Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
 
   8#include <linux/mm.h>
   9#include <linux/backing-dev.h>
  10#include <linux/hash.h>
  11#include <linux/swap.h>
  12#include <linux/security.h>
  13#include <linux/cdev.h>
  14#include <linux/memblock.h>
  15#include <linux/fscrypt.h>
  16#include <linux/fsnotify.h>
  17#include <linux/mount.h>
  18#include <linux/posix_acl.h>
  19#include <linux/prefetch.h>
  20#include <linux/buffer_head.h> /* for inode_has_buffers */
  21#include <linux/ratelimit.h>
  22#include <linux/list_lru.h>
  23#include <linux/iversion.h>
 
  24#include <trace/events/writeback.h>
  25#include "internal.h"
  26
  27/*
  28 * Inode locking rules:
  29 *
  30 * inode->i_lock protects:
  31 *   inode->i_state, inode->i_hash, __iget()
  32 * Inode LRU list locks protect:
  33 *   inode->i_sb->s_inode_lru, inode->i_lru
  34 * inode->i_sb->s_inode_list_lock protects:
  35 *   inode->i_sb->s_inodes, inode->i_sb_list
  36 * bdi->wb.list_lock protects:
  37 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  38 * inode_hash_lock protects:
  39 *   inode_hashtable, inode->i_hash
  40 *
  41 * Lock ordering:
  42 *
  43 * inode->i_sb->s_inode_list_lock
  44 *   inode->i_lock
  45 *     Inode LRU list locks
  46 *
  47 * bdi->wb.list_lock
  48 *   inode->i_lock
  49 *
  50 * inode_hash_lock
  51 *   inode->i_sb->s_inode_list_lock
  52 *   inode->i_lock
  53 *
  54 * iunique_lock
  55 *   inode_hash_lock
  56 */
  57
  58static unsigned int i_hash_mask __read_mostly;
  59static unsigned int i_hash_shift __read_mostly;
  60static struct hlist_head *inode_hashtable __read_mostly;
  61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  62
  63/*
  64 * Empty aops. Can be used for the cases where the user does not
  65 * define any of the address_space operations.
  66 */
  67const struct address_space_operations empty_aops = {
  68};
  69EXPORT_SYMBOL(empty_aops);
  70
  71/*
  72 * Statistics gathering..
  73 */
  74struct inodes_stat_t inodes_stat;
  75
  76static DEFINE_PER_CPU(unsigned long, nr_inodes);
  77static DEFINE_PER_CPU(unsigned long, nr_unused);
  78
  79static struct kmem_cache *inode_cachep __read_mostly;
  80
  81static long get_nr_inodes(void)
  82{
  83	int i;
  84	long sum = 0;
  85	for_each_possible_cpu(i)
  86		sum += per_cpu(nr_inodes, i);
  87	return sum < 0 ? 0 : sum;
  88}
  89
  90static inline long get_nr_inodes_unused(void)
  91{
  92	int i;
  93	long sum = 0;
  94	for_each_possible_cpu(i)
  95		sum += per_cpu(nr_unused, i);
  96	return sum < 0 ? 0 : sum;
  97}
  98
  99long get_nr_dirty_inodes(void)
 100{
 101	/* not actually dirty inodes, but a wild approximation */
 102	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 103	return nr_dirty > 0 ? nr_dirty : 0;
 104}
 105
 106/*
 107 * Handle nr_inode sysctl
 108 */
 109#ifdef CONFIG_SYSCTL
 110int proc_nr_inodes(struct ctl_table *table, int write,
 111		   void *buffer, size_t *lenp, loff_t *ppos)
 
 
 
 
 
 112{
 113	inodes_stat.nr_inodes = get_nr_inodes();
 114	inodes_stat.nr_unused = get_nr_inodes_unused();
 115	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 116}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117#endif
 118
 119static int no_open(struct inode *inode, struct file *file)
 120{
 121	return -ENXIO;
 122}
 123
 124/**
 125 * inode_init_always - perform inode structure initialisation
 126 * @sb: superblock inode belongs to
 127 * @inode: inode to initialise
 128 *
 129 * These are initializations that need to be done on every inode
 130 * allocation as the fields are not initialised by slab allocation.
 131 */
 132int inode_init_always(struct super_block *sb, struct inode *inode)
 133{
 134	static const struct inode_operations empty_iops;
 135	static const struct file_operations no_open_fops = {.open = no_open};
 136	struct address_space *const mapping = &inode->i_data;
 137
 138	inode->i_sb = sb;
 139	inode->i_blkbits = sb->s_blocksize_bits;
 140	inode->i_flags = 0;
 141	atomic64_set(&inode->i_sequence, 0);
 142	atomic_set(&inode->i_count, 1);
 143	inode->i_op = &empty_iops;
 144	inode->i_fop = &no_open_fops;
 
 145	inode->__i_nlink = 1;
 146	inode->i_opflags = 0;
 147	if (sb->s_xattr)
 148		inode->i_opflags |= IOP_XATTR;
 149	i_uid_write(inode, 0);
 150	i_gid_write(inode, 0);
 151	atomic_set(&inode->i_writecount, 0);
 152	inode->i_size = 0;
 153	inode->i_write_hint = WRITE_LIFE_NOT_SET;
 154	inode->i_blocks = 0;
 155	inode->i_bytes = 0;
 156	inode->i_generation = 0;
 157	inode->i_pipe = NULL;
 158	inode->i_bdev = NULL;
 159	inode->i_cdev = NULL;
 160	inode->i_link = NULL;
 161	inode->i_dir_seq = 0;
 162	inode->i_rdev = 0;
 163	inode->dirtied_when = 0;
 164
 165#ifdef CONFIG_CGROUP_WRITEBACK
 166	inode->i_wb_frn_winner = 0;
 167	inode->i_wb_frn_avg_time = 0;
 168	inode->i_wb_frn_history = 0;
 169#endif
 170
 171	if (security_inode_alloc(inode))
 172		goto out;
 173	spin_lock_init(&inode->i_lock);
 174	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 175
 176	init_rwsem(&inode->i_rwsem);
 177	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 178
 179	atomic_set(&inode->i_dio_count, 0);
 180
 181	mapping->a_ops = &empty_aops;
 182	mapping->host = inode;
 183	mapping->flags = 0;
 184	mapping->wb_err = 0;
 185	atomic_set(&mapping->i_mmap_writable, 0);
 186#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 187	atomic_set(&mapping->nr_thps, 0);
 188#endif
 189	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 190	mapping->private_data = NULL;
 191	mapping->writeback_index = 0;
 
 
 
 
 
 
 192	inode->i_private = NULL;
 193	inode->i_mapping = mapping;
 194	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 195#ifdef CONFIG_FS_POSIX_ACL
 196	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 197#endif
 198
 199#ifdef CONFIG_FSNOTIFY
 200	inode->i_fsnotify_mask = 0;
 201#endif
 202	inode->i_flctx = NULL;
 
 
 
 203	this_cpu_inc(nr_inodes);
 204
 205	return 0;
 206out:
 207	return -ENOMEM;
 208}
 209EXPORT_SYMBOL(inode_init_always);
 210
 211void free_inode_nonrcu(struct inode *inode)
 212{
 213	kmem_cache_free(inode_cachep, inode);
 214}
 215EXPORT_SYMBOL(free_inode_nonrcu);
 216
 217static void i_callback(struct rcu_head *head)
 218{
 219	struct inode *inode = container_of(head, struct inode, i_rcu);
 220	if (inode->free_inode)
 221		inode->free_inode(inode);
 222	else
 223		free_inode_nonrcu(inode);
 224}
 225
 226static struct inode *alloc_inode(struct super_block *sb)
 227{
 228	const struct super_operations *ops = sb->s_op;
 229	struct inode *inode;
 230
 231	if (ops->alloc_inode)
 232		inode = ops->alloc_inode(sb);
 233	else
 234		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 235
 236	if (!inode)
 237		return NULL;
 238
 239	if (unlikely(inode_init_always(sb, inode))) {
 240		if (ops->destroy_inode) {
 241			ops->destroy_inode(inode);
 242			if (!ops->free_inode)
 243				return NULL;
 244		}
 245		inode->free_inode = ops->free_inode;
 246		i_callback(&inode->i_rcu);
 247		return NULL;
 248	}
 249
 250	return inode;
 251}
 252
 253void __destroy_inode(struct inode *inode)
 254{
 255	BUG_ON(inode_has_buffers(inode));
 256	inode_detach_wb(inode);
 257	security_inode_free(inode);
 258	fsnotify_inode_delete(inode);
 259	locks_free_lock_context(inode);
 260	if (!inode->i_nlink) {
 261		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 262		atomic_long_dec(&inode->i_sb->s_remove_count);
 263	}
 264
 265#ifdef CONFIG_FS_POSIX_ACL
 266	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 267		posix_acl_release(inode->i_acl);
 268	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 269		posix_acl_release(inode->i_default_acl);
 270#endif
 271	this_cpu_dec(nr_inodes);
 272}
 273EXPORT_SYMBOL(__destroy_inode);
 274
 275static void destroy_inode(struct inode *inode)
 276{
 277	const struct super_operations *ops = inode->i_sb->s_op;
 278
 279	BUG_ON(!list_empty(&inode->i_lru));
 280	__destroy_inode(inode);
 281	if (ops->destroy_inode) {
 282		ops->destroy_inode(inode);
 283		if (!ops->free_inode)
 284			return;
 285	}
 286	inode->free_inode = ops->free_inode;
 287	call_rcu(&inode->i_rcu, i_callback);
 288}
 289
 290/**
 291 * drop_nlink - directly drop an inode's link count
 292 * @inode: inode
 293 *
 294 * This is a low-level filesystem helper to replace any
 295 * direct filesystem manipulation of i_nlink.  In cases
 296 * where we are attempting to track writes to the
 297 * filesystem, a decrement to zero means an imminent
 298 * write when the file is truncated and actually unlinked
 299 * on the filesystem.
 300 */
 301void drop_nlink(struct inode *inode)
 302{
 303	WARN_ON(inode->i_nlink == 0);
 304	inode->__i_nlink--;
 305	if (!inode->i_nlink)
 306		atomic_long_inc(&inode->i_sb->s_remove_count);
 307}
 308EXPORT_SYMBOL(drop_nlink);
 309
 310/**
 311 * clear_nlink - directly zero an inode's link count
 312 * @inode: inode
 313 *
 314 * This is a low-level filesystem helper to replace any
 315 * direct filesystem manipulation of i_nlink.  See
 316 * drop_nlink() for why we care about i_nlink hitting zero.
 317 */
 318void clear_nlink(struct inode *inode)
 319{
 320	if (inode->i_nlink) {
 321		inode->__i_nlink = 0;
 322		atomic_long_inc(&inode->i_sb->s_remove_count);
 323	}
 324}
 325EXPORT_SYMBOL(clear_nlink);
 326
 327/**
 328 * set_nlink - directly set an inode's link count
 329 * @inode: inode
 330 * @nlink: new nlink (should be non-zero)
 331 *
 332 * This is a low-level filesystem helper to replace any
 333 * direct filesystem manipulation of i_nlink.
 334 */
 335void set_nlink(struct inode *inode, unsigned int nlink)
 336{
 337	if (!nlink) {
 338		clear_nlink(inode);
 339	} else {
 340		/* Yes, some filesystems do change nlink from zero to one */
 341		if (inode->i_nlink == 0)
 342			atomic_long_dec(&inode->i_sb->s_remove_count);
 343
 344		inode->__i_nlink = nlink;
 345	}
 346}
 347EXPORT_SYMBOL(set_nlink);
 348
 349/**
 350 * inc_nlink - directly increment an inode's link count
 351 * @inode: inode
 352 *
 353 * This is a low-level filesystem helper to replace any
 354 * direct filesystem manipulation of i_nlink.  Currently,
 355 * it is only here for parity with dec_nlink().
 356 */
 357void inc_nlink(struct inode *inode)
 358{
 359	if (unlikely(inode->i_nlink == 0)) {
 360		WARN_ON(!(inode->i_state & I_LINKABLE));
 361		atomic_long_dec(&inode->i_sb->s_remove_count);
 362	}
 363
 364	inode->__i_nlink++;
 365}
 366EXPORT_SYMBOL(inc_nlink);
 367
 368static void __address_space_init_once(struct address_space *mapping)
 369{
 370	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 371	init_rwsem(&mapping->i_mmap_rwsem);
 372	INIT_LIST_HEAD(&mapping->private_list);
 373	spin_lock_init(&mapping->private_lock);
 374	mapping->i_mmap = RB_ROOT_CACHED;
 375}
 376
 377void address_space_init_once(struct address_space *mapping)
 378{
 379	memset(mapping, 0, sizeof(*mapping));
 380	__address_space_init_once(mapping);
 381}
 382EXPORT_SYMBOL(address_space_init_once);
 383
 384/*
 385 * These are initializations that only need to be done
 386 * once, because the fields are idempotent across use
 387 * of the inode, so let the slab aware of that.
 388 */
 389void inode_init_once(struct inode *inode)
 390{
 391	memset(inode, 0, sizeof(*inode));
 392	INIT_HLIST_NODE(&inode->i_hash);
 393	INIT_LIST_HEAD(&inode->i_devices);
 394	INIT_LIST_HEAD(&inode->i_io_list);
 395	INIT_LIST_HEAD(&inode->i_wb_list);
 396	INIT_LIST_HEAD(&inode->i_lru);
 
 397	__address_space_init_once(&inode->i_data);
 398	i_size_ordered_init(inode);
 399}
 400EXPORT_SYMBOL(inode_init_once);
 401
 402static void init_once(void *foo)
 403{
 404	struct inode *inode = (struct inode *) foo;
 405
 406	inode_init_once(inode);
 407}
 408
 409/*
 410 * inode->i_lock must be held
 411 */
 412void __iget(struct inode *inode)
 413{
 414	atomic_inc(&inode->i_count);
 415}
 416
 417/*
 418 * get additional reference to inode; caller must already hold one.
 419 */
 420void ihold(struct inode *inode)
 421{
 422	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 423}
 424EXPORT_SYMBOL(ihold);
 425
 426static void inode_lru_list_add(struct inode *inode)
 427{
 428	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 
 
 
 
 
 
 
 
 
 429		this_cpu_inc(nr_unused);
 430	else
 431		inode->i_state |= I_REFERENCED;
 432}
 433
 434/*
 435 * Add inode to LRU if needed (inode is unused and clean).
 436 *
 437 * Needs inode->i_lock held.
 438 */
 439void inode_add_lru(struct inode *inode)
 440{
 441	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 442				I_FREEING | I_WILL_FREE)) &&
 443	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
 444		inode_lru_list_add(inode);
 445}
 446
 447
 448static void inode_lru_list_del(struct inode *inode)
 449{
 450
 451	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 452		this_cpu_dec(nr_unused);
 453}
 454
 455/**
 456 * inode_sb_list_add - add inode to the superblock list of inodes
 457 * @inode: inode to add
 458 */
 459void inode_sb_list_add(struct inode *inode)
 460{
 461	spin_lock(&inode->i_sb->s_inode_list_lock);
 462	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 463	spin_unlock(&inode->i_sb->s_inode_list_lock);
 464}
 465EXPORT_SYMBOL_GPL(inode_sb_list_add);
 466
 467static inline void inode_sb_list_del(struct inode *inode)
 468{
 469	if (!list_empty(&inode->i_sb_list)) {
 470		spin_lock(&inode->i_sb->s_inode_list_lock);
 471		list_del_init(&inode->i_sb_list);
 472		spin_unlock(&inode->i_sb->s_inode_list_lock);
 473	}
 474}
 475
 476static unsigned long hash(struct super_block *sb, unsigned long hashval)
 477{
 478	unsigned long tmp;
 479
 480	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 481			L1_CACHE_BYTES;
 482	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 483	return tmp & i_hash_mask;
 484}
 485
 486/**
 487 *	__insert_inode_hash - hash an inode
 488 *	@inode: unhashed inode
 489 *	@hashval: unsigned long value used to locate this object in the
 490 *		inode_hashtable.
 491 *
 492 *	Add an inode to the inode hash for this superblock.
 493 */
 494void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 495{
 496	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 497
 498	spin_lock(&inode_hash_lock);
 499	spin_lock(&inode->i_lock);
 500	hlist_add_head_rcu(&inode->i_hash, b);
 501	spin_unlock(&inode->i_lock);
 502	spin_unlock(&inode_hash_lock);
 503}
 504EXPORT_SYMBOL(__insert_inode_hash);
 505
 506/**
 507 *	__remove_inode_hash - remove an inode from the hash
 508 *	@inode: inode to unhash
 509 *
 510 *	Remove an inode from the superblock.
 511 */
 512void __remove_inode_hash(struct inode *inode)
 513{
 514	spin_lock(&inode_hash_lock);
 515	spin_lock(&inode->i_lock);
 516	hlist_del_init_rcu(&inode->i_hash);
 517	spin_unlock(&inode->i_lock);
 518	spin_unlock(&inode_hash_lock);
 519}
 520EXPORT_SYMBOL(__remove_inode_hash);
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522void clear_inode(struct inode *inode)
 523{
 524	/*
 525	 * We have to cycle the i_pages lock here because reclaim can be in the
 526	 * process of removing the last page (in __delete_from_page_cache())
 527	 * and we must not free the mapping under it.
 528	 */
 529	xa_lock_irq(&inode->i_data.i_pages);
 530	BUG_ON(inode->i_data.nrpages);
 531	BUG_ON(inode->i_data.nrexceptional);
 
 
 
 
 
 
 
