Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Persistent Memory Driver
  4 *
  5 * Copyright (c) 2014-2015, Intel Corporation.
  6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
 
 
 
 
 
 
 
 
 
  8 */
  9
 
 10#include <linux/blkdev.h>
 11#include <linux/hdreg.h>
 12#include <linux/init.h>
 13#include <linux/platform_device.h>
 14#include <linux/set_memory.h>
 15#include <linux/module.h>
 16#include <linux/moduleparam.h>
 17#include <linux/badblocks.h>
 18#include <linux/memremap.h>
 19#include <linux/vmalloc.h>
 20#include <linux/blk-mq.h>
 21#include <linux/pfn_t.h>
 22#include <linux/slab.h>
 23#include <linux/uio.h>
 24#include <linux/dax.h>
 25#include <linux/nd.h>
 26#include <linux/backing-dev.h>
 27#include <linux/mm.h>
 28#include <asm/cacheflush.h>
 29#include "pmem.h"
 30#include "pfn.h"
 31#include "nd.h"
 32
 33static struct device *to_dev(struct pmem_device *pmem)
 34{
 35	/*
 36	 * nvdimm bus services need a 'dev' parameter, and we record the device
 37	 * at init in bb.dev.
 38	 */
 39	return pmem->bb.dev;
 40}
 41
 42static struct nd_region *to_region(struct pmem_device *pmem)
 43{
 44	return to_nd_region(to_dev(pmem)->parent);
 45}
 
 
 
 
 
 
 
 
 46
 47static void hwpoison_clear(struct pmem_device *pmem,
 48		phys_addr_t phys, unsigned int len)
 49{
 50	unsigned long pfn_start, pfn_end, pfn;
 
 
 51
 52	/* only pmem in the linear map supports HWPoison */
 53	if (is_vmalloc_addr(pmem->virt_addr))
 54		return;
 55
 56	pfn_start = PHYS_PFN(phys);
 57	pfn_end = pfn_start + PHYS_PFN(len);
 58	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
 59		struct page *page = pfn_to_page(pfn);
 60
 61		/*
 62		 * Note, no need to hold a get_dev_pagemap() reference
 63		 * here since we're in the driver I/O path and
 64		 * outstanding I/O requests pin the dev_pagemap.
 65		 */
 66		if (test_and_clear_pmem_poison(page))
 67			clear_mce_nospec(pfn);
 68	}
 
 
 69}
 70
 71static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
 72		phys_addr_t offset, unsigned int len)
 73{
 74	struct device *dev = to_dev(pmem);
 75	sector_t sector;
 76	long cleared;
 77	blk_status_t rc = BLK_STS_OK;
 78
 79	sector = (offset - pmem->data_offset) / 512;
 80
 81	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
 82	if (cleared < len)
 83		rc = BLK_STS_IOERR;
 84	if (cleared > 0 && cleared / 512) {
 85		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
 86		cleared /= 512;
 87		dev_dbg(dev, "%#llx clear %ld sector%s\n",
 88				(unsigned long long) sector, cleared,
 89				cleared > 1 ? "s" : "");
 90		badblocks_clear(&pmem->bb, sector, cleared);
 91		if (pmem->bb_state)
 92			sysfs_notify_dirent(pmem->bb_state);
 93	}
 94
 95	arch_invalidate_pmem(pmem->virt_addr + offset, len);
 96
 97	return rc;
 98}
 99
100static void write_pmem(void *pmem_addr, struct page *page,
101		unsigned int off, unsigned int len)
102{
103	unsigned int chunk;
104	void *mem;
105
106	while (len) {
107		mem = kmap_atomic(page);
108		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
109		memcpy_flushcache(pmem_addr, mem + off, chunk);
110		kunmap_atomic(mem);
111		len -= chunk;
112		off = 0;
113		page++;
114		pmem_addr += chunk;
115	}
 
116}
117
118static blk_status_t read_pmem(struct page *page, unsigned int off,
119		void *pmem_addr, unsigned int len)
120{
121	unsigned int chunk;
122	unsigned long rem;
123	void *mem;
124
125	while (len) {
126		mem = kmap_atomic(page);
127		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
128		rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
129		kunmap_atomic(mem);
130		if (rem)
131			return BLK_STS_IOERR;
132		len -= chunk;
133		off = 0;
134		page++;
135		pmem_addr += chunk;
136	}
137	return BLK_STS_OK;
138}
139
140static blk_status_t pmem_do_read(struct pmem_device *pmem,
141			struct page *page, unsigned int page_off,
142			sector_t sector, unsigned int len)
143{
144	blk_status_t rc;
145	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146	void *pmem_addr = pmem->virt_addr + pmem_off;
147
148	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149		return BLK_STS_IOERR;
150
151	rc = read_pmem(page, page_off, pmem_addr, len);
152	flush_dcache_page(page);
153	return rc;
154}
155
156static blk_status_t pmem_do_write(struct pmem_device *pmem,
157			struct page *page, unsigned int page_off,
158			sector_t sector, unsigned int len)
159{
160	blk_status_t rc = BLK_STS_OK;
161	bool bad_pmem = false;
 
