Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
 
  23#include <linux/bsearch.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include "kfd_priv.h"
  27#include "kfd_device_queue_manager.h"
  28#include "kfd_pm4_headers_vi.h"
  29#include "cwsr_trap_handler.h"
  30#include "kfd_iommu.h"
  31#include "amdgpu_amdkfd.h"
  32
  33#define MQD_SIZE_ALIGNED 768
  34
  35/*
  36 * kfd_locked is used to lock the kfd driver during suspend or reset
  37 * once locked, kfd driver will stop any further GPU execution.
  38 * create process (open) will return -EAGAIN.
  39 */
  40static atomic_t kfd_locked = ATOMIC_INIT(0);
  41
  42#ifdef CONFIG_DRM_AMDGPU_CIK
  43extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
  44#endif
  45extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
  46extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
  47extern const struct kfd2kgd_calls arcturus_kfd2kgd;
  48extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
  49extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
  50
  51static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
  52#ifdef KFD_SUPPORT_IOMMU_V2
  53#ifdef CONFIG_DRM_AMDGPU_CIK
  54	[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
  55#endif
  56	[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
  57	[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
  58#endif
  59#ifdef CONFIG_DRM_AMDGPU_CIK
  60	[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
  61#endif
  62	[CHIP_TONGA] = &gfx_v8_kfd2kgd,
  63	[CHIP_FIJI] = &gfx_v8_kfd2kgd,
  64	[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
  65	[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
  66	[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
  67	[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
  68	[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
  69	[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
  70	[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
  71	[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
  72	[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
  73	[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
  74	[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
  75	[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
  76	[CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
  77	[CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
  78};
  79
  80#ifdef KFD_SUPPORT_IOMMU_V2
  81static const struct kfd_device_info kaveri_device_info = {
  82	.asic_family = CHIP_KAVERI,
  83	.asic_name = "kaveri",
  84	.max_pasid_bits = 16,
  85	/* max num of queues for KV.TODO should be a dynamic value */
  86	.max_no_of_hqd	= 24,
  87	.doorbell_size  = 4,
  88	.ih_ring_entry_size = 4 * sizeof(uint32_t),
  89	.event_interrupt_class = &event_interrupt_class_cik,
  90	.num_of_watch_points = 4,
  91	.mqd_size_aligned = MQD_SIZE_ALIGNED,
  92	.supports_cwsr = false,
  93	.needs_iommu_device = true,
  94	.needs_pci_atomics = false,
  95	.num_sdma_engines = 2,
  96	.num_xgmi_sdma_engines = 0,
  97	.num_sdma_queues_per_engine = 2,
  98};
  99
 100static const struct kfd_device_info carrizo_device_info = {
 101	.asic_family = CHIP_CARRIZO,
 102	.asic_name = "carrizo",
 103	.max_pasid_bits = 16,
 104	/* max num of queues for CZ.TODO should be a dynamic value */
 105	.max_no_of_hqd	= 24,
 106	.doorbell_size  = 4,
 107	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 108	.event_interrupt_class = &event_interrupt_class_cik,
 109	.num_of_watch_points = 4,
 110	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 111	.supports_cwsr = true,
 112	.needs_iommu_device = true,
 113	.needs_pci_atomics = false,
 114	.num_sdma_engines = 2,
 115	.num_xgmi_sdma_engines = 0,
 116	.num_sdma_queues_per_engine = 2,
 117};
 118
 119static const struct kfd_device_info raven_device_info = {
 120	.asic_family = CHIP_RAVEN,
 121	.asic_name = "raven",
 122	.max_pasid_bits = 16,
 123	.max_no_of_hqd  = 24,
 124	.doorbell_size  = 8,
 125	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 126	.event_interrupt_class = &event_interrupt_class_v9,
 127	.num_of_watch_points = 4,
 128	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 129	.supports_cwsr = true,
 130	.needs_iommu_device = true,
 131	.needs_pci_atomics = true,
 132	.num_sdma_engines = 1,
 133	.num_xgmi_sdma_engines = 0,
 134	.num_sdma_queues_per_engine = 2,
 135};
 136#endif
 137
 138static const struct kfd_device_info hawaii_device_info = {
 139	.asic_family = CHIP_HAWAII,
 140	.asic_name = "hawaii",
 141	.max_pasid_bits = 16,
 142	/* max num of queues for KV.TODO should be a dynamic value */
 143	.max_no_of_hqd	= 24,
 144	.doorbell_size  = 4,
 145	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 146	.event_interrupt_class = &event_interrupt_class_cik,
 147	.num_of_watch_points = 4,
 148	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 149	.supports_cwsr = false,
 150	.needs_iommu_device = false,
 151	.needs_pci_atomics = false,
 152	.num_sdma_engines = 2,
 153	.num_xgmi_sdma_engines = 0,
 154	.num_sdma_queues_per_engine = 2,
 155};
 156
 157static const struct kfd_device_info tonga_device_info = {
 158	.asic_family = CHIP_TONGA,
 159	.asic_name = "tonga",
 160	.max_pasid_bits = 16,
 161	.max_no_of_hqd  = 24,
 162	.doorbell_size  = 4,
 163	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 164	.event_interrupt_class = &event_interrupt_class_cik,
 165	.num_of_watch_points = 4,
 166	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 167	.supports_cwsr = false,
 168	.needs_iommu_device = false,
 169	.needs_pci_atomics = true,
 170	.num_sdma_engines = 2,
 171	.num_xgmi_sdma_engines = 0,
 172	.num_sdma_queues_per_engine = 2,
 173};
 174
 175static const struct kfd_device_info fiji_device_info = {
 176	.asic_family = CHIP_FIJI,
 177	.asic_name = "fiji",
 178	.max_pasid_bits = 16,
 179	.max_no_of_hqd  = 24,
 180	.doorbell_size  = 4,
 181	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 182	.event_interrupt_class = &event_interrupt_class_cik,
 183	.num_of_watch_points = 4,
 184	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 185	.supports_cwsr = true,
 186	.needs_iommu_device = false,
 187	.needs_pci_atomics = true,
 188	.num_sdma_engines = 2,
 189	.num_xgmi_sdma_engines = 0,
 190	.num_sdma_queues_per_engine = 2,
 191};
 192
 193static const struct kfd_device_info fiji_vf_device_info = {
 194	.asic_family = CHIP_FIJI,
 195	.asic_name = "fiji",
 196	.max_pasid_bits = 16,
 197	.max_no_of_hqd  = 24,
 198	.doorbell_size  = 4,
 199	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 200	.event_interrupt_class = &event_interrupt_class_cik,
 201	.num_of_watch_points = 4,
 202	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 203	.supports_cwsr = true,
 204	.needs_iommu_device = false,
 205	.needs_pci_atomics = false,
 206	.num_sdma_engines = 2,
 207	.num_xgmi_sdma_engines = 0,
 208	.num_sdma_queues_per_engine = 2,
 209};
 210
 211
 212static const struct kfd_device_info polaris10_device_info = {
 213	.asic_family = CHIP_POLARIS10,
 214	.asic_name = "polaris10",
 215	.max_pasid_bits = 16,
 216	.max_no_of_hqd  = 24,
 217	.doorbell_size  = 4,
 218	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 219	.event_interrupt_class = &event_interrupt_class_cik,
 220	.num_of_watch_points = 4,
 221	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 222	.supports_cwsr = true,
 223	.needs_iommu_device = false,
 224	.needs_pci_atomics = true,
 225	.num_sdma_engines = 2,
 226	.num_xgmi_sdma_engines = 0,
 227	.num_sdma_queues_per_engine = 2,
 228};
 229
 230static const struct kfd_device_info polaris10_vf_device_info = {
 231	.asic_family = CHIP_POLARIS10,
 232	.asic_name = "polaris10",
 233	.max_pasid_bits = 16,
 234	.max_no_of_hqd  = 24,
 235	.doorbell_size  = 4,
 236	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 237	.event_interrupt_class = &event_interrupt_class_cik,
 238	.num_of_watch_points = 4,
 239	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 240	.supports_cwsr = true,
 241	.needs_iommu_device = false,
 242	.needs_pci_atomics = false,
 243	.num_sdma_engines = 2,
 244	.num_xgmi_sdma_engines = 0,
 245	.num_sdma_queues_per_engine = 2,
 246};
 247
 248static const struct kfd_device_info polaris11_device_info = {
 249	.asic_family = CHIP_POLARIS11,
 250	.asic_name = "polaris11",
 251	.max_pasid_bits = 16,
 252	.max_no_of_hqd  = 24,
 253	.doorbell_size  = 4,
 254	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 255	.event_interrupt_class = &event_interrupt_class_cik,
 256	.num_of_watch_points = 4,
 257	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 258	.supports_cwsr = true,
 259	.needs_iommu_device = false,
 260	.needs_pci_atomics = true,
 261	.num_sdma_engines = 2,
 262	.num_xgmi_sdma_engines = 0,
 263	.num_sdma_queues_per_engine = 2,
 264};
 265
 266static const struct kfd_device_info polaris12_device_info = {
 267	.asic_family = CHIP_POLARIS12,
 268	.asic_name = "polaris12",
 269	.max_pasid_bits = 16,
 270	.max_no_of_hqd  = 24,
 271	.doorbell_size  = 4,
