Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/backing-dev.h>
10#include <linux/hash.h>
11#include <linux/swap.h>
12#include <linux/security.h>
13#include <linux/cdev.h>
14#include <linux/memblock.h>
15#include <linux/fscrypt.h>
16#include <linux/fsnotify.h>
17#include <linux/mount.h>
18#include <linux/posix_acl.h>
19#include <linux/prefetch.h>
20#include <linux/buffer_head.h> /* for inode_has_buffers */
21#include <linux/ratelimit.h>
22#include <linux/list_lru.h>
23#include <linux/iversion.h>
24#include <trace/events/writeback.h>
25#include "internal.h"
26
27/*
28 * Inode locking rules:
29 *
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget()
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
40 *
41 * Lock ordering:
42 *
43 * inode->i_sb->s_inode_list_lock
44 * inode->i_lock
45 * Inode LRU list locks
46 *
47 * bdi->wb.list_lock
48 * inode->i_lock
49 *
50 * inode_hash_lock
51 * inode->i_sb->s_inode_list_lock
52 * inode->i_lock
53 *
54 * iunique_lock
55 * inode_hash_lock
56 */
57
58static unsigned int i_hash_mask __read_mostly;
59static unsigned int i_hash_shift __read_mostly;
60static struct hlist_head *inode_hashtable __read_mostly;
61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62
63/*
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
66 */
67const struct address_space_operations empty_aops = {
68};
69EXPORT_SYMBOL(empty_aops);
70
71/*
72 * Statistics gathering..
73 */
74struct inodes_stat_t inodes_stat;
75
76static DEFINE_PER_CPU(unsigned long, nr_inodes);
77static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79static struct kmem_cache *inode_cachep __read_mostly;
80
81static long get_nr_inodes(void)
82{
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88}
89
90static inline long get_nr_inodes_unused(void)
91{
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97}
98
99long get_nr_dirty_inodes(void)
100{
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104}
105
106/*
107 * Handle nr_inode sysctl
108 */
109#ifdef CONFIG_SYSCTL
110int proc_nr_inodes(struct ctl_table *table, int write,
111 void *buffer, size_t *lenp, loff_t *ppos)
112{
113 inodes_stat.nr_inodes = get_nr_inodes();
114 inodes_stat.nr_unused = get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116}
117#endif
118
119static int no_open(struct inode *inode, struct file *file)
120{
121 return -ENXIO;
122}
123
124/**
125 * inode_init_always - perform inode structure initialisation
126 * @sb: superblock inode belongs to
127 * @inode: inode to initialise
128 *
129 * These are initializations that need to be done on every inode
130 * allocation as the fields are not initialised by slab allocation.
131 */
132int inode_init_always(struct super_block *sb, struct inode *inode)
133{
134 static const struct inode_operations empty_iops;
135 static const struct file_operations no_open_fops = {.open = no_open};
136 struct address_space *const mapping = &inode->i_data;
137
138 inode->i_sb = sb;
139 inode->i_blkbits = sb->s_blocksize_bits;
140 inode->i_flags = 0;
141 atomic64_set(&inode->i_sequence, 0);
142 atomic_set(&inode->i_count, 1);
143 inode->i_op = &empty_iops;
144 inode->i_fop = &no_open_fops;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_bdev = NULL;
159 inode->i_cdev = NULL;
160 inode->i_link = NULL;
161 inode->i_dir_seq = 0;
162 inode->i_rdev = 0;
163 inode->dirtied_when = 0;
164
165#ifdef CONFIG_CGROUP_WRITEBACK
166 inode->i_wb_frn_winner = 0;
167 inode->i_wb_frn_avg_time = 0;
168 inode->i_wb_frn_history = 0;
169#endif
170
171 if (security_inode_alloc(inode))
172 goto out;
173 spin_lock_init(&inode->i_lock);
174 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175
176 init_rwsem(&inode->i_rwsem);
177 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
178
179 atomic_set(&inode->i_dio_count, 0);
180
181 mapping->a_ops = &empty_aops;
182 mapping->host = inode;
183 mapping->flags = 0;
184 mapping->wb_err = 0;
185 atomic_set(&mapping->i_mmap_writable, 0);
186#ifdef CONFIG_READ_ONLY_THP_FOR_FS
187 atomic_set(&mapping->nr_thps, 0);
188#endif
189 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
190 mapping->private_data = NULL;
191 mapping->writeback_index = 0;
192 inode->i_private = NULL;
193 inode->i_mapping = mapping;
194 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
195#ifdef CONFIG_FS_POSIX_ACL
196 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
197#endif
198
199#ifdef CONFIG_FSNOTIFY
200 inode->i_fsnotify_mask = 0;
201#endif
202 inode->i_flctx = NULL;
203 this_cpu_inc(nr_inodes);
204
205 return 0;
206out:
207 return -ENOMEM;
208}
209EXPORT_SYMBOL(inode_init_always);
210
211void free_inode_nonrcu(struct inode *inode)
212{
213 kmem_cache_free(inode_cachep, inode);
214}
215EXPORT_SYMBOL(free_inode_nonrcu);
216
217static void i_callback(struct rcu_head *head)
218{
219 struct inode *inode = container_of(head, struct inode, i_rcu);
220 if (inode->free_inode)
221 inode->free_inode(inode);
222 else
223 free_inode_nonrcu(inode);
224}
225
226static struct inode *alloc_inode(struct super_block *sb)
227{
228 const struct super_operations *ops = sb->s_op;
229 struct inode *inode;
230
231 if (ops->alloc_inode)
232 inode = ops->alloc_inode(sb);
233 else
234 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
235
236 if (!inode)
237 return NULL;
238
239 if (unlikely(inode_init_always(sb, inode))) {
240 if (ops->destroy_inode) {
241 ops->destroy_inode(inode);
242 if (!ops->free_inode)
243 return NULL;
244 }
245 inode->free_inode = ops->free_inode;
246 i_callback(&inode->i_rcu);
247 return NULL;
248 }
249
250 return inode;
251}
252
253void __destroy_inode(struct inode *inode)
254{
255 BUG_ON(inode_has_buffers(inode));
256 inode_detach_wb(inode);
257 security_inode_free(inode);
258 fsnotify_inode_delete(inode);
259 locks_free_lock_context(inode);
260 if (!inode->i_nlink) {
261 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
262 atomic_long_dec(&inode->i_sb->s_remove_count);
263 }
264
265#ifdef CONFIG_FS_POSIX_ACL
266 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
267 posix_acl_release(inode->i_acl);
268 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
269 posix_acl_release(inode->i_default_acl);
270#endif
271 this_cpu_dec(nr_inodes);
272}
273EXPORT_SYMBOL(__destroy_inode);
274
275static void destroy_inode(struct inode *inode)
276{
277 const struct super_operations *ops = inode->i_sb->s_op;
278
279 BUG_ON(!list_empty(&inode->i_lru));
280 __destroy_inode(inode);
281 if (ops->destroy_inode) {
282 ops->destroy_inode(inode);
283 if (!ops->free_inode)
284 return;
285 }
286 inode->free_inode = ops->free_inode;
287 call_rcu(&inode->i_rcu, i_callback);
288}
289
290/**
291 * drop_nlink - directly drop an inode's link count
292 * @inode: inode
293 *
294 * This is a low-level filesystem helper to replace any
295 * direct filesystem manipulation of i_nlink. In cases
296 * where we are attempting to track writes to the
297 * filesystem, a decrement to zero means an imminent
298 * write when the file is truncated and actually unlinked
299 * on the filesystem.
300 */
301void drop_nlink(struct inode *inode)
302{
303 WARN_ON(inode->i_nlink == 0);
304 inode->__i_nlink--;
305 if (!inode->i_nlink)
306 atomic_long_inc(&inode->i_sb->s_remove_count);
307}
308EXPORT_SYMBOL(drop_nlink);
309
310/**
311 * clear_nlink - directly zero an inode's link count
312 * @inode: inode
313 *
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink. See
316 * drop_nlink() for why we care about i_nlink hitting zero.
317 */
318void clear_nlink(struct inode *inode)
319{
320 if (inode->i_nlink) {
321 inode->__i_nlink = 0;
322 atomic_long_inc(&inode->i_sb->s_remove_count);
323 }
324}
325EXPORT_SYMBOL(clear_nlink);
326
327/**
328 * set_nlink - directly set an inode's link count
329 * @inode: inode
330 * @nlink: new nlink (should be non-zero)
331 *
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink.
334 */
335void set_nlink(struct inode *inode, unsigned int nlink)
336{
337 if (!nlink) {
338 clear_nlink(inode);
339 } else {
340 /* Yes, some filesystems do change nlink from zero to one */
341 if (inode->i_nlink == 0)
342 atomic_long_dec(&inode->i_sb->s_remove_count);
343
344 inode->__i_nlink = nlink;
345 }
346}
347EXPORT_SYMBOL(set_nlink);
348
349/**
350 * inc_nlink - directly increment an inode's link count
351 * @inode: inode
352 *
353 * This is a low-level filesystem helper to replace any
354 * direct filesystem manipulation of i_nlink. Currently,
355 * it is only here for parity with dec_nlink().
356 */
357void inc_nlink(struct inode *inode)
358{
359 if (unlikely(inode->i_nlink == 0)) {
360 WARN_ON(!(inode->i_state & I_LINKABLE));
361 atomic_long_dec(&inode->i_sb->s_remove_count);
362 }
363
364 inode->__i_nlink++;
365}
366EXPORT_SYMBOL(inc_nlink);
367
368static void __address_space_init_once(struct address_space *mapping)
369{
370 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
371 init_rwsem(&mapping->i_mmap_rwsem);
372 INIT_LIST_HEAD(&mapping->private_list);
373 spin_lock_init(&mapping->private_lock);
374 mapping->i_mmap = RB_ROOT_CACHED;
375}
376
377void address_space_init_once(struct address_space *mapping)
378{
379 memset(mapping, 0, sizeof(*mapping));
380 __address_space_init_once(mapping);
381}
382EXPORT_SYMBOL(address_space_init_once);
383
384/*
385 * These are initializations that only need to be done
386 * once, because the fields are idempotent across use
387 * of the inode, so let the slab aware of that.
388 */
389void inode_init_once(struct inode *inode)
390{
391 memset(inode, 0, sizeof(*inode));
392 INIT_HLIST_NODE(&inode->i_hash);
393 INIT_LIST_HEAD(&inode->i_devices);
394 INIT_LIST_HEAD(&inode->i_io_list);
395 INIT_LIST_HEAD(&inode->i_wb_list);
396 INIT_LIST_HEAD(&inode->i_lru);
397 __address_space_init_once(&inode->i_data);
398 i_size_ordered_init(inode);
399}
400EXPORT_SYMBOL(inode_init_once);
401
402static void init_once(void *foo)
403{
404 struct inode *inode = (struct inode *) foo;
405
406 inode_init_once(inode);
407}
408
409/*
410 * inode->i_lock must be held
411 */
412void __iget(struct inode *inode)
413{
414 atomic_inc(&inode->i_count);
415}
416
417/*
418 * get additional reference to inode; caller must already hold one.
419 */
420void ihold(struct inode *inode)
421{
422 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
423}
424EXPORT_SYMBOL(ihold);
425
426static void inode_lru_list_add(struct inode *inode)
427{
428 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 this_cpu_inc(nr_unused);
430 else
431 inode->i_state |= I_REFERENCED;
432}
433
434/*
435 * Add inode to LRU if needed (inode is unused and clean).
436 *
437 * Needs inode->i_lock held.
438 */
439void inode_add_lru(struct inode *inode)
440{
441 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
442 I_FREEING | I_WILL_FREE)) &&
443 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
444 inode_lru_list_add(inode);
445}
446
447
448static void inode_lru_list_del(struct inode *inode)
449{
450
451 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
452 this_cpu_dec(nr_unused);
453}
454
455/**
456 * inode_sb_list_add - add inode to the superblock list of inodes
457 * @inode: inode to add
458 */
459void inode_sb_list_add(struct inode *inode)
460{
461 spin_lock(&inode->i_sb->s_inode_list_lock);
462 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
463 spin_unlock(&inode->i_sb->s_inode_list_lock);
464}
465EXPORT_SYMBOL_GPL(inode_sb_list_add);
466
467static inline void inode_sb_list_del(struct inode *inode)
468{
469 if (!list_empty(&inode->i_sb_list)) {
470 spin_lock(&inode->i_sb->s_inode_list_lock);
471 list_del_init(&inode->i_sb_list);
472 spin_unlock(&inode->i_sb->s_inode_list_lock);
473 }
474}
475
476static unsigned long hash(struct super_block *sb, unsigned long hashval)
477{
478 unsigned long tmp;
479
480 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
481 L1_CACHE_BYTES;
482 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
483 return tmp & i_hash_mask;
484}
485
486/**
487 * __insert_inode_hash - hash an inode
488 * @inode: unhashed inode
489 * @hashval: unsigned long value used to locate this object in the
490 * inode_hashtable.
491 *
492 * Add an inode to the inode hash for this superblock.
493 */
494void __insert_inode_hash(struct inode *inode, unsigned long hashval)
495{
496 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
497
498 spin_lock(&inode_hash_lock);
499 spin_lock(&inode->i_lock);
500 hlist_add_head_rcu(&inode->i_hash, b);
501 spin_unlock(&inode->i_lock);
502 spin_unlock(&inode_hash_lock);
503}
504EXPORT_SYMBOL(__insert_inode_hash);
505
506/**
507 * __remove_inode_hash - remove an inode from the hash
508 * @inode: inode to unhash
509 *
510 * Remove an inode from the superblock.
511 */
512void __remove_inode_hash(struct inode *inode)
513{
514 spin_lock(&inode_hash_lock);
515 spin_lock(&inode->i_lock);
516 hlist_del_init_rcu(&inode->i_hash);
517 spin_unlock(&inode->i_lock);
518 spin_unlock(&inode_hash_lock);
519}
520EXPORT_SYMBOL(__remove_inode_hash);
521
522void clear_inode(struct inode *inode)
523{
524 /*
525 * We have to cycle the i_pages lock here because reclaim can be in the
526 * process of removing the last page (in __delete_from_page_cache())
527 * and we must not free the mapping under it.
528 */
529 xa_lock_irq(&inode->i_data.i_pages);
530 BUG_ON(inode->i_data.nrpages);
531 BUG_ON(inode->i_data.nrexceptional);
532 xa_unlock_irq(&inode->i_data.i_pages);
533 BUG_ON(!list_empty(&inode->i_data.private_list));
534 BUG_ON(!(inode->i_state & I_FREEING));
535 BUG_ON(inode->i_state & I_CLEAR);
536 BUG_ON(!list_empty(&inode->i_wb_list));
537 /* don't need i_lock here, no concurrent mods to i_state */
538 inode->i_state = I_FREEING | I_CLEAR;
539}
540EXPORT_SYMBOL(clear_inode);
541
542/*
543 * Free the inode passed in, removing it from the lists it is still connected
544 * to. We remove any pages still attached to the inode and wait for any IO that
545 * is still in progress before finally destroying the inode.
546 *
547 * An inode must already be marked I_FREEING so that we avoid the inode being
548 * moved back onto lists if we race with other code that manipulates the lists
549 * (e.g. writeback_single_inode). The caller is responsible for setting this.
550 *
551 * An inode must already be removed from the LRU list before being evicted from
552 * the cache. This should occur atomically with setting the I_FREEING state
553 * flag, so no inodes here should ever be on the LRU when being evicted.
554 */
555static void evict(struct inode *inode)
556{
557 const struct super_operations *op = inode->i_sb->s_op;
558
559 BUG_ON(!(inode->i_state & I_FREEING));
560 BUG_ON(!list_empty(&inode->i_lru));
561
562 if (!list_empty(&inode->i_io_list))
563 inode_io_list_del(inode);
564
565 inode_sb_list_del(inode);
566
567 /*
568 * Wait for flusher thread to be done with the inode so that filesystem
569 * does not start destroying it while writeback is still running. Since
570 * the inode has I_FREEING set, flusher thread won't start new work on
571 * the inode. We just have to wait for running writeback to finish.
