{
 75	unsigned long trans_exc_code;
 76
 77	trans_exc_code = regs->int_parm_long & 3;
 78	if (likely(trans_exc_code == 0)) {
 79		/* primary space exception */
 80		if (IS_ENABLED(CONFIG_PGSTE) &&
 81		    test_pt_regs_flag(regs, PIF_GUEST_FAULT))
 82			return GMAP_FAULT;
 83		if (current->thread.mm_segment == USER_DS)
 84			return USER_FAULT;
 85		return KERNEL_FAULT;
 86	}
 87	if (trans_exc_code == 2) {
 88		/* secondary space exception */
 89		if (current->thread.mm_segment & 1) {
 90			if (current->thread.mm_segment == USER_DS_SACF)
 91				return USER_FAULT;
 92			return KERNEL_FAULT;
 93		}
 94		return VDSO_FAULT;
 
 95	}
 
 
 96	if (trans_exc_code == 1) {
 97		/* access register mode, not used in the kernel */
 98		return USER_FAULT;
 99	}
100	/* home space exception -> access via kernel ASCE */
101	return KERNEL_FAULT;
102}
103
104static int bad_address(void *p)
105{
106	unsigned long dummy;
107
108	return get_kernel_nofault(dummy, (unsigned long *)p);
109}
110
111static void dump_pagetable(unsigned long asce, unsigned long address)
112{
113	unsigned long *table = __va(asce & _ASCE_ORIGIN);
114
115	pr_alert("AS:%016lx ", asce);
116	switch (asce & _ASCE_TYPE_MASK) {
117	case _ASCE_TYPE_REGION1:
118		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
119		if (bad_address(table))
120			goto bad;
121		pr_cont("R1:%016lx ", *table);
122		if (*table & _REGION_ENTRY_INVALID)
123			goto out;
124		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
125		fallthrough;
126	case _ASCE_TYPE_REGION2:
127		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
128		if (bad_address(table))
129			goto bad;
130		pr_cont("R2:%016lx ", *table);
131		if (*table & _REGION_ENTRY_INVALID)
132			goto out;
133		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
134		fallthrough;
135	case _ASCE_TYPE_REGION3:
136		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
137		if (bad_address(table))
138			goto bad;
139		pr_cont("R3:%016lx ", *table);
140		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
141			goto out;
142		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
143		fallthrough;
144	case _ASCE_TYPE_SEGMENT:
145		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
146		if (bad_address(table))
147			goto bad;
148		pr_cont("S:%016lx ", *table);
149		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
150			goto out;
151		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
152	}
153	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
154	if (bad_address(table))
155		goto bad;
156	pr_cont("P:%016lx ", *table);
157out:
158	pr_cont("\n");
159	return;
160bad:
161	pr_cont("BAD\n");
162}
163
164static void dump_fault_info(struct pt_regs *regs)
165{
166	unsigned long asce;
167
168	pr_alert("Failing address: %016lx TEID: %016lx\n",
169		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
170	pr_alert("Fault in ");
171	switch (regs->int_parm_long & 3) {
172	case 3:
173		pr_cont("home space ");
174		break;
175	case 2:
176		pr_cont("secondary space ");
177		break;
178	case 1:
179		pr_cont("access register ");
180		break;
181	case 0:
182		pr_cont("primary space ");
183		break;
184	}
185	pr_cont("mode while using ");
186	switch (get_fault_type(regs)) {
187	case USER_FAULT:
188		asce = S390_lowcore.user_asce;
189		pr_cont("user ");
190		break;
191	case VDSO_FAULT:
192		asce = S390_lowcore.vdso_asce;
193		pr_cont("vdso ");
194		break;
195	case GMAP_FAULT:
196		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
197		pr_cont("gmap ");
198		break;
199	case KERNEL_FAULT:
200		asce = S390_lowcore.kernel_asce;
201		pr_cont("kernel ");
202		break;
203	default:
204		unreachable();
205	}
206	pr_cont("ASCE.\n");
207	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
208}
209
210int show_unhandled_signals = 1;
211
212void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
213{
214	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
215		return;
216	if (!unhandled_signal(current, signr))
217		return;
218	if (!printk_ratelimit())
219		return;
220	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
221	       regs->int_code & 0xffff, regs->int_code >> 17);
222	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
223	printk(KERN_CONT "\n");
224	if (is_mm_fault)
225		dump_fault_info(regs);
226	show_regs(regs);
227}
228
229/*
230 * Send SIGSEGV to task.  This is an external routine
231 * to keep the stack usage of do_page_fault small.
232 */
233static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
234{
235	report_user_fault(regs, SIGSEGV, 1);
236	force_sig_fault(SIGSEGV, si_code,
237			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
238}
239
240const struct exception_table_entry *s390_search_extables(unsigned long addr)
241{
242	const struct exception_table_entry *fixup;
243
244	fixup = search_extable(__start_dma_ex_table,
245			       __stop_dma_ex_table - __start_dma_ex_table,
246			       addr);
247	if (!fixup)
248		fixup = search_exception_tables(addr);
249	return fixup;
250}
251
252static noinline void do_no_context(struct pt_regs *regs)
253{
254	const struct exception_table_entry *fixup;
255
256	/* Are we prepared to handle this kernel fault?  */
257	fixup = s390_search_extables(regs->psw.addr);
258	if (fixup && ex_handle(fixup, regs))
259		return;
260
261	/*
262	 * Oops. The kernel tried to access some bad page. We'll have to
263	 * terminate things with extreme prejudice.
264	 */
265	if (get_fault_type(regs) == KERNEL_FAULT)
266		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
267		       " in virtual kernel address space\n");
268	else
269		printk(KERN_ALERT "Unable to handle kernel paging request"
270		       " in virtual user address space\n");
271	dump_fault_info(regs);
272	die(regs, "Oops");
273	do_exit(SIGKILL);
274}
275
276static noinline void do_low_address(struct pt_regs *regs)
277{
278	/* Low-address protection hit in kernel mode means
279	   NULL pointer write access in kernel mode.  */
280	if (regs->psw.mask & PSW_MASK_PSTATE) {
281		/* Low-address protection hit in user mode 'cannot happen'. */
282		die (regs, "Low-address protection");
283		do_exit(SIGKILL);
284	}
285
286	do_no_context(regs);
287}
288
289static noinline void do_sigbus(struct pt_regs *regs)
290{
291	/*
292	 * Send a sigbus, regardless of whether we were in kernel
293	 * or user mode.
294	 */
295	force_sig_fault(SIGBUS, BUS_ADRERR,
296			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
297}
298
299static noinline int signal_return(struct pt_regs *regs)
300{
301	u16 instruction;
302	int rc;
303
304	rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
305	if (rc)
306		return rc;
307	if (instruction == 0x0a77) {
308		set_pt_regs_flag(regs, PIF_SYSCALL);
309		regs->int_code = 0x00040077;
310		return 0;
311	} else if (instruction == 0x0aad) {
312		set_pt_regs_flag(regs, PIF_SYSCALL);
313		regs->int_code = 0x000400ad;
314		return 0;
315	}
316	return -EACCES;
317}
318
319static noinline void do_fault_error(struct pt_regs *regs, int access,
320					vm_fault_t fault)
