Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
  4 * Copyright(c) 2009 Intel Corporation
  5 *
  6 * based on raid6recov.c:
  7 *   Copyright 2002 H. Peter Anvin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9#include <linux/kernel.h>
 10#include <linux/interrupt.h>
 11#include <linux/module.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/raid/pq.h>
 14#include <linux/async_tx.h>
 15#include <linux/dmaengine.h>
 16
 17static struct dma_async_tx_descriptor *
 18async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
 19		  size_t len, struct async_submit_ctl *submit)
 20{
 21	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 22						      &dest, 1, srcs, 2, len);
 23	struct dma_device *dma = chan ? chan->device : NULL;
 24	struct dmaengine_unmap_data *unmap = NULL;
 25	const u8 *amul, *bmul;
 26	u8 ax, bx;
 27	u8 *a, *b, *c;
 28
 29	if (dma)
 30		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
 31
 32	if (unmap) {
 33		struct device *dev = dma->dev;
 34		dma_addr_t pq[2];
 35		struct dma_async_tx_descriptor *tx;
 36		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
 37
 38		if (submit->flags & ASYNC_TX_FENCE)
 39			dma_flags |= DMA_PREP_FENCE;
 40		unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
 41		unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
 42		unmap->to_cnt = 2;
 43
 44		unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
 45		unmap->bidi_cnt = 1;
 46		/* engine only looks at Q, but expects it to follow P */
 47		pq[1] = unmap->addr[2];
 48
 49		unmap->len = len;
 50		tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
 51					     len, dma_flags);
 52		if (tx) {
 53			dma_set_unmap(tx, unmap);
 54			async_tx_submit(chan, tx, submit);
 55			dmaengine_unmap_put(unmap);
 56			return tx;
 57		}
 58
 59		/* could not get a descriptor, unmap and fall through to
 60		 * the synchronous path
 61		 */
 62		dmaengine_unmap_put(unmap);
 63	}
 64
 65	/* run the operation synchronously */
 66	async_tx_quiesce(&submit->depend_tx);
 67	amul = raid6_gfmul[coef[0]];
 68	bmul = raid6_gfmul[coef[1]];
 69	a = page_address(srcs[0]);
 70	b = page_address(srcs[1]);
 71	c = page_address(dest);
 72
 73	while (len--) {
 74		ax    = amul[*a++];
 75		bx    = bmul[*b++];
 76		*c++ = ax ^ bx;
 77	}
 78
 79	return NULL;
 80}
 81
 82static struct dma_async_tx_descriptor *
 83async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
 84	   struct async_submit_ctl *submit)
 85{
 86	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 87						      &dest, 1, &src, 1, len);
 88	struct dma_device *dma = chan ? chan->device : NULL;
 89	struct dmaengine_unmap_data *unmap = NULL;
 90	const u8 *qmul; /* Q multiplier table */
 91	u8 *d, *s;
 92
 93	if (dma)
 94		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
 95
 96	if (unmap) {
 97		dma_addr_t dma_dest[2];
 98		struct device *dev = dma->dev;
 99		struct dma_async_tx_descriptor *tx;
100		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
101
102		if (submit->flags & ASYNC_TX_FENCE)
103			dma_flags |= DMA_PREP_FENCE;
104		unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
105		unmap->to_cnt++;
106		unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
107		dma_dest[1] = unmap->addr[1];
108		unmap->bidi_cnt++;
109		unmap->len = len;
110
111		/* this looks funny, but the engine looks for Q at
112		 * dma_dest[1] and ignores dma_dest[0] as a dest
113		 * due to DMA_PREP_PQ_DISABLE_P
114		 */
115		tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
116					     1, &coef, len, dma_flags);
117
118		if (tx) {
119			dma_set_unmap(tx, unmap);
120			dmaengine_unmap_put(unmap);
121			async_tx_submit(chan, tx, submit);
122			return tx;
123		}
124
125		/* could not get a descriptor, unmap and fall through to
126		 * the synchronous path
127		 */
128		dmaengine_unmap_put(unmap);
129	}
130