572 */
573 inode_wait_for_writeback(inode);
574
575 if (op->evict_inode) {
576 op->evict_inode(inode);
577 } else {
578 truncate_inode_pages_final(&inode->i_data);
579 clear_inode(inode);
580 }
581 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
582 bd_forget(inode);
583 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
584 cd_forget(inode);
585
586 remove_inode_hash(inode);
587
588 spin_lock(&inode->i_lock);
589 wake_up_bit(&inode->i_state, __I_NEW);
590 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
591 spin_unlock(&inode->i_lock);
592
593 destroy_inode(inode);
594}
595
596/*
597 * dispose_list - dispose of the contents of a local list
598 * @head: the head of the list to free
599 *
600 * Dispose-list gets a local list with local inodes in it, so it doesn't
601 * need to worry about list corruption and SMP locks.
602 */
603static void dispose_list(struct list_head *head)
604{
605 while (!list_empty(head)) {
606 struct inode *inode;
607
608 inode = list_first_entry(head, struct inode, i_lru);
609 list_del_init(&inode->i_lru);
610
611 evict(inode);
612 cond_resched();
613 }
614}
615
616/**
617 * evict_inodes - evict all evictable inodes for a superblock
618 * @sb: superblock to operate on
619 *
620 * Make sure that no inodes with zero refcount are retained. This is
621 * called by superblock shutdown after having SB_ACTIVE flag removed,
622 * so any inode reaching zero refcount during or after that call will
623 * be immediately evicted.
624 */
625void evict_inodes(struct super_block *sb)
626{
627 struct inode *inode, *next;
628 LIST_HEAD(dispose);
629
630again:
631 spin_lock(&sb->s_inode_list_lock);
632 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
633 if (atomic_read(&inode->i_count))
634 continue;
635
636 spin_lock(&inode->i_lock);
637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 spin_unlock(&inode->i_lock);
639 continue;
640 }
641
642 inode->i_state |= I_FREEING;
643 inode_lru_list_del(inode);
644 spin_unlock(&inode->i_lock);
645 list_add(&inode->i_lru, &dispose);
646
647 /*
648 * We can have a ton of inodes to evict at unmount time given
649 * enough memory, check to see if we need to go to sleep for a
650 * bit so we don't livelock.
651 */
652 if (need_resched()) {
653 spin_unlock(&sb->s_inode_list_lock);
654 cond_resched();
655 dispose_list(&dispose);
656 goto again;
657 }
658 }
659 spin_unlock(&sb->s_inode_list_lock);
660
661 dispose_list(&dispose);
662}
663EXPORT_SYMBOL_GPL(evict_inodes);
664
665/**
666 * invalidate_inodes - attempt to free all inodes on a superblock
667 * @sb: superblock to operate on
668 * @kill_dirty: flag to guide handling of dirty inodes
669 *
670 * Attempts to free all inodes for a given superblock. If there were any
671 * busy inodes return a non-zero value, else zero.
672 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
673 * them as busy.
674 */
675int invalidate_inodes(struct super_block *sb, bool kill_dirty)
676{
677 int busy = 0;
678 struct inode *inode, *next;
679 LIST_HEAD(dispose);
680
681again:
682 spin_lock(&sb->s_inode_list_lock);
683 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
684 spin_lock(&inode->i_lock);
685 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
686 spin_unlock(&inode->i_lock);
687 continue;
688 }
689 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
690 spin_unlock(&inode->i_lock);
691 busy = 1;
692 continue;
693 }
694 if (atomic_read(&inode->i_count)) {
695 spin_unlock(&inode->i_lock);
696 busy = 1;
697 continue;
698 }
699
700 inode->i_state |= I_FREEING;
701 inode_lru_list_del(inode);
702 spin_unlock(&inode->i_lock);
703 list_add(&inode->i_lru, &dispose);
704 if (need_resched()) {
705 spin_unlock(&sb->s_inode_list_lock);
706 cond_resched();
707 dispose_list(&dispose);
708 goto again;
709 }
710 }
711 spin_unlock(&sb->s_inode_list_lock);
712
713 dispose_list(&dispose);
714
715 return busy;
716}
717
718/*
719 * Isolate the inode from the LRU in preparation for freeing it.
720 *
721 * Any inodes which are pinned purely because of attached pagecache have their
722 * pagecache removed. If the inode has metadata buffers attached to
723 * mapping->private_list then try to remove them.
724 *
725 * If the inode has the I_REFERENCED flag set, then it means that it has been
726 * used recently - the flag is set in iput_final(). When we encounter such an
727 * inode, clear the flag and move it to the back of the LRU so it gets another
728 * pass through the LRU before it gets reclaimed. This is necessary because of
729 * the fact we are doing lazy LRU updates to minimise lock contention so the
730 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
731 * with this flag set because they are the inodes that are out of order.
732 */
733static enum lru_status inode_lru_isolate(struct list_head *item,
734 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
735{
736 struct list_head *freeable = arg;
737 struct inode *inode = container_of(item, struct inode, i_lru);
738
739 /*
740 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
741 * If we fail to get the lock, just skip it.
742 */
743 if (!spin_trylock(&inode->i_lock))
744 return LRU_SKIP;
745
746 /*
747 * Referenced or dirty inodes are still in use. Give them another pass
748 * through the LRU as we canot reclaim them now.
749 */
750 if (atomic_read(&inode->i_count) ||
751 (inode->i_state & ~I_REFERENCED)) {
752 list_lru_isolate(lru, &inode->i_lru);
753 spin_unlock(&inode->i_lock);
754 this_cpu_dec(nr_unused);
755 return LRU_REMOVED;
756 }
757
758 /* recently referenced inodes get one more pass */
759 if (inode->i_state & I_REFERENCED) {
760 inode->i_state &= ~I_REFERENCED;
761 spin_unlock(&inode->i_lock);
762 return LRU_ROTATE;
763 }
764
765 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
766 __iget(inode);
767 spin_unlock(&inode->i_lock);
768 spin_unlock(lru_lock);
769 if (remove_inode_buffers(inode)) {
770 unsigned long reap;
771 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
772 if (current_is_kswapd())
773 __count_vm_events(KSWAPD_INODESTEAL, reap);
774 else
775 __count_vm_events(PGINODESTEAL, reap);
776 if (current->reclaim_state)
777 current->reclaim_state->reclaimed_slab += reap;
778 }
779 iput(inode);
780 spin_lock(lru_lock);
781 return LRU_RETRY;
782 }
783
784 WARN_ON(inode->i_state & I_NEW);
785 inode->i_state |= I_FREEING;
786 list_lru_isolate_move(lru, &inode->i_lru, freeable);
787 spin_unlock(&inode->i_lock);
788
789 this_cpu_dec(nr_unused);
790 return LRU_REMOVED;
791}
792
793/*
794 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
795 * This is called from the superblock shrinker function with a number of inodes
796 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
797 * then are freed outside inode_lock by dispose_list().
798 */
799long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
800{
801 LIST_HEAD(freeable);
802 long freed;
803
804 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
805 inode_lru_isolate, &freeable);
806 dispose_list(&freeable);
807 return freed;
808}
809
810static void __wait_on_freeing_inode(struct inode *inode);
811/*
812 * Called with the inode lock held.
813 */
814static struct inode *find_inode(struct super_block *sb,
815 struct hlist_head *head,
816 int (*test)(struct inode *, void *),
817 void *data)
818{
819 struct inode *inode = NULL;
820
821repeat:
822 hlist_for_each_entry(inode, head, i_hash) {
823 if (inode->i_sb != sb)
824 continue;
825 if (!test(inode, data))
826 continue;
827 spin_lock(&inode->i_lock);
828 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
829 __wait_on_freeing_inode(inode);
830 goto repeat;
831 }
832 if (unlikely(inode->i_state & I_CREATING)) {
833 spin_unlock(&inode->i_lock);
834 return ERR_PTR(-ESTALE);
835 }
836 __iget(inode);
837 spin_unlock(&inode->i_lock);
838 return inode;
839 }
840 return NULL;
841}
842
843/*
844 * find_inode_fast is the fast path version of find_inode, see the comment at
845 * iget_locked for details.
846 */
847static struct inode *find_inode_fast(struct super_block *sb,
848 struct hlist_head *head, unsigned long ino)
849{
850 struct inode *inode = NULL;
851
852repeat:
853 hlist_for_each_entry(inode, head, i_hash) {
854 if (inode->i_ino != ino)
855 continue;
856 if (inode->i_sb != sb)
857 continue;
858 spin_lock(&inode->i_lock);
859 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
860 __wait_on_freeing_inode(inode);
861 goto repeat;
862 }
863 if (unlikely(inode->i_state & I_CREATING)) {
864 spin_unlock(&inode->i_lock);
865 return ERR_PTR(-ESTALE);
866 }
867 __iget(inode);
868 spin_unlock(&inode->i_lock);
869 return inode;
870 }
871 return NULL;
872}
873
874/*
875 * Each cpu owns a range of LAST_INO_BATCH numbers.
876 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
877 * to renew the exhausted range.
878 *
879 * This does not significantly increase overflow rate because every CPU can
880 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
881 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
882 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
883 * overflow rate by 2x, which does not seem too significant.
884 *
885 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
886 * error if st_ino won't fit in target struct field. Use 32bit counter
887 * here to attempt to avoid that.
888 */
889#define LAST_INO_BATCH 1024
890static DEFINE_PER_CPU(unsigned int, last_ino);
891
892unsigned int get_next_ino(void)
893{
894 unsigned int *p = &get_cpu_var(last_ino);
895 unsigned int res = *p;
896
897#ifdef CONFIG_SMP
898 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
899 static atomic_t shared_last_ino;
900 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
901
902 res = next - LAST_INO_BATCH;
903 }
904#endif
905
906 res++;
907 /* get_next_ino should not provide a 0 inode number */
908 if (unlikely(!res))
909 res++;
910 *p = res;
911 put_cpu_var(last_ino);
912 return res;
913}
914EXPORT_SYMBOL(get_next_ino);
915
916/**
917 * new_inode_pseudo - obtain an inode
918 * @sb: superblock
919 *
920 * Allocates a new inode for given superblock.
921 * Inode wont be chained in superblock s_inodes list
922 * This means :
923 * - fs can't be unmount
924 * - quotas, fsnotify, writeback can't work
925 */
926struct inode *new_inode_pseudo(struct super_block *sb)
927{
928 struct inode *inode = alloc_inode(sb);
929
930 if (inode) {
931 spin_lock(&inode->i_lock);
932 inode->i_state = 0;
933 spin_unlock(&inode->i_lock);
934 INIT_LIST_HEAD(&inode->i_sb_list);
935 }
936 return inode;
937}
938
939/**
940 * new_inode - obtain an inode
941 * @sb: superblock
942 *
943 * Allocates a new inode for given superblock. The default gfp_mask
944 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
945 * If HIGHMEM pages are unsuitable or it is known that pages allocated
946 * for the page cache are not reclaimable or migratable,
947 * mapping_set_gfp_mask() must be called with suitable flags on the
948 * newly created inode's mapping
949 *
950 */
951struct inode *new_inode(struct super_block *sb)
952{
953 struct inode *inode;
954
955 spin_lock_prefetch(&sb->s_inode_list_lock);
956
957 inode = new_inode_pseudo(sb);
958 if (inode)
959 inode_sb_list_add(inode);
960 return inode;
961}
962EXPORT_SYMBOL(new_inode);
963
964#ifdef CONFIG_DEBUG_LOCK_ALLOC
965void lockdep_annotate_inode_mutex_key(struct inode *inode)
966{
967 if (S_ISDIR(inode->i_mode)) {
968 struct file_system_type *type = inode->i_sb->s_type;
969
970 /* Set new key only if filesystem hasn't already changed it */
971 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
972 /*
973 * ensure nobody is actually holding i_mutex
974 */
975 // mutex_destroy(&inode->i_mutex);
976 init_rwsem(&inode->i_rwsem);
977 lockdep_set_class(&inode->i_rwsem,
978 &type->i_mutex_dir_key);
979 }
980 }
981}
982EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
983#endif
984
985/**
986 * unlock_new_inode - clear the I_NEW state and wake up any waiters
987 * @inode: new inode to unlock
988 *
989 * Called when the inode is fully initialised to clear the new state of the
990 * inode and wake up anyone waiting for the inode to finish initialisation.
991 */
992void unlock_new_inode(struct inode *inode)
993{
994 lockdep_annotate_inode_mutex_key(inode);
995 spin_lock(&inode->i_lock);
996 WARN_ON(!(inode->i_state & I_NEW));
997 inode->i_state &= ~I_NEW & ~I_CREATING;
998 smp_mb();
999 wake_up_bit(&inode->i_state, __I_NEW);
1000 spin_unlock(&inode->i_lock);
1001}
1002EXPORT_SYMBOL(unlock_new_inode);
1003
1004void discard_new_inode(struct inode *inode)
1005{
1006 lockdep_annotate_inode_mutex_key(inode);
1007 spin_lock(&inode->i_lock);
1008 WARN_ON(!(inode->i_state & I_NEW));
1009 inode->i_state &= ~I_NEW;
1010 smp_mb();
1011 wake_up_bit(&inode->i_state, __I_NEW);
1012 spin_unlock(&inode->i_lock);
1013 iput(inode);
1014}
1015EXPORT_SYMBOL(discard_new_inode);
1016
1017/**
1018 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1019 *
1020 * Lock any non-NULL argument that is not a directory.
1021 * Zero, one or two objects may be locked by this function.
1022 *
1023 * @inode1: first inode to lock
1024 * @inode2: second inode to lock
1025 */
1026void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1027{
1028 if (inode1 > inode2)
1029 swap(inode1, inode2);
1030
1031 if (inode1 && !S_ISDIR(inode1->i_mode))
1032 inode_lock(inode1);
1033 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1034 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1035}
1036EXPORT_SYMBOL(lock_two_nondirectories);
1037
1038/**
1039 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1040 * @inode1: first inode to unlock
1041 * @inode2: second inode to unlock
1042 */
1043void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1044{
1045 if (inode1 && !S_ISDIR(inode1->i_mode))
1046 inode_unlock(inode1);
1047 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1048 inode_unlock(inode2);
1049}
1050EXPORT_SYMBOL(unlock_two_nondirectories);
1051
1052/**
1053 * inode_insert5 - obtain an inode from a mounted file system
1054 * @inode: pre-allocated inode to use for insert to cache
1055 * @hashval: hash value (usually inode number) to get
1056 * @test: callback used for comparisons between inodes
1057 * @set: callback used to initialize a new struct inode
1058 * @data: opaque data pointer to pass to @test and @set
1059 *
1060 * Search for the inode specified by @hashval and @data in the inode cache,
1061 * and if present it is return it with an increased reference count. This is
1062 * a variant of iget5_locked() for callers that don't want to fail on memory
1063 * allocation of inode.
1064 *
1065 * If the inode is not in cache, insert the pre-allocated inode to cache and
1066 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1067 * to fill it in before unlocking it via unlock_new_inode().
1068 *
1069 * Note both @test and @set are called with the inode_hash_lock held, so can't
1070 * sleep.
1071 */
1072struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1073 int (*test)(struct inode *, void *),
1074 int (*set)(struct inode *, void *), void *data)
1075{
1076 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1077 struct inode *old;
1078 bool creating = inode->i_state & I_CREATING;
1079
1080again:
1081 spin_lock(&inode_hash_lock);
1082 old = find_inode(inode->i_sb, head, test, data);
1083 if (unlikely(old)) {
1084 /*
1085 * Uhhuh, somebody else created the same inode under us.
1086 * Use the old inode instead of the preallocated one.
1087 */
1088 spin_unlock(&inode_hash_lock);
1089 if (IS_ERR(old))
1090 return NULL;
1091 wait_on_inode(old);
1092 if (unlikely(inode_unhashed(old))) {
1093 iput(old);
1094 goto again;
1095 }
1096 return old;
1097 }
1098
1099 if (set && unlikely(set(inode, data))) {
1100 inode = NULL;
1101 goto unlock;
1102 }
1103
1104 /*
1105 * Return the locked inode with I_NEW set, the
1106 * caller is responsible for filling in the contents
1107 */
1108 spin_lock(&inode->i_lock);
1109 inode->i_state |= I_NEW;
1110 hlist_add_head_rcu(&inode->i_hash, head);
1111 spin_unlock(&inode->i_lock);
1112 if (!creating)
1113 inode_sb_list_add(inode);
1114unlock:
1115 spin_unlock(&inode_hash_lock);
1116
1117 return inode;
1118}
1119EXPORT_SYMBOL(inode_insert5);
1120
1121/**
1122 * iget5_locked - obtain an inode from a mounted file system
1123 * @sb: super block of file system
1124 * @hashval: hash value (usually inode number) to get
1125 * @test: callback used for comparisons between inodes
1126 * @set: callback used to initialize a new struct inode
1127 * @data: opaque data pointer to pass to @test and @set
1128 *
1129 * Search for the inode specified by @hashval and @data in the inode cache,
1130 * and if present it is return it with an increased reference count. This is
1131 * a generalized version of iget_locked() for file systems where the inode
1132 * number is not sufficient for unique identification of an inode.