321{
322	int si_code;
323
324	switch (fault) {
325	case VM_FAULT_BADACCESS:
326		if (access == VM_EXEC && signal_return(regs) == 0)
327			break;
328		fallthrough;
329	case VM_FAULT_BADMAP:
330		/* Bad memory access. Check if it is kernel or user space. */
331		if (user_mode(regs)) {
332			/* User mode accesses just cause a SIGSEGV */
333			si_code = (fault == VM_FAULT_BADMAP) ?
334				SEGV_MAPERR : SEGV_ACCERR;
335			do_sigsegv(regs, si_code);
336			break;
337		}
338		fallthrough;
339	case VM_FAULT_BADCONTEXT:
340	case VM_FAULT_PFAULT:
341		do_no_context(regs);
342		break;
343	case VM_FAULT_SIGNAL:
344		if (!user_mode(regs))
345			do_no_context(regs);
346		break;
347	default: /* fault & VM_FAULT_ERROR */
348		if (fault & VM_FAULT_OOM) {
349			if (!user_mode(regs))
350				do_no_context(regs);
351			else
352				pagefault_out_of_memory();
353		} else if (fault & VM_FAULT_SIGSEGV) {
354			/* Kernel mode? Handle exceptions or die */
355			if (!user_mode(regs))
356				do_no_context(regs);
357			else
358				do_sigsegv(regs, SEGV_MAPERR);
359		} else if (fault & VM_FAULT_SIGBUS) {
360			/* Kernel mode? Handle exceptions or die */
361			if (!user_mode(regs))
362				do_no_context(regs);
363			else
364				do_sigbus(regs);
365		} else
366			BUG();
367		break;
368	}
369}
370
371/*
372 * This routine handles page faults.  It determines the address,
373 * and the problem, and then passes it off to one of the appropriate
374 * routines.
375 *
376 * interruption code (int_code):
377 *   04       Protection           ->  Write-Protection  (suppression)
378 *   10       Segment translation  ->  Not present       (nullification)
379 *   11       Page translation     ->  Not present       (nullification)
380 *   3b       Region third trans.  ->  Not present       (nullification)
381 */
382static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
383{
384	struct gmap *gmap;
385	struct task_struct *tsk;
386	struct mm_struct *mm;
387	struct vm_area_struct *vma;
388	enum fault_type type;
389	unsigned long trans_exc_code;
390	unsigned long address;
391	unsigned int flags;
392	vm_fault_t fault;
393
394	tsk = current;
395	/*
396	 * The instruction that caused the program check has
397	 * been nullified. Don't signal single step via SIGTRAP.
398	 */
399	clear_pt_regs_flag(regs, PIF_PER_TRAP);
400
401	if (kprobe_page_fault(regs, 14))
402		return 0;
403
404	mm = tsk->mm;
405	trans_exc_code = regs->int_parm_long;
406
407	/*
408	 * Verify that the fault happened in user space, that
409	 * we are not in an interrupt and that there is a 
410	 * user context.
411	 */
412	fault = VM_FAULT_BADCONTEXT;
413	type = get_fault_type(regs);
414	switch (type) {
415	case KERNEL_FAULT:
416		goto out;
417	case VDSO_FAULT:
418		fault = VM_FAULT_BADMAP;
419		goto out;
420	case USER_FAULT:
421	case GMAP_FAULT:
422		if (faulthandler_disabled() || !mm)
423			goto out;
424		break;
425	}
426
427	address = trans_exc_code & __FAIL_ADDR_MASK;
428	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
429	flags = FAULT_FLAG_DEFAULT;
430	if (user_mode(regs))
431		flags |= FAULT_FLAG_USER;
432	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
433		flags |= FAULT_FLAG_WRITE;
434	mmap_read_lock(mm);
435
436	gmap = NULL;
437	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
438		gmap = (struct gmap *) S390_lowcore.gmap;
439		current->thread.gmap_addr = address;
440		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
441		current->thread.gmap_int_code = regs->int_code & 0xffff;
442		address = __gmap_translate(gmap, address);
443		if (address == -EFAULT) {
444			fault = VM_FAULT_BADMAP;
445			goto out_up;
446		}
447		if (gmap->pfault_enabled)
448			flags |= FAULT_FLAG_RETRY_NOWAIT;
449	}
450
451retry:
452	fault = VM_FAULT_BADMAP;
453	vma = find_vma(mm, address);
454	if (!vma)
455		goto out_up;
456
457	if (unlikely(vma->vm_start > address)) {
458		if (!(vma->vm_flags & VM_GROWSDOWN))
459			goto out_up;
460		if (expand_stack(vma, address))
461			goto out_up;
462	}
463
464	/*
465	 * Ok, we have a good vm_area for this memory access, so
466	 * we can handle it..
467	 */
468	fault = VM_FAULT_BADACCESS;
469	if (unlikely(!(vma->vm_flags & access)))
470		goto out_up;
471
472	if (is_vm_hugetlb_page(vma))
473		address &= HPAGE_MASK;
474	/*
475	 * If for any reason at all we couldn't handle the fault,
476	 * make sure we exit gracefully rather than endlessly redo
477	 * the fault.
478	 */
479	fault = handle_mm_fault(vma, address, flags, regs);
480	if (fault_signal_pending(fault, regs)) {
481		fault = VM_FAULT_SIGNAL;
482		if (flags & FAULT_FLAG_RETRY_NOWAIT)
483			goto out_up;
484		goto out;
485	}
486	if (unlikely(fault & VM_FAULT_ERROR))
487		goto out_up;
488
489	if (flags & FAULT_FLAG_ALLOW_RETRY) {
490		if (fault & VM_FAULT_RETRY) {
491			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
492			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
493				/* FAULT_FLAG_RETRY_NOWAIT has been set,
494				 * mmap_lock has not been released */
495				current->thread.gmap_pfault = 1;
496				fault = VM_FAULT_PFAULT;
497				goto out_up;
498			}
499			flags &= ~FAULT_FLAG_RETRY_NOWAIT;
500			flags |= FAULT_FLAG_TRIED;
501			mmap_read_lock(mm);
502			goto retry;
503		}
504	}
505	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
506		address =  __gmap_link(gmap, current->thread.gmap_addr,
507				       address);
508		if (address == -EFAULT) {
509			fault = VM_FAULT_BADMAP;
510			goto out_up;
511		}
512		if (address == -ENOMEM) {
513			fault = VM_FAULT_OOM;
514			goto out_up;
515		}
516	}
517	fault = 0;
518out_up:
519	mmap_read_unlock(mm);
520out:
521	return fault;
522}
523
524void do_protection_exception(struct pt_regs *regs)
525{
526	unsigned long trans_exc_code;
527	int access;
528	vm_fault_t fault;
529
530	trans_exc_code = regs->int_parm_long;
531	/*
532	 * Protection exceptions are suppressing, decrement psw address.
533	 * The exception to this rule are aborted transactions, for these
534	 * the PSW already points to the correct location.
535	 */
536	if (!(regs->int_code & 0x200))
537		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
538	/*
539	 * Check for low-address protection.  This needs to be treated
540	 * as a special case because the translation exception code
541	 * field is not guaranteed to contain valid data in this case.
542	 */
543	if (unlikely(!(trans_exc_code & 4))) {
544		do_low_address(regs);
545		return;
546	}
547	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
548		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
549					(regs->psw.addr & PAGE_MASK);
550		access = VM_EXEC;
551		fault = VM_FAULT_BADACCESS;
552	} else {
553		access = VM_WRITE;
554		fault = do_exception(regs, access);
555	}
556	if (unlikely(fault))
557		do_fault_error(regs, access, fault);
558}
559NOKPROBE_SYMBOL(do_protection_exception);
560
561void do_dat_exception(struct pt_regs *regs)
562{
563	int access;
564	vm_fault_t fault;
565
566	access = VM_ACCESS_FLAGS;
567	fault = do_exception(regs, access);
