Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Persistent Memory Driver
  4 *
  5 * Copyright (c) 2014-2015, Intel Corporation.
  6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
 
 
 
 
 
 
 
 
 
  8 */
  9
 
 10#include <linux/blkdev.h>
 11#include <linux/hdreg.h>
 12#include <linux/init.h>
 13#include <linux/platform_device.h>
 14#include <linux/set_memory.h>
 15#include <linux/module.h>
 16#include <linux/moduleparam.h>
 17#include <linux/badblocks.h>
 18#include <linux/memremap.h>
 19#include <linux/vmalloc.h>
 20#include <linux/blk-mq.h>
 21#include <linux/pfn_t.h>
 22#include <linux/slab.h>
 23#include <linux/uio.h>
 24#include <linux/dax.h>
 25#include <linux/nd.h>
 26#include <linux/backing-dev.h>
 27#include <linux/mm.h>
 28#include <asm/cacheflush.h>
 29#include "pmem.h"
 30#include "pfn.h"
 31#include "nd.h"
 32
 33static struct device *to_dev(struct pmem_device *pmem)
 34{
 35	/*
 36	 * nvdimm bus services need a 'dev' parameter, and we record the device
 37	 * at init in bb.dev.
 38	 */
 39	return pmem->bb.dev;
 40}
 41
 42static struct nd_region *to_region(struct pmem_device *pmem)
 43{
 44	return to_nd_region(to_dev(pmem)->parent);
 45}
 46
 47static void hwpoison_clear(struct pmem_device *pmem,
 48		phys_addr_t phys, unsigned int len)
 49{
 50	unsigned long pfn_start, pfn_end, pfn;
 51
 52	/* only pmem in the linear map supports HWPoison */
 53	if (is_vmalloc_addr(pmem->virt_addr))
 54		return;
 55
 56	pfn_start = PHYS_PFN(phys);
 57	pfn_end = pfn_start + PHYS_PFN(len);
 58	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
 59		struct page *page = pfn_to_page(pfn);
 60
 61		/*
 62		 * Note, no need to hold a get_dev_pagemap() reference
 63		 * here since we're in the driver I/O path and
 64		 * outstanding I/O requests pin the dev_pagemap.
 65		 */
 66		if (test_and_clear_pmem_poison(page))
 67			clear_mce_nospec(pfn);
 68	}
 69}
 70
 71static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
 72		phys_addr_t offset, unsigned int len)
 73{
 74	struct device *dev = to_dev(pmem);
 75	sector_t sector;
 76	long cleared;
 77	blk_status_t rc = BLK_STS_OK;
 78
 79	sector = (offset - pmem->data_offset) / 512;
 80
 81	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
 82	if (cleared < len)
 83		rc = BLK_STS_IOERR;
 84	if (cleared > 0 && cleared / 512) {
 85		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
 86		cleared /= 512;
 87		dev_dbg(dev, "%#llx clear %ld sector%s\n",
 88				(unsigned long long) sector, cleared,
 89				cleared > 1 ? "s" : "");
 90		badblocks_clear(&pmem->bb, sector, cleared);
 91		if (pmem->bb_state)
 92			sysfs_notify_dirent(pmem->bb_state);
 93	}
 94
 95	arch_invalidate_pmem(pmem->virt_addr + offset, len);
 96
 97	return rc;
 98}
 99
100static void write_pmem(void *pmem_addr, struct page *page,
101		unsigned int off, unsigned int len)
102{
103	unsigned int chunk;
104	void *mem;
105
106	while (len) {
107		mem = kmap_atomic(page);
108		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
109		memcpy_flushcache(pmem_addr, mem + off, chunk);
110		kunmap_atomic(mem);
111		len -= chunk;
112		off = 0;
113		page++;
114		pmem_addr += chunk;
115	}
116}
117
118static blk_status_t read_pmem(struct page *page, unsigned int off,
119		void *pmem_addr, unsigned int len)
120{
121	unsigned int chunk;
122	unsigned long rem;
123	void *mem;
124
125	while (len) {
126		mem = kmap_atomic(page);
127		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
128		rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
129		kunmap_atomic(mem);
130		if (rem)
131			return BLK_STS_IOERR;
132		len -= chunk;
133		off = 0;
134		page++;
135		pmem_addr += chunk;
136	}
137	return BLK_STS_OK;
138}
139
140static blk_status_t pmem_do_read(struct pmem_device *pmem,
141			struct page *page, unsigned int page_off,
142			sector_t sector, unsigned int len)
143{
144	blk_status_t rc;
145	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146	void *pmem_addr = pmem->virt_addr + pmem_off;
147
148	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149		return BLK_STS_IOERR;
150
151	rc = read_pmem(page, page_off, pmem_addr, len);
152	flush_dcache_page(page);
153	return rc;
 