162	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
163	void *pmem_addr = pmem->virt_addr + pmem_off;
164
165	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
166		bad_pmem = true;
167
168	/*
169	 * Note that we write the data both before and after
170	 * clearing poison.  The write before clear poison
171	 * handles situations where the latest written data is
172	 * preserved and the clear poison operation simply marks
173	 * the address range as valid without changing the data.
174	 * In this case application software can assume that an
175	 * interrupted write will either return the new good
176	 * data or an error.
177	 *
178	 * However, if pmem_clear_poison() leaves the data in an
179	 * indeterminate state we need to perform the write
180	 * after clear poison.
181	 */
182	flush_dcache_page(page);
183	write_pmem(pmem_addr, page, page_off, len);
184	if (unlikely(bad_pmem)) {
185		rc = pmem_clear_poison(pmem, pmem_off, len);
186		write_pmem(pmem_addr, page, page_off, len);
 
 
 
 
 
 
 
 
 
187	}
188
 
189	return rc;
190}
191
192static blk_qc_t pmem_submit_bio(struct bio *bio)
193{
194	int ret = 0;
195	blk_status_t rc = 0;
196	bool do_acct;
197	unsigned long start;
198	struct bio_vec bvec;
199	struct bvec_iter iter;
200	struct pmem_device *pmem = bio->bi_disk->private_data;
201	struct nd_region *nd_region = to_region(pmem);
202
203	if (bio->bi_opf & REQ_PREFLUSH)
204		ret = nvdimm_flush(nd_region, bio);
205
206	do_acct = blk_queue_io_stat(bio->bi_disk->queue);
207	if (do_acct)
208		start = bio_start_io_acct(bio);
209	bio_for_each_segment(bvec, bio, iter) {
210		if (op_is_write(bio_op(bio)))
211			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
212				iter.bi_sector, bvec.bv_len);
213		else
214			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
215				iter.bi_sector, bvec.bv_len);
216		if (rc) {
217			bio->bi_status = rc;
218			break;
219		}
220	}
221	if (do_acct)
222		bio_end_io_acct(bio, start);
223
224	if (bio->bi_opf & REQ_FUA)
225		ret = nvdimm_flush(nd_region, bio);
226
227	if (ret)
228		bio->bi_status = errno_to_blk_status(ret);
229
230	bio_endio(bio);
231	return BLK_QC_T_NONE;
232}
233
234static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235		       struct page *page, unsigned int op)
236{
237	struct pmem_device *pmem = bdev->bd_disk->private_data;
238	blk_status_t rc;
 
 
 
 
239
240	if (op_is_write(op))
241		rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
242	else
243		rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
244	/*
245	 * The ->rw_page interface is subtle and tricky.  The core
246	 * retries on any error, so we can only invoke page_endio() in
247	 * the successful completion case.  Otherwise, we'll see crashes
248	 * caused by double completion.
249	 */
250	if (rc == 0)
251		page_endio(page, op_is_write(op), 0);
252
253	return blk_status_to_errno(rc);
254}
255
256/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
257__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
258		long nr_pages, void **kaddr, pfn_t *pfn)
259{
260	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
261
262	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
263					PFN_PHYS(nr_pages))))
264		return -EIO;
265
266	if (kaddr)
267		*kaddr = pmem->virt_addr + offset;
268	if (pfn)
269		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
270
271	/*
272	 * If badblocks are present, limit known good range to the
273	 * requested range.
274	 */
275	if (unlikely(pmem->bb.count))
276		return nr_pages;
277	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
278}
279
280static const struct block_device_operations pmem_fops = {
281	.owner =		THIS_MODULE,
282	.submit_bio =		pmem_submit_bio,
283	.rw_page =		pmem_rw_page,
 
284	.revalidate_disk =	nvdimm_revalidate_disk,
285};
286
287static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
288				    size_t nr_pages)
289{
290	struct pmem_device *pmem = dax_get_private(dax_dev);
 
291
292	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
293				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
294				   PAGE_SIZE));
295}
296
297static long pmem_dax_direct_access(struct dax_device *dax_dev,
298		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
299{
300	struct pmem_device *pmem = dax_get_private(dax_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301
302	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
 
303}
304
305/*
306 * Use the 'no check' versions of copy_from_iter_flushcache() and
307 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
308 * checking, both file offset and device offset, is handled by
309 * dax_iomap_actor()
310 */
311static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
312		void *addr, size_t bytes, struct iov_iter *i)
313{
314	return _copy_from_iter_flushcache(addr, bytes, i);
 
 
 
 
 
315}
316
317static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
318		void *addr, size_t bytes, struct iov_iter *i)
319{
320	return _copy_to_iter_mcsafe(addr, bytes, i);
321}
 
 
322
323static const struct dax_operations pmem_dax_ops = {
324	.direct_access = pmem_dax_direct_access,
325	.dax_supported = generic_fsdax_supported,
326	.copy_from_iter = pmem_copy_from_iter,
327	.copy_to_iter = pmem_copy_to_iter,
328	.zero_page_range = pmem_dax_zero_page_range,
329};
330
331static const struct attribute_group *pmem_attribute_groups[] = {
332	&dax_attribute_group,
333	NULL,
334};
 
335
336static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
337{
338	struct request_queue *q =
339		container_of(pgmap->ref, struct request_queue, q_usage_counter);
 
 
 
 
 
 
 
 
 
 
 
 
 