 532	xa_unlock_irq(&inode->i_data.i_pages);
 533	BUG_ON(!list_empty(&inode->i_data.private_list));
 534	BUG_ON(!(inode->i_state & I_FREEING));
 535	BUG_ON(inode->i_state & I_CLEAR);
 536	BUG_ON(!list_empty(&inode->i_wb_list));
 537	/* don't need i_lock here, no concurrent mods to i_state */
 538	inode->i_state = I_FREEING | I_CLEAR;
 539}
 540EXPORT_SYMBOL(clear_inode);
 541
 542/*
 543 * Free the inode passed in, removing it from the lists it is still connected
 544 * to. We remove any pages still attached to the inode and wait for any IO that
 545 * is still in progress before finally destroying the inode.
 546 *
 547 * An inode must already be marked I_FREEING so that we avoid the inode being
 548 * moved back onto lists if we race with other code that manipulates the lists
 549 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 550 *
 551 * An inode must already be removed from the LRU list before being evicted from
 552 * the cache. This should occur atomically with setting the I_FREEING state
 553 * flag, so no inodes here should ever be on the LRU when being evicted.
 554 */
 555static void evict(struct inode *inode)
 556{
 557	const struct super_operations *op = inode->i_sb->s_op;
 558
 559	BUG_ON(!(inode->i_state & I_FREEING));
 560	BUG_ON(!list_empty(&inode->i_lru));
 561
 562	if (!list_empty(&inode->i_io_list))
 563		inode_io_list_del(inode);
 564
 565	inode_sb_list_del(inode);
 566
 567	/*
 568	 * Wait for flusher thread to be done with the inode so that filesystem
 569	 * does not start destroying it while writeback is still running. Since
 570	 * the inode has I_FREEING set, flusher thread won't start new work on
 571	 * the inode.  We just have to wait for running writeback to finish.
 572	 */
 573	inode_wait_for_writeback(inode);
 574
 575	if (op->evict_inode) {
 576		op->evict_inode(inode);
 577	} else {
 578		truncate_inode_pages_final(&inode->i_data);
 579		clear_inode(inode);
 580	}
 581	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 582		bd_forget(inode);
 583	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 584		cd_forget(inode);
 585
 586	remove_inode_hash(inode);
 587
 588	spin_lock(&inode->i_lock);
 589	wake_up_bit(&inode->i_state, __I_NEW);
 590	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 591	spin_unlock(&inode->i_lock);
 592
 593	destroy_inode(inode);
 594}
 595
 596/*
 597 * dispose_list - dispose of the contents of a local list
 598 * @head: the head of the list to free
 599 *
 600 * Dispose-list gets a local list with local inodes in it, so it doesn't
 601 * need to worry about list corruption and SMP locks.
 602 */
 603static void dispose_list(struct list_head *head)
 604{
 605	while (!list_empty(head)) {
 606		struct inode *inode;
 607
 608		inode = list_first_entry(head, struct inode, i_lru);
 609		list_del_init(&inode->i_lru);
 610
 611		evict(inode);
 612		cond_resched();
 613	}
 614}
 615
 616/**
 617 * evict_inodes	- evict all evictable inodes for a superblock
 618 * @sb:		superblock to operate on
 619 *
 620 * Make sure that no inodes with zero refcount are retained.  This is
 621 * called by superblock shutdown after having SB_ACTIVE flag removed,
 622 * so any inode reaching zero refcount during or after that call will
 623 * be immediately evicted.
 624 */
 625void evict_inodes(struct super_block *sb)
 626{
 627	struct inode *inode, *next;
 628	LIST_HEAD(dispose);
 629
 630again:
 631	spin_lock(&sb->s_inode_list_lock);
 632	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 633		if (atomic_read(&inode->i_count))
 634			continue;
 635
 636		spin_lock(&inode->i_lock);
 637		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 638			spin_unlock(&inode->i_lock);
 639			continue;
 640		}
 641
 642		inode->i_state |= I_FREEING;
 643		inode_lru_list_del(inode);
 644		spin_unlock(&inode->i_lock);
 645		list_add(&inode->i_lru, &dispose);
 646
 647		/*
 648		 * We can have a ton of inodes to evict at unmount time given
 649		 * enough memory, check to see if we need to go to sleep for a
 650		 * bit so we don't livelock.
 651		 */
 652		if (need_resched()) {
 653			spin_unlock(&sb->s_inode_list_lock);
 654			cond_resched();
 655			dispose_list(&dispose);
 656			goto again;
 657		}
 658	}
 659	spin_unlock(&sb->s_inode_list_lock);
 660
 661	dispose_list(&dispose);
 662}
 663EXPORT_SYMBOL_GPL(evict_inodes);
 664
 665/**
 666 * invalidate_inodes	- attempt to free all inodes on a superblock
 667 * @sb:		superblock to operate on
 668 * @kill_dirty: flag to guide handling of dirty inodes
 669 *
 670 * Attempts to free all inodes for a given superblock.  If there were any
 671 * busy inodes return a non-zero value, else zero.
 672 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 673 * them as busy.
 674 */
 675int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 676{
 677	int busy = 0;
 678	struct inode *inode, *next;
 679	LIST_HEAD(dispose);
 680
 681again:
 682	spin_lock(&sb->s_inode_list_lock);
 683	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 684		spin_lock(&inode->i_lock);
 685		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 686			spin_unlock(&inode->i_lock);
 687			continue;
 688		}
 689		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 690			spin_unlock(&inode->i_lock);
 691			busy = 1;
 692			continue;
 693		}
 694		if (atomic_read(&inode->i_count)) {
 695			spin_unlock(&inode->i_lock);
 696			busy = 1;
 697			continue;
 698		}
 699
 700		inode->i_state |= I_FREEING;
 701		inode_lru_list_del(inode);
 702		spin_unlock(&inode->i_lock);
 703		list_add(&inode->i_lru, &dispose);
 704		if (need_resched()) {
 705			spin_unlock(&sb->s_inode_list_lock);
 706			cond_resched();
 707			dispose_list(&dispose);
 708			goto again;
 709		}
 710	}
 711	spin_unlock(&sb->s_inode_list_lock);
 712
 713	dispose_list(&dispose);
 714
 715	return busy;
 716}
 717
 718/*
 719 * Isolate the inode from the LRU in preparation for freeing it.
 720 *
 721 * Any inodes which are pinned purely because of attached pagecache have their
 722 * pagecache removed.  If the inode has metadata buffers attached to
 723 * mapping->private_list then try to remove them.
 724 *
 725 * If the inode has the I_REFERENCED flag set, then it means that it has been
 726 * used recently - the flag is set in iput_final(). When we encounter such an
 727 * inode, clear the flag and move it to the back of the LRU so it gets another
 728 * pass through the LRU before it gets reclaimed. This is necessary because of
 729 * the fact we are doing lazy LRU updates to minimise lock contention so the
 730 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 731 * with this flag set because they are the inodes that are out of order.
 732 */
 733static enum lru_status inode_lru_isolate(struct list_head *item,
 734		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 735{
 736	struct list_head *freeable = arg;
 737	struct inode	*inode = container_of(item, struct inode, i_lru);
 738
 739	/*
 740	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 741	 * If we fail to get the lock, just skip it.
 742	 */
 743	if (!spin_trylock(&inode->i_lock))
 744		return LRU_SKIP;
 745
 746	/*
 747	 * Referenced or dirty inodes are still in use. Give them another pass
 748	 * through the LRU as we canot reclaim them now.
 
 
 749	 */
 750	if (atomic_read(&inode->i_count) ||
 751	    (inode->i_state & ~I_REFERENCED)) {
 
 752		list_lru_isolate(lru, &inode->i_lru);
 753		spin_unlock(&inode->i_lock);
 754		this_cpu_dec(nr_unused);
 755		return LRU_REMOVED;
 756	}
 757
 758	/* recently referenced inodes get one more pass */
 759	if (inode->i_state & I_REFERENCED) {
 760		inode->i_state &= ~I_REFERENCED;
 761		spin_unlock(&inode->i_lock);
 762		return LRU_ROTATE;
 763	}
 764
 765	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 
 
 
 
 
 766		__iget(inode);
 767		spin_unlock(&inode->i_lock);
 768		spin_unlock(lru_lock);
 769		if (remove_inode_buffers(inode)) {
 770			unsigned long reap;
 771			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 772			if (current_is_kswapd())
 773				__count_vm_events(KSWAPD_INODESTEAL, reap);
 774			else
 775				__count_vm_events(PGINODESTEAL, reap);
 776			if (current->reclaim_state)
 777				current->reclaim_state->reclaimed_slab += reap;
 778		}
 779		iput(inode);
 780		spin_lock(lru_lock);
 781		return LRU_RETRY;
 782	}
 783
 784	WARN_ON(inode->i_state & I_NEW);
 785	inode->i_state |= I_FREEING;
 786	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 787	spin_unlock(&inode->i_lock);
 788
 789	this_cpu_dec(nr_unused);
 790	return LRU_REMOVED;
 791}
 792
 793/*
 794 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 795 * This is called from the superblock shrinker function with a number of inodes
 796 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 797 * then are freed outside inode_lock by dispose_list().
 798 */
 799long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 800{
 801	LIST_HEAD(freeable);
 802	long freed;
 803
 804	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 805				     inode_lru_isolate, &freeable);
 806	dispose_list(&freeable);
 807	return freed;
 808}
 809
 810static void __wait_on_freeing_inode(struct inode *inode);
 811/*
 812 * Called with the inode lock held.
 813 */
 814static struct inode *find_inode(struct super_block *sb,
 815				struct hlist_head *head,
 816				int (*test)(struct inode *, void *),
 817				void *data)
 818{
 819	struct inode *inode = NULL;
 820
 821repeat:
 822	hlist_for_each_entry(inode, head, i_hash) {
 823		if (inode->i_sb != sb)
 824			continue;
 825		if (!test(inode, data))
 826			continue;
 827		spin_lock(&inode->i_lock);
 828		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 829			__wait_on_freeing_inode(inode);
 830			goto repeat;
 831		}
 832		if (unlikely(inode->i_state & I_CREATING)) {
 833			spin_unlock(&inode->i_lock);
 834			return ERR_PTR(-ESTALE);
 835		}
 836		__iget(inode);
 837		spin_unlock(&inode->i_lock);
 838		return inode;
 839	}
 840	return NULL;
 841}
 842
 843/*
 844 * find_inode_fast is the fast path version of find_inode, see the comment at
 845 * iget_locked for details.
 846 */
 847static struct inode *find_inode_fast(struct super_block *sb,
 848				struct hlist_head *head, unsigned long ino)
 849{
 850	struct inode *inode = NULL;
 851
 852repeat:
 853	hlist_for_each_entry(inode, head, i_hash) {
 854		if (inode->i_ino != ino)
 855			continue;
 856		if (inode->i_sb != sb)
 857			continue;
 858		spin_lock(&inode->i_lock);
 859		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 860			__wait_on_freeing_inode(inode);
 861			goto repeat;
 862		}
 863		if (unlikely(inode->i_state & I_CREATING)) {
 864			spin_unlock(&inode->i_lock);
 865			return ERR_PTR(-ESTALE);
 866		}
 867		__iget(inode);
 868		spin_unlock(&inode->i_lock);
 869		return inode;
 870	}
 871	return NULL;
 872}
 873
 874/*
 875 * Each cpu owns a range of LAST_INO_BATCH numbers.
 876 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 877 * to renew the exhausted range.
 878 *
 879 * This does not significantly increase overflow rate because every CPU can
 880 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 881 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 882 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 883 * overflow rate by 2x, which does not seem too significant.
 884 *
 885 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 886 * error if st_ino won't fit in target struct field. Use 32bit counter
 887 * here to attempt to avoid that.
 888 */
 889#define LAST_INO_BATCH 1024
 890static DEFINE_PER_CPU(unsigned int, last_ino);
 891
 892unsigned int get_next_ino(void)
 893{
 894	unsigned int *p = &get_cpu_var(last_ino);
 895	unsigned int res = *p;
 896
 897#ifdef CONFIG_SMP
 898	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 899		static atomic_t shared_last_ino;
 900		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 901
 902		res = next - LAST_INO_BATCH;
 903	}
 904#endif
 905
 906	res++;
 907	/* get_next_ino should not provide a 0 inode number */
 908	if (unlikely(!res))
 909		res++;
 910	*p = res;
 911	put_cpu_var(last_ino);
 912	return res;
 913}
 914EXPORT_SYMBOL(get_next_ino);
 915
 916/**
 917 *	new_inode_pseudo 	- obtain an inode
 918 *	@sb: superblock
 919 *
 920 *	Allocates a new inode for given superblock.
 921 *	Inode wont be chained in superblock s_inodes list
 922 *	This means :
 923 *	- fs can't be unmount
 924 *	- quotas, fsnotify, writeback can't work
 925 */
 926struct inode *new_inode_pseudo(struct super_block *sb)
 927{
 928	struct inode *inode = alloc_inode(sb);
 929
 930	if (inode) {
 931		spin_lock(&inode->i_lock);
 932		inode->i_state = 0;
 933		spin_unlock(&inode->i_lock);
 934		INIT_LIST_HEAD(&inode->i_sb_list);
 935	}
 936	return inode;
 937}
 938
 939/**
 940 *	new_inode 	- obtain an inode
 941 *	@sb: superblock
 942 *
 943 *	Allocates a new inode for given superblock. The default gfp_mask
 944 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 945 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 946 *	for the page cache are not reclaimable or migratable,
 947 *	mapping_set_gfp_mask() must be called with suitable flags on the
 948 *	newly created inode's mapping
 949 *
 950 */
 951struct inode *new_inode(struct super_block *sb)
 952{
 953	struct inode *inode;
 954
 955	spin_lock_prefetch(&sb->s_inode_list_lock);
 956
 957	inode = new_inode_pseudo(sb);
 958	if (inode)
 959		inode_sb_list_add(inode);
 960	return inode;
 961}
 962EXPORT_SYMBOL(new_inode);
 963
 964#ifdef CONFIG_DEBUG_LOCK_ALLOC
 965void lockdep_annotate_inode_mutex_key(struct inode *inode)
 966{
 967	if (S_ISDIR(inode->i_mode)) {
 968		struct file_system_type *type = inode->i_sb->s_type;
 969
 970		/* Set new key only if filesystem hasn't already changed it */
 971		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 972			/*
 973			 * ensure nobody is actually holding i_mutex
 974			 */
 975			// mutex_destroy(&inode->i_mutex);
 976			init_rwsem(&inode->i_rwsem);
 977			lockdep_set_class(&inode->i_rwsem,
 978					  &type->i_mutex_dir_key);
 979		}
 980	}
 981}
 982EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 983#endif
 984
 985/**
 986 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 987 * @inode:	new inode to unlock
 988 *
 989 * Called when the inode is fully initialised to clear the new state of the
 990 * inode and wake up anyone waiting for the inode to finish initialisation.
 991 */
 992void unlock_new_inode(struct inode *inode)
 993{
 994	lockdep_annotate_inode_mutex_key(inode);
 995	spin_lock(&inode->i_lock);
 996	WARN_ON(!(inode->i_state & I_NEW));
 997	inode->i_state &= ~I_NEW & ~I_CREATING;
 998	smp_mb();
 999	wake_up_bit(&inode->i_state, __I_NEW);
1000	spin_unlock(&inode->i_lock);
1001}
1002EXPORT_SYMBOL(unlock_new_inode);
1003
1004void discard_new_inode(struct inode *inode)
1005{
1006	lockdep_annotate_inode_mutex_key(inode);
1007	spin_lock(&inode->i_lock);
1008	WARN_ON(!(inode->i_state & I_NEW));
1009	inode->i_state &= ~I_NEW;
1010	smp_mb();
1011	wake_up_bit(&inode->i_state, __I_NEW);
1012	spin_unlock(&inode->i_lock);
1013	iput(inode);
1014}
1015EXPORT_SYMBOL(discard_new_inode);
1016
1017/**
1018 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1019 *
1020 * Lock any non-NULL argument that is not a directory.
1021 * Zero, one or two objects may be locked by this function.
1022 *
1023 * @inode1: first inode to lock
1024 * @inode2: second inode to lock
1025 */
1026void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1027{
 
 
 
 
1028	if (inode1 > inode2)
1029		swap(inode1, inode2);
1030
1031	if (inode1 && !S_ISDIR(inode1->i_mode))
1032		inode_lock(inode1);
1033	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1034		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1035}
1036EXPORT_SYMBOL(lock_two_nondirectories);
1037
1038/**
1039 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1040 * @inode1: first inode to unlock
1041 * @inode2: second inode to unlock
1042 */
1043void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1044{
1045	if (inode1 && !S_ISDIR(inode1->i_mode))
 
1046		inode_unlock(inode1);
1047	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 
 
1048		inode_unlock(inode2);
 
1049}
1050EXPORT_SYMBOL(unlock_two_nondirectories);
1051
1052/**
1053 * inode_insert5 - obtain an inode from a mounted file system
1054 * @inode:	pre-allocated inode to use for insert to cache
1055 * @hashval:	hash value (usually inode number) to get
1056 * @test:	callback used for comparisons between inodes
1057 * @set:	callback used to initialize a new struct inode
1058 * @data:	opaque data pointer to pass to @test and @set
1059 *
1060 * Search for the inode specified by @hashval and @data in the inode cache,
1061 * and if present it is return it with an increased reference count. This is
1062 * a variant of iget5_locked() for callers that don't want to fail on memory
1063 * allocation of inode.
1064 *
1065 * If the inode is not in cache, insert the pre-allocated inode to cache and
1066 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1067 * to fill it in before unlocking it via unlock_new_inode().
1068 *
1069 * Note both @test and @set are called with the inode_hash_lock held, so can't
1070 * sleep.
1071 */
1072struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1073			    int (*test)(struct inode *, void *),
1074			    int (*set)(struct inode *, void *), void *data)
1075{
1076	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1077	struct inode *old;
1078	bool creating = inode->i_state & I_CREATING;
1079
1080again:
1081	spin_lock(&inode_hash_lock);
1082	old = find_inode(inode->i_sb, head, test, data);
1083	if (unlikely(old)) {
1084		/*
1085		 * Uhhuh, somebody else created the same inode under us.
1086		 * Use the old inode instead of the preallocated one.
1087		 */
1088		spin_unlock(&inode_hash_lock);
1089		if (IS_ERR(old))
1090			return NULL;
1091		wait_on_inode(old);
1092		if (unlikely(inode_unhashed(old))) {
1093			iput(old);
1094			goto again;
1095		}
1096		return old;
1097	}
1098
1099	if (set && unlikely(set(inode, data))) {
1100		inode = NULL;
1101		goto unlock;
1102	}
1103
1104	/*
1105	 * Return the locked inode with I_NEW set, the
1106	 * caller is responsible for filling in the contents
1107	 */
1108	spin_lock(&inode->i_lock);
1109	inode->i_state |= I_NEW;
1110	hlist_add_head_rcu(&inode->i_hash, head);
1111	spin_unlock(&inode->i_lock);
1112	if (!creating)
 
 
 
 
 