 
154}
155
156static blk_status_t pmem_do_write(struct pmem_device *pmem,
157			struct page *page, unsigned int page_off,
158			sector_t sector, unsigned int len)
159{
160	blk_status_t rc = BLK_STS_OK;
161	bool bad_pmem = false;
162	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
163	void *pmem_addr = pmem->virt_addr + pmem_off;
164
165	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
166		bad_pmem = true;
167
168	/*
169	 * Note that we write the data both before and after
170	 * clearing poison.  The write before clear poison
171	 * handles situations where the latest written data is
172	 * preserved and the clear poison operation simply marks
173	 * the address range as valid without changing the data.
174	 * In this case application software can assume that an
175	 * interrupted write will either return the new good
176	 * data or an error.
177	 *
178	 * However, if pmem_clear_poison() leaves the data in an
179	 * indeterminate state we need to perform the write
180	 * after clear poison.
181	 */
182	flush_dcache_page(page);
183	write_pmem(pmem_addr, page, page_off, len);
184	if (unlikely(bad_pmem)) {
185		rc = pmem_clear_poison(pmem, pmem_off, len);
186		write_pmem(pmem_addr, page, page_off, len);
 
 
 
 
 
 
 
 
 
187	}
188
189	return rc;
190}
191
192static blk_qc_t pmem_submit_bio(struct bio *bio)
 
 
 
 
 
193{
194	int ret = 0;
195	blk_status_t rc = 0;
196	bool do_acct;
197	unsigned long start;
198	struct bio_vec bvec;
199	struct bvec_iter iter;
200	struct pmem_device *pmem = bio->bi_disk->private_data;
201	struct nd_region *nd_region = to_region(pmem);
202
203	if (bio->bi_opf & REQ_PREFLUSH)
204		ret = nvdimm_flush(nd_region, bio);
205
206	do_acct = blk_queue_io_stat(bio->bi_disk->queue);
207	if (do_acct)
208		start = bio_start_io_acct(bio);
209	bio_for_each_segment(bvec, bio, iter) {
210		if (op_is_write(bio_op(bio)))
211			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
212				iter.bi_sector, bvec.bv_len);
213		else
214			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
215				iter.bi_sector, bvec.bv_len);
216		if (rc) {
217			bio->bi_status = rc;
218			break;
219		}
220	}
221	if (do_acct)
222		bio_end_io_acct(bio, start);
223
224	if (bio->bi_opf & REQ_FUA)
225		ret = nvdimm_flush(nd_region, bio);
226
227	if (ret)
228		bio->bi_status = errno_to_blk_status(ret);
229
230	bio_endio(bio);
231	return BLK_QC_T_NONE;
232}
233
234static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235		       struct page *page, unsigned int op)
236{
237	struct pmem_device *pmem = bdev->bd_disk->private_data;
238	blk_status_t rc;
 
 
239
240	if (op_is_write(op))
241		rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
242	else
243		rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
244	/*
245	 * The ->rw_page interface is subtle and tricky.  The core
246	 * retries on any error, so we can only invoke page_endio() in
247	 * the successful completion case.  Otherwise, we'll see crashes
248	 * caused by double completion.
249	 */
250	if (rc == 0)
251		page_endio(page, op_is_write(op), 0);
252
253	return blk_status_to_errno(rc);
254}
255
256/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
257__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
258		long nr_pages, void **kaddr, pfn_t *pfn)
259{
260	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
 
261
262	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
263					PFN_PHYS(nr_pages))))
264		return -EIO;
265
266	if (kaddr)
267		*kaddr = pmem->virt_addr + offset;
268	if (pfn)
269		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
270
271	/*
272	 * If badblocks are present, limit known good range to the
273	 * requested range.
274	 */
275	if (unlikely(pmem->bb.count))
276		return nr_pages;
277	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
278}
279
280static const struct block_device_operations pmem_fops = {
281	.owner =		THIS_MODULE,
282	.submit_bio =		pmem_submit_bio,
283	.rw_page =		pmem_rw_page,
 