 272	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 273	.event_interrupt_class = &event_interrupt_class_cik,
 274	.num_of_watch_points = 4,
 275	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 276	.supports_cwsr = true,
 277	.needs_iommu_device = false,
 278	.needs_pci_atomics = true,
 279	.num_sdma_engines = 2,
 280	.num_xgmi_sdma_engines = 0,
 281	.num_sdma_queues_per_engine = 2,
 282};
 283
 284static const struct kfd_device_info vegam_device_info = {
 285	.asic_family = CHIP_VEGAM,
 286	.asic_name = "vegam",
 287	.max_pasid_bits = 16,
 288	.max_no_of_hqd  = 24,
 289	.doorbell_size  = 4,
 290	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 291	.event_interrupt_class = &event_interrupt_class_cik,
 292	.num_of_watch_points = 4,
 293	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 294	.supports_cwsr = true,
 295	.needs_iommu_device = false,
 296	.needs_pci_atomics = true,
 297	.num_sdma_engines = 2,
 298	.num_xgmi_sdma_engines = 0,
 299	.num_sdma_queues_per_engine = 2,
 300};
 301
 302static const struct kfd_device_info vega10_device_info = {
 303	.asic_family = CHIP_VEGA10,
 304	.asic_name = "vega10",
 305	.max_pasid_bits = 16,
 306	.max_no_of_hqd  = 24,
 307	.doorbell_size  = 8,
 308	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 309	.event_interrupt_class = &event_interrupt_class_v9,
 310	.num_of_watch_points = 4,
 311	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 312	.supports_cwsr = true,
 313	.needs_iommu_device = false,
 314	.needs_pci_atomics = false,
 315	.num_sdma_engines = 2,
 316	.num_xgmi_sdma_engines = 0,
 317	.num_sdma_queues_per_engine = 2,
 318};
 319
 320static const struct kfd_device_info vega10_vf_device_info = {
 321	.asic_family = CHIP_VEGA10,
 322	.asic_name = "vega10",
 323	.max_pasid_bits = 16,
 324	.max_no_of_hqd  = 24,
 325	.doorbell_size  = 8,
 326	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 327	.event_interrupt_class = &event_interrupt_class_v9,
 328	.num_of_watch_points = 4,
 329	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 330	.supports_cwsr = true,
 331	.needs_iommu_device = false,
 332	.needs_pci_atomics = false,
 333	.num_sdma_engines = 2,
 334	.num_xgmi_sdma_engines = 0,
 335	.num_sdma_queues_per_engine = 2,
 336};
 337
 338static const struct kfd_device_info vega12_device_info = {
 339	.asic_family = CHIP_VEGA12,
 340	.asic_name = "vega12",
 341	.max_pasid_bits = 16,
 342	.max_no_of_hqd  = 24,
 343	.doorbell_size  = 8,
 344	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 345	.event_interrupt_class = &event_interrupt_class_v9,
 346	.num_of_watch_points = 4,
 347	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 348	.supports_cwsr = true,
 349	.needs_iommu_device = false,
 350	.needs_pci_atomics = false,
 351	.num_sdma_engines = 2,
 352	.num_xgmi_sdma_engines = 0,
 353	.num_sdma_queues_per_engine = 2,
 354};
 355
 356static const struct kfd_device_info vega20_device_info = {
 357	.asic_family = CHIP_VEGA20,
 358	.asic_name = "vega20",
 359	.max_pasid_bits = 16,
 360	.max_no_of_hqd	= 24,
 361	.doorbell_size	= 8,
 362	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 363	.event_interrupt_class = &event_interrupt_class_v9,
 364	.num_of_watch_points = 4,
 365	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 366	.supports_cwsr = true,
 367	.needs_iommu_device = false,
 368	.needs_pci_atomics = false,
 369	.num_sdma_engines = 2,
 370	.num_xgmi_sdma_engines = 0,
 371	.num_sdma_queues_per_engine = 8,
 372};
 373
 374static const struct kfd_device_info arcturus_device_info = {
 375	.asic_family = CHIP_ARCTURUS,
 376	.asic_name = "arcturus",
 377	.max_pasid_bits = 16,
 378	.max_no_of_hqd	= 24,
 379	.doorbell_size	= 8,
 380	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 381	.event_interrupt_class = &event_interrupt_class_v9,
 382	.num_of_watch_points = 4,
 383	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 384	.supports_cwsr = true,
 385	.needs_iommu_device = false,
 386	.needs_pci_atomics = false,
 387	.num_sdma_engines = 2,
 388	.num_xgmi_sdma_engines = 6,
 389	.num_sdma_queues_per_engine = 8,
 390};
 391
 392static const struct kfd_device_info renoir_device_info = {
 393	.asic_family = CHIP_RENOIR,
 394	.asic_name = "renoir",
 395	.max_pasid_bits = 16,
 396	.max_no_of_hqd  = 24,
 397	.doorbell_size  = 8,
 398	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 399	.event_interrupt_class = &event_interrupt_class_v9,
 400	.num_of_watch_points = 4,
 401	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 402	.supports_cwsr = true,
 403	.needs_iommu_device = false,
 404	.needs_pci_atomics = false,
 405	.num_sdma_engines = 1,
 406	.num_xgmi_sdma_engines = 0,
 407	.num_sdma_queues_per_engine = 2,
 408};
 409
 410static const struct kfd_device_info navi10_device_info = {
 411	.asic_family = CHIP_NAVI10,
 412	.asic_name = "navi10",
 413	.max_pasid_bits = 16,
 414	.max_no_of_hqd  = 24,
 415	.doorbell_size  = 8,
 416	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 417	.event_interrupt_class = &event_interrupt_class_v9,
 418	.num_of_watch_points = 4,
 419	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 420	.needs_iommu_device = false,
 421	.supports_cwsr = true,
 422	.needs_pci_atomics = false,
 423	.num_sdma_engines = 2,
 424	.num_xgmi_sdma_engines = 0,
 425	.num_sdma_queues_per_engine = 8,
 426};
 427
 428static const struct kfd_device_info navi12_device_info = {
 429	.asic_family = CHIP_NAVI12,
 430	.asic_name = "navi12",
 431	.max_pasid_bits = 16,
 432	.max_no_of_hqd  = 24,
 433	.doorbell_size  = 8,
 434	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 435	.event_interrupt_class = &event_interrupt_class_v9,
 436	.num_of_watch_points = 4,
 437	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 438	.needs_iommu_device = false,
 439	.supports_cwsr = true,
 440	.needs_pci_atomics = false,
 441	.num_sdma_engines = 2,
 442	.num_xgmi_sdma_engines = 0,
 443	.num_sdma_queues_per_engine = 8,
 444};
 445
 446static const struct kfd_device_info navi14_device_info = {
 447	.asic_family = CHIP_NAVI14,
 448	.asic_name = "navi14",
 449	.max_pasid_bits = 16,
 450	.max_no_of_hqd  = 24,
 451	.doorbell_size  = 8,
 452	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 453	.event_interrupt_class = &event_interrupt_class_v9,
 454	.num_of_watch_points = 4,
 455	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 456	.needs_iommu_device = false,
 457	.supports_cwsr = true,
 458	.needs_pci_atomics = false,
 459	.num_sdma_engines = 2,
 460	.num_xgmi_sdma_engines = 0,
 461	.num_sdma_queues_per_engine = 8,
 462};
 463
 464static const struct kfd_device_info sienna_cichlid_device_info = {
 465	.asic_family = CHIP_SIENNA_CICHLID,
 466	.asic_name = "sienna_cichlid",
 467	.max_pasid_bits = 16,
 468	.max_no_of_hqd  = 24,
 469	.doorbell_size  = 8,
 470	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 471	.event_interrupt_class = &event_interrupt_class_v9,
 472	.num_of_watch_points = 4,
 473	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 474	.needs_iommu_device = false,
 475	.supports_cwsr = true,
 476	.needs_pci_atomics = false,
 477	.num_sdma_engines = 4,
 478	.num_xgmi_sdma_engines = 0,
 479	.num_sdma_queues_per_engine = 8,
 480};
 481
 482static const struct kfd_device_info navy_flounder_device_info = {
 483	.asic_family = CHIP_NAVY_FLOUNDER,
 484	.asic_name = "navy_flounder",
 485	.max_pasid_bits = 16,
 486	.max_no_of_hqd  = 24,
 487	.doorbell_size  = 8,
 488	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 489	.event_interrupt_class = &event_interrupt_class_v9,
 490	.num_of_watch_points = 4,
 491	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 492	.needs_iommu_device = false,
 493	.supports_cwsr = true,
 494	.needs_pci_atomics = false,
 495	.num_sdma_engines = 2,
 496	.num_xgmi_sdma_engines = 0,
 497	.num_sdma_queues_per_engine = 8,
 498};
 499
 500/* For each entry, [0] is regular and [1] is virtualisation device. */
 501static const struct kfd_device_info *kfd_supported_devices[][2] = {
 502#ifdef KFD_SUPPORT_IOMMU_V2
 503	[CHIP_KAVERI] = {&kaveri_device_info, NULL},
 504	[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
 505	[CHIP_RAVEN] = {&raven_device_info, NULL},
 506#endif
 507	[CHIP_HAWAII] = {&hawaii_device_info, NULL},
 508	[CHIP_TONGA] = {&tonga_device_info, NULL},
 509	[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
 510	[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
 511	[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
 512	[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
 513	[CHIP_VEGAM] = {&vegam_device_info, NULL},
 514	[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
 515	[CHIP_VEGA12] = {&vega12_device_info, NULL},
 516	[CHIP_VEGA20] = {&vega20_device_info, NULL},
 517	[CHIP_RENOIR] = {&renoir_device_info, NULL},
 518	[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
 519	[CHIP_NAVI10] = {&navi10_device_info, NULL},
 520	[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
 521	[CHIP_NAVI14] = {&navi14_device_info, NULL},
 522	[CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
 523	[CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
 