1113		inode_sb_list_add(inode);
1114unlock:
1115	spin_unlock(&inode_hash_lock);
1116
1117	return inode;
1118}
1119EXPORT_SYMBOL(inode_insert5);
1120
1121/**
1122 * iget5_locked - obtain an inode from a mounted file system
1123 * @sb:		super block of file system
1124 * @hashval:	hash value (usually inode number) to get
1125 * @test:	callback used for comparisons between inodes
1126 * @set:	callback used to initialize a new struct inode
1127 * @data:	opaque data pointer to pass to @test and @set
1128 *
1129 * Search for the inode specified by @hashval and @data in the inode cache,
1130 * and if present it is return it with an increased reference count. This is
1131 * a generalized version of iget_locked() for file systems where the inode
1132 * number is not sufficient for unique identification of an inode.
1133 *
1134 * If the inode is not in cache, allocate a new inode and return it locked,
1135 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1136 * before unlocking it via unlock_new_inode().
1137 *
1138 * Note both @test and @set are called with the inode_hash_lock held, so can't
1139 * sleep.
1140 */
1141struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1142		int (*test)(struct inode *, void *),
1143		int (*set)(struct inode *, void *), void *data)
1144{
1145	struct inode *inode = ilookup5(sb, hashval, test, data);
1146
1147	if (!inode) {
1148		struct inode *new = alloc_inode(sb);
1149
1150		if (new) {
1151			new->i_state = 0;
1152			inode = inode_insert5(new, hashval, test, set, data);
1153			if (unlikely(inode != new))
1154				destroy_inode(new);
1155		}
1156	}
1157	return inode;
1158}
1159EXPORT_SYMBOL(iget5_locked);
1160
1161/**
1162 * iget_locked - obtain an inode from a mounted file system
1163 * @sb:		super block of file system
1164 * @ino:	inode number to get
1165 *
1166 * Search for the inode specified by @ino in the inode cache and if present
1167 * return it with an increased reference count. This is for file systems
1168 * where the inode number is sufficient for unique identification of an inode.
1169 *
1170 * If the inode is not in cache, allocate a new inode and return it locked,
1171 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1172 * before unlocking it via unlock_new_inode().
1173 */
1174struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1175{
1176	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1177	struct inode *inode;
1178again:
1179	spin_lock(&inode_hash_lock);
1180	inode = find_inode_fast(sb, head, ino);
1181	spin_unlock(&inode_hash_lock);
1182	if (inode) {
1183		if (IS_ERR(inode))
1184			return NULL;
1185		wait_on_inode(inode);
1186		if (unlikely(inode_unhashed(inode))) {
1187			iput(inode);
1188			goto again;
1189		}
1190		return inode;
1191	}
1192
1193	inode = alloc_inode(sb);
1194	if (inode) {
1195		struct inode *old;
1196
1197		spin_lock(&inode_hash_lock);
1198		/* We released the lock, so.. */
1199		old = find_inode_fast(sb, head, ino);
1200		if (!old) {
1201			inode->i_ino = ino;
1202			spin_lock(&inode->i_lock);
1203			inode->i_state = I_NEW;
1204			hlist_add_head_rcu(&inode->i_hash, head);
1205			spin_unlock(&inode->i_lock);
1206			inode_sb_list_add(inode);
1207			spin_unlock(&inode_hash_lock);
1208
1209			/* Return the locked inode with I_NEW set, the
1210			 * caller is responsible for filling in the contents
1211			 */
1212			return inode;
1213		}
1214
1215		/*
1216		 * Uhhuh, somebody else created the same inode under
1217		 * us. Use the old inode instead of the one we just
1218		 * allocated.
1219		 */
1220		spin_unlock(&inode_hash_lock);
1221		destroy_inode(inode);
1222		if (IS_ERR(old))
1223			return NULL;
1224		inode = old;
1225		wait_on_inode(inode);
1226		if (unlikely(inode_unhashed(inode))) {
1227			iput(inode);
1228			goto again;
1229		}
1230	}
1231	return inode;
1232}
1233EXPORT_SYMBOL(iget_locked);
1234
1235/*
1236 * search the inode cache for a matching inode number.
1237 * If we find one, then the inode number we are trying to
1238 * allocate is not unique and so we should not use it.
1239 *
1240 * Returns 1 if the inode number is unique, 0 if it is not.
1241 */
1242static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1243{
1244	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1245	struct inode *inode;
1246
1247	hlist_for_each_entry_rcu(inode, b, i_hash) {
1248		if (inode->i_ino == ino && inode->i_sb == sb)
1249			return 0;
1250	}
1251	return 1;
1252}
1253
1254/**
1255 *	iunique - get a unique inode number
1256 *	@sb: superblock
1257 *	@max_reserved: highest reserved inode number
1258 *
1259 *	Obtain an inode number that is unique on the system for a given
1260 *	superblock. This is used by file systems that have no natural
1261 *	permanent inode numbering system. An inode number is returned that
1262 *	is higher than the reserved limit but unique.
1263 *
1264 *	BUGS:
1265 *	With a large number of inodes live on the file system this function
1266 *	currently becomes quite slow.
1267 */
1268ino_t iunique(struct super_block *sb, ino_t max_reserved)
1269{
1270	/*
1271	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1272	 * error if st_ino won't fit in target struct field. Use 32bit counter
1273	 * here to attempt to avoid that.
1274	 */
1275	static DEFINE_SPINLOCK(iunique_lock);
1276	static unsigned int counter;
1277	ino_t res;
1278
1279	rcu_read_lock();
1280	spin_lock(&iunique_lock);
1281	do {
1282		if (counter <= max_reserved)
1283			counter = max_reserved + 1;
1284		res = counter++;
1285	} while (!test_inode_iunique(sb, res));
1286	spin_unlock(&iunique_lock);
1287	rcu_read_unlock();
1288
1289	return res;
1290}
1291EXPORT_SYMBOL(iunique);
1292
1293struct inode *igrab(struct inode *inode)
1294{
1295	spin_lock(&inode->i_lock);
1296	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1297		__iget(inode);
1298		spin_unlock(&inode->i_lock);
1299	} else {
1300		spin_unlock(&inode->i_lock);
1301		/*
1302		 * Handle the case where s_op->clear_inode is not been
1303		 * called yet, and somebody is calling igrab
1304		 * while the inode is getting freed.
1305		 */
1306		inode = NULL;
1307	}
1308	return inode;
1309}
1310EXPORT_SYMBOL(igrab);
1311
1312/**
1313 * ilookup5_nowait - search for an inode in the inode cache
1314 * @sb:		super block of file system to search
1315 * @hashval:	hash value (usually inode number) to search for
1316 * @test:	callback used for comparisons between inodes
1317 * @data:	opaque data pointer to pass to @test
1318 *
1319 * Search for the inode specified by @hashval and @data in the inode cache.
1320 * If the inode is in the cache, the inode is returned with an incremented
1321 * reference count.
1322 *
1323 * Note: I_NEW is not waited upon so you have to be very careful what you do
1324 * with the returned inode.  You probably should be using ilookup5() instead.
1325 *
1326 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1327 */
1328struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1329		int (*test)(struct inode *, void *), void *data)
1330{
1331	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332	struct inode *inode;
1333
1334	spin_lock(&inode_hash_lock);
1335	inode = find_inode(sb, head, test, data);
1336	spin_unlock(&inode_hash_lock);
1337
1338	return IS_ERR(inode) ? NULL : inode;
1339}
1340EXPORT_SYMBOL(ilookup5_nowait);
1341
1342/**
1343 * ilookup5 - search for an inode in the inode cache
1344 * @sb:		super block of file system to search
1345 * @hashval:	hash value (usually inode number) to search for
1346 * @test:	callback used for comparisons between inodes
1347 * @data:	opaque data pointer to pass to @test
1348 *
1349 * Search for the inode specified by @hashval and @data in the inode cache,
1350 * and if the inode is in the cache, return the inode with an incremented
1351 * reference count.  Waits on I_NEW before returning the inode.
1352 * returned with an incremented reference count.
1353 *
1354 * This is a generalized version of ilookup() for file systems where the
1355 * inode number is not sufficient for unique identification of an inode.
1356 *
1357 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1358 */
1359struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1360		int (*test)(struct inode *, void *), void *data)
1361{
1362	struct inode *inode;
1363again:
1364	inode = ilookup5_nowait(sb, hashval, test, data);
1365	if (inode) {
1366		wait_on_inode(inode);
1367		if (unlikely(inode_unhashed(inode))) {
1368			iput(inode);
1369			goto again;
1370		}
1371	}
1372	return inode;
1373}
1374EXPORT_SYMBOL(ilookup5);
1375
1376/**
1377 * ilookup - search for an inode in the inode cache
1378 * @sb:		super block of file system to search
1379 * @ino:	inode number to search for
1380 *
1381 * Search for the inode @ino in the inode cache, and if the inode is in the
1382 * cache, the inode is returned with an incremented reference count.
1383 */
1384struct inode *ilookup(struct super_block *sb, unsigned long ino)
1385{
1386	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1387	struct inode *inode;
1388again:
1389	spin_lock(&inode_hash_lock);
1390	inode = find_inode_fast(sb, head, ino);
1391	spin_unlock(&inode_hash_lock);
1392
1393	if (inode) {
1394		if (IS_ERR(inode))
1395			return NULL;
1396		wait_on_inode(inode);
1397		if (unlikely(inode_unhashed(inode))) {
1398			iput(inode);
1399			goto again;
1400		}
1401	}
1402	return inode;
1403}
1404EXPORT_SYMBOL(ilookup);
1405
1406/**
1407 * find_inode_nowait - find an inode in the inode cache
1408 * @sb:		super block of file system to search
1409 * @hashval:	hash value (usually inode number) to search for
1410 * @match:	callback used for comparisons between inodes
1411 * @data:	opaque data pointer to pass to @match
1412 *
1413 * Search for the inode specified by @hashval and @data in the inode
1414 * cache, where the helper function @match will return 0 if the inode
1415 * does not match, 1 if the inode does match, and -1 if the search
1416 * should be stopped.  The @match function must be responsible for
1417 * taking the i_lock spin_lock and checking i_state for an inode being
1418 * freed or being initialized, and incrementing the reference count
1419 * before returning 1.  It also must not sleep, since it is called with
1420 * the inode_hash_lock spinlock held.
1421 *
1422 * This is a even more generalized version of ilookup5() when the
1423 * function must never block --- find_inode() can block in
1424 * __wait_on_freeing_inode() --- or when the caller can not increment
1425 * the reference count because the resulting iput() might cause an
1426 * inode eviction.  The tradeoff is that the @match funtion must be
1427 * very carefully implemented.
1428 */
1429struct inode *find_inode_nowait(struct super_block *sb,
1430				unsigned long hashval,
1431				int (*match)(struct inode *, unsigned long,
1432					     void *),
1433				void *data)
1434{
1435	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1436	struct inode *inode, *ret_inode = NULL;
1437	int mval;
1438
1439	spin_lock(&inode_hash_lock);
1440	hlist_for_each_entry(inode, head, i_hash) {
1441		if (inode->i_sb != sb)
1442			continue;
1443		mval = match(inode, hashval, data);
1444		if (mval == 0)
1445			continue;
1446		if (mval == 1)
1447			ret_inode = inode;
1448		goto out;
1449	}
1450out:
1451	spin_unlock(&inode_hash_lock);
1452	return ret_inode;
1453}
1454EXPORT_SYMBOL(find_inode_nowait);
1455
1456/**
1457 * find_inode_rcu - find an inode in the inode cache
1458 * @sb:		Super block of file system to search
1459 * @hashval:	Key to hash
1460 * @test:	Function to test match on an inode
1461 * @data:	Data for test function
1462 *
1463 * Search for the inode specified by @hashval and @data in the inode cache,
1464 * where the helper function @test will return 0 if the inode does not match
1465 * and 1 if it does.  The @test function must be responsible for taking the
1466 * i_lock spin_lock and checking i_state for an inode being freed or being
1467 * initialized.
1468 *
1469 * If successful, this will return the inode for which the @test function
1470 * returned 1 and NULL otherwise.
1471 *
1472 * The @test function is not permitted to take a ref on any inode presented.
1473 * It is also not permitted to sleep.
1474 *
1475 * The caller must hold the RCU read lock.
1476 */
1477struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1478			     int (*test)(struct inode *, void *), void *data)
1479{
1480	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1481	struct inode *inode;
1482
1483	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1484			 "suspicious find_inode_rcu() usage");
1485
1486	hlist_for_each_entry_rcu(inode, head, i_hash) {
1487		if (inode->i_sb == sb &&
1488		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1489		    test(inode, data))
1490			return inode;
1491	}
1492	return NULL;
1493}
1494EXPORT_SYMBOL(find_inode_rcu);
1495
1496/**
1497 * find_inode_by_rcu - Find an inode in the inode cache
1498 * @sb:		Super block of file system to search
1499 * @ino:	The inode number to match
1500 *
1501 * Search for the inode specified by @hashval and @data in the inode cache,
1502 * where the helper function @test will return 0 if the inode does not match
1503 * and 1 if it does.  The @test function must be responsible for taking the
1504 * i_lock spin_lock and checking i_state for an inode being freed or being
1505 * initialized.
1506 *
1507 * If successful, this will return the inode for which the @test function
1508 * returned 1 and NULL otherwise.
1509 *
1510 * The @test function is not permitted to take a ref on any inode presented.
1511 * It is also not permitted to sleep.
1512 *
1513 * The caller must hold the RCU read lock.
1514 */
1515struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1516				    unsigned long ino)
1517{
1518	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1519	struct inode *inode;
1520
1521	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1522			 "suspicious find_inode_by_ino_rcu() usage");
1523
1524	hlist_for_each_entry_rcu(inode, head, i_hash) {
1525		if (inode->i_ino == ino &&
1526		    inode->i_sb == sb &&
1527		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1528		    return inode;
1529	}
1530	return NULL;
1531}
1532EXPORT_SYMBOL(find_inode_by_ino_rcu);
1533
1534int insert_inode_locked(struct inode *inode)
1535{
1536	struct super_block *sb = inode->i_sb;
1537	ino_t ino = inode->i_ino;
1538	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1539
1540	while (1) {
1541		struct inode *old = NULL;
1542		spin_lock(&inode_hash_lock);
1543		hlist_for_each_entry(old, head, i_hash) {
1544			if (old->i_ino != ino)
1545				continue;
1546			if (old->i_sb != sb)
1547				continue;
1548			spin_lock(&old->i_lock);
1549			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1550				spin_unlock(&old->i_lock);
1551				continue;
1552			}
1553			break;
1554		}
1555		if (likely(!old)) {
1556			spin_lock(&inode->i_lock);
1557			inode->i_state |= I_NEW | I_CREATING;
1558			hlist_add_head_rcu(&inode->i_hash, head);
1559			spin_unlock(&inode->i_lock);
1560			spin_unlock(&inode_hash_lock);
1561			return 0;
1562		}
1563		if (unlikely(old->i_state & I_CREATING)) {
1564			spin_unlock(&old->i_lock);
1565			spin_unlock(&inode_hash_lock);
1566			return -EBUSY;
1567		}
1568		__iget(old);
1569		spin_unlock(&old->i_lock);
1570		spin_unlock(&inode_hash_lock);
1571		wait_on_inode(old);
1572		if (unlikely(!inode_unhashed(old))) {
1573			iput(old);
1574			return -EBUSY;
1575		}
1576		iput(old);
1577	}
1578}
1579EXPORT_SYMBOL(insert_inode_locked);
1580
1581int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1582		int (*test)(struct inode *, void *), void *data)
1583{
1584	struct inode *old;
1585
1586	inode->i_state |= I_CREATING;
1587	old = inode_insert5(inode, hashval, test, NULL, data);
1588
1589	if (old != inode) {
1590		iput(old);
1591		return -EBUSY;
1592	}
1593	return 0;
1594}
1595EXPORT_SYMBOL(insert_inode_locked4);
1596
1597
1598int generic_delete_inode(struct inode *inode)
1599{
1600	return 1;
1601}
1602EXPORT_SYMBOL(generic_delete_inode);
1603
1604/*
1605 * Called when we're dropping the last reference
1606 * to an inode.
1607 *
1608 * Call the FS "drop_inode()" function, defaulting to
1609 * the legacy UNIX filesystem behaviour.  If it tells
1610 * us to evict inode, do so.  Otherwise, retain inode
1611 * in cache if fs is alive, sync and evict if fs is
1612 * shutting down.
1613 */
1614static void iput_final(struct inode *inode)
1615{
1616	struct super_block *sb = inode->i_sb;
1617	const struct super_operations *op = inode->i_sb->s_op;
1618	unsigned long state;
1619	int drop;
1620
1621	WARN_ON(inode->i_state & I_NEW);
1622
1623	if (op->drop_inode)
1624		drop = op->drop_inode(inode);
1625	else
1626		drop = generic_drop_inode(inode);
1627
1628	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1629		inode_add_lru(inode);
 
 
1630		spin_unlock(&inode->i_lock);
1631		return;
1632	}
1633
1634	state = inode->i_state;
1635	if (!drop) {
1636		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1637		spin_unlock(&inode->i_lock);
1638
1639		write_inode_now(inode, 1);
1640
1641		spin_lock(&inode->i_lock);
1642		state = inode->i_state;
1643		WARN_ON(state & I_NEW);
1644		state &= ~I_WILL_FREE;
1645	}
1646
1647	WRITE_ONCE(inode->i_state, state | I_FREEING);
1648	if (!list_empty(&inode->i_lru))
1649		inode_lru_list_del(inode);
1650	spin_unlock(&inode->i_lock);
1651
1652	evict(inode);
1653}
1654
1655/**
1656 *	iput	- put an inode
1657 *	@inode: inode to put
1658 *
1659 *	Puts an inode, dropping its usage count. If the inode use count hits
1660 *	zero, the inode is then freed and may also be destroyed.
1661 *
1662 *	Consequently, iput() can sleep.
1663 */
1664void iput(struct inode *inode)
1665{
1666	if (!inode)
1667		return;
1668	BUG_ON(inode->i_state & I_CLEAR);
1669retry:
1670	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1671		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1672			atomic_inc(&inode->i_count);
1673			spin_unlock(&inode->i_lock);
1674			trace_writeback_lazytime_iput(inode);
1675			mark_inode_dirty_sync(inode);
1676			goto retry;
1677		}
1678		iput_final(inode);
1679	}
1680}
1681EXPORT_SYMBOL(iput);
1682
1683#ifdef CONFIG_BLOCK
1684/**
1685 *	bmap	- find a block number in a file
1686 *	@inode:  inode owning the block number being requested
1687 *	@block: pointer containing the block to find
1688 *
1689 *	Replaces the value in ``*block`` with the block number on the device holding
1690 *	corresponding to the requested block number in the file.
1691 *	That is, asked for block 4 of inode 1 the function will replace the
1692 *	4 in ``*block``, with disk block relative to the disk start that holds that
1693 *	block of the file.
1694 *
1695 *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1696 *	hole, returns 0 and ``*block`` is also set to 0.
1697 */
1698int bmap(struct inode *inode, sector_t *block)
1699{
1700	if (!inode->i_mapping->a_ops->bmap)
1701		return -EINVAL;
1702
1703	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1704	return 0;
1705}
1706EXPORT_SYMBOL(bmap);
1707#endif
1708
1709/*
1710 * With relative atime, only update atime if the previous atime is
1711 * earlier than either the ctime or mtime or if at least a day has
1712 * passed since the last atime update.
1713 */
1714static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1715			     struct timespec64 now)
1716{
 
1717
1718	if (!(mnt->mnt_flags & MNT_RELATIME))
1719		return 1;
1720	/*
1721	 * Is mtime younger than atime? If yes, update atime:
1722	 */
1723	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1724		return 1;
 
 
1725	/*
1726	 * Is ctime younger than atime? If yes, update atime:
1727	 */
1728	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1729		return 1;
 
1730
1731	/*
1732	 * Is the previous atime value older than a day? If yes,
1733	 * update atime:
1734	 */
1735	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1736		return 1;
1737	/*
1738	 * Good, we can skip the atime update:
1739	 */
1740	return 0;
1741}
1742
1743int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744{
1745	int iflags = I_DIRTY_TIME;
1746	bool dirty = false;
1747
1748	if (flags & S_ATIME)
1749		inode->i_atime = *time;
1750	if (flags & S_VERSION)
1751		dirty = inode_maybe_inc_iversion(inode, false);
1752	if (flags & S_CTIME)
1753		inode->i_ctime = *time;
1754	if (flags & S_MTIME)
1755		inode->i_mtime = *time;
1756	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1757	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1758		dirty = true;
1759
1760	if (dirty)
1761		iflags |= I_DIRTY_SYNC;
1762	__mark_inode_dirty(inode, iflags);
1763	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764}
1765EXPORT_SYMBOL(generic_update_time);
1766
1767/*
1768 * This does the actual work of updating an inodes time or version.  Must have
1769 * had called mnt_want_write() before calling this.
1770 */
1771static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1772{
1773	if (inode->i_op->update_time)
1774		return inode->i_op->update_time(inode, time, flags);
1775	return generic_update_time(inode, time, flags);
 
1776}
 
1777
1778/**
1779 *	touch_atime	-	update the access time
1780 *	@path: the &struct path to update
1781 *	@inode: inode to update
1782 *
1783 *	Update the accessed time on an inode and mark it for writeback.
1784 *	This function automatically handles read only file systems and media,
1785 *	as well as the "noatime" flag and inode specific "noatime" markers.
1786 */
1787bool atime_needs_update(const struct path *path, struct inode *inode)
1788{
1789	struct vfsmount *mnt = path->mnt;
1790	struct timespec64 now;
1791
1792	if (inode->i_flags & S_NOATIME)
1793		return false;
1794
1795	/* Atime updates will likely cause i_uid and i_gid to be written
1796	 * back improprely if their true value is unknown to the vfs.
1797	 */
1798	if (HAS_UNMAPPED_ID(inode))
1799		return false;
1800
1801	if (IS_NOATIME(inode))
1802		return false;
1803	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1804		return false;
1805
1806	if (mnt->mnt_flags & MNT_NOATIME)
1807		return false;
1808	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1809		return false;
1810
1811	now = current_time(inode);
1812
1813	if (!relatime_need_update(mnt, inode, now))
1814		return false;
1815
1816	if (timespec64_equal(&inode->i_atime, &now))
 