568	if (unlikely(fault))
569		do_fault_error(regs, access, fault);
570}
571NOKPROBE_SYMBOL(do_dat_exception);
572
573#ifdef CONFIG_PFAULT 
574/*
575 * 'pfault' pseudo page faults routines.
576 */
577static int pfault_disable;
578
579static int __init nopfault(char *str)
580{
581	pfault_disable = 1;
582	return 1;
583}
584
585__setup("nopfault", nopfault);
586
587struct pfault_refbk {
588	u16 refdiagc;
589	u16 reffcode;
590	u16 refdwlen;
591	u16 refversn;
592	u64 refgaddr;
593	u64 refselmk;
594	u64 refcmpmk;
595	u64 reserved;
596} __attribute__ ((packed, aligned(8)));
597
598static struct pfault_refbk pfault_init_refbk = {
599	.refdiagc = 0x258,
600	.reffcode = 0,
601	.refdwlen = 5,
602	.refversn = 2,
603	.refgaddr = __LC_LPP,
604	.refselmk = 1ULL << 48,
605	.refcmpmk = 1ULL << 48,
606	.reserved = __PF_RES_FIELD
607};
608
609int pfault_init(void)
610{
611        int rc;
612
613	if (pfault_disable)
614		return -1;
615	diag_stat_inc(DIAG_STAT_X258);
616	asm volatile(
617		"	diag	%1,%0,0x258\n"
618		"0:	j	2f\n"
619		"1:	la	%0,8\n"
620		"2:\n"
621		EX_TABLE(0b,1b)
622		: "=d" (rc)
623		: "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
624        return rc;
625}
626
627static struct pfault_refbk pfault_fini_refbk = {
628	.refdiagc = 0x258,
629	.reffcode = 1,
630	.refdwlen = 5,
631	.refversn = 2,
632};
633
634void pfault_fini(void)
635{
636
637	if (pfault_disable)
638		return;
639	diag_stat_inc(DIAG_STAT_X258);
640	asm volatile(
641		"	diag	%0,0,0x258\n"
642		"0:	nopr	%%r7\n"
643		EX_TABLE(0b,0b)
644		: : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
645}
646
647static DEFINE_SPINLOCK(pfault_lock);
648static LIST_HEAD(pfault_list);
649
650#define PF_COMPLETE	0x0080
651
652/*
653 * The mechanism of our pfault code: if Linux is running as guest, runs a user
654 * space process and the user space process accesses a page that the host has
655 * paged out we get a pfault interrupt.
656 *
657 * This allows us, within the guest, to schedule a different process. Without
658 * this mechanism the host would have to suspend the whole virtual cpu until
659 * the page has been paged in.
660 *
661 * So when we get such an interrupt then we set the state of the current task
662 * to uninterruptible and also set the need_resched flag. Both happens within
663 * interrupt context(!). If we later on want to return to user space we
664 * recognize the need_resched flag and then call schedule().  It's not very
665 * obvious how this works...
666 *
667 * Of course we have a lot of additional fun with the completion interrupt (->
668 * host signals that a page of a process has been paged in and the process can
669 * continue to run). This interrupt can arrive on any cpu and, since we have
670 * virtual cpus, actually appear before the interrupt that signals that a page
671 * is missing.
672 */
673static void pfault_interrupt(struct ext_code ext_code,
674			     unsigned int param32, unsigned long param64)
675{
676	struct task_struct *tsk;
677	__u16 subcode;
678	pid_t pid;
679
680	/*
681	 * Get the external interruption subcode & pfault initial/completion
682	 * signal bit. VM stores this in the 'cpu address' field associated
683	 * with the external interrupt.
684	 */
685	subcode = ext_code.subcode;
686	if ((subcode & 0xff00) != __SUBCODE_MASK)
687		return;
688	inc_irq_stat(IRQEXT_PFL);
689	/* Get the token (= pid of the affected task). */
690	pid = param64 & LPP_PID_MASK;
691	rcu_read_lock();
692	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
693	if (tsk)
694		get_task_struct(tsk);
695	rcu_read_unlock();
696	if (!tsk)
697		return;
698	spin_lock(&pfault_lock);
699	if (subcode & PF_COMPLETE) {
700		/* signal bit is set -> a page has been swapped in by VM */
701		if (tsk->thread.pfault_wait == 1) {
702			/* Initial interrupt was faster than the completion
703			 * interrupt. pfault_wait is valid. Set pfault_wait
704			 * back to zero and wake up the process. This can
705			 * safely be done because the task is still sleeping
706			 * and can't produce new pfaults. */
707			tsk->thread.pfault_wait = 0;
708			list_del(&tsk->thread.list);
709			wake_up_process(tsk);
710			put_task_struct(tsk);
711		} else {
712			/* Completion interrupt was faster than initial
713			 * interrupt. Set pfault_wait to -1 so the initial
714			 * interrupt doesn't put the task to sleep.
715			 * If the task is not running, ignore the completion
716			 * interrupt since it must be a leftover of a PFAULT
717			 * CANCEL operation which didn't remove all pending
718			 * completion interrupts. */
719			if (tsk->state == TASK_RUNNING)
720				tsk->thread.pfault_wait = -1;
721		}
722	} else {
723		/* signal bit not set -> a real page is missing. */
724		if (WARN_ON_ONCE(tsk != current))
725			goto out;
726		if (tsk->thread.pfault_wait == 1) {
727			/* Already on the list with a reference: put to sleep */
728			goto block;
729		} else if (tsk->thread.pfault_wait == -1) {
730			/* Completion interrupt was faster than the initial
731			 * interrupt (pfault_wait == -1). Set pfault_wait
732			 * back to zero and exit. */
733			tsk->thread.pfault_wait = 0;
734		} else {
735			/* Initial interrupt arrived before completion
736			 * interrupt. Let the task sleep.
737			 * An extra task reference is needed since a different
738			 * cpu may set the task state to TASK_RUNNING again
739			 * before the scheduler is reached. */
740			get_task_struct(tsk);
741			tsk->thread.pfault_wait = 1;
742			list_add(&tsk->thread.list, &pfault_list);
743block:
744			/* Since this must be a userspace fault, there
745			 * is no kernel task state to trample. Rely on the
746			 * return to userspace schedule() to block. */
747			__set_current_state(TASK_UNINTERRUPTIBLE);
748			set_tsk_need_resched(tsk);
749			set_preempt_need_resched();
750		}
751	}
752out:
753	spin_unlock(&pfault_lock);
754	put_task_struct(tsk);
755}
756
757static int pfault_cpu_dead(unsigned int cpu)
758{
759	struct thread_struct *thread, *next;
760	struct task_struct *tsk;
761
762	spin_lock_irq(&pfault_lock);
763	list_for_each_entry_safe(thread, next, &pfault_list, list) {
764		thread->pfault_wait = 0;
765		list_del(&thread->list);
766		tsk = container_of(thread, struct task_struct, thread);
767		wake_up_process(tsk);
768		put_task_struct(tsk);
769	}
770	spin_unlock_irq(&pfault_lock);
771	return 0;
772}
773
774static int __init pfault_irq_init(void)
775{
776	int rc;
777
778	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
779	if (rc)
780		goto out_extint;
781	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
782	if (rc)
783		goto out_pfault;
784	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
785	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
786				  NULL, pfault_cpu_dead);
787	return 0;
788
789out_pfault:
790	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
791out_extint:
792	pfault_disable = 1;
793	return rc;
794}
795early_initcall(pfault_irq_init);
796
797#endif /* CONFIG_PFAULT */
798
799#if IS_ENABLED(CONFIG_PGSTE)
 
