Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
7 *
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
10 */
11
12#include <linux/kernel_stat.h>
13#include <linux/perf_event.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/debug.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/ptrace.h>
22#include <linux/mman.h>
23#include <linux/mm.h>
24#include <linux/compat.h>
25#include <linux/smp.h>
26#include <linux/kdebug.h>
27#include <linux/init.h>
28#include <linux/console.h>
29#include <linux/extable.h>
30#include <linux/hardirq.h>
31#include <linux/kprobes.h>
32#include <linux/uaccess.h>
33#include <linux/hugetlb.h>
34#include <asm/asm-offsets.h>
35#include <asm/diag.h>
36#include <asm/gmap.h>
37#include <asm/irq.h>
38#include <asm/mmu_context.h>
39#include <asm/facility.h>
40#include <asm/uv.h>
41#include "../kernel/entry.h"
42
43#define __FAIL_ADDR_MASK -4096L
44#define __SUBCODE_MASK 0x0600
45#define __PF_RES_FIELD 0x8000000000000000ULL
46
47#define VM_FAULT_BADCONTEXT ((__force vm_fault_t) 0x010000)
48#define VM_FAULT_BADMAP ((__force vm_fault_t) 0x020000)
49#define VM_FAULT_BADACCESS ((__force vm_fault_t) 0x040000)
50#define VM_FAULT_SIGNAL ((__force vm_fault_t) 0x080000)
51#define VM_FAULT_PFAULT ((__force vm_fault_t) 0x100000)
52
53enum fault_type {
54 KERNEL_FAULT,
55 USER_FAULT,
56 VDSO_FAULT,
57 GMAP_FAULT,
58};
59
60static unsigned long store_indication __read_mostly;
61
62static int __init fault_init(void)
63{
64 if (test_facility(75))
65 store_indication = 0xc00;
66 return 0;
67}
68early_initcall(fault_init);
69
70/*
71 * Find out which address space caused the exception.
72 */
73static enum fault_type get_fault_type(struct pt_regs *regs)
74{
75 unsigned long trans_exc_code;
76
77 trans_exc_code = regs->int_parm_long & 3;
78 if (likely(trans_exc_code == 0)) {
79 /* primary space exception */
80 if (IS_ENABLED(CONFIG_PGSTE) &&
81 test_pt_regs_flag(regs, PIF_GUEST_FAULT))
82 return GMAP_FAULT;
83 if (current->thread.mm_segment == USER_DS)
84 return USER_FAULT;
85 return KERNEL_FAULT;
86 }
87 if (trans_exc_code == 2) {
88 /* secondary space exception */
89 if (current->thread.mm_segment & 1) {
90 if (current->thread.mm_segment == USER_DS_SACF)
91 return USER_FAULT;
92 return KERNEL_FAULT;
93 }
94 return VDSO_FAULT;
95 }
96 if (trans_exc_code == 1) {
97 /* access register mode, not used in the kernel */
98 return USER_FAULT;
99 }
100 /* home space exception -> access via kernel ASCE */
101 return KERNEL_FAULT;
102}
103
104static int bad_address(void *p)
105{
106 unsigned long dummy;
107
108 return get_kernel_nofault(dummy, (unsigned long *)p);
109}
110
111static void dump_pagetable(unsigned long asce, unsigned long address)
112{
113 unsigned long *table = __va(asce & _ASCE_ORIGIN);
114
115 pr_alert("AS:%016lx ", asce);
116 switch (asce & _ASCE_TYPE_MASK) {
117 case _ASCE_TYPE_REGION1:
118 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
119 if (bad_address(table))
120 goto bad;
121 pr_cont("R1:%016lx ", *table);
122 if (*table & _REGION_ENTRY_INVALID)
123 goto out;
124 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
125 fallthrough;
126 case _ASCE_TYPE_REGION2:
127 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
128 if (bad_address(table))
129 goto bad;
130 pr_cont("R2:%016lx ", *table);
131 if (*table & _REGION_ENTRY_INVALID)
132 goto out;
133 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
134 fallthrough;
135 case _ASCE_TYPE_REGION3:
136 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
137 if (bad_address(table))
138 goto bad;
139 pr_cont("R3:%016lx ", *table);
140 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
141 goto out;
142 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
143 fallthrough;
144 case _ASCE_TYPE_SEGMENT:
145 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
146 if (bad_address(table))
147 goto bad;
148 pr_cont("S:%016lx ", *table);
149 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
150 goto out;
151 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
152 }
153 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
154 if (bad_address(table))
155 goto bad;
156 pr_cont("P:%016lx ", *table);
157out:
158 pr_cont("\n");
159 return;
160bad:
161 pr_cont("BAD\n");
162}
163
164static void dump_fault_info(struct pt_regs *regs)
165{
166 unsigned long asce;
167
168 pr_alert("Failing address: %016lx TEID: %016lx\n",
169 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
170 pr_alert("Fault in ");
171 switch (regs->int_parm_long & 3) {
172 case 3:
173 pr_cont("home space ");
174 break;
175 case 2:
176 pr_cont("secondary space ");
177 break;
178 case 1:
179 pr_cont("access register ");
180 break;
181 case 0:
182 pr_cont("primary space ");
183 break;
184 }
185 pr_cont("mode while using ");
186 switch (get_fault_type(regs)) {
187 case USER_FAULT:
188 asce = S390_lowcore.user_asce;
189 pr_cont("user ");
190 break;
191 case VDSO_FAULT:
192 asce = S390_lowcore.vdso_asce;
193 pr_cont("vdso ");
194 break;
195 case GMAP_FAULT:
196 asce = ((struct gmap *) S390_lowcore.gmap)->asce;
197 pr_cont("gmap ");
198 break;
199 case KERNEL_FAULT:
200 asce = S390_lowcore.kernel_asce;
201 pr_cont("kernel ");
202 break;
203 default:
204 unreachable();
205 }
206 pr_cont("ASCE.\n");
207 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
208}
209
210int show_unhandled_signals = 1;
211
212void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
213{
214 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
215 return;
216 if (!unhandled_signal(current, signr))
217 return;
218 if (!printk_ratelimit())
219 return;
220 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
221 regs->int_code & 0xffff, regs->int_code >> 17);
222 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
223 printk(KERN_CONT "\n");
224 if (is_mm_fault)
225 dump_fault_info(regs);
226 show_regs(regs);
227}
228
229/*
230 * Send SIGSEGV to task. This is an external routine
231 * to keep the stack usage of do_page_fault small.