284	.revalidate_disk =	nvdimm_revalidate_disk,
285};
286
287static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
288				    size_t nr_pages)
289{
290	struct pmem_device *pmem = dax_get_private(dax_dev);
291
292	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
293				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
294				   PAGE_SIZE));
295}
296
297static long pmem_dax_direct_access(struct dax_device *dax_dev,
298		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
299{
300	struct pmem_device *pmem = dax_get_private(dax_dev);
301
302	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
303}
304
305/*
306 * Use the 'no check' versions of copy_from_iter_flushcache() and
307 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
308 * checking, both file offset and device offset, is handled by
309 * dax_iomap_actor()
310 */
311static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
312		void *addr, size_t bytes, struct iov_iter *i)
313{
314	return _copy_from_iter_flushcache(addr, bytes, i);
315}
316
317static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
318		void *addr, size_t bytes, struct iov_iter *i)
319{
320	return _copy_to_iter_mcsafe(addr, bytes, i);
321}
322
323static const struct dax_operations pmem_dax_ops = {
324	.direct_access = pmem_dax_direct_access,
325	.dax_supported = generic_fsdax_supported,
326	.copy_from_iter = pmem_copy_from_iter,
327	.copy_to_iter = pmem_copy_to_iter,
328	.zero_page_range = pmem_dax_zero_page_range,
329};
330
331static const struct attribute_group *pmem_attribute_groups[] = {
332	&dax_attribute_group,
333	NULL,
334};
335
336static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
337{
338	struct request_queue *q =
339		container_of(pgmap->ref, struct request_queue, q_usage_counter);
340
341	blk_cleanup_queue(q);
342}
343
344static void pmem_release_queue(void *pgmap)
345{
346	pmem_pagemap_cleanup(pgmap);
347}
348
349static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
350{
351	struct request_queue *q =
352		container_of(pgmap->ref, struct request_queue, q_usage_counter);
353
354	blk_freeze_queue_start(q);
355}
356
357static void pmem_release_disk(void *__pmem)
358{
359	struct pmem_device *pmem = __pmem;
360
361	kill_dax(pmem->dax_dev);
362	put_dax(pmem->dax_dev);
363	del_gendisk(pmem->disk);
364	put_disk(pmem->disk);
365}
366
367static const struct dev_pagemap_ops fsdax_pagemap_ops = {
368	.kill			= pmem_pagemap_kill,
369	.cleanup		= pmem_pagemap_cleanup,
370};
371
372static int pmem_attach_disk(struct device *dev,
373		struct nd_namespace_common *ndns)
374{
375	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
376	struct nd_region *nd_region = to_nd_region(dev->parent);
377	int nid = dev_to_node(dev), fua;
378	struct resource *res = &nsio->res;
379	struct resource bb_res;
380	struct nd_pfn *nd_pfn = NULL;
381	struct dax_device *dax_dev;
382	struct nd_pfn_sb *pfn_sb;
383	struct pmem_device *pmem;
 
384	struct request_queue *q;
385	struct device *gendev;
386	struct gendisk *disk;
387	void *addr;
388	int rc;
389	unsigned long flags = 0UL;
390
391	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
392	if (!pmem)
393		return -ENOMEM;
394
395	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
396	if (rc)
397		return rc;
398
399	/* while nsio_rw_bytes is active, parse a pfn info block if present */
400	if (is_nd_pfn(dev)) {
401		nd_pfn = to_nd_pfn(dev);
402		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
403		if (rc)
404			return rc;
405	}
406
407	/* we're attaching a block device, disable raw namespace access */
408	devm_namespace_disable(dev, ndns);
 
 
 