 
 
 
 
 524};
 525
 526static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
 527				unsigned int chunk_size);
 528static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
 529
 530static int kfd_resume(struct kfd_dev *kfd);
 
 
 
 
 
 
 
 
 
 
 
 
 531
 532struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
 533	struct pci_dev *pdev, unsigned int asic_type, bool vf)
 534{
 535	struct kfd_dev *kfd;
 536	const struct kfd_device_info *device_info;
 537	const struct kfd2kgd_calls *f2g;
 538
 539	if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
 540		|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
 541		dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
 542		return NULL; /* asic_type out of range */
 543	}
 544
 545	device_info = kfd_supported_devices[asic_type][vf];
 546	f2g = kfd2kgd_funcs[asic_type];
 547
 548	if (!device_info || !f2g) {
 549		dev_err(kfd_device, "%s %s not supported in kfd\n",
 550			amdgpu_asic_name[asic_type], vf ? "VF" : "");
 551		return NULL;
 552	}
 553
 554	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
 555	if (!kfd)
 556		return NULL;
 557
 558	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
 559	 * 32 and 64-bit requests are possible and must be
 560	 * supported.
 561	 */
 562	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
 563	if (device_info->needs_pci_atomics &&
 564	    !kfd->pci_atomic_requested) {
 565		dev_info(kfd_device,
 566			 "skipped device %x:%x, PCI rejects atomics\n",
 567			 pdev->vendor, pdev->device);
 568		kfree(kfd);
 569		return NULL;
 570	}
 571
 572	kfd->kgd = kgd;
 573	kfd->device_info = device_info;
 574	kfd->pdev = pdev;
 575	kfd->init_complete = false;
 576	kfd->kfd2kgd = f2g;
 577	atomic_set(&kfd->compute_profile, 0);
 578
 579	mutex_init(&kfd->doorbell_mutex);
 580	memset(&kfd->doorbell_available_index, 0,
 581		sizeof(kfd->doorbell_available_index));
 582
 583	atomic_set(&kfd->sram_ecc_flag, 0);
 584
 585	return kfd;
 586}
 587
 588static void kfd_cwsr_init(struct kfd_dev *kfd)
 589{
 590	if (cwsr_enable && kfd->device_info->supports_cwsr) {
 591		if (kfd->device_info->asic_family < CHIP_VEGA10) {
 592			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
 593			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
 594			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
 595		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
 596			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
 597			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
 598			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
 599		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
 600			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
 601			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
 602			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
 603		} else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
 604			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
 605			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
 606			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
 607		} else {
 608			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
 609			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
 610			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
 611		}
 612
 613		kfd->cwsr_enabled = true;
 
 
 
 
 
 614	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615}
 616
 617static int kfd_gws_init(struct kfd_dev *kfd)
 618{
 619	int ret = 0;
 620
 621	if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
 622		return 0;
 
 623
 624	if (hws_gws_support
 625		|| (kfd->device_info->asic_family == CHIP_VEGA10
 626			&& kfd->mec2_fw_version >= 0x81b3)
 627		|| (kfd->device_info->asic_family >= CHIP_VEGA12
 628			&& kfd->device_info->asic_family <= CHIP_RAVEN
 629			&& kfd->mec2_fw_version >= 0x1b3)
 630		|| (kfd->device_info->asic_family == CHIP_ARCTURUS
 631			&& kfd->mec2_fw_version >= 0x30))
 632		ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
 633				amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
 634
 635	return ret;
 636}
 
 
 
 
 
 
 637
 638static void kfd_smi_init(struct kfd_dev *dev) {
 639	INIT_LIST_HEAD(&dev->smi_clients);
 640	spin_lock_init(&dev->smi_lock);
 