232 */
233static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
234{
235 report_user_fault(regs, SIGSEGV, 1);
236 force_sig_fault(SIGSEGV, si_code,
237 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
238}
239
240const struct exception_table_entry *s390_search_extables(unsigned long addr)
241{
242 const struct exception_table_entry *fixup;
243
244 fixup = search_extable(__start_dma_ex_table,
245 __stop_dma_ex_table - __start_dma_ex_table,
246 addr);
247 if (!fixup)
248 fixup = search_exception_tables(addr);
249 return fixup;
250}
251
252static noinline void do_no_context(struct pt_regs *regs)
253{
254 const struct exception_table_entry *fixup;
255
256 /* Are we prepared to handle this kernel fault? */
257 fixup = s390_search_extables(regs->psw.addr);
258 if (fixup && ex_handle(fixup, regs))
259 return;
260
261 /*
262 * Oops. The kernel tried to access some bad page. We'll have to
263 * terminate things with extreme prejudice.
264 */
265 if (get_fault_type(regs) == KERNEL_FAULT)
266 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
267 " in virtual kernel address space\n");
268 else
269 printk(KERN_ALERT "Unable to handle kernel paging request"
270 " in virtual user address space\n");
271 dump_fault_info(regs);
272 die(regs, "Oops");
273 do_exit(SIGKILL);
274}
275
276static noinline void do_low_address(struct pt_regs *regs)
277{
278 /* Low-address protection hit in kernel mode means
279 NULL pointer write access in kernel mode. */
280 if (regs->psw.mask & PSW_MASK_PSTATE) {
281 /* Low-address protection hit in user mode 'cannot happen'. */
282 die (regs, "Low-address protection");
283 do_exit(SIGKILL);
284 }
285
286 do_no_context(regs);
287}
288
289static noinline void do_sigbus(struct pt_regs *regs)
290{
291 /*
292 * Send a sigbus, regardless of whether we were in kernel
293 * or user mode.
294 */
295 force_sig_fault(SIGBUS, BUS_ADRERR,
296 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
297}
298
299static noinline int signal_return(struct pt_regs *regs)
300{
301 u16 instruction;
302 int rc;
303
304 rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
305 if (rc)
306 return rc;
307 if (instruction == 0x0a77) {
308 set_pt_regs_flag(regs, PIF_SYSCALL);
309 regs->int_code = 0x00040077;
310 return 0;
311 } else if (instruction == 0x0aad) {
312 set_pt_regs_flag(regs, PIF_SYSCALL);
313 regs->int_code = 0x000400ad;
314 return 0;
315 }
316 return -EACCES;
317}
318
319static noinline void do_fault_error(struct pt_regs *regs, int access,
320 vm_fault_t fault)
321{
322 int si_code;
323
324 switch (fault) {
325 case VM_FAULT_BADACCESS:
326 if (access == VM_EXEC && signal_return(regs) == 0)
327 break;
328 fallthrough;
329 case VM_FAULT_BADMAP:
330 /* Bad memory access. Check if it is kernel or user space. */
331 if (user_mode(regs)) {
332 /* User mode accesses just cause a SIGSEGV */
333 si_code = (fault == VM_FAULT_BADMAP) ?
334 SEGV_MAPERR : SEGV_ACCERR;
335 do_sigsegv(regs, si_code);
336 break;
337 }
338 fallthrough;
339 case VM_FAULT_BADCONTEXT:
340 case VM_FAULT_PFAULT:
341 do_no_context(regs);
342 break;
343 case VM_FAULT_SIGNAL:
344 if (!user_mode(regs))
345 do_no_context(regs);
346 break;
347 default: /* fault & VM_FAULT_ERROR */
348 if (fault & VM_FAULT_OOM) {
349 if (!user_mode(regs))
350 do_no_context(regs);
351 else
352 pagefault_out_of_memory();
353 } else if (fault & VM_FAULT_SIGSEGV) {
354 /* Kernel mode? Handle exceptions or die */
355 if (!user_mode(regs))
356 do_no_context(regs);
357 else
358 do_sigsegv(regs, SEGV_MAPERR);
359 } else if (fault & VM_FAULT_SIGBUS) {
360 /* Kernel mode? Handle exceptions or die */
361 if (!user_mode(regs))
362 do_no_context(regs);
363 else
364 do_sigbus(regs);
365 } else
366 BUG();
367 break;
368 }
369}
370
371/*
372 * This routine handles page faults. It determines the address,
373 * and the problem, and then passes it off to one of the appropriate
374 * routines.
375 *
376 * interruption code (int_code):
377 * 04 Protection -> Write-Protection (suppression)
378 * 10 Segment translation -> Not present (nullification)
379 * 11 Page translation -> Not present (nullification)
380 * 3b Region third trans. -> Not present (nullification)
381 */
382static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
383{
384 struct gmap *gmap;
385 struct task_struct *tsk;
386 struct mm_struct *mm;
387 struct vm_area_struct *vma;
388 enum fault_type type;
389 unsigned long trans_exc_code;
390 unsigned long address;
391 unsigned int flags;
392 vm_fault_t fault;
393
394 tsk = current;
395 /*
396 * The instruction that caused the program check has
397 * been nullified. Don't signal single step via SIGTRAP.
398 */
399 clear_pt_regs_flag(regs, PIF_PER_TRAP);
400
401 if (kprobe_page_fault(regs, 14))
402 return 0;
403
404 mm = tsk->mm;
405 trans_exc_code = regs->int_parm_long;
406
407 /*
408 * Verify that the fault happened in user space, that
409 * we are not in an interrupt and that there is a
410 * user context.
411 */
412 fault = VM_FAULT_BADCONTEXT;
413 type = get_fault_type(regs);
414 switch (type) {
415 case KERNEL_FAULT:
416 goto out;
417 case VDSO_FAULT:
418 fault = VM_FAULT_BADMAP;
419 goto out;
420 case USER_FAULT:
421 case GMAP_FAULT:
422 if (faulthandler_disabled() || !mm)
423 goto out;
424 break;
425 }
426
427 address = trans_exc_code & __FAIL_ADDR_MASK;
428 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
429 flags = FAULT_FLAG_DEFAULT;
430 if (user_mode(regs))
431 flags |= FAULT_FLAG_USER;
432 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
433 flags |= FAULT_FLAG_WRITE;
434 mmap_read_lock(mm);
435
436 gmap = NULL;
437 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
438 gmap = (struct gmap *) S390_lowcore.gmap;
439 current->thread.gmap_addr = address;
440 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
441 current->thread.gmap_int_code = regs->int_code & 0xffff;
442 address = __gmap_translate(gmap, address);
443 if (address == -EFAULT) {
444 fault = VM_FAULT_BADMAP;
445 goto out_up;
446 }
447 if (gmap->pfault_enabled)
448 flags |= FAULT_FLAG_RETRY_NOWAIT;
449 }
450
451retry:
452 fault = VM_FAULT_BADMAP;
453 vma = find_vma(mm, address);
454 if (!vma)
455 goto out_up;
456
457 if (unlikely(vma->vm_start > address)) {
458 if (!(vma->vm_flags & VM_GROWSDOWN))
459 goto out_up;
460 if (expand_stack(vma, address))
461 goto out_up;
462 }
463
464 /*
465 * Ok, we have a good vm_area for this memory access, so
466 * we can handle it..