1133 *
1134 * If the inode is not in cache, allocate a new inode and return it locked,
1135 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1136 * before unlocking it via unlock_new_inode().
1137 *
1138 * Note both @test and @set are called with the inode_hash_lock held, so can't
1139 * sleep.
1140 */
1141struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1142 int (*test)(struct inode *, void *),
1143 int (*set)(struct inode *, void *), void *data)
1144{
1145 struct inode *inode = ilookup5(sb, hashval, test, data);
1146
1147 if (!inode) {
1148 struct inode *new = alloc_inode(sb);
1149
1150 if (new) {
1151 new->i_state = 0;
1152 inode = inode_insert5(new, hashval, test, set, data);
1153 if (unlikely(inode != new))
1154 destroy_inode(new);
1155 }
1156 }
1157 return inode;
1158}
1159EXPORT_SYMBOL(iget5_locked);
1160
1161/**
1162 * iget_locked - obtain an inode from a mounted file system
1163 * @sb: super block of file system
1164 * @ino: inode number to get
1165 *
1166 * Search for the inode specified by @ino in the inode cache and if present
1167 * return it with an increased reference count. This is for file systems
1168 * where the inode number is sufficient for unique identification of an inode.
1169 *
1170 * If the inode is not in cache, allocate a new inode and return it locked,
1171 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1172 * before unlocking it via unlock_new_inode().
1173 */
1174struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1175{
1176 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1177 struct inode *inode;
1178again:
1179 spin_lock(&inode_hash_lock);
1180 inode = find_inode_fast(sb, head, ino);
1181 spin_unlock(&inode_hash_lock);
1182 if (inode) {
1183 if (IS_ERR(inode))
1184 return NULL;
1185 wait_on_inode(inode);
1186 if (unlikely(inode_unhashed(inode))) {
1187 iput(inode);
1188 goto again;
1189 }
1190 return inode;
1191 }
1192
1193 inode = alloc_inode(sb);
1194 if (inode) {
1195 struct inode *old;
1196
1197 spin_lock(&inode_hash_lock);
1198 /* We released the lock, so.. */
1199 old = find_inode_fast(sb, head, ino);
1200 if (!old) {
1201 inode->i_ino = ino;
1202 spin_lock(&inode->i_lock);
1203 inode->i_state = I_NEW;
1204 hlist_add_head_rcu(&inode->i_hash, head);
1205 spin_unlock(&inode->i_lock);
1206 inode_sb_list_add(inode);
1207 spin_unlock(&inode_hash_lock);
1208
1209 /* Return the locked inode with I_NEW set, the
1210 * caller is responsible for filling in the contents
1211 */
1212 return inode;
1213 }
1214
1215 /*
1216 * Uhhuh, somebody else created the same inode under
1217 * us. Use the old inode instead of the one we just
1218 * allocated.
1219 */
1220 spin_unlock(&inode_hash_lock);
1221 destroy_inode(inode);
1222 if (IS_ERR(old))
1223 return NULL;
1224 inode = old;
1225 wait_on_inode(inode);
1226 if (unlikely(inode_unhashed(inode))) {
1227 iput(inode);
1228 goto again;
1229 }
1230 }
1231 return inode;
1232}
1233EXPORT_SYMBOL(iget_locked);
1234
1235/*
1236 * search the inode cache for a matching inode number.
1237 * If we find one, then the inode number we are trying to
1238 * allocate is not unique and so we should not use it.
1239 *
1240 * Returns 1 if the inode number is unique, 0 if it is not.
1241 */
1242static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1243{
1244 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1245 struct inode *inode;
1246
1247 hlist_for_each_entry_rcu(inode, b, i_hash) {
1248 if (inode->i_ino == ino && inode->i_sb == sb)
1249 return 0;
1250 }
1251 return 1;
1252}
1253
1254/**
1255 * iunique - get a unique inode number
1256 * @sb: superblock
1257 * @max_reserved: highest reserved inode number
1258 *
1259 * Obtain an inode number that is unique on the system for a given
1260 * superblock. This is used by file systems that have no natural
1261 * permanent inode numbering system. An inode number is returned that
1262 * is higher than the reserved limit but unique.
1263 *
1264 * BUGS:
1265 * With a large number of inodes live on the file system this function
1266 * currently becomes quite slow.
1267 */
1268ino_t iunique(struct super_block *sb, ino_t max_reserved)
1269{
1270 /*
1271 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1272 * error if st_ino won't fit in target struct field. Use 32bit counter
1273 * here to attempt to avoid that.
1274 */
1275 static DEFINE_SPINLOCK(iunique_lock);
1276 static unsigned int counter;
1277 ino_t res;
1278
1279 rcu_read_lock();
1280 spin_lock(&iunique_lock);
1281 do {
1282 if (counter <= max_reserved)
1283 counter = max_reserved + 1;
1284 res = counter++;
1285 } while (!test_inode_iunique(sb, res));
1286 spin_unlock(&iunique_lock);
1287 rcu_read_unlock();
1288
1289 return res;
1290}
1291EXPORT_SYMBOL(iunique);
1292
1293struct inode *igrab(struct inode *inode)
1294{
1295 spin_lock(&inode->i_lock);
1296 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1297 __iget(inode);
1298 spin_unlock(&inode->i_lock);
1299 } else {
1300 spin_unlock(&inode->i_lock);
1301 /*
1302 * Handle the case where s_op->clear_inode is not been
1303 * called yet, and somebody is calling igrab
1304 * while the inode is getting freed.
1305 */
1306 inode = NULL;
1307 }
1308 return inode;
1309}
1310EXPORT_SYMBOL(igrab);
1311
1312/**
1313 * ilookup5_nowait - search for an inode in the inode cache
1314 * @sb: super block of file system to search
1315 * @hashval: hash value (usually inode number) to search for
1316 * @test: callback used for comparisons between inodes
1317 * @data: opaque data pointer to pass to @test
1318 *
1319 * Search for the inode specified by @hashval and @data in the inode cache.
1320 * If the inode is in the cache, the inode is returned with an incremented
1321 * reference count.
1322 *
1323 * Note: I_NEW is not waited upon so you have to be very careful what you do
1324 * with the returned inode. You probably should be using ilookup5() instead.
1325 *
1326 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1327 */
1328struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1329 int (*test)(struct inode *, void *), void *data)
1330{
1331 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332 struct inode *inode;
1333
1334 spin_lock(&inode_hash_lock);
1335 inode = find_inode(sb, head, test, data);
1336 spin_unlock(&inode_hash_lock);
1337
1338 return IS_ERR(inode) ? NULL : inode;
1339}
1340EXPORT_SYMBOL(ilookup5_nowait);
1341
1342/**
1343 * ilookup5 - search for an inode in the inode cache
1344 * @sb: super block of file system to search
1345 * @hashval: hash value (usually inode number) to search for
1346 * @test: callback used for comparisons between inodes
1347 * @data: opaque data pointer to pass to @test
1348 *
1349 * Search for the inode specified by @hashval and @data in the inode cache,
1350 * and if the inode is in the cache, return the inode with an incremented
1351 * reference count. Waits on I_NEW before returning the inode.
1352 * returned with an incremented reference count.
1353 *
1354 * This is a generalized version of ilookup() for file systems where the
1355 * inode number is not sufficient for unique identification of an inode.
1356 *
1357 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1358 */
1359struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1360 int (*test)(struct inode *, void *), void *data)
1361{
1362 struct inode *inode;
1363again:
1364 inode = ilookup5_nowait(sb, hashval, test, data);
1365 if (inode) {
1366 wait_on_inode(inode);
1367 if (unlikely(inode_unhashed(inode))) {
1368 iput(inode);
1369 goto again;
1370 }
1371 }
1372 return inode;
1373}
1374EXPORT_SYMBOL(ilookup5);
1375
1376/**
1377 * ilookup - search for an inode in the inode cache
1378 * @sb: super block of file system to search
1379 * @ino: inode number to search for
1380 *
1381 * Search for the inode @ino in the inode cache, and if the inode is in the
1382 * cache, the inode is returned with an incremented reference count.
1383 */
1384struct inode *ilookup(struct super_block *sb, unsigned long ino)
1385{
1386 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1387 struct inode *inode;
1388again:
1389 spin_lock(&inode_hash_lock);
1390 inode = find_inode_fast(sb, head, ino);
1391 spin_unlock(&inode_hash_lock);
1392
1393 if (inode) {
1394 if (IS_ERR(inode))
1395 return NULL;
1396 wait_on_inode(inode);
1397 if (unlikely(inode_unhashed(inode))) {
1398 iput(inode);
1399 goto again;
1400 }
1401 }
1402 return inode;
1403}
1404EXPORT_SYMBOL(ilookup);
1405
1406/**
1407 * find_inode_nowait - find an inode in the inode cache
1408 * @sb: super block of file system to search
1409 * @hashval: hash value (usually inode number) to search for
1410 * @match: callback used for comparisons between inodes
1411 * @data: opaque data pointer to pass to @match
1412 *
1413 * Search for the inode specified by @hashval and @data in the inode
1414 * cache, where the helper function @match will return 0 if the inode
1415 * does not match, 1 if the inode does match, and -1 if the search
1416 * should be stopped. The @match function must be responsible for
1417 * taking the i_lock spin_lock and checking i_state for an inode being
1418 * freed or being initialized, and incrementing the reference count
1419 * before returning 1. It also must not sleep, since it is called with
1420 * the inode_hash_lock spinlock held.
1421 *
1422 * This is a even more generalized version of ilookup5() when the
1423 * function must never block --- find_inode() can block in
1424 * __wait_on_freeing_inode() --- or when the caller can not increment
1425 * the reference count because the resulting iput() might cause an
1426 * inode eviction. The tradeoff is that the @match funtion must be
1427 * very carefully implemented.
1428 */
1429struct inode *find_inode_nowait(struct super_block *sb,
1430 unsigned long hashval,
1431 int (*match)(struct inode *, unsigned long,
1432 void *),
1433 void *data)
1434{
1435 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1436 struct inode *inode, *ret_inode = NULL;
1437 int mval;
1438
1439 spin_lock(&inode_hash_lock);
1440 hlist_for_each_entry(inode, head, i_hash) {
1441 if (inode->i_sb != sb)
1442 continue;
1443 mval = match(inode, hashval, data);
1444 if (mval == 0)
1445 continue;
1446 if (mval == 1)
1447 ret_inode = inode;
1448 goto out;
1449 }
1450out:
1451 spin_unlock(&inode_hash_lock);
1452 return ret_inode;
1453}
1454EXPORT_SYMBOL(find_inode_nowait);
1455
1456/**
1457 * find_inode_rcu - find an inode in the inode cache
1458 * @sb: Super block of file system to search
1459 * @hashval: Key to hash
1460 * @test: Function to test match on an inode
1461 * @data: Data for test function
1462 *
1463 * Search for the inode specified by @hashval and @data in the inode cache,
1464 * where the helper function @test will return 0 if the inode does not match
1465 * and 1 if it does. The @test function must be responsible for taking the
1466 * i_lock spin_lock and checking i_state for an inode being freed or being
1467 * initialized.
1468 *
1469 * If successful, this will return the inode for which the @test function
1470 * returned 1 and NULL otherwise.
1471 *
1472 * The @test function is not permitted to take a ref on any inode presented.
1473 * It is also not permitted to sleep.
1474 *
1475 * The caller must hold the RCU read lock.
1476 */
1477struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1478 int (*test)(struct inode *, void *), void *data)
1479{
1480 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1481 struct inode *inode;
1482
1483 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1484 "suspicious find_inode_rcu() usage");
1485
1486 hlist_for_each_entry_rcu(inode, head, i_hash) {
1487 if (inode->i_sb == sb &&
1488 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1489 test(inode, data))
1490 return inode;
1491 }
1492 return NULL;
1493}
1494EXPORT_SYMBOL(find_inode_rcu);
1495
1496/**
1497 * find_inode_by_rcu - Find an inode in the inode cache
1498 * @sb: Super block of file system to search
1499 * @ino: The inode number to match
1500 *
1501 * Search for the inode specified by @hashval and @data in the inode cache,
1502 * where the helper function @test will return 0 if the inode does not match
1503 * and 1 if it does. The @test function must be responsible for taking the
1504 * i_lock spin_lock and checking i_state for an inode being freed or being
1505 * initialized.
1506 *
1507 * If successful, this will return the inode for which the @test function
1508 * returned 1 and NULL otherwise.
1509 *
1510 * The @test function is not permitted to take a ref on any inode presented.
1511 * It is also not permitted to sleep.
1512 *
1513 * The caller must hold the RCU read lock.
1514 */
1515struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1516 unsigned long ino)
1517{
1518 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1519 struct inode *inode;
1520
1521 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1522 "suspicious find_inode_by_ino_rcu() usage");
1523
1524 hlist_for_each_entry_rcu(inode, head, i_hash) {
1525 if (inode->i_ino == ino &&
1526 inode->i_sb == sb &&
1527 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1528 return inode;
1529 }
1530 return NULL;
1531}
1532EXPORT_SYMBOL(find_inode_by_ino_rcu);
1533
1534int insert_inode_locked(struct inode *inode)
1535{
1536 struct super_block *sb = inode->i_sb;
1537 ino_t ino = inode->i_ino;
1538 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1539
1540 while (1) {
1541 struct inode *old = NULL;
1542 spin_lock(&inode_hash_lock);
1543 hlist_for_each_entry(old, head, i_hash) {
1544 if (old->i_ino != ino)
1545 continue;
1546 if (old->i_sb != sb)
1547 continue;
1548 spin_lock(&old->i_lock);
1549 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1550 spin_unlock(&old->i_lock);
1551 continue;
1552 }
1553 break;
1554 }
1555 if (likely(!old)) {
1556 spin_lock(&inode->i_lock);
1557 inode->i_state |= I_NEW | I_CREATING;
1558 hlist_add_head_rcu(&inode->i_hash, head);
1559 spin_unlock(&inode->i_lock);
1560 spin_unlock(&inode_hash_lock);
1561 return 0;
1562 }
1563 if (unlikely(old->i_state & I_CREATING)) {
1564 spin_unlock(&old->i_lock);
1565 spin_unlock(&inode_hash_lock);
1566 return -EBUSY;
1567 }
1568 __iget(old);
1569 spin_unlock(&old->i_lock);
1570 spin_unlock(&inode_hash_lock);
1571 wait_on_inode(old);
1572 if (unlikely(!inode_unhashed(old))) {
1573 iput(old);
1574 return -EBUSY;
1575 }
1576 iput(old);
1577 }
1578}
1579EXPORT_SYMBOL(insert_inode_locked);
1580
1581int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1582 int (*test)(struct inode *, void *), void *data)
1583{
1584 struct inode *old;
1585
1586 inode->i_state |= I_CREATING;
1587 old = inode_insert5(inode, hashval, test, NULL, data);
1588
1589 if (old != inode) {
1590 iput(old);
1591 return -EBUSY;
1592 }
1593 return 0;
1594}
1595EXPORT_SYMBOL(insert_inode_locked4);
1596
1597
1598int generic_delete_inode(struct inode *inode)
1599{
1600 return 1;
1601}
1602EXPORT_SYMBOL(generic_delete_inode);
1603
1604/*
1605 * Called when we're dropping the last reference
1606 * to an inode.
1607 *
1608 * Call the FS "drop_inode()" function, defaulting to
1609 * the legacy UNIX filesystem behaviour. If it tells
1610 * us to evict inode, do so. Otherwise, retain inode
1611 * in cache if fs is alive, sync and evict if fs is
1612 * shutting down.