131	/* no channel available, or failed to allocate a descriptor, so
132	 * perform the operation synchronously
133	 */
134	async_tx_quiesce(&submit->depend_tx);
135	qmul  = raid6_gfmul[coef];
136	d = page_address(dest);
137	s = page_address(src);
138
139	while (len--)
140		*d++ = qmul[*s++];
141
142	return NULL;
143}
144
145static struct dma_async_tx_descriptor *
146__2data_recov_4(int disks, size_t bytes, int faila, int failb,
147		struct page **blocks, struct async_submit_ctl *submit)
148{
149	struct dma_async_tx_descriptor *tx = NULL;
150	struct page *p, *q, *a, *b;
151	struct page *srcs[2];
152	unsigned char coef[2];
153	enum async_tx_flags flags = submit->flags;
154	dma_async_tx_callback cb_fn = submit->cb_fn;
155	void *cb_param = submit->cb_param;
156	void *scribble = submit->scribble;
157
158	p = blocks[disks-2];
159	q = blocks[disks-1];
160
161	a = blocks[faila];
162	b = blocks[failb];
163
164	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
165	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
166	srcs[0] = p;
167	srcs[1] = q;
168	coef[0] = raid6_gfexi[failb-faila];
169	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
170	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
171	tx = async_sum_product(b, srcs, coef, bytes, submit);
172
173	/* Dy = P+Pxy+Dx */
174	srcs[0] = p;
175	srcs[1] = b;
176	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
177			  cb_param, scribble);
178	tx = async_xor(a, srcs, 0, 2, bytes, submit);
179
180	return tx;
181
182}
183
184static struct dma_async_tx_descriptor *
185__2data_recov_5(int disks, size_t bytes, int faila, int failb,
186		struct page **blocks, struct async_submit_ctl *submit)
187{
188	struct dma_async_tx_descriptor *tx = NULL;
189	struct page *p, *q, *g, *dp, *dq;
190	struct page *srcs[2];
191	unsigned char coef[2];
192	enum async_tx_flags flags = submit->flags;
193	dma_async_tx_callback cb_fn = submit->cb_fn;
194	void *cb_param = submit->cb_param;
195	void *scribble = submit->scribble;
196	int good_srcs, good, i;
197
198	good_srcs = 0;
199	good = -1;
200	for (i = 0; i < disks-2; i++) {
201		if (blocks[i] == NULL)
202			continue;
203		if (i == faila || i == failb)
204			continue;
205		good = i;
206		good_srcs++;
207	}
208	BUG_ON(good_srcs > 1);
209
210	p = blocks[disks-2];
211	q = blocks[disks-1];
212	g = blocks[good];
213
214	/* Compute syndrome with zero for the missing data pages
215	 * Use the dead data pages as temporary storage for delta p and
216	 * delta q
217	 */
218	dp = blocks[faila];
219	dq = blocks[failb];
220
221	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
222	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
223	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
224	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
225
226	/* compute P + Pxy */
227	srcs[0] = dp;
228	srcs[1] = p;
229	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
230			  NULL, NULL, scribble);
231	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
232
233	/* compute Q + Qxy */
234	srcs[0] = dq;
235	srcs[1] = q;
236	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
237			  NULL, NULL, scribble);
238	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
239
240	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
241	srcs[0] = dp;
242	srcs[1] = dq;
243	coef[0] = raid6_gfexi[failb-faila];
244	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
245	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
246	tx = async_sum_product(dq, srcs, coef, bytes, submit);
247
248	/* Dy = P+Pxy+Dx */
249	srcs[0] = dp;
250	srcs[1] = dq;
251	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
252			  cb_param, scribble);
253	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
254
255	return tx;
256}
257
258static struct dma_async_tx_descriptor *
259__2data_recov_n(int disks, size_t bytes, int faila, int failb,
260	      struct page **blocks, struct async_submit_ctl *submit)