340
341	blk_cleanup_queue(q);
342}
 
 
 
 
 
 
343
344static void pmem_release_queue(void *pgmap)
345{
346	pmem_pagemap_cleanup(pgmap);
347}
348
349static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
 
350{
351	struct request_queue *q =
352		container_of(pgmap->ref, struct request_queue, q_usage_counter);
353
354	blk_freeze_queue_start(q);
355}
 
 
356
357static void pmem_release_disk(void *__pmem)
358{
359	struct pmem_device *pmem = __pmem;
360
361	kill_dax(pmem->dax_dev);
362	put_dax(pmem->dax_dev);
363	del_gendisk(pmem->disk);
364	put_disk(pmem->disk);
365}
 
 
366
367static const struct dev_pagemap_ops fsdax_pagemap_ops = {
368	.kill			= pmem_pagemap_kill,
369	.cleanup		= pmem_pagemap_cleanup,
370};
371
372static int pmem_attach_disk(struct device *dev,
373		struct nd_namespace_common *ndns)
374{
375	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
376	struct nd_region *nd_region = to_nd_region(dev->parent);
377	int nid = dev_to_node(dev), fua;
378	struct resource *res = &nsio->res;
379	struct resource bb_res;
380	struct nd_pfn *nd_pfn = NULL;
381	struct dax_device *dax_dev;
382	struct nd_pfn_sb *pfn_sb;
383	struct pmem_device *pmem;
384	struct request_queue *q;
385	struct device *gendev;
386	struct gendisk *disk;
387	void *addr;
388	int rc;
389	unsigned long flags = 0UL;
390
391	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
392	if (!pmem)
393		return -ENOMEM;
394
395	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
396	if (rc)
 
 
 
397		return rc;
398
399	/* while nsio_rw_bytes is active, parse a pfn info block if present */
400	if (is_nd_pfn(dev)) {
401		nd_pfn = to_nd_pfn(dev);
402		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
403		if (rc)
404			return rc;
405	}
406
407	/* we're attaching a block device, disable raw namespace access */
408	devm_namespace_disable(dev, ndns);
409
410	dev_set_drvdata(dev, pmem);
411	pmem->phys_addr = res->start;
412	pmem->size = resource_size(res);
413	fua = nvdimm_has_flush(nd_region);
414	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
415		dev_warn(dev, "unable to guarantee persistence of writes\n");
416		fua = 0;
417	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418
419	if (!devm_request_mem_region(dev, res->start, resource_size(res),
420				dev_name(&ndns->dev))) {
421		dev_warn(dev, "could not reserve region %pR\n", res);
422		return -EBUSY;
423	}
 
 
 
 
 
424
425	q = blk_alloc_queue(dev_to_node(dev));
426	if (!q)
427		return -ENOMEM;
 
 
 
 
 
 
 
 
428
429	pmem->pfn_flags = PFN_DEV;
430	pmem->pgmap.ref = &q->q_usage_counter;
431	if (is_nd_pfn(dev)) {
432		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
433		pmem->pgmap.ops = &fsdax_pagemap_ops;
434		addr = devm_memremap_pages(dev, &pmem->pgmap);
435		pfn_sb = nd_pfn->pfn_sb;
436		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
437		pmem->pfn_pad = resource_size(res) -
438			resource_size(&pmem->pgmap.res);
439		pmem->pfn_flags |= PFN_MAP;
440		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
441		bb_res.start += pmem->data_offset;
442	} else if (pmem_should_map_pages(dev)) {
443		memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
444		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
445		pmem->pgmap.ops = &fsdax_pagemap_ops;
446		addr = devm_memremap_pages(dev, &pmem->pgmap);
447		pmem->pfn_flags |= PFN_MAP;
448		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449	} else {
450		if (devm_add_action_or_reset(dev, pmem_release_queue,
451					&pmem->pgmap))
452			return -ENOMEM;
453		addr = devm_memremap(dev, pmem->phys_addr,
454				pmem->size, ARCH_MEMREMAP_PMEM);
455		memcpy(&bb_res, &nsio->res, sizeof(bb_res));
456	}
457
458	if (IS_ERR(addr))
459		return PTR_ERR(addr);
460	pmem->virt_addr = addr;
461
462	blk_queue_write_cache(q, true, fua);
463	blk_queue_physical_block_size(q, PAGE_SIZE);
464	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
465	blk_queue_max_hw_sectors(q, UINT_MAX);
466	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
467	if (pmem->pfn_flags & PFN_MAP)
468		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
469
470	disk = alloc_disk_node(0, nid);
471	if (!disk)
472		return -ENOMEM;
473	pmem->disk = disk;
 
 
 
 
 
 
 
 
 
474
475	disk->fops		= &pmem_fops;
476	disk->queue		= q;
477	disk->flags		= GENHD_FL_EXT_DEVT;
478	disk->private_data	= pmem;
479	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
480	nvdimm_namespace_disk_name(ndns, disk->disk_name);
481	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
482			/ 512);
483	if (devm_init_badblocks(dev, &pmem->bb))
484		return -ENOMEM;
485	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
486	disk->bb = &pmem->bb;
487
488	if (is_nvdimm_sync(nd_region))
489		flags = DAXDEV_F_SYNC;
490	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
491	if (IS_ERR(dax_dev)) {
492		put_disk(disk);
493		return PTR_ERR(dax_dev);
494	}
495	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
496	pmem->dax_dev = dax_dev;
497	gendev = disk_to_dev(disk);
498	gendev->groups = pmem_attribute_groups;
499
500	device_add_disk(dev, disk, NULL);
501	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
502		return -ENOMEM;
503
504	revalidate_disk(disk);
 