800void do_secure_storage_access(struct pt_regs *regs)
801{
802	unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
803	struct vm_area_struct *vma;
804	struct mm_struct *mm;
805	struct page *page;
806	int rc;
807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
808	switch (get_fault_type(regs)) {
809	case USER_FAULT:
810		mm = current->mm;
811		mmap_read_lock(mm);
812		vma = find_vma(mm, addr);
813		if (!vma) {
814			mmap_read_unlock(mm);
815			do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
816			break;
817		}
818		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
819		if (IS_ERR_OR_NULL(page)) {
820			mmap_read_unlock(mm);
821			break;
822		}
823		if (arch_make_page_accessible(page))
824			send_sig(SIGSEGV, current, 0);
825		put_page(page);
826		mmap_read_unlock(mm);
827		break;
828	case KERNEL_FAULT:
829		page = phys_to_page(addr);
830		if (unlikely(!try_get_page(page)))
831			break;
832		rc = arch_make_page_accessible(page);
833		put_page(page);
834		if (rc)
835			BUG();
836		break;
837	case VDSO_FAULT:
838	case GMAP_FAULT:
839	default:
840		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
841		WARN_ON_ONCE(1);
842	}
843}
844NOKPROBE_SYMBOL(do_secure_storage_access);
845
846void do_non_secure_storage_access(struct pt_regs *regs)
847{
848	unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
849	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
850
851	if (get_fault_type(regs) != GMAP_FAULT) {
852		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
853		WARN_ON_ONCE(1);
854		return;
855	}
856
857	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
858		send_sig(SIGSEGV, current, 0);
859}
860NOKPROBE_SYMBOL(do_non_secure_storage_access);
861
862void do_secure_storage_violation(struct pt_regs *regs)
863{
864	/*
865	 * Either KVM messed up the secure guest mapping or the same
866	 * page is mapped into multiple secure guests.
867	 *
868	 * This exception is only triggered when a guest 2 is running
869	 * and can therefore never occur in kernel context.
870	 */
871	printk_ratelimited(KERN_WARNING
872			   "Secure storage violation in task: %s, pid %d\n",
873			   current->comm, current->pid);
874	send_sig(SIGSEGV, current, 0);
875}
876
877#else
878void do_secure_storage_access(struct pt_regs *regs)
879{
880	default_trap_handler(regs);
881}
882
883void do_non_secure_storage_access(struct pt_regs *regs)
884{
885	default_trap_handler(regs);
886}
887
888void do_secure_storage_violation(struct pt_regs *regs)
889{
890	default_trap_handler(regs);
891}
892#endif
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  6 *               Ulrich Weigand (uweigand@de.ibm.com)
  7 *
  8 *  Derived from "arch/i386/mm/fault.c"
  9 *    Copyright (C) 1995  Linus Torvalds
 10 */
 11
 12#include <linux/kernel_stat.h>
 13#include <linux/perf_event.h>
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/ptrace.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/smp.h>
 26#include <linux/kdebug.h>
 27#include <linux/init.h>
 28#include <linux/console.h>
 29#include <linux/extable.h>
 30#include <linux/hardirq.h>
 31#include <linux/kprobes.h>
 32#include <linux/uaccess.h>
 33#include <linux/hugetlb.h>
 34#include <asm/asm-offsets.h>
 35#include <asm/diag.h>
 36#include <asm/gmap.h>
 37#include <asm/irq.h>
 38#include <asm/mmu_context.h>
 39#include <asm/facility.h>
 40#include <asm/uv.h>
 41#include "../kernel/entry.h"
 42
 43#define __FAIL_ADDR_MASK -4096L
 44#define __SUBCODE_MASK 0x0600
 45#define __PF_RES_FIELD 0x8000000000000000ULL
 46
 47#define VM_FAULT_BADCONTEXT	((__force vm_fault_t) 0x010000)
 48#define VM_FAULT_BADMAP		((__force vm_fault_t) 0x020000)
 49#define VM_FAULT_BADACCESS	((__force vm_fault_t) 0x040000)
 50#define VM_FAULT_SIGNAL		((__force vm_fault_t) 0x080000)
 51#define VM_FAULT_PFAULT		((__force vm_fault_t) 0x100000)
 52
 53enum fault_type {
 54	KERNEL_FAULT,
 55	USER_FAULT,
 