467 */
468 fault = VM_FAULT_BADACCESS;
469 if (unlikely(!(vma->vm_flags & access)))
470 goto out_up;
471
472 if (is_vm_hugetlb_page(vma))
473 address &= HPAGE_MASK;
474 /*
475 * If for any reason at all we couldn't handle the fault,
476 * make sure we exit gracefully rather than endlessly redo
477 * the fault.
478 */
479 fault = handle_mm_fault(vma, address, flags, regs);
480 if (fault_signal_pending(fault, regs)) {
481 fault = VM_FAULT_SIGNAL;
482 if (flags & FAULT_FLAG_RETRY_NOWAIT)
483 goto out_up;
484 goto out;
485 }
486 if (unlikely(fault & VM_FAULT_ERROR))
487 goto out_up;
488
489 if (flags & FAULT_FLAG_ALLOW_RETRY) {
490 if (fault & VM_FAULT_RETRY) {
491 if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
492 (flags & FAULT_FLAG_RETRY_NOWAIT)) {
493 /* FAULT_FLAG_RETRY_NOWAIT has been set,
494 * mmap_lock has not been released */
495 current->thread.gmap_pfault = 1;
496 fault = VM_FAULT_PFAULT;
497 goto out_up;
498 }
499 flags &= ~FAULT_FLAG_RETRY_NOWAIT;
500 flags |= FAULT_FLAG_TRIED;
501 mmap_read_lock(mm);
502 goto retry;
503 }
504 }
505 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
506 address = __gmap_link(gmap, current->thread.gmap_addr,
507 address);
508 if (address == -EFAULT) {
509 fault = VM_FAULT_BADMAP;
510 goto out_up;
511 }
512 if (address == -ENOMEM) {
513 fault = VM_FAULT_OOM;
514 goto out_up;
515 }
516 }
517 fault = 0;
518out_up:
519 mmap_read_unlock(mm);
520out:
521 return fault;
522}
523
524void do_protection_exception(struct pt_regs *regs)
525{
526 unsigned long trans_exc_code;
527 int access;
528 vm_fault_t fault;
529
530 trans_exc_code = regs->int_parm_long;
531 /*
532 * Protection exceptions are suppressing, decrement psw address.
533 * The exception to this rule are aborted transactions, for these
534 * the PSW already points to the correct location.
535 */
536 if (!(regs->int_code & 0x200))
537 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
538 /*
539 * Check for low-address protection. This needs to be treated
540 * as a special case because the translation exception code
541 * field is not guaranteed to contain valid data in this case.
542 */
543 if (unlikely(!(trans_exc_code & 4))) {
544 do_low_address(regs);
545 return;
546 }
547 if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
548 regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
549 (regs->psw.addr & PAGE_MASK);
550 access = VM_EXEC;
551 fault = VM_FAULT_BADACCESS;
552 } else {
553 access = VM_WRITE;
554 fault = do_exception(regs, access);
555 }
556 if (unlikely(fault))
557 do_fault_error(regs, access, fault);
558}
559NOKPROBE_SYMBOL(do_protection_exception);
560
561void do_dat_exception(struct pt_regs *regs)
562{
563 int access;
564 vm_fault_t fault;
565
566 access = VM_ACCESS_FLAGS;
567 fault = do_exception(regs, access);
568 if (unlikely(fault))
569 do_fault_error(regs, access, fault);
570}
571NOKPROBE_SYMBOL(do_dat_exception);
572
573#ifdef CONFIG_PFAULT
574/*
575 * 'pfault' pseudo page faults routines.
576 */
577static int pfault_disable;
578
579static int __init nopfault(char *str)
580{
581 pfault_disable = 1;
582 return 1;
583}
584
585__setup("nopfault", nopfault);
586
587struct pfault_refbk {
588 u16 refdiagc;
589 u16 reffcode;
590 u16 refdwlen;
591 u16 refversn;
592 u64 refgaddr;
593 u64 refselmk;
594 u64 refcmpmk;
595 u64 reserved;
596} __attribute__ ((packed, aligned(8)));
597
598static struct pfault_refbk pfault_init_refbk = {
599 .refdiagc = 0x258,
600 .reffcode = 0,
601 .refdwlen = 5,
602 .refversn = 2,
603 .refgaddr = __LC_LPP,
604 .refselmk = 1ULL << 48,
605 .refcmpmk = 1ULL << 48,
606 .reserved = __PF_RES_FIELD
607};
608
609int pfault_init(void)
610{
611 int rc;
612
613 if (pfault_disable)
614 return -1;
615 diag_stat_inc(DIAG_STAT_X258);
616 asm volatile(
617 " diag %1,%0,0x258\n"
618 "0: j 2f\n"
619 "1: la %0,8\n"
620 "2:\n"
621 EX_TABLE(0b,1b)
622 : "=d" (rc)
623 : "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
624 return rc;
625}
626
627static struct pfault_refbk pfault_fini_refbk = {
628 .refdiagc = 0x258,
629 .reffcode = 1,
630 .refdwlen = 5,
631 .refversn = 2,
632};
633
634void pfault_fini(void)
635{
636
637 if (pfault_disable)
638 return;
639 diag_stat_inc(DIAG_STAT_X258);
640 asm volatile(
641 " diag %0,0,0x258\n"
642 "0: nopr %%r7\n"
643 EX_TABLE(0b,0b)
644 : : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
645}
646
647static DEFINE_SPINLOCK(pfault_lock);
648static LIST_HEAD(pfault_list);
649
650#define PF_COMPLETE 0x0080
651
652/*
653 * The mechanism of our pfault code: if Linux is running as guest, runs a user
654 * space process and the user space process accesses a page that the host has
655 * paged out we get a pfault interrupt.
656 *
657 * This allows us, within the guest, to schedule a different process. Without
658 * this mechanism the host would have to suspend the whole virtual cpu until
659 * the page has been paged in.