 
409
410	dev_set_drvdata(dev, pmem);
411	pmem->phys_addr = res->start;
412	pmem->size = resource_size(res);
413	fua = nvdimm_has_flush(nd_region);
414	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
415		dev_warn(dev, "unable to guarantee persistence of writes\n");
416		fua = 0;
417	}
418
419	if (!devm_request_mem_region(dev, res->start, resource_size(res),
420				dev_name(&ndns->dev))) {
421		dev_warn(dev, "could not reserve region %pR\n", res);
422		return -EBUSY;
423	}
424
425	q = blk_alloc_queue(dev_to_node(dev));
426	if (!q)
427		return -ENOMEM;
428
429	pmem->pfn_flags = PFN_DEV;
430	pmem->pgmap.ref = &q->q_usage_counter;
431	if (is_nd_pfn(dev)) {
432		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
433		pmem->pgmap.ops = &fsdax_pagemap_ops;
434		addr = devm_memremap_pages(dev, &pmem->pgmap);
435		pfn_sb = nd_pfn->pfn_sb;
436		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
437		pmem->pfn_pad = resource_size(res) -
438			resource_size(&pmem->pgmap.res);
439		pmem->pfn_flags |= PFN_MAP;
440		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
441		bb_res.start += pmem->data_offset;
442	} else if (pmem_should_map_pages(dev)) {
443		memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
444		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
445		pmem->pgmap.ops = &fsdax_pagemap_ops;
446		addr = devm_memremap_pages(dev, &pmem->pgmap);
447		pmem->pfn_flags |= PFN_MAP;
448		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
449	} else {
450		if (devm_add_action_or_reset(dev, pmem_release_queue,
451					&pmem->pgmap))
452			return -ENOMEM;
453		addr = devm_memremap(dev, pmem->phys_addr,
454				pmem->size, ARCH_MEMREMAP_PMEM);
455		memcpy(&bb_res, &nsio->res, sizeof(bb_res));
456	}
 
 
 
 
 
457
458	if (IS_ERR(addr))
459		return PTR_ERR(addr);
460	pmem->virt_addr = addr;
461
462	blk_queue_write_cache(q, true, fua);
 
463	blk_queue_physical_block_size(q, PAGE_SIZE);
464	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
465	blk_queue_max_hw_sectors(q, UINT_MAX);
466	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
467	if (pmem->pfn_flags & PFN_MAP)
468		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
 
469
470	disk = alloc_disk_node(0, nid);
471	if (!disk)
472		return -ENOMEM;
473	pmem->disk = disk;
474
475	disk->fops		= &pmem_fops;
476	disk->queue		= q;
477	disk->flags		= GENHD_FL_EXT_DEVT;
478	disk->private_data	= pmem;
479	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
480	nvdimm_namespace_disk_name(ndns, disk->disk_name);
481	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
482			/ 512);
483	if (devm_init_badblocks(dev, &pmem->bb))
484		return -ENOMEM;
485	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
486	disk->bb = &pmem->bb;
 
487
488	if (is_nvdimm_sync(nd_region))
489		flags = DAXDEV_F_SYNC;
490	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
491	if (IS_ERR(dax_dev)) {
492		put_disk(disk);
493		return PTR_ERR(dax_dev);
494	}
495	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
496	pmem->dax_dev = dax_dev;
497	gendev = disk_to_dev(disk);
498	gendev->groups = pmem_attribute_groups;
499
500	device_add_disk(dev, disk, NULL);
501	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
502		return -ENOMEM;
503
504	revalidate_disk(disk);
505
506	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
507					  "badblocks");
508	if (!pmem->bb_state)
509		dev_warn(dev, "'badblocks' notification disabled\n");
510
511	return 0;
512}
513
514static int nd_pmem_probe(struct device *dev)
515{
516	int ret;
517	struct nd_namespace_common *ndns;
518
519	ndns = nvdimm_namespace_common_probe(dev);
520	if (IS_ERR(ndns))
521		return PTR_ERR(ndns);
522
 
 
 