 56	GMAP_FAULT,
 57};
 58
 59static unsigned long store_indication __read_mostly;
 60
 61static int __init fault_init(void)
 62{
 63	if (test_facility(75))
 64		store_indication = 0xc00;
 65	return 0;
 66}
 67early_initcall(fault_init);
 68
 69/*
 70 * Find out which address space caused the exception.
 71 */
 72static enum fault_type get_fault_type(struct pt_regs *regs)
 73{
 74	unsigned long trans_exc_code;
 75
 76	trans_exc_code = regs->int_parm_long & 3;
 77	if (likely(trans_exc_code == 0)) {
 78		/* primary space exception */
 79		if (user_mode(regs))
 
 
 
 80			return USER_FAULT;
 81		if (!IS_ENABLED(CONFIG_PGSTE))
 
 
 
 
 
 
 82			return KERNEL_FAULT;
 83		if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
 84			return GMAP_FAULT;
 85		return KERNEL_FAULT;
 86	}
 87	if (trans_exc_code == 2)
 88		return USER_FAULT;
 89	if (trans_exc_code == 1) {
 90		/* access register mode, not used in the kernel */
 91		return USER_FAULT;
 92	}
 93	/* home space exception -> access via kernel ASCE */
 94	return KERNEL_FAULT;
 95}
 96
 97static int bad_address(void *p)
 98{
 99	unsigned long dummy;
100
101	return get_kernel_nofault(dummy, (unsigned long *)p);
102}
103
104static void dump_pagetable(unsigned long asce, unsigned long address)
105{
106	unsigned long *table = __va(asce & _ASCE_ORIGIN);
107
108	pr_alert("AS:%016lx ", asce);
109	switch (asce & _ASCE_TYPE_MASK) {
110	case _ASCE_TYPE_REGION1:
111		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
112		if (bad_address(table))
113			goto bad;
114		pr_cont("R1:%016lx ", *table);
115		if (*table & _REGION_ENTRY_INVALID)
116			goto out;
117		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
118		fallthrough;
119	case _ASCE_TYPE_REGION2:
120		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
121		if (bad_address(table))
122			goto bad;
123		pr_cont("R2:%016lx ", *table);
124		if (*table & _REGION_ENTRY_INVALID)
125			goto out;
126		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
127		fallthrough;
128	case _ASCE_TYPE_REGION3:
129		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
130		if (bad_address(table))
131			goto bad;
132		pr_cont("R3:%016lx ", *table);
133		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
134			goto out;
135		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
136		fallthrough;
137	case _ASCE_TYPE_SEGMENT:
138		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
139		if (bad_address(table))
140			goto bad;
141		pr_cont("S:%016lx ", *table);
142		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
143			goto out;
144		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
145	}
146	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
147	if (bad_address(table))
148		goto bad;
149	pr_cont("P:%016lx ", *table);
150out:
151	pr_cont("\n");
152	return;
153bad:
154	pr_cont("BAD\n");
155}
156
157static void dump_fault_info(struct pt_regs *regs)
158{
159	unsigned long asce;
160
161	pr_alert("Failing address: %016lx TEID: %016lx\n",
162		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
163	pr_alert("Fault in ");
164	switch (regs->int_parm_long & 3) {
165	case 3:
166		pr_cont("home space ");
167		break;
168	case 2:
169		pr_cont("secondary space ");
170		break;
171	case 1:
172		pr_cont("access register ");
173		break;
174	case 0:
175		pr_cont("primary space ");
176		break;
177	}
178	pr_cont("mode while using ");
179	switch (get_fault_type(regs)) {
180	case USER_FAULT:
181		asce = S390_lowcore.user_asce;
182		pr_cont("user ");
183		break;
 
 
 
 
184	case GMAP_FAULT:
185		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
186		pr_cont("gmap ");
187		break;
188	case KERNEL_FAULT:
189		asce = S390_lowcore.kernel_asce;
190		pr_cont("kernel ");
191		break;
192	default:
193		unreachable();
194	}
195	pr_cont("ASCE.\n");
196	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
197}
198
199int show_unhandled_signals = 1;
200
201void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
202{
203	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
204		return;
205	if (!unhandled_signal(current, signr))
206		return;
207	if (!printk_ratelimit())
208		return;
209	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
210	       regs->int_code & 0xffff, regs->int_code >> 17);
211	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
212	printk(KERN_CONT "\n");
213	if (is_mm_fault)
214		dump_fault_info(regs);
215	show_regs(regs);
216}
217
218/*
219 * Send SIGSEGV to task.  This is an external routine
220 * to keep the stack usage of do_page_fault small.
221 */
222static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
223{
224	report_user_fault(regs, SIGSEGV, 1);
225	force_sig_fault(SIGSEGV, si_code,
226			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
227}
228
229const struct exception_table_entry *s390_search_extables(unsigned long addr)
230{
231	const struct exception_table_entry *fixup;
232
233	fixup = search_extable(__start_dma_ex_table,
234			       __stop_dma_ex_table - __start_dma_ex_table,
235			       addr);
236	if (!fixup)
237		fixup = search_exception_tables(addr);
238	return fixup;
239}
240
241static noinline void do_no_context(struct pt_regs *regs)
242{
243	const struct exception_table_entry *fixup;
244
245	/* Are we prepared to handle this kernel fault?  */
246	fixup = s390_search_extables(regs->psw.addr);
247	if (fixup && ex_handle(fixup, regs))
248		return;
249
250	/*
251	 * Oops. The kernel tried to access some bad page. We'll have to
252	 * terminate things with extreme prejudice.
253	 */
254	if (get_fault_type(regs) == KERNEL_FAULT)
255		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
256		       " in virtual kernel address space\n");
257	else
258		printk(KERN_ALERT "Unable to handle kernel paging request"
259		       " in virtual user address space\n");
260	dump_fault_info(regs);
261	die(regs, "Oops");
262	do_exit(SIGKILL);
263}
264
265static noinline void do_low_address(struct pt_regs *regs)
266{
267	/* Low-address protection hit in kernel mode means
268	   NULL pointer write access in kernel mode.  */
269	if (regs->psw.mask & PSW_MASK_PSTATE) {
270		/* Low-address protection hit in user mode 'cannot happen'. */
271		die (regs, "Low-address protection");
272		do_exit(SIGKILL);
273	}
274
275	do_no_context(regs);
276}
277
278static noinline void do_sigbus(struct pt_regs *regs)
279{
280	/*
281	 * Send a sigbus, regardless of whether we were in kernel
282	 * or user mode.
283	 */
284	force_sig_fault(SIGBUS, BUS_ADRERR,
285			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
286}
287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288static noinline void do_fault_error(struct pt_regs *regs, int access,
289					vm_fault_t fault)
290{
291	int si_code;
292
293	switch (fault) {
294	case VM_FAULT_BADACCESS:
 