1613 */
1614static void iput_final(struct inode *inode)
1615{
1616 struct super_block *sb = inode->i_sb;
1617 const struct super_operations *op = inode->i_sb->s_op;
1618 unsigned long state;
1619 int drop;
1620
1621 WARN_ON(inode->i_state & I_NEW);
1622
1623 if (op->drop_inode)
1624 drop = op->drop_inode(inode);
1625 else
1626 drop = generic_drop_inode(inode);
1627
1628 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1629 inode_add_lru(inode);
1630 spin_unlock(&inode->i_lock);
1631 return;
1632 }
1633
1634 state = inode->i_state;
1635 if (!drop) {
1636 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1637 spin_unlock(&inode->i_lock);
1638
1639 write_inode_now(inode, 1);
1640
1641 spin_lock(&inode->i_lock);
1642 state = inode->i_state;
1643 WARN_ON(state & I_NEW);
1644 state &= ~I_WILL_FREE;
1645 }
1646
1647 WRITE_ONCE(inode->i_state, state | I_FREEING);
1648 if (!list_empty(&inode->i_lru))
1649 inode_lru_list_del(inode);
1650 spin_unlock(&inode->i_lock);
1651
1652 evict(inode);
1653}
1654
1655/**
1656 * iput - put an inode
1657 * @inode: inode to put
1658 *
1659 * Puts an inode, dropping its usage count. If the inode use count hits
1660 * zero, the inode is then freed and may also be destroyed.
1661 *
1662 * Consequently, iput() can sleep.
1663 */
1664void iput(struct inode *inode)
1665{
1666 if (!inode)
1667 return;
1668 BUG_ON(inode->i_state & I_CLEAR);
1669retry:
1670 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1671 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1672 atomic_inc(&inode->i_count);
1673 spin_unlock(&inode->i_lock);
1674 trace_writeback_lazytime_iput(inode);
1675 mark_inode_dirty_sync(inode);
1676 goto retry;
1677 }
1678 iput_final(inode);
1679 }
1680}
1681EXPORT_SYMBOL(iput);
1682
1683#ifdef CONFIG_BLOCK
1684/**
1685 * bmap - find a block number in a file
1686 * @inode: inode owning the block number being requested
1687 * @block: pointer containing the block to find
1688 *
1689 * Replaces the value in ``*block`` with the block number on the device holding
1690 * corresponding to the requested block number in the file.
1691 * That is, asked for block 4 of inode 1 the function will replace the
1692 * 4 in ``*block``, with disk block relative to the disk start that holds that
1693 * block of the file.
1694 *
1695 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1696 * hole, returns 0 and ``*block`` is also set to 0.
1697 */
1698int bmap(struct inode *inode, sector_t *block)
1699{
1700 if (!inode->i_mapping->a_ops->bmap)
1701 return -EINVAL;
1702
1703 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1704 return 0;
1705}
1706EXPORT_SYMBOL(bmap);
1707#endif
1708
1709/*
1710 * With relative atime, only update atime if the previous atime is
1711 * earlier than either the ctime or mtime or if at least a day has
1712 * passed since the last atime update.
1713 */
1714static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1715 struct timespec64 now)
1716{
1717
1718 if (!(mnt->mnt_flags & MNT_RELATIME))
1719 return 1;
1720 /*
1721 * Is mtime younger than atime? If yes, update atime:
1722 */
1723 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1724 return 1;
1725 /*
1726 * Is ctime younger than atime? If yes, update atime:
1727 */
1728 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1729 return 1;
1730
1731 /*
1732 * Is the previous atime value older than a day? If yes,
1733 * update atime:
1734 */
1735 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1736 return 1;
1737 /*
1738 * Good, we can skip the atime update:
1739 */
1740 return 0;
1741}
1742
1743int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1744{
1745 int iflags = I_DIRTY_TIME;
1746 bool dirty = false;
1747
1748 if (flags & S_ATIME)
1749 inode->i_atime = *time;
1750 if (flags & S_VERSION)
1751 dirty = inode_maybe_inc_iversion(inode, false);
1752 if (flags & S_CTIME)
1753 inode->i_ctime = *time;
1754 if (flags & S_MTIME)
1755 inode->i_mtime = *time;
1756 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1757 !(inode->i_sb->s_flags & SB_LAZYTIME))
1758 dirty = true;
1759
1760 if (dirty)
1761 iflags |= I_DIRTY_SYNC;
1762 __mark_inode_dirty(inode, iflags);
1763 return 0;
1764}
1765EXPORT_SYMBOL(generic_update_time);
1766
1767/*
1768 * This does the actual work of updating an inodes time or version. Must have
1769 * had called mnt_want_write() before calling this.
1770 */
1771static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1772{
1773 if (inode->i_op->update_time)
1774 return inode->i_op->update_time(inode, time, flags);
1775 return generic_update_time(inode, time, flags);
1776}
1777
1778/**
1779 * touch_atime - update the access time
1780 * @path: the &struct path to update
1781 * @inode: inode to update
1782 *
1783 * Update the accessed time on an inode and mark it for writeback.
1784 * This function automatically handles read only file systems and media,
1785 * as well as the "noatime" flag and inode specific "noatime" markers.
1786 */
1787bool atime_needs_update(const struct path *path, struct inode *inode)
1788{
1789 struct vfsmount *mnt = path->mnt;
1790 struct timespec64 now;
1791
1792 if (inode->i_flags & S_NOATIME)
1793 return false;
1794
1795 /* Atime updates will likely cause i_uid and i_gid to be written
1796 * back improprely if their true value is unknown to the vfs.
1797 */
1798 if (HAS_UNMAPPED_ID(inode))
1799 return false;
1800
1801 if (IS_NOATIME(inode))
1802 return false;
1803 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1804 return false;
1805
1806 if (mnt->mnt_flags & MNT_NOATIME)
1807 return false;
1808 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1809 return false;
1810
1811 now = current_time(inode);
1812
1813 if (!relatime_need_update(mnt, inode, now))
1814 return false;
1815
1816 if (timespec64_equal(&inode->i_atime, &now))
1817 return false;
1818
1819 return true;
1820}
1821
1822void touch_atime(const struct path *path)
1823{
1824 struct vfsmount *mnt = path->mnt;
1825 struct inode *inode = d_inode(path->dentry);
1826 struct timespec64 now;
1827
1828 if (!atime_needs_update(path, inode))
1829 return;
1830
1831 if (!sb_start_write_trylock(inode->i_sb))
1832 return;
1833
1834 if (__mnt_want_write(mnt) != 0)
1835 goto skip_update;
1836 /*
1837 * File systems can error out when updating inodes if they need to
1838 * allocate new space to modify an inode (such is the case for
1839 * Btrfs), but since we touch atime while walking down the path we
1840 * really don't care if we failed to update the atime of the file,
1841 * so just ignore the return value.
1842 * We may also fail on filesystems that have the ability to make parts
1843 * of the fs read only, e.g. subvolumes in Btrfs.
1844 */
1845 now = current_time(inode);
1846 update_time(inode, &now, S_ATIME);
1847 __mnt_drop_write(mnt);
1848skip_update:
1849 sb_end_write(inode->i_sb);
1850}
1851EXPORT_SYMBOL(touch_atime);
1852
1853/*
1854 * The logic we want is
1855 *
1856 * if suid or (sgid and xgrp)
1857 * remove privs
1858 */
1859int should_remove_suid(struct dentry *dentry)
1860{
1861 umode_t mode = d_inode(dentry)->i_mode;
1862 int kill = 0;
1863
1864 /* suid always must be killed */
1865 if (unlikely(mode & S_ISUID))
1866 kill = ATTR_KILL_SUID;
1867
1868 /*
1869 * sgid without any exec bits is just a mandatory locking mark; leave
1870 * it alone. If some exec bits are set, it's a real sgid; kill it.
1871 */
1872 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1873 kill |= ATTR_KILL_SGID;
1874
1875 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1876 return kill;
1877
1878 return 0;
1879}
1880EXPORT_SYMBOL(should_remove_suid);
1881
1882/*
1883 * Return mask of changes for notify_change() that need to be done as a
1884 * response to write or truncate. Return 0 if nothing has to be changed.
1885 * Negative value on error (change should be denied).
1886 */
1887int dentry_needs_remove_privs(struct dentry *dentry)
1888{
1889 struct inode *inode = d_inode(dentry);
1890 int mask = 0;
1891 int ret;
1892
1893 if (IS_NOSEC(inode))
1894 return 0;
1895
1896 mask = should_remove_suid(dentry);
1897 ret = security_inode_need_killpriv(dentry);
1898 if (ret < 0)
1899 return ret;
1900 if (ret)
1901 mask |= ATTR_KILL_PRIV;
1902 return mask;
1903}
1904
1905static int __remove_privs(struct dentry *dentry, int kill)
1906{
1907 struct iattr newattrs;
1908
1909 newattrs.ia_valid = ATTR_FORCE | kill;
1910 /*
1911 * Note we call this on write, so notify_change will not
1912 * encounter any conflicting delegations:
1913 */
1914 return notify_change(dentry, &newattrs, NULL);
1915}
1916
1917/*
1918 * Remove special file priviledges (suid, capabilities) when file is written
1919 * to or truncated.
1920 */
1921int file_remove_privs(struct file *file)
1922{
1923 struct dentry *dentry = file_dentry(file);
1924 struct inode *inode = file_inode(file);
1925 int kill;
1926 int error = 0;
1927
1928 /*
1929 * Fast path for nothing security related.
1930 * As well for non-regular files, e.g. blkdev inodes.
1931 * For example, blkdev_write_iter() might get here
1932 * trying to remove privs which it is not allowed to.
1933 */
1934 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1935 return 0;
1936
1937 kill = dentry_needs_remove_privs(dentry);
1938 if (kill < 0)
1939 return kill;
1940 if (kill)
1941 error = __remove_privs(dentry, kill);
1942 if (!error)
1943 inode_has_no_xattr(inode);
1944
1945 return error;
1946}
1947EXPORT_SYMBOL(file_remove_privs);
1948
1949/**
1950 * file_update_time - update mtime and ctime time
1951 * @file: file accessed
1952 *
1953 * Update the mtime and ctime members of an inode and mark the inode
1954 * for writeback. Note that this function is meant exclusively for
1955 * usage in the file write path of filesystems, and filesystems may
1956 * choose to explicitly ignore update via this function with the
1957 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1958 * timestamps are handled by the server. This can return an error for
1959 * file systems who need to allocate space in order to update an inode.
1960 */
1961
1962int file_update_time(struct file *file)
1963{
1964 struct inode *inode = file_inode(file);
1965 struct timespec64 now;
1966 int sync_it = 0;
1967 int ret;
1968
1969 /* First try to exhaust all avenues to not sync */
1970 if (IS_NOCMTIME(inode))
1971 return 0;
1972
1973 now = current_time(inode);
1974 if (!timespec64_equal(&inode->i_mtime, &now))
1975 sync_it = S_MTIME;
1976
1977 if (!timespec64_equal(&inode->i_ctime, &now))
1978 sync_it |= S_CTIME;
1979
1980 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1981 sync_it |= S_VERSION;
1982
1983 if (!sync_it)
1984 return 0;
1985
1986 /* Finally allowed to write? Takes lock. */
1987 if (__mnt_want_write_file(file))
1988 return 0;
1989
1990 ret = update_time(inode, &now, sync_it);
1991 __mnt_drop_write_file(file);
1992
1993 return ret;
1994}
1995EXPORT_SYMBOL(file_update_time);
1996
1997/* Caller must hold the file's inode lock */
1998int file_modified(struct file *file)
1999{
2000 int err;
2001
2002 /*
2003 * Clear the security bits if the process is not being run by root.
2004 * This keeps people from modifying setuid and setgid binaries.
2005 */
2006 err = file_remove_privs(file);
2007 if (err)
2008 return err;
2009
2010 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2011 return 0;
2012
2013 return file_update_time(file);
2014}
2015EXPORT_SYMBOL(file_modified);
2016
2017int inode_needs_sync(struct inode *inode)
2018{
2019 if (IS_SYNC(inode))
2020 return 1;
2021 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2022 return 1;
2023 return 0;
2024}
2025EXPORT_SYMBOL(inode_needs_sync);
2026
2027/*
2028 * If we try to find an inode in the inode hash while it is being
2029 * deleted, we have to wait until the filesystem completes its
2030 * deletion before reporting that it isn't found. This function waits
2031 * until the deletion _might_ have completed. Callers are responsible
2032 * to recheck inode state.
2033 *
2034 * It doesn't matter if I_NEW is not set initially, a call to
2035 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2036 * will DTRT.
2037 */
2038static void __wait_on_freeing_inode(struct inode *inode)
2039{
2040 wait_queue_head_t *wq;
2041 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2042 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2043 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2044 spin_unlock(&inode->i_lock);
2045 spin_unlock(&inode_hash_lock);
2046 schedule();
2047 finish_wait(wq, &wait.wq_entry);
2048 spin_lock(&inode_hash_lock);
2049}
2050
2051static __initdata unsigned long ihash_entries;
2052static int __init set_ihash_entries(char *str)
2053{
2054 if (!str)
2055 return 0;
2056 ihash_entries = simple_strtoul(str, &str, 0);
2057 return 1;
2058}
2059__setup("ihash_entries=", set_ihash_entries);
2060
2061/*
2062 * Initialize the waitqueues and inode hash table.
2063 */
2064void __init inode_init_early(void)
2065{
2066 /* If hashes are distributed across NUMA nodes, defer
2067 * hash allocation until vmalloc space is available.
2068 */
2069 if (hashdist)
2070 return;
2071
2072 inode_hashtable =
2073 alloc_large_system_hash("Inode-cache",
2074 sizeof(struct hlist_head),
2075 ihash_entries,
2076 14,
2077 HASH_EARLY | HASH_ZERO,
2078 &i_hash_shift,
2079 &i_hash_mask,
2080 0,
2081 0);
2082}
2083
2084void __init inode_init(void)
2085{
2086 /* inode slab cache */
2087 inode_cachep = kmem_cache_create("inode_cache",
2088 sizeof(struct inode),
2089 0,
2090 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2091 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2092 init_once);
2093
2094 /* Hash may have been set up in inode_init_early */
2095 if (!hashdist)
2096 return;
2097
2098 inode_hashtable =
2099 alloc_large_system_hash("Inode-cache",
2100 sizeof(struct hlist_head),
2101 ihash_entries,
2102 14,
2103 HASH_ZERO,
2104 &i_hash_shift,
2105 &i_hash_mask,
2106 0,
2107 0);
2108}
2109
2110void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2111{
2112 inode->i_mode = mode;
2113 if (S_ISCHR(mode)) {
2114 inode->i_fop = &def_chr_fops;
2115 inode->i_rdev = rdev;
2116 } else if (S_ISBLK(mode)) {
2117 inode->i_fop = &def_blk_fops;
2118 inode->i_rdev = rdev;
2119 } else if (S_ISFIFO(mode))
2120 inode->i_fop = &pipefifo_fops;
2121 else if (S_ISSOCK(mode))
2122 ; /* leave it no_open_fops */
2123 else
2124 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2125 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2126 inode->i_ino);
2127}
2128EXPORT_SYMBOL(init_special_inode);
2129
2130/**
2131 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2132 * @inode: New inode
2133 * @dir: Directory inode
2134 * @mode: mode of the new inode
2135 */
2136void inode_init_owner(struct inode *inode, const struct inode *dir,
2137 umode_t mode)
2138{
2139 inode->i_uid = current_fsuid();
2140 if (dir && dir->i_mode & S_ISGID) {
2141 inode->i_gid = dir->i_gid;
2142
2143 /* Directories are special, and always inherit S_ISGID */
2144 if (S_ISDIR(mode))
2145 mode |= S_ISGID;
2146 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2147 !in_group_p(inode->i_gid) &&
2148 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2149 mode &= ~S_ISGID;
2150 } else
2151 inode->i_gid = current_fsgid();
2152 inode->i_mode = mode;
2153}
2154EXPORT_SYMBOL(inode_init_owner);
2155
2156/**
2157 * inode_owner_or_capable - check current task permissions to inode
2158 * @inode: inode being checked
2159 *
2160 * Return true if current either has CAP_FOWNER in a namespace with the
2161 * inode owner uid mapped, or owns the file.
2162 */
2163bool inode_owner_or_capable(const struct inode *inode)
2164{
2165 struct user_namespace *ns;
2166
2167 if (uid_eq(current_fsuid(), inode->i_uid))
2168 return true;
2169
2170 ns = current_user_ns();
2171 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2172 return true;
2173 return false;
2174}
2175EXPORT_SYMBOL(inode_owner_or_capable);
2176
2177/*
2178 * Direct i/o helper functions
2179 */
2180static void __inode_dio_wait(struct inode *inode)
2181{
2182 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2183 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2184
2185 do {
2186 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2187 if (atomic_read(&inode->i_dio_count))
2188 schedule();
2189 } while (atomic_read(&inode->i_dio_count));
2190 finish_wait(wq, &q.wq_entry);
2191}
2192
2193/**
2194 * inode_dio_wait - wait for outstanding DIO requests to finish
2195 * @inode: inode to wait for
2196 *
2197 * Waits for all pending direct I/O requests to finish so that we can
2198 * proceed with a truncate or equivalent operation.