 
 
 
 641}
 642
 643bool kgd2kfd_device_init(struct kfd_dev *kfd,
 644			 struct drm_device *ddev,
 645			 const struct kgd2kfd_shared_resources *gpu_resources)
 646{
 647	unsigned int size;
 648
 649	kfd->ddev = ddev;
 650	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
 651			KGD_ENGINE_MEC1);
 652	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
 653			KGD_ENGINE_MEC2);
 654	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
 655			KGD_ENGINE_SDMA1);
 656	kfd->shared_resources = *gpu_resources;
 657
 658	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
 659	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
 660	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
 661			- kfd->vm_info.first_vmid_kfd + 1;
 662
 663	/* Verify module parameters regarding mapped process number*/
 664	if ((hws_max_conc_proc < 0)
 665			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
 666		dev_err(kfd_device,
 667			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
 668			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
 669			kfd->vm_info.vmid_num_kfd);
 670		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
 671	} else
 672		kfd->max_proc_per_quantum = hws_max_conc_proc;
 673
 674	/* calculate max size of mqds needed for queues */
 675	size = max_num_of_queues_per_device *
 676			kfd->device_info->mqd_size_aligned;
 677
 678	/*
 679	 * calculate max size of runlist packet.
 680	 * There can be only 2 packets at once
 681	 */
 682	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
 683		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
 684		+ sizeof(struct pm4_mes_runlist)) * 2;
 685
 686	/* Add size of HIQ & DIQ */
 687	size += KFD_KERNEL_QUEUE_SIZE * 2;
 688
 689	/* add another 512KB for all other allocations on gart (HPD, fences) */
 690	size += 512 * 1024;
 691
 692	if (amdgpu_amdkfd_alloc_gtt_mem(
 693			kfd->kgd, size, &kfd->gtt_mem,
 694			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
 695			false)) {
 696		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
 697		goto alloc_gtt_mem_failure;
 
 698	}
 699
 700	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
 
 
 701
 702	/* Initialize GTT sa with 512 byte chunk size */
 703	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
 704		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
 
 705		goto kfd_gtt_sa_init_error;
 706	}
 707
 708	if (kfd_doorbell_init(kfd)) {
 
 
 709		dev_err(kfd_device,
 710			"Error initializing doorbell aperture\n");
 711		goto kfd_doorbell_error;
 
 712	}
 713
 714	if (kfd->kfd2kgd->get_hive_id)
 715		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
 716
 717	if (kfd->kfd2kgd->get_unique_id)
 718		kfd->unique_id = kfd->kfd2kgd->get_unique_id(kfd->kgd);
 719
 720	if (kfd_interrupt_init(kfd)) {
 721		dev_err(kfd_device, "Error initializing interrupts\n");
 
 
 722		goto kfd_interrupt_error;
 723	}
 724
 
 
 
 
 
 
 
 
 
 
 725	kfd->dqm = device_queue_manager_init(kfd);
 726	if (!kfd->dqm) {
 727		dev_err(kfd_device, "Error initializing queue manager\n");
 
 
 728		goto device_queue_manager_error;
 729	}
 730
 731	/* If supported on this device, allocate global GWS that is shared
 732	 * by all KFD processes
 733	 */
 734	if (kfd_gws_init(kfd)) {
 735		dev_err(kfd_device, "Could not allocate %d gws\n",
 736			amdgpu_amdkfd_get_num_gws(kfd->kgd));
 737		goto gws_error;
 738	}
 739
 740	if (kfd_iommu_device_init(kfd)) {
 741		dev_err(kfd_device, "Error initializing iommuv2\n");
 742		goto device_iommu_error;
 743	}
 744
 745	kfd_cwsr_init(kfd);
 746
 747	if (kfd_resume(kfd))
 748		goto kfd_resume_error;
 749
 750	kfd->dbgmgr = NULL;
 751
 752	if (kfd_topology_add_device(kfd)) {
 753		dev_err(kfd_device, "Error adding device to topology\n");
 754		goto kfd_topology_add_device_error;
 755	}
 756
 757	kfd_smi_init(kfd);
 758
 759	kfd->init_complete = true;
 760	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
 761		 kfd->pdev->device);
 762
 763	pr_debug("Starting kfd with the following scheduling policy %d\n",
 764		kfd->dqm->sched_policy);
 765
 766	goto out;
 767
 768kfd_topology_add_device_error:
 769kfd_resume_error:
 770device_iommu_error:
 771gws_error:
 772	device_queue_manager_uninit(kfd->dqm);
 773device_queue_manager_error:
 
 
 774	kfd_interrupt_exit(kfd);
 775kfd_interrupt_error:
 776	kfd_doorbell_fini(kfd);
 777kfd_doorbell_error:
 778	kfd_gtt_sa_fini(kfd);
 779kfd_gtt_sa_init_error:
 780	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
 781alloc_gtt_mem_failure:
 782	if (kfd->gws)
 783		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
 784	dev_err(kfd_device,
 785		"device %x:%x NOT added due to errors\n",
 786		kfd->pdev->vendor, kfd->pdev->device);
 787out:
 788	return kfd->init_complete;
 789}
 790
 791void kgd2kfd_device_exit(struct kfd_dev *kfd)
 792{
 793	if (kfd->init_complete) {
 794		kgd2kfd_suspend(kfd, false);
 795		device_queue_manager_uninit(kfd->dqm);
 