 
 
295	case VM_FAULT_BADMAP:
296		/* Bad memory access. Check if it is kernel or user space. */
297		if (user_mode(regs)) {
298			/* User mode accesses just cause a SIGSEGV */
299			si_code = (fault == VM_FAULT_BADMAP) ?
300				SEGV_MAPERR : SEGV_ACCERR;
301			do_sigsegv(regs, si_code);
302			break;
303		}
304		fallthrough;
305	case VM_FAULT_BADCONTEXT:
306	case VM_FAULT_PFAULT:
307		do_no_context(regs);
308		break;
309	case VM_FAULT_SIGNAL:
310		if (!user_mode(regs))
311			do_no_context(regs);
312		break;
313	default: /* fault & VM_FAULT_ERROR */
314		if (fault & VM_FAULT_OOM) {
315			if (!user_mode(regs))
316				do_no_context(regs);
317			else
318				pagefault_out_of_memory();
319		} else if (fault & VM_FAULT_SIGSEGV) {
320			/* Kernel mode? Handle exceptions or die */
321			if (!user_mode(regs))
322				do_no_context(regs);
323			else
324				do_sigsegv(regs, SEGV_MAPERR);
325		} else if (fault & VM_FAULT_SIGBUS) {
326			/* Kernel mode? Handle exceptions or die */
327			if (!user_mode(regs))
328				do_no_context(regs);
329			else
330				do_sigbus(regs);
331		} else
332			BUG();
333		break;
334	}
335}
336
337/*
338 * This routine handles page faults.  It determines the address,
339 * and the problem, and then passes it off to one of the appropriate
340 * routines.
341 *
342 * interruption code (int_code):
343 *   04       Protection           ->  Write-Protection  (suppression)
344 *   10       Segment translation  ->  Not present       (nullification)
345 *   11       Page translation     ->  Not present       (nullification)
346 *   3b       Region third trans.  ->  Not present       (nullification)
347 */
348static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
349{
350	struct gmap *gmap;
351	struct task_struct *tsk;
352	struct mm_struct *mm;
353	struct vm_area_struct *vma;
354	enum fault_type type;
355	unsigned long trans_exc_code;
356	unsigned long address;
357	unsigned int flags;
358	vm_fault_t fault;
359
360	tsk = current;
361	/*
362	 * The instruction that caused the program check has
363	 * been nullified. Don't signal single step via SIGTRAP.
364	 */
365	clear_thread_flag(TIF_PER_TRAP);
366
367	if (kprobe_page_fault(regs, 14))
368		return 0;
369
370	mm = tsk->mm;
371	trans_exc_code = regs->int_parm_long;
372
373	/*
374	 * Verify that the fault happened in user space, that
375	 * we are not in an interrupt and that there is a 
376	 * user context.
377	 */
378	fault = VM_FAULT_BADCONTEXT;
379	type = get_fault_type(regs);
380	switch (type) {
381	case KERNEL_FAULT:
382		goto out;
 
 
 