 
 
505
506	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
507					  "badblocks");
508	if (!pmem->bb_state)
509		dev_warn(dev, "'badblocks' notification disabled\n");
510
511	return 0;
 
 
 
 
512}
513
514static int nd_pmem_probe(struct device *dev)
515{
516	int ret;
517	struct nd_namespace_common *ndns;
 
 
518
519	ndns = nvdimm_namespace_common_probe(dev);
520	if (IS_ERR(ndns))
521		return PTR_ERR(ndns);
522
523	if (is_nd_btt(dev))
524		return nvdimm_namespace_attach_btt(ndns);
525
526	if (is_nd_pfn(dev))
527		return pmem_attach_disk(dev, ndns);
528
529	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
530	if (ret)
531		return ret;
 
 
 
532
533	ret = nd_btt_probe(dev, ndns);
534	if (ret == 0)
535		return -ENXIO;
 
 
 
536
537	/*
538	 * We have two failure conditions here, there is no
539	 * info reserver block or we found a valid info reserve block
540	 * but failed to initialize the pfn superblock.
541	 *
542	 * For the first case consider namespace as a raw pmem namespace
543	 * and attach a disk.
544	 *
545	 * For the latter, consider this a success and advance the namespace
546	 * seed.
547	 */
548	ret = nd_pfn_probe(dev, ndns);
549	if (ret == 0)
550		return -ENXIO;
551	else if (ret == -EOPNOTSUPP)
552		return ret;
553
554	ret = nd_dax_probe(dev, ndns);
555	if (ret == 0)
 
 
 
 
556		return -ENXIO;
557	else if (ret == -EOPNOTSUPP)
558		return ret;
559
560	/* probe complete, attach handles namespace enabling */
561	devm_namespace_disable(dev, ndns);
562
563	return pmem_attach_disk(dev, ndns);
564}
565
566static int nd_pmem_remove(struct device *dev)
567{
568	struct pmem_device *pmem = dev_get_drvdata(dev);
569
570	if (is_nd_btt(dev))
571		nvdimm_namespace_detach_btt(to_nd_btt(dev));
572	else {
573		/*
574		 * Note, this assumes nd_device_lock() context to not
575		 * race nd_pmem_notify()
576		 */
577		sysfs_put(pmem->bb_state);
578		pmem->bb_state = NULL;
579	}
580	nvdimm_flush(to_nd_region(dev->parent), NULL);
581
582	return 0;
583}
584
585static void nd_pmem_shutdown(struct device *dev)
586{
587	nvdimm_flush(to_nd_region(dev->parent), NULL);
588}
589
590static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
591{
592	struct nd_region *nd_region;
593	resource_size_t offset = 0, end_trunc = 0;
594	struct nd_namespace_common *ndns;
595	struct nd_namespace_io *nsio;
596	struct resource res;
597	struct badblocks *bb;
598	struct kernfs_node *bb_state;
 
599
600	if (event != NVDIMM_REVALIDATE_POISON)
601		return;
602
603	if (is_nd_btt(dev)) {
604		struct nd_btt *nd_btt = to_nd_btt(dev);
605
606		ndns = nd_btt->ndns;
607		nd_region = to_nd_region(ndns->dev.parent);
608		nsio = to_nd_namespace_io(&ndns->dev);
609		bb = &nsio->bb;
610		bb_state = NULL;
611	} else {
612		struct pmem_device *pmem = dev_get_drvdata(dev);
613
614		nd_region = to_region(pmem);
615		bb = &pmem->bb;
616		bb_state = pmem->bb_state;
617
618		if (is_nd_pfn(dev)) {
619			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
620			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
621
622			ndns = nd_pfn->ndns;
623			offset = pmem->data_offset +
624					__le32_to_cpu(pfn_sb->start_pad);
625			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
626		} else {
627			ndns = to_ndns(dev);
628		}
629
630		nsio = to_nd_namespace_io(&ndns->dev);
 
631	}
632
633	res.start = nsio->res.start + offset;
634	res.end = nsio->res.end - end_trunc;
635	nvdimm_badblocks_populate(nd_region, bb, &res);
636	if (bb_state)
637		sysfs_notify_dirent(bb_state);
638}
639
640MODULE_ALIAS("pmem");
641MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
642MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
643static struct nd_device_driver nd_pmem_driver = {
644	.probe = nd_pmem_probe,
645	.remove = nd_pmem_remove,
646	.notify = nd_pmem_notify,
647	.shutdown = nd_pmem_shutdown,
648	.drv = {
649		.name = "nd_pmem",
650	},
651	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
652};
653
654module_nd_driver(nd_pmem_driver);
 
 
 
 
 
 
 
 
 
 
655
656MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
657MODULE_LICENSE("GPL v2");
v4.6
 