 796		kfd_interrupt_exit(kfd);
 797		kfd_topology_remove_device(kfd);
 798		kfd_doorbell_fini(kfd);
 799		kfd_gtt_sa_fini(kfd);
 800		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
 801		if (kfd->gws)
 802			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
 803	}
 804
 805	kfree(kfd);
 806}
 807
 808int kgd2kfd_pre_reset(struct kfd_dev *kfd)
 809{
 810	if (!kfd->init_complete)
 811		return 0;
 812
 813	kfd->dqm->ops.pre_reset(kfd->dqm);
 814
 815	kgd2kfd_suspend(kfd, false);
 816
 817	kfd_signal_reset_event(kfd);
 818	return 0;
 819}
 820
 821/*
 822 * Fix me. KFD won't be able to resume existing process for now.
 823 * We will keep all existing process in a evicted state and
 824 * wait the process to be terminated.
 825 */
 826
 827int kgd2kfd_post_reset(struct kfd_dev *kfd)
 828{
 829	int ret;
 830
 831	if (!kfd->init_complete)
 832		return 0;
 833
 834	ret = kfd_resume(kfd);
 835	if (ret)
 836		return ret;
 837	atomic_dec(&kfd_locked);
 838
 839	atomic_set(&kfd->sram_ecc_flag, 0);
 840
 841	return 0;
 842}
 843
 844bool kfd_is_locked(void)
 845{
 846	return  (atomic_read(&kfd_locked) > 0);
 847}
 848
 849void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
 850{
 851	if (!kfd->init_complete)
 852		return;
 853
 854	/* for runtime suspend, skip locking kfd */
 855	if (!run_pm) {
 856		/* For first KFD device suspend all the KFD processes */
 857		if (atomic_inc_return(&kfd_locked) == 1)
 858			kfd_suspend_all_processes();
 859	}
 860
 861	kfd->dqm->ops.stop(kfd->dqm);
 862	kfd_iommu_suspend(kfd);
 863}
 864
 865int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
 866{
 867	int ret, count;
 868
 869	if (!kfd->init_complete)
 870		return 0;
 871
 872	ret = kfd_resume(kfd);
 873	if (ret)
 874		return ret;
 875
 876	/* for runtime resume, skip unlocking kfd */
 877	if (!run_pm) {
 878		count = atomic_dec_return(&kfd_locked);
 879		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
 880		if (count == 0)
 881			ret = kfd_resume_all_processes();
 882	}
 883
 884	return ret;
 885}
 886
 887static int kfd_resume(struct kfd_dev *kfd)
 888{
 889	int err = 0;
 890
 891	err = kfd_iommu_resume(kfd);
 892	if (err) {
 893		dev_err(kfd_device,
 894			"Failed to resume IOMMU for device %x:%x\n",
 895			kfd->pdev->vendor, kfd->pdev->device);
 896		return err;
 897	}
 898
 899	err = kfd->dqm->ops.start(kfd->dqm);
 900	if (err) {
 901		dev_err(kfd_device,
 902			"Error starting queue manager for device %x:%x\n",
 903			kfd->pdev->vendor, kfd->pdev->device);
 904		goto dqm_start_error;
 905	}
 906
 907	return err;
 908
 909dqm_start_error:
 910	kfd_iommu_suspend(kfd);
 911	return err;
 912}
 913
 914static inline void kfd_queue_work(struct workqueue_struct *wq,
 915				  struct work_struct *work)
 916{
 917	int cpu, new_cpu;
 918
 919	cpu = new_cpu = smp_processor_id();
 920	do {
 921		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
 922		if (cpu_to_node(new_cpu) == numa_node_id())
 923			break;
 924	} while (cpu != new_cpu);
 925
 926	queue_work_on(new_cpu, wq, work);
 927}
 928
 929/* This is called directly from KGD at ISR. */
 930void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
 931{
 932	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
 933	bool is_patched = false;
 934	unsigned long flags;
 935
 936	if (!kfd->init_complete)
 937		return;
 938
 939	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
 940		dev_err_once(kfd_device, "Ring entry too small\n");
 941		return;
 942	}
 943
 944	spin_lock_irqsave(&kfd->interrupt_lock, flags);
 945
 946	if (kfd->interrupts_active
 947	    && interrupt_is_wanted(kfd, ih_ring_entry,
 948				   patched_ihre, &is_patched)
 949	    && enqueue_ih_ring_entry(kfd,
 950				     is_patched ? patched_ihre : ih_ring_entry))
 951		kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
 952
 953	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
 954}
 955
 956int kgd2kfd_quiesce_mm(struct mm_struct *mm)
 957{
 958	struct kfd_process *p;
 959	int r;
 960
 961	/* Because we are called from arbitrary context (workqueue) as opposed
 962	 * to process context, kfd_process could attempt to exit while we are
 963	 * running so the lookup function increments the process ref count.
 964	 */
 965	p = kfd_lookup_process_by_mm(mm);
 966	if (!p)
 967		return -ESRCH;
 968
 969	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
 970	r = kfd_process_evict_queues(p);
 971
 972	kfd_unref_process(p);
 973	return r;
 974}
 975
 976int kgd2kfd_resume_mm(struct mm_struct *mm)
 977{
 978	struct kfd_process *p;
 979	int r;
 980
 981	/* Because we are called from arbitrary context (workqueue) as opposed
 982	 * to process context, kfd_process could attempt to exit while we are
 983	 * running so the lookup function increments the process ref count.
 984	 */
 985	p = kfd_lookup_process_by_mm(mm);
 986	if (!p)
 987		return -ESRCH;
 988
 989	r = kfd_process_restore_queues(p);
 990
 991	kfd_unref_process(p);
 992	return r;
 993}
 994
 995/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
 996 *   prepare for safe eviction of KFD BOs that belong to the specified
 997 *   process.
 998 *
 999 * @mm: mm_struct that identifies the specified KFD process
1000 * @fence: eviction fence attached to KFD process BOs
1001 *
1002 */
1003int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1004					       struct dma_fence *fence)
1005{
1006	struct kfd_process *p;
1007	unsigned long active_time;
1008	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1009
1010	if (!fence)
1011		return -EINVAL;
1012
1013	if (dma_fence_is_signaled(fence))
1014		return 0;
1015
1016	p = kfd_lookup_process_by_mm(mm);
1017	if (!p)
1018		return -ENODEV;
1019
1020	if (fence->seqno == p->last_eviction_seqno)
1021		goto out;
1022
1023	p->last_eviction_seqno = fence->seqno;
1024
1025	/* Avoid KFD process starvation. Wait for at least
1026	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1027	 */
1028	active_time = get_jiffies_64() - p->last_restore_timestamp;
1029	if (delay_jiffies > active_time)
1030		delay_jiffies -= active_time;
1031	else
1032		delay_jiffies = 0;
1033
1034	/* During process initialization eviction_work.dwork is initialized
1035	 * to kfd_evict_bo_worker
1036	 */
1037	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1038	     p->lead_thread->pid, delay_jiffies);
1039	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1040out:
1041	kfd_unref_process(p);
1042	return 0;
1043}
1044
1045static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1046				unsigned int chunk_size)
1047{
1048	unsigned int num_of_longs;
1049
1050	if (WARN_ON(buf_size < chunk_size))
1051		return -EINVAL;
1052	if (WARN_ON(buf_size == 0))
1053		return -EINVAL;
1054	if (WARN_ON(chunk_size == 0))
1055		return -EINVAL;
1056
1057	kfd->gtt_sa_chunk_size = chunk_size;
1058	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1059
1060	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1061		BITS_PER_LONG;
1062
1063	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1064
1065	if (!kfd->gtt_sa_bitmap)
1066		return -ENOMEM;
1067
1068	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1069			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1070
1071	mutex_init(&kfd->gtt_sa_lock);
1072
1073	return 0;
1074
1075}
1076
1077static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1078{
1079	mutex_destroy(&kfd->gtt_sa_lock);
1080	kfree(kfd->gtt_sa_bitmap);
1081}
1082
1083static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1084						unsigned int bit_num,
1085						unsigned int chunk_size)
1086{
1087	return start_addr + bit_num * chunk_size;
1088}
1089
1090static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1091						unsigned int bit_num,
1092						unsigned int chunk_size)
1093{
1094	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1095}
1096
1097int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1098			struct kfd_mem_obj **mem_obj)
1099{
1100	unsigned int found, start_search, cur_size;
1101
 