383	case USER_FAULT:
384	case GMAP_FAULT:
385		if (faulthandler_disabled() || !mm)
386			goto out;
387		break;
388	}
389
390	address = trans_exc_code & __FAIL_ADDR_MASK;
391	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
392	flags = FAULT_FLAG_DEFAULT;
393	if (user_mode(regs))
394		flags |= FAULT_FLAG_USER;
395	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
396		flags |= FAULT_FLAG_WRITE;
397	mmap_read_lock(mm);
398
399	gmap = NULL;
400	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
401		gmap = (struct gmap *) S390_lowcore.gmap;
402		current->thread.gmap_addr = address;
403		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
404		current->thread.gmap_int_code = regs->int_code & 0xffff;
405		address = __gmap_translate(gmap, address);
406		if (address == -EFAULT) {
407			fault = VM_FAULT_BADMAP;
408			goto out_up;
409		}
410		if (gmap->pfault_enabled)
411			flags |= FAULT_FLAG_RETRY_NOWAIT;
412	}
413
414retry:
415	fault = VM_FAULT_BADMAP;
416	vma = find_vma(mm, address);
417	if (!vma)
418		goto out_up;
419
420	if (unlikely(vma->vm_start > address)) {
421		if (!(vma->vm_flags & VM_GROWSDOWN))
422			goto out_up;
423		if (expand_stack(vma, address))
424			goto out_up;
425	}
426
427	/*
428	 * Ok, we have a good vm_area for this memory access, so
429	 * we can handle it..
430	 */
431	fault = VM_FAULT_BADACCESS;
432	if (unlikely(!(vma->vm_flags & access)))
433		goto out_up;
434
435	if (is_vm_hugetlb_page(vma))
436		address &= HPAGE_MASK;
437	/*
438	 * If for any reason at all we couldn't handle the fault,
439	 * make sure we exit gracefully rather than endlessly redo
440	 * the fault.
441	 */
442	fault = handle_mm_fault(vma, address, flags, regs);
443	if (fault_signal_pending(fault, regs)) {
444		fault = VM_FAULT_SIGNAL;
445		if (flags & FAULT_FLAG_RETRY_NOWAIT)
446			goto out_up;
447		goto out;
448	}
449	if (unlikely(fault & VM_FAULT_ERROR))
450		goto out_up;
451
452	if (flags & FAULT_FLAG_ALLOW_RETRY) {
453		if (fault & VM_FAULT_RETRY) {
454			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
455			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
456				/* FAULT_FLAG_RETRY_NOWAIT has been set,
457				 * mmap_lock has not been released */
458				current->thread.gmap_pfault = 1;
459				fault = VM_FAULT_PFAULT;
460				goto out_up;
461			}
462			flags &= ~FAULT_FLAG_RETRY_NOWAIT;
463			flags |= FAULT_FLAG_TRIED;
464			mmap_read_lock(mm);
465			goto retry;
466		}
467	}
468	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
469		address =  __gmap_link(gmap, current->thread.gmap_addr,
470				       address);
471		if (address == -EFAULT) {
472			fault = VM_FAULT_BADMAP;
473			goto out_up;
474		}
475		if (address == -ENOMEM) {
476			fault = VM_FAULT_OOM;
477			goto out_up;
478		}
479	}
480	fault = 0;
481out_up:
482	mmap_read_unlock(mm);
483out:
484	return fault;
485}
486
487void do_protection_exception(struct pt_regs *regs)
488{
489	unsigned long trans_exc_code;
490	int access;
491	vm_fault_t fault;
492
493	trans_exc_code = regs->int_parm_long;
494	/*
495	 * Protection exceptions are suppressing, decrement psw address.
496	 * The exception to this rule are aborted transactions, for these
497	 * the PSW already points to the correct location.
498	 */
499	if (!(regs->int_code & 0x200))
500		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
501	/*
502	 * Check for low-address protection.  This needs to be treated
503	 * as a special case because the translation exception code
504	 * field is not guaranteed to contain valid data in this case.
505	 */
506	if (unlikely(!(trans_exc_code & 4))) {
507		do_low_address(regs);
508		return;
509	}
510	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
511		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
512					(regs->psw.addr & PAGE_MASK);
513		access = VM_EXEC;
514		fault = VM_FAULT_BADACCESS;
515	} else {
516		access = VM_WRITE;
517		fault = do_exception(regs, access);
518	}
519	if (unlikely(fault))
520		do_fault_error(regs, access, fault);
521}
522NOKPROBE_SYMBOL(do_protection_exception);
523
524void do_dat_exception(struct pt_regs *regs)
525{
526	int access;
527	vm_fault_t fault;
528
529	access = VM_ACCESS_FLAGS;
530	fault = do_exception(regs, access);
531	if (unlikely(fault))
532		do_fault_error(regs, access, fault);
533}
534NOKPROBE_SYMBOL(do_dat_exception);
535
536#ifdef CONFIG_PFAULT 
537/*
538 * 'pfault' pseudo page faults routines.
539 */
540static int pfault_disable;
541
542static int __init nopfault(char *str)
543{
544	pfault_disable = 1;
545	return 1;
546}
547
548__setup("nopfault", nopfault);
549
550struct pfault_refbk {
551	u16 refdiagc;
552	u16 reffcode;
553	u16 refdwlen;
554	u16 refversn;
555	u64 refgaddr;
556	u64 refselmk;
557	u64 refcmpmk;
558	u64 reserved;
559} __attribute__ ((packed, aligned(8)));
560
561static struct pfault_refbk pfault_init_refbk = {
562	.refdiagc = 0x258,
563	.reffcode = 0,
564	.refdwlen = 5,
565	.refversn = 2,
566	.refgaddr = __LC_LPP,
567	.refselmk = 1ULL << 48,
568	.refcmpmk = 1ULL << 48,
569	.reserved = __PF_RES_FIELD
570};
571
572int pfault_init(void)
573{
574        int rc;
575
576	if (pfault_disable)
577		return -1;
578	diag_stat_inc(DIAG_STAT_X258);
579	asm volatile(
580		"	diag	%1,%0,0x258\n"
581		"0:	j	2f\n"
582		"1:	la	%0,8\n"
583		"2:\n"
584		EX_TABLE(0b,1b)
585		: "=d" (rc)
586		: "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
587        return rc;
588}
589
590static struct pfault_refbk pfault_fini_refbk = {
591	.refdiagc = 0x258,
592	.reffcode = 1,
593	.refdwlen = 5,
594	.refversn = 2,
595};
596
597void pfault_fini(void)
598{
599
600	if (pfault_disable)
601		return;
602	diag_stat_inc(DIAG_STAT_X258);
603	asm volatile(
604		"	diag	%0,0,0x258\n"
605		"0:	nopr	%%r7\n"
606		EX_TABLE(0b,0b)
607		: : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
608}
609
610static DEFINE_SPINLOCK(pfault_lock);
611static LIST_HEAD(pfault_list);
612
613#define PF_COMPLETE	0x0080
614
615/*
616 * The mechanism of our pfault code: if Linux is running as guest, runs a user
617 * space process and the user space process accesses a page that the host has
618 * paged out we get a pfault interrupt.
619 *
620 * This allows us, within the guest, to schedule a different process. Without
621 * this mechanism the host would have to suspend the whole virtual cpu until
622 * the page has been paged in.
623 *
624 * So when we get such an interrupt then we set the state of the current task
625 * to uninterruptible and also set the need_resched flag. Both happens within
626 * interrupt context(!). If we later on want to return to user space we
627 * recognize the need_resched flag and then call schedule().  It's not very
628 * obvious how this works...
629 *
630 * Of course we have a lot of additional fun with the completion interrupt (->
631 * host signals that a page of a process has been paged in and the process can
632 * continue to run). This interrupt can arrive on any cpu and, since we have
633 * virtual cpus, actually appear before the interrupt that signals that a page
634 * is missing.
635 */
636static void pfault_interrupt(struct ext_code ext_code,