2199 *
2200 * Must be called under a lock that serializes taking new references
2201 * to i_dio_count, usually by inode->i_mutex.
2202 */
2203void inode_dio_wait(struct inode *inode)
2204{
2205 if (atomic_read(&inode->i_dio_count))
2206 __inode_dio_wait(inode);
2207}
2208EXPORT_SYMBOL(inode_dio_wait);
2209
2210/*
2211 * inode_set_flags - atomically set some inode flags
2212 *
2213 * Note: the caller should be holding i_mutex, or else be sure that
2214 * they have exclusive access to the inode structure (i.e., while the
2215 * inode is being instantiated). The reason for the cmpxchg() loop
2216 * --- which wouldn't be necessary if all code paths which modify
2217 * i_flags actually followed this rule, is that there is at least one
2218 * code path which doesn't today so we use cmpxchg() out of an abundance
2219 * of caution.
2220 *
2221 * In the long run, i_mutex is overkill, and we should probably look
2222 * at using the i_lock spinlock to protect i_flags, and then make sure
2223 * it is so documented in include/linux/fs.h and that all code follows
2224 * the locking convention!!
2225 */
2226void inode_set_flags(struct inode *inode, unsigned int flags,
2227 unsigned int mask)
2228{
2229 WARN_ON_ONCE(flags & ~mask);
2230 set_mask_bits(&inode->i_flags, mask, flags);
2231}
2232EXPORT_SYMBOL(inode_set_flags);
2233
2234void inode_nohighmem(struct inode *inode)
2235{
2236 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2237}
2238EXPORT_SYMBOL(inode_nohighmem);
2239
2240/**
2241 * timestamp_truncate - Truncate timespec to a granularity
2242 * @t: Timespec
2243 * @inode: inode being updated
2244 *
2245 * Truncate a timespec to the granularity supported by the fs
2246 * containing the inode. Always rounds down. gran must
2247 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2248 */
2249struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2250{
2251 struct super_block *sb = inode->i_sb;
2252 unsigned int gran = sb->s_time_gran;
2253
2254 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2255 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2256 t.tv_nsec = 0;
2257
2258 /* Avoid division in the common cases 1 ns and 1 s. */
2259 if (gran == 1)
2260 ; /* nothing */
2261 else if (gran == NSEC_PER_SEC)
2262 t.tv_nsec = 0;
2263 else if (gran > 1 && gran < NSEC_PER_SEC)
2264 t.tv_nsec -= t.tv_nsec % gran;
2265 else
2266 WARN(1, "invalid file time granularity: %u", gran);
2267 return t;
2268}
2269EXPORT_SYMBOL(timestamp_truncate);
2270
2271/**
2272 * current_time - Return FS time
2273 * @inode: inode.
2274 *
2275 * Return the current time truncated to the time granularity supported by
2276 * the fs.
2277 *
2278 * Note that inode and inode->sb cannot be NULL.
2279 * Otherwise, the function warns and returns time without truncation.
2280 */
2281struct timespec64 current_time(struct inode *inode)
2282{
2283 struct timespec64 now;
2284
2285 ktime_get_coarse_real_ts64(&now);
2286
2287 if (unlikely(!inode->i_sb)) {
2288 WARN(1, "current_time() called with uninitialized super_block in the inode");
2289 return now;
2290 }
2291
2292 return timestamp_truncate(now, inode);
2293}
2294EXPORT_SYMBOL(current_time);
2295
2296/*
2297 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2298 * configurations.
2299 *
2300 * Note: the caller should be holding i_mutex, or else be sure that they have
2301 * exclusive access to the inode structure.
2302 */
2303int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2304 unsigned int flags)
2305{
2306 /*
2307 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2308 * the relevant capability.
2309 *
2310 * This test looks nicer. Thanks to Pauline Middelink
2311 */
2312 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2313 !capable(CAP_LINUX_IMMUTABLE))
2314 return -EPERM;
2315
2316 return fscrypt_prepare_setflags(inode, oldflags, flags);
2317}
2318EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2319
2320/*
2321 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2322 * configurations.
2323 *
2324 * Note: the caller should be holding i_mutex, or else be sure that they have
2325 * exclusive access to the inode structure.
2326 */
2327int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2328 struct fsxattr *fa)
2329{
2330 /*
2331 * Can't modify an immutable/append-only file unless we have
2332 * appropriate permission.
2333 */
2334 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2335 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2336 !capable(CAP_LINUX_IMMUTABLE))
2337 return -EPERM;
2338
2339 /*
2340 * Project Quota ID state is only allowed to change from within the init
2341 * namespace. Enforce that restriction only if we are trying to change
2342 * the quota ID state. Everything else is allowed in user namespaces.
2343 */
2344 if (current_user_ns() != &init_user_ns) {
2345 if (old_fa->fsx_projid != fa->fsx_projid)
2346 return -EINVAL;
2347 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2348 FS_XFLAG_PROJINHERIT)
2349 return -EINVAL;
2350 }
2351
2352 /* Check extent size hints. */
2353 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2354 return -EINVAL;
2355
2356 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2357 !S_ISDIR(inode->i_mode))
2358 return -EINVAL;
2359
2360 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2361 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2362 return -EINVAL;
2363
2364 /*
2365 * It is only valid to set the DAX flag on regular files and
2366 * directories on filesystems.
2367 */
2368 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2369 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2370 return -EINVAL;
2371
2372 /* Extent size hints of zero turn off the flags. */
2373 if (fa->fsx_extsize == 0)
2374 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2375 if (fa->fsx_cowextsize == 0)
2376 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2377
2378 return 0;
2379}
2380EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
1/*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5#include <linux/export.h>
6#include <linux/fs.h>
7#include <linux/mm.h>
8#include <linux/backing-dev.h>
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
14#include <linux/fsnotify.h>
15#include <linux/mount.h>
16#include <linux/posix_acl.h>
17#include <linux/prefetch.h>
18#include <linux/buffer_head.h> /* for inode_has_buffers */
19#include <linux/ratelimit.h>
20#include <linux/list_lru.h>
21#include <trace/events/writeback.h>
22#include "internal.h"
23
24/*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55static unsigned int i_hash_mask __read_mostly;
56static unsigned int i_hash_shift __read_mostly;
57static struct hlist_head *inode_hashtable __read_mostly;
58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60/*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64const struct address_space_operations empty_aops = {
65};
66EXPORT_SYMBOL(empty_aops);
67
68/*
69 * Statistics gathering..
70 */
71struct inodes_stat_t inodes_stat;
72
73static DEFINE_PER_CPU(unsigned long, nr_inodes);
74static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76static struct kmem_cache *inode_cachep __read_mostly;
77
78static long get_nr_inodes(void)
79{
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85}
86
87static inline long get_nr_inodes_unused(void)
88{
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94}
95
96long get_nr_dirty_inodes(void)
97{
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101}
102
103/*
104 * Handle nr_inode sysctl
105 */
106#ifdef CONFIG_SYSCTL
107int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109{
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113}
114#endif
115
116static int no_open(struct inode *inode, struct file *file)
117{
118 return -ENXIO;
119}
120
121/**
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
129int inode_init_always(struct super_block *sb, struct inode *inode)
130{
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 i_uid_write(inode, 0);
144 i_gid_write(inode, 0);
145 atomic_set(&inode->i_writecount, 0);
146 inode->i_size = 0;
147 inode->i_blocks = 0;
148 inode->i_bytes = 0;
149 inode->i_generation = 0;
150 inode->i_pipe = NULL;
151 inode->i_bdev = NULL;
152 inode->i_cdev = NULL;
153 inode->i_link = NULL;
154 inode->i_rdev = 0;
155 inode->dirtied_when = 0;
156
157#ifdef CONFIG_CGROUP_WRITEBACK
158 inode->i_wb_frn_winner = 0;
159 inode->i_wb_frn_avg_time = 0;
160 inode->i_wb_frn_history = 0;
161#endif
162
163 if (security_inode_alloc(inode))
164 goto out;
165 spin_lock_init(&inode->i_lock);
166 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
167
168 mutex_init(&inode->i_mutex);
169 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
170
171 atomic_set(&inode->i_dio_count, 0);
172
173 mapping->a_ops = &empty_aops;
174 mapping->host = inode;
175 mapping->flags = 0;
176 atomic_set(&mapping->i_mmap_writable, 0);
177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 mapping->private_data = NULL;
179 mapping->writeback_index = 0;
180 inode->i_private = NULL;
181 inode->i_mapping = mapping;
182 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
183#ifdef CONFIG_FS_POSIX_ACL
184 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
185#endif
186
187#ifdef CONFIG_FSNOTIFY
188 inode->i_fsnotify_mask = 0;
189#endif
190 inode->i_flctx = NULL;
191 this_cpu_inc(nr_inodes);
192
193 return 0;
194out:
195 return -ENOMEM;
196}
197EXPORT_SYMBOL(inode_init_always);
198
199static struct inode *alloc_inode(struct super_block *sb)
200{
201 struct inode *inode;
202
203 if (sb->s_op->alloc_inode)
204 inode = sb->s_op->alloc_inode(sb);
205 else
206 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
207
208 if (!inode)
209 return NULL;
210
211 if (unlikely(inode_init_always(sb, inode))) {
212 if (inode->i_sb->s_op->destroy_inode)
213 inode->i_sb->s_op->destroy_inode(inode);
214 else
215 kmem_cache_free(inode_cachep, inode);
216 return NULL;
217 }
218
219 return inode;
220}
221
222void free_inode_nonrcu(struct inode *inode)
223{
224 kmem_cache_free(inode_cachep, inode);
225}
226EXPORT_SYMBOL(free_inode_nonrcu);
227
228void __destroy_inode(struct inode *inode)
229{
230 BUG_ON(inode_has_buffers(inode));
231 inode_detach_wb(inode);
232 security_inode_free(inode);
233 fsnotify_inode_delete(inode);
234 locks_free_lock_context(inode);
235 if (!inode->i_nlink) {
236 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
237 atomic_long_dec(&inode->i_sb->s_remove_count);
238 }
239
240#ifdef CONFIG_FS_POSIX_ACL
241 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
242 posix_acl_release(inode->i_acl);
243 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
244 posix_acl_release(inode->i_default_acl);
245#endif
246 this_cpu_dec(nr_inodes);
247}
248EXPORT_SYMBOL(__destroy_inode);
249
250static void i_callback(struct rcu_head *head)
251{
252 struct inode *inode = container_of(head, struct inode, i_rcu);
253 kmem_cache_free(inode_cachep, inode);
254}
255
256static void destroy_inode(struct inode *inode)
257{
258 BUG_ON(!list_empty(&inode->i_lru));
259 __destroy_inode(inode);
260 if (inode->i_sb->s_op->destroy_inode)
261 inode->i_sb->s_op->destroy_inode(inode);
262 else
263 call_rcu(&inode->i_rcu, i_callback);
264}
265
266/**
267 * drop_nlink - directly drop an inode's link count
268 * @inode: inode
269 *
270 * This is a low-level filesystem helper to replace any
271 * direct filesystem manipulation of i_nlink. In cases
272 * where we are attempting to track writes to the
273 * filesystem, a decrement to zero means an imminent
274 * write when the file is truncated and actually unlinked
275 * on the filesystem.
276 */
277void drop_nlink(struct inode *inode)
278{
279 WARN_ON(inode->i_nlink == 0);
280 inode->__i_nlink--;
281 if (!inode->i_nlink)
282 atomic_long_inc(&inode->i_sb->s_remove_count);
283}
284EXPORT_SYMBOL(drop_nlink);
285
286/**
287 * clear_nlink - directly zero an inode's link count
288 * @inode: inode
289 *
290 * This is a low-level filesystem helper to replace any
291 * direct filesystem manipulation of i_nlink. See
292 * drop_nlink() for why we care about i_nlink hitting zero.
293 */
294void clear_nlink(struct inode *inode)
295{
296 if (inode->i_nlink) {
297 inode->__i_nlink = 0;
298 atomic_long_inc(&inode->i_sb->s_remove_count);
299 }
300}
301EXPORT_SYMBOL(clear_nlink);
302
303/**
304 * set_nlink - directly set an inode's link count
305 * @inode: inode
306 * @nlink: new nlink (should be non-zero)
307 *
308 * This is a low-level filesystem helper to replace any
309 * direct filesystem manipulation of i_nlink.
310 */
311void set_nlink(struct inode *inode, unsigned int nlink)
312{
313 if (!nlink) {
314 clear_nlink(inode);
315 } else {
316 /* Yes, some filesystems do change nlink from zero to one */
317 if (inode->i_nlink == 0)
318 atomic_long_dec(&inode->i_sb->s_remove_count);
319
320 inode->__i_nlink = nlink;
321 }
322}
323EXPORT_SYMBOL(set_nlink);
324
325/**
326 * inc_nlink - directly increment an inode's link count
327 * @inode: inode
328 *
329 * This is a low-level filesystem helper to replace any
330 * direct filesystem manipulation of i_nlink. Currently,
331 * it is only here for parity with dec_nlink().
332 */
333void inc_nlink(struct inode *inode)
334{
335 if (unlikely(inode->i_nlink == 0)) {
336 WARN_ON(!(inode->i_state & I_LINKABLE));
337 atomic_long_dec(&inode->i_sb->s_remove_count);
338 }
339
340 inode->__i_nlink++;
341}
342EXPORT_SYMBOL(inc_nlink);
343
344void address_space_init_once(struct address_space *mapping)
345{
346 memset(mapping, 0, sizeof(*mapping));
347 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
348 spin_lock_init(&mapping->tree_lock);
349 init_rwsem(&mapping->i_mmap_rwsem);
350 INIT_LIST_HEAD(&mapping->private_list);
351 spin_lock_init(&mapping->private_lock);
352 mapping->i_mmap = RB_ROOT;
353}
354EXPORT_SYMBOL(address_space_init_once);
355
356/*
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
360 */
361void inode_init_once(struct inode *inode)
362{
363 memset(inode, 0, sizeof(*inode));
364 INIT_HLIST_NODE(&inode->i_hash);
365 INIT_LIST_HEAD(&inode->i_devices);
366 INIT_LIST_HEAD(&inode->i_io_list);
367 INIT_LIST_HEAD(&inode->i_lru);
368 address_space_init_once(&inode->i_data);
369 i_size_ordered_init(inode);
370#ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372#endif
373}
374EXPORT_SYMBOL(inode_init_once);
375
376static void init_once(void *foo)
377{
378 struct inode *inode = (struct inode *) foo;
379
380 inode_init_once(inode);
381}
382
383/*
384 * inode->i_lock must be held
385 */
386void __iget(struct inode *inode)
387{
388 atomic_inc(&inode->i_count);
389}
390
391/*
392 * get additional reference to inode; caller must already hold one.
393 */
394void ihold(struct inode *inode)
395{
396 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397}
398EXPORT_SYMBOL(ihold);
399
400static void inode_lru_list_add(struct inode *inode)
401{
402 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
403 this_cpu_inc(nr_unused);
404}
405
406/*
407 * Add inode to LRU if needed (inode is unused and clean).
408 *
409 * Needs inode->i_lock held.
410 */
411void inode_add_lru(struct inode *inode)
412{
413 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
414 I_FREEING | I_WILL_FREE)) &&
415 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
416 inode_lru_list_add(inode);
417}
418
419
420static void inode_lru_list_del(struct inode *inode)
421{
422
423 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
424 this_cpu_dec(nr_unused);
425}
426
427/**
428 * inode_sb_list_add - add inode to the superblock list of inodes
429 * @inode: inode to add
430 */
431void inode_sb_list_add(struct inode *inode)
432{
433 spin_lock(&inode->i_sb->s_inode_list_lock);
434 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
435 spin_unlock(&inode->i_sb->s_inode_list_lock);
436}
437EXPORT_SYMBOL_GPL(inode_sb_list_add);
438
439static inline void inode_sb_list_del(struct inode *inode)
440{
441 if (!list_empty(&inode->i_sb_list)) {
442 spin_lock(&inode->i_sb->s_inode_list_lock);
443 list_del_init(&inode->i_sb_list);
444 spin_unlock(&inode->i_sb->s_inode_list_lock);
445 }
446}
447
448static unsigned long hash(struct super_block *sb, unsigned long hashval)
449{
450 unsigned long tmp;
451
452 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
453 L1_CACHE_BYTES;
454 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
455 return tmp & i_hash_mask;
456}
457
458/**
459 * __insert_inode_hash - hash an inode
460 * @inode: unhashed inode
461 * @hashval: unsigned long value used to locate this object in the
462 * inode_hashtable.