1817		return false;
1818
1819	return true;
1820}
1821
1822void touch_atime(const struct path *path)
1823{
1824	struct vfsmount *mnt = path->mnt;
1825	struct inode *inode = d_inode(path->dentry);
1826	struct timespec64 now;
1827
1828	if (!atime_needs_update(path, inode))
1829		return;
1830
1831	if (!sb_start_write_trylock(inode->i_sb))
1832		return;
1833
1834	if (__mnt_want_write(mnt) != 0)
1835		goto skip_update;
1836	/*
1837	 * File systems can error out when updating inodes if they need to
1838	 * allocate new space to modify an inode (such is the case for
1839	 * Btrfs), but since we touch atime while walking down the path we
1840	 * really don't care if we failed to update the atime of the file,
1841	 * so just ignore the return value.
1842	 * We may also fail on filesystems that have the ability to make parts
1843	 * of the fs read only, e.g. subvolumes in Btrfs.
1844	 */
1845	now = current_time(inode);
1846	update_time(inode, &now, S_ATIME);
1847	__mnt_drop_write(mnt);
1848skip_update:
1849	sb_end_write(inode->i_sb);
1850}
1851EXPORT_SYMBOL(touch_atime);
1852
1853/*
1854 * The logic we want is
1855 *
1856 *	if suid or (sgid and xgrp)
1857 *		remove privs
1858 */
1859int should_remove_suid(struct dentry *dentry)
1860{
1861	umode_t mode = d_inode(dentry)->i_mode;
1862	int kill = 0;
1863
1864	/* suid always must be killed */
1865	if (unlikely(mode & S_ISUID))
1866		kill = ATTR_KILL_SUID;
1867
1868	/*
1869	 * sgid without any exec bits is just a mandatory locking mark; leave
1870	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1871	 */
1872	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1873		kill |= ATTR_KILL_SGID;
1874
1875	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1876		return kill;
1877
1878	return 0;
1879}
1880EXPORT_SYMBOL(should_remove_suid);
1881
1882/*
1883 * Return mask of changes for notify_change() that need to be done as a
1884 * response to write or truncate. Return 0 if nothing has to be changed.
1885 * Negative value on error (change should be denied).
1886 */
1887int dentry_needs_remove_privs(struct dentry *dentry)
 
1888{
1889	struct inode *inode = d_inode(dentry);
1890	int mask = 0;
1891	int ret;
1892
1893	if (IS_NOSEC(inode))
1894		return 0;
1895
1896	mask = should_remove_suid(dentry);
1897	ret = security_inode_need_killpriv(dentry);
1898	if (ret < 0)
1899		return ret;
1900	if (ret)
1901		mask |= ATTR_KILL_PRIV;
1902	return mask;
1903}
1904
1905static int __remove_privs(struct dentry *dentry, int kill)
 
1906{
1907	struct iattr newattrs;
1908
1909	newattrs.ia_valid = ATTR_FORCE | kill;
1910	/*
1911	 * Note we call this on write, so notify_change will not
1912	 * encounter any conflicting delegations:
1913	 */
1914	return notify_change(dentry, &newattrs, NULL);
1915}
1916
1917/*
1918 * Remove special file priviledges (suid, capabilities) when file is written
1919 * to or truncated.
1920 */
1921int file_remove_privs(struct file *file)
1922{
1923	struct dentry *dentry = file_dentry(file);
1924	struct inode *inode = file_inode(file);
1925	int kill;
1926	int error = 0;
 
1927
1928	/*
1929	 * Fast path for nothing security related.
1930	 * As well for non-regular files, e.g. blkdev inodes.
1931	 * For example, blkdev_write_iter() might get here
1932	 * trying to remove privs which it is not allowed to.
1933	 */
1934	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1935		return 0;
1936
1937	kill = dentry_needs_remove_privs(dentry);
1938	if (kill < 0)
1939		return kill;
1940	if (kill)
1941		error = __remove_privs(dentry, kill);
 
 
 
 
 
 
1942	if (!error)
1943		inode_has_no_xattr(inode);
1944
1945	return error;
1946}
1947EXPORT_SYMBOL(file_remove_privs);
1948
1949/**
1950 *	file_update_time	-	update mtime and ctime time
1951 *	@file: file accessed
1952 *
1953 *	Update the mtime and ctime members of an inode and mark the inode
1954 *	for writeback.  Note that this function is meant exclusively for
1955 *	usage in the file write path of filesystems, and filesystems may
1956 *	choose to explicitly ignore update via this function with the
1957 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1958 *	timestamps are handled by the server.  This can return an error for
1959 *	file systems who need to allocate space in order to update an inode.
1960 */
 
 
 
 
 
1961
1962int file_update_time(struct file *file)
1963{
1964	struct inode *inode = file_inode(file);
1965	struct timespec64 now;
1966	int sync_it = 0;
1967	int ret;
 
1968
1969	/* First try to exhaust all avenues to not sync */
1970	if (IS_NOCMTIME(inode))
1971		return 0;
1972
1973	now = current_time(inode);
1974	if (!timespec64_equal(&inode->i_mtime, &now))
1975		sync_it = S_MTIME;
1976
1977	if (!timespec64_equal(&inode->i_ctime, &now))
 
1978		sync_it |= S_CTIME;
1979
1980	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1981		sync_it |= S_VERSION;
1982
1983	if (!sync_it)
1984		return 0;
1985
1986	/* Finally allowed to write? Takes lock. */
1987	if (__mnt_want_write_file(file))
1988		return 0;
 
1989
1990	ret = update_time(inode, &now, sync_it);
1991	__mnt_drop_write_file(file);
 
 
 
1992
1993	return ret;
1994}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1995EXPORT_SYMBOL(file_update_time);
1996
1997/* Caller must hold the file's inode lock */
1998int file_modified(struct file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999{
2000	int err;
 
2001
2002	/*
2003	 * Clear the security bits if the process is not being run by root.
2004	 * This keeps people from modifying setuid and setgid binaries.
2005	 */
2006	err = file_remove_privs(file);
2007	if (err)
2008		return err;
2009
2010	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2011		return 0;
2012
2013	return file_update_time(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014}
2015EXPORT_SYMBOL(file_modified);
2016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017int inode_needs_sync(struct inode *inode)
2018{
2019	if (IS_SYNC(inode))
2020		return 1;
2021	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2022		return 1;
2023	return 0;
2024}
2025EXPORT_SYMBOL(inode_needs_sync);
2026
2027/*
2028 * If we try to find an inode in the inode hash while it is being
2029 * deleted, we have to wait until the filesystem completes its
2030 * deletion before reporting that it isn't found.  This function waits
2031 * until the deletion _might_ have completed.  Callers are responsible
2032 * to recheck inode state.
2033 *
2034 * It doesn't matter if I_NEW is not set initially, a call to
2035 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2036 * will DTRT.
2037 */
2038static void __wait_on_freeing_inode(struct inode *inode)
2039{
2040	wait_queue_head_t *wq;
2041	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2042	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2043	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2044	spin_unlock(&inode->i_lock);
2045	spin_unlock(&inode_hash_lock);
2046	schedule();
2047	finish_wait(wq, &wait.wq_entry);
2048	spin_lock(&inode_hash_lock);
2049}
2050
2051static __initdata unsigned long ihash_entries;
2052static int __init set_ihash_entries(char *str)
2053{
2054	if (!str)
2055		return 0;
2056	ihash_entries = simple_strtoul(str, &str, 0);
2057	return 1;
2058}
2059__setup("ihash_entries=", set_ihash_entries);
2060
2061/*
2062 * Initialize the waitqueues and inode hash table.
2063 */
2064void __init inode_init_early(void)
2065{
2066	/* If hashes are distributed across NUMA nodes, defer
2067	 * hash allocation until vmalloc space is available.
2068	 */
2069	if (hashdist)
2070		return;
2071
2072	inode_hashtable =
2073		alloc_large_system_hash("Inode-cache",
2074					sizeof(struct hlist_head),
2075					ihash_entries,
2076					14,
2077					HASH_EARLY | HASH_ZERO,
2078					&i_hash_shift,
2079					&i_hash_mask,
2080					0,
2081					0);
2082}
2083
2084void __init inode_init(void)
2085{
2086	/* inode slab cache */
2087	inode_cachep = kmem_cache_create("inode_cache",
2088					 sizeof(struct inode),
2089					 0,
2090					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2091					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2092					 init_once);
2093
2094	/* Hash may have been set up in inode_init_early */
2095	if (!hashdist)
2096		return;
2097
2098	inode_hashtable =
2099		alloc_large_system_hash("Inode-cache",
2100					sizeof(struct hlist_head),
2101					ihash_entries,
2102					14,
2103					HASH_ZERO,
2104					&i_hash_shift,
2105					&i_hash_mask,
2106					0,
2107					0);
2108}
2109
2110void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2111{
2112	inode->i_mode = mode;
2113	if (S_ISCHR(mode)) {
2114		inode->i_fop = &def_chr_fops;
2115		inode->i_rdev = rdev;
2116	} else if (S_ISBLK(mode)) {
2117		inode->i_fop = &def_blk_fops;
 
2118		inode->i_rdev = rdev;
2119	} else if (S_ISFIFO(mode))
2120		inode->i_fop = &pipefifo_fops;
2121	else if (S_ISSOCK(mode))
2122		;	/* leave it no_open_fops */
2123	else
2124		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2125				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2126				  inode->i_ino);
2127}
2128EXPORT_SYMBOL(init_special_inode);
2129
2130/**
2131 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
 
2132 * @inode: New inode
2133 * @dir: Directory inode
2134 * @mode: mode of the new inode
 
 
 
 
 
 
2135 */
2136void inode_init_owner(struct inode *inode, const struct inode *dir,
2137			umode_t mode)
2138{
2139	inode->i_uid = current_fsuid();
2140	if (dir && dir->i_mode & S_ISGID) {
2141		inode->i_gid = dir->i_gid;
2142
2143		/* Directories are special, and always inherit S_ISGID */
2144		if (S_ISDIR(mode))
2145			mode |= S_ISGID;
2146		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2147			 !in_group_p(inode->i_gid) &&
2148			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2149			mode &= ~S_ISGID;
2150	} else
2151		inode->i_gid = current_fsgid();
2152	inode->i_mode = mode;
2153}
2154EXPORT_SYMBOL(inode_init_owner);
2155
2156/**
2157 * inode_owner_or_capable - check current task permissions to inode
 
2158 * @inode: inode being checked
2159 *
2160 * Return true if current either has CAP_FOWNER in a namespace with the
2161 * inode owner uid mapped, or owns the file.
 
 
 
 
 
 
2162 */
2163bool inode_owner_or_capable(const struct inode *inode)
 
2164{
 
2165	struct user_namespace *ns;
2166
2167	if (uid_eq(current_fsuid(), inode->i_uid))
 
2168		return true;
2169
2170	ns = current_user_ns();
2171	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2172		return true;
2173	return false;
2174}
2175EXPORT_SYMBOL(inode_owner_or_capable);
2176
2177/*
2178 * Direct i/o helper functions
2179 */
2180static void __inode_dio_wait(struct inode *inode)
2181{
2182	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2183	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2184
2185	do {
2186		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2187		if (atomic_read(&inode->i_dio_count))
2188			schedule();
2189	} while (atomic_read(&inode->i_dio_count));
2190	finish_wait(wq, &q.wq_entry);
2191}
2192
2193/**
2194 * inode_dio_wait - wait for outstanding DIO requests to finish
2195 * @inode: inode to wait for
2196 *
2197 * Waits for all pending direct I/O requests to finish so that we can
2198 * proceed with a truncate or equivalent operation.
2199 *
2200 * Must be called under a lock that serializes taking new references
2201 * to i_dio_count, usually by inode->i_mutex.
2202 */
2203void inode_dio_wait(struct inode *inode)
2204{
2205	if (atomic_read(&inode->i_dio_count))
2206		__inode_dio_wait(inode);
2207}
2208EXPORT_SYMBOL(inode_dio_wait);
2209
2210/*
2211 * inode_set_flags - atomically set some inode flags
2212 *
2213 * Note: the caller should be holding i_mutex, or else be sure that
2214 * they have exclusive access to the inode structure (i.e., while the
2215 * inode is being instantiated).  The reason for the cmpxchg() loop
2216 * --- which wouldn't be necessary if all code paths which modify
2217 * i_flags actually followed this rule, is that there is at least one
2218 * code path which doesn't today so we use cmpxchg() out of an abundance
2219 * of caution.
2220 *
2221 * In the long run, i_mutex is overkill, and we should probably look
2222 * at using the i_lock spinlock to protect i_flags, and then make sure
2223 * it is so documented in include/linux/fs.h and that all code follows
2224 * the locking convention!!
2225 */
2226void inode_set_flags(struct inode *inode, unsigned int flags,
2227		     unsigned int mask)
2228{
2229	WARN_ON_ONCE(flags & ~mask);
2230	set_mask_bits(&inode->i_flags, mask, flags);
2231}
2232EXPORT_SYMBOL(inode_set_flags);
2233
2234void inode_nohighmem(struct inode *inode)
2235{
2236	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2237}
2238EXPORT_SYMBOL(inode_nohighmem);
2239
2240/**
2241 * timestamp_truncate - Truncate timespec to a granularity
2242 * @t: Timespec
2243 * @inode: inode being updated
2244 *
2245 * Truncate a timespec to the granularity supported by the fs
2246 * containing the inode. Always rounds down. gran must
2247 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2248 */
2249struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2250{
2251	struct super_block *sb = inode->i_sb;
2252	unsigned int gran = sb->s_time_gran;
2253
2254	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2255	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2256		t.tv_nsec = 0;
2257
2258	/* Avoid division in the common cases 1 ns and 1 s. */
2259	if (gran == 1)
2260		; /* nothing */
2261	else if (gran == NSEC_PER_SEC)
2262		t.tv_nsec = 0;
2263	else if (gran > 1 && gran < NSEC_PER_SEC)
2264		t.tv_nsec -= t.tv_nsec % gran;
2265	else
2266		WARN(1, "invalid file time granularity: %u", gran);
2267	return t;
2268}
2269EXPORT_SYMBOL(timestamp_truncate);
2270
2271/**
2272 * current_time - Return FS time
2273 * @inode: inode.
2274 *
2275 * Return the current time truncated to the time granularity supported by
2276 * the fs.
2277 *
2278 * Note that inode and inode->sb cannot be NULL.
2279 * Otherwise, the function warns and returns time without truncation.
2280 */
2281struct timespec64 current_time(struct inode *inode)
2282{
2283	struct timespec64 now;
2284
2285	ktime_get_coarse_real_ts64(&now);
2286
2287	if (unlikely(!inode->i_sb)) {
2288		WARN(1, "current_time() called with uninitialized super_block in the inode");
2289		return now;
2290	}
2291
2292	return timestamp_truncate(now, inode);
2293}
2294EXPORT_SYMBOL(current_time);
2295
2296/*
2297 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2298 * configurations.
2299 *
2300 * Note: the caller should be holding i_mutex, or else be sure that they have
2301 * exclusive access to the inode structure.
2302 */
2303int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2304			     unsigned int flags)
2305{
2306	/*
2307	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2308	 * the relevant capability.
2309	 *
2310	 * This test looks nicer. Thanks to Pauline Middelink
2311	 */
2312	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2313	    !capable(CAP_LINUX_IMMUTABLE))
2314		return -EPERM;
2315
2316	return fscrypt_prepare_setflags(inode, oldflags, flags);
 
2317}
2318EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2319
2320/*
2321 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2322 * configurations.
 
 
 
 
 
 
2323 *
2324 * Note: the caller should be holding i_mutex, or else be sure that they have
2325 * exclusive access to the inode structure.
2326 */
2327int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2328			     struct fsxattr *fa)
2329{
2330	/*
2331	 * Can't modify an immutable/append-only file unless we have
2332	 * appropriate permission.
2333	 */
2334	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2335			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2336	    !capable(CAP_LINUX_IMMUTABLE))
2337		return -EPERM;
2338
2339	/*
2340	 * Project Quota ID state is only allowed to change from within the init
2341	 * namespace. Enforce that restriction only if we are trying to change
2342	 * the quota ID state. Everything else is allowed in user namespaces.
2343	 */
2344	if (current_user_ns() != &init_user_ns) {
2345		if (old_fa->fsx_projid != fa->fsx_projid)
2346			return -EINVAL;
2347		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2348				FS_XFLAG_PROJINHERIT)
2349			return -EINVAL;
2350	}
2351
2352	/* Check extent size hints. */
2353	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2354		return -EINVAL;
2355
2356	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2357			!S_ISDIR(inode->i_mode))
2358		return -EINVAL;
2359
2360	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2361	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2362		return -EINVAL;
2363
2364	/*
2365	 * It is only valid to set the DAX flag on regular files and
2366	 * directories on filesystems.
2367	 */
2368	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2369	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2370		return -EINVAL;
2371
2372	/* Extent size hints of zero turn off the flags. */
2373	if (fa->fsx_extsize == 0)
2374		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2375	if (fa->fsx_cowextsize == 0)
2376		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2377
2378	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2379}
2380EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/filelock.h>
   9#include <linux/mm.h>
  10#include <linux/backing-dev.h>
  11#include <linux/hash.h>
  12#include <linux/swap.h>
  13#include <linux/security.h>
  14#include <linux/cdev.h>
  15#include <linux/memblock.h>
 
  16#include <linux/fsnotify.h>
  17#include <linux/mount.h>
  18#include <linux/posix_acl.h>
 
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
  23#include <linux/rw_hint.h>
  24#include <trace/events/writeback.h>
  25#include "internal.h"
  26
  27/*
  28 * Inode locking rules:
  29 *
  30 * inode->i_lock protects:
  31 *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
  32 * Inode LRU list locks protect:
  33 *   inode->i_sb->s_inode_lru, inode->i_lru
  34 * inode->i_sb->s_inode_list_lock protects:
  35 *   inode->i_sb->s_inodes, inode->i_sb_list
  36 * bdi->wb.list_lock protects:
  37 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  38 * inode_hash_lock protects:
  39 *   inode_hashtable, inode->i_hash
  40 *
  41 * Lock ordering:
  42 *
  43 * inode->i_sb->s_inode_list_lock
  44 *   inode->i_lock
  45 *     Inode LRU list locks
  46 *
  47 * bdi->wb.list_lock
  48 *   inode->i_lock
  49 *
  50 * inode_hash_lock
  51 *   inode->i_sb->s_inode_list_lock
  52 *   inode->i_lock
  53 *
  54 * iunique_lock
  55 *   inode_hash_lock
  56 */
  57
  58static unsigned int i_hash_mask __ro_after_init;
  59static unsigned int i_hash_shift __ro_after_init;
  60static struct hlist_head *inode_hashtable __ro_after_init;
  61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  62
  63/*
  64 * Empty aops. Can be used for the cases where the user does not
  65 * define any of the address_space operations.
  66 */
  67const struct address_space_operations empty_aops = {
  68};
  69EXPORT_SYMBOL(empty_aops);
  70
 
 
 
 
 