261{
262	struct dma_async_tx_descriptor *tx = NULL;
263	struct page *p, *q, *dp, *dq;
264	struct page *srcs[2];
265	unsigned char coef[2];
266	enum async_tx_flags flags = submit->flags;
267	dma_async_tx_callback cb_fn = submit->cb_fn;
268	void *cb_param = submit->cb_param;
269	void *scribble = submit->scribble;
270
271	p = blocks[disks-2];
272	q = blocks[disks-1];
273
274	/* Compute syndrome with zero for the missing data pages
275	 * Use the dead data pages as temporary storage for
276	 * delta p and delta q
277	 */
278	dp = blocks[faila];
279	blocks[faila] = NULL;
280	blocks[disks-2] = dp;
281	dq = blocks[failb];
282	blocks[failb] = NULL;
283	blocks[disks-1] = dq;
284
285	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
286	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
287
288	/* Restore pointer table */
289	blocks[faila]   = dp;
290	blocks[failb]   = dq;
291	blocks[disks-2] = p;
292	blocks[disks-1] = q;
293
294	/* compute P + Pxy */
295	srcs[0] = dp;
296	srcs[1] = p;
297	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
298			  NULL, NULL, scribble);
299	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
300
301	/* compute Q + Qxy */
302	srcs[0] = dq;
303	srcs[1] = q;
304	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
305			  NULL, NULL, scribble);
306	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
307
308	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
309	srcs[0] = dp;
310	srcs[1] = dq;
311	coef[0] = raid6_gfexi[failb-faila];
312	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
313	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
314	tx = async_sum_product(dq, srcs, coef, bytes, submit);
315
316	/* Dy = P+Pxy+Dx */
317	srcs[0] = dp;
318	srcs[1] = dq;
319	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
320			  cb_param, scribble);
321	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
322
323	return tx;
324}
325
326/**
327 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
328 * @disks: number of disks in the RAID-6 array
329 * @bytes: block size
330 * @faila: first failed drive index
331 * @failb: second failed drive index
332 * @blocks: array of source pointers where the last two entries are p and q
333 * @submit: submission/completion modifiers
334 */
335struct dma_async_tx_descriptor *
336async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
337			struct page **blocks, struct async_submit_ctl *submit)
338{
339	void *scribble = submit->scribble;
340	int non_zero_srcs, i;
341
342	BUG_ON(faila == failb);
343	if (failb < faila)
344		swap(faila, failb);
345
346	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
347
348	/* if a dma resource is not available or a scribble buffer is not
349	 * available punt to the synchronous path.  In the 'dma not
350	 * available' case be sure to use the scribble buffer to
351	 * preserve the content of 'blocks' as the caller intended.
352	 */
353	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
354		void **ptrs = scribble ? scribble : (void **) blocks;
355
356		async_tx_quiesce(&submit->depend_tx);
357		for (i = 0; i < disks; i++)
358			if (blocks[i] == NULL)
359				ptrs[i] = (void *) raid6_empty_zero_page;
360			else
361				ptrs[i] = page_address(blocks[i]);
362
363		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
364
365		async_tx_sync_epilog(submit);
366
367		return NULL;
368	}
369
370	non_zero_srcs = 0;
371	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
372		if (blocks[i])
373			non_zero_srcs++;
374	switch (non_zero_srcs) {
375	case 0:
376	case 1:
377		/* There must be at least 2 sources - the failed devices. */
378		BUG();
379
380	case 2:
381		/* dma devices do not uniformly understand a zero source pq
382		 * operation (in contrast to the synchronous case), so
383		 * explicitly handle the special case of a 4 disk array with
384		 * both data disks missing.