660 *
661 * So when we get such an interrupt then we set the state of the current task
662 * to uninterruptible and also set the need_resched flag. Both happens within
663 * interrupt context(!). If we later on want to return to user space we
664 * recognize the need_resched flag and then call schedule(). It's not very
665 * obvious how this works...
666 *
667 * Of course we have a lot of additional fun with the completion interrupt (->
668 * host signals that a page of a process has been paged in and the process can
669 * continue to run). This interrupt can arrive on any cpu and, since we have
670 * virtual cpus, actually appear before the interrupt that signals that a page
671 * is missing.
672 */
673static void pfault_interrupt(struct ext_code ext_code,
674 unsigned int param32, unsigned long param64)
675{
676 struct task_struct *tsk;
677 __u16 subcode;
678 pid_t pid;
679
680 /*
681 * Get the external interruption subcode & pfault initial/completion
682 * signal bit. VM stores this in the 'cpu address' field associated
683 * with the external interrupt.
684 */
685 subcode = ext_code.subcode;
686 if ((subcode & 0xff00) != __SUBCODE_MASK)
687 return;
688 inc_irq_stat(IRQEXT_PFL);
689 /* Get the token (= pid of the affected task). */
690 pid = param64 & LPP_PID_MASK;
691 rcu_read_lock();
692 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
693 if (tsk)
694 get_task_struct(tsk);
695 rcu_read_unlock();
696 if (!tsk)
697 return;
698 spin_lock(&pfault_lock);
699 if (subcode & PF_COMPLETE) {
700 /* signal bit is set -> a page has been swapped in by VM */
701 if (tsk->thread.pfault_wait == 1) {
702 /* Initial interrupt was faster than the completion
703 * interrupt. pfault_wait is valid. Set pfault_wait
704 * back to zero and wake up the process. This can
705 * safely be done because the task is still sleeping
706 * and can't produce new pfaults. */
707 tsk->thread.pfault_wait = 0;
708 list_del(&tsk->thread.list);
709 wake_up_process(tsk);
710 put_task_struct(tsk);
711 } else {
712 /* Completion interrupt was faster than initial
713 * interrupt. Set pfault_wait to -1 so the initial
714 * interrupt doesn't put the task to sleep.
715 * If the task is not running, ignore the completion
716 * interrupt since it must be a leftover of a PFAULT
717 * CANCEL operation which didn't remove all pending
718 * completion interrupts. */
719 if (tsk->state == TASK_RUNNING)
720 tsk->thread.pfault_wait = -1;
721 }
722 } else {
723 /* signal bit not set -> a real page is missing. */
724 if (WARN_ON_ONCE(tsk != current))
725 goto out;
726 if (tsk->thread.pfault_wait == 1) {
727 /* Already on the list with a reference: put to sleep */
728 goto block;
729 } else if (tsk->thread.pfault_wait == -1) {
730 /* Completion interrupt was faster than the initial
731 * interrupt (pfault_wait == -1). Set pfault_wait
732 * back to zero and exit. */
733 tsk->thread.pfault_wait = 0;
734 } else {
735 /* Initial interrupt arrived before completion
736 * interrupt. Let the task sleep.
737 * An extra task reference is needed since a different
738 * cpu may set the task state to TASK_RUNNING again
739 * before the scheduler is reached. */
740 get_task_struct(tsk);
741 tsk->thread.pfault_wait = 1;
742 list_add(&tsk->thread.list, &pfault_list);
743block:
744 /* Since this must be a userspace fault, there
745 * is no kernel task state to trample. Rely on the
746 * return to userspace schedule() to block. */
747 __set_current_state(TASK_UNINTERRUPTIBLE);
748 set_tsk_need_resched(tsk);
749 set_preempt_need_resched();
750 }
751 }
752out:
753 spin_unlock(&pfault_lock);
754 put_task_struct(tsk);
755}
756
757static int pfault_cpu_dead(unsigned int cpu)
758{
759 struct thread_struct *thread, *next;
760 struct task_struct *tsk;
761
762 spin_lock_irq(&pfault_lock);
763 list_for_each_entry_safe(thread, next, &pfault_list, list) {
764 thread->pfault_wait = 0;
765 list_del(&thread->list);
766 tsk = container_of(thread, struct task_struct, thread);
767 wake_up_process(tsk);
768 put_task_struct(tsk);
769 }
770 spin_unlock_irq(&pfault_lock);
771 return 0;
772}
773
774static int __init pfault_irq_init(void)
775{
776 int rc;
777
778 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
779 if (rc)
780 goto out_extint;
781 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
782 if (rc)
783 goto out_pfault;
784 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
785 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
786 NULL, pfault_cpu_dead);
787 return 0;
788
789out_pfault:
790 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
791out_extint:
792 pfault_disable = 1;
793 return rc;
794}
795early_initcall(pfault_irq_init);
796
797#endif /* CONFIG_PFAULT */
798
799#if IS_ENABLED(CONFIG_PGSTE)
800void do_secure_storage_access(struct pt_regs *regs)
801{
802 unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
803 struct vm_area_struct *vma;
804 struct mm_struct *mm;
805 struct page *page;
806 int rc;
807
808 switch (get_fault_type(regs)) {
809 case USER_FAULT:
810 mm = current->mm;
811 mmap_read_lock(mm);
812 vma = find_vma(mm, addr);
813 if (!vma) {
814 mmap_read_unlock(mm);
815 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
816 break;
817 }
818 page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
819 if (IS_ERR_OR_NULL(page)) {
820 mmap_read_unlock(mm);
821 break;
822 }
823 if (arch_make_page_accessible(page))
824 send_sig(SIGSEGV, current, 0);
825 put_page(page);
826 mmap_read_unlock(mm);
827 break;
828 case KERNEL_FAULT:
829 page = phys_to_page(addr);
830 if (unlikely(!try_get_page(page)))
831 break;
832 rc = arch_make_page_accessible(page);
833 put_page(page);
834 if (rc)
835 BUG();
836 break;
837 case VDSO_FAULT:
838 case GMAP_FAULT:
839 default:
840 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
841 WARN_ON_ONCE(1);
842 }
843}
844NOKPROBE_SYMBOL(do_secure_storage_access);
845
846void do_non_secure_storage_access(struct pt_regs *regs)
847{
848 unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
849 struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
850
851 if (get_fault_type(regs) != GMAP_FAULT) {
852 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
853 WARN_ON_ONCE(1);
854 return;
855 }
856
857 if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
858 send_sig(SIGSEGV, current, 0);
859}
860NOKPROBE_SYMBOL(do_non_secure_storage_access);
861
862void do_secure_storage_violation(struct pt_regs *regs)
863{
864 /*
865 * Either KVM messed up the secure guest mapping or the same
866 * page is mapped into multiple secure guests.