 
1102	if (size == 0)
1103		return -EINVAL;
1104
1105	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1106		return -ENOMEM;
1107
1108	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1109	if (!(*mem_obj))
1110		return -ENOMEM;
1111
1112	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1113
1114	start_search = 0;
1115
1116	mutex_lock(&kfd->gtt_sa_lock);
1117
1118kfd_gtt_restart_search:
1119	/* Find the first chunk that is free */
1120	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1121					kfd->gtt_sa_num_of_chunks,
1122					start_search);
1123
1124	pr_debug("Found = %d\n", found);
1125
1126	/* If there wasn't any free chunk, bail out */
1127	if (found == kfd->gtt_sa_num_of_chunks)
1128		goto kfd_gtt_no_free_chunk;
1129
1130	/* Update fields of mem_obj */
1131	(*mem_obj)->range_start = found;
1132	(*mem_obj)->range_end = found;
1133	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1134					kfd->gtt_start_gpu_addr,
1135					found,
1136					kfd->gtt_sa_chunk_size);
1137	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1138					kfd->gtt_start_cpu_ptr,
1139					found,
1140					kfd->gtt_sa_chunk_size);
1141
1142	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1143			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1144
1145	/* If we need only one chunk, mark it as allocated and get out */
1146	if (size <= kfd->gtt_sa_chunk_size) {
1147		pr_debug("Single bit\n");
1148		set_bit(found, kfd->gtt_sa_bitmap);
1149		goto kfd_gtt_out;
1150	}
1151
1152	/* Otherwise, try to see if we have enough contiguous chunks */
1153	cur_size = size - kfd->gtt_sa_chunk_size;
1154	do {
1155		(*mem_obj)->range_end =
1156			find_next_zero_bit(kfd->gtt_sa_bitmap,
1157					kfd->gtt_sa_num_of_chunks, ++found);
1158		/*
1159		 * If next free chunk is not contiguous than we need to
1160		 * restart our search from the last free chunk we found (which
1161		 * wasn't contiguous to the previous ones
1162		 */
1163		if ((*mem_obj)->range_end != found) {
1164			start_search = found;
1165			goto kfd_gtt_restart_search;
1166		}
1167
1168		/*
1169		 * If we reached end of buffer, bail out with error
1170		 */
1171		if (found == kfd->gtt_sa_num_of_chunks)
1172			goto kfd_gtt_no_free_chunk;
1173
1174		/* Check if we don't need another chunk */
1175		if (cur_size <= kfd->gtt_sa_chunk_size)
1176			cur_size = 0;
1177		else
1178			cur_size -= kfd->gtt_sa_chunk_size;
1179
1180	} while (cur_size > 0);
1181
1182	pr_debug("range_start = %d, range_end = %d\n",
1183		(*mem_obj)->range_start, (*mem_obj)->range_end);
1184
1185	/* Mark the chunks as allocated */
1186	for (found = (*mem_obj)->range_start;
1187		found <= (*mem_obj)->range_end;
1188		found++)
1189		set_bit(found, kfd->gtt_sa_bitmap);
1190
1191kfd_gtt_out:
1192	mutex_unlock(&kfd->gtt_sa_lock);
1193	return 0;
1194
1195kfd_gtt_no_free_chunk:
1196	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1197	mutex_unlock(&kfd->gtt_sa_lock);
1198	kfree(*mem_obj);
1199	return -ENOMEM;
1200}
1201
1202int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1203{
1204	unsigned int bit;
1205
 
 
1206	/* Act like kfree when trying to free a NULL object */
1207	if (!mem_obj)
1208		return 0;
1209
1210	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1211			mem_obj, mem_obj->range_start, mem_obj->range_end);
1212
1213	mutex_lock(&kfd->gtt_sa_lock);
1214
1215	/* Mark the chunks as free */
1216	for (bit = mem_obj->range_start;
1217		bit <= mem_obj->range_end;
1218		bit++)
1219		clear_bit(bit, kfd->gtt_sa_bitmap);
1220
1221	mutex_unlock(&kfd->gtt_sa_lock);
1222
1223	kfree(mem_obj);
1224	return 0;
1225}
1226
1227void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1228{
1229	if (kfd)
1230		atomic_inc(&kfd->sram_ecc_flag);
1231}
1232
1233void kfd_inc_compute_active(struct kfd_dev *kfd)
1234{
1235	if (atomic_inc_return(&kfd->compute_profile) == 1)
1236		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1237}
1238
1239void kfd_dec_compute_active(struct kfd_dev *kfd)
1240{
1241	int count = atomic_dec_return(&kfd->compute_profile);
1242
1243	if (count == 0)
1244		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1245	WARN_ONCE(count < 0, "Compute profile ref. count error");
1246}
1247
1248#if defined(CONFIG_DEBUG_FS)
1249
1250/* This function will send a package to HIQ to hang the HWS
1251 * which will trigger a GPU reset and bring the HWS back to normal state
1252 */
1253int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1254{
1255	int r = 0;
1256
1257	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1258		pr_err("HWS is not enabled");
1259		return -EINVAL;
1260	}
1261
1262	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1263	if (!r)
1264		r = dqm_debugfs_execute_queues(dev->dqm);
1265
1266	return r;
1267}
1268
1269#endif
v4.6
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 23#include <linux/amd-iommu.h>
 24#include <linux/bsearch.h>
 25#include <linux/pci.h>
 26#include <linux/slab.h>
 27#include "kfd_priv.h"
 28#include "kfd_device_queue_manager.h"
 29#include "kfd_pm4_headers.h"
 
 
 
 30
 31#define MQD_SIZE_ALIGNED 768
 32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33static const struct kfd_device_info kaveri_device_info = {
 34	.asic_family = CHIP_KAVERI,
 
 35	.max_pasid_bits = 16,
 36	/* max num of queues for KV.TODO should be a dynamic value */
 37	.max_no_of_hqd	= 24,
 
 38	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 39	.event_interrupt_class = &event_interrupt_class_cik,
 40	.num_of_watch_points = 4,
 41	.mqd_size_aligned = MQD_SIZE_ALIGNED
 
 
 
 
 
 
 42};
 43
 44static const struct kfd_device_info carrizo_device_info = {
 45	.asic_family = CHIP_CARRIZO,
 
 46	.max_pasid_bits = 16,
 47	/* max num of queues for CZ.TODO should be a dynamic value */
 48	.max_no_of_hqd	= 24,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 50	.event_interrupt_class = &event_interrupt_class_cik,
 51	.num_of_watch_points = 4,
 52	.mqd_size_aligned = MQD_SIZE_ALIGNED
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53};
 54
 55struct kfd_deviceid {
 56	unsigned short did;
 57	const struct kfd_device_info *device_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58};
 59
 60/* Please keep this sorted by increasing device id. */
 61static const struct kfd_deviceid supported_devices[] = {
 62	{ 0x1304, &kaveri_device_info },	/* Kaveri */
 63	{ 0x1305, &kaveri_device_info },	/* Kaveri */
 64	{ 0x1306, &kaveri_device_info },	/* Kaveri */
 65	{ 0x1307, &kaveri_device_info },	/* Kaveri */
 66	{ 0x1309, &kaveri_device_info },	/* Kaveri */
 67	{ 0x130A, &kaveri_device_info },	/* Kaveri */
 68	{ 0x130B, &kaveri_device_info },	/* Kaveri */
 69	{ 0x130C, &kaveri_device_info },	/* Kaveri */
 70	{ 0x130D, &kaveri_device_info },	/* Kaveri */
 71	{ 0x130E, &kaveri_device_info },	/* Kaveri */
 72	{ 0x130F, &kaveri_device_info },	/* Kaveri */
 73	{ 0x1310, &kaveri_device_info },	/* Kaveri */
 74	{ 0x1311, &kaveri_device_info },	/* Kaveri */
 75	{ 0x1312, &kaveri_device_info },	/* Kaveri */
 76	{ 0x1313, &kaveri_device_info },	/* Kaveri */
 77	{ 0x1315, &kaveri_device_info },	/* Kaveri */
 78	{ 0x1316, &kaveri_device_info },	/* Kaveri */
 79	{ 0x1317, &kaveri_device_info },	/* Kaveri */
 80	{ 0x1318, &kaveri_device_info },	/* Kaveri */
 81	{ 0x131B, &kaveri_device_info },	/* Kaveri */
 82	{ 0x131C, &kaveri_device_info },	/* Kaveri */
 83	{ 0x131D, &kaveri_device_info },	/* Kaveri */
 84	{ 0x9870, &carrizo_device_info },	/* Carrizo */
 85	{ 0x9874, &carrizo_device_info },	/* Carrizo */
 86	{ 0x9875, &carrizo_device_info },	/* Carrizo */
 87	{ 0x9876, &carrizo_device_info },	/* Carrizo */
 88	{ 0x9877, &carrizo_device_info }	/* Carrizo */
 89};
 90
 91static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
 92				unsigned int chunk_size);
 93static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
 94
 95static const struct kfd_device_info *lookup_device_info(unsigned short did)
 96{
 97	size_t i;
 98
 99	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
100		if (supported_devices[i].did == did) {
101			BUG_ON(supported_devices[i].device_info == NULL);
102			return supported_devices[i].device_info;
103		}
104	}
105
106	return NULL;
107}
108
109struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
110	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
111{
112	struct kfd_dev *kfd;
 
 
113
114	const struct kfd_device_info *device_info =
115					lookup_device_info(pdev->device);
 
 
 
116
117	if (!device_info)
 
 
 
 
 
118		return NULL;
 
119
120	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
121	if (!kfd)
122		return NULL;
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124	kfd->kgd = kgd;
125	kfd->device_info = device_info;
126	kfd->pdev = pdev;
127	kfd->init_complete = false;
128	kfd->kfd2kgd = f2g;
 
129
130	mutex_init(&kfd->doorbell_mutex);
131	memset(&kfd->doorbell_available_index, 0,
132		sizeof(kfd->doorbell_available_index));
133
 
 
134	return kfd;
135}
136
137static bool device_iommu_pasid_init(struct kfd_dev *kfd)
138{
139	const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
140					AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
141					AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
142
143	struct amd_iommu_device_info iommu_info;
144	unsigned int pasid_limit;
145	int err;
146
147	err = amd_iommu_device_info(kfd->pdev, &iommu_info);
148	if (err < 0) {
149		dev_err(kfd_device,
150			"error getting iommu info. is the iommu enabled?\n");
151		return false;
152	}
 
 
 
 
 
 
 
 
153
154	if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) {
155		dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n",
156		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0,
157		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0,
158		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0);
159		return false;
160	}
161
162	pasid_limit = min_t(unsigned int,
163			(unsigned int)1 << kfd->device_info->max_pasid_bits,
164			iommu_info.max_pasids);
165	/*
166	 * last pasid is used for kernel queues doorbells
167	 * in the future the last pasid might be used for a kernel thread.
168	 */
169	pasid_limit = min_t(unsigned int,
170				pasid_limit,
171				kfd->doorbell_process_limit - 1);
172
173	err = amd_iommu_init_device(kfd->pdev, pasid_limit);
174	if (err < 0) {
175		dev_err(kfd_device, "error initializing iommu device\n");
176		return false;
177	}
178
179	if (!kfd_set_pasid_limit(pasid_limit)) {
180		dev_err(kfd_device, "error setting pasid limit\n");
181		amd_iommu_free_device(kfd->pdev);
182		return false;
183	}
184
185	return true;
186}
187
188static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid)
189{
190	struct kfd_dev *dev = kfd_device_by_pci_dev(pdev);
191
192	if (dev)
193		kfd_unbind_process_from_device(dev, pasid);
194}
195
196/*
197 * This function called by IOMMU driver on PPR failure
198 */
199static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid,
200		unsigned long address, u16 flags)
201{
202	struct kfd_dev *dev;
 
 
 
203
204	dev_warn(kfd_device,
205			"Invalid PPR device %x:%x.%x pasid %d address 0x%lX flags 0x%X",
206			PCI_BUS_NUM(pdev->devfn),
207			PCI_SLOT(pdev->devfn),
208			PCI_FUNC(pdev->devfn),
209			pasid,
210			address,
211			flags);
212
213	dev = kfd_device_by_pci_dev(pdev);
214	BUG_ON(dev == NULL);
215
216	kfd_signal_iommu_event(dev, pasid, address,
217			flags & PPR_FAULT_WRITE, flags & PPR_FAULT_EXEC);
218
219	return AMD_IOMMU_INV_PRI_RSP_INVALID;
220}
221
222bool kgd2kfd_device_init(struct kfd_dev *kfd,
 
223			 const struct kgd2kfd_shared_resources *gpu_resources)
224{
225	unsigned int size;
226
 
 
 
 
 
 
 
227	kfd->shared_resources = *gpu_resources;
228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229	/* calculate max size of mqds needed for queues */
230	size = max_num_of_queues_per_device *
231			kfd->device_info->mqd_size_aligned;
232
233	/*
234	 * calculate max size of runlist packet.
235	 * There can be only 2 packets at once
236	 */
237	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_map_process) +
238		max_num_of_queues_per_device *
239		sizeof(struct pm4_map_queues) + sizeof(struct pm4_runlist)) * 2;
240
241	/* Add size of HIQ & DIQ */
242	size += KFD_KERNEL_QUEUE_SIZE * 2;
243
244	/* add another 512KB for all other allocations on gart (HPD, fences) */
245	size += 512 * 1024;
246
247	if (kfd->kfd2kgd->init_gtt_mem_allocation(
248			kfd->kgd, size, &kfd->gtt_mem,
249			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
250		dev_err(kfd_device,
251			"Could not allocate %d bytes for device (%x:%x)\n",
252			size, kfd->pdev->vendor, kfd->pdev->device);
253		goto out;
254	}
255
256	dev_info(kfd_device,
257		"Allocated %d bytes on gart for device(%x:%x)\n",
258		size, kfd->pdev->vendor, kfd->pdev->device);
259
260	/* Initialize GTT sa with 512 byte chunk size */
261	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
262		dev_err(kfd_device,
263			"Error initializing gtt sub-allocator\n");
264		goto kfd_gtt_sa_init_error;
265	}
266
267	kfd_doorbell_init(kfd);
268
269	if (kfd_topology_add_device(kfd) != 0) {
270		dev_err(kfd_device,
271			"Error adding device (%x:%x) to topology\n",
272			kfd->pdev->vendor, kfd->pdev->device);
273		goto kfd_topology_add_device_error;
274	}
275
 
 
 
 
 
 
276	if (kfd_interrupt_init(kfd)) {
277		dev_err(kfd_device,
278			"Error initializing interrupts for device (%x:%x)\n",
279			kfd->pdev->vendor, kfd->pdev->device);
280		goto kfd_interrupt_error;
281	}
282
283	if (!device_iommu_pasid_init(kfd)) {
284		dev_err(kfd_device,
285			"Error initializing iommuv2 for device (%x:%x)\n",
286			kfd->pdev->vendor, kfd->pdev->device);
287		goto device_iommu_pasid_error;
288	}
289	amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
290						iommu_pasid_shutdown_callback);
291	amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
292
293	kfd->dqm = device_queue_manager_init(kfd);
294	if (!kfd->dqm) {
295		dev_err(kfd_device,
296			"Error initializing queue manager for device (%x:%x)\n",
297			kfd->pdev->vendor, kfd->pdev->device);
298		goto device_queue_manager_error;
299	}
300
301	if (kfd->dqm->ops.start(kfd->dqm) != 0) {
302		dev_err(kfd_device,
303			"Error starting queuen manager for device (%x:%x)\n",
304			kfd->pdev->vendor, kfd->pdev->device);
305		goto dqm_start_error;
 
 
 
 
 
 
 
306	}
307
 
 
 
 
 
308	kfd->dbgmgr = NULL;
309
 
 
 
 
 
 
 
310	kfd->init_complete = true;
311	dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor,
312		 kfd->pdev->device);
313
314	pr_debug("kfd: Starting kfd with the following scheduling policy %d\n",
315		sched_policy);
316
317	goto out;
318
319dqm_start_error:
 
 
 
320	device_queue_manager_uninit(kfd->dqm);
321device_queue_manager_error:
322	amd_iommu_free_device(kfd->pdev);
323device_iommu_pasid_error:
324	kfd_interrupt_exit(kfd);
325kfd_interrupt_error:
326	kfd_topology_remove_device(kfd);
327kfd_topology_add_device_error:
328	kfd_gtt_sa_fini(kfd);
329kfd_gtt_sa_init_error:
330	kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
 
 
 
331	dev_err(kfd_device,
332		"device (%x:%x) NOT added due to errors\n",
333		kfd->pdev->vendor, kfd->pdev->device);
334out:
335	return kfd->init_complete;
336}
337
338void kgd2kfd_device_exit(struct kfd_dev *kfd)
339{
340	if (kfd->init_complete) {
 
341		device_queue_manager_uninit(kfd->dqm);
342		amd_iommu_free_device(kfd->pdev);
343		kfd_interrupt_exit(kfd);
344		kfd_topology_remove_device(kfd);
 
345		kfd_gtt_sa_fini(kfd);
346		kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
 
 
347	}
348
349	kfree(kfd);
350}
351
352void kgd2kfd_suspend(struct kfd_dev *kfd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353{
354	BUG_ON(kfd == NULL);
 
 
 
 
 
 
 
 
355
356	if (kfd->init_complete) {
357		kfd->dqm->ops.stop(kfd->dqm);
358		amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL);
359		amd_iommu_set_invalid_ppr_cb(kfd->pdev, NULL);
360		amd_iommu_free_device(kfd->pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361	}
 
 
 
362}
363
364int kgd2kfd_resume(struct kfd_dev *kfd)
365{
366	unsigned int pasid_limit;
367	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368
369	BUG_ON(kfd == NULL);
 
370
371	pasid_limit = kfd_get_pasid_limit();
 
 
372
373	if (kfd->init_complete) {
374		err = amd_iommu_init_device(kfd->pdev, pasid_limit);
375		if (err < 0)
376			return -ENXIO;
377		amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
378						iommu_pasid_shutdown_callback);
379		amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
380		kfd->dqm->ops.start(kfd->dqm);
 
 
 
 
 
 
381	}
382
383	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384}
385
386/* This is called directly from KGD at ISR. */
387void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
388{
 
 
 
 
389	if (!kfd->init_complete)
390		return;
391
392	spin_lock(&kfd->interrupt_lock);
 
 
 
 
 
393
394	if (kfd->interrupts_active
395	    && interrupt_is_wanted(kfd, ih_ring_entry)
396	    && enqueue_ih_ring_entry(kfd, ih_ring_entry))
397		schedule_work(&kfd->interrupt_work);
 
 
398
399	spin_unlock(&kfd->interrupt_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400}
401
402static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
403				unsigned int chunk_size)
404{
405	unsigned int num_of_bits;
406
407	BUG_ON(!kfd);
408	BUG_ON(!kfd->gtt_mem);
409	BUG_ON(buf_size < chunk_size);
410	BUG_ON(buf_size == 0);
411	BUG_ON(chunk_size == 0);
 
412
413	kfd->gtt_sa_chunk_size = chunk_size;
414	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
415
416	num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE;
417	BUG_ON(num_of_bits == 0);
418
419	kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL);
420
421	if (!kfd->gtt_sa_bitmap)
422		return -ENOMEM;
423
424	pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
425			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
426
427	mutex_init(&kfd->gtt_sa_lock);
428
429	return 0;
430
431}
432
433static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
434{
435	mutex_destroy(&kfd->gtt_sa_lock);
436	kfree(kfd->gtt_sa_bitmap);
437}
438
439static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
440						unsigned int bit_num,
441						unsigned int chunk_size)
442{
443	return start_addr + bit_num * chunk_size;
444}
445
446static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
447						unsigned int bit_num,
448						unsigned int chunk_size)
449{
450	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
451}
452
453int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
454			struct kfd_mem_obj **mem_obj)
455{
456	unsigned int found, start_search, cur_size;
457
458	BUG_ON(!kfd);
459
460	if (size == 0)
461		return -EINVAL;
462
463	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
464		return -ENOMEM;
465
466	*mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
467	if ((*mem_obj) == NULL)
468		return -ENOMEM;
469
470	pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size);
471
472	start_search = 0;
473
474	mutex_lock(&kfd->gtt_sa_lock);
475
476kfd_gtt_restart_search:
477	/* Find the first chunk that is free */
478	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
479					kfd->gtt_sa_num_of_chunks,
480					start_search);
481
482	pr_debug("kfd: found = %d\n", found);
483
484	/* If there wasn't any free chunk, bail out */
485	if (found == kfd->gtt_sa_num_of_chunks)
486		goto kfd_gtt_no_free_chunk;
487
488	/* Update fields of mem_obj */
489	(*mem_obj)->range_start = found;
490	(*mem_obj)->range_end = found;
491	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
492					kfd->gtt_start_gpu_addr,
493					found,
494					kfd->gtt_sa_chunk_size);
495	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
496					kfd->gtt_start_cpu_ptr,
497					found,
498					kfd->gtt_sa_chunk_size);
499
500	pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n",
501			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
502
503	/* If we need only one chunk, mark it as allocated and get out */
504	if (size <= kfd->gtt_sa_chunk_size) {
505		pr_debug("kfd: single bit\n");
506		set_bit(found, kfd->gtt_sa_bitmap);
507		goto kfd_gtt_out;
508	}
509
510	/* Otherwise, try to see if we have enough contiguous chunks */
511	cur_size = size - kfd->gtt_sa_chunk_size;
512	do {
513		(*mem_obj)->range_end =
514			find_next_zero_bit(kfd->gtt_sa_bitmap,
515					kfd->gtt_sa_num_of_chunks, ++found);
516		/*
517		 * If next free chunk is not contiguous than we need to
518		 * restart our search from the last free chunk we found (which
519		 * wasn't contiguous to the previous ones
520		 */
521		if ((*mem_obj)->range_end != found) {
522			start_search = found;
523			goto kfd_gtt_restart_search;
524		}
525
526		/*
527		 * If we reached end of buffer, bail out with error
528		 */
529		if (found == kfd->gtt_sa_num_of_chunks)
530			goto kfd_gtt_no_free_chunk;
531
532		/* Check if we don't need another chunk */
533		if (cur_size <= kfd->gtt_sa_chunk_size)
534			cur_size = 0;
535		else
536			cur_size -= kfd->gtt_sa_chunk_size;
537
538	} while (cur_size > 0);
539
540	pr_debug("kfd: range_start = %d, range_end = %d\n",
541		(*mem_obj)->range_start, (*mem_obj)->range_end);
542
543	/* Mark the chunks as allocated */
544	for (found = (*mem_obj)->range_start;
545		found <= (*mem_obj)->range_end;
546		found++)
547		set_bit(found, kfd->gtt_sa_bitmap);
548
549kfd_gtt_out:
550	mutex_unlock(&kfd->gtt_sa_lock);
551	return 0;
552
553kfd_gtt_no_free_chunk:
554	pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj);
555	mutex_unlock(&kfd->gtt_sa_lock);
556	kfree(mem_obj);
557	return -ENOMEM;
558}
559
560int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
561{
562	unsigned int bit;
563
564	BUG_ON(!kfd);
565
566	/* Act like kfree when trying to free a NULL object */
567	if (!mem_obj)
568		return 0;
569
570	pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n",
571			mem_obj, mem_obj->range_start, mem_obj->range_end);
572
573	mutex_lock(&kfd->gtt_sa_lock);
574
575	/* Mark the chunks as free */
576	for (bit = mem_obj->range_start;
577		bit <= mem_obj->range_end;
578		bit++)
579		clear_bit(bit, kfd->gtt_sa_bitmap);
580
581	mutex_unlock(&kfd->gtt_sa_lock);
582
583	kfree(mem_obj);
584	return 0;
585}