463 *
464 * Add an inode to the inode hash for this superblock.
465 */
466void __insert_inode_hash(struct inode *inode, unsigned long hashval)
467{
468 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
469
470 spin_lock(&inode_hash_lock);
471 spin_lock(&inode->i_lock);
472 hlist_add_head(&inode->i_hash, b);
473 spin_unlock(&inode->i_lock);
474 spin_unlock(&inode_hash_lock);
475}
476EXPORT_SYMBOL(__insert_inode_hash);
477
478/**
479 * __remove_inode_hash - remove an inode from the hash
480 * @inode: inode to unhash
481 *
482 * Remove an inode from the superblock.
483 */
484void __remove_inode_hash(struct inode *inode)
485{
486 spin_lock(&inode_hash_lock);
487 spin_lock(&inode->i_lock);
488 hlist_del_init(&inode->i_hash);
489 spin_unlock(&inode->i_lock);
490 spin_unlock(&inode_hash_lock);
491}
492EXPORT_SYMBOL(__remove_inode_hash);
493
494void clear_inode(struct inode *inode)
495{
496 might_sleep();
497 /*
498 * We have to cycle tree_lock here because reclaim can be still in the
499 * process of removing the last page (in __delete_from_page_cache())
500 * and we must not free mapping under it.
501 */
502 spin_lock_irq(&inode->i_data.tree_lock);
503 BUG_ON(inode->i_data.nrpages);
504 BUG_ON(inode->i_data.nrexceptional);
505 spin_unlock_irq(&inode->i_data.tree_lock);
506 BUG_ON(!list_empty(&inode->i_data.private_list));
507 BUG_ON(!(inode->i_state & I_FREEING));
508 BUG_ON(inode->i_state & I_CLEAR);
509 /* don't need i_lock here, no concurrent mods to i_state */
510 inode->i_state = I_FREEING | I_CLEAR;
511}
512EXPORT_SYMBOL(clear_inode);
513
514/*
515 * Free the inode passed in, removing it from the lists it is still connected
516 * to. We remove any pages still attached to the inode and wait for any IO that
517 * is still in progress before finally destroying the inode.
518 *
519 * An inode must already be marked I_FREEING so that we avoid the inode being
520 * moved back onto lists if we race with other code that manipulates the lists
521 * (e.g. writeback_single_inode). The caller is responsible for setting this.
522 *
523 * An inode must already be removed from the LRU list before being evicted from
524 * the cache. This should occur atomically with setting the I_FREEING state
525 * flag, so no inodes here should ever be on the LRU when being evicted.
526 */
527static void evict(struct inode *inode)
528{
529 const struct super_operations *op = inode->i_sb->s_op;
530
531 BUG_ON(!(inode->i_state & I_FREEING));
532 BUG_ON(!list_empty(&inode->i_lru));
533
534 if (!list_empty(&inode->i_io_list))
535 inode_io_list_del(inode);
536
537 inode_sb_list_del(inode);
538
539 /*
540 * Wait for flusher thread to be done with the inode so that filesystem
541 * does not start destroying it while writeback is still running. Since
542 * the inode has I_FREEING set, flusher thread won't start new work on
543 * the inode. We just have to wait for running writeback to finish.
544 */
545 inode_wait_for_writeback(inode);
546
547 if (op->evict_inode) {
548 op->evict_inode(inode);
549 } else {
550 truncate_inode_pages_final(&inode->i_data);
551 clear_inode(inode);
552 }
553 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
554 bd_forget(inode);
555 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
556 cd_forget(inode);
557
558 remove_inode_hash(inode);
559
560 spin_lock(&inode->i_lock);
561 wake_up_bit(&inode->i_state, __I_NEW);
562 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
563 spin_unlock(&inode->i_lock);
564
565 destroy_inode(inode);
566}
567
568/*
569 * dispose_list - dispose of the contents of a local list
570 * @head: the head of the list to free
571 *
572 * Dispose-list gets a local list with local inodes in it, so it doesn't
573 * need to worry about list corruption and SMP locks.
574 */
575static void dispose_list(struct list_head *head)
576{
577 while (!list_empty(head)) {
578 struct inode *inode;
579
580 inode = list_first_entry(head, struct inode, i_lru);
581 list_del_init(&inode->i_lru);
582
583 evict(inode);
584 cond_resched();
585 }
586}
587
588/**
589 * evict_inodes - evict all evictable inodes for a superblock
590 * @sb: superblock to operate on
591 *
592 * Make sure that no inodes with zero refcount are retained. This is
593 * called by superblock shutdown after having MS_ACTIVE flag removed,
594 * so any inode reaching zero refcount during or after that call will
595 * be immediately evicted.
596 */
597void evict_inodes(struct super_block *sb)
598{
599 struct inode *inode, *next;
600 LIST_HEAD(dispose);
601
602again:
603 spin_lock(&sb->s_inode_list_lock);
604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 if (atomic_read(&inode->i_count))
606 continue;
607
608 spin_lock(&inode->i_lock);
609 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 spin_unlock(&inode->i_lock);
611 continue;
612 }
613
614 inode->i_state |= I_FREEING;
615 inode_lru_list_del(inode);
616 spin_unlock(&inode->i_lock);
617 list_add(&inode->i_lru, &dispose);
618
619 /*
620 * We can have a ton of inodes to evict at unmount time given
621 * enough memory, check to see if we need to go to sleep for a
622 * bit so we don't livelock.
623 */
624 if (need_resched()) {
625 spin_unlock(&sb->s_inode_list_lock);
626 cond_resched();
627 dispose_list(&dispose);
628 goto again;
629 }
630 }
631 spin_unlock(&sb->s_inode_list_lock);
632
633 dispose_list(&dispose);
634}
635
636/**
637 * invalidate_inodes - attempt to free all inodes on a superblock
638 * @sb: superblock to operate on
639 * @kill_dirty: flag to guide handling of dirty inodes
640 *
641 * Attempts to free all inodes for a given superblock. If there were any
642 * busy inodes return a non-zero value, else zero.
643 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
644 * them as busy.
645 */
646int invalidate_inodes(struct super_block *sb, bool kill_dirty)
647{
648 int busy = 0;
649 struct inode *inode, *next;
650 LIST_HEAD(dispose);
651
652 spin_lock(&sb->s_inode_list_lock);
653 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
654 spin_lock(&inode->i_lock);
655 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
656 spin_unlock(&inode->i_lock);
657 continue;
658 }
659 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
660 spin_unlock(&inode->i_lock);
661 busy = 1;
662 continue;
663 }
664 if (atomic_read(&inode->i_count)) {
665 spin_unlock(&inode->i_lock);
666 busy = 1;
667 continue;
668 }
669
670 inode->i_state |= I_FREEING;
671 inode_lru_list_del(inode);
672 spin_unlock(&inode->i_lock);
673 list_add(&inode->i_lru, &dispose);
674 }
675 spin_unlock(&sb->s_inode_list_lock);
676
677 dispose_list(&dispose);
678
679 return busy;
680}
681
682/*
683 * Isolate the inode from the LRU in preparation for freeing it.
684 *
685 * Any inodes which are pinned purely because of attached pagecache have their
686 * pagecache removed. If the inode has metadata buffers attached to
687 * mapping->private_list then try to remove them.
688 *
689 * If the inode has the I_REFERENCED flag set, then it means that it has been
690 * used recently - the flag is set in iput_final(). When we encounter such an
691 * inode, clear the flag and move it to the back of the LRU so it gets another
692 * pass through the LRU before it gets reclaimed. This is necessary because of
693 * the fact we are doing lazy LRU updates to minimise lock contention so the
694 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
695 * with this flag set because they are the inodes that are out of order.
696 */
697static enum lru_status inode_lru_isolate(struct list_head *item,
698 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
699{
700 struct list_head *freeable = arg;
701 struct inode *inode = container_of(item, struct inode, i_lru);
702
703 /*
704 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
705 * If we fail to get the lock, just skip it.
706 */
707 if (!spin_trylock(&inode->i_lock))
708 return LRU_SKIP;
709
710 /*
711 * Referenced or dirty inodes are still in use. Give them another pass
712 * through the LRU as we canot reclaim them now.
713 */
714 if (atomic_read(&inode->i_count) ||
715 (inode->i_state & ~I_REFERENCED)) {
716 list_lru_isolate(lru, &inode->i_lru);
717 spin_unlock(&inode->i_lock);
718 this_cpu_dec(nr_unused);
719 return LRU_REMOVED;
720 }
721
722 /* recently referenced inodes get one more pass */
723 if (inode->i_state & I_REFERENCED) {
724 inode->i_state &= ~I_REFERENCED;
725 spin_unlock(&inode->i_lock);
726 return LRU_ROTATE;
727 }
728
729 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
730 __iget(inode);
731 spin_unlock(&inode->i_lock);
732 spin_unlock(lru_lock);
733 if (remove_inode_buffers(inode)) {
734 unsigned long reap;
735 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
736 if (current_is_kswapd())
737 __count_vm_events(KSWAPD_INODESTEAL, reap);
738 else
739 __count_vm_events(PGINODESTEAL, reap);
740 if (current->reclaim_state)
741 current->reclaim_state->reclaimed_slab += reap;
742 }
743 iput(inode);
744 spin_lock(lru_lock);
745 return LRU_RETRY;
746 }
747
748 WARN_ON(inode->i_state & I_NEW);
749 inode->i_state |= I_FREEING;
750 list_lru_isolate_move(lru, &inode->i_lru, freeable);
751 spin_unlock(&inode->i_lock);
752
753 this_cpu_dec(nr_unused);
754 return LRU_REMOVED;
755}
756
757/*
758 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
759 * This is called from the superblock shrinker function with a number of inodes
760 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
761 * then are freed outside inode_lock by dispose_list().
762 */
763long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
764{
765 LIST_HEAD(freeable);
766 long freed;
767
768 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
769 inode_lru_isolate, &freeable);
770 dispose_list(&freeable);
771 return freed;
772}
773
774static void __wait_on_freeing_inode(struct inode *inode);
775/*
776 * Called with the inode lock held.
777 */
778static struct inode *find_inode(struct super_block *sb,
779 struct hlist_head *head,
780 int (*test)(struct inode *, void *),
781 void *data)
782{
783 struct inode *inode = NULL;
784
785repeat:
786 hlist_for_each_entry(inode, head, i_hash) {
787 if (inode->i_sb != sb)
788 continue;
789 if (!test(inode, data))
790 continue;
791 spin_lock(&inode->i_lock);
792 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
793 __wait_on_freeing_inode(inode);
794 goto repeat;
795 }
796 __iget(inode);
797 spin_unlock(&inode->i_lock);
798 return inode;
799 }
800 return NULL;
801}
802
803/*
804 * find_inode_fast is the fast path version of find_inode, see the comment at
805 * iget_locked for details.
806 */
807static struct inode *find_inode_fast(struct super_block *sb,
808 struct hlist_head *head, unsigned long ino)
809{
810 struct inode *inode = NULL;
811
812repeat:
813 hlist_for_each_entry(inode, head, i_hash) {
814 if (inode->i_ino != ino)
815 continue;
816 if (inode->i_sb != sb)
817 continue;
818 spin_lock(&inode->i_lock);
819 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
820 __wait_on_freeing_inode(inode);
821 goto repeat;
822 }
823 __iget(inode);
824 spin_unlock(&inode->i_lock);
825 return inode;
826 }
827 return NULL;
828}
829
830/*
831 * Each cpu owns a range of LAST_INO_BATCH numbers.
832 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
833 * to renew the exhausted range.
834 *
835 * This does not significantly increase overflow rate because every CPU can
836 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
837 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
838 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
839 * overflow rate by 2x, which does not seem too significant.
840 *
841 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
842 * error if st_ino won't fit in target struct field. Use 32bit counter
843 * here to attempt to avoid that.
844 */
845#define LAST_INO_BATCH 1024
846static DEFINE_PER_CPU(unsigned int, last_ino);
847
848unsigned int get_next_ino(void)
849{
850 unsigned int *p = &get_cpu_var(last_ino);
851 unsigned int res = *p;
852
853#ifdef CONFIG_SMP
854 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
855 static atomic_t shared_last_ino;
856 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
857
858 res = next - LAST_INO_BATCH;
859 }
860#endif
861
862 res++;
863 /* get_next_ino should not provide a 0 inode number */
864 if (unlikely(!res))
865 res++;
866 *p = res;
867 put_cpu_var(last_ino);
868 return res;
869}
870EXPORT_SYMBOL(get_next_ino);
871
872/**
873 * new_inode_pseudo - obtain an inode
874 * @sb: superblock
875 *
876 * Allocates a new inode for given superblock.
877 * Inode wont be chained in superblock s_inodes list
878 * This means :
879 * - fs can't be unmount
880 * - quotas, fsnotify, writeback can't work
881 */
882struct inode *new_inode_pseudo(struct super_block *sb)
883{
884 struct inode *inode = alloc_inode(sb);
885
886 if (inode) {
887 spin_lock(&inode->i_lock);
888 inode->i_state = 0;
889 spin_unlock(&inode->i_lock);
890 INIT_LIST_HEAD(&inode->i_sb_list);
891 }
892 return inode;
893}
894
895/**
896 * new_inode - obtain an inode
897 * @sb: superblock
898 *
899 * Allocates a new inode for given superblock. The default gfp_mask
900 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
901 * If HIGHMEM pages are unsuitable or it is known that pages allocated
902 * for the page cache are not reclaimable or migratable,
903 * mapping_set_gfp_mask() must be called with suitable flags on the
904 * newly created inode's mapping
905 *
906 */
907struct inode *new_inode(struct super_block *sb)
908{
909 struct inode *inode;
910
911 spin_lock_prefetch(&sb->s_inode_list_lock);
912
913 inode = new_inode_pseudo(sb);
914 if (inode)
915 inode_sb_list_add(inode);
916 return inode;
917}
918EXPORT_SYMBOL(new_inode);
919
920#ifdef CONFIG_DEBUG_LOCK_ALLOC
921void lockdep_annotate_inode_mutex_key(struct inode *inode)
922{
923 if (S_ISDIR(inode->i_mode)) {
924 struct file_system_type *type = inode->i_sb->s_type;
925
926 /* Set new key only if filesystem hasn't already changed it */
927 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
928 /*
929 * ensure nobody is actually holding i_mutex
930 */
931 mutex_destroy(&inode->i_mutex);
932 mutex_init(&inode->i_mutex);
933 lockdep_set_class(&inode->i_mutex,
934 &type->i_mutex_dir_key);
935 }
936 }
937}
938EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
939#endif
940
941/**
942 * unlock_new_inode - clear the I_NEW state and wake up any waiters
943 * @inode: new inode to unlock
944 *
945 * Called when the inode is fully initialised to clear the new state of the
946 * inode and wake up anyone waiting for the inode to finish initialisation.
947 */
948void unlock_new_inode(struct inode *inode)
949{
950 lockdep_annotate_inode_mutex_key(inode);
951 spin_lock(&inode->i_lock);
952 WARN_ON(!(inode->i_state & I_NEW));
953 inode->i_state &= ~I_NEW;
954 smp_mb();
955 wake_up_bit(&inode->i_state, __I_NEW);
956 spin_unlock(&inode->i_lock);
957}
958EXPORT_SYMBOL(unlock_new_inode);
959
960/**
961 * lock_two_nondirectories - take two i_mutexes on non-directory objects
962 *
963 * Lock any non-NULL argument that is not a directory.
964 * Zero, one or two objects may be locked by this function.