867 *
868 * This exception is only triggered when a guest 2 is running
869 * and can therefore never occur in kernel context.
870 */
871 printk_ratelimited(KERN_WARNING
872 "Secure storage violation in task: %s, pid %d\n",
873 current->comm, current->pid);
874 send_sig(SIGSEGV, current, 0);
875}
876
877#else
878void do_secure_storage_access(struct pt_regs *regs)
879{
880 default_trap_handler(regs);
881}
882
883void do_non_secure_storage_access(struct pt_regs *regs)
884{
885 default_trap_handler(regs);
886}
887
888void do_secure_storage_violation(struct pt_regs *regs)
889{
890 default_trap_handler(regs);
891}
892#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
7 *
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
10 */
11
12#include <linux/kernel_stat.h>
13#include <linux/perf_event.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/debug.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/ptrace.h>
22#include <linux/mman.h>
23#include <linux/mm.h>
24#include <linux/compat.h>
25#include <linux/smp.h>
26#include <linux/kdebug.h>
27#include <linux/init.h>
28#include <linux/console.h>
29#include <linux/extable.h>
30#include <linux/hardirq.h>
31#include <linux/kprobes.h>
32#include <linux/uaccess.h>
33#include <linux/hugetlb.h>
34#include <asm/asm-offsets.h>
35#include <asm/diag.h>
36#include <asm/pgtable.h>
37#include <asm/gmap.h>
38#include <asm/irq.h>
39#include <asm/mmu_context.h>
40#include <asm/facility.h>
41#include "../kernel/entry.h"
42
43#define __FAIL_ADDR_MASK -4096L
44#define __SUBCODE_MASK 0x0600
45#define __PF_RES_FIELD 0x8000000000000000ULL
46
47#define VM_FAULT_BADCONTEXT 0x010000
48#define VM_FAULT_BADMAP 0x020000
49#define VM_FAULT_BADACCESS 0x040000
50#define VM_FAULT_SIGNAL 0x080000
51#define VM_FAULT_PFAULT 0x100000
52
53enum fault_type {
54 KERNEL_FAULT,
55 USER_FAULT,
56 VDSO_FAULT,
57 GMAP_FAULT,
58};
59
60static unsigned long store_indication __read_mostly;
61
62static int __init fault_init(void)
63{
64 if (test_facility(75))
65 store_indication = 0xc00;
66 return 0;
67}
68early_initcall(fault_init);
69
70static inline int notify_page_fault(struct pt_regs *regs)
71{
72 int ret = 0;
73
74 /* kprobe_running() needs smp_processor_id() */
75 if (kprobes_built_in() && !user_mode(regs)) {
76 preempt_disable();
77 if (kprobe_running() && kprobe_fault_handler(regs, 14))
78 ret = 1;
79 preempt_enable();
80 }
81 return ret;
82}
83
84
85/*
86 * Unlock any spinlocks which will prevent us from getting the
87 * message out.
88 */
89void bust_spinlocks(int yes)
90{
91 if (yes) {
92 oops_in_progress = 1;
93 } else {
94 int loglevel_save = console_loglevel;
95 console_unblank();
96 oops_in_progress = 0;
97 /*
98 * OK, the message is on the console. Now we call printk()
99 * without oops_in_progress set so that printk will give klogd
100 * a poke. Hold onto your hats...
101 */
102 console_loglevel = 15;
103 printk(" ");
104 console_loglevel = loglevel_save;
105 }
106}
107
108/*
109 * Find out which address space caused the exception.
110 * Access register mode is impossible, ignore space == 3.
111 */
112static inline enum fault_type get_fault_type(struct pt_regs *regs)
113{
114 unsigned long trans_exc_code;
115
116 trans_exc_code = regs->int_parm_long & 3;
117 if (likely(trans_exc_code == 0)) {
118 /* primary space exception */
119 if (IS_ENABLED(CONFIG_PGSTE) &&
120 test_pt_regs_flag(regs, PIF_GUEST_FAULT))
121 return GMAP_FAULT;
122 if (current->thread.mm_segment == USER_DS)
123 return USER_FAULT;
124 return KERNEL_FAULT;
125 }
126 if (trans_exc_code == 2) {
127 /* secondary space exception */
128 if (current->thread.mm_segment & 1) {
129 if (current->thread.mm_segment == USER_DS_SACF)
130 return USER_FAULT;
131 return KERNEL_FAULT;
132 }
133 return VDSO_FAULT;
134 }
135 /* home space exception -> access via kernel ASCE */
136 return KERNEL_FAULT;
137}
138
139static int bad_address(void *p)
140{
141 unsigned long dummy;
142
143 return probe_kernel_address((unsigned long *)p, dummy);
144}
145
146static void dump_pagetable(unsigned long asce, unsigned long address)
147{
148 unsigned long *table = __va(asce & _ASCE_ORIGIN);
149
150 pr_alert("AS:%016lx ", asce);
151 switch (asce & _ASCE_TYPE_MASK) {
152 case _ASCE_TYPE_REGION1:
153 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
154 if (bad_address(table))
155 goto bad;
156 pr_cont("R1:%016lx ", *table);
157 if (*table & _REGION_ENTRY_INVALID)
158 goto out;
159 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
160 /* fallthrough */
161 case _ASCE_TYPE_REGION2:
162 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
163 if (bad_address(table))
164 goto bad;
165 pr_cont("R2:%016lx ", *table);
166 if (*table & _REGION_ENTRY_INVALID)
167 goto out;
168 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
169 /* fallthrough */
170 case _ASCE_TYPE_REGION3:
171 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
172 if (bad_address(table))
173 goto bad;
174 pr_cont("R3:%016lx ", *table);
175 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
176 goto out;
177 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
178 /* fallthrough */
179 case _ASCE_TYPE_SEGMENT:
180 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
181 if (bad_address(table))
182 goto bad;
183 pr_cont("S:%016lx ", *table);
184 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
185 goto out;
186 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
187 }
188 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
189 if (bad_address(table))
190 goto bad;
191 pr_cont("P:%016lx ", *table);
192out:
193 pr_cont("\n");
194 return;
195bad:
196 pr_cont("BAD\n");
197}
198
199static void dump_fault_info(struct pt_regs *regs)
200{
201 unsigned long asce;
202
203 pr_alert("Failing address: %016lx TEID: %016lx\n",
204 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
205 pr_alert("Fault in ");
206 switch (regs->int_parm_long & 3) {
207 case 3:
208 pr_cont("home space ");
209 break;
210 case 2:
211 pr_cont("secondary space ");
212 break;
213 case 1:
214 pr_cont("access register ");
215 break;
216 case 0:
217 pr_cont("primary space ");
218 break;
219 }
220 pr_cont("mode while using ");
221 switch (get_fault_type(regs)) {
222 case USER_FAULT:
223 asce = S390_lowcore.user_asce;
224 pr_cont("user ");
225 break;
226 case VDSO_FAULT:
227 asce = S390_lowcore.vdso_asce;
228 pr_cont("vdso ");
229 break;
230 case GMAP_FAULT:
231 asce = ((struct gmap *) S390_lowcore.gmap)->asce;
232 pr_cont("gmap ");
233 break;
234 case KERNEL_FAULT:
235 asce = S390_lowcore.kernel_asce;
236 pr_cont("kernel ");
237 break;
238 }
239 pr_cont("ASCE.\n");
240 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
241}
242
243int show_unhandled_signals = 1;
244
245void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
246{
247 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
248 return;
249 if (!unhandled_signal(current, signr))
250 return;
251 if (!printk_ratelimit())
252 return;
253 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
254 regs->int_code & 0xffff, regs->int_code >> 17);
255 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
256 printk(KERN_CONT "\n");
257 if (is_mm_fault)
258 dump_fault_info(regs);
259 show_regs(regs);
260}
261
262/*
263 * Send SIGSEGV to task. This is an external routine
264 * to keep the stack usage of do_page_fault small.