  1/*
  2 * Persistent Memory Driver
  3 *
  4 * Copyright (c) 2014-2015, Intel Corporation.
  5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms and conditions of the GNU General Public License,
 10 * version 2, as published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope it will be useful, but WITHOUT
 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 15 * more details.
 16 */
 17
 18#include <asm/cacheflush.h>
 19#include <linux/blkdev.h>
 20#include <linux/hdreg.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 
 23#include <linux/module.h>
 24#include <linux/moduleparam.h>
 25#include <linux/badblocks.h>
 26#include <linux/memremap.h>
 27#include <linux/vmalloc.h>
 
 28#include <linux/pfn_t.h>
 29#include <linux/slab.h>
 30#include <linux/pmem.h>
 
 31#include <linux/nd.h>
 
 
 
 
 32#include "pfn.h"
 33#include "nd.h"
 34
 35struct pmem_device {
 36	struct request_queue	*pmem_queue;
 37	struct gendisk		*pmem_disk;
 38	struct nd_namespace_common *ndns;
 
 
 
 
 39
 40	/* One contiguous memory region per device */
 41	phys_addr_t		phys_addr;
 42	/* when non-zero this device is hosting a 'pfn' instance */
 43	phys_addr_t		data_offset;
 44	u64			pfn_flags;
 45	void __pmem		*virt_addr;
 46	/* immutable base size of the namespace */
 47	size_t			size;
 48	/* trim size when namespace capacity has been section aligned */
 49	u32			pfn_pad;
 50	struct badblocks	bb;
 51};
 52
 53static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
 
 54{
 55	if (bb->count) {
 56		sector_t first_bad;
 57		int num_bad;
 58
 59		return !!badblocks_check(bb, sector, len / 512, &first_bad,
 60				&num_bad);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61	}
 62
 63	return false;
 64}
 65
 66static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
 67		unsigned int len)
 68{
 69	struct device *dev = disk_to_dev(pmem->pmem_disk);
 70	sector_t sector;
 71	long cleared;
 
 72
 73	sector = (offset - pmem->data_offset) / 512;
 
 74	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 75
 76	if (cleared > 0 && cleared / 512) {
 77		dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
 78				__func__, (unsigned long long) sector,
 79				cleared / 512, cleared / 512 > 1 ? "s" : "");
 80		badblocks_clear(&pmem->bb, sector, cleared / 512);
 
 
 
 
 
 
 
 
 
 
 
 
 
 81	}
 82	invalidate_pmem(pmem->virt_addr + offset, len);
 83}
 84
 85static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
 86			unsigned int len, unsigned int off, int rw,
 87			sector_t sector)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88{
 89	int rc = 0;
 90	bool bad_pmem = false;
 91	void *mem = kmap_atomic(page);
 92	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 93	void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
 94
 95	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 96		bad_pmem = true;
 97
 98	if (rw == READ) {
 99		if (unlikely(bad_pmem))
100			rc = -EIO;
101		else {
102			rc = memcpy_from_pmem(mem + off, pmem_addr, len);
103			flush_dcache_page(page);
104		}
105	} else {
106		/*
107		 * Note that we write the data both before and after
108		 * clearing poison.  The write before clear poison
109		 * handles situations where the latest written data is
110		 * preserved and the clear poison operation simply marks
111		 * the address range as valid without changing the data.
112		 * In this case application software can assume that an
113		 * interrupted write will either return the new good
114		 * data or an error.
115		 *
116		 * However, if pmem_clear_poison() leaves the data in an
117		 * indeterminate state we need to perform the write
118		 * after clear poison.
119		 */
120		flush_dcache_page(page);
121		memcpy_to_pmem(pmem_addr, mem + off, len);
122		if (unlikely(bad_pmem)) {
123			pmem_clear_poison(pmem, pmem_off, len);
124			memcpy_to_pmem(pmem_addr, mem + off, len);
125		}
126	}
127
128	kunmap_atomic(mem);
129	return rc;
130}
131
132static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
133{
134	int rc = 0;
 
135	bool do_acct;
136	unsigned long start;
137	struct bio_vec bvec;
138	struct bvec_iter iter;
139	struct block_device *bdev = bio->bi_bdev;
140	struct pmem_device *pmem = bdev->bd_disk->private_data;
 
 
 
141
142	do_acct = nd_iostat_start(bio, &start);
 
 
143	bio_for_each_segment(bvec, bio, iter) {
144		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
145				bvec.bv_offset, bio_data_dir(bio),
146				iter.bi_sector);
 
 
 
147		if (rc) {
148			bio->bi_error = rc;
149			break;
150		}
151	}
152	if (do_acct)
153		nd_iostat_end(bio, start);
 
 
 
154
155	if (bio_data_dir(bio))
156		wmb_pmem();
157
158	bio_endio(bio);
159	return BLK_QC_T_NONE;
160}
161
162static int pmem_rw_page(struct block_device *bdev, sector_t sector,
163		       struct page *page, int rw)
164{
165	struct pmem_device *pmem = bdev->bd_disk->private_data;
166	int rc;
167
168	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
169	if (rw & WRITE)
170		wmb_pmem();
171
 
 
 