965 *
966 * @inode1: first inode to lock
967 * @inode2: second inode to lock
968 */
969void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
970{
971 if (inode1 > inode2)
972 swap(inode1, inode2);
973
974 if (inode1 && !S_ISDIR(inode1->i_mode))
975 inode_lock(inode1);
976 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
977 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
978}
979EXPORT_SYMBOL(lock_two_nondirectories);
980
981/**
982 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
983 * @inode1: first inode to unlock
984 * @inode2: second inode to unlock
985 */
986void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
987{
988 if (inode1 && !S_ISDIR(inode1->i_mode))
989 inode_unlock(inode1);
990 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
991 inode_unlock(inode2);
992}
993EXPORT_SYMBOL(unlock_two_nondirectories);
994
995/**
996 * iget5_locked - obtain an inode from a mounted file system
997 * @sb: super block of file system
998 * @hashval: hash value (usually inode number) to get
999 * @test: callback used for comparisons between inodes
1000 * @set: callback used to initialize a new struct inode
1001 * @data: opaque data pointer to pass to @test and @set
1002 *
1003 * Search for the inode specified by @hashval and @data in the inode cache,
1004 * and if present it is return it with an increased reference count. This is
1005 * a generalized version of iget_locked() for file systems where the inode
1006 * number is not sufficient for unique identification of an inode.
1007 *
1008 * If the inode is not in cache, allocate a new inode and return it locked,
1009 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1010 * before unlocking it via unlock_new_inode().
1011 *
1012 * Note both @test and @set are called with the inode_hash_lock held, so can't
1013 * sleep.
1014 */
1015struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1016 int (*test)(struct inode *, void *),
1017 int (*set)(struct inode *, void *), void *data)
1018{
1019 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1020 struct inode *inode;
1021
1022 spin_lock(&inode_hash_lock);
1023 inode = find_inode(sb, head, test, data);
1024 spin_unlock(&inode_hash_lock);
1025
1026 if (inode) {
1027 wait_on_inode(inode);
1028 return inode;
1029 }
1030
1031 inode = alloc_inode(sb);
1032 if (inode) {
1033 struct inode *old;
1034
1035 spin_lock(&inode_hash_lock);
1036 /* We released the lock, so.. */
1037 old = find_inode(sb, head, test, data);
1038 if (!old) {
1039 if (set(inode, data))
1040 goto set_failed;
1041
1042 spin_lock(&inode->i_lock);
1043 inode->i_state = I_NEW;
1044 hlist_add_head(&inode->i_hash, head);
1045 spin_unlock(&inode->i_lock);
1046 inode_sb_list_add(inode);
1047 spin_unlock(&inode_hash_lock);
1048
1049 /* Return the locked inode with I_NEW set, the
1050 * caller is responsible for filling in the contents
1051 */
1052 return inode;
1053 }
1054
1055 /*
1056 * Uhhuh, somebody else created the same inode under
1057 * us. Use the old inode instead of the one we just
1058 * allocated.
1059 */
1060 spin_unlock(&inode_hash_lock);
1061 destroy_inode(inode);
1062 inode = old;
1063 wait_on_inode(inode);
1064 }
1065 return inode;
1066
1067set_failed:
1068 spin_unlock(&inode_hash_lock);
1069 destroy_inode(inode);
1070 return NULL;
1071}
1072EXPORT_SYMBOL(iget5_locked);
1073
1074/**
1075 * iget_locked - obtain an inode from a mounted file system
1076 * @sb: super block of file system
1077 * @ino: inode number to get
1078 *
1079 * Search for the inode specified by @ino in the inode cache and if present
1080 * return it with an increased reference count. This is for file systems
1081 * where the inode number is sufficient for unique identification of an inode.
1082 *
1083 * If the inode is not in cache, allocate a new inode and return it locked,
1084 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1085 * before unlocking it via unlock_new_inode().
1086 */
1087struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1088{
1089 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1090 struct inode *inode;
1091
1092 spin_lock(&inode_hash_lock);
1093 inode = find_inode_fast(sb, head, ino);
1094 spin_unlock(&inode_hash_lock);
1095 if (inode) {
1096 wait_on_inode(inode);
1097 return inode;
1098 }
1099
1100 inode = alloc_inode(sb);
1101 if (inode) {
1102 struct inode *old;
1103
1104 spin_lock(&inode_hash_lock);
1105 /* We released the lock, so.. */
1106 old = find_inode_fast(sb, head, ino);
1107 if (!old) {
1108 inode->i_ino = ino;
1109 spin_lock(&inode->i_lock);
1110 inode->i_state = I_NEW;
1111 hlist_add_head(&inode->i_hash, head);
1112 spin_unlock(&inode->i_lock);
1113 inode_sb_list_add(inode);
1114 spin_unlock(&inode_hash_lock);
1115
1116 /* Return the locked inode with I_NEW set, the
1117 * caller is responsible for filling in the contents
1118 */
1119 return inode;
1120 }
1121
1122 /*
1123 * Uhhuh, somebody else created the same inode under
1124 * us. Use the old inode instead of the one we just
1125 * allocated.
1126 */
1127 spin_unlock(&inode_hash_lock);
1128 destroy_inode(inode);
1129 inode = old;
1130 wait_on_inode(inode);
1131 }
1132 return inode;
1133}
1134EXPORT_SYMBOL(iget_locked);
1135
1136/*
1137 * search the inode cache for a matching inode number.
1138 * If we find one, then the inode number we are trying to
1139 * allocate is not unique and so we should not use it.
1140 *
1141 * Returns 1 if the inode number is unique, 0 if it is not.
1142 */
1143static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1144{
1145 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1146 struct inode *inode;
1147
1148 spin_lock(&inode_hash_lock);
1149 hlist_for_each_entry(inode, b, i_hash) {
1150 if (inode->i_ino == ino && inode->i_sb == sb) {
1151 spin_unlock(&inode_hash_lock);
1152 return 0;
1153 }
1154 }
1155 spin_unlock(&inode_hash_lock);
1156
1157 return 1;
1158}
1159
1160/**
1161 * iunique - get a unique inode number
1162 * @sb: superblock
1163 * @max_reserved: highest reserved inode number
1164 *
1165 * Obtain an inode number that is unique on the system for a given
1166 * superblock. This is used by file systems that have no natural
1167 * permanent inode numbering system. An inode number is returned that
1168 * is higher than the reserved limit but unique.
1169 *
1170 * BUGS:
1171 * With a large number of inodes live on the file system this function
1172 * currently becomes quite slow.
1173 */
1174ino_t iunique(struct super_block *sb, ino_t max_reserved)
1175{
1176 /*
1177 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1178 * error if st_ino won't fit in target struct field. Use 32bit counter
1179 * here to attempt to avoid that.
1180 */
1181 static DEFINE_SPINLOCK(iunique_lock);
1182 static unsigned int counter;
1183 ino_t res;
1184
1185 spin_lock(&iunique_lock);
1186 do {
1187 if (counter <= max_reserved)
1188 counter = max_reserved + 1;
1189 res = counter++;
1190 } while (!test_inode_iunique(sb, res));
1191 spin_unlock(&iunique_lock);
1192
1193 return res;
1194}
1195EXPORT_SYMBOL(iunique);
1196
1197struct inode *igrab(struct inode *inode)
1198{
1199 spin_lock(&inode->i_lock);
1200 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1201 __iget(inode);
1202 spin_unlock(&inode->i_lock);
1203 } else {
1204 spin_unlock(&inode->i_lock);
1205 /*
1206 * Handle the case where s_op->clear_inode is not been
1207 * called yet, and somebody is calling igrab
1208 * while the inode is getting freed.
1209 */
1210 inode = NULL;
1211 }
1212 return inode;
1213}
1214EXPORT_SYMBOL(igrab);
1215
1216/**
1217 * ilookup5_nowait - search for an inode in the inode cache
1218 * @sb: super block of file system to search
1219 * @hashval: hash value (usually inode number) to search for
1220 * @test: callback used for comparisons between inodes
1221 * @data: opaque data pointer to pass to @test
1222 *
1223 * Search for the inode specified by @hashval and @data in the inode cache.
1224 * If the inode is in the cache, the inode is returned with an incremented
1225 * reference count.
1226 *
1227 * Note: I_NEW is not waited upon so you have to be very careful what you do
1228 * with the returned inode. You probably should be using ilookup5() instead.
1229 *
1230 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1231 */
1232struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1233 int (*test)(struct inode *, void *), void *data)
1234{
1235 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1236 struct inode *inode;
1237
1238 spin_lock(&inode_hash_lock);
1239 inode = find_inode(sb, head, test, data);
1240 spin_unlock(&inode_hash_lock);
1241
1242 return inode;
1243}
1244EXPORT_SYMBOL(ilookup5_nowait);
1245
1246/**
1247 * ilookup5 - search for an inode in the inode cache
1248 * @sb: super block of file system to search
1249 * @hashval: hash value (usually inode number) to search for
1250 * @test: callback used for comparisons between inodes
1251 * @data: opaque data pointer to pass to @test
1252 *
1253 * Search for the inode specified by @hashval and @data in the inode cache,
1254 * and if the inode is in the cache, return the inode with an incremented
1255 * reference count. Waits on I_NEW before returning the inode.
1256 * returned with an incremented reference count.
1257 *
1258 * This is a generalized version of ilookup() for file systems where the
1259 * inode number is not sufficient for unique identification of an inode.
1260 *
1261 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1262 */
1263struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1264 int (*test)(struct inode *, void *), void *data)
1265{
1266 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1267
1268 if (inode)
1269 wait_on_inode(inode);
1270 return inode;
1271}
1272EXPORT_SYMBOL(ilookup5);
1273
1274/**
1275 * ilookup - search for an inode in the inode cache
1276 * @sb: super block of file system to search
1277 * @ino: inode number to search for
1278 *
1279 * Search for the inode @ino in the inode cache, and if the inode is in the
1280 * cache, the inode is returned with an incremented reference count.
1281 */
1282struct inode *ilookup(struct super_block *sb, unsigned long ino)
1283{
1284 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1285 struct inode *inode;
1286
1287 spin_lock(&inode_hash_lock);
1288 inode = find_inode_fast(sb, head, ino);
1289 spin_unlock(&inode_hash_lock);
1290
1291 if (inode)
1292 wait_on_inode(inode);
1293 return inode;
1294}
1295EXPORT_SYMBOL(ilookup);
1296
1297/**
1298 * find_inode_nowait - find an inode in the inode cache
1299 * @sb: super block of file system to search
1300 * @hashval: hash value (usually inode number) to search for
1301 * @match: callback used for comparisons between inodes
1302 * @data: opaque data pointer to pass to @match
1303 *
1304 * Search for the inode specified by @hashval and @data in the inode
1305 * cache, where the helper function @match will return 0 if the inode
1306 * does not match, 1 if the inode does match, and -1 if the search
1307 * should be stopped. The @match function must be responsible for
1308 * taking the i_lock spin_lock and checking i_state for an inode being
1309 * freed or being initialized, and incrementing the reference count
1310 * before returning 1. It also must not sleep, since it is called with
1311 * the inode_hash_lock spinlock held.
1312 *
1313 * This is a even more generalized version of ilookup5() when the
1314 * function must never block --- find_inode() can block in
1315 * __wait_on_freeing_inode() --- or when the caller can not increment
1316 * the reference count because the resulting iput() might cause an
1317 * inode eviction. The tradeoff is that the @match funtion must be
1318 * very carefully implemented.
1319 */
1320struct inode *find_inode_nowait(struct super_block *sb,
1321 unsigned long hashval,
1322 int (*match)(struct inode *, unsigned long,
1323 void *),
1324 void *data)
1325{
1326 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1327 struct inode *inode, *ret_inode = NULL;
1328 int mval;
1329
1330 spin_lock(&inode_hash_lock);
1331 hlist_for_each_entry(inode, head, i_hash) {
1332 if (inode->i_sb != sb)
1333 continue;
1334 mval = match(inode, hashval, data);
1335 if (mval == 0)
1336 continue;
1337 if (mval == 1)
1338 ret_inode = inode;
1339 goto out;
1340 }
1341out:
1342 spin_unlock(&inode_hash_lock);
1343 return ret_inode;
1344}
1345EXPORT_SYMBOL(find_inode_nowait);
1346
1347int insert_inode_locked(struct inode *inode)
1348{
1349 struct super_block *sb = inode->i_sb;
1350 ino_t ino = inode->i_ino;
1351 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1352
1353 while (1) {
1354 struct inode *old = NULL;
1355 spin_lock(&inode_hash_lock);
1356 hlist_for_each_entry(old, head, i_hash) {
1357 if (old->i_ino != ino)
1358 continue;
1359 if (old->i_sb != sb)
1360 continue;
1361 spin_lock(&old->i_lock);
1362 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1363 spin_unlock(&old->i_lock);
1364 continue;
1365 }
1366 break;
1367 }
1368 if (likely(!old)) {
1369 spin_lock(&inode->i_lock);
1370 inode->i_state |= I_NEW;
1371 hlist_add_head(&inode->i_hash, head);
1372 spin_unlock(&inode->i_lock);
1373 spin_unlock(&inode_hash_lock);
1374 return 0;
1375 }
1376 __iget(old);
1377 spin_unlock(&old->i_lock);
1378 spin_unlock(&inode_hash_lock);
1379 wait_on_inode(old);
1380 if (unlikely(!inode_unhashed(old))) {
1381 iput(old);
1382 return -EBUSY;
1383 }
1384 iput(old);
1385 }
1386}
1387EXPORT_SYMBOL(insert_inode_locked);
1388
1389int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1390 int (*test)(struct inode *, void *), void *data)
1391{
1392 struct super_block *sb = inode->i_sb;
1393 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1394
1395 while (1) {
1396 struct inode *old = NULL;
1397
1398 spin_lock(&inode_hash_lock);
1399 hlist_for_each_entry(old, head, i_hash) {
1400 if (old->i_sb != sb)
1401 continue;
1402 if (!test(old, data))
1403 continue;
1404 spin_lock(&old->i_lock);
1405 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1406 spin_unlock(&old->i_lock);
1407 continue;
1408 }
1409 break;
1410 }
1411 if (likely(!old)) {
1412 spin_lock(&inode->i_lock);
1413 inode->i_state |= I_NEW;
1414 hlist_add_head(&inode->i_hash, head);
1415 spin_unlock(&inode->i_lock);
1416 spin_unlock(&inode_hash_lock);
1417 return 0;
1418 }
1419 __iget(old);
1420 spin_unlock(&old->i_lock);
1421 spin_unlock(&inode_hash_lock);
1422 wait_on_inode(old);
1423 if (unlikely(!inode_unhashed(old))) {
1424 iput(old);
1425 return -EBUSY;
1426 }
1427 iput(old);
1428 }
1429}
1430EXPORT_SYMBOL(insert_inode_locked4);
1431
1432
1433int generic_delete_inode(struct inode *inode)
1434{
1435 return 1;
1436}
1437EXPORT_SYMBOL(generic_delete_inode);
1438
1439/*
1440 * Called when we're dropping the last reference
1441 * to an inode.
1442 *
1443 * Call the FS "drop_inode()" function, defaulting to
1444 * the legacy UNIX filesystem behaviour. If it tells
1445 * us to evict inode, do so. Otherwise, retain inode
1446 * in cache if fs is alive, sync and evict if fs is
1447 * shutting down.
1448 */
1449static void iput_final(struct inode *inode)
1450{
1451 struct super_block *sb = inode->i_sb;
1452 const struct super_operations *op = inode->i_sb->s_op;
1453 int drop;
1454
1455 WARN_ON(inode->i_state & I_NEW);
1456
1457 if (op->drop_inode)
1458 drop = op->drop_inode(inode);
1459 else
1460 drop = generic_drop_inode(inode);
1461
1462 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1463 inode->i_state |= I_REFERENCED;
1464 inode_add_lru(inode);
1465 spin_unlock(&inode->i_lock);
1466 return;
1467 }
1468
1469 if (!drop) {
1470 inode->i_state |= I_WILL_FREE;
1471 spin_unlock(&inode->i_lock);
1472 write_inode_now(inode, 1);
1473 spin_lock(&inode->i_lock);
1474 WARN_ON(inode->i_state & I_NEW);
1475 inode->i_state &= ~I_WILL_FREE;
1476 }
1477
1478 inode->i_state |= I_FREEING;
1479 if (!list_empty(&inode->i_lru))
1480 inode_lru_list_del(inode);
1481 spin_unlock(&inode->i_lock);
1482
1483 evict(inode);
1484}
1485
1486/**
1487 * iput - put an inode
1488 * @inode: inode to put
1489 *
1490 * Puts an inode, dropping its usage count. If the inode use count hits
1491 * zero, the inode is then freed and may also be destroyed.
1492 *
1493 * Consequently, iput() can sleep.
1494 */
1495void iput(struct inode *inode)
1496{
1497 if (!inode)
1498 return;
1499 BUG_ON(inode->i_state & I_CLEAR);
1500retry:
1501 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1502 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1503 atomic_inc(&inode->i_count);
1504 inode->i_state &= ~I_DIRTY_TIME;
1505 spin_unlock(&inode->i_lock);
1506 trace_writeback_lazytime_iput(inode);
1507 mark_inode_dirty_sync(inode);
1508 goto retry;
1509 }
1510 iput_final(inode);
1511 }
1512}
1513EXPORT_SYMBOL(iput);
1514
1515/**
1516 * bmap - find a block number in a file
1517 * @inode: inode of file
1518 * @block: block to find
1519 *
1520 * Returns the block number on the device holding the inode that
1521 * is the disk block number for the block of the file requested.
1522 * That is, asked for block 4 of inode 1 the function will return the
1523 * disk block relative to the disk start that holds that block of the
1524 * file.
1525 */
1526sector_t bmap(struct inode *inode, sector_t block)
1527{
1528 sector_t res = 0;
1529 if (inode->i_mapping->a_ops->bmap)
1530 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1531 return res;
1532}
1533EXPORT_SYMBOL(bmap);
1534
1535/*
1536 * With relative atime, only update atime if the previous atime is
1537 * earlier than either the ctime or mtime or if at least a day has
1538 * passed since the last atime update.
1539 */
1540static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1541 struct timespec now)
1542{
1543
1544 if (!(mnt->mnt_flags & MNT_RELATIME))
1545 return 1;
1546 /*
1547 * Is mtime younger than atime? If yes, update atime:
1548 */
1549 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1550 return 1;
1551 /*
1552 * Is ctime younger than atime? If yes, update atime:
1553 */
1554 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1555 return 1;
1556
1557 /*
1558 * Is the previous atime value older than a day? If yes,
1559 * update atime:
1560 */
1561 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1562 return 1;
1563 /*
1564 * Good, we can skip the atime update:
1565 */
1566 return 0;
1567}
1568
1569int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1570{
1571 int iflags = I_DIRTY_TIME;
1572
1573 if (flags & S_ATIME)
1574 inode->i_atime = *time;
1575 if (flags & S_VERSION)
1576 inode_inc_iversion(inode);
1577 if (flags & S_CTIME)
1578 inode->i_ctime = *time;
1579 if (flags & S_MTIME)
1580 inode->i_mtime = *time;
1581
1582 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1583 iflags |= I_DIRTY_SYNC;
1584 __mark_inode_dirty(inode, iflags);
1585 return 0;
1586}
1587EXPORT_SYMBOL(generic_update_time);
1588
1589/*
1590 * This does the actual work of updating an inodes time or version. Must have
1591 * had called mnt_want_write() before calling this.
1592 */
1593static int update_time(struct inode *inode, struct timespec *time, int flags)
1594{
1595 int (*update_time)(struct inode *, struct timespec *, int);
1596
1597 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1598 generic_update_time;
1599
1600 return update_time(inode, time, flags);
1601}
1602
1603/**
1604 * touch_atime - update the access time
1605 * @path: the &struct path to update
1606 * @inode: inode to update
1607 *
1608 * Update the accessed time on an inode and mark it for writeback.
1609 * This function automatically handles read only file systems and media,
1610 * as well as the "noatime" flag and inode specific "noatime" markers.
1611 */
1612bool atime_needs_update(const struct path *path, struct inode *inode)
1613{
1614 struct vfsmount *mnt = path->mnt;
1615 struct timespec now;
1616
1617 if (inode->i_flags & S_NOATIME)
1618 return false;
1619 if (IS_NOATIME(inode))
1620 return false;
1621 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1622 return false;
1623
1624 if (mnt->mnt_flags & MNT_NOATIME)
1625 return false;
1626 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1627 return false;
1628
1629 now = current_fs_time(inode->i_sb);
1630
1631 if (!relatime_need_update(mnt, inode, now))
1632 return false;
1633
1634 if (timespec_equal(&inode->i_atime, &now))
1635 return false;
1636
1637 return true;
1638}
1639
1640void touch_atime(const struct path *path)
1641{
1642 struct vfsmount *mnt = path->mnt;
1643 struct inode *inode = d_inode(path->dentry);
1644 struct timespec now;
1645
1646 if (!atime_needs_update(path, inode))
1647 return;
1648
1649 if (!sb_start_write_trylock(inode->i_sb))
1650 return;
1651
1652 if (__mnt_want_write(mnt) != 0)
1653 goto skip_update;
1654 /*
1655 * File systems can error out when updating inodes if they need to
1656 * allocate new space to modify an inode (such is the case for
1657 * Btrfs), but since we touch atime while walking down the path we
1658 * really don't care if we failed to update the atime of the file,
1659 * so just ignore the return value.
1660 * We may also fail on filesystems that have the ability to make parts
1661 * of the fs read only, e.g. subvolumes in Btrfs.
1662 */
1663 now = current_fs_time(inode->i_sb);
1664 update_time(inode, &now, S_ATIME);
1665 __mnt_drop_write(mnt);
1666skip_update:
1667 sb_end_write(inode->i_sb);
1668}
1669EXPORT_SYMBOL(touch_atime);
1670
1671/*
1672 * The logic we want is
1673 *
1674 * if suid or (sgid and xgrp)
1675 * remove privs
1676 */
1677int should_remove_suid(struct dentry *dentry)
1678{
1679 umode_t mode = d_inode(dentry)->i_mode;
1680 int kill = 0;
1681
1682 /* suid always must be killed */
1683 if (unlikely(mode & S_ISUID))
1684 kill = ATTR_KILL_SUID;
1685
1686 /*
1687 * sgid without any exec bits is just a mandatory locking mark; leave
1688 * it alone. If some exec bits are set, it's a real sgid; kill it.
1689 */
1690 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1691 kill |= ATTR_KILL_SGID;
1692
1693 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1694 return kill;
1695
1696 return 0;
1697}
1698EXPORT_SYMBOL(should_remove_suid);
1699
1700/*
1701 * Return mask of changes for notify_change() that need to be done as a
1702 * response to write or truncate. Return 0 if nothing has to be changed.
1703 * Negative value on error (change should be denied).
1704 */
1705int dentry_needs_remove_privs(struct dentry *dentry)
1706{
1707 struct inode *inode = d_inode(dentry);
1708 int mask = 0;
1709 int ret;
1710
1711 if (IS_NOSEC(inode))
1712 return 0;
1713
1714 mask = should_remove_suid(dentry);
1715 ret = security_inode_need_killpriv(dentry);
1716 if (ret < 0)
1717 return ret;
1718 if (ret)
1719 mask |= ATTR_KILL_PRIV;
1720 return mask;
1721}
1722EXPORT_SYMBOL(dentry_needs_remove_privs);
1723
1724static int __remove_privs(struct dentry *dentry, int kill)
1725{
1726 struct iattr newattrs;
1727
1728 newattrs.ia_valid = ATTR_FORCE | kill;
1729 /*
1730 * Note we call this on write, so notify_change will not
1731 * encounter any conflicting delegations:
1732 */
1733 return notify_change(dentry, &newattrs, NULL);
1734}
1735
1736/*
1737 * Remove special file priviledges (suid, capabilities) when file is written
1738 * to or truncated.
1739 */
1740int file_remove_privs(struct file *file)
1741{
1742 struct dentry *dentry = file->f_path.dentry;
1743 struct inode *inode = d_inode(dentry);
1744 int kill;
1745 int error = 0;
1746
1747 /* Fast path for nothing security related */
1748 if (IS_NOSEC(inode))
1749 return 0;
1750
1751 kill = file_needs_remove_privs(file);
1752 if (kill < 0)
1753 return kill;
1754 if (kill)
1755 error = __remove_privs(dentry, kill);
1756 if (!error)
1757 inode_has_no_xattr(inode);
1758
1759 return error;
1760}
1761EXPORT_SYMBOL(file_remove_privs);
1762
1763/**
1764 * file_update_time - update mtime and ctime time
1765 * @file: file accessed
1766 *
1767 * Update the mtime and ctime members of an inode and mark the inode
1768 * for writeback. Note that this function is meant exclusively for
1769 * usage in the file write path of filesystems, and filesystems may
1770 * choose to explicitly ignore update via this function with the
1771 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1772 * timestamps are handled by the server. This can return an error for
1773 * file systems who need to allocate space in order to update an inode.
1774 */
1775
1776int file_update_time(struct file *file)
1777{
1778 struct inode *inode = file_inode(file);
1779 struct timespec now;
1780 int sync_it = 0;
1781 int ret;
1782
1783 /* First try to exhaust all avenues to not sync */
1784 if (IS_NOCMTIME(inode))
1785 return 0;
1786
1787 now = current_fs_time(inode->i_sb);
1788 if (!timespec_equal(&inode->i_mtime, &now))
1789 sync_it = S_MTIME;
1790
1791 if (!timespec_equal(&inode->i_ctime, &now))
1792 sync_it |= S_CTIME;
1793
1794 if (IS_I_VERSION(inode))
1795 sync_it |= S_VERSION;
1796
1797 if (!sync_it)
1798 return 0;
1799
1800 /* Finally allowed to write? Takes lock. */
1801 if (__mnt_want_write_file(file))
1802 return 0;
1803
1804 ret = update_time(inode, &now, sync_it);
1805 __mnt_drop_write_file(file);
1806
1807 return ret;
1808}
1809EXPORT_SYMBOL(file_update_time);
1810
1811int inode_needs_sync(struct inode *inode)
1812{
1813 if (IS_SYNC(inode))
1814 return 1;
1815 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1816 return 1;
1817 return 0;
1818}
1819EXPORT_SYMBOL(inode_needs_sync);
1820
1821/*
1822 * If we try to find an inode in the inode hash while it is being
1823 * deleted, we have to wait until the filesystem completes its
1824 * deletion before reporting that it isn't found. This function waits
1825 * until the deletion _might_ have completed. Callers are responsible
1826 * to recheck inode state.
1827 *
1828 * It doesn't matter if I_NEW is not set initially, a call to
1829 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1830 * will DTRT.
1831 */
1832static void __wait_on_freeing_inode(struct inode *inode)
1833{
1834 wait_queue_head_t *wq;
1835 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1836 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1837 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1838 spin_unlock(&inode->i_lock);
1839 spin_unlock(&inode_hash_lock);
1840 schedule();
1841 finish_wait(wq, &wait.wait);
1842 spin_lock(&inode_hash_lock);
1843}
1844
1845static __initdata unsigned long ihash_entries;
1846static int __init set_ihash_entries(char *str)
1847{
1848 if (!str)
1849 return 0;
1850 ihash_entries = simple_strtoul(str, &str, 0);
1851 return 1;
1852}
1853__setup("ihash_entries=", set_ihash_entries);
1854
1855/*
1856 * Initialize the waitqueues and inode hash table.
1857 */
1858void __init inode_init_early(void)
1859{
1860 unsigned int loop;
1861
1862 /* If hashes are distributed across NUMA nodes, defer
1863 * hash allocation until vmalloc space is available.
1864 */
1865 if (hashdist)
1866 return;
1867
1868 inode_hashtable =
1869 alloc_large_system_hash("Inode-cache",
1870 sizeof(struct hlist_head),
1871 ihash_entries,
1872 14,
1873 HASH_EARLY,
1874 &i_hash_shift,
1875 &i_hash_mask,
1876 0,
1877 0);
1878
1879 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1880 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1881}
1882
1883void __init inode_init(void)
1884{
1885 unsigned int loop;
1886
1887 /* inode slab cache */
1888 inode_cachep = kmem_cache_create("inode_cache",
1889 sizeof(struct inode),
1890 0,
1891 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1892 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1893 init_once);
1894
1895 /* Hash may have been set up in inode_init_early */
1896 if (!hashdist)
1897 return;
1898
1899 inode_hashtable =
1900 alloc_large_system_hash("Inode-cache",
1901 sizeof(struct hlist_head),
1902 ihash_entries,
1903 14,
1904 0,
1905 &i_hash_shift,
1906 &i_hash_mask,
1907 0,
1908 0);
1909
1910 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1911 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1912}
1913
1914void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1915{
1916 inode->i_mode = mode;
1917 if (S_ISCHR(mode)) {
1918 inode->i_fop = &def_chr_fops;
1919 inode->i_rdev = rdev;
1920 } else if (S_ISBLK(mode)) {
1921 inode->i_fop = &def_blk_fops;
1922 inode->i_rdev = rdev;
1923 } else if (S_ISFIFO(mode))
1924 inode->i_fop = &pipefifo_fops;
1925 else if (S_ISSOCK(mode))
1926 ; /* leave it no_open_fops */
1927 else
1928 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1929 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1930 inode->i_ino);
1931}
1932EXPORT_SYMBOL(init_special_inode);
1933
1934/**
1935 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1936 * @inode: New inode
1937 * @dir: Directory inode
1938 * @mode: mode of the new inode
1939 */
1940void inode_init_owner(struct inode *inode, const struct inode *dir,
1941 umode_t mode)
1942{
1943 inode->i_uid = current_fsuid();
1944 if (dir && dir->i_mode & S_ISGID) {
1945 inode->i_gid = dir->i_gid;
1946 if (S_ISDIR(mode))
1947 mode |= S_ISGID;
1948 } else
1949 inode->i_gid = current_fsgid();
1950 inode->i_mode = mode;
1951}
1952EXPORT_SYMBOL(inode_init_owner);
1953
1954/**
1955 * inode_owner_or_capable - check current task permissions to inode
1956 * @inode: inode being checked
1957 *
1958 * Return true if current either has CAP_FOWNER in a namespace with the
1959 * inode owner uid mapped, or owns the file.
1960 */
1961bool inode_owner_or_capable(const struct inode *inode)
1962{
1963 struct user_namespace *ns;
1964
1965 if (uid_eq(current_fsuid(), inode->i_uid))
1966 return true;
1967
1968 ns = current_user_ns();
1969 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1970 return true;
1971 return false;
1972}
1973EXPORT_SYMBOL(inode_owner_or_capable);
1974
1975/*
1976 * Direct i/o helper functions
1977 */
1978static void __inode_dio_wait(struct inode *inode)
1979{
1980 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1981 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1982
1983 do {
1984 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1985 if (atomic_read(&inode->i_dio_count))
1986 schedule();
1987 } while (atomic_read(&inode->i_dio_count));
1988 finish_wait(wq, &q.wait);
1989}
1990
1991/**
1992 * inode_dio_wait - wait for outstanding DIO requests to finish
1993 * @inode: inode to wait for
1994 *
1995 * Waits for all pending direct I/O requests to finish so that we can
1996 * proceed with a truncate or equivalent operation.
1997 *
1998 * Must be called under a lock that serializes taking new references
1999 * to i_dio_count, usually by inode->i_mutex.
2000 */
2001void inode_dio_wait(struct inode *inode)
2002{
2003 if (atomic_read(&inode->i_dio_count))
2004 __inode_dio_wait(inode);
2005}
2006EXPORT_SYMBOL(inode_dio_wait);
2007
2008/*
2009 * inode_set_flags - atomically set some inode flags
2010 *
2011 * Note: the caller should be holding i_mutex, or else be sure that
2012 * they have exclusive access to the inode structure (i.e., while the
2013 * inode is being instantiated). The reason for the cmpxchg() loop
2014 * --- which wouldn't be necessary if all code paths which modify
2015 * i_flags actually followed this rule, is that there is at least one
2016 * code path which doesn't today so we use cmpxchg() out of an abundance
2017 * of caution.
2018 *
2019 * In the long run, i_mutex is overkill, and we should probably look
2020 * at using the i_lock spinlock to protect i_flags, and then make sure
2021 * it is so documented in include/linux/fs.h and that all code follows
2022 * the locking convention!!
2023 */
2024void inode_set_flags(struct inode *inode, unsigned int flags,
2025 unsigned int mask)
2026{
2027 unsigned int old_flags, new_flags;
2028
2029 WARN_ON_ONCE(flags & ~mask);
2030 do {
2031 old_flags = ACCESS_ONCE(inode->i_flags);
2032 new_flags = (old_flags & ~mask) | flags;
2033 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2034 new_flags) != old_flags));
2035}
2036EXPORT_SYMBOL(inode_set_flags);
2037
2038void inode_nohighmem(struct inode *inode)
2039{
2040 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2041}
2042EXPORT_SYMBOL(inode_nohighmem);