637			     unsigned int param32, unsigned long param64)
638{
639	struct task_struct *tsk;
640	__u16 subcode;
641	pid_t pid;
642
643	/*
644	 * Get the external interruption subcode & pfault initial/completion
645	 * signal bit. VM stores this in the 'cpu address' field associated
646	 * with the external interrupt.
647	 */
648	subcode = ext_code.subcode;
649	if ((subcode & 0xff00) != __SUBCODE_MASK)
650		return;
651	inc_irq_stat(IRQEXT_PFL);
652	/* Get the token (= pid of the affected task). */
653	pid = param64 & LPP_PID_MASK;
654	rcu_read_lock();
655	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
656	if (tsk)
657		get_task_struct(tsk);
658	rcu_read_unlock();
659	if (!tsk)
660		return;
661	spin_lock(&pfault_lock);
662	if (subcode & PF_COMPLETE) {
663		/* signal bit is set -> a page has been swapped in by VM */
664		if (tsk->thread.pfault_wait == 1) {
665			/* Initial interrupt was faster than the completion
666			 * interrupt. pfault_wait is valid. Set pfault_wait
667			 * back to zero and wake up the process. This can
668			 * safely be done because the task is still sleeping
669			 * and can't produce new pfaults. */
670			tsk->thread.pfault_wait = 0;
671			list_del(&tsk->thread.list);
672			wake_up_process(tsk);
673			put_task_struct(tsk);
674		} else {
675			/* Completion interrupt was faster than initial
676			 * interrupt. Set pfault_wait to -1 so the initial
677			 * interrupt doesn't put the task to sleep.
678			 * If the task is not running, ignore the completion
679			 * interrupt since it must be a leftover of a PFAULT
680			 * CANCEL operation which didn't remove all pending
681			 * completion interrupts. */
682			if (task_is_running(tsk))
683				tsk->thread.pfault_wait = -1;
684		}
685	} else {
686		/* signal bit not set -> a real page is missing. */
687		if (WARN_ON_ONCE(tsk != current))
688			goto out;
689		if (tsk->thread.pfault_wait == 1) {
690			/* Already on the list with a reference: put to sleep */
691			goto block;
692		} else if (tsk->thread.pfault_wait == -1) {
693			/* Completion interrupt was faster than the initial
694			 * interrupt (pfault_wait == -1). Set pfault_wait
695			 * back to zero and exit. */
696			tsk->thread.pfault_wait = 0;
697		} else {
698			/* Initial interrupt arrived before completion
699			 * interrupt. Let the task sleep.
700			 * An extra task reference is needed since a different
701			 * cpu may set the task state to TASK_RUNNING again
702			 * before the scheduler is reached. */
703			get_task_struct(tsk);
704			tsk->thread.pfault_wait = 1;
705			list_add(&tsk->thread.list, &pfault_list);
706block:
707			/* Since this must be a userspace fault, there
708			 * is no kernel task state to trample. Rely on the
709			 * return to userspace schedule() to block. */
710			__set_current_state(TASK_UNINTERRUPTIBLE);
711			set_tsk_need_resched(tsk);
712			set_preempt_need_resched();
713		}
714	}
715out:
716	spin_unlock(&pfault_lock);
717	put_task_struct(tsk);
718}
719
720static int pfault_cpu_dead(unsigned int cpu)
721{
722	struct thread_struct *thread, *next;
723	struct task_struct *tsk;
724
725	spin_lock_irq(&pfault_lock);
726	list_for_each_entry_safe(thread, next, &pfault_list, list) {
727		thread->pfault_wait = 0;
728		list_del(&thread->list);
729		tsk = container_of(thread, struct task_struct, thread);
730		wake_up_process(tsk);
731		put_task_struct(tsk);
732	}
733	spin_unlock_irq(&pfault_lock);
734	return 0;
735}
736
737static int __init pfault_irq_init(void)
738{
739	int rc;
740
741	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
742	if (rc)
743		goto out_extint;
744	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
745	if (rc)
746		goto out_pfault;
747	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
748	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
749				  NULL, pfault_cpu_dead);
750	return 0;
751
752out_pfault:
753	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
754out_extint:
755	pfault_disable = 1;
756	return rc;
757}
758early_initcall(pfault_irq_init);
759
760#endif /* CONFIG_PFAULT */
761
762#if IS_ENABLED(CONFIG_PGSTE)
763
764void do_secure_storage_access(struct pt_regs *regs)
765{
766	unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
767	struct vm_area_struct *vma;
768	struct mm_struct *mm;
769	struct page *page;
770	int rc;
771
772	/*
773	 * bit 61 tells us if the address is valid, if it's not we
774	 * have a major problem and should stop the kernel or send a
775	 * SIGSEGV to the process. Unfortunately bit 61 is not
776	 * reliable without the misc UV feature so we need to check
777	 * for that as well.
778	 */
779	if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications) &&
780	    !test_bit_inv(61, &regs->int_parm_long)) {
781		/*
782		 * When this happens, userspace did something that it
783		 * was not supposed to do, e.g. branching into secure
784		 * memory. Trigger a segmentation fault.
785		 */
786		if (user_mode(regs)) {
787			send_sig(SIGSEGV, current, 0);
788			return;
789		}
790
791		/*
792		 * The kernel should never run into this case and we
793		 * have no way out of this situation.
794		 */
795		panic("Unexpected PGM 0x3d with TEID bit 61=0");
796	}
797
798	switch (get_fault_type(regs)) {
799	case USER_FAULT:
800		mm = current->mm;
801		mmap_read_lock(mm);
802		vma = find_vma(mm, addr);
803		if (!vma) {
804			mmap_read_unlock(mm);
805			do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
806			break;
807		}
808		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
809		if (IS_ERR_OR_NULL(page)) {
810			mmap_read_unlock(mm);
811			break;
812		}
813		if (arch_make_page_accessible(page))
814			send_sig(SIGSEGV, current, 0);
815		put_page(page);
816		mmap_read_unlock(mm);
817		break;
818	case KERNEL_FAULT:
819		page = phys_to_page(addr);
820		if (unlikely(!try_get_page(page)))
821			break;
822		rc = arch_make_page_accessible(page);
823		put_page(page);
824		if (rc)
825			BUG();
826		break;
 
827	case GMAP_FAULT:
828	default:
829		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
830		WARN_ON_ONCE(1);
831	}
832}
833NOKPROBE_SYMBOL(do_secure_storage_access);
834
835void do_non_secure_storage_access(struct pt_regs *regs)
836{
837	unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
838	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
839
840	if (get_fault_type(regs) != GMAP_FAULT) {
841		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
842		WARN_ON_ONCE(1);
843		return;
844	}
845
846	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
847		send_sig(SIGSEGV, current, 0);
848}
849NOKPROBE_SYMBOL(do_non_secure_storage_access);
850
851void do_secure_storage_violation(struct pt_regs *regs)
852{
853	/*
854	 * Either KVM messed up the secure guest mapping or the same
855	 * page is mapped into multiple secure guests.
856	 *
857	 * This exception is only triggered when a guest 2 is running
858	 * and can therefore never occur in kernel context.
859	 */
860	printk_ratelimited(KERN_WARNING
861			   "Secure storage violation in task: %s, pid %d\n",
862			   current->comm, current->pid);
863	send_sig(SIGSEGV, current, 0);
864}
865
866#endif /* CONFIG_PGSTE */