265 */
266static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
267{
268 struct siginfo si;
269
270 report_user_fault(regs, SIGSEGV, 1);
271 si.si_signo = SIGSEGV;
272 si.si_errno = 0;
273 si.si_code = si_code;
274 si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
275 force_sig_info(SIGSEGV, &si, current);
276}
277
278static noinline void do_no_context(struct pt_regs *regs)
279{
280 const struct exception_table_entry *fixup;
281
282 /* Are we prepared to handle this kernel fault? */
283 fixup = search_exception_tables(regs->psw.addr);
284 if (fixup) {
285 regs->psw.addr = extable_fixup(fixup);
286 return;
287 }
288
289 /*
290 * Oops. The kernel tried to access some bad page. We'll have to
291 * terminate things with extreme prejudice.
292 */
293 if (get_fault_type(regs) == KERNEL_FAULT)
294 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
295 " in virtual kernel address space\n");
296 else
297 printk(KERN_ALERT "Unable to handle kernel paging request"
298 " in virtual user address space\n");
299 dump_fault_info(regs);
300 die(regs, "Oops");
301 do_exit(SIGKILL);
302}
303
304static noinline void do_low_address(struct pt_regs *regs)
305{
306 /* Low-address protection hit in kernel mode means
307 NULL pointer write access in kernel mode. */
308 if (regs->psw.mask & PSW_MASK_PSTATE) {
309 /* Low-address protection hit in user mode 'cannot happen'. */
310 die (regs, "Low-address protection");
311 do_exit(SIGKILL);
312 }
313
314 do_no_context(regs);
315}
316
317static noinline void do_sigbus(struct pt_regs *regs)
318{
319 struct task_struct *tsk = current;
320 struct siginfo si;
321
322 /*
323 * Send a sigbus, regardless of whether we were in kernel
324 * or user mode.
325 */
326 si.si_signo = SIGBUS;
327 si.si_errno = 0;
328 si.si_code = BUS_ADRERR;
329 si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
330 force_sig_info(SIGBUS, &si, tsk);
331}
332
333static noinline int signal_return(struct pt_regs *regs)
334{
335 u16 instruction;
336 int rc;
337
338 rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
339 if (rc)
340 return rc;
341 if (instruction == 0x0a77) {
342 set_pt_regs_flag(regs, PIF_SYSCALL);
343 regs->int_code = 0x00040077;
344 return 0;
345 } else if (instruction == 0x0aad) {
346 set_pt_regs_flag(regs, PIF_SYSCALL);
347 regs->int_code = 0x000400ad;
348 return 0;
349 }
350 return -EACCES;
351}
352
353static noinline void do_fault_error(struct pt_regs *regs, int access, int fault)
354{
355 int si_code;
356
357 switch (fault) {
358 case VM_FAULT_BADACCESS:
359 if (access == VM_EXEC && signal_return(regs) == 0)
360 break;
361 case VM_FAULT_BADMAP:
362 /* Bad memory access. Check if it is kernel or user space. */
363 if (user_mode(regs)) {
364 /* User mode accesses just cause a SIGSEGV */
365 si_code = (fault == VM_FAULT_BADMAP) ?
366 SEGV_MAPERR : SEGV_ACCERR;
367 do_sigsegv(regs, si_code);
368 break;
369 }
370 case VM_FAULT_BADCONTEXT:
371 case VM_FAULT_PFAULT:
372 do_no_context(regs);
373 break;
374 case VM_FAULT_SIGNAL:
375 if (!user_mode(regs))
376 do_no_context(regs);
377 break;
378 default: /* fault & VM_FAULT_ERROR */
379 if (fault & VM_FAULT_OOM) {
380 if (!user_mode(regs))
381 do_no_context(regs);
382 else
383 pagefault_out_of_memory();
384 } else if (fault & VM_FAULT_SIGSEGV) {
385 /* Kernel mode? Handle exceptions or die */
386 if (!user_mode(regs))
387 do_no_context(regs);
388 else
389 do_sigsegv(regs, SEGV_MAPERR);
390 } else if (fault & VM_FAULT_SIGBUS) {
391 /* Kernel mode? Handle exceptions or die */
392 if (!user_mode(regs))
393 do_no_context(regs);
394 else
395 do_sigbus(regs);
396 } else
397 BUG();
398 break;
399 }
400}
401
402/*
403 * This routine handles page faults. It determines the address,
404 * and the problem, and then passes it off to one of the appropriate
405 * routines.
406 *
407 * interruption code (int_code):
408 * 04 Protection -> Write-Protection (suprression)
409 * 10 Segment translation -> Not present (nullification)
410 * 11 Page translation -> Not present (nullification)
411 * 3b Region third trans. -> Not present (nullification)
412 */
413static inline int do_exception(struct pt_regs *regs, int access)
414{
415 struct gmap *gmap;
416 struct task_struct *tsk;
417 struct mm_struct *mm;
418 struct vm_area_struct *vma;
419 enum fault_type type;
420 unsigned long trans_exc_code;
421 unsigned long address;
422 unsigned int flags;
423 int fault;
424
425 tsk = current;
426 /*
427 * The instruction that caused the program check has
428 * been nullified. Don't signal single step via SIGTRAP.