523	if (is_nd_btt(dev))
524		return nvdimm_namespace_attach_btt(ndns);
525
526	if (is_nd_pfn(dev))
527		return pmem_attach_disk(dev, ndns);
528
529	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
530	if (ret)
531		return ret;
532
533	ret = nd_btt_probe(dev, ndns);
534	if (ret == 0)
535		return -ENXIO;
536
537	/*
538	 * We have two failure conditions here, there is no
539	 * info reserver block or we found a valid info reserve block
540	 * but failed to initialize the pfn superblock.
541	 *
542	 * For the first case consider namespace as a raw pmem namespace
543	 * and attach a disk.
544	 *
545	 * For the latter, consider this a success and advance the namespace
546	 * seed.
547	 */
548	ret = nd_pfn_probe(dev, ndns);
549	if (ret == 0)
550		return -ENXIO;
551	else if (ret == -EOPNOTSUPP)
552		return ret;
553
554	ret = nd_dax_probe(dev, ndns);
555	if (ret == 0)
556		return -ENXIO;
557	else if (ret == -EOPNOTSUPP)
558		return ret;
559
560	/* probe complete, attach handles namespace enabling */
561	devm_namespace_disable(dev, ndns);
562
563	return pmem_attach_disk(dev, ndns);
564}
565
566static int nd_pmem_remove(struct device *dev)
567{
568	struct pmem_device *pmem = dev_get_drvdata(dev);
569
570	if (is_nd_btt(dev))
571		nvdimm_namespace_detach_btt(to_nd_btt(dev));
572	else {
573		/*
574		 * Note, this assumes nd_device_lock() context to not
575		 * race nd_pmem_notify()
576		 */
577		sysfs_put(pmem->bb_state);
578		pmem->bb_state = NULL;
579	}
580	nvdimm_flush(to_nd_region(dev->parent), NULL);
581
582	return 0;
583}
584
585static void nd_pmem_shutdown(struct device *dev)
586{
587	nvdimm_flush(to_nd_region(dev->parent), NULL);
588}
589
590static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
591{
592	struct nd_region *nd_region;
 
593	resource_size_t offset = 0, end_trunc = 0;
594	struct nd_namespace_common *ndns;
595	struct nd_namespace_io *nsio;
596	struct resource res;
597	struct badblocks *bb;
598	struct kernfs_node *bb_state;
599
600	if (event != NVDIMM_REVALIDATE_POISON)
601		return;
602
603	if (is_nd_btt(dev)) {
604		struct nd_btt *nd_btt = to_nd_btt(dev);
605
606		ndns = nd_btt->ndns;
607		nd_region = to_nd_region(ndns->dev.parent);
608		nsio = to_nd_namespace_io(&ndns->dev);
609		bb = &nsio->bb;
610		bb_state = NULL;
611	} else {
612		struct pmem_device *pmem = dev_get_drvdata(dev);
613
614		nd_region = to_region(pmem);
615		bb = &pmem->bb;
616		bb_state = pmem->bb_state;
617
618		if (is_nd_pfn(dev)) {
619			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
620			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
621
622			ndns = nd_pfn->ndns;
623			offset = pmem->data_offset +
624					__le32_to_cpu(pfn_sb->start_pad);
625			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
626		} else {
627			ndns = to_ndns(dev);
628		}
629
630		nsio = to_nd_namespace_io(&ndns->dev);
631	}
632
 
633	res.start = nsio->res.start + offset;
634	res.end = nsio->res.end - end_trunc;
635	nvdimm_badblocks_populate(nd_region, bb, &res);
636	if (bb_state)
637		sysfs_notify_dirent(bb_state);
638}
639
640MODULE_ALIAS("pmem");
641MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
642MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
643static struct nd_device_driver nd_pmem_driver = {
644	.probe = nd_pmem_probe,
645	.remove = nd_pmem_remove,
646	.notify = nd_pmem_notify,
647	.shutdown = nd_pmem_shutdown,
648	.drv = {
649		.name = "nd_pmem",
650	},
651	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
652};
653
654module_nd_driver(nd_pmem_driver);
 
 
 
 
 
 
 
 
 
 
655
656MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
657MODULE_LICENSE("GPL v2");
v4.10.11
 
  1/*
  2 * Persistent Memory Driver
  3 *
  4 * Copyright (c) 2014-2015, Intel Corporation.
  5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms and conditions of the GNU General Public License,
 10 * version 2, as published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope it will be useful, but WITHOUT
 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 15 * more details.
 16 */
 17
 18#include <asm/cacheflush.h>
 19#include <linux/blkdev.h>
 20#include <linux/hdreg.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 
 23#include <linux/module.h>
 24#include <linux/moduleparam.h>
 25#include <linux/badblocks.h>
 26#include <linux/memremap.h>
 27#include <linux/vmalloc.h>
 
 28#include <linux/pfn_t.h>
 29#include <linux/slab.h>
 30#include <linux/pmem.h>
 
 31#include <linux/nd.h>
 
 
 