 
172	/*
173	 * The ->rw_page interface is subtle and tricky.  The core
174	 * retries on any error, so we can only invoke page_endio() in
175	 * the successful completion case.  Otherwise, we'll see crashes
176	 * caused by double completion.
177	 */
178	if (rc == 0)
179		page_endio(page, rw & WRITE, 0);
180
181	return rc;
182}
183
184static long pmem_direct_access(struct block_device *bdev, sector_t sector,
185		      void __pmem **kaddr, pfn_t *pfn)
 
186{
187	struct pmem_device *pmem = bdev->bd_disk->private_data;
188	resource_size_t offset = sector * 512 + pmem->data_offset;
 
 
 
189
190	*kaddr = pmem->virt_addr + offset;
191	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
 
 
192
193	return pmem->size - pmem->pfn_pad - offset;
 
 
 
 
 
 
194}
195
196static const struct block_device_operations pmem_fops = {
197	.owner =		THIS_MODULE,
 
198	.rw_page =		pmem_rw_page,
199	.direct_access =	pmem_direct_access,
200	.revalidate_disk =	nvdimm_revalidate_disk,
201};
202
203static struct pmem_device *pmem_alloc(struct device *dev,
204		struct resource *res, int id)
205{
206	struct pmem_device *pmem;
207	struct request_queue *q;
208
209	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
210	if (!pmem)
211		return ERR_PTR(-ENOMEM);
 
212
213	pmem->phys_addr = res->start;
214	pmem->size = resource_size(res);
215	if (!arch_has_wmb_pmem())
216		dev_warn(dev, "unable to guarantee persistence of writes\n");
217
218	if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
219			dev_name(dev))) {
220		dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
221				&pmem->phys_addr, pmem->size);
222		return ERR_PTR(-EBUSY);
223	}
224
225	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
226	if (!q)
227		return ERR_PTR(-ENOMEM);
228
229	pmem->pfn_flags = PFN_DEV;
230	if (pmem_should_map_pages(dev)) {
231		pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
232				&q->q_usage_counter, NULL);
233		pmem->pfn_flags |= PFN_MAP;
234	} else
235		pmem->virt_addr = (void __pmem *) devm_memremap(dev,
236				pmem->phys_addr, pmem->size,
237				ARCH_MEMREMAP_PMEM);
238
239	if (IS_ERR(pmem->virt_addr)) {
240		blk_cleanup_queue(q);
241		return (void __force *) pmem->virt_addr;
242	}
243
244	pmem->pmem_queue = q;
245	return pmem;
246}
247
248static void pmem_detach_disk(struct pmem_device *pmem)
 
 
 
 
 
 
 
249{
250	if (!pmem->pmem_disk)
251		return;
252
253	del_gendisk(pmem->pmem_disk);
254	put_disk(pmem->pmem_disk);
255	blk_cleanup_queue(pmem->pmem_queue);
256}
257
258static int pmem_attach_disk(struct device *dev,
259		struct nd_namespace_common *ndns, struct pmem_device *pmem)
260{
261	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
262	int nid = dev_to_node(dev);
263	struct resource bb_res;
264	struct gendisk *disk;
265
266	blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
267	blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
268	blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
269	blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
270	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
 
 
271
272	disk = alloc_disk_node(0, nid);
273	if (!disk) {
274		blk_cleanup_queue(pmem->pmem_queue);
275		return -ENOMEM;
276	}
277
278	disk->fops		= &pmem_fops;
279	disk->private_data	= pmem;
280	disk->queue		= pmem->pmem_queue;
281	disk->flags		= GENHD_FL_EXT_DEVT;
282	nvdimm_namespace_disk_name(ndns, disk->disk_name);
283	disk->driverfs_dev = dev;
284	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
285			/ 512);
286	pmem->pmem_disk = disk;
287	devm_exit_badblocks(dev, &pmem->bb);
288	if (devm_init_badblocks(dev, &pmem->bb))
289		return -ENOMEM;
290	bb_res.start = nsio->res.start + pmem->data_offset;
291	bb_res.end = nsio->res.end;
292	if (is_nd_pfn(dev)) {
293		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
294		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
295
296		bb_res.start += __le32_to_cpu(pfn_sb->start_pad);
297		bb_res.end -= __le32_to_cpu(pfn_sb->end_trunc);
298	}
299	nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb,
300			&bb_res);
301	disk->bb = &pmem->bb;
302	add_disk(disk);
303	revalidate_disk(disk);
304
305	return 0;
 
 
306}
307
308static int pmem_rw_bytes(struct nd_namespace_common *ndns,
309		resource_size_t offset, void *buf, size_t size, int rw)
310{
311	struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
 
312
313	if (unlikely(offset + size > pmem->size)) {
314		dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
315		return -EFAULT;
316	}
317
318	if (rw == READ) {
319		unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
 
320
321		if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
322			return -EIO;
323		return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
324	} else {
325		memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
326		wmb_pmem();
327	}
328
329	return 0;
330}
 
 
331
332static int nd_pfn_init(struct nd_pfn *nd_pfn)
 
333{
334	struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
335	struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
336	struct nd_namespace_common *ndns = nd_pfn->ndns;
337	u32 start_pad = 0, end_trunc = 0;
338	resource_size_t start, size;
339	struct nd_namespace_io *nsio;
340	struct nd_region *nd_region;
341	unsigned long npfns;
342	phys_addr_t offset;
343	u64 checksum;
 
 
 
344	int rc;
 