385		 */
386		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
387	case 3:
388		/* dma devices do not uniformly understand a single
389		 * source pq operation (in contrast to the synchronous
390		 * case), so explicitly handle the special case of a 5 disk
391		 * array with 2 of 3 data disks missing.
392		 */
393		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
394	default:
395		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
396	}
397}
398EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
399
400/**
401 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
402 * @disks: number of disks in the RAID-6 array
403 * @bytes: block size
404 * @faila: failed drive index
405 * @blocks: array of source pointers where the last two entries are p and q
406 * @submit: submission/completion modifiers
407 */
408struct dma_async_tx_descriptor *
409async_raid6_datap_recov(int disks, size_t bytes, int faila,
410			struct page **blocks, struct async_submit_ctl *submit)
411{
412	struct dma_async_tx_descriptor *tx = NULL;
413	struct page *p, *q, *dq;
414	u8 coef;
415	enum async_tx_flags flags = submit->flags;
416	dma_async_tx_callback cb_fn = submit->cb_fn;
417	void *cb_param = submit->cb_param;
418	void *scribble = submit->scribble;
419	int good_srcs, good, i;
420	struct page *srcs[2];
421
422	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
423
424	/* if a dma resource is not available or a scribble buffer is not
425	 * available punt to the synchronous path.  In the 'dma not
426	 * available' case be sure to use the scribble buffer to
427	 * preserve the content of 'blocks' as the caller intended.
428	 */
429	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
430		void **ptrs = scribble ? scribble : (void **) blocks;
431
432		async_tx_quiesce(&submit->depend_tx);
433		for (i = 0; i < disks; i++)
434			if (blocks[i] == NULL)
435				ptrs[i] = (void*)raid6_empty_zero_page;
436			else
437				ptrs[i] = page_address(blocks[i]);
438
439		raid6_datap_recov(disks, bytes, faila, ptrs);
440
441		async_tx_sync_epilog(submit);
442
443		return NULL;
444	}
445
446	good_srcs = 0;
447	good = -1;
448	for (i = 0; i < disks-2; i++) {
449		if (i == faila)
450			continue;
451		if (blocks[i]) {
452			good = i;
453			good_srcs++;
454			if (good_srcs > 1)
455				break;
456		}
457	}
458	BUG_ON(good_srcs == 0);
459
460	p = blocks[disks-2];
461	q = blocks[disks-1];
462
463	/* Compute syndrome with zero for the missing data page
464	 * Use the dead data page as temporary storage for delta q
465	 */
466	dq = blocks[faila];
467	blocks[faila] = NULL;
468	blocks[disks-1] = dq;
469
470	/* in the 4-disk case we only need to perform a single source
471	 * multiplication with the one good data block.
472	 */
473	if (good_srcs == 1) {
474		struct page *g = blocks[good];
475
476		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
477				  scribble);
478		tx = async_memcpy(p, g, 0, 0, bytes, submit);
479
480		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
481				  scribble);
482		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
483	} else {
484		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
485				  scribble);
486		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
487	}
488
489	/* Restore pointer table */
490	blocks[faila]   = dq;
491	blocks[disks-1] = q;
492
493	/* calculate g^{-faila} */
494	coef = raid6_gfinv[raid6_gfexp[faila]];
495
496	srcs[0] = dq;
497	srcs[1] = q;
498	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
499			  NULL, NULL, scribble);
500	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
501
502	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
503	tx = async_mult(dq, dq, coef, bytes, submit);
504
505	srcs[0] = p;
506	srcs[1] = dq;
507	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
508			  cb_param, scribble);
509	tx = async_xor(p, srcs, 0, 2, bytes, submit);
510
511	return tx;
512}
513EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
514
515MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
516MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
517MODULE_LICENSE("GPL");
v4.6
 
  1/*
  2 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
  3 * Copyright(c) 2009 Intel Corporation
  4 *
  5 * based on raid6recov.c:
  6 *   Copyright 2002 H. Peter Anvin
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms of the GNU General Public License as published by the Free
 10 * Software Foundation; either version 2 of the License, or (at your option)
 11 * any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful, but WITHOUT
 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 16 * more details.