  71static DEFINE_PER_CPU(unsigned long, nr_inodes);
  72static DEFINE_PER_CPU(unsigned long, nr_unused);
  73
  74static struct kmem_cache *inode_cachep __ro_after_init;
  75
  76static long get_nr_inodes(void)
  77{
  78	int i;
  79	long sum = 0;
  80	for_each_possible_cpu(i)
  81		sum += per_cpu(nr_inodes, i);
  82	return sum < 0 ? 0 : sum;
  83}
  84
  85static inline long get_nr_inodes_unused(void)
  86{
  87	int i;
  88	long sum = 0;
  89	for_each_possible_cpu(i)
  90		sum += per_cpu(nr_unused, i);
  91	return sum < 0 ? 0 : sum;
  92}
  93
  94long get_nr_dirty_inodes(void)
  95{
  96	/* not actually dirty inodes, but a wild approximation */
  97	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
  98	return nr_dirty > 0 ? nr_dirty : 0;
  99}
 100
 101/*
 102 * Handle nr_inode sysctl
 103 */
 104#ifdef CONFIG_SYSCTL
 105/*
 106 * Statistics gathering..
 107 */
 108static struct inodes_stat_t inodes_stat;
 109
 110static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
 111			  size_t *lenp, loff_t *ppos)
 112{
 113	inodes_stat.nr_inodes = get_nr_inodes();
 114	inodes_stat.nr_unused = get_nr_inodes_unused();
 115	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 116}
 117
 118static struct ctl_table inodes_sysctls[] = {
 119	{
 120		.procname	= "inode-nr",
 121		.data		= &inodes_stat,
 122		.maxlen		= 2*sizeof(long),
 123		.mode		= 0444,
 124		.proc_handler	= proc_nr_inodes,
 125	},
 126	{
 127		.procname	= "inode-state",
 128		.data		= &inodes_stat,
 129		.maxlen		= 7*sizeof(long),
 130		.mode		= 0444,
 131		.proc_handler	= proc_nr_inodes,
 132	},
 133};
 134
 135static int __init init_fs_inode_sysctls(void)
 136{
 137	register_sysctl_init("fs", inodes_sysctls);
 138	return 0;
 139}
 140early_initcall(init_fs_inode_sysctls);
 141#endif
 142
 143static int no_open(struct inode *inode, struct file *file)
 144{
 145	return -ENXIO;
 146}
 147
 148/**
 149 * inode_init_always - perform inode structure initialisation
 150 * @sb: superblock inode belongs to
 151 * @inode: inode to initialise
 152 *
 153 * These are initializations that need to be done on every inode
 154 * allocation as the fields are not initialised by slab allocation.
 155 */
 156int inode_init_always(struct super_block *sb, struct inode *inode)
 157{
 158	static const struct inode_operations empty_iops;
 159	static const struct file_operations no_open_fops = {.open = no_open};
 160	struct address_space *const mapping = &inode->i_data;
 161
 162	inode->i_sb = sb;
 163	inode->i_blkbits = sb->s_blocksize_bits;
 164	inode->i_flags = 0;
 165	atomic64_set(&inode->i_sequence, 0);
 166	atomic_set(&inode->i_count, 1);
 167	inode->i_op = &empty_iops;
 168	inode->i_fop = &no_open_fops;
 169	inode->i_ino = 0;
 170	inode->__i_nlink = 1;
 171	inode->i_opflags = 0;
 172	if (sb->s_xattr)
 173		inode->i_opflags |= IOP_XATTR;
 174	i_uid_write(inode, 0);
 175	i_gid_write(inode, 0);
 176	atomic_set(&inode->i_writecount, 0);
 177	inode->i_size = 0;
 178	inode->i_write_hint = WRITE_LIFE_NOT_SET;
 179	inode->i_blocks = 0;
 180	inode->i_bytes = 0;
 181	inode->i_generation = 0;
 182	inode->i_pipe = NULL;
 
 183	inode->i_cdev = NULL;
 184	inode->i_link = NULL;
 185	inode->i_dir_seq = 0;
 186	inode->i_rdev = 0;
 187	inode->dirtied_when = 0;
 188
 189#ifdef CONFIG_CGROUP_WRITEBACK
 190	inode->i_wb_frn_winner = 0;
 191	inode->i_wb_frn_avg_time = 0;
 192	inode->i_wb_frn_history = 0;
 193#endif
 194
 
 
 195	spin_lock_init(&inode->i_lock);
 196	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 197
 198	init_rwsem(&inode->i_rwsem);
 199	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 200
 201	atomic_set(&inode->i_dio_count, 0);
 202
 203	mapping->a_ops = &empty_aops;
 204	mapping->host = inode;
 205	mapping->flags = 0;
 206	mapping->wb_err = 0;
 207	atomic_set(&mapping->i_mmap_writable, 0);
 208#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 209	atomic_set(&mapping->nr_thps, 0);
 210#endif
 211	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 212	mapping->i_private_data = NULL;
 213	mapping->writeback_index = 0;
 214	init_rwsem(&mapping->invalidate_lock);
 215	lockdep_set_class_and_name(&mapping->invalidate_lock,
 216				   &sb->s_type->invalidate_lock_key,
 217				   "mapping.invalidate_lock");
 218	if (sb->s_iflags & SB_I_STABLE_WRITES)
 219		mapping_set_stable_writes(mapping);
 220	inode->i_private = NULL;
 221	inode->i_mapping = mapping;
 222	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 223#ifdef CONFIG_FS_POSIX_ACL
 224	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 225#endif
 226
 227#ifdef CONFIG_FSNOTIFY
 228	inode->i_fsnotify_mask = 0;
 229#endif
 230	inode->i_flctx = NULL;
 231
 232	if (unlikely(security_inode_alloc(inode)))
 233		return -ENOMEM;
 234	this_cpu_inc(nr_inodes);
 235
 236	return 0;
 
 
 237}
 238EXPORT_SYMBOL(inode_init_always);
 239
 240void free_inode_nonrcu(struct inode *inode)
 241{
 242	kmem_cache_free(inode_cachep, inode);
 243}
 244EXPORT_SYMBOL(free_inode_nonrcu);
 245
 246static void i_callback(struct rcu_head *head)
 247{
 248	struct inode *inode = container_of(head, struct inode, i_rcu);
 249	if (inode->free_inode)
 250		inode->free_inode(inode);
 251	else
 252		free_inode_nonrcu(inode);
 253}
 254
 255static struct inode *alloc_inode(struct super_block *sb)
 256{
 257	const struct super_operations *ops = sb->s_op;
 258	struct inode *inode;
 259
 260	if (ops->alloc_inode)
 261		inode = ops->alloc_inode(sb);
 262	else
 263		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
 264
 265	if (!inode)
 266		return NULL;
 267
 268	if (unlikely(inode_init_always(sb, inode))) {
 269		if (ops->destroy_inode) {
 270			ops->destroy_inode(inode);
 271			if (!ops->free_inode)
 272				return NULL;
 273		}
 274		inode->free_inode = ops->free_inode;
 275		i_callback(&inode->i_rcu);
 276		return NULL;
 277	}
 278
 279	return inode;
 280}
 281
 282void __destroy_inode(struct inode *inode)
 283{
 284	BUG_ON(inode_has_buffers(inode));
 285	inode_detach_wb(inode);
 286	security_inode_free(inode);
 287	fsnotify_inode_delete(inode);
 288	locks_free_lock_context(inode);
 289	if (!inode->i_nlink) {
 290		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 291		atomic_long_dec(&inode->i_sb->s_remove_count);
 292	}
 293
 294#ifdef CONFIG_FS_POSIX_ACL
 295	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 296		posix_acl_release(inode->i_acl);
 297	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 298		posix_acl_release(inode->i_default_acl);
 299#endif
 300	this_cpu_dec(nr_inodes);
 301}
 302EXPORT_SYMBOL(__destroy_inode);
 303
 304static void destroy_inode(struct inode *inode)
 305{
 306	const struct super_operations *ops = inode->i_sb->s_op;
 307
 308	BUG_ON(!list_empty(&inode->i_lru));
 309	__destroy_inode(inode);
 310	if (ops->destroy_inode) {
 311		ops->destroy_inode(inode);
 312		if (!ops->free_inode)
 313			return;
 314	}
 315	inode->free_inode = ops->free_inode;
 316	call_rcu(&inode->i_rcu, i_callback);
 317}
 318
 319/**
 320 * drop_nlink - directly drop an inode's link count
 321 * @inode: inode
 322 *
 323 * This is a low-level filesystem helper to replace any
 324 * direct filesystem manipulation of i_nlink.  In cases
 325 * where we are attempting to track writes to the
 326 * filesystem, a decrement to zero means an imminent
 327 * write when the file is truncated and actually unlinked
 328 * on the filesystem.
 329 */
 330void drop_nlink(struct inode *inode)
 331{
 332	WARN_ON(inode->i_nlink == 0);
 333	inode->__i_nlink--;
 334	if (!inode->i_nlink)
 335		atomic_long_inc(&inode->i_sb->s_remove_count);
 336}
 337EXPORT_SYMBOL(drop_nlink);
 338
 339/**
 340 * clear_nlink - directly zero an inode's link count
 341 * @inode: inode
 342 *
 343 * This is a low-level filesystem helper to replace any
 344 * direct filesystem manipulation of i_nlink.  See
 345 * drop_nlink() for why we care about i_nlink hitting zero.
 346 */
 347void clear_nlink(struct inode *inode)
 348{
 349	if (inode->i_nlink) {
 350		inode->__i_nlink = 0;
 351		atomic_long_inc(&inode->i_sb->s_remove_count);
 352	}
 353}
 354EXPORT_SYMBOL(clear_nlink);
 355
 356/**
 357 * set_nlink - directly set an inode's link count
 358 * @inode: inode
 359 * @nlink: new nlink (should be non-zero)
 360 *
 361 * This is a low-level filesystem helper to replace any
 362 * direct filesystem manipulation of i_nlink.
 363 */
 364void set_nlink(struct inode *inode, unsigned int nlink)
 365{
 366	if (!nlink) {
 367		clear_nlink(inode);
 368	} else {
 369		/* Yes, some filesystems do change nlink from zero to one */
 370		if (inode->i_nlink == 0)
 371			atomic_long_dec(&inode->i_sb->s_remove_count);
 372
 373		inode->__i_nlink = nlink;
 374	}
 375}
 376EXPORT_SYMBOL(set_nlink);
 377
 378/**
 379 * inc_nlink - directly increment an inode's link count
 380 * @inode: inode
 381 *
 382 * This is a low-level filesystem helper to replace any
 383 * direct filesystem manipulation of i_nlink.  Currently,
 384 * it is only here for parity with dec_nlink().
 385 */
 386void inc_nlink(struct inode *inode)
 387{
 388	if (unlikely(inode->i_nlink == 0)) {
 389		WARN_ON(!(inode->i_state & I_LINKABLE));
 390		atomic_long_dec(&inode->i_sb->s_remove_count);
 391	}
 392
 393	inode->__i_nlink++;
 394}
 395EXPORT_SYMBOL(inc_nlink);
 396
 397static void __address_space_init_once(struct address_space *mapping)
 398{
 399	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 400	init_rwsem(&mapping->i_mmap_rwsem);
 401	INIT_LIST_HEAD(&mapping->i_private_list);
 402	spin_lock_init(&mapping->i_private_lock);
 403	mapping->i_mmap = RB_ROOT_CACHED;
 404}
 405
 406void address_space_init_once(struct address_space *mapping)
 407{
 408	memset(mapping, 0, sizeof(*mapping));
 409	__address_space_init_once(mapping);
 410}
 411EXPORT_SYMBOL(address_space_init_once);
 412
 413/*
 414 * These are initializations that only need to be done
 415 * once, because the fields are idempotent across use
 416 * of the inode, so let the slab aware of that.
 417 */
 418void inode_init_once(struct inode *inode)
 419{
 420	memset(inode, 0, sizeof(*inode));
 421	INIT_HLIST_NODE(&inode->i_hash);
 422	INIT_LIST_HEAD(&inode->i_devices);
 423	INIT_LIST_HEAD(&inode->i_io_list);
 424	INIT_LIST_HEAD(&inode->i_wb_list);
 425	INIT_LIST_HEAD(&inode->i_lru);
 426	INIT_LIST_HEAD(&inode->i_sb_list);
 427	__address_space_init_once(&inode->i_data);
 428	i_size_ordered_init(inode);
 429}
 430EXPORT_SYMBOL(inode_init_once);
 431
 432static void init_once(void *foo)
 433{
 434	struct inode *inode = (struct inode *) foo;
 435
 436	inode_init_once(inode);
 437}
 438
 439/*
 440 * inode->i_lock must be held
 441 */
 442void __iget(struct inode *inode)
 443{
 444	atomic_inc(&inode->i_count);
 445}
 446
 447/*
 448 * get additional reference to inode; caller must already hold one.
 449 */
 450void ihold(struct inode *inode)
 451{
 452	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 453}
 454EXPORT_SYMBOL(ihold);
 455
 456static void __inode_add_lru(struct inode *inode, bool rotate)
 457{
 458	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
 459		return;
 460	if (atomic_read(&inode->i_count))
 461		return;
 462	if (!(inode->i_sb->s_flags & SB_ACTIVE))
 463		return;
 464	if (!mapping_shrinkable(&inode->i_data))
 465		return;
 466
 467	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
 468		this_cpu_inc(nr_unused);
 469	else if (rotate)
 470		inode->i_state |= I_REFERENCED;
 471}
 472
 473/*
 474 * Add inode to LRU if needed (inode is unused and clean).
 475 *
 476 * Needs inode->i_lock held.
 477 */
 478void inode_add_lru(struct inode *inode)
 479{
 480	__inode_add_lru(inode, false);
 
 
 
 481}
 482
 
 483static void inode_lru_list_del(struct inode *inode)
 484{
 485	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
 
 486		this_cpu_dec(nr_unused);
 487}
 488
 489/**
 490 * inode_sb_list_add - add inode to the superblock list of inodes
 491 * @inode: inode to add
 492 */
 493void inode_sb_list_add(struct inode *inode)
 494{
 495	spin_lock(&inode->i_sb->s_inode_list_lock);
 496	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 497	spin_unlock(&inode->i_sb->s_inode_list_lock);
 498}
 499EXPORT_SYMBOL_GPL(inode_sb_list_add);
 500
 501static inline void inode_sb_list_del(struct inode *inode)
 502{
 503	if (!list_empty(&inode->i_sb_list)) {
 504		spin_lock(&inode->i_sb->s_inode_list_lock);
 505		list_del_init(&inode->i_sb_list);
 506		spin_unlock(&inode->i_sb->s_inode_list_lock);
 507	}
 508}
 509
 510static unsigned long hash(struct super_block *sb, unsigned long hashval)
 511{
 512	unsigned long tmp;
 513
 514	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 515			L1_CACHE_BYTES;
 516	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 517	return tmp & i_hash_mask;
 518}
 519
 520/**
 521 *	__insert_inode_hash - hash an inode
 522 *	@inode: unhashed inode
 523 *	@hashval: unsigned long value used to locate this object in the
 524 *		inode_hashtable.
 525 *
 526 *	Add an inode to the inode hash for this superblock.
 527 */
 528void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 529{
 530	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 531
 532	spin_lock(&inode_hash_lock);
 533	spin_lock(&inode->i_lock);
 534	hlist_add_head_rcu(&inode->i_hash, b);
 535	spin_unlock(&inode->i_lock);
 536	spin_unlock(&inode_hash_lock);
 537}
 538EXPORT_SYMBOL(__insert_inode_hash);
 539
 540/**
 541 *	__remove_inode_hash - remove an inode from the hash
 542 *	@inode: inode to unhash
 543 *
 544 *	Remove an inode from the superblock.
 545 */
 546void __remove_inode_hash(struct inode *inode)
 547{
 548	spin_lock(&inode_hash_lock);
 549	spin_lock(&inode->i_lock);
 550	hlist_del_init_rcu(&inode->i_hash);
 551	spin_unlock(&inode->i_lock);
 552	spin_unlock(&inode_hash_lock);
 553}
 554EXPORT_SYMBOL(__remove_inode_hash);
 555
 556void dump_mapping(const struct address_space *mapping)
 557{
 558	struct inode *host;
 559	const struct address_space_operations *a_ops;
 560	struct hlist_node *dentry_first;
 561	struct dentry *dentry_ptr;
 562	struct dentry dentry;
 563	unsigned long ino;
 564
 565	/*
 566	 * If mapping is an invalid pointer, we don't want to crash
 567	 * accessing it, so probe everything depending on it carefully.
 568	 */
 569	if (get_kernel_nofault(host, &mapping->host) ||
 570	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
 571		pr_warn("invalid mapping:%px\n", mapping);
 572		return;
 573	}
 574
 575	if (!host) {
 576		pr_warn("aops:%ps\n", a_ops);
 577		return;
 578	}
 579
 580	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
 581	    get_kernel_nofault(ino, &host->i_ino)) {
 582		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
 583		return;
 584	}
 585
 586	if (!dentry_first) {
 587		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
 588		return;
 589	}
 590
 591	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
 592	if (get_kernel_nofault(dentry, dentry_ptr) ||
 593	    !dentry.d_parent || !dentry.d_name.name) {
 594		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
 595				a_ops, ino, dentry_ptr);
 596		return;
 597	}
 598
 599	/*
 600	 * if dentry is corrupted, the %pd handler may still crash,
 601	 * but it's unlikely that we reach here with a corrupt mapping
 602	 */
 603	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
 604}
 605
 606void clear_inode(struct inode *inode)
 607{
 608	/*
 609	 * We have to cycle the i_pages lock here because reclaim can be in the
 610	 * process of removing the last page (in __filemap_remove_folio())
 611	 * and we must not free the mapping under it.
 612	 */
 613	xa_lock_irq(&inode->i_data.i_pages);
 614	BUG_ON(inode->i_data.nrpages);
 615	/*
 616	 * Almost always, mapping_empty(&inode->i_data) here; but there are
 617	 * two known and long-standing ways in which nodes may get left behind
 618	 * (when deep radix-tree node allocation failed partway; or when THP
 619	 * collapse_file() failed). Until those two known cases are cleaned up,
 620	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
 621	 * nor even WARN_ON(!mapping_empty).
 622	 */
 623	xa_unlock_irq(&inode->i_data.i_pages);
 624	BUG_ON(!list_empty(&inode->i_data.i_private_list));
 625	BUG_ON(!(inode->i_state & I_FREEING));
 626	BUG_ON(inode->i_state & I_CLEAR);
 627	BUG_ON(!list_empty(&inode->i_wb_list));
 628	/* don't need i_lock here, no concurrent mods to i_state */
 629	inode->i_state = I_FREEING | I_CLEAR;
 630}
 631EXPORT_SYMBOL(clear_inode);
 632
 633/*
 634 * Free the inode passed in, removing it from the lists it is still connected
 635 * to. We remove any pages still attached to the inode and wait for any IO that
 636 * is still in progress before finally destroying the inode.
 637 *
 638 * An inode must already be marked I_FREEING so that we avoid the inode being
 639 * moved back onto lists if we race with other code that manipulates the lists
 640 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 641 *
 642 * An inode must already be removed from the LRU list before being evicted from
 643 * the cache. This should occur atomically with setting the I_FREEING state
 644 * flag, so no inodes here should ever be on the LRU when being evicted.
 645 */
 646static void evict(struct inode *inode)
 647{
 648	const struct super_operations *op = inode->i_sb->s_op;
 649
 650	BUG_ON(!(inode->i_state & I_FREEING));
 651	BUG_ON(!list_empty(&inode->i_lru));
 652
 653	if (!list_empty(&inode->i_io_list))
 654		inode_io_list_del(inode);
 655
 656	inode_sb_list_del(inode);
 657
 658	/*
 659	 * Wait for flusher thread to be done with the inode so that filesystem
 660	 * does not start destroying it while writeback is still running. Since
 661	 * the inode has I_FREEING set, flusher thread won't start new work on
 662	 * the inode.  We just have to wait for running writeback to finish.
 663	 */
 664	inode_wait_for_writeback(inode);
 665
 666	if (op->evict_inode) {
 667		op->evict_inode(inode);
 668	} else {
 669		truncate_inode_pages_final(&inode->i_data);
 670		clear_inode(inode);
 671	}
 
 
 672	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 673		cd_forget(inode);
 674
 675	remove_inode_hash(inode);
 676
 677	spin_lock(&inode->i_lock);
 678	wake_up_bit(&inode->i_state, __I_NEW);
 679	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 680	spin_unlock(&inode->i_lock);
 681
 682	destroy_inode(inode);
 683}
 684
 685/*
 686 * dispose_list - dispose of the contents of a local list
 687 * @head: the head of the list to free
 688 *
 689 * Dispose-list gets a local list with local inodes in it, so it doesn't
 690 * need to worry about list corruption and SMP locks.
 691 */
 692static void dispose_list(struct list_head *head)
 693{
 694	while (!list_empty(head)) {
 695		struct inode *inode;
 696
 697		inode = list_first_entry(head, struct inode, i_lru);
 698		list_del_init(&inode->i_lru);
 699
 700		evict(inode);
 701		cond_resched();
 702	}
 703}
 704
 705/**
 706 * evict_inodes	- evict all evictable inodes for a superblock
 707 * @sb:		superblock to operate on
 708 *
 709 * Make sure that no inodes with zero refcount are retained.  This is
 710 * called by superblock shutdown after having SB_ACTIVE flag removed,
 711 * so any inode reaching zero refcount during or after that call will
 712 * be immediately evicted.
 713 */
 714void evict_inodes(struct super_block *sb)
 715{
 716	struct inode *inode, *next;
 717	LIST_HEAD(dispose);
 718
 719again:
 720	spin_lock(&sb->s_inode_list_lock);
 721	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 722		if (atomic_read(&inode->i_count))
 723			continue;
 724
 725		spin_lock(&inode->i_lock);
 726		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 727			spin_unlock(&inode->i_lock);
 728			continue;
 729		}
 730
 731		inode->i_state |= I_FREEING;
 732		inode_lru_list_del(inode);
 733		spin_unlock(&inode->i_lock);
 734		list_add(&inode->i_lru, &dispose);
 735
 736		/*
 737		 * We can have a ton of inodes to evict at unmount time given
 738		 * enough memory, check to see if we need to go to sleep for a
 739		 * bit so we don't livelock.
 740		 */
 741		if (need_resched()) {
 742			spin_unlock(&sb->s_inode_list_lock);
 743			cond_resched();
 744			dispose_list(&dispose);
 745			goto again;
 746		}
 747	}
 748	spin_unlock(&sb->s_inode_list_lock);
 749
 750	dispose_list(&dispose);
 751}
 752EXPORT_SYMBOL_GPL(evict_inodes);
 753
 754/**
 755 * invalidate_inodes	- attempt to free all inodes on a superblock
 756 * @sb:		superblock to operate on
 
 757 *
 758 * Attempts to free all inodes (including dirty inodes) for a given superblock.
 