345
346	if (!pfn_sb)
 
347		return -ENOMEM;
348
349	nd_pfn->pfn_sb = pfn_sb;
350	rc = nd_pfn_validate(nd_pfn);
351	if (rc == -ENODEV)
352		/* no info block, do init */;
353	else
354		return rc;
355
356	nd_region = to_nd_region(nd_pfn->dev.parent);
357	if (nd_region->ro) {
358		dev_info(&nd_pfn->dev,
359				"%s is read-only, unable to init metadata\n",
360				dev_name(&nd_region->dev));
361		goto err;
362	}
363
364	memset(pfn_sb, 0, sizeof(*pfn_sb));
 
365
366	/*
367	 * Check if pmem collides with 'System RAM' when section aligned and
368	 * trim it accordingly
369	 */
370	nsio = to_nd_namespace_io(&ndns->dev);
371	start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
372	size = resource_size(&nsio->res);
373	if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
374				IORES_DESC_NONE) == REGION_MIXED) {
375
376		start = nsio->res.start;
377		start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
378	}
379
380	start = nsio->res.start;
381	size = PHYS_SECTION_ALIGN_UP(start + size) - start;
382	if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
383				IORES_DESC_NONE) == REGION_MIXED) {
384		size = resource_size(&nsio->res);
385		end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
386	}
387
388	if (start_pad + end_trunc)
389		dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
390				dev_name(&ndns->dev), start_pad + end_trunc);
391
392	/*
393	 * Note, we use 64 here for the standard size of struct page,
394	 * debugging options may cause it to be larger in which case the
395	 * implementation will limit the pfns advertised through
396	 * ->direct_access() to those that are included in the memmap.
397	 */
398	start += start_pad;
399	npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
400	if (nd_pfn->mode == PFN_MODE_PMEM) {
401		unsigned long memmap_size;
402
403		/*
404		 * vmemmap_populate_hugepages() allocates the memmap array in
405		 * PMD_SIZE chunks.
406		 */
407		memmap_size = ALIGN(64 * npfns, PMD_SIZE);
408		offset = ALIGN(start + SZ_8K + memmap_size, nd_pfn->align)
409			- start;
410	} else if (nd_pfn->mode == PFN_MODE_RAM)
411		offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
412	else
413		goto err;
414
415	if (offset + start_pad + end_trunc >= pmem->size) {
416		dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
417				dev_name(&ndns->dev));
418		goto err;
419	}
420
421	npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
422	pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
423	pfn_sb->dataoff = cpu_to_le64(offset);
424	pfn_sb->npfns = cpu_to_le64(npfns);
425	memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
426	memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
427	memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
428	pfn_sb->version_major = cpu_to_le16(1);
429	pfn_sb->version_minor = cpu_to_le16(1);
430	pfn_sb->start_pad = cpu_to_le32(start_pad);
431	pfn_sb->end_trunc = cpu_to_le32(end_trunc);
432	checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
433	pfn_sb->checksum = cpu_to_le64(checksum);
434
435	rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
436	if (rc)
437		goto err;
438
439	return 0;
440 err:
441	nd_pfn->pfn_sb = NULL;
442	kfree(pfn_sb);
443	return -ENXIO;
444}
445
446static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
447{
448	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
449	struct pmem_device *pmem;
450
451	/* free pmem disk */
452	pmem = dev_get_drvdata(&nd_pfn->dev);
453	pmem_detach_disk(pmem);
454
455	/* release nd_pfn resources */
456	kfree(nd_pfn->pfn_sb);
457	nd_pfn->pfn_sb = NULL;
458
459	return 0;
460}
461
462/*
463 * We hotplug memory at section granularity, pad the reserved area from
464 * the previous section base to the namespace base address.
465 */
466static unsigned long init_altmap_base(resource_size_t base)
467{
468	unsigned long base_pfn = PHYS_PFN(base);
469
470	return PFN_SECTION_ALIGN_DOWN(base_pfn);
471}
472
473static unsigned long init_altmap_reserve(resource_size_t base)
474{
475	unsigned long reserve = PHYS_PFN(SZ_8K);
476	unsigned long base_pfn = PHYS_PFN(base);
477
478	reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
479	return reserve;
480}
481
482static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
483{
484	int rc;
485	struct resource res;
486	struct request_queue *q;
487	struct pmem_device *pmem;
488	struct vmem_altmap *altmap;
489	struct device *dev = &nd_pfn->dev;
490	struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
491	struct nd_namespace_common *ndns = nd_pfn->ndns;
492	u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
493	u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
494	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
495	resource_size_t base = nsio->res.start + start_pad;
496	struct vmem_altmap __altmap = {
497		.base_pfn = init_altmap_base(base),
498		.reserve = init_altmap_reserve(base),
499	};
500
501	pmem = dev_get_drvdata(dev);
502	pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
503	pmem->pfn_pad = start_pad + end_trunc;
504	nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
505	if (nd_pfn->mode == PFN_MODE_RAM) {
506		if (pmem->data_offset < SZ_8K)
507			return -EINVAL;
508		nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
509		altmap = NULL;
510	} else if (nd_pfn->mode == PFN_MODE_PMEM) {
511		nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
512			/ PAGE_SIZE;
513		if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
514			dev_info(&nd_pfn->dev,
515					"number of pfns truncated from %lld to %ld\n",
516					le64_to_cpu(nd_pfn->pfn_sb->npfns),
517					nd_pfn->npfns);
518		altmap = & __altmap;
519		altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
520		altmap->alloc = 0;
521	} else {
522		rc = -ENXIO;
523		goto err;
524	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525
526	/* establish pfn range for lookup, and switch to direct map */
527	q = pmem->pmem_queue;
528	memcpy(&res, &nsio->res, sizeof(res));
529	res.start += start_pad;
530	res.end -= end_trunc;
531	devm_memunmap(dev, (void __force *) pmem->virt_addr);
532	pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
533			&q->q_usage_counter, altmap);
534	pmem->pfn_flags |= PFN_MAP;
535	if (IS_ERR(pmem->virt_addr)) {
536		rc = PTR_ERR(pmem->virt_addr);
537		goto err;
538	}
539
540	/* attach pmem disk in "pfn-mode" */
541	rc = pmem_attach_disk(dev, ndns, pmem);
542	if (rc)
543		goto err;
 