 17 *
 18 * You should have received a copy of the GNU General Public License along with
 19 * this program; if not, write to the Free Software Foundation, Inc., 51
 20 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 21 *
 22 */
 23#include <linux/kernel.h>
 24#include <linux/interrupt.h>
 25#include <linux/module.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/raid/pq.h>
 28#include <linux/async_tx.h>
 29#include <linux/dmaengine.h>
 30
 31static struct dma_async_tx_descriptor *
 32async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
 33		  size_t len, struct async_submit_ctl *submit)
 34{
 35	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 36						      &dest, 1, srcs, 2, len);
 37	struct dma_device *dma = chan ? chan->device : NULL;
 38	struct dmaengine_unmap_data *unmap = NULL;
 39	const u8 *amul, *bmul;
 40	u8 ax, bx;
 41	u8 *a, *b, *c;
 42
 43	if (dma)
 44		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
 45
 46	if (unmap) {
 47		struct device *dev = dma->dev;
 48		dma_addr_t pq[2];
 49		struct dma_async_tx_descriptor *tx;
 50		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
 51
 52		if (submit->flags & ASYNC_TX_FENCE)
 53			dma_flags |= DMA_PREP_FENCE;
 54		unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
 55		unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
 56		unmap->to_cnt = 2;
 57
 58		unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
 59		unmap->bidi_cnt = 1;
 60		/* engine only looks at Q, but expects it to follow P */
 61		pq[1] = unmap->addr[2];
 62
 63		unmap->len = len;
 64		tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
 65					     len, dma_flags);
 66		if (tx) {
 67			dma_set_unmap(tx, unmap);
 68			async_tx_submit(chan, tx, submit);
 69			dmaengine_unmap_put(unmap);
 70			return tx;
 71		}
 72
 73		/* could not get a descriptor, unmap and fall through to
 74		 * the synchronous path
 75		 */
 76		dmaengine_unmap_put(unmap);
 77	}
 78
 79	/* run the operation synchronously */
 80	async_tx_quiesce(&submit->depend_tx);
 81	amul = raid6_gfmul[coef[0]];
 82	bmul = raid6_gfmul[coef[1]];
 83	a = page_address(srcs[0]);
 84	b = page_address(srcs[1]);
 85	c = page_address(dest);
 86
 87	while (len--) {
 88		ax    = amul[*a++];
 89		bx    = bmul[*b++];
 90		*c++ = ax ^ bx;
 91	}
 92
 93	return NULL;
 94}
 95
 96static struct dma_async_tx_descriptor *
 97async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
 98	   struct async_submit_ctl *submit)
 99{
100	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
101						      &dest, 1, &src, 1, len);
102	struct dma_device *dma = chan ? chan->device : NULL;
103	struct dmaengine_unmap_data *unmap = NULL;
104	const u8 *qmul; /* Q multiplier table */
105	u8 *d, *s;
106
107	if (dma)
108		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
109
110	if (unmap) {
111		dma_addr_t dma_dest[2];
112		struct device *dev = dma->dev;
113		struct dma_async_tx_descriptor *tx;
114		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
115
116		if (submit->flags & ASYNC_TX_FENCE)
117			dma_flags |= DMA_PREP_FENCE;
118		unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
119		unmap->to_cnt++;
120		unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
121		dma_dest[1] = unmap->addr[1];
122		unmap->bidi_cnt++;
123		unmap->len = len;
124
125		/* this looks funny, but the engine looks for Q at
126		 * dma_dest[1] and ignores dma_dest[0] as a dest
127		 * due to DMA_PREP_PQ_DISABLE_P
128		 */
129		tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
130					     1, &coef, len, dma_flags);
131
132		if (tx) {
133			dma_set_unmap(tx, unmap);
134			dmaengine_unmap_put(unmap);
135			async_tx_submit(chan, tx, submit);
136			return tx;
137		}
138
139		/* could not get a descriptor, unmap and fall through to
140		 * the synchronous path
141		 */