 32#include "pmem.h"
 33#include "pfn.h"
 34#include "nd.h"
 35
 36static struct device *to_dev(struct pmem_device *pmem)
 37{
 38	/*
 39	 * nvdimm bus services need a 'dev' parameter, and we record the device
 40	 * at init in bb.dev.
 41	 */
 42	return pmem->bb.dev;
 43}
 44
 45static struct nd_region *to_region(struct pmem_device *pmem)
 46{
 47	return to_nd_region(to_dev(pmem)->parent);
 48}
 49
 50static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
 51		unsigned int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52{
 53	struct device *dev = to_dev(pmem);
 54	sector_t sector;
 55	long cleared;
 56	int rc = 0;
 57
 58	sector = (offset - pmem->data_offset) / 512;
 59
 60	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
 61	if (cleared < len)
 62		rc = -EIO;
 63	if (cleared > 0 && cleared / 512) {
 
 64		cleared /= 512;
 65		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
 66				(unsigned long long) sector, cleared,
 67				cleared > 1 ? "s" : "");
 68		badblocks_clear(&pmem->bb, sector, cleared);
 
 
 69	}
 70
 71	invalidate_pmem(pmem->virt_addr + offset, len);
 72
 73	return rc;
 74}
 75
 76static void write_pmem(void *pmem_addr, struct page *page,
 77		unsigned int off, unsigned int len)
 78{
 79	void *mem = kmap_atomic(page);
 
 80
 81	memcpy_to_pmem(pmem_addr, mem + off, len);
 82	kunmap_atomic(mem);
 
 
 
 
 
 
 
 
 83}
 84
 85static int read_pmem(struct page *page, unsigned int off,
 86		void *pmem_addr, unsigned int len)
 87{
 88	int rc;
 89	void *mem = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90
 91	rc = memcpy_from_pmem(mem + off, pmem_addr, len);
 92	kunmap_atomic(mem);
 93	if (rc)
 94		return -EIO;
 95	return 0;
 96}
 97
 98static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
 99			unsigned int len, unsigned int off, bool is_write,
100			sector_t sector)
101{
102	int rc = 0;
103	bool bad_pmem = false;
104	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
105	void *pmem_addr = pmem->virt_addr + pmem_off;
106
107	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
108		bad_pmem = true;
109
110	if (!is_write) {
111		if (unlikely(bad_pmem))
112			rc = -EIO;
113		else {
114			rc = read_pmem(page, off, pmem_addr, len);
115			flush_dcache_page(page);
116		}
117	} else {
118		/*
119		 * Note that we write the data both before and after
120		 * clearing poison.  The write before clear poison
121		 * handles situations where the latest written data is
122		 * preserved and the clear poison operation simply marks
123		 * the address range as valid without changing the data.
124		 * In this case application software can assume that an
125		 * interrupted write will either return the new good
126		 * data or an error.
127		 *
128		 * However, if pmem_clear_poison() leaves the data in an
129		 * indeterminate state we need to perform the write
130		 * after clear poison.
131		 */
132		flush_dcache_page(page);
133		write_pmem(pmem_addr, page, off, len);
134		if (unlikely(bad_pmem)) {
135			rc = pmem_clear_poison(pmem, pmem_off, len);
136			write_pmem(pmem_addr, page, off, len);
137		}
138	}
139
140	return rc;
141}
142
143/* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
144#ifndef REQ_FLUSH
145#define REQ_FLUSH REQ_PREFLUSH
146#endif
147
148static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
149{
150	int rc = 0;
 
151	bool do_acct;
152	unsigned long start;
153	struct bio_vec bvec;
154	struct bvec_iter iter;
155	struct pmem_device *pmem = q->queuedata;
156	struct nd_region *nd_region = to_region(pmem);
157
158	if (bio->bi_opf & REQ_FLUSH)
159		nvdimm_flush(nd_region);
160
161	do_acct = nd_iostat_start(bio, &start);
 
 
162	bio_for_each_segment(bvec, bio, iter) {
163		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
164				bvec.bv_offset, op_is_write(bio_op(bio)),
165				iter.bi_sector);
 
 
 
166		if (rc) {
167			bio->bi_error = rc;
168			break;
169		}
170	}
171	if (do_acct)
172		nd_iostat_end(bio, start);
173
174	if (bio->bi_opf & REQ_FUA)
175		nvdimm_flush(nd_region);
 
 
 