 
 
 
 
 
 
 
544
545	return rc;
546 err:
547	nvdimm_namespace_detach_pfn(ndns);
548	return rc;
 
 
 
 
 
 
 
549
550}
 
 
551
552static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
553{
554	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
555	int rc;
556
557	if (!nd_pfn->uuid || !nd_pfn->ndns)
558		return -ENODEV;
 
 
559
560	rc = nd_pfn_init(nd_pfn);
561	if (rc)
562		return rc;
563	/* we need a valid pfn_sb before we can init a vmem_altmap */
564	return __nvdimm_namespace_attach_pfn(nd_pfn);
565}
566
567static int nd_pmem_probe(struct device *dev)
568{
569	struct nd_region *nd_region = to_nd_region(dev->parent);
570	struct nd_namespace_common *ndns;
571	struct nd_namespace_io *nsio;
572	struct pmem_device *pmem;
573
574	ndns = nvdimm_namespace_common_probe(dev);
575	if (IS_ERR(ndns))
576		return PTR_ERR(ndns);
577
578	nsio = to_nd_namespace_io(&ndns->dev);
579	pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
580	if (IS_ERR(pmem))
581		return PTR_ERR(pmem);
 
582
583	pmem->ndns = ndns;
584	dev_set_drvdata(dev, pmem);
585	ndns->rw_bytes = pmem_rw_bytes;
586	if (devm_init_badblocks(dev, &pmem->bb))
587		return -ENOMEM;
588	nvdimm_badblocks_populate(nd_region, &pmem->bb, &nsio->res);
589
590	if (is_nd_btt(dev)) {
591		/* btt allocates its own request_queue */
592		blk_cleanup_queue(pmem->pmem_queue);
593		pmem->pmem_queue = NULL;
594		return nvdimm_namespace_attach_btt(ndns);
595	}
596
597	if (is_nd_pfn(dev))
598		return nvdimm_namespace_attach_pfn(ndns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599
600	if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
601		/*
602		 * We'll come back as either btt-pmem, or pfn-pmem, so
603		 * drop the queue allocation for now.
604		 */
605		blk_cleanup_queue(pmem->pmem_queue);
606		return -ENXIO;
607	}
 
 
 
 
608
609	return pmem_attach_disk(dev, ndns, pmem);
610}
611
612static int nd_pmem_remove(struct device *dev)
613{
614	struct pmem_device *pmem = dev_get_drvdata(dev);
615
616	if (is_nd_btt(dev))
617		nvdimm_namespace_detach_btt(pmem->ndns);
618	else if (is_nd_pfn(dev))
619		nvdimm_namespace_detach_pfn(pmem->ndns);
620	else
621		pmem_detach_disk(pmem);
 
 
 
 
 
622
623	return 0;
624}
625
 
 
 
 
 
626static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
627{
628	struct pmem_device *pmem = dev_get_drvdata(dev);
629	struct nd_namespace_common *ndns = pmem->ndns;
630	struct nd_region *nd_region = to_nd_region(dev->parent);
631	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
632	struct resource res = {
633		.start = nsio->res.start + pmem->data_offset,
634		.end = nsio->res.end,
635	};
636
637	if (event != NVDIMM_REVALIDATE_POISON)
638		return;
639
640	if (is_nd_pfn(dev)) {
641		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
642		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643
644		res.start += __le32_to_cpu(pfn_sb->start_pad);
645		res.end -= __le32_to_cpu(pfn_sb->end_trunc);
646	}
647
648	nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
 
 
 
 
649}
650
651MODULE_ALIAS("pmem");
652MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
653MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
654static struct nd_device_driver nd_pmem_driver = {
655	.probe = nd_pmem_probe,
656	.remove = nd_pmem_remove,
657	.notify = nd_pmem_notify,
 
658	.drv = {
659		.name = "nd_pmem",
660	},
661	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
662};
663
664static int __init pmem_init(void)
665{
666	return nd_driver_register(&nd_pmem_driver);
667}
668module_init(pmem_init);
669
670static void pmem_exit(void)
671{
672	driver_unregister(&nd_pmem_driver.drv);
673}
674module_exit(pmem_exit);
675
676MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
677MODULE_LICENSE("GPL v2");