142		dmaengine_unmap_put(unmap);
143	}
144
145	/* no channel available, or failed to allocate a descriptor, so
146	 * perform the operation synchronously
147	 */
148	async_tx_quiesce(&submit->depend_tx);
149	qmul  = raid6_gfmul[coef];
150	d = page_address(dest);
151	s = page_address(src);
152
153	while (len--)
154		*d++ = qmul[*s++];
155
156	return NULL;
157}
158
159static struct dma_async_tx_descriptor *
160__2data_recov_4(int disks, size_t bytes, int faila, int failb,
161		struct page **blocks, struct async_submit_ctl *submit)
162{
163	struct dma_async_tx_descriptor *tx = NULL;
164	struct page *p, *q, *a, *b;
165	struct page *srcs[2];
166	unsigned char coef[2];
167	enum async_tx_flags flags = submit->flags;
168	dma_async_tx_callback cb_fn = submit->cb_fn;
169	void *cb_param = submit->cb_param;
170	void *scribble = submit->scribble;
171
172	p = blocks[disks-2];
173	q = blocks[disks-1];
174
175	a = blocks[faila];
176	b = blocks[failb];
177
178	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
179	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
180	srcs[0] = p;
181	srcs[1] = q;
182	coef[0] = raid6_gfexi[failb-faila];
183	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
184	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
185	tx = async_sum_product(b, srcs, coef, bytes, submit);
186
187	/* Dy = P+Pxy+Dx */
188	srcs[0] = p;
189	srcs[1] = b;
190	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
191			  cb_param, scribble);
192	tx = async_xor(a, srcs, 0, 2, bytes, submit);
193
194	return tx;
195
196}
197
198static struct dma_async_tx_descriptor *
199__2data_recov_5(int disks, size_t bytes, int faila, int failb,
200		struct page **blocks, struct async_submit_ctl *submit)
201{
202	struct dma_async_tx_descriptor *tx = NULL;
203	struct page *p, *q, *g, *dp, *dq;
204	struct page *srcs[2];
205	unsigned char coef[2];
206	enum async_tx_flags flags = submit->flags;
207	dma_async_tx_callback cb_fn = submit->cb_fn;
208	void *cb_param = submit->cb_param;
209	void *scribble = submit->scribble;
210	int good_srcs, good, i;
211
212	good_srcs = 0;
213	good = -1;
214	for (i = 0; i < disks-2; i++) {
215		if (blocks[i] == NULL)
216			continue;
217		if (i == faila || i == failb)
218			continue;
219		good = i;
220		good_srcs++;
221	}
222	BUG_ON(good_srcs > 1);
223
224	p = blocks[disks-2];
225	q = blocks[disks-1];
226	g = blocks[good];
227
228	/* Compute syndrome with zero for the missing data pages
229	 * Use the dead data pages as temporary storage for delta p and
230	 * delta q
231	 */
232	dp = blocks[faila];
233	dq = blocks[failb];
234
235	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
236	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
237	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
238	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
239
240	/* compute P + Pxy */
241	srcs[0] = dp;
242	srcs[1] = p;
243	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
244			  NULL, NULL, scribble);
245	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
246
247	/* compute Q + Qxy */
248	srcs[0] = dq;
249	srcs[1] = q;
250	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
251			  NULL, NULL, scribble);
252	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
253
254	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
255	srcs[0] = dp;
256	srcs[1] = dq;
257	coef[0] = raid6_gfexi[failb-faila];
258	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
259	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
260	tx = async_sum_product(dq, srcs, coef, bytes, submit);
261
262	/* Dy = P+Pxy+Dx */
263	srcs[0] = dp;
264	srcs[1] = dq;
265	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
266			  cb_param, scribble);
267	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
268
269	return tx;
270}
271
272static struct dma_async_tx_descriptor *
273__2data_recov_n(int disks, size_t bytes, int faila, int failb,
274	      struct page **blocks, struct async_submit_ctl *submit)
275{
276	struct dma_async_tx_descriptor *tx = NULL;
277	struct page *p, *q, *dp, *dq;
278	struct page *srcs[2];
279	unsigned char coef[2];
280	enum async_tx_flags flags = submit->flags;
281	dma_async_tx_callback cb_fn = submit->cb_fn;
282	void *cb_param = submit->cb_param;
283	void *scribble = submit->scribble;
284
285	p = blocks[disks-2];
286	q = blocks[disks-1];
287
288	/* Compute syndrome with zero for the missing data pages
289	 * Use the dead data pages as temporary storage for
290	 * delta p and delta q
291	 */
292	dp = blocks[faila];
293	blocks[faila] = NULL;
294	blocks[disks-2] = dp;
295	dq = blocks[failb];
296	blocks[failb] = NULL;
297	blocks[disks-1] = dq;
298
299	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
300	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
301
302	/* Restore pointer table */
303	blocks[faila]   = dp;
304	blocks[failb]   = dq;
305	blocks[disks-2] = p;
306	blocks[disks-1] = q;
307
308	/* compute P + Pxy */
309	srcs[0] = dp;
310	srcs[1] = p;
311	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
312			  NULL, NULL, scribble);
313	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
314
315	/* compute Q + Qxy */
316	srcs[0] = dq;
317	srcs[1] = q;
318	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
319			  NULL, NULL, scribble);
320	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
321
322	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
323	srcs[0] = dp;
324	srcs[1] = dq;
325	coef[0] = raid6_gfexi[failb-faila];
326	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
327	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
328	tx = async_sum_product(dq, srcs, coef, bytes, submit);
329
330	/* Dy = P+Pxy+Dx */
331	srcs[0] = dp;
332	srcs[1] = dq;
333	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
334			  cb_param, scribble);
335	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
336
337	return tx;
338}
339
340/**
341 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
342 * @disks: number of disks in the RAID-6 array
343 * @bytes: block size
344 * @faila: first failed drive index
345 * @failb: second failed drive index
346 * @blocks: array of source pointers where the last two entries are p and q
347 * @submit: submission/completion modifiers
348 */
349struct dma_async_tx_descriptor *
350async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
351			struct page **blocks, struct async_submit_ctl *submit)
352{
353	void *scribble = submit->scribble;
354	int non_zero_srcs, i;
355
356	BUG_ON(faila == failb);
357	if (failb < faila)
358		swap(faila, failb);
359
360	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
361
362	/* if a dma resource is not available or a scribble buffer is not
363	 * available punt to the synchronous path.  In the 'dma not
364	 * available' case be sure to use the scribble buffer to
365	 * preserve the content of 'blocks' as the caller intended.
366	 */
367	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
368		void **ptrs = scribble ? scribble : (void **) blocks;
369
370		async_tx_quiesce(&submit->depend_tx);
371		for (i = 0; i < disks; i++)
372			if (blocks[i] == NULL)
373				ptrs[i] = (void *) raid6_empty_zero_page;
374			else
375				ptrs[i] = page_address(blocks[i]);
376
377		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
378
379		async_tx_sync_epilog(submit);
380
381		return NULL;
382	}
383
384	non_zero_srcs = 0;
385	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
386		if (blocks[i])
387			non_zero_srcs++;
388	switch (non_zero_srcs) {
389	case 0:
390	case 1:
391		/* There must be at least 2 sources - the failed devices. */
392		BUG();
393
394	case 2:
395		/* dma devices do not uniformly understand a zero source pