Linux Audio

Check our new training course

Loading...
v5.9
 
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/bsearch.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include "kfd_priv.h"
  27#include "kfd_device_queue_manager.h"
  28#include "kfd_pm4_headers_vi.h"
 
  29#include "cwsr_trap_handler.h"
  30#include "kfd_iommu.h"
  31#include "amdgpu_amdkfd.h"
 
 
 
 
 
  32
  33#define MQD_SIZE_ALIGNED 768
  34
  35/*
  36 * kfd_locked is used to lock the kfd driver during suspend or reset
  37 * once locked, kfd driver will stop any further GPU execution.
  38 * create process (open) will return -EAGAIN.
  39 */
  40static atomic_t kfd_locked = ATOMIC_INIT(0);
  41
  42#ifdef CONFIG_DRM_AMDGPU_CIK
  43extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
  44#endif
  45extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
  46extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
  47extern const struct kfd2kgd_calls arcturus_kfd2kgd;
 
 
  48extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
  49extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
  50
  51static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
  52#ifdef KFD_SUPPORT_IOMMU_V2
  53#ifdef CONFIG_DRM_AMDGPU_CIK
  54	[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
  55#endif
  56	[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
  57	[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
  58#endif
  59#ifdef CONFIG_DRM_AMDGPU_CIK
  60	[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
  61#endif
  62	[CHIP_TONGA] = &gfx_v8_kfd2kgd,
  63	[CHIP_FIJI] = &gfx_v8_kfd2kgd,
  64	[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
  65	[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
  66	[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
  67	[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
  68	[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
  69	[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
  70	[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
  71	[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
  72	[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
  73	[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
  74	[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
  75	[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
  76	[CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
  77	[CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
  78};
  79
  80#ifdef KFD_SUPPORT_IOMMU_V2
  81static const struct kfd_device_info kaveri_device_info = {
  82	.asic_family = CHIP_KAVERI,
  83	.asic_name = "kaveri",
  84	.max_pasid_bits = 16,
  85	/* max num of queues for KV.TODO should be a dynamic value */
  86	.max_no_of_hqd	= 24,
  87	.doorbell_size  = 4,
  88	.ih_ring_entry_size = 4 * sizeof(uint32_t),
  89	.event_interrupt_class = &event_interrupt_class_cik,
  90	.num_of_watch_points = 4,
  91	.mqd_size_aligned = MQD_SIZE_ALIGNED,
  92	.supports_cwsr = false,
  93	.needs_iommu_device = true,
  94	.needs_pci_atomics = false,
  95	.num_sdma_engines = 2,
  96	.num_xgmi_sdma_engines = 0,
  97	.num_sdma_queues_per_engine = 2,
  98};
  99
 100static const struct kfd_device_info carrizo_device_info = {
 101	.asic_family = CHIP_CARRIZO,
 102	.asic_name = "carrizo",
 103	.max_pasid_bits = 16,
 104	/* max num of queues for CZ.TODO should be a dynamic value */
 105	.max_no_of_hqd	= 24,
 106	.doorbell_size  = 4,
 107	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 108	.event_interrupt_class = &event_interrupt_class_cik,
 109	.num_of_watch_points = 4,
 110	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 111	.supports_cwsr = true,
 112	.needs_iommu_device = true,
 113	.needs_pci_atomics = false,
 114	.num_sdma_engines = 2,
 115	.num_xgmi_sdma_engines = 0,
 116	.num_sdma_queues_per_engine = 2,
 117};
 118
 119static const struct kfd_device_info raven_device_info = {
 120	.asic_family = CHIP_RAVEN,
 121	.asic_name = "raven",
 122	.max_pasid_bits = 16,
 123	.max_no_of_hqd  = 24,
 124	.doorbell_size  = 8,
 125	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 126	.event_interrupt_class = &event_interrupt_class_v9,
 127	.num_of_watch_points = 4,
 128	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 129	.supports_cwsr = true,
 130	.needs_iommu_device = true,
 131	.needs_pci_atomics = true,
 132	.num_sdma_engines = 1,
 133	.num_xgmi_sdma_engines = 0,
 134	.num_sdma_queues_per_engine = 2,
 135};
 136#endif
 137
 138static const struct kfd_device_info hawaii_device_info = {
 139	.asic_family = CHIP_HAWAII,
 140	.asic_name = "hawaii",
 141	.max_pasid_bits = 16,
 142	/* max num of queues for KV.TODO should be a dynamic value */
 143	.max_no_of_hqd	= 24,
 144	.doorbell_size  = 4,
 145	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 146	.event_interrupt_class = &event_interrupt_class_cik,
 147	.num_of_watch_points = 4,
 148	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 149	.supports_cwsr = false,
 150	.needs_iommu_device = false,
 151	.needs_pci_atomics = false,
 152	.num_sdma_engines = 2,
 153	.num_xgmi_sdma_engines = 0,
 154	.num_sdma_queues_per_engine = 2,
 155};
 156
 157static const struct kfd_device_info tonga_device_info = {
 158	.asic_family = CHIP_TONGA,
 159	.asic_name = "tonga",
 160	.max_pasid_bits = 16,
 161	.max_no_of_hqd  = 24,
 162	.doorbell_size  = 4,
 163	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 164	.event_interrupt_class = &event_interrupt_class_cik,
 165	.num_of_watch_points = 4,
 166	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 167	.supports_cwsr = false,
 168	.needs_iommu_device = false,
 169	.needs_pci_atomics = true,
 170	.num_sdma_engines = 2,
 171	.num_xgmi_sdma_engines = 0,
 172	.num_sdma_queues_per_engine = 2,
 173};
 174
 175static const struct kfd_device_info fiji_device_info = {
 176	.asic_family = CHIP_FIJI,
 177	.asic_name = "fiji",
 178	.max_pasid_bits = 16,
 179	.max_no_of_hqd  = 24,
 180	.doorbell_size  = 4,
 181	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 182	.event_interrupt_class = &event_interrupt_class_cik,
 183	.num_of_watch_points = 4,
 184	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 185	.supports_cwsr = true,
 186	.needs_iommu_device = false,
 187	.needs_pci_atomics = true,
 188	.num_sdma_engines = 2,
 189	.num_xgmi_sdma_engines = 0,
 190	.num_sdma_queues_per_engine = 2,
 191};
 192
 193static const struct kfd_device_info fiji_vf_device_info = {
 194	.asic_family = CHIP_FIJI,
 195	.asic_name = "fiji",
 196	.max_pasid_bits = 16,
 197	.max_no_of_hqd  = 24,
 198	.doorbell_size  = 4,
 199	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 200	.event_interrupt_class = &event_interrupt_class_cik,
 201	.num_of_watch_points = 4,
 202	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 203	.supports_cwsr = true,
 204	.needs_iommu_device = false,
 205	.needs_pci_atomics = false,
 206	.num_sdma_engines = 2,
 207	.num_xgmi_sdma_engines = 0,
 208	.num_sdma_queues_per_engine = 2,
 209};
 210
 211
 212static const struct kfd_device_info polaris10_device_info = {
 213	.asic_family = CHIP_POLARIS10,
 214	.asic_name = "polaris10",
 215	.max_pasid_bits = 16,
 216	.max_no_of_hqd  = 24,
 217	.doorbell_size  = 4,
 218	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 219	.event_interrupt_class = &event_interrupt_class_cik,
 220	.num_of_watch_points = 4,
 221	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 222	.supports_cwsr = true,
 223	.needs_iommu_device = false,
 224	.needs_pci_atomics = true,
 225	.num_sdma_engines = 2,
 226	.num_xgmi_sdma_engines = 0,
 227	.num_sdma_queues_per_engine = 2,
 228};
 229
 230static const struct kfd_device_info polaris10_vf_device_info = {
 231	.asic_family = CHIP_POLARIS10,
 232	.asic_name = "polaris10",
 233	.max_pasid_bits = 16,
 234	.max_no_of_hqd  = 24,
 235	.doorbell_size  = 4,
 236	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 237	.event_interrupt_class = &event_interrupt_class_cik,
 238	.num_of_watch_points = 4,
 239	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 240	.supports_cwsr = true,
 241	.needs_iommu_device = false,
 242	.needs_pci_atomics = false,
 243	.num_sdma_engines = 2,
 244	.num_xgmi_sdma_engines = 0,
 245	.num_sdma_queues_per_engine = 2,
 246};
 247
 248static const struct kfd_device_info polaris11_device_info = {
 249	.asic_family = CHIP_POLARIS11,
 250	.asic_name = "polaris11",
 251	.max_pasid_bits = 16,
 252	.max_no_of_hqd  = 24,
 253	.doorbell_size  = 4,
 254	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 255	.event_interrupt_class = &event_interrupt_class_cik,
 256	.num_of_watch_points = 4,
 257	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 258	.supports_cwsr = true,
 259	.needs_iommu_device = false,
 260	.needs_pci_atomics = true,
 261	.num_sdma_engines = 2,
 262	.num_xgmi_sdma_engines = 0,
 263	.num_sdma_queues_per_engine = 2,
 264};
 265
 266static const struct kfd_device_info polaris12_device_info = {
 267	.asic_family = CHIP_POLARIS12,
 268	.asic_name = "polaris12",
 269	.max_pasid_bits = 16,
 270	.max_no_of_hqd  = 24,
 271	.doorbell_size  = 4,
 272	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 273	.event_interrupt_class = &event_interrupt_class_cik,
 274	.num_of_watch_points = 4,
 275	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 276	.supports_cwsr = true,
 277	.needs_iommu_device = false,
 278	.needs_pci_atomics = true,
 279	.num_sdma_engines = 2,
 280	.num_xgmi_sdma_engines = 0,
 281	.num_sdma_queues_per_engine = 2,
 282};
 283
 284static const struct kfd_device_info vegam_device_info = {
 285	.asic_family = CHIP_VEGAM,
 286	.asic_name = "vegam",
 287	.max_pasid_bits = 16,
 288	.max_no_of_hqd  = 24,
 289	.doorbell_size  = 4,
 290	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 291	.event_interrupt_class = &event_interrupt_class_cik,
 292	.num_of_watch_points = 4,
 293	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 294	.supports_cwsr = true,
 295	.needs_iommu_device = false,
 296	.needs_pci_atomics = true,
 297	.num_sdma_engines = 2,
 298	.num_xgmi_sdma_engines = 0,
 299	.num_sdma_queues_per_engine = 2,
 300};
 301
 302static const struct kfd_device_info vega10_device_info = {
 303	.asic_family = CHIP_VEGA10,
 304	.asic_name = "vega10",
 305	.max_pasid_bits = 16,
 306	.max_no_of_hqd  = 24,
 307	.doorbell_size  = 8,
 308	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 309	.event_interrupt_class = &event_interrupt_class_v9,
 310	.num_of_watch_points = 4,
 311	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 312	.supports_cwsr = true,
 313	.needs_iommu_device = false,
 314	.needs_pci_atomics = false,
 315	.num_sdma_engines = 2,
 316	.num_xgmi_sdma_engines = 0,
 317	.num_sdma_queues_per_engine = 2,
 318};
 319
 320static const struct kfd_device_info vega10_vf_device_info = {
 321	.asic_family = CHIP_VEGA10,
 322	.asic_name = "vega10",
 323	.max_pasid_bits = 16,
 324	.max_no_of_hqd  = 24,
 325	.doorbell_size  = 8,
 326	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 327	.event_interrupt_class = &event_interrupt_class_v9,
 328	.num_of_watch_points = 4,
 329	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 330	.supports_cwsr = true,
 331	.needs_iommu_device = false,
 332	.needs_pci_atomics = false,
 333	.num_sdma_engines = 2,
 334	.num_xgmi_sdma_engines = 0,
 335	.num_sdma_queues_per_engine = 2,
 336};
 337
 338static const struct kfd_device_info vega12_device_info = {
 339	.asic_family = CHIP_VEGA12,
 340	.asic_name = "vega12",
 341	.max_pasid_bits = 16,
 342	.max_no_of_hqd  = 24,
 343	.doorbell_size  = 8,
 344	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 345	.event_interrupt_class = &event_interrupt_class_v9,
 346	.num_of_watch_points = 4,
 347	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 348	.supports_cwsr = true,
 349	.needs_iommu_device = false,
 350	.needs_pci_atomics = false,
 351	.num_sdma_engines = 2,
 352	.num_xgmi_sdma_engines = 0,
 353	.num_sdma_queues_per_engine = 2,
 354};
 355
 356static const struct kfd_device_info vega20_device_info = {
 357	.asic_family = CHIP_VEGA20,
 358	.asic_name = "vega20",
 359	.max_pasid_bits = 16,
 360	.max_no_of_hqd	= 24,
 361	.doorbell_size	= 8,
 362	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 363	.event_interrupt_class = &event_interrupt_class_v9,
 364	.num_of_watch_points = 4,
 365	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 366	.supports_cwsr = true,
 367	.needs_iommu_device = false,
 368	.needs_pci_atomics = false,
 369	.num_sdma_engines = 2,
 370	.num_xgmi_sdma_engines = 0,
 371	.num_sdma_queues_per_engine = 8,
 372};
 373
 374static const struct kfd_device_info arcturus_device_info = {
 375	.asic_family = CHIP_ARCTURUS,
 376	.asic_name = "arcturus",
 377	.max_pasid_bits = 16,
 378	.max_no_of_hqd	= 24,
 379	.doorbell_size	= 8,
 380	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 381	.event_interrupt_class = &event_interrupt_class_v9,
 382	.num_of_watch_points = 4,
 383	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 384	.supports_cwsr = true,
 385	.needs_iommu_device = false,
 386	.needs_pci_atomics = false,
 387	.num_sdma_engines = 2,
 388	.num_xgmi_sdma_engines = 6,
 389	.num_sdma_queues_per_engine = 8,
 390};
 391
 392static const struct kfd_device_info renoir_device_info = {
 393	.asic_family = CHIP_RENOIR,
 394	.asic_name = "renoir",
 395	.max_pasid_bits = 16,
 396	.max_no_of_hqd  = 24,
 397	.doorbell_size  = 8,
 398	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 399	.event_interrupt_class = &event_interrupt_class_v9,
 400	.num_of_watch_points = 4,
 401	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 402	.supports_cwsr = true,
 403	.needs_iommu_device = false,
 404	.needs_pci_atomics = false,
 405	.num_sdma_engines = 1,
 406	.num_xgmi_sdma_engines = 0,
 407	.num_sdma_queues_per_engine = 2,
 408};
 409
 410static const struct kfd_device_info navi10_device_info = {
 411	.asic_family = CHIP_NAVI10,
 412	.asic_name = "navi10",
 413	.max_pasid_bits = 16,
 414	.max_no_of_hqd  = 24,
 415	.doorbell_size  = 8,
 416	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 417	.event_interrupt_class = &event_interrupt_class_v9,
 418	.num_of_watch_points = 4,
 419	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 420	.needs_iommu_device = false,
 421	.supports_cwsr = true,
 422	.needs_pci_atomics = false,
 423	.num_sdma_engines = 2,
 424	.num_xgmi_sdma_engines = 0,
 425	.num_sdma_queues_per_engine = 8,
 426};
 427
 428static const struct kfd_device_info navi12_device_info = {
 429	.asic_family = CHIP_NAVI12,
 430	.asic_name = "navi12",
 431	.max_pasid_bits = 16,
 432	.max_no_of_hqd  = 24,
 433	.doorbell_size  = 8,
 434	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 435	.event_interrupt_class = &event_interrupt_class_v9,
 436	.num_of_watch_points = 4,
 437	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 438	.needs_iommu_device = false,
 439	.supports_cwsr = true,
 440	.needs_pci_atomics = false,
 441	.num_sdma_engines = 2,
 442	.num_xgmi_sdma_engines = 0,
 443	.num_sdma_queues_per_engine = 8,
 444};
 445
 446static const struct kfd_device_info navi14_device_info = {
 447	.asic_family = CHIP_NAVI14,
 448	.asic_name = "navi14",
 449	.max_pasid_bits = 16,
 450	.max_no_of_hqd  = 24,
 451	.doorbell_size  = 8,
 452	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 453	.event_interrupt_class = &event_interrupt_class_v9,
 454	.num_of_watch_points = 4,
 455	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 456	.needs_iommu_device = false,
 457	.supports_cwsr = true,
 458	.needs_pci_atomics = false,
 459	.num_sdma_engines = 2,
 460	.num_xgmi_sdma_engines = 0,
 461	.num_sdma_queues_per_engine = 8,
 462};
 463
 464static const struct kfd_device_info sienna_cichlid_device_info = {
 465	.asic_family = CHIP_SIENNA_CICHLID,
 466	.asic_name = "sienna_cichlid",
 467	.max_pasid_bits = 16,
 468	.max_no_of_hqd  = 24,
 469	.doorbell_size  = 8,
 470	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 471	.event_interrupt_class = &event_interrupt_class_v9,
 472	.num_of_watch_points = 4,
 473	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 474	.needs_iommu_device = false,
 475	.supports_cwsr = true,
 476	.needs_pci_atomics = false,
 477	.num_sdma_engines = 4,
 478	.num_xgmi_sdma_engines = 0,
 479	.num_sdma_queues_per_engine = 8,
 480};
 481
 482static const struct kfd_device_info navy_flounder_device_info = {
 483	.asic_family = CHIP_NAVY_FLOUNDER,
 484	.asic_name = "navy_flounder",
 485	.max_pasid_bits = 16,
 486	.max_no_of_hqd  = 24,
 487	.doorbell_size  = 8,
 488	.ih_ring_entry_size = 8 * sizeof(uint32_t),
 489	.event_interrupt_class = &event_interrupt_class_v9,
 490	.num_of_watch_points = 4,
 491	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 492	.needs_iommu_device = false,
 493	.supports_cwsr = true,
 494	.needs_pci_atomics = false,
 495	.num_sdma_engines = 2,
 496	.num_xgmi_sdma_engines = 0,
 497	.num_sdma_queues_per_engine = 8,
 498};
 499
 500/* For each entry, [0] is regular and [1] is virtualisation device. */
 501static const struct kfd_device_info *kfd_supported_devices[][2] = {
 502#ifdef KFD_SUPPORT_IOMMU_V2
 503	[CHIP_KAVERI] = {&kaveri_device_info, NULL},
 504	[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
 505	[CHIP_RAVEN] = {&raven_device_info, NULL},
 506#endif
 507	[CHIP_HAWAII] = {&hawaii_device_info, NULL},
 508	[CHIP_TONGA] = {&tonga_device_info, NULL},
 509	[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
 510	[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
 511	[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
 512	[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
 513	[CHIP_VEGAM] = {&vegam_device_info, NULL},
 514	[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
 515	[CHIP_VEGA12] = {&vega12_device_info, NULL},
 516	[CHIP_VEGA20] = {&vega20_device_info, NULL},
 517	[CHIP_RENOIR] = {&renoir_device_info, NULL},
 518	[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
 519	[CHIP_NAVI10] = {&navi10_device_info, NULL},
 520	[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
 521	[CHIP_NAVI14] = {&navi14_device_info, NULL},
 522	[CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
 523	[CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
 524};
 525
 526static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
 527				unsigned int chunk_size);
 528static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
 529
 530static int kfd_resume(struct kfd_dev *kfd);
 531
 532struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
 533	struct pci_dev *pdev, unsigned int asic_type, bool vf)
 534{
 535	struct kfd_dev *kfd;
 536	const struct kfd_device_info *device_info;
 537	const struct kfd2kgd_calls *f2g;
 538
 539	if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
 540		|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
 541		dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
 542		return NULL; /* asic_type out of range */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	}
 544
 545	device_info = kfd_supported_devices[asic_type][vf];
 546	f2g = kfd2kgd_funcs[asic_type];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547
 548	if (!device_info || !f2g) {
 549		dev_err(kfd_device, "%s %s not supported in kfd\n",
 550			amdgpu_asic_name[asic_type], vf ? "VF" : "");
 
 
 
 
 
 
 551		return NULL;
 552	}
 553
 554	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
 555	if (!kfd)
 556		return NULL;
 557
 558	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
 559	 * 32 and 64-bit requests are possible and must be
 560	 * supported.
 561	 */
 562	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
 563	if (device_info->needs_pci_atomics &&
 564	    !kfd->pci_atomic_requested) {
 565		dev_info(kfd_device,
 566			 "skipped device %x:%x, PCI rejects atomics\n",
 567			 pdev->vendor, pdev->device);
 568		kfree(kfd);
 569		return NULL;
 570	}
 571
 572	kfd->kgd = kgd;
 573	kfd->device_info = device_info;
 574	kfd->pdev = pdev;
 575	kfd->init_complete = false;
 576	kfd->kfd2kgd = f2g;
 577	atomic_set(&kfd->compute_profile, 0);
 578
 579	mutex_init(&kfd->doorbell_mutex);
 580	memset(&kfd->doorbell_available_index, 0,
 581		sizeof(kfd->doorbell_available_index));
 582
 583	atomic_set(&kfd->sram_ecc_flag, 0);
 584
 585	return kfd;
 586}
 587
 588static void kfd_cwsr_init(struct kfd_dev *kfd)
 589{
 590	if (cwsr_enable && kfd->device_info->supports_cwsr) {
 591		if (kfd->device_info->asic_family < CHIP_VEGA10) {
 592			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
 593			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
 594			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
 595		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
 596			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
 597			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
 598			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
 599		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
 
 
 
 
 
 
 
 
 600			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
 601			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
 602			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
 603		} else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
 604			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
 605			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
 606			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
 607		} else {
 608			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
 609			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
 610			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
 
 
 
 
 611		}
 612
 613		kfd->cwsr_enabled = true;
 614	}
 615}
 616
 617static int kfd_gws_init(struct kfd_dev *kfd)
 618{
 619	int ret = 0;
 
 
 620
 621	if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
 622		return 0;
 623
 624	if (hws_gws_support
 625		|| (kfd->device_info->asic_family == CHIP_VEGA10
 626			&& kfd->mec2_fw_version >= 0x81b3)
 627		|| (kfd->device_info->asic_family >= CHIP_VEGA12
 628			&& kfd->device_info->asic_family <= CHIP_RAVEN
 629			&& kfd->mec2_fw_version >= 0x1b3)
 630		|| (kfd->device_info->asic_family == CHIP_ARCTURUS
 631			&& kfd->mec2_fw_version >= 0x30))
 632		ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
 633				amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
 
 
 
 
 
 
 
 
 634
 635	return ret;
 636}
 637
 638static void kfd_smi_init(struct kfd_dev *dev) {
 
 639	INIT_LIST_HEAD(&dev->smi_clients);
 640	spin_lock_init(&dev->smi_lock);
 641}
 642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643bool kgd2kfd_device_init(struct kfd_dev *kfd,
 644			 struct drm_device *ddev,
 645			 const struct kgd2kfd_shared_resources *gpu_resources)
 646{
 647	unsigned int size;
 
 
 
 
 
 648
 649	kfd->ddev = ddev;
 650	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
 651			KGD_ENGINE_MEC1);
 652	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
 653			KGD_ENGINE_MEC2);
 654	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
 655			KGD_ENGINE_SDMA1);
 656	kfd->shared_resources = *gpu_resources;
 657
 658	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
 659	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
 660	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
 661			- kfd->vm_info.first_vmid_kfd + 1;
 662
 663	/* Verify module parameters regarding mapped process number*/
 664	if ((hws_max_conc_proc < 0)
 665			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
 666		dev_err(kfd_device,
 667			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
 668			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
 669			kfd->vm_info.vmid_num_kfd);
 670		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
 671	} else
 672		kfd->max_proc_per_quantum = hws_max_conc_proc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673
 674	/* calculate max size of mqds needed for queues */
 675	size = max_num_of_queues_per_device *
 676			kfd->device_info->mqd_size_aligned;
 677
 678	/*
 679	 * calculate max size of runlist packet.
 680	 * There can be only 2 packets at once
 681	 */
 682	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
 
 
 
 683		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
 684		+ sizeof(struct pm4_mes_runlist)) * 2;
 685
 686	/* Add size of HIQ & DIQ */
 687	size += KFD_KERNEL_QUEUE_SIZE * 2;
 688
 689	/* add another 512KB for all other allocations on gart (HPD, fences) */
 690	size += 512 * 1024;
 691
 692	if (amdgpu_amdkfd_alloc_gtt_mem(
 693			kfd->kgd, size, &kfd->gtt_mem,
 694			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
 695			false)) {
 696		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
 697		goto alloc_gtt_mem_failure;
 698	}
 699
 700	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
 701
 702	/* Initialize GTT sa with 512 byte chunk size */
 703	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
 704		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
 705		goto kfd_gtt_sa_init_error;
 706	}
 707
 708	if (kfd_doorbell_init(kfd)) {
 709		dev_err(kfd_device,
 710			"Error initializing doorbell aperture\n");
 711		goto kfd_doorbell_error;
 712	}
 713
 714	if (kfd->kfd2kgd->get_hive_id)
 715		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
 716
 717	if (kfd->kfd2kgd->get_unique_id)
 718		kfd->unique_id = kfd->kfd2kgd->get_unique_id(kfd->kgd);
 
 
 
 
 
 719
 720	if (kfd_interrupt_init(kfd)) {
 721		dev_err(kfd_device, "Error initializing interrupts\n");
 722		goto kfd_interrupt_error;
 723	}
 724
 725	kfd->dqm = device_queue_manager_init(kfd);
 726	if (!kfd->dqm) {
 727		dev_err(kfd_device, "Error initializing queue manager\n");
 728		goto device_queue_manager_error;
 729	}
 730
 731	/* If supported on this device, allocate global GWS that is shared
 732	 * by all KFD processes
 733	 */
 734	if (kfd_gws_init(kfd)) {
 735		dev_err(kfd_device, "Could not allocate %d gws\n",
 736			amdgpu_amdkfd_get_num_gws(kfd->kgd));
 737		goto gws_error;
 738	}
 739
 740	if (kfd_iommu_device_init(kfd)) {
 741		dev_err(kfd_device, "Error initializing iommuv2\n");
 742		goto device_iommu_error;
 743	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744
 745	kfd_cwsr_init(kfd);
 
 
 
 
 746
 747	if (kfd_resume(kfd))
 748		goto kfd_resume_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749
 750	kfd->dbgmgr = NULL;
 
 751
 752	if (kfd_topology_add_device(kfd)) {
 753		dev_err(kfd_device, "Error adding device to topology\n");
 754		goto kfd_topology_add_device_error;
 
 
 
 
 
 
 755	}
 756
 757	kfd_smi_init(kfd);
 
 
 758
 759	kfd->init_complete = true;
 760	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
 761		 kfd->pdev->device);
 762
 763	pr_debug("Starting kfd with the following scheduling policy %d\n",
 764		kfd->dqm->sched_policy);
 765
 766	goto out;
 767
 768kfd_topology_add_device_error:
 769kfd_resume_error:
 770device_iommu_error:
 771gws_error:
 772	device_queue_manager_uninit(kfd->dqm);
 773device_queue_manager_error:
 774	kfd_interrupt_exit(kfd);
 775kfd_interrupt_error:
 776	kfd_doorbell_fini(kfd);
 777kfd_doorbell_error:
 778	kfd_gtt_sa_fini(kfd);
 779kfd_gtt_sa_init_error:
 780	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
 781alloc_gtt_mem_failure:
 782	if (kfd->gws)
 783		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
 784	dev_err(kfd_device,
 785		"device %x:%x NOT added due to errors\n",
 786		kfd->pdev->vendor, kfd->pdev->device);
 787out:
 788	return kfd->init_complete;
 789}
 790
 791void kgd2kfd_device_exit(struct kfd_dev *kfd)
 792{
 793	if (kfd->init_complete) {
 794		kgd2kfd_suspend(kfd, false);
 795		device_queue_manager_uninit(kfd->dqm);
 796		kfd_interrupt_exit(kfd);
 797		kfd_topology_remove_device(kfd);
 798		kfd_doorbell_fini(kfd);
 
 799		kfd_gtt_sa_fini(kfd);
 800		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
 801		if (kfd->gws)
 802			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
 803	}
 804
 805	kfree(kfd);
 806}
 807
 808int kgd2kfd_pre_reset(struct kfd_dev *kfd)
 809{
 
 
 
 810	if (!kfd->init_complete)
 811		return 0;
 812
 813	kfd->dqm->ops.pre_reset(kfd->dqm);
 
 
 
 
 814
 815	kgd2kfd_suspend(kfd, false);
 816
 817	kfd_signal_reset_event(kfd);
 
 
 818	return 0;
 819}
 820
 821/*
 822 * Fix me. KFD won't be able to resume existing process for now.
 823 * We will keep all existing process in a evicted state and
 824 * wait the process to be terminated.
 825 */
 826
 827int kgd2kfd_post_reset(struct kfd_dev *kfd)
 828{
 829	int ret;
 
 
 830
 831	if (!kfd->init_complete)
 832		return 0;
 833
 834	ret = kfd_resume(kfd);
 835	if (ret)
 836		return ret;
 837	atomic_dec(&kfd_locked);
 
 838
 839	atomic_set(&kfd->sram_ecc_flag, 0);
 
 
 
 
 
 
 
 
 840
 841	return 0;
 842}
 843
 844bool kfd_is_locked(void)
 845{
 846	return  (atomic_read(&kfd_locked) > 0);
 
 847}
 848
 849void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
 850{
 
 
 
 
 851	if (!kfd->init_complete)
 852		return;
 853
 854	/* for runtime suspend, skip locking kfd */
 855	if (!run_pm) {
 
 
 
 
 856		/* For first KFD device suspend all the KFD processes */
 857		if (atomic_inc_return(&kfd_locked) == 1)
 858			kfd_suspend_all_processes();
 859	}
 860
 861	kfd->dqm->ops.stop(kfd->dqm);
 862	kfd_iommu_suspend(kfd);
 
 
 863}
 864
 865int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
 866{
 867	int ret, count;
 868
 869	if (!kfd->init_complete)
 870		return 0;
 871
 872	ret = kfd_resume(kfd);
 873	if (ret)
 874		return ret;
 
 
 875
 876	/* for runtime resume, skip unlocking kfd */
 877	if (!run_pm) {
 878		count = atomic_dec_return(&kfd_locked);
 
 
 
 879		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
 880		if (count == 0)
 881			ret = kfd_resume_all_processes();
 882	}
 883
 884	return ret;
 885}
 886
 887static int kfd_resume(struct kfd_dev *kfd)
 888{
 889	int err = 0;
 890
 891	err = kfd_iommu_resume(kfd);
 892	if (err) {
 893		dev_err(kfd_device,
 894			"Failed to resume IOMMU for device %x:%x\n",
 895			kfd->pdev->vendor, kfd->pdev->device);
 896		return err;
 897	}
 898
 899	err = kfd->dqm->ops.start(kfd->dqm);
 900	if (err) {
 901		dev_err(kfd_device,
 902			"Error starting queue manager for device %x:%x\n",
 903			kfd->pdev->vendor, kfd->pdev->device);
 904		goto dqm_start_error;
 905	}
 906
 907	return err;
 908
 909dqm_start_error:
 910	kfd_iommu_suspend(kfd);
 911	return err;
 912}
 913
 914static inline void kfd_queue_work(struct workqueue_struct *wq,
 915				  struct work_struct *work)
 916{
 917	int cpu, new_cpu;
 918
 919	cpu = new_cpu = smp_processor_id();
 920	do {
 921		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
 922		if (cpu_to_node(new_cpu) == numa_node_id())
 923			break;
 924	} while (cpu != new_cpu);
 925
 926	queue_work_on(new_cpu, wq, work);
 927}
 928
 929/* This is called directly from KGD at ISR. */
 930void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
 931{
 932	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
 933	bool is_patched = false;
 934	unsigned long flags;
 
 935
 936	if (!kfd->init_complete)
 937		return;
 938
 939	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
 940		dev_err_once(kfd_device, "Ring entry too small\n");
 941		return;
 942	}
 943
 944	spin_lock_irqsave(&kfd->interrupt_lock, flags);
 945
 946	if (kfd->interrupts_active
 947	    && interrupt_is_wanted(kfd, ih_ring_entry,
 948				   patched_ihre, &is_patched)
 949	    && enqueue_ih_ring_entry(kfd,
 950				     is_patched ? patched_ihre : ih_ring_entry))
 951		kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
 
 
 
 
 
 
 
 952
 953	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
 954}
 955
 956int kgd2kfd_quiesce_mm(struct mm_struct *mm)
 957{
 958	struct kfd_process *p;
 959	int r;
 960
 961	/* Because we are called from arbitrary context (workqueue) as opposed
 962	 * to process context, kfd_process could attempt to exit while we are
 963	 * running so the lookup function increments the process ref count.
 964	 */
 965	p = kfd_lookup_process_by_mm(mm);
 966	if (!p)
 967		return -ESRCH;
 968
 969	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
 970	r = kfd_process_evict_queues(p);
 971
 972	kfd_unref_process(p);
 973	return r;
 974}
 975
 976int kgd2kfd_resume_mm(struct mm_struct *mm)
 977{
 978	struct kfd_process *p;
 979	int r;
 980
 981	/* Because we are called from arbitrary context (workqueue) as opposed
 982	 * to process context, kfd_process could attempt to exit while we are
 983	 * running so the lookup function increments the process ref count.
 984	 */
 985	p = kfd_lookup_process_by_mm(mm);
 986	if (!p)
 987		return -ESRCH;
 988
 989	r = kfd_process_restore_queues(p);
 990
 991	kfd_unref_process(p);
 992	return r;
 993}
 994
 995/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
 996 *   prepare for safe eviction of KFD BOs that belong to the specified
 997 *   process.
 998 *
 999 * @mm: mm_struct that identifies the specified KFD process
1000 * @fence: eviction fence attached to KFD process BOs
1001 *
1002 */
1003int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1004					       struct dma_fence *fence)
1005{
1006	struct kfd_process *p;
1007	unsigned long active_time;
1008	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1009
1010	if (!fence)
1011		return -EINVAL;
1012
1013	if (dma_fence_is_signaled(fence))
1014		return 0;
1015
1016	p = kfd_lookup_process_by_mm(mm);
1017	if (!p)
1018		return -ENODEV;
1019
1020	if (fence->seqno == p->last_eviction_seqno)
1021		goto out;
1022
1023	p->last_eviction_seqno = fence->seqno;
1024
1025	/* Avoid KFD process starvation. Wait for at least
1026	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1027	 */
1028	active_time = get_jiffies_64() - p->last_restore_timestamp;
1029	if (delay_jiffies > active_time)
1030		delay_jiffies -= active_time;
1031	else
1032		delay_jiffies = 0;
1033
1034	/* During process initialization eviction_work.dwork is initialized
1035	 * to kfd_evict_bo_worker
1036	 */
1037	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1038	     p->lead_thread->pid, delay_jiffies);
1039	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1040out:
1041	kfd_unref_process(p);
1042	return 0;
1043}
1044
1045static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1046				unsigned int chunk_size)
1047{
1048	unsigned int num_of_longs;
1049
1050	if (WARN_ON(buf_size < chunk_size))
1051		return -EINVAL;
1052	if (WARN_ON(buf_size == 0))
1053		return -EINVAL;
1054	if (WARN_ON(chunk_size == 0))
1055		return -EINVAL;
1056
1057	kfd->gtt_sa_chunk_size = chunk_size;
1058	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1059
1060	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1061		BITS_PER_LONG;
1062
1063	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1064
1065	if (!kfd->gtt_sa_bitmap)
1066		return -ENOMEM;
1067
1068	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1069			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1070
1071	mutex_init(&kfd->gtt_sa_lock);
1072
1073	return 0;
1074
1075}
1076
1077static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1078{
1079	mutex_destroy(&kfd->gtt_sa_lock);
1080	kfree(kfd->gtt_sa_bitmap);
1081}
1082
1083static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1084						unsigned int bit_num,
1085						unsigned int chunk_size)
1086{
1087	return start_addr + bit_num * chunk_size;
1088}
1089
1090static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1091						unsigned int bit_num,
1092						unsigned int chunk_size)
1093{
1094	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1095}
1096
1097int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1098			struct kfd_mem_obj **mem_obj)
1099{
1100	unsigned int found, start_search, cur_size;
 
1101
1102	if (size == 0)
1103		return -EINVAL;
1104
1105	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1106		return -ENOMEM;
1107
1108	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1109	if (!(*mem_obj))
1110		return -ENOMEM;
1111
1112	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1113
1114	start_search = 0;
1115
1116	mutex_lock(&kfd->gtt_sa_lock);
1117
1118kfd_gtt_restart_search:
1119	/* Find the first chunk that is free */
1120	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1121					kfd->gtt_sa_num_of_chunks,
1122					start_search);
1123
1124	pr_debug("Found = %d\n", found);
1125
1126	/* If there wasn't any free chunk, bail out */
1127	if (found == kfd->gtt_sa_num_of_chunks)
1128		goto kfd_gtt_no_free_chunk;
1129
1130	/* Update fields of mem_obj */
1131	(*mem_obj)->range_start = found;
1132	(*mem_obj)->range_end = found;
1133	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1134					kfd->gtt_start_gpu_addr,
1135					found,
1136					kfd->gtt_sa_chunk_size);
1137	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1138					kfd->gtt_start_cpu_ptr,
1139					found,
1140					kfd->gtt_sa_chunk_size);
1141
1142	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1143			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1144
1145	/* If we need only one chunk, mark it as allocated and get out */
1146	if (size <= kfd->gtt_sa_chunk_size) {
1147		pr_debug("Single bit\n");
1148		set_bit(found, kfd->gtt_sa_bitmap);
1149		goto kfd_gtt_out;
1150	}
1151
1152	/* Otherwise, try to see if we have enough contiguous chunks */
1153	cur_size = size - kfd->gtt_sa_chunk_size;
1154	do {
1155		(*mem_obj)->range_end =
1156			find_next_zero_bit(kfd->gtt_sa_bitmap,
1157					kfd->gtt_sa_num_of_chunks, ++found);
1158		/*
1159		 * If next free chunk is not contiguous than we need to
1160		 * restart our search from the last free chunk we found (which
1161		 * wasn't contiguous to the previous ones
1162		 */
1163		if ((*mem_obj)->range_end != found) {
1164			start_search = found;
1165			goto kfd_gtt_restart_search;
1166		}
1167
1168		/*
1169		 * If we reached end of buffer, bail out with error
1170		 */
1171		if (found == kfd->gtt_sa_num_of_chunks)
1172			goto kfd_gtt_no_free_chunk;
1173
1174		/* Check if we don't need another chunk */
1175		if (cur_size <= kfd->gtt_sa_chunk_size)
1176			cur_size = 0;
1177		else
1178			cur_size -= kfd->gtt_sa_chunk_size;
1179
1180	} while (cur_size > 0);
1181
1182	pr_debug("range_start = %d, range_end = %d\n",
1183		(*mem_obj)->range_start, (*mem_obj)->range_end);
1184
1185	/* Mark the chunks as allocated */
1186	for (found = (*mem_obj)->range_start;
1187		found <= (*mem_obj)->range_end;
1188		found++)
1189		set_bit(found, kfd->gtt_sa_bitmap);
1190
1191kfd_gtt_out:
1192	mutex_unlock(&kfd->gtt_sa_lock);
1193	return 0;
1194
1195kfd_gtt_no_free_chunk:
1196	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1197	mutex_unlock(&kfd->gtt_sa_lock);
1198	kfree(*mem_obj);
1199	return -ENOMEM;
1200}
1201
1202int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1203{
1204	unsigned int bit;
1205
1206	/* Act like kfree when trying to free a NULL object */
1207	if (!mem_obj)
1208		return 0;
1209
1210	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1211			mem_obj, mem_obj->range_start, mem_obj->range_end);
1212
1213	mutex_lock(&kfd->gtt_sa_lock);
1214
1215	/* Mark the chunks as free */
1216	for (bit = mem_obj->range_start;
1217		bit <= mem_obj->range_end;
1218		bit++)
1219		clear_bit(bit, kfd->gtt_sa_bitmap);
1220
1221	mutex_unlock(&kfd->gtt_sa_lock);
1222
1223	kfree(mem_obj);
1224	return 0;
1225}
1226
1227void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1228{
 
 
 
 
 
1229	if (kfd)
1230		atomic_inc(&kfd->sram_ecc_flag);
1231}
1232
1233void kfd_inc_compute_active(struct kfd_dev *kfd)
1234{
1235	if (atomic_inc_return(&kfd->compute_profile) == 1)
1236		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1237}
1238
1239void kfd_dec_compute_active(struct kfd_dev *kfd)
1240{
1241	int count = atomic_dec_return(&kfd->compute_profile);
1242
1243	if (count == 0)
1244		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1245	WARN_ONCE(count < 0, "Compute profile ref. count error");
1246}
1247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248#if defined(CONFIG_DEBUG_FS)
1249
1250/* This function will send a package to HIQ to hang the HWS
1251 * which will trigger a GPU reset and bring the HWS back to normal state
1252 */
1253int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1254{
1255	int r = 0;
1256
1257	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1258		pr_err("HWS is not enabled");
1259		return -EINVAL;
1260	}
1261
1262	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1263	if (!r)
1264		r = dqm_debugfs_execute_queues(dev->dqm);
1265
1266	return r;
1267}
1268
1269#endif
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/bsearch.h>
  25#include <linux/pci.h>
  26#include <linux/slab.h>
  27#include "kfd_priv.h"
  28#include "kfd_device_queue_manager.h"
  29#include "kfd_pm4_headers_vi.h"
  30#include "kfd_pm4_headers_aldebaran.h"
  31#include "cwsr_trap_handler.h"
 
  32#include "amdgpu_amdkfd.h"
  33#include "kfd_smi_events.h"
  34#include "kfd_svm.h"
  35#include "kfd_migrate.h"
  36#include "amdgpu.h"
  37#include "amdgpu_xcp.h"
  38
  39#define MQD_SIZE_ALIGNED 768
  40
  41/*
  42 * kfd_locked is used to lock the kfd driver during suspend or reset
  43 * once locked, kfd driver will stop any further GPU execution.
  44 * create process (open) will return -EAGAIN.
  45 */
  46static int kfd_locked;
  47
  48#ifdef CONFIG_DRM_AMDGPU_CIK
  49extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
  50#endif
  51extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
  52extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
  53extern const struct kfd2kgd_calls arcturus_kfd2kgd;
  54extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
  55extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
  56extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
  57extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
  58extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59
  60static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
  61				unsigned int chunk_size);
  62static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
  63
  64static int kfd_resume(struct kfd_node *kfd);
  65
  66static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
 
  67{
  68	uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
 
 
  69
  70	switch (sdma_version) {
  71	case IP_VERSION(4, 0, 0):/* VEGA10 */
  72	case IP_VERSION(4, 0, 1):/* VEGA12 */
  73	case IP_VERSION(4, 1, 0):/* RAVEN */
  74	case IP_VERSION(4, 1, 1):/* RAVEN */
  75	case IP_VERSION(4, 1, 2):/* RENOIR */
  76	case IP_VERSION(5, 2, 1):/* VANGOGH */
  77	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
  78	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
  79	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
  80		kfd->device_info.num_sdma_queues_per_engine = 2;
  81		break;
  82	case IP_VERSION(4, 2, 0):/* VEGA20 */
  83	case IP_VERSION(4, 2, 2):/* ARCTURUS */
  84	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
  85	case IP_VERSION(4, 4, 2):
  86	case IP_VERSION(5, 0, 0):/* NAVI10 */
  87	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
  88	case IP_VERSION(5, 0, 2):/* NAVI14 */
  89	case IP_VERSION(5, 0, 5):/* NAVI12 */
  90	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
  91	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
  92	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
  93	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
  94	case IP_VERSION(6, 0, 0):
  95	case IP_VERSION(6, 0, 1):
  96	case IP_VERSION(6, 0, 2):
  97	case IP_VERSION(6, 0, 3):
  98	case IP_VERSION(6, 1, 0):
  99		kfd->device_info.num_sdma_queues_per_engine = 8;
 100		break;
 101	default:
 102		dev_warn(kfd_device,
 103			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
 104			sdma_version);
 105		kfd->device_info.num_sdma_queues_per_engine = 8;
 106	}
 107
 108	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
 109
 110	switch (sdma_version) {
 111	case IP_VERSION(6, 0, 0):
 112	case IP_VERSION(6, 0, 1):
 113	case IP_VERSION(6, 0, 2):
 114	case IP_VERSION(6, 0, 3):
 115	case IP_VERSION(6, 1, 0):
 116		/* Reserve 1 for paging and 1 for gfx */
 117		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
 118		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
 119		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
 120			   kfd->adev->sdma.num_instances *
 121			   kfd->device_info.num_reserved_sdma_queues_per_engine);
 122		break;
 123	default:
 124		break;
 125	}
 126}
 127
 128static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
 129{
 130	uint32_t gc_version = KFD_GC_VERSION(kfd);
 131
 132	switch (gc_version) {
 133	case IP_VERSION(9, 0, 1): /* VEGA10 */
 134	case IP_VERSION(9, 1, 0): /* RAVEN */
 135	case IP_VERSION(9, 2, 1): /* VEGA12 */
 136	case IP_VERSION(9, 2, 2): /* RAVEN */
 137	case IP_VERSION(9, 3, 0): /* RENOIR */
 138	case IP_VERSION(9, 4, 0): /* VEGA20 */
 139	case IP_VERSION(9, 4, 1): /* ARCTURUS */
 140	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
 141		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
 142		break;
 143	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
 144		kfd->device_info.event_interrupt_class =
 145						&event_interrupt_class_v9_4_3;
 146		break;
 147	case IP_VERSION(10, 3, 1): /* VANGOGH */
 148	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
 149	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
 150	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
 151	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
 152	case IP_VERSION(10, 1, 4):
 153	case IP_VERSION(10, 1, 10): /* NAVI10 */
 154	case IP_VERSION(10, 1, 2): /* NAVI12 */
 155	case IP_VERSION(10, 1, 1): /* NAVI14 */
 156	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
 157	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
 158	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
 159	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
 160		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
 161		break;
 162	case IP_VERSION(11, 0, 0):
 163	case IP_VERSION(11, 0, 1):
 164	case IP_VERSION(11, 0, 2):
 165	case IP_VERSION(11, 0, 3):
 166	case IP_VERSION(11, 0, 4):
 167	case IP_VERSION(11, 5, 0):
 168		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
 169		break;
 170	default:
 171		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
 172			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
 173		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
 174	}
 175}
 176
 177static void kfd_device_info_init(struct kfd_dev *kfd,
 178				 bool vf, uint32_t gfx_target_version)
 179{
 180	uint32_t gc_version = KFD_GC_VERSION(kfd);
 181	uint32_t asic_type = kfd->adev->asic_type;
 182
 183	kfd->device_info.max_pasid_bits = 16;
 184	kfd->device_info.max_no_of_hqd = 24;
 185	kfd->device_info.num_of_watch_points = 4;
 186	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
 187	kfd->device_info.gfx_target_version = gfx_target_version;
 188
 189	if (KFD_IS_SOC15(kfd)) {
 190		kfd->device_info.doorbell_size = 8;
 191		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
 192		kfd->device_info.supports_cwsr = true;
 193
 194		kfd_device_info_set_sdma_info(kfd);
 195
 196		kfd_device_info_set_event_interrupt_class(kfd);
 197
 198		if (gc_version < IP_VERSION(11, 0, 0)) {
 199			/* Navi2x+, Navi1x+ */
 200			if (gc_version == IP_VERSION(10, 3, 6))
 201				kfd->device_info.no_atomic_fw_version = 14;
 202			else if (gc_version == IP_VERSION(10, 3, 7))
 203				kfd->device_info.no_atomic_fw_version = 3;
 204			else if (gc_version >= IP_VERSION(10, 3, 0))
 205				kfd->device_info.no_atomic_fw_version = 92;
 206			else if (gc_version >= IP_VERSION(10, 1, 1))
 207				kfd->device_info.no_atomic_fw_version = 145;
 208
 209			/* Navi1x+ */
 210			if (gc_version >= IP_VERSION(10, 1, 1))
 211				kfd->device_info.needs_pci_atomics = true;
 212		} else if (gc_version < IP_VERSION(12, 0, 0)) {
 213			/*
 214			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
 215			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
 216			 * PCIe atomics support.
 217			 */
 218			kfd->device_info.needs_pci_atomics = true;
 219			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
 220		}
 221	} else {
 222		kfd->device_info.doorbell_size = 4;
 223		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
 224		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
 225		kfd->device_info.num_sdma_queues_per_engine = 2;
 226
 227		if (asic_type != CHIP_KAVERI &&
 228		    asic_type != CHIP_HAWAII &&
 229		    asic_type != CHIP_TONGA)
 230			kfd->device_info.supports_cwsr = true;
 231
 232		if (asic_type != CHIP_HAWAII && !vf)
 233			kfd->device_info.needs_pci_atomics = true;
 234	}
 235}
 236
 237struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
 238{
 239	struct kfd_dev *kfd = NULL;
 240	const struct kfd2kgd_calls *f2g = NULL;
 241	uint32_t gfx_target_version = 0;
 242
 243	switch (adev->asic_type) {
 244#ifdef CONFIG_DRM_AMDGPU_CIK
 245	case CHIP_KAVERI:
 246		gfx_target_version = 70000;
 247		if (!vf)
 248			f2g = &gfx_v7_kfd2kgd;
 249		break;
 250#endif
 251	case CHIP_CARRIZO:
 252		gfx_target_version = 80001;
 253		if (!vf)
 254			f2g = &gfx_v8_kfd2kgd;
 255		break;
 256#ifdef CONFIG_DRM_AMDGPU_CIK
 257	case CHIP_HAWAII:
 258		gfx_target_version = 70001;
 259		if (!amdgpu_exp_hw_support)
 260			pr_info(
 261	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
 262				);
 263		else if (!vf)
 264			f2g = &gfx_v7_kfd2kgd;
 265		break;
 266#endif
 267	case CHIP_TONGA:
 268		gfx_target_version = 80002;
 269		if (!vf)
 270			f2g = &gfx_v8_kfd2kgd;
 271		break;
 272	case CHIP_FIJI:
 273	case CHIP_POLARIS10:
 274		gfx_target_version = 80003;
 275		f2g = &gfx_v8_kfd2kgd;
 276		break;
 277	case CHIP_POLARIS11:
 278	case CHIP_POLARIS12:
 279	case CHIP_VEGAM:
 280		gfx_target_version = 80003;
 281		if (!vf)
 282			f2g = &gfx_v8_kfd2kgd;
 283		break;
 284	default:
 285		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
 286		/* Vega 10 */
 287		case IP_VERSION(9, 0, 1):
 288			gfx_target_version = 90000;
 289			f2g = &gfx_v9_kfd2kgd;
 290			break;
 291		/* Raven */
 292		case IP_VERSION(9, 1, 0):
 293		case IP_VERSION(9, 2, 2):
 294			gfx_target_version = 90002;
 295			if (!vf)
 296				f2g = &gfx_v9_kfd2kgd;
 297			break;
 298		/* Vega12 */
 299		case IP_VERSION(9, 2, 1):
 300			gfx_target_version = 90004;
 301			if (!vf)
 302				f2g = &gfx_v9_kfd2kgd;
 303			break;
 304		/* Renoir */
 305		case IP_VERSION(9, 3, 0):
 306			gfx_target_version = 90012;
 307			if (!vf)
 308				f2g = &gfx_v9_kfd2kgd;
 309			break;
 310		/* Vega20 */
 311		case IP_VERSION(9, 4, 0):
 312			gfx_target_version = 90006;
 313			if (!vf)
 314				f2g = &gfx_v9_kfd2kgd;
 315			break;
 316		/* Arcturus */
 317		case IP_VERSION(9, 4, 1):
 318			gfx_target_version = 90008;
 319			f2g = &arcturus_kfd2kgd;
 320			break;
 321		/* Aldebaran */
 322		case IP_VERSION(9, 4, 2):
 323			gfx_target_version = 90010;
 324			f2g = &aldebaran_kfd2kgd;
 325			break;
 326		case IP_VERSION(9, 4, 3):
 327			gfx_target_version = adev->rev_id >= 1 ? 90402
 328					   : adev->flags & AMD_IS_APU ? 90400
 329					   : 90401;
 330			f2g = &gc_9_4_3_kfd2kgd;
 331			break;
 332		/* Navi10 */
 333		case IP_VERSION(10, 1, 10):
 334			gfx_target_version = 100100;
 335			if (!vf)
 336				f2g = &gfx_v10_kfd2kgd;
 337			break;
 338		/* Navi12 */
 339		case IP_VERSION(10, 1, 2):
 340			gfx_target_version = 100101;
 341			f2g = &gfx_v10_kfd2kgd;
 342			break;
 343		/* Navi14 */
 344		case IP_VERSION(10, 1, 1):
 345			gfx_target_version = 100102;
 346			if (!vf)
 347				f2g = &gfx_v10_kfd2kgd;
 348			break;
 349		/* Cyan Skillfish */
 350		case IP_VERSION(10, 1, 3):
 351		case IP_VERSION(10, 1, 4):
 352			gfx_target_version = 100103;
 353			if (!vf)
 354				f2g = &gfx_v10_kfd2kgd;
 355			break;
 356		/* Sienna Cichlid */
 357		case IP_VERSION(10, 3, 0):
 358			gfx_target_version = 100300;
 359			f2g = &gfx_v10_3_kfd2kgd;
 360			break;
 361		/* Navy Flounder */
 362		case IP_VERSION(10, 3, 2):
 363			gfx_target_version = 100301;
 364			f2g = &gfx_v10_3_kfd2kgd;
 365			break;
 366		/* Van Gogh */
 367		case IP_VERSION(10, 3, 1):
 368			gfx_target_version = 100303;
 369			if (!vf)
 370				f2g = &gfx_v10_3_kfd2kgd;
 371			break;
 372		/* Dimgrey Cavefish */
 373		case IP_VERSION(10, 3, 4):
 374			gfx_target_version = 100302;
 375			f2g = &gfx_v10_3_kfd2kgd;
 376			break;
 377		/* Beige Goby */
 378		case IP_VERSION(10, 3, 5):
 379			gfx_target_version = 100304;
 380			f2g = &gfx_v10_3_kfd2kgd;
 381			break;
 382		/* Yellow Carp */
 383		case IP_VERSION(10, 3, 3):
 384			gfx_target_version = 100305;
 385			if (!vf)
 386				f2g = &gfx_v10_3_kfd2kgd;
 387			break;
 388		case IP_VERSION(10, 3, 6):
 389		case IP_VERSION(10, 3, 7):
 390			gfx_target_version = 100306;
 391			if (!vf)
 392				f2g = &gfx_v10_3_kfd2kgd;
 393			break;
 394		case IP_VERSION(11, 0, 0):
 395			gfx_target_version = 110000;
 396			f2g = &gfx_v11_kfd2kgd;
 397			break;
 398		case IP_VERSION(11, 0, 1):
 399		case IP_VERSION(11, 0, 4):
 400			gfx_target_version = 110003;
 401			f2g = &gfx_v11_kfd2kgd;
 402			break;
 403		case IP_VERSION(11, 0, 2):
 404			gfx_target_version = 110002;
 405			f2g = &gfx_v11_kfd2kgd;
 406			break;
 407		case IP_VERSION(11, 0, 3):
 408			if ((adev->pdev->device == 0x7460 &&
 409			     adev->pdev->revision == 0x00) ||
 410			    (adev->pdev->device == 0x7461 &&
 411			     adev->pdev->revision == 0x00))
 412				/* Note: Compiler version is 11.0.5 while HW version is 11.0.3 */
 413				gfx_target_version = 110005;
 414			else
 415				/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
 416				gfx_target_version = 110001;
 417			f2g = &gfx_v11_kfd2kgd;
 418			break;
 419		case IP_VERSION(11, 5, 0):
 420			gfx_target_version = 110500;
 421			f2g = &gfx_v11_kfd2kgd;
 422			break;
 423		default:
 424			break;
 425		}
 426		break;
 427	}
 428
 429	if (!f2g) {
 430		if (amdgpu_ip_version(adev, GC_HWIP, 0))
 431			dev_err(kfd_device,
 432				"GC IP %06x %s not supported in kfd\n",
 433				amdgpu_ip_version(adev, GC_HWIP, 0),
 434				vf ? "VF" : "");
 435		else
 436			dev_err(kfd_device, "%s %s not supported in kfd\n",
 437				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
 438		return NULL;
 439	}
 440
 441	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
 442	if (!kfd)
 443		return NULL;
 444
 445	kfd->adev = adev;
 446	kfd_device_info_init(kfd, vf, gfx_target_version);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447	kfd->init_complete = false;
 448	kfd->kfd2kgd = f2g;
 449	atomic_set(&kfd->compute_profile, 0);
 450
 451	mutex_init(&kfd->doorbell_mutex);
 
 
 452
 453	ida_init(&kfd->doorbell_ida);
 454
 455	return kfd;
 456}
 457
 458static void kfd_cwsr_init(struct kfd_dev *kfd)
 459{
 460	if (cwsr_enable && kfd->device_info.supports_cwsr) {
 461		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
 462			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
 463			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
 464			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
 465		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
 466			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
 467			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
 468			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
 469		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
 470			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
 471			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
 472			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
 473		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) {
 474			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex) > PAGE_SIZE);
 475			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
 476			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
 477		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
 478			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
 479			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
 480			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
 481		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
 482			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
 483			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
 484			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
 485		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
 486			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
 487			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
 488			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
 489		} else {
 490			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
 491			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
 492			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
 493		}
 494
 495		kfd->cwsr_enabled = true;
 496	}
 497}
 498
 499static int kfd_gws_init(struct kfd_node *node)
 500{
 501	int ret = 0;
 502	struct kfd_dev *kfd = node->kfd;
 503	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
 504
 505	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
 506		return 0;
 507
 508	if (hws_gws_support || (KFD_IS_SOC15(node) &&
 509		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
 510			&& kfd->mec2_fw_version >= 0x81b3) ||
 511		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
 512			&& kfd->mec2_fw_version >= 0x1b3)  ||
 513		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
 514			&& kfd->mec2_fw_version >= 0x30)   ||
 515		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
 516			&& kfd->mec2_fw_version >= 0x28) ||
 517		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3)) ||
 518		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
 519			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
 520			&& kfd->mec2_fw_version >= 0x6b) ||
 521		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
 522			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
 523			&& mes_rev >= 68))))
 524		ret = amdgpu_amdkfd_alloc_gws(node->adev,
 525				node->adev->gds.gws_size, &node->gws);
 526
 527	return ret;
 528}
 529
 530static void kfd_smi_init(struct kfd_node *dev)
 531{
 532	INIT_LIST_HEAD(&dev->smi_clients);
 533	spin_lock_init(&dev->smi_lock);
 534}
 535
 536static int kfd_init_node(struct kfd_node *node)
 537{
 538	int err = -1;
 539
 540	if (kfd_interrupt_init(node)) {
 541		dev_err(kfd_device, "Error initializing interrupts\n");
 542		goto kfd_interrupt_error;
 543	}
 544
 545	node->dqm = device_queue_manager_init(node);
 546	if (!node->dqm) {
 547		dev_err(kfd_device, "Error initializing queue manager\n");
 548		goto device_queue_manager_error;
 549	}
 550
 551	if (kfd_gws_init(node)) {
 552		dev_err(kfd_device, "Could not allocate %d gws\n",
 553			node->adev->gds.gws_size);
 554		goto gws_error;
 555	}
 556
 557	if (kfd_resume(node))
 558		goto kfd_resume_error;
 559
 560	if (kfd_topology_add_device(node)) {
 561		dev_err(kfd_device, "Error adding device to topology\n");
 562		goto kfd_topology_add_device_error;
 563	}
 564
 565	kfd_smi_init(node);
 566
 567	return 0;
 568
 569kfd_topology_add_device_error:
 570kfd_resume_error:
 571gws_error:
 572	device_queue_manager_uninit(node->dqm);
 573device_queue_manager_error:
 574	kfd_interrupt_exit(node);
 575kfd_interrupt_error:
 576	if (node->gws)
 577		amdgpu_amdkfd_free_gws(node->adev, node->gws);
 578
 579	/* Cleanup the node memory here */
 580	kfree(node);
 581	return err;
 582}
 583
 584static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
 585{
 586	struct kfd_node *knode;
 587	unsigned int i;
 588
 589	for (i = 0; i < num_nodes; i++) {
 590		knode = kfd->nodes[i];
 591		device_queue_manager_uninit(knode->dqm);
 592		kfd_interrupt_exit(knode);
 593		kfd_topology_remove_device(knode);
 594		if (knode->gws)
 595			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
 596		kfree(knode);
 597		kfd->nodes[i] = NULL;
 598	}
 599}
 600
 601static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
 602				       unsigned int kfd_node_idx)
 603{
 604	struct amdgpu_device *adev = node->adev;
 605	uint32_t xcc_mask = node->xcc_mask;
 606	uint32_t xcc, mapped_xcc;
 607	/*
 608	 * Interrupt bitmap is setup for processing interrupts from
 609	 * different XCDs and AIDs.
 610	 * Interrupt bitmap is defined as follows:
 611	 * 1. Bits 0-15 - correspond to the NodeId field.
 612	 *    Each bit corresponds to NodeId number. For example, if
 613	 *    a KFD node has interrupt bitmap set to 0x7, then this
 614	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
 615	 *    in the IH cookie.
 616	 * 2. Bits 16-31 - unused.
 617	 *
 618	 * Please note that the kfd_node_idx argument passed to this
 619	 * function is not related to NodeId field received in the
 620	 * IH cookie.
 621	 *
 622	 * In CPX mode, a KFD node will process an interrupt if:
 623	 * - the Node Id matches the corresponding bit set in
 624	 *   Bits 0-15.
 625	 * - AND VMID reported in the interrupt lies within the
 626	 *   VMID range of the node.
 627	 */
 628	for_each_inst(xcc, xcc_mask) {
 629		mapped_xcc = GET_INST(GC, xcc);
 630		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
 631	}
 632	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
 633							node->interrupt_bitmap);
 634}
 635
 636bool kgd2kfd_device_init(struct kfd_dev *kfd,
 
 637			 const struct kgd2kfd_shared_resources *gpu_resources)
 638{
 639	unsigned int size, map_process_packet_size, i;
 640	struct kfd_node *node;
 641	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
 642	unsigned int max_proc_per_quantum;
 643	int partition_mode;
 644	int xcp_idx;
 645
 646	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
 
 647			KGD_ENGINE_MEC1);
 648	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
 649			KGD_ENGINE_MEC2);
 650	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
 651			KGD_ENGINE_SDMA1);
 652	kfd->shared_resources = *gpu_resources;
 653
 654	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
 
 
 
 655
 656	if (kfd->num_nodes == 0) {
 
 
 657		dev_err(kfd_device,
 658			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
 659			kfd->adev->gfx.num_xcc_per_xcp);
 660		goto out;
 661	}
 662
 663	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
 664	 * 32 and 64-bit requests are possible and must be
 665	 * supported.
 666	 */
 667	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
 668	if (!kfd->pci_atomic_requested &&
 669	    kfd->device_info.needs_pci_atomics &&
 670	    (!kfd->device_info.no_atomic_fw_version ||
 671	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
 672		dev_info(kfd_device,
 673			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
 674			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
 675			 kfd->mec_fw_version,
 676			 kfd->device_info.no_atomic_fw_version);
 677		return false;
 678	}
 679
 680	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
 681	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
 682	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
 683
 684	/* For GFX9.4.3, we need special handling for VMIDs depending on
 685	 * partition mode.
 686	 * In CPX mode, the VMID range needs to be shared between XCDs.
 687	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
 688	 * divide them equally, we change starting VMID to 4 and not use
 689	 * VMID 3.
 690	 * If the VMID range changes for GFX9.4.3, then this code MUST be
 691	 * revisited.
 692	 */
 693	if (kfd->adev->xcp_mgr) {
 694		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
 695								 AMDGPU_XCP_FL_LOCKED);
 696		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
 697		    kfd->num_nodes != 1) {
 698			vmid_num_kfd /= 2;
 699			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
 700		}
 701	}
 702
 703	/* Verify module parameters regarding mapped process number*/
 704	if (hws_max_conc_proc >= 0)
 705		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
 706	else
 707		max_proc_per_quantum = vmid_num_kfd;
 708
 709	/* calculate max size of mqds needed for queues */
 710	size = max_num_of_queues_per_device *
 711			kfd->device_info.mqd_size_aligned;
 712
 713	/*
 714	 * calculate max size of runlist packet.
 715	 * There can be only 2 packets at once
 716	 */
 717	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
 718				sizeof(struct pm4_mes_map_process_aldebaran) :
 719				sizeof(struct pm4_mes_map_process);
 720	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
 721		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
 722		+ sizeof(struct pm4_mes_runlist)) * 2;
 723
 724	/* Add size of HIQ & DIQ */
 725	size += KFD_KERNEL_QUEUE_SIZE * 2;
 726
 727	/* add another 512KB for all other allocations on gart (HPD, fences) */
 728	size += 512 * 1024;
 729
 730	if (amdgpu_amdkfd_alloc_gtt_mem(
 731			kfd->adev, size, &kfd->gtt_mem,
 732			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
 733			false)) {
 734		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
 735		goto alloc_gtt_mem_failure;
 736	}
 737
 738	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
 739
 740	/* Initialize GTT sa with 512 byte chunk size */
 741	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
 742		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
 743		goto kfd_gtt_sa_init_error;
 744	}
 745
 746	if (kfd_doorbell_init(kfd)) {
 747		dev_err(kfd_device,
 748			"Error initializing doorbell aperture\n");
 749		goto kfd_doorbell_error;
 750	}
 751
 752	if (amdgpu_use_xgmi_p2p)
 753		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
 754
 755	/*
 756	 * For GFX9.4.3, the KFD abstracts all partitions within a socket as
 757	 * xGMI connected in the topology so assign a unique hive id per
 758	 * device based on the pci device location if device is in PCIe mode.
 759	 */
 760	if (!kfd->hive_id && (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) && kfd->num_nodes > 1)
 761		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
 762
 763	kfd->noretry = kfd->adev->gmc.noretry;
 
 
 
 764
 765	kfd_cwsr_init(kfd);
 
 
 
 
 766
 767	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
 768				kfd->num_nodes);
 
 
 
 
 
 
 769
 770	/* Allocate the KFD nodes */
 771	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
 772		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
 773		if (!node)
 774			goto node_alloc_error;
 775
 776		node->node_id = i;
 777		node->adev = kfd->adev;
 778		node->kfd = kfd;
 779		node->kfd2kgd = kfd->kfd2kgd;
 780		node->vm_info.vmid_num_kfd = vmid_num_kfd;
 781		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
 782		/* TODO : Check if error handling is needed */
 783		if (node->xcp) {
 784			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
 785						    &node->xcc_mask);
 786			++xcp_idx;
 787		} else {
 788			node->xcc_mask =
 789				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
 790		}
 791
 792		if (node->xcp) {
 793			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
 794				node->node_id, node->xcp->mem_id,
 795				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
 796		}
 797
 798		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) &&
 799		    partition_mode == AMDGPU_CPX_PARTITION_MODE &&
 800		    kfd->num_nodes != 1) {
 801			/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
 802			 * 4-9 and second XCD gets VMID range 10-15.
 803			 */
 804
 805			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
 806						first_vmid_kfd :
 807						first_vmid_kfd+vmid_num_kfd;
 808			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
 809						last_vmid_kfd-vmid_num_kfd :
 810						last_vmid_kfd;
 811			node->compute_vmid_bitmap =
 812				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
 813				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
 814		} else {
 815			node->vm_info.first_vmid_kfd = first_vmid_kfd;
 816			node->vm_info.last_vmid_kfd = last_vmid_kfd;
 817			node->compute_vmid_bitmap =
 818				gpu_resources->compute_vmid_bitmap;
 819		}
 820		node->max_proc_per_quantum = max_proc_per_quantum;
 821		atomic_set(&node->sram_ecc_flag, 0);
 822
 823		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
 824					&node->local_mem_info, node->xcp);
 825
 826		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3))
 827			kfd_setup_interrupt_bitmap(node, i);
 828
 829		/* Initialize the KFD node */
 830		if (kfd_init_node(node)) {
 831			dev_err(kfd_device, "Error initializing KFD node\n");
 832			goto node_init_error;
 833		}
 834		kfd->nodes[i] = node;
 835	}
 836
 837	svm_range_set_max_pages(kfd->adev);
 838
 839	spin_lock_init(&kfd->watch_points_lock);
 840
 841	kfd->init_complete = true;
 842	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
 843		 kfd->adev->pdev->device);
 844
 845	pr_debug("Starting kfd with the following scheduling policy %d\n",
 846		node->dqm->sched_policy);
 847
 848	goto out;
 849
 850node_init_error:
 851node_alloc_error:
 852	kfd_cleanup_nodes(kfd, i);
 
 
 
 
 
 853	kfd_doorbell_fini(kfd);
 854kfd_doorbell_error:
 855	kfd_gtt_sa_fini(kfd);
 856kfd_gtt_sa_init_error:
 857	amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
 858alloc_gtt_mem_failure:
 
 
 859	dev_err(kfd_device,
 860		"device %x:%x NOT added due to errors\n",
 861		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
 862out:
 863	return kfd->init_complete;
 864}
 865
 866void kgd2kfd_device_exit(struct kfd_dev *kfd)
 867{
 868	if (kfd->init_complete) {
 869		/* Cleanup KFD nodes */
 870		kfd_cleanup_nodes(kfd, kfd->num_nodes);
 871		/* Cleanup common/shared resources */
 
 872		kfd_doorbell_fini(kfd);
 873		ida_destroy(&kfd->doorbell_ida);
 874		kfd_gtt_sa_fini(kfd);
 875		amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
 
 
 876	}
 877
 878	kfree(kfd);
 879}
 880
 881int kgd2kfd_pre_reset(struct kfd_dev *kfd)
 882{
 883	struct kfd_node *node;
 884	int i;
 885
 886	if (!kfd->init_complete)
 887		return 0;
 888
 889	for (i = 0; i < kfd->num_nodes; i++) {
 890		node = kfd->nodes[i];
 891		kfd_smi_event_update_gpu_reset(node, false);
 892		node->dqm->ops.pre_reset(node->dqm);
 893	}
 894
 895	kgd2kfd_suspend(kfd, false);
 896
 897	for (i = 0; i < kfd->num_nodes; i++)
 898		kfd_signal_reset_event(kfd->nodes[i]);
 899
 900	return 0;
 901}
 902
 903/*
 904 * Fix me. KFD won't be able to resume existing process for now.
 905 * We will keep all existing process in a evicted state and
 906 * wait the process to be terminated.
 907 */
 908
 909int kgd2kfd_post_reset(struct kfd_dev *kfd)
 910{
 911	int ret;
 912	struct kfd_node *node;
 913	int i;
 914
 915	if (!kfd->init_complete)
 916		return 0;
 917
 918	for (i = 0; i < kfd->num_nodes; i++) {
 919		ret = kfd_resume(kfd->nodes[i]);
 920		if (ret)
 921			return ret;
 922	}
 923
 924	mutex_lock(&kfd_processes_mutex);
 925	--kfd_locked;
 926	mutex_unlock(&kfd_processes_mutex);
 927
 928	for (i = 0; i < kfd->num_nodes; i++) {
 929		node = kfd->nodes[i];
 930		atomic_set(&node->sram_ecc_flag, 0);
 931		kfd_smi_event_update_gpu_reset(node, true);
 932	}
 933
 934	return 0;
 935}
 936
 937bool kfd_is_locked(void)
 938{
 939	lockdep_assert_held(&kfd_processes_mutex);
 940	return  (kfd_locked > 0);
 941}
 942
 943void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
 944{
 945	struct kfd_node *node;
 946	int i;
 947	int count;
 948
 949	if (!kfd->init_complete)
 950		return;
 951
 952	/* for runtime suspend, skip locking kfd */
 953	if (!run_pm) {
 954		mutex_lock(&kfd_processes_mutex);
 955		count = ++kfd_locked;
 956		mutex_unlock(&kfd_processes_mutex);
 957
 958		/* For first KFD device suspend all the KFD processes */
 959		if (count == 1)
 960			kfd_suspend_all_processes();
 961	}
 962
 963	for (i = 0; i < kfd->num_nodes; i++) {
 964		node = kfd->nodes[i];
 965		node->dqm->ops.stop(node->dqm);
 966	}
 967}
 968
 969int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
 970{
 971	int ret, count, i;
 972
 973	if (!kfd->init_complete)
 974		return 0;
 975
 976	for (i = 0; i < kfd->num_nodes; i++) {
 977		ret = kfd_resume(kfd->nodes[i]);
 978		if (ret)
 979			return ret;
 980	}
 981
 982	/* for runtime resume, skip unlocking kfd */
 983	if (!run_pm) {
 984		mutex_lock(&kfd_processes_mutex);
 985		count = --kfd_locked;
 986		mutex_unlock(&kfd_processes_mutex);
 987
 988		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
 989		if (count == 0)
 990			ret = kfd_resume_all_processes();
 991	}
 992
 993	return ret;
 994}
 995
 996static int kfd_resume(struct kfd_node *node)
 997{
 998	int err = 0;
 999
1000	err = node->dqm->ops.start(node->dqm);
1001	if (err)
 
 
 
 
 
 
 
 
1002		dev_err(kfd_device,
1003			"Error starting queue manager for device %x:%x\n",
1004			node->adev->pdev->vendor, node->adev->pdev->device);
 
 
 
 
1005
 
 
1006	return err;
1007}
1008
1009static inline void kfd_queue_work(struct workqueue_struct *wq,
1010				  struct work_struct *work)
1011{
1012	int cpu, new_cpu;
1013
1014	cpu = new_cpu = smp_processor_id();
1015	do {
1016		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1017		if (cpu_to_node(new_cpu) == numa_node_id())
1018			break;
1019	} while (cpu != new_cpu);
1020
1021	queue_work_on(new_cpu, wq, work);
1022}
1023
1024/* This is called directly from KGD at ISR. */
1025void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1026{
1027	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1028	bool is_patched = false;
1029	unsigned long flags;
1030	struct kfd_node *node;
1031
1032	if (!kfd->init_complete)
1033		return;
1034
1035	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1036		dev_err_once(kfd_device, "Ring entry too small\n");
1037		return;
1038	}
1039
1040	for (i = 0; i < kfd->num_nodes; i++) {
1041		node = kfd->nodes[i];
1042		spin_lock_irqsave(&node->interrupt_lock, flags);
1043
1044		if (node->interrupts_active
1045		    && interrupt_is_wanted(node, ih_ring_entry,
1046			    	patched_ihre, &is_patched)
1047		    && enqueue_ih_ring_entry(node,
1048			    	is_patched ? patched_ihre : ih_ring_entry)) {
1049			kfd_queue_work(node->ih_wq, &node->interrupt_work);
1050			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1051			return;
1052		}
1053		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1054	}
1055
 
1056}
1057
1058int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1059{
1060	struct kfd_process *p;
1061	int r;
1062
1063	/* Because we are called from arbitrary context (workqueue) as opposed
1064	 * to process context, kfd_process could attempt to exit while we are
1065	 * running so the lookup function increments the process ref count.
1066	 */
1067	p = kfd_lookup_process_by_mm(mm);
1068	if (!p)
1069		return -ESRCH;
1070
1071	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1072	r = kfd_process_evict_queues(p, trigger);
1073
1074	kfd_unref_process(p);
1075	return r;
1076}
1077
1078int kgd2kfd_resume_mm(struct mm_struct *mm)
1079{
1080	struct kfd_process *p;
1081	int r;
1082
1083	/* Because we are called from arbitrary context (workqueue) as opposed
1084	 * to process context, kfd_process could attempt to exit while we are
1085	 * running so the lookup function increments the process ref count.
1086	 */
1087	p = kfd_lookup_process_by_mm(mm);
1088	if (!p)
1089		return -ESRCH;
1090
1091	r = kfd_process_restore_queues(p);
1092
1093	kfd_unref_process(p);
1094	return r;
1095}
1096
1097/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1098 *   prepare for safe eviction of KFD BOs that belong to the specified
1099 *   process.
1100 *
1101 * @mm: mm_struct that identifies the specified KFD process
1102 * @fence: eviction fence attached to KFD process BOs
1103 *
1104 */
1105int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1106					       struct dma_fence *fence)
1107{
1108	struct kfd_process *p;
1109	unsigned long active_time;
1110	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1111
1112	if (!fence)
1113		return -EINVAL;
1114
1115	if (dma_fence_is_signaled(fence))
1116		return 0;
1117
1118	p = kfd_lookup_process_by_mm(mm);
1119	if (!p)
1120		return -ENODEV;
1121
1122	if (fence->seqno == p->last_eviction_seqno)
1123		goto out;
1124
1125	p->last_eviction_seqno = fence->seqno;
1126
1127	/* Avoid KFD process starvation. Wait for at least
1128	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1129	 */
1130	active_time = get_jiffies_64() - p->last_restore_timestamp;
1131	if (delay_jiffies > active_time)
1132		delay_jiffies -= active_time;
1133	else
1134		delay_jiffies = 0;
1135
1136	/* During process initialization eviction_work.dwork is initialized
1137	 * to kfd_evict_bo_worker
1138	 */
1139	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1140	     p->lead_thread->pid, delay_jiffies);
1141	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1142out:
1143	kfd_unref_process(p);
1144	return 0;
1145}
1146
1147static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1148				unsigned int chunk_size)
1149{
 
 
1150	if (WARN_ON(buf_size < chunk_size))
1151		return -EINVAL;
1152	if (WARN_ON(buf_size == 0))
1153		return -EINVAL;
1154	if (WARN_ON(chunk_size == 0))
1155		return -EINVAL;
1156
1157	kfd->gtt_sa_chunk_size = chunk_size;
1158	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1159
1160	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1161					   GFP_KERNEL);
 
 
 
1162	if (!kfd->gtt_sa_bitmap)
1163		return -ENOMEM;
1164
1165	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1166			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1167
1168	mutex_init(&kfd->gtt_sa_lock);
1169
1170	return 0;
 
1171}
1172
1173static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1174{
1175	mutex_destroy(&kfd->gtt_sa_lock);
1176	bitmap_free(kfd->gtt_sa_bitmap);
1177}
1178
1179static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1180						unsigned int bit_num,
1181						unsigned int chunk_size)
1182{
1183	return start_addr + bit_num * chunk_size;
1184}
1185
1186static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1187						unsigned int bit_num,
1188						unsigned int chunk_size)
1189{
1190	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1191}
1192
1193int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1194			struct kfd_mem_obj **mem_obj)
1195{
1196	unsigned int found, start_search, cur_size;
1197	struct kfd_dev *kfd = node->kfd;
1198
1199	if (size == 0)
1200		return -EINVAL;
1201
1202	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1203		return -ENOMEM;
1204
1205	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1206	if (!(*mem_obj))
1207		return -ENOMEM;
1208
1209	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1210
1211	start_search = 0;
1212
1213	mutex_lock(&kfd->gtt_sa_lock);
1214
1215kfd_gtt_restart_search:
1216	/* Find the first chunk that is free */
1217	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1218					kfd->gtt_sa_num_of_chunks,
1219					start_search);
1220
1221	pr_debug("Found = %d\n", found);
1222
1223	/* If there wasn't any free chunk, bail out */
1224	if (found == kfd->gtt_sa_num_of_chunks)
1225		goto kfd_gtt_no_free_chunk;
1226
1227	/* Update fields of mem_obj */
1228	(*mem_obj)->range_start = found;
1229	(*mem_obj)->range_end = found;
1230	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1231					kfd->gtt_start_gpu_addr,
1232					found,
1233					kfd->gtt_sa_chunk_size);
1234	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1235					kfd->gtt_start_cpu_ptr,
1236					found,
1237					kfd->gtt_sa_chunk_size);
1238
1239	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1240			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1241
1242	/* If we need only one chunk, mark it as allocated and get out */
1243	if (size <= kfd->gtt_sa_chunk_size) {
1244		pr_debug("Single bit\n");
1245		__set_bit(found, kfd->gtt_sa_bitmap);
1246		goto kfd_gtt_out;
1247	}
1248
1249	/* Otherwise, try to see if we have enough contiguous chunks */
1250	cur_size = size - kfd->gtt_sa_chunk_size;
1251	do {
1252		(*mem_obj)->range_end =
1253			find_next_zero_bit(kfd->gtt_sa_bitmap,
1254					kfd->gtt_sa_num_of_chunks, ++found);
1255		/*
1256		 * If next free chunk is not contiguous than we need to
1257		 * restart our search from the last free chunk we found (which
1258		 * wasn't contiguous to the previous ones
1259		 */
1260		if ((*mem_obj)->range_end != found) {
1261			start_search = found;
1262			goto kfd_gtt_restart_search;
1263		}
1264
1265		/*
1266		 * If we reached end of buffer, bail out with error
1267		 */
1268		if (found == kfd->gtt_sa_num_of_chunks)
1269			goto kfd_gtt_no_free_chunk;
1270
1271		/* Check if we don't need another chunk */
1272		if (cur_size <= kfd->gtt_sa_chunk_size)
1273			cur_size = 0;
1274		else
1275			cur_size -= kfd->gtt_sa_chunk_size;
1276
1277	} while (cur_size > 0);
1278
1279	pr_debug("range_start = %d, range_end = %d\n",
1280		(*mem_obj)->range_start, (*mem_obj)->range_end);
1281
1282	/* Mark the chunks as allocated */
1283	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1284		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
 
 
1285
1286kfd_gtt_out:
1287	mutex_unlock(&kfd->gtt_sa_lock);
1288	return 0;
1289
1290kfd_gtt_no_free_chunk:
1291	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1292	mutex_unlock(&kfd->gtt_sa_lock);
1293	kfree(*mem_obj);
1294	return -ENOMEM;
1295}
1296
1297int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1298{
1299	struct kfd_dev *kfd = node->kfd;
1300
1301	/* Act like kfree when trying to free a NULL object */
1302	if (!mem_obj)
1303		return 0;
1304
1305	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1306			mem_obj, mem_obj->range_start, mem_obj->range_end);
1307
1308	mutex_lock(&kfd->gtt_sa_lock);
1309
1310	/* Mark the chunks as free */
1311	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1312		     mem_obj->range_end - mem_obj->range_start + 1);
 
 
1313
1314	mutex_unlock(&kfd->gtt_sa_lock);
1315
1316	kfree(mem_obj);
1317	return 0;
1318}
1319
1320void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1321{
1322	/*
1323	 * TODO: Currently update SRAM ECC flag for first node.
1324	 * This needs to be updated later when we can
1325	 * identify SRAM ECC error on other nodes also.
1326	 */
1327	if (kfd)
1328		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1329}
1330
1331void kfd_inc_compute_active(struct kfd_node *node)
1332{
1333	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1334		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1335}
1336
1337void kfd_dec_compute_active(struct kfd_node *node)
1338{
1339	int count = atomic_dec_return(&node->kfd->compute_profile);
1340
1341	if (count == 0)
1342		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1343	WARN_ONCE(count < 0, "Compute profile ref. count error");
1344}
1345
1346void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1347{
1348	/*
1349	 * TODO: For now, raise the throttling event only on first node.
1350	 * This will need to change after we are able to determine
1351	 * which node raised the throttling event.
1352	 */
1353	if (kfd && kfd->init_complete)
1354		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1355							throttle_bitmask);
1356}
1357
1358/* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1359 * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1360 * When the device has more than two engines, we reserve two for PCIe to enable
1361 * full-duplex and the rest are used as XGMI.
1362 */
1363unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1364{
1365	/* If XGMI is not supported, all SDMA engines are PCIe */
1366	if (!node->adev->gmc.xgmi.supported)
1367		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1368
1369	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1370}
1371
1372unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1373{
1374	/* After reserved for PCIe, the rest of engines are XGMI */
1375	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1376		kfd_get_num_sdma_engines(node);
1377}
1378
1379int kgd2kfd_check_and_lock_kfd(void)
1380{
1381	mutex_lock(&kfd_processes_mutex);
1382	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1383		mutex_unlock(&kfd_processes_mutex);
1384		return -EBUSY;
1385	}
1386
1387	++kfd_locked;
1388	mutex_unlock(&kfd_processes_mutex);
1389
1390	return 0;
1391}
1392
1393void kgd2kfd_unlock_kfd(void)
1394{
1395	mutex_lock(&kfd_processes_mutex);
1396	--kfd_locked;
1397	mutex_unlock(&kfd_processes_mutex);
1398}
1399
1400#if defined(CONFIG_DEBUG_FS)
1401
1402/* This function will send a package to HIQ to hang the HWS
1403 * which will trigger a GPU reset and bring the HWS back to normal state
1404 */
1405int kfd_debugfs_hang_hws(struct kfd_node *dev)
1406{
 
 
1407	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1408		pr_err("HWS is not enabled");
1409		return -EINVAL;
1410	}
1411
1412	return dqm_debugfs_hang_hws(dev->dqm);
 
 
 
 
1413}
1414
1415#endif