176
177	bio_endio(bio);
178	return BLK_QC_T_NONE;
179}
180
181static int pmem_rw_page(struct block_device *bdev, sector_t sector,
182		       struct page *page, bool is_write)
183{
184	struct pmem_device *pmem = bdev->bd_queue->queuedata;
185	int rc;
186
187	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
188
 
 
 
 
189	/*
190	 * The ->rw_page interface is subtle and tricky.  The core
191	 * retries on any error, so we can only invoke page_endio() in
192	 * the successful completion case.  Otherwise, we'll see crashes
193	 * caused by double completion.
194	 */
195	if (rc == 0)
196		page_endio(page, is_write, 0);
197
198	return rc;
199}
200
201/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
202__weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
203		      void **kaddr, pfn_t *pfn, long size)
204{
205	struct pmem_device *pmem = bdev->bd_queue->queuedata;
206	resource_size_t offset = sector * 512 + pmem->data_offset;
207
208	if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
 
209		return -EIO;
210	*kaddr = pmem->virt_addr + offset;
211	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
 
 
 
212
213	/*
214	 * If badblocks are present, limit known good range to the
215	 * requested range.
216	 */
217	if (unlikely(pmem->bb.count))
218		return size;
219	return pmem->size - pmem->pfn_pad - offset;
220}
221
222static const struct block_device_operations pmem_fops = {
223	.owner =		THIS_MODULE,
 
224	.rw_page =		pmem_rw_page,
225	.direct_access =	pmem_direct_access,
226	.revalidate_disk =	nvdimm_revalidate_disk,
227};
228
229static void pmem_release_queue(void *q)
 
 
 
 
 
 
 
 
 
 
 
230{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231	blk_cleanup_queue(q);
232}
233
234static void pmem_release_disk(void *disk)
 
 
 
 
 
235{
236	del_gendisk(disk);
237	put_disk(disk);
 
 
238}
239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240static int pmem_attach_disk(struct device *dev,
241		struct nd_namespace_common *ndns)
242{
243	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
244	struct nd_region *nd_region = to_nd_region(dev->parent);
245	struct vmem_altmap __altmap, *altmap = NULL;
246	struct resource *res = &nsio->res;
 
247	struct nd_pfn *nd_pfn = NULL;
248	int nid = dev_to_node(dev);
249	struct nd_pfn_sb *pfn_sb;
250	struct pmem_device *pmem;
251	struct resource pfn_res;
252	struct request_queue *q;
 
253	struct gendisk *disk;
254	void *addr;
 
 
 
 
 
 
 
 
 
 
255
256	/* while nsio_rw_bytes is active, parse a pfn info block if present */
257	if (is_nd_pfn(dev)) {
258		nd_pfn = to_nd_pfn(dev);
259		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
260		if (IS_ERR(altmap))
261			return PTR_ERR(altmap);
262	}
263
264	/* we're attaching a block device, disable raw namespace access */
265	devm_nsio_disable(dev, nsio);
266
267	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
268	if (!pmem)
269		return -ENOMEM;
270
271	dev_set_drvdata(dev, pmem);
272	pmem->phys_addr = res->start;
273	pmem->size = resource_size(res);
274	if (nvdimm_has_flush(nd_region) < 0)
 
275		dev_warn(dev, "unable to guarantee persistence of writes\n");
 
 
276
277	if (!devm_request_mem_region(dev, res->start, resource_size(res),
278				dev_name(&ndns->dev))) {
279		dev_warn(dev, "could not reserve region %pR\n", res);
280		return -EBUSY;
281	}
282
283	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
284	if (!q)
285		return -ENOMEM;
286
287	pmem->pfn_flags = PFN_DEV;
 
288	if (is_nd_pfn(dev)) {
289		addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
290				altmap);
 
291		pfn_sb = nd_pfn->pfn_sb;
292		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
293		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
 
294		pmem->pfn_flags |= PFN_MAP;
295		res = &pfn_res; /* for badblocks populate */
296		res->start += pmem->data_offset;
297	} else if (pmem_should_map_pages(dev)) {
298		addr = devm_memremap_pages(dev, &nsio->res,
299				&q->q_usage_counter, NULL);
 
 
300		pmem->pfn_flags |= PFN_MAP;
301	} else
 
 
 
 
302		addr = devm_memremap(dev, pmem->phys_addr,
303				pmem->size, ARCH_MEMREMAP_PMEM);
304
305	/*
306	 * At release time the queue must be dead before
307	 * devm_memremap_pages is unwound
308	 */
309	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
310		return -ENOMEM;
311
312	if (IS_ERR(addr))
313		return PTR_ERR(addr);
314	pmem->virt_addr = addr;
315
316	blk_queue_write_cache(q, true, true);
317	blk_queue_make_request(q, pmem_make_request);
318	blk_queue_physical_block_size(q, PAGE_SIZE);
 
319	blk_queue_max_hw_sectors(q, UINT_MAX);
320	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
321	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
322	queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
323	q->queuedata = pmem;
324
325	disk = alloc_disk_node(0, nid);
326	if (!disk)
327		return -ENOMEM;
 
328
329	disk->fops		= &pmem_fops;
330	disk->queue		= q;
331	disk->flags		= GENHD_FL_EXT_DEVT;
 
 
332	nvdimm_namespace_disk_name(ndns, disk->disk_name);
333	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
334			/ 512);
335	if (devm_init_badblocks(dev, &pmem->bb))
336		return -ENOMEM;
337	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
338	disk->bb = &pmem->bb;
339	device_add_disk(dev, disk);
340
341	if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
 
 
 
 
 
 
 
 
 
 
 
 
 
342		return -ENOMEM;
343
344	revalidate_disk(disk);
345
 
 
 
 
 
346	return 0;
347}
348
349static int nd_pmem_probe(struct device *dev)
350{
 
351	struct nd_namespace_common *ndns;
352
353	ndns = nvdimm_namespace_common_probe(dev);
354	if (IS_ERR(ndns))
355		return PTR_ERR(ndns);
356
357	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
358		return -ENXIO;
359
360	if (is_nd_btt(dev))
361		return nvdimm_namespace_attach_btt(ndns);
362
363	if (is_nd_pfn(dev))
364		return pmem_attach_disk(dev, ndns);
365
366	/* if we find a valid info-block we'll come back as that personality */
367	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
368			|| nd_dax_probe(dev, ndns) == 0)
 
 
 
369		return -ENXIO;
370
371	/* ...otherwise we're just a raw pmem device */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372	return pmem_attach_disk(dev, ndns);
373}
374
375static int nd_pmem_remove(struct device *dev)
376{
 
 
377	if (is_nd_btt(dev))
378		nvdimm_namespace_detach_btt(to_nd_btt(dev));
379	nvdimm_flush(to_nd_region(dev->parent));
 
 
 
 
 
 
 
 
380
381	return 0;
382}
383
384static void nd_pmem_shutdown(struct device *dev)
385{
386	nvdimm_flush(to_nd_region(dev->parent));
387}
388
389static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
390{
391	struct pmem_device *pmem = dev_get_drvdata(dev);
392	struct nd_region *nd_region = to_region(pmem);
393	resource_size_t offset = 0, end_trunc = 0;
394	struct nd_namespace_common *ndns;
395	struct nd_namespace_io *nsio;
396	struct resource res;
 
 
397
398	if (event != NVDIMM_REVALIDATE_POISON)
399		return;
400
401	if (is_nd_btt(dev)) {
402		struct nd_btt *nd_btt = to_nd_btt(dev);
403
404		ndns = nd_btt->ndns;
405	} else if (is_nd_pfn(dev)) {
406		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
407		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
408
409		ndns = nd_pfn->ndns;
410		offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
411		end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
412	} else
413		ndns = to_ndns(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414
415	nsio = to_nd_namespace_io(&ndns->dev);
416	res.start = nsio->res.start + offset;
417	res.end = nsio->res.end - end_trunc;
418	nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
 
 
419}
420
421MODULE_ALIAS("pmem");
422MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
423MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
424static struct nd_device_driver nd_pmem_driver = {
425	.probe = nd_pmem_probe,
426	.remove = nd_pmem_remove,
427	.notify = nd_pmem_notify,
428	.shutdown = nd_pmem_shutdown,
429	.drv = {
430		.name = "nd_pmem",
431	},
432	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
433};
434
435static int __init pmem_init(void)
436{
437	return nd_driver_register(&nd_pmem_driver);
438}
439module_init(pmem_init);
440
441static void pmem_exit(void)
442{
443	driver_unregister(&nd_pmem_driver.drv);
444}
445module_exit(pmem_exit);
446
447MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
448MODULE_LICENSE("GPL v2");