429 */
430 clear_pt_regs_flag(regs, PIF_PER_TRAP);
431
432 if (notify_page_fault(regs))
433 return 0;
434
435 mm = tsk->mm;
436 trans_exc_code = regs->int_parm_long;
437
438 /*
439 * Verify that the fault happened in user space, that
440 * we are not in an interrupt and that there is a
441 * user context.
442 */
443 fault = VM_FAULT_BADCONTEXT;
444 type = get_fault_type(regs);
445 switch (type) {
446 case KERNEL_FAULT:
447 goto out;
448 case VDSO_FAULT:
449 fault = VM_FAULT_BADMAP;
450 goto out;
451 case USER_FAULT:
452 case GMAP_FAULT:
453 if (faulthandler_disabled() || !mm)
454 goto out;
455 break;
456 }
457
458 address = trans_exc_code & __FAIL_ADDR_MASK;
459 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
461 if (user_mode(regs))
462 flags |= FAULT_FLAG_USER;
463 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
464 flags |= FAULT_FLAG_WRITE;
465 down_read(&mm->mmap_sem);
466
467 gmap = NULL;
468 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
469 gmap = (struct gmap *) S390_lowcore.gmap;
470 current->thread.gmap_addr = address;
471 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
472 current->thread.gmap_int_code = regs->int_code & 0xffff;
473 address = __gmap_translate(gmap, address);
474 if (address == -EFAULT) {
475 fault = VM_FAULT_BADMAP;
476 goto out_up;
477 }
478 if (gmap->pfault_enabled)
479 flags |= FAULT_FLAG_RETRY_NOWAIT;
480 }
481
482retry:
483 fault = VM_FAULT_BADMAP;
484 vma = find_vma(mm, address);
485 if (!vma)
486 goto out_up;
487
488 if (unlikely(vma->vm_start > address)) {
489 if (!(vma->vm_flags & VM_GROWSDOWN))
490 goto out_up;
491 if (expand_stack(vma, address))
492 goto out_up;
493 }
494
495 /*
496 * Ok, we have a good vm_area for this memory access, so
497 * we can handle it..
498 */
499 fault = VM_FAULT_BADACCESS;
500 if (unlikely(!(vma->vm_flags & access)))
501 goto out_up;
502
503 if (is_vm_hugetlb_page(vma))
504 address &= HPAGE_MASK;
505 /*
506 * If for any reason at all we couldn't handle the fault,
507 * make sure we exit gracefully rather than endlessly redo
508 * the fault.
509 */
510 fault = handle_mm_fault(vma, address, flags);
511 /* No reason to continue if interrupted by SIGKILL. */
512 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
513 fault = VM_FAULT_SIGNAL;
514 goto out;
515 }
516 if (unlikely(fault & VM_FAULT_ERROR))
517 goto out_up;
518
519 /*
520 * Major/minor page fault accounting is only done on the
521 * initial attempt. If we go through a retry, it is extremely
522 * likely that the page will be found in page cache at that point.
523 */
524 if (flags & FAULT_FLAG_ALLOW_RETRY) {
525 if (fault & VM_FAULT_MAJOR) {
526 tsk->maj_flt++;
527 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
528 regs, address);
529 } else {
530 tsk->min_flt++;
531 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
532 regs, address);
533 }
534 if (fault & VM_FAULT_RETRY) {
535 if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
536 (flags & FAULT_FLAG_RETRY_NOWAIT)) {
537 /* FAULT_FLAG_RETRY_NOWAIT has been set,
538 * mmap_sem has not been released */
539 current->thread.gmap_pfault = 1;
540 fault = VM_FAULT_PFAULT;
541 goto out_up;
542 }
543 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
544 * of starvation. */
545 flags &= ~(FAULT_FLAG_ALLOW_RETRY |
546 FAULT_FLAG_RETRY_NOWAIT);
547 flags |= FAULT_FLAG_TRIED;
548 down_read(&mm->mmap_sem);
549 goto retry;
550 }
551 }
552 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
553 address = __gmap_link(gmap, current->thread.gmap_addr,
554 address);
555 if (address == -EFAULT) {
556 fault = VM_FAULT_BADMAP;
557 goto out_up;
558 }
559 if (address == -ENOMEM) {
560 fault = VM_FAULT_OOM;
561 goto out_up;
562 }
563 }
564 fault = 0;
565out_up:
566 up_read(&mm->mmap_sem);
567out:
568 return fault;
569}
570
571void do_protection_exception(struct pt_regs *regs)
572{
573 unsigned long trans_exc_code;
574 int access, fault;
575
576 trans_exc_code = regs->int_parm_long;
577 /*
578 * Protection exceptions are suppressing, decrement psw address.
579 * The exception to this rule are aborted transactions, for these
580 * the PSW already points to the correct location.
581 */
582 if (!(regs->int_code & 0x200))
583 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
584 /*
585 * Check for low-address protection. This needs to be treated
586 * as a special case because the translation exception code
587 * field is not guaranteed to contain valid data in this case.
588 */
589 if (unlikely(!(trans_exc_code & 4))) {
590 do_low_address(regs);
591 return;
592 }
593 if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
594 regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
595 (regs->psw.addr & PAGE_MASK);
596 access = VM_EXEC;
597 fault = VM_FAULT_BADACCESS;
598 } else {
599 access = VM_WRITE;
600 fault = do_exception(regs, access);
601 }
602 if (unlikely(fault))
603 do_fault_error(regs, access, fault);
604}
605NOKPROBE_SYMBOL(do_protection_exception);
606
607void do_dat_exception(struct pt_regs *regs)
608{
609 int access, fault;
610
611 access = VM_READ | VM_EXEC | VM_WRITE;
612 fault = do_exception(regs, access);
613 if (unlikely(fault))
614 do_fault_error(regs, access, fault);
615}
616NOKPROBE_SYMBOL(do_dat_exception);
617
618#ifdef CONFIG_PFAULT
619/*
620 * 'pfault' pseudo page faults routines.