 
 
 759 */
 760void invalidate_inodes(struct super_block *sb)
 761{
 
 762	struct inode *inode, *next;
 763	LIST_HEAD(dispose);
 764
 765again:
 766	spin_lock(&sb->s_inode_list_lock);
 767	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 768		spin_lock(&inode->i_lock);
 769		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 770			spin_unlock(&inode->i_lock);
 771			continue;
 772		}
 
 
 
 
 
 773		if (atomic_read(&inode->i_count)) {
 774			spin_unlock(&inode->i_lock);
 
 775			continue;
 776		}
 777
 778		inode->i_state |= I_FREEING;
 779		inode_lru_list_del(inode);
 780		spin_unlock(&inode->i_lock);
 781		list_add(&inode->i_lru, &dispose);
 782		if (need_resched()) {
 783			spin_unlock(&sb->s_inode_list_lock);
 784			cond_resched();
 785			dispose_list(&dispose);
 786			goto again;
 787		}
 788	}
 789	spin_unlock(&sb->s_inode_list_lock);
 790
 791	dispose_list(&dispose);
 
 
 792}
 793
 794/*
 795 * Isolate the inode from the LRU in preparation for freeing it.
 796 *
 
 
 
 
 797 * If the inode has the I_REFERENCED flag set, then it means that it has been
 798 * used recently - the flag is set in iput_final(). When we encounter such an
 799 * inode, clear the flag and move it to the back of the LRU so it gets another
 800 * pass through the LRU before it gets reclaimed. This is necessary because of
 801 * the fact we are doing lazy LRU updates to minimise lock contention so the
 802 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 803 * with this flag set because they are the inodes that are out of order.
 804 */
 805static enum lru_status inode_lru_isolate(struct list_head *item,
 806		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 807{
 808	struct list_head *freeable = arg;
 809	struct inode	*inode = container_of(item, struct inode, i_lru);
 810
 811	/*
 812	 * We are inverting the lru lock/inode->i_lock here, so use a
 813	 * trylock. If we fail to get the lock, just skip it.
 814	 */
 815	if (!spin_trylock(&inode->i_lock))
 816		return LRU_SKIP;
 817
 818	/*
 819	 * Inodes can get referenced, redirtied, or repopulated while
 820	 * they're already on the LRU, and this can make them
 821	 * unreclaimable for a while. Remove them lazily here; iput,
 822	 * sync, or the last page cache deletion will requeue them.
 823	 */
 824	if (atomic_read(&inode->i_count) ||
 825	    (inode->i_state & ~I_REFERENCED) ||
 826	    !mapping_shrinkable(&inode->i_data)) {
 827		list_lru_isolate(lru, &inode->i_lru);
 828		spin_unlock(&inode->i_lock);
 829		this_cpu_dec(nr_unused);
 830		return LRU_REMOVED;
 831	}
 832
 833	/* Recently referenced inodes get one more pass */
 834	if (inode->i_state & I_REFERENCED) {
 835		inode->i_state &= ~I_REFERENCED;
 836		spin_unlock(&inode->i_lock);
 837		return LRU_ROTATE;
 838	}
 839
 840	/*
 841	 * On highmem systems, mapping_shrinkable() permits dropping
 842	 * page cache in order to free up struct inodes: lowmem might
 843	 * be under pressure before the cache inside the highmem zone.
 844	 */
 845	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
 846		__iget(inode);
 847		spin_unlock(&inode->i_lock);
 848		spin_unlock(lru_lock);
 849		if (remove_inode_buffers(inode)) {
 850			unsigned long reap;
 851			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 852			if (current_is_kswapd())
 853				__count_vm_events(KSWAPD_INODESTEAL, reap);
 854			else
 855				__count_vm_events(PGINODESTEAL, reap);
 856			mm_account_reclaimed_pages(reap);
 
 857		}
 858		iput(inode);
 859		spin_lock(lru_lock);
 860		return LRU_RETRY;
 861	}
 862
 863	WARN_ON(inode->i_state & I_NEW);
 864	inode->i_state |= I_FREEING;
 865	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 866	spin_unlock(&inode->i_lock);
 867
 868	this_cpu_dec(nr_unused);
 869	return LRU_REMOVED;
 870}
 871
 872/*
 873 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 874 * This is called from the superblock shrinker function with a number of inodes
 875 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 876 * then are freed outside inode_lock by dispose_list().
 877 */
 878long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 879{
 880	LIST_HEAD(freeable);
 881	long freed;
 882
 883	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 884				     inode_lru_isolate, &freeable);
 885	dispose_list(&freeable);
 886	return freed;
 887}
 888
 889static void __wait_on_freeing_inode(struct inode *inode);
 890/*
 891 * Called with the inode lock held.
 892 */
 893static struct inode *find_inode(struct super_block *sb,
 894				struct hlist_head *head,
 895				int (*test)(struct inode *, void *),
 896				void *data)
 897{
 898	struct inode *inode = NULL;
 899
 900repeat:
 901	hlist_for_each_entry(inode, head, i_hash) {
 902		if (inode->i_sb != sb)
 903			continue;
 904		if (!test(inode, data))
 905			continue;
 906		spin_lock(&inode->i_lock);
 907		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 908			__wait_on_freeing_inode(inode);
 909			goto repeat;
 910		}
 911		if (unlikely(inode->i_state & I_CREATING)) {
 912			spin_unlock(&inode->i_lock);
 913			return ERR_PTR(-ESTALE);
 914		}
 915		__iget(inode);
 916		spin_unlock(&inode->i_lock);
 917		return inode;
 918	}
 919	return NULL;
 920}
 921
 922/*
 923 * find_inode_fast is the fast path version of find_inode, see the comment at
 924 * iget_locked for details.
 925 */
 926static struct inode *find_inode_fast(struct super_block *sb,
 927				struct hlist_head *head, unsigned long ino)
 928{
 929	struct inode *inode = NULL;
 930
 931repeat:
 932	hlist_for_each_entry(inode, head, i_hash) {
 933		if (inode->i_ino != ino)
 934			continue;
 935		if (inode->i_sb != sb)
 936			continue;
 937		spin_lock(&inode->i_lock);
 938		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 939			__wait_on_freeing_inode(inode);
 940			goto repeat;
 941		}
 942		if (unlikely(inode->i_state & I_CREATING)) {
 943			spin_unlock(&inode->i_lock);
 944			return ERR_PTR(-ESTALE);
 945		}
 946		__iget(inode);
 947		spin_unlock(&inode->i_lock);
 948		return inode;
 949	}
 950	return NULL;
 951}
 952
 953/*
 954 * Each cpu owns a range of LAST_INO_BATCH numbers.
 955 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 956 * to renew the exhausted range.
 957 *
 958 * This does not significantly increase overflow rate because every CPU can
 959 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 960 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 961 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 962 * overflow rate by 2x, which does not seem too significant.
 963 *
 964 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 965 * error if st_ino won't fit in target struct field. Use 32bit counter
 966 * here to attempt to avoid that.
 967 */
 968#define LAST_INO_BATCH 1024
 969static DEFINE_PER_CPU(unsigned int, last_ino);
 970
 971unsigned int get_next_ino(void)
 972{
 973	unsigned int *p = &get_cpu_var(last_ino);
 974	unsigned int res = *p;
 975
 976#ifdef CONFIG_SMP
 977	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 978		static atomic_t shared_last_ino;
 979		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 980
 981		res = next - LAST_INO_BATCH;
 982	}
 983#endif
 984
 985	res++;
 986	/* get_next_ino should not provide a 0 inode number */
 987	if (unlikely(!res))
 988		res++;
 989	*p = res;
 990	put_cpu_var(last_ino);
 991	return res;
 992}
 993EXPORT_SYMBOL(get_next_ino);
 994
 995/**
 996 *	new_inode_pseudo 	- obtain an inode
 997 *	@sb: superblock
 998 *
 999 *	Allocates a new inode for given superblock.
1000 *	Inode wont be chained in superblock s_inodes list
1001 *	This means :
1002 *	- fs can't be unmount
1003 *	- quotas, fsnotify, writeback can't work
1004 */
1005struct inode *new_inode_pseudo(struct super_block *sb)
1006{
1007	struct inode *inode = alloc_inode(sb);
1008
1009	if (inode) {
1010		spin_lock(&inode->i_lock);
1011		inode->i_state = 0;
1012		spin_unlock(&inode->i_lock);
 
1013	}
1014	return inode;
1015}
1016
1017/**
1018 *	new_inode 	- obtain an inode
1019 *	@sb: superblock
1020 *
1021 *	Allocates a new inode for given superblock. The default gfp_mask
1022 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1023 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1024 *	for the page cache are not reclaimable or migratable,
1025 *	mapping_set_gfp_mask() must be called with suitable flags on the
1026 *	newly created inode's mapping
1027 *
1028 */
1029struct inode *new_inode(struct super_block *sb)
1030{
1031	struct inode *inode;
1032
 
 
1033	inode = new_inode_pseudo(sb);
1034	if (inode)
1035		inode_sb_list_add(inode);
1036	return inode;
1037}
1038EXPORT_SYMBOL(new_inode);
1039
1040#ifdef CONFIG_DEBUG_LOCK_ALLOC
1041void lockdep_annotate_inode_mutex_key(struct inode *inode)
1042{
1043	if (S_ISDIR(inode->i_mode)) {
1044		struct file_system_type *type = inode->i_sb->s_type;
1045
1046		/* Set new key only if filesystem hasn't already changed it */
1047		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1048			/*
1049			 * ensure nobody is actually holding i_mutex
1050			 */
1051			// mutex_destroy(&inode->i_mutex);
1052			init_rwsem(&inode->i_rwsem);
1053			lockdep_set_class(&inode->i_rwsem,
1054					  &type->i_mutex_dir_key);
1055		}
1056	}
1057}
1058EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1059#endif
1060
1061/**
1062 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1063 * @inode:	new inode to unlock
1064 *
1065 * Called when the inode is fully initialised to clear the new state of the
1066 * inode and wake up anyone waiting for the inode to finish initialisation.
1067 */
1068void unlock_new_inode(struct inode *inode)
1069{
1070	lockdep_annotate_inode_mutex_key(inode);
1071	spin_lock(&inode->i_lock);
1072	WARN_ON(!(inode->i_state & I_NEW));
1073	inode->i_state &= ~I_NEW & ~I_CREATING;
1074	smp_mb();
1075	wake_up_bit(&inode->i_state, __I_NEW);
1076	spin_unlock(&inode->i_lock);
1077}
1078EXPORT_SYMBOL(unlock_new_inode);
1079
1080void discard_new_inode(struct inode *inode)
1081{
1082	lockdep_annotate_inode_mutex_key(inode);
1083	spin_lock(&inode->i_lock);
1084	WARN_ON(!(inode->i_state & I_NEW));
1085	inode->i_state &= ~I_NEW;
1086	smp_mb();
1087	wake_up_bit(&inode->i_state, __I_NEW);
1088	spin_unlock(&inode->i_lock);
1089	iput(inode);
1090}
1091EXPORT_SYMBOL(discard_new_inode);
1092
1093/**
1094 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1095 *
1096 * Lock any non-NULL argument. Passed objects must not be directories.
1097 * Zero, one or two objects may be locked by this function.
1098 *
1099 * @inode1: first inode to lock
1100 * @inode2: second inode to lock
1101 */
1102void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1103{
1104	if (inode1)
1105		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1106	if (inode2)
1107		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1108	if (inode1 > inode2)
1109		swap(inode1, inode2);
1110	if (inode1)
 
1111		inode_lock(inode1);
1112	if (inode2 && inode2 != inode1)
1113		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1114}
1115EXPORT_SYMBOL(lock_two_nondirectories);
1116
1117/**
1118 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1119 * @inode1: first inode to unlock
1120 * @inode2: second inode to unlock
1121 */
1122void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1123{
1124	if (inode1) {
1125		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1126		inode_unlock(inode1);
1127	}
1128	if (inode2 && inode2 != inode1) {
1129		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1130		inode_unlock(inode2);
1131	}
1132}
1133EXPORT_SYMBOL(unlock_two_nondirectories);
1134
1135/**
1136 * inode_insert5 - obtain an inode from a mounted file system
1137 * @inode:	pre-allocated inode to use for insert to cache
1138 * @hashval:	hash value (usually inode number) to get
1139 * @test:	callback used for comparisons between inodes
1140 * @set:	callback used to initialize a new struct inode
1141 * @data:	opaque data pointer to pass to @test and @set
1142 *
1143 * Search for the inode specified by @hashval and @data in the inode cache,
1144 * and if present it is return it with an increased reference count. This is
1145 * a variant of iget5_locked() for callers that don't want to fail on memory
1146 * allocation of inode.
1147 *
1148 * If the inode is not in cache, insert the pre-allocated inode to cache and
1149 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1150 * to fill it in before unlocking it via unlock_new_inode().
1151 *
1152 * Note both @test and @set are called with the inode_hash_lock held, so can't
1153 * sleep.
1154 */
1155struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1156			    int (*test)(struct inode *, void *),
1157			    int (*set)(struct inode *, void *), void *data)
1158{
1159	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1160	struct inode *old;
 
1161
1162again:
1163	spin_lock(&inode_hash_lock);
1164	old = find_inode(inode->i_sb, head, test, data);
1165	if (unlikely(old)) {
1166		/*
1167		 * Uhhuh, somebody else created the same inode under us.
1168		 * Use the old inode instead of the preallocated one.
1169		 */
1170		spin_unlock(&inode_hash_lock);
1171		if (IS_ERR(old))
1172			return NULL;
1173		wait_on_inode(old);
1174		if (unlikely(inode_unhashed(old))) {
1175			iput(old);
1176			goto again;
1177		}
1178		return old;
1179	}
1180
1181	if (set && unlikely(set(inode, data))) {
1182		inode = NULL;
1183		goto unlock;
1184	}
1185
1186	/*
1187	 * Return the locked inode with I_NEW set, the
1188	 * caller is responsible for filling in the contents
1189	 */
1190	spin_lock(&inode->i_lock);
1191	inode->i_state |= I_NEW;
1192	hlist_add_head_rcu(&inode->i_hash, head);
1193	spin_unlock(&inode->i_lock);
1194
1195	/*
1196	 * Add inode to the sb list if it's not already. It has I_NEW at this
1197	 * point, so it should be safe to test i_sb_list locklessly.
1198	 */
1199	if (list_empty(&inode->i_sb_list))
1200		inode_sb_list_add(inode);
1201unlock:
1202	spin_unlock(&inode_hash_lock);
1203
1204	return inode;
1205}
1206EXPORT_SYMBOL(inode_insert5);
1207
1208/**
1209 * iget5_locked - obtain an inode from a mounted file system
1210 * @sb:		super block of file system
1211 * @hashval:	hash value (usually inode number) to get
1212 * @test:	callback used for comparisons between inodes
1213 * @set:	callback used to initialize a new struct inode
1214 * @data:	opaque data pointer to pass to @test and @set
1215 *
1216 * Search for the inode specified by @hashval and @data in the inode cache,
1217 * and if present it is return it with an increased reference count. This is
1218 * a generalized version of iget_locked() for file systems where the inode
1219 * number is not sufficient for unique identification of an inode.
1220 *
1221 * If the inode is not in cache, allocate a new inode and return it locked,
1222 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1223 * before unlocking it via unlock_new_inode().
1224 *
1225 * Note both @test and @set are called with the inode_hash_lock held, so can't
1226 * sleep.
1227 */
1228struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1229		int (*test)(struct inode *, void *),
1230		int (*set)(struct inode *, void *), void *data)
1231{
1232	struct inode *inode = ilookup5(sb, hashval, test, data);
1233
1234	if (!inode) {
1235		struct inode *new = alloc_inode(sb);
1236
1237		if (new) {
1238			new->i_state = 0;
1239			inode = inode_insert5(new, hashval, test, set, data);
1240			if (unlikely(inode != new))
1241				destroy_inode(new);
1242		}
1243	}
1244	return inode;
1245}
1246EXPORT_SYMBOL(iget5_locked);
1247
1248/**
1249 * iget_locked - obtain an inode from a mounted file system
1250 * @sb:		super block of file system
1251 * @ino:	inode number to get
1252 *
1253 * Search for the inode specified by @ino in the inode cache and if present
1254 * return it with an increased reference count. This is for file systems
1255 * where the inode number is sufficient for unique identification of an inode.
1256 *
1257 * If the inode is not in cache, allocate a new inode and return it locked,
1258 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1259 * before unlocking it via unlock_new_inode().
1260 */
1261struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1262{
1263	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1264	struct inode *inode;
1265again:
1266	spin_lock(&inode_hash_lock);
1267	inode = find_inode_fast(sb, head, ino);
1268	spin_unlock(&inode_hash_lock);
1269	if (inode) {
1270		if (IS_ERR(inode))
1271			return NULL;
1272		wait_on_inode(inode);
1273		if (unlikely(inode_unhashed(inode))) {
1274			iput(inode);
1275			goto again;
1276		}
1277		return inode;
1278	}
1279
1280	inode = alloc_inode(sb);
1281	if (inode) {
1282		struct inode *old;
1283
1284		spin_lock(&inode_hash_lock);
1285		/* We released the lock, so.. */
1286		old = find_inode_fast(sb, head, ino);
1287		if (!old) {
1288			inode->i_ino = ino;
1289			spin_lock(&inode->i_lock);
1290			inode->i_state = I_NEW;
1291			hlist_add_head_rcu(&inode->i_hash, head);
1292			spin_unlock(&inode->i_lock);
1293			inode_sb_list_add(inode);
1294			spin_unlock(&inode_hash_lock);
1295
1296			/* Return the locked inode with I_NEW set, the
1297			 * caller is responsible for filling in the contents
1298			 */
1299			return inode;
1300		}
1301
1302		/*
1303		 * Uhhuh, somebody else created the same inode under
1304		 * us. Use the old inode instead of the one we just
1305		 * allocated.
1306		 */
1307		spin_unlock(&inode_hash_lock);
1308		destroy_inode(inode);
1309		if (IS_ERR(old))
1310			return NULL;
1311		inode = old;
1312		wait_on_inode(inode);
1313		if (unlikely(inode_unhashed(inode))) {
1314			iput(inode);
1315			goto again;
1316		}
1317	}
1318	return inode;
1319}
1320EXPORT_SYMBOL(iget_locked);
1321
1322/*
1323 * search the inode cache for a matching inode number.
1324 * If we find one, then the inode number we are trying to
1325 * allocate is not unique and so we should not use it.
1326 *
1327 * Returns 1 if the inode number is unique, 0 if it is not.
1328 */
1329static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1330{
1331	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1332	struct inode *inode;
1333
1334	hlist_for_each_entry_rcu(inode, b, i_hash) {
1335		if (inode->i_ino == ino && inode->i_sb == sb)
1336			return 0;
1337	}
1338	return 1;
1339}
1340
1341/**
1342 *	iunique - get a unique inode number
1343 *	@sb: superblock
1344 *	@max_reserved: highest reserved inode number
1345 *
1346 *	Obtain an inode number that is unique on the system for a given
1347 *	superblock. This is used by file systems that have no natural
1348 *	permanent inode numbering system. An inode number is returned that
1349 *	is higher than the reserved limit but unique.
1350 *
1351 *	BUGS:
1352 *	With a large number of inodes live on the file system this function
1353 *	currently becomes quite slow.
1354 */
1355ino_t iunique(struct super_block *sb, ino_t max_reserved)
1356{
1357	/*
1358	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1359	 * error if st_ino won't fit in target struct field. Use 32bit counter
1360	 * here to attempt to avoid that.
1361	 */
1362	static DEFINE_SPINLOCK(iunique_lock);
1363	static unsigned int counter;
1364	ino_t res;
1365
1366	rcu_read_lock();
1367	spin_lock(&iunique_lock);
1368	do {
1369		if (counter <= max_reserved)
1370			counter = max_reserved + 1;
1371		res = counter++;
1372	} while (!test_inode_iunique(sb, res));
1373	spin_unlock(&iunique_lock);
1374	rcu_read_unlock();
1375
1376	return res;
1377}
1378EXPORT_SYMBOL(iunique);
1379
1380struct inode *igrab(struct inode *inode)
1381{
1382	spin_lock(&inode->i_lock);
1383	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1384		__iget(inode);
1385		spin_unlock(&inode->i_lock);
1386	} else {
1387		spin_unlock(&inode->i_lock);
1388		/*
1389		 * Handle the case where s_op->clear_inode is not been
1390		 * called yet, and somebody is calling igrab
1391		 * while the inode is getting freed.
1392		 */
1393		inode = NULL;
1394	}
1395	return inode;
1396}
1397EXPORT_SYMBOL(igrab);
1398
1399/**
1400 * ilookup5_nowait - search for an inode in the inode cache
1401 * @sb:		super block of file system to search
1402 * @hashval:	hash value (usually inode number) to search for
1403 * @test:	callback used for comparisons between inodes
1404 * @data:	opaque data pointer to pass to @test
1405 *
1406 * Search for the inode specified by @hashval and @data in the inode cache.
1407 * If the inode is in the cache, the inode is returned with an incremented
1408 * reference count.
1409 *
1410 * Note: I_NEW is not waited upon so you have to be very careful what you do
1411 * with the returned inode.  You probably should be using ilookup5() instead.
1412 *
1413 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1414 */
1415struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1416		int (*test)(struct inode *, void *), void *data)
1417{
1418	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1419	struct inode *inode;
1420
1421	spin_lock(&inode_hash_lock);
1422	inode = find_inode(sb, head, test, data);
1423	spin_unlock(&inode_hash_lock);
1424
1425	return IS_ERR(inode) ? NULL : inode;
1426}
1427EXPORT_SYMBOL(ilookup5_nowait);
1428
1429/**
1430 * ilookup5 - search for an inode in the inode cache
1431 * @sb:		super block of file system to search
1432 * @hashval:	hash value (usually inode number) to search for
1433 * @test:	callback used for comparisons between inodes
1434 * @data:	opaque data pointer to pass to @test
1435 *
1436 * Search for the inode specified by @hashval and @data in the inode cache,
1437 * and if the inode is in the cache, return the inode with an incremented
1438 * reference count.  Waits on I_NEW before returning the inode.
1439 * returned with an incremented reference count.
1440 *
1441 * This is a generalized version of ilookup() for file systems where the
1442 * inode number is not sufficient for unique identification of an inode.
1443 *
1444 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1445 */
1446struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1447		int (*test)(struct inode *, void *), void *data)
1448{
1449	struct inode *inode;
1450again:
1451	inode = ilookup5_nowait(sb, hashval, test, data);
1452	if (inode) {
1453		wait_on_inode(inode);
1454		if (unlikely(inode_unhashed(inode))) {
1455			iput(inode);
1456			goto again;
1457		}
1458	}
1459	return inode;
1460}
1461EXPORT_SYMBOL(ilookup5);
1462
1463/**
1464 * ilookup - search for an inode in the inode cache
1465 * @sb:		super block of file system to search
1466 * @ino:	inode number to search for
1467 *
1468 * Search for the inode @ino in the inode cache, and if the inode is in the
1469 * cache, the inode is returned with an incremented reference count.
1470 */
1471struct inode *ilookup(struct super_block *sb, unsigned long ino)
1472{
1473	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1474	struct inode *inode;
1475again:
1476	spin_lock(&inode_hash_lock);
1477	inode = find_inode_fast(sb, head, ino);
1478	spin_unlock(&inode_hash_lock);
1479
1480	if (inode) {
1481		if (IS_ERR(inode))
1482			return NULL;
1483		wait_on_inode(inode);
1484		if (unlikely(inode_unhashed(inode))) {
1485			iput(inode);
1486			goto again;
1487		}
1488	}
1489	return inode;
1490}
1491EXPORT_SYMBOL(ilookup);
1492
1493/**
1494 * find_inode_nowait - find an inode in the inode cache
1495 * @sb:		super block of file system to search
1496 * @hashval:	hash value (usually inode number) to search for
1497 * @match:	callback used for comparisons between inodes
1498 * @data:	opaque data pointer to pass to @match
1499 *
1500 * Search for the inode specified by @hashval and @data in the inode
1501 * cache, where the helper function @match will return 0 if the inode
1502 * does not match, 1 if the inode does match, and -1 if the search
1503 * should be stopped.  The @match function must be responsible for
1504 * taking the i_lock spin_lock and checking i_state for an inode being
1505 * freed or being initialized, and incrementing the reference count
1506 * before returning 1.  It also must not sleep, since it is called with
1507 * the inode_hash_lock spinlock held.
1508 *
1509 * This is a even more generalized version of ilookup5() when the
1510 * function must never block --- find_inode() can block in
1511 * __wait_on_freeing_inode() --- or when the caller can not increment
1512 * the reference count because the resulting iput() might cause an
1513 * inode eviction.  The tradeoff is that the @match funtion must be
1514 * very carefully implemented.
1515 */
1516struct inode *find_inode_nowait(struct super_block *sb,
1517				unsigned long hashval,
1518				int (*match)(struct inode *, unsigned long,
1519					     void *),
1520				void *data)
1521{
1522	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1523	struct inode *inode, *ret_inode = NULL;
1524	int mval;
1525
1526	spin_lock(&inode_hash_lock);
1527	hlist_for_each_entry(inode, head, i_hash) {
1528		if (inode->i_sb != sb)
1529			continue;
1530		mval = match(inode, hashval, data);
1531		if (mval == 0)
1532			continue;
1533		if (mval == 1)
1534			ret_inode = inode;
1535		goto out;
1536	}
1537out:
1538	spin_unlock(&inode_hash_lock);
1539	return ret_inode;
1540}
1541EXPORT_SYMBOL(find_inode_nowait);
1542
1543/**
1544 * find_inode_rcu - find an inode in the inode cache
1545 * @sb:		Super block of file system to search
1546 * @hashval:	Key to hash
1547 * @test:	Function to test match on an inode
1548 * @data:	Data for test function
1549 *
1550 * Search for the inode specified by @hashval and @data in the inode cache,
1551 * where the helper function @test will return 0 if the inode does not match
1552 * and 1 if it does.  The @test function must be responsible for taking the
1553 * i_lock spin_lock and checking i_state for an inode being freed or being
1554 * initialized.
1555 *
1556 * If successful, this will return the inode for which the @test function
1557 * returned 1 and NULL otherwise.
1558 *
1559 * The @test function is not permitted to take a ref on any inode presented.
1560 * It is also not permitted to sleep.
1561 *
1562 * The caller must hold the RCU read lock.
1563 */
1564struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1565			     int (*test)(struct inode *, void *), void *data)
1566{
1567	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1568	struct inode *inode;
1569
1570	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1571			 "suspicious find_inode_rcu() usage");
1572
1573	hlist_for_each_entry_rcu(inode, head, i_hash) {
1574		if (inode->i_sb == sb &&
1575		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1576		    test(inode, data))
1577			return inode;
1578	}
1579	return NULL;
1580}
1581EXPORT_SYMBOL(find_inode_rcu);
1582
1583/**
1584 * find_inode_by_ino_rcu - Find an inode in the inode cache
1585 * @sb:		Super block of file system to search
1586 * @ino:	The inode number to match
1587 *
1588 * Search for the inode specified by @hashval and @data in the inode cache,
1589 * where the helper function @test will return 0 if the inode does not match
1590 * and 1 if it does.  The @test function must be responsible for taking the
1591 * i_lock spin_lock and checking i_state for an inode being freed or being
1592 * initialized.
1593 *
1594 * If successful, this will return the inode for which the @test function
1595 * returned 1 and NULL otherwise.
1596 *
1597 * The @test function is not permitted to take a ref on any inode presented.
1598 * It is also not permitted to sleep.
1599 *
1600 * The caller must hold the RCU read lock.
1601 */
1602struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1603				    unsigned long ino)
1604{
1605	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1606	struct inode *inode;
1607
1608	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1609			 "suspicious find_inode_by_ino_rcu() usage");
1610
1611	hlist_for_each_entry_rcu(inode, head, i_hash) {
1612		if (inode->i_ino == ino &&
1613		    inode->i_sb == sb &&
1614		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1615		    return inode;
1616	}
1617	return NULL;
1618}
1619EXPORT_SYMBOL(find_inode_by_ino_rcu);
1620
1621int insert_inode_locked(struct inode *inode)
1622{
1623	struct super_block *sb = inode->i_sb;
1624	ino_t ino = inode->i_ino;
1625	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1626
1627	while (1) {
1628		struct inode *old = NULL;
1629		spin_lock(&inode_hash_lock);
1630		hlist_for_each_entry(old, head, i_hash) {
1631			if (old->i_ino != ino)
1632				continue;
1633			if (old->i_sb != sb)
1634				continue;
1635			spin_lock(&old->i_lock);
1636			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1637				spin_unlock(&old->i_lock);
1638				continue;
1639			}
1640			break;
1641		}
1642		if (likely(!old)) {
1643			spin_lock(&inode->i_lock);
1644			inode->i_state |= I_NEW | I_CREATING;
1645			hlist_add_head_rcu(&inode->i_hash, head);
1646			spin_unlock(&inode->i_lock);
1647			spin_unlock(&inode_hash_lock);
1648			return 0;
1649		}
1650		if (unlikely(old->i_state & I_CREATING)) {
1651			spin_unlock(&old->i_lock);
1652			spin_unlock(&inode_hash_lock);
1653			return -EBUSY;
1654		}
1655		__iget(old);
1656		spin_unlock(&old->i_lock);
1657		spin_unlock(&inode_hash_lock);
1658		wait_on_inode(old);
1659		if (unlikely(!inode_unhashed(old))) {
1660			iput(old);
1661			return -EBUSY;
1662		}
1663		iput(old);
1664	}
1665}
1666EXPORT_SYMBOL(insert_inode_locked);
1667
1668int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1669		int (*test)(struct inode *, void *), void *data)
1670{
1671	struct inode *old;
1672
1673	inode->i_state |= I_CREATING;
1674	old = inode_insert5(inode, hashval, test, NULL, data);
1675
1676	if (old != inode) {
1677		iput(old);
1678		return -EBUSY;
1679	}
1680	return 0;
1681}
1682EXPORT_SYMBOL(insert_inode_locked4);
1683
1684
1685int generic_delete_inode(struct inode *inode)
1686{
1687	return 1;
1688}
1689EXPORT_SYMBOL(generic_delete_inode);
1690
1691/*
1692 * Called when we're dropping the last reference
1693 * to an inode.
1694 *
1695 * Call the FS "drop_inode()" function, defaulting to
1696 * the legacy UNIX filesystem behaviour.  If it tells
1697 * us to evict inode, do so.  Otherwise, retain inode
1698 * in cache if fs is alive, sync and evict if fs is
1699 * shutting down.
1700 */
1701static void iput_final(struct inode *inode)
1702{
1703	struct super_block *sb = inode->i_sb;
1704	const struct super_operations *op = inode->i_sb->s_op;
1705	unsigned long state;
1706	int drop;
1707
1708	WARN_ON(inode->i_state & I_NEW);
1709
1710	if (op->drop_inode)
1711		drop = op->drop_inode(inode);
1712	else
1713		drop = generic_drop_inode(inode);
1714
1715	if (!drop &&
1716	    !(inode->i_state & I_DONTCACHE) &&
1717	    (sb->s_flags & SB_ACTIVE)) {
1718		__inode_add_lru(inode, true);
1719		spin_unlock(&inode->i_lock);
1720		return;
1721	}
1722
1723	state = inode->i_state;
1724	if (!drop) {
1725		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1726		spin_unlock(&inode->i_lock);
1727
1728		write_inode_now(inode, 1);
1729
1730		spin_lock(&inode->i_lock);
1731		state = inode->i_state;
1732		WARN_ON(state & I_NEW);
1733		state &= ~I_WILL_FREE;
1734	}
1735
1736	WRITE_ONCE(inode->i_state, state | I_FREEING);
1737	if (!list_empty(&inode->i_lru))
1738		inode_lru_list_del(inode);
1739	spin_unlock(&inode->i_lock);
1740
1741	evict(inode);
1742}
1743
1744/**
1745 *	iput	- put an inode
1746 *	@inode: inode to put
1747 *
1748 *	Puts an inode, dropping its usage count. If the inode use count hits
1749 *	zero, the inode is then freed and may also be destroyed.
1750 *
1751 *	Consequently, iput() can sleep.
1752 */
1753void iput(struct inode *inode)
1754{
1755	if (!inode)
1756		return;
1757	BUG_ON(inode->i_state & I_CLEAR);
1758retry:
1759	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1760		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1761			atomic_inc(&inode->i_count);
1762			spin_unlock(&inode->i_lock);
1763			trace_writeback_lazytime_iput(inode);
1764			mark_inode_dirty_sync(inode);
1765			goto retry;
1766		}
1767		iput_final(inode);
1768	}
1769}
1770EXPORT_SYMBOL(iput);
1771
1772#ifdef CONFIG_BLOCK
1773/**
1774 *	bmap	- find a block number in a file
1775 *	@inode:  inode owning the block number being requested
1776 *	@block: pointer containing the block to find
1777 *
1778 *	Replaces the value in ``*block`` with the block number on the device holding
1779 *	corresponding to the requested block number in the file.
1780 *	That is, asked for block 4 of inode 1 the function will replace the
1781 *	4 in ``*block``, with disk block relative to the disk start that holds that
1782 *	block of the file.
1783 *
1784 *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1785 *	hole, returns 0 and ``*block`` is also set to 0.
1786 */
1787int bmap(struct inode *inode, sector_t *block)
1788{
1789	if (!inode->i_mapping->a_ops->bmap)
1790		return -EINVAL;
1791
1792	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1793	return 0;
1794}
1795EXPORT_SYMBOL(bmap);
1796#endif
1797
1798/*
1799 * With relative atime, only update atime if the previous atime is
1800 * earlier than or equal to either the ctime or mtime,
1801 * or if at least a day has passed since the last atime update.
1802 */
1803static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1804			     struct timespec64 now)
1805{
1806	struct timespec64 atime, mtime, ctime;
1807
1808	if (!(mnt->mnt_flags & MNT_RELATIME))
1809		return true;
1810	/*
1811	 * Is mtime younger than or equal to atime? If yes, update atime:
1812	 */
1813	atime = inode_get_atime(inode);
1814	mtime = inode_get_mtime(inode);
1815	if (timespec64_compare(&mtime, &atime) >= 0)
1816		return true;
1817	/*
1818	 * Is ctime younger than or equal to atime? If yes, update atime:
1819	 */
1820	ctime = inode_get_ctime(inode);
1821	if (timespec64_compare(&ctime, &atime) >= 0)
1822		return true;
1823
1824	/*
1825	 * Is the previous atime value older than a day? If yes,
1826	 * update atime:
1827	 */
1828	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1829		return true;
1830	/*
1831	 * Good, we can skip the atime update:
1832	 */
1833	return false;
1834}
1835
1836/**
1837 * inode_update_timestamps - update the timestamps on the inode
1838 * @inode: inode to be updated
1839 * @flags: S_* flags that needed to be updated
1840 *
1841 * The update_time function is called when an inode's timestamps need to be
1842 * updated for a read or write operation. This function handles updating the
1843 * actual timestamps. It's up to the caller to ensure that the inode is marked
1844 * dirty appropriately.
1845 *
1846 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1847 * attempt to update all three of them. S_ATIME updates can be handled
1848 * independently of the rest.
1849 *
1850 * Returns a set of S_* flags indicating which values changed.
1851 */
1852int inode_update_timestamps(struct inode *inode, int flags)
1853{
1854	int updated = 0;
1855	struct timespec64 now;
1856
1857	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1858		struct timespec64 ctime = inode_get_ctime(inode);
1859		struct timespec64 mtime = inode_get_mtime(inode);
1860
1861		now = inode_set_ctime_current(inode);
1862		if (!timespec64_equal(&now, &ctime))
1863			updated |= S_CTIME;
1864		if (!timespec64_equal(&now, &mtime)) {
1865			inode_set_mtime_to_ts(inode, now);
1866			updated |= S_MTIME;
1867		}
1868		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1869			updated |= S_VERSION;
1870	} else {
1871		now = current_time(inode);
1872	}
1873
1874	if (flags & S_ATIME) {
1875		struct timespec64 atime = inode_get_atime(inode);
1876
1877		if (!timespec64_equal(&now, &atime)) {
1878			inode_set_atime_to_ts(inode, now);
1879			updated |= S_ATIME;
1880		}
1881	}
1882	return updated;
1883}
1884EXPORT_SYMBOL(inode_update_timestamps);
1885
1886/**
1887 * generic_update_time - update the timestamps on the inode
1888 * @inode: inode to be updated
1889 * @flags: S_* flags that needed to be updated
1890 *
1891 * The update_time function is called when an inode's timestamps need to be
1892 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1893 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1894 * updates can be handled done independently of the rest.
1895 *
1896 * Returns a S_* mask indicating which fields were updated.
1897 */
1898int generic_update_time(struct inode *inode, int flags)
1899{
1900	int updated = inode_update_timestamps(inode, flags);
1901	int dirty_flags = 0;
1902
1903	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1904		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1905	if (updated & S_VERSION)
1906		dirty_flags |= I_DIRTY_SYNC;
1907	__mark_inode_dirty(inode, dirty_flags);
1908	return updated;
1909}
1910EXPORT_SYMBOL(generic_update_time);
1911
1912/*
1913 * This does the actual work of updating an inodes time or version.  Must have
1914 * had called mnt_want_write() before calling this.
1915 */
1916int inode_update_time(struct inode *inode, int flags)
1917{
1918	if (inode->i_op->update_time)
1919		return inode->i_op->update_time(inode, flags);
1920	generic_update_time(inode, flags);
1921	return 0;
1922}
1923EXPORT_SYMBOL(inode_update_time);
1924
1925/**
1926 *	atime_needs_update	-	update the access time
1927 *	@path: the &struct path to update
1928 *	@inode: inode to update
1929 *
1930 *	Update the accessed time on an inode and mark it for writeback.
1931 *	This function automatically handles read only file systems and media,
1932 *	as well as the "noatime" flag and inode specific "noatime" markers.
1933 */
1934bool atime_needs_update(const struct path *path, struct inode *inode)
1935{
1936	struct vfsmount *mnt = path->mnt;
1937	struct timespec64 now, atime;
1938
1939	if (inode->i_flags & S_NOATIME)
1940		return false;
1941
1942	/* Atime updates will likely cause i_uid and i_gid to be written
1943	 * back improprely if their true value is unknown to the vfs.
1944	 */
1945	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1946		return false;
1947
1948	if (IS_NOATIME(inode))
1949		return false;
1950	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1951		return false;
1952
1953	if (mnt->mnt_flags & MNT_NOATIME)
1954		return false;
1955	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1956		return false;
1957
1958	now = current_time(inode);
1959
1960	if (!relatime_need_update(mnt, inode, now))
1961		return false;
1962
1963	atime = inode_get_atime(inode);
1964	if (timespec64_equal(&atime, &now))
1965		return false;
1966
1967	return true;
1968}
1969
1970void touch_atime(const struct path *path)
1971{
1972	struct vfsmount *mnt = path->mnt;
1973	struct inode *inode = d_inode(path->dentry);
 
1974
1975	if (!atime_needs_update(path, inode))
1976		return;
1977
1978	if (!sb_start_write_trylock(inode->i_sb))
1979		return;
1980
1981	if (mnt_get_write_access(mnt) != 0)
1982		goto skip_update;
1983	/*
1984	 * File systems can error out when updating inodes if they need to
1985	 * allocate new space to modify an inode (such is the case for
1986	 * Btrfs), but since we touch atime while walking down the path we
1987	 * really don't care if we failed to update the atime of the file,
1988	 * so just ignore the return value.
1989	 * We may also fail on filesystems that have the ability to make parts
1990	 * of the fs read only, e.g. subvolumes in Btrfs.
1991	 */
1992	inode_update_time(inode, S_ATIME);
1993	mnt_put_write_access(mnt);
 
1994skip_update:
1995	sb_end_write(inode->i_sb);
1996}
1997EXPORT_SYMBOL(touch_atime);
1998
1999/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000 * Return mask of changes for notify_change() that need to be done as a
2001 * response to write or truncate. Return 0 if nothing has to be changed.
2002 * Negative value on error (change should be denied).
2003 */
2004int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2005			      struct dentry *dentry)
2006{
2007	struct inode *inode = d_inode(dentry);
2008	int mask = 0;
2009	int ret;
2010
2011	if (IS_NOSEC(inode))
2012		return 0;
2013
2014	mask = setattr_should_drop_suidgid(idmap, inode);
2015	ret = security_inode_need_killpriv(dentry);
2016	if (ret < 0)
2017		return ret;
2018	if (ret)
2019		mask |= ATTR_KILL_PRIV;
2020	return mask;
2021}
2022
2023static int __remove_privs(struct mnt_idmap *idmap,
2024			  struct dentry *dentry, int kill)
2025{
2026	struct iattr newattrs;
2027
2028	newattrs.ia_valid = ATTR_FORCE | kill;
2029	/*
2030	 * Note we call this on write, so notify_change will not
2031	 * encounter any conflicting delegations:
2032	 */
2033	return notify_change(idmap, dentry, &newattrs, NULL);
2034}
2035
2036int file_remove_privs_flags(struct file *file, unsigned int flags)
 
 
 
 
2037{
2038	struct dentry *dentry = file_dentry(file);
2039	struct inode *inode = file_inode(file);
 
2040	int error = 0;
2041	int kill;
2042
 
 
 
 
 
 
2043	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2044		return 0;
2045
2046	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2047	if (kill < 0)
2048		return kill;
2049
2050	if (kill) {
2051		if (flags & IOCB_NOWAIT)
2052			return -EAGAIN;
2053
2054		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2055	}
2056
2057	if (!error)
2058		inode_has_no_xattr(inode);
 
2059	return error;
2060}
2061EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2062
2063/**
2064 * file_remove_privs - remove special file privileges (suid, capabilities)
2065 * @file: file to remove privileges from
2066 *
2067 * When file is modified by a write or truncation ensure that special
2068 * file privileges are removed.
2069 *
2070 * Return: 0 on success, negative errno on failure.
 
 
 
2071 */
2072int file_remove_privs(struct file *file)
2073{
2074	return file_remove_privs_flags(file, 0);
2075}
2076EXPORT_SYMBOL(file_remove_privs);
2077
2078static int inode_needs_update_time(struct inode *inode)
2079{
 
 
2080	int sync_it = 0;
2081	struct timespec64 now = current_time(inode);
2082	struct timespec64 ts;
2083
2084	/* First try to exhaust all avenues to not sync */
2085	if (IS_NOCMTIME(inode))
2086		return 0;
2087
2088	ts = inode_get_mtime(inode);
2089	if (!timespec64_equal(&ts, &now))
2090		sync_it = S_MTIME;
2091
2092	ts = inode_get_ctime(inode);
2093	if (!timespec64_equal(&ts, &now))
2094		sync_it |= S_CTIME;
2095
2096	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2097		sync_it |= S_VERSION;
2098
2099	return sync_it;
2100}
2101
2102static int __file_update_time(struct file *file, int sync_mode)
2103{
2104	int ret = 0;
2105	struct inode *inode = file_inode(file);
2106
2107	/* try to update time settings */
2108	if (!mnt_get_write_access_file(file)) {
2109		ret = inode_update_time(inode, sync_mode);
2110		mnt_put_write_access_file(file);
2111	}
2112
2113	return ret;
2114}
2115
2116/**
2117 * file_update_time - update mtime and ctime time
2118 * @file: file accessed
2119 *
2120 * Update the mtime and ctime members of an inode and mark the inode for
2121 * writeback. Note that this function is meant exclusively for usage in
2122 * the file write path of filesystems, and filesystems may choose to
2123 * explicitly ignore updates via this function with the _NOCMTIME inode
2124 * flag, e.g. for network filesystem where these imestamps are handled
2125 * by the server. This can return an error for file systems who need to
2126 * allocate space in order to update an inode.
2127 *
2128 * Return: 0 on success, negative errno on failure.
2129 */
2130int file_update_time(struct file *file)
2131{
2132	int ret;
2133	struct inode *inode = file_inode(file);
2134
2135	ret = inode_needs_update_time(inode);
2136	if (ret <= 0)
2137		return ret;
2138
2139	return __file_update_time(file, ret);
2140}
2141EXPORT_SYMBOL(file_update_time);
2142
2143/**
2144 * file_modified_flags - handle mandated vfs changes when modifying a file
2145 * @file: file that was modified
2146 * @flags: kiocb flags
2147 *
2148 * When file has been modified ensure that special
2149 * file privileges are removed and time settings are updated.
2150 *
2151 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2152 * time settings will not be updated. It will return -EAGAIN.
2153 *
2154 * Context: Caller must hold the file's inode lock.
2155 *
2156 * Return: 0 on success, negative errno on failure.
2157 */
2158static int file_modified_flags(struct file *file, int flags)
2159{
2160	int ret;
2161	struct inode *inode = file_inode(file);
2162
2163	/*
2164	 * Clear the security bits if the process is not being run by root.
2165	 * This keeps people from modifying setuid and setgid binaries.
2166	 */
2167	ret = file_remove_privs_flags(file, flags);
2168	if (ret)
2169		return ret;
2170
2171	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2172		return 0;
2173
2174	ret = inode_needs_update_time(inode);
2175	if (ret <= 0)
2176		return ret;
2177	if (flags & IOCB_NOWAIT)
2178		return -EAGAIN;
2179
2180	return __file_update_time(file, ret);
2181}
2182
2183/**
2184 * file_modified - handle mandated vfs changes when modifying a file
2185 * @file: file that was modified
2186 *
2187 * When file has been modified ensure that special
2188 * file privileges are removed and time settings are updated.
2189 *
2190 * Context: Caller must hold the file's inode lock.
2191 *
2192 * Return: 0 on success, negative errno on failure.
2193 */
2194int file_modified(struct file *file)
2195{
2196	return file_modified_flags(file, 0);
2197}
2198EXPORT_SYMBOL(file_modified);
2199
2200/**
2201 * kiocb_modified - handle mandated vfs changes when modifying a file
2202 * @iocb: iocb that was modified
2203 *
2204 * When file has been modified ensure that special
2205 * file privileges are removed and time settings are updated.
2206 *
2207 * Context: Caller must hold the file's inode lock.
2208 *
2209 * Return: 0 on success, negative errno on failure.
2210 */
2211int kiocb_modified(struct kiocb *iocb)
2212{
2213	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2214}
2215EXPORT_SYMBOL_GPL(kiocb_modified);
2216
2217int inode_needs_sync(struct inode *inode)
2218{
2219	if (IS_SYNC(inode))
2220		return 1;
2221	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2222		return 1;
2223	return 0;
2224}
2225EXPORT_SYMBOL(inode_needs_sync);
2226
2227/*
2228 * If we try to find an inode in the inode hash while it is being
2229 * deleted, we have to wait until the filesystem completes its
2230 * deletion before reporting that it isn't found.  This function waits
2231 * until the deletion _might_ have completed.  Callers are responsible
2232 * to recheck inode state.
2233 *
2234 * It doesn't matter if I_NEW is not set initially, a call to
2235 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2236 * will DTRT.
2237 */
2238static void __wait_on_freeing_inode(struct inode *inode)
2239{
2240	wait_queue_head_t *wq;
2241	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2242	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2243	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2244	spin_unlock(&inode->i_lock);
2245	spin_unlock(&inode_hash_lock);
2246	schedule();
2247	finish_wait(wq, &wait.wq_entry);
2248	spin_lock(&inode_hash_lock);
2249}
2250
2251static __initdata unsigned long ihash_entries;
2252static int __init set_ihash_entries(char *str)
2253{
2254	if (!str)
2255		return 0;
2256	ihash_entries = simple_strtoul(str, &str, 0);
2257	return 1;
2258}
2259__setup("ihash_entries=", set_ihash_entries);
2260
2261/*
2262 * Initialize the waitqueues and inode hash table.
2263 */
2264void __init inode_init_early(void)
2265{
2266	/* If hashes are distributed across NUMA nodes, defer
2267	 * hash allocation until vmalloc space is available.
2268	 */
2269	if (hashdist)
2270		return;
2271
2272	inode_hashtable =
2273		alloc_large_system_hash("Inode-cache",
2274					sizeof(struct hlist_head),
2275					ihash_entries,
2276					14,
2277					HASH_EARLY | HASH_ZERO,
2278					&i_hash_shift,
2279					&i_hash_mask,
2280					0,
2281					0);
2282}
2283
2284void __init inode_init(void)
2285{
2286	/* inode slab cache */
2287	inode_cachep = kmem_cache_create("inode_cache",
2288					 sizeof(struct inode),
2289					 0,
2290					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2291					 SLAB_ACCOUNT),
2292					 init_once);
2293
2294	/* Hash may have been set up in inode_init_early */
2295	if (!hashdist)
2296		return;
2297
2298	inode_hashtable =
2299		alloc_large_system_hash("Inode-cache",
2300					sizeof(struct hlist_head),
2301					ihash_entries,
2302					14,
2303					HASH_ZERO,
2304					&i_hash_shift,
2305					&i_hash_mask,
2306					0,
2307					0);
2308}
2309
2310void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2311{
2312	inode->i_mode = mode;
2313	if (S_ISCHR(mode)) {
2314		inode->i_fop = &def_chr_fops;
2315		inode->i_rdev = rdev;
2316	} else if (S_ISBLK(mode)) {
2317		if (IS_ENABLED(CONFIG_BLOCK))
2318			inode->i_fop = &def_blk_fops;
2319		inode->i_rdev = rdev;
2320	} else if (S_ISFIFO(mode))
2321		inode->i_fop = &pipefifo_fops;
2322	else if (S_ISSOCK(mode))
2323		;	/* leave it no_open_fops */
2324	else
2325		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2326				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2327				  inode->i_ino);
2328}
2329EXPORT_SYMBOL(init_special_inode);
2330
2331/**
2332 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2333 * @idmap: idmap of the mount the inode was created from
2334 * @inode: New inode
2335 * @dir: Directory inode
2336 * @mode: mode of the new inode
2337 *
2338 * If the inode has been created through an idmapped mount the idmap of
2339 * the vfsmount must be passed through @idmap. This function will then take
2340 * care to map the inode according to @idmap before checking permissions
2341 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2342 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2343 */
2344void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2345		      const struct inode *dir, umode_t mode)
2346{
2347	inode_fsuid_set(inode, idmap);
2348	if (dir && dir->i_mode & S_ISGID) {
2349		inode->i_gid = dir->i_gid;
2350
2351		/* Directories are special, and always inherit S_ISGID */
2352		if (S_ISDIR(mode))
2353			mode |= S_ISGID;
 
 
 
 
2354	} else
2355		inode_fsgid_set(inode, idmap);
2356	inode->i_mode = mode;
2357}
2358EXPORT_SYMBOL(inode_init_owner);
2359
2360/**
2361 * inode_owner_or_capable - check current task permissions to inode
2362 * @idmap: idmap of the mount the inode was found from
2363 * @inode: inode being checked
2364 *
2365 * Return true if current either has CAP_FOWNER in a namespace with the
2366 * inode owner uid mapped, or owns the file.
2367 *
2368 * If the inode has been found through an idmapped mount the idmap of
2369 * the vfsmount must be passed through @idmap. This function will then take
2370 * care to map the inode according to @idmap before checking permissions.
2371 * On non-idmapped mounts or if permission checking is to be performed on the
2372 * raw inode simply pass @nop_mnt_idmap.
2373 */
2374bool inode_owner_or_capable(struct mnt_idmap *idmap,
2375			    const struct inode *inode)
2376{
2377	vfsuid_t vfsuid;
2378	struct user_namespace *ns;
2379
2380	vfsuid = i_uid_into_vfsuid(idmap, inode);
2381	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2382		return true;
2383
2384	ns = current_user_ns();
2385	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2386		return true;
2387	return false;
2388}
2389EXPORT_SYMBOL(inode_owner_or_capable);
2390
2391/*
2392 * Direct i/o helper functions
2393 */
2394static void __inode_dio_wait(struct inode *inode)
2395{
2396	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2397	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2398
2399	do {
2400		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2401		if (atomic_read(&inode->i_dio_count))
2402			schedule();
2403	} while (atomic_read(&inode->i_dio_count));
2404	finish_wait(wq, &q.wq_entry);
2405}
2406
2407/**
2408 * inode_dio_wait - wait for outstanding DIO requests to finish
2409 * @inode: inode to wait for
2410 *
2411 * Waits for all pending direct I/O requests to finish so that we can
2412 * proceed with a truncate or equivalent operation.
2413 *
2414 * Must be called under a lock that serializes taking new references
2415 * to i_dio_count, usually by inode->i_mutex.
2416 */
2417void inode_dio_wait(struct inode *inode)
2418{
2419	if (atomic_read(&inode->i_dio_count))
2420		__inode_dio_wait(inode);
2421}
2422EXPORT_SYMBOL(inode_dio_wait);
2423
2424/*
2425 * inode_set_flags - atomically set some inode flags
2426 *
2427 * Note: the caller should be holding i_mutex, or else be sure that
2428 * they have exclusive access to the inode structure (i.e., while the
2429 * inode is being instantiated).  The reason for the cmpxchg() loop
2430 * --- which wouldn't be necessary if all code paths which modify
2431 * i_flags actually followed this rule, is that there is at least one
2432 * code path which doesn't today so we use cmpxchg() out of an abundance
2433 * of caution.
2434 *
2435 * In the long run, i_mutex is overkill, and we should probably look
2436 * at using the i_lock spinlock to protect i_flags, and then make sure
2437 * it is so documented in include/linux/fs.h and that all code follows
2438 * the locking convention!!
2439 */
2440void inode_set_flags(struct inode *inode, unsigned int flags,
2441		     unsigned int mask)
2442{
2443	WARN_ON_ONCE(flags & ~mask);
2444	set_mask_bits(&inode->i_flags, mask, flags);
2445}
2446EXPORT_SYMBOL(inode_set_flags);
2447
2448void inode_nohighmem(struct inode *inode)
2449{
2450	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2451}
2452EXPORT_SYMBOL(inode_nohighmem);
2453
2454/**
2455 * timestamp_truncate - Truncate timespec to a granularity
2456 * @t: Timespec
2457 * @inode: inode being updated
2458 *
2459 * Truncate a timespec to the granularity supported by the fs
2460 * containing the inode. Always rounds down. gran must
2461 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2462 */
2463struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2464{
2465	struct super_block *sb = inode->i_sb;
2466	unsigned int gran = sb->s_time_gran;
2467
2468	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2469	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2470		t.tv_nsec = 0;
2471
2472	/* Avoid division in the common cases 1 ns and 1 s. */
2473	if (gran == 1)
2474		; /* nothing */
2475	else if (gran == NSEC_PER_SEC)
2476		t.tv_nsec = 0;
2477	else if (gran > 1 && gran < NSEC_PER_SEC)
2478		t.tv_nsec -= t.tv_nsec % gran;
2479	else
2480		WARN(1, "invalid file time granularity: %u", gran);
2481	return t;
2482}
2483EXPORT_SYMBOL(timestamp_truncate);
2484
2485/**
2486 * current_time - Return FS time
2487 * @inode: inode.
2488 *
2489 * Return the current time truncated to the time granularity supported by
2490 * the fs.
2491 *
2492 * Note that inode and inode->sb cannot be NULL.
2493 * Otherwise, the function warns and returns time without truncation.
2494 */
2495struct timespec64 current_time(struct inode *inode)
2496{
2497	struct timespec64 now;
2498
2499	ktime_get_coarse_real_ts64(&now);
 
 
 
 
 
 
2500	return timestamp_truncate(now, inode);
2501}
2502EXPORT_SYMBOL(current_time);
2503
2504/**
2505 * inode_set_ctime_current - set the ctime to current_time
2506 * @inode: inode
2507 *
2508 * Set the inode->i_ctime to the current value for the inode. Returns
2509 * the current value that was assigned to i_ctime.
2510 */
2511struct timespec64 inode_set_ctime_current(struct inode *inode)
 
2512{
2513	struct timespec64 now = current_time(inode);
 
 
 
 
 
 
 
 
2514
2515	inode_set_ctime_to_ts(inode, now);
2516	return now;
2517}
2518EXPORT_SYMBOL(inode_set_ctime_current);
2519
2520/**
2521 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2522 * @idmap:	idmap of the mount @inode was found from
2523 * @inode:	inode to check
2524 * @vfsgid:	the new/current vfsgid of @inode
2525 *
2526 * Check wether @vfsgid is in the caller's group list or if the caller is
2527 * privileged with CAP_FSETID over @inode. This can be used to determine
2528 * whether the setgid bit can be kept or must be dropped.
2529 *
2530 * Return: true if the caller is sufficiently privileged, false if not.
 
2531 */
2532bool in_group_or_capable(struct mnt_idmap *idmap,
2533			 const struct inode *inode, vfsgid_t vfsgid)
2534{
2535	if (vfsgid_in_group_p(vfsgid))
2536		return true;
2537	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2538		return true;
2539	return false;
2540}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2541
2542/**
2543 * mode_strip_sgid - handle the sgid bit for non-directories
2544 * @idmap: idmap of the mount the inode was created from
2545 * @dir: parent directory inode
2546 * @mode: mode of the file to be created in @dir
2547 *
2548 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2549 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2550 * either in the group of the parent directory or they have CAP_FSETID
2551 * in their user namespace and are privileged over the parent directory.
2552 * In all other cases, strip the S_ISGID bit from @mode.
2553 *
2554 * Return: the new mode to use for the file
2555 */
2556umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2557			const struct inode *dir, umode_t mode)
2558{
2559	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2560		return mode;
2561	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2562		return mode;
2563	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2564		return mode;
2565	return mode & ~S_ISGID;
2566}
2567EXPORT_SYMBOL(mode_strip_sgid);