621 */
622static int pfault_disable;
623
624static int __init nopfault(char *str)
625{
626 pfault_disable = 1;
627 return 1;
628}
629
630__setup("nopfault", nopfault);
631
632struct pfault_refbk {
633 u16 refdiagc;
634 u16 reffcode;
635 u16 refdwlen;
636 u16 refversn;
637 u64 refgaddr;
638 u64 refselmk;
639 u64 refcmpmk;
640 u64 reserved;
641} __attribute__ ((packed, aligned(8)));
642
643int pfault_init(void)
644{
645 struct pfault_refbk refbk = {
646 .refdiagc = 0x258,
647 .reffcode = 0,
648 .refdwlen = 5,
649 .refversn = 2,
650 .refgaddr = __LC_LPP,
651 .refselmk = 1ULL << 48,
652 .refcmpmk = 1ULL << 48,
653 .reserved = __PF_RES_FIELD };
654 int rc;
655
656 if (pfault_disable)
657 return -1;
658 diag_stat_inc(DIAG_STAT_X258);
659 asm volatile(
660 " diag %1,%0,0x258\n"
661 "0: j 2f\n"
662 "1: la %0,8\n"
663 "2:\n"
664 EX_TABLE(0b,1b)
665 : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
666 return rc;
667}
668
669void pfault_fini(void)
670{
671 struct pfault_refbk refbk = {
672 .refdiagc = 0x258,
673 .reffcode = 1,
674 .refdwlen = 5,
675 .refversn = 2,
676 };
677
678 if (pfault_disable)
679 return;
680 diag_stat_inc(DIAG_STAT_X258);
681 asm volatile(
682 " diag %0,0,0x258\n"
683 "0: nopr %%r7\n"
684 EX_TABLE(0b,0b)
685 : : "a" (&refbk), "m" (refbk) : "cc");
686}
687
688static DEFINE_SPINLOCK(pfault_lock);
689static LIST_HEAD(pfault_list);
690
691#define PF_COMPLETE 0x0080
692
693/*
694 * The mechanism of our pfault code: if Linux is running as guest, runs a user
695 * space process and the user space process accesses a page that the host has
696 * paged out we get a pfault interrupt.
697 *
698 * This allows us, within the guest, to schedule a different process. Without
699 * this mechanism the host would have to suspend the whole virtual cpu until
700 * the page has been paged in.
701 *
702 * So when we get such an interrupt then we set the state of the current task
703 * to uninterruptible and also set the need_resched flag. Both happens within
704 * interrupt context(!). If we later on want to return to user space we
705 * recognize the need_resched flag and then call schedule(). It's not very
706 * obvious how this works...
707 *
708 * Of course we have a lot of additional fun with the completion interrupt (->
709 * host signals that a page of a process has been paged in and the process can
710 * continue to run). This interrupt can arrive on any cpu and, since we have
711 * virtual cpus, actually appear before the interrupt that signals that a page
712 * is missing.
713 */
714static void pfault_interrupt(struct ext_code ext_code,
715 unsigned int param32, unsigned long param64)
716{
717 struct task_struct *tsk;
718 __u16 subcode;
719 pid_t pid;
720
721 /*
722 * Get the external interruption subcode & pfault initial/completion
723 * signal bit. VM stores this in the 'cpu address' field associated
724 * with the external interrupt.
725 */
726 subcode = ext_code.subcode;
727 if ((subcode & 0xff00) != __SUBCODE_MASK)
728 return;
729 inc_irq_stat(IRQEXT_PFL);
730 /* Get the token (= pid of the affected task). */
731 pid = param64 & LPP_PID_MASK;
732 rcu_read_lock();
733 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
734 if (tsk)
735 get_task_struct(tsk);
736 rcu_read_unlock();
737 if (!tsk)
738 return;
739 spin_lock(&pfault_lock);
740 if (subcode & PF_COMPLETE) {
741 /* signal bit is set -> a page has been swapped in by VM */
742 if (tsk->thread.pfault_wait == 1) {
743 /* Initial interrupt was faster than the completion
744 * interrupt. pfault_wait is valid. Set pfault_wait
745 * back to zero and wake up the process. This can
746 * safely be done because the task is still sleeping
747 * and can't produce new pfaults. */
748 tsk->thread.pfault_wait = 0;
749 list_del(&tsk->thread.list);
750 wake_up_process(tsk);
751 put_task_struct(tsk);
752 } else {
753 /* Completion interrupt was faster than initial
754 * interrupt. Set pfault_wait to -1 so the initial
755 * interrupt doesn't put the task to sleep.
756 * If the task is not running, ignore the completion
757 * interrupt since it must be a leftover of a PFAULT
758 * CANCEL operation which didn't remove all pending
759 * completion interrupts. */
760 if (tsk->state == TASK_RUNNING)
761 tsk->thread.pfault_wait = -1;
762 }
763 } else {
764 /* signal bit not set -> a real page is missing. */
765 if (WARN_ON_ONCE(tsk != current))
766 goto out;
767 if (tsk->thread.pfault_wait == 1) {
768 /* Already on the list with a reference: put to sleep */
769 goto block;
770 } else if (tsk->thread.pfault_wait == -1) {
771 /* Completion interrupt was faster than the initial
772 * interrupt (pfault_wait == -1). Set pfault_wait
773 * back to zero and exit. */
774 tsk->thread.pfault_wait = 0;
775 } else {
776 /* Initial interrupt arrived before completion
777 * interrupt. Let the task sleep.
778 * An extra task reference is needed since a different
779 * cpu may set the task state to TASK_RUNNING again
780 * before the scheduler is reached. */
781 get_task_struct(tsk);
782 tsk->thread.pfault_wait = 1;
783 list_add(&tsk->thread.list, &pfault_list);
784block:
785 /* Since this must be a userspace fault, there
786 * is no kernel task state to trample. Rely on the
787 * return to userspace schedule() to block. */
788 __set_current_state(TASK_UNINTERRUPTIBLE);
789 set_tsk_need_resched(tsk);
790 set_preempt_need_resched();
791 }
792 }
793out:
794 spin_unlock(&pfault_lock);
795 put_task_struct(tsk);
796}
797
798static int pfault_cpu_dead(unsigned int cpu)
799{
800 struct thread_struct *thread, *next;
801 struct task_struct *tsk;
802
803 spin_lock_irq(&pfault_lock);
804 list_for_each_entry_safe(thread, next, &pfault_list, list) {
805 thread->pfault_wait = 0;
806 list_del(&thread->list);
807 tsk = container_of(thread, struct task_struct, thread);
808 wake_up_process(tsk);
809 put_task_struct(tsk);
810 }
811 spin_unlock_irq(&pfault_lock);
812 return 0;
813}
814
815static int __init pfault_irq_init(void)
816{
817 int rc;
818
819 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
820 if (rc)
821 goto out_extint;
822 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
823 if (rc)
824 goto out_pfault;
825 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
826 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
827 NULL, pfault_cpu_dead);
828 return 0;
829
830out_pfault:
831 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
832out_extint:
833 pfault_disable = 1;
834 return rc;
835}
836early_initcall(pfault_irq_init);
837
838#endif /* CONFIG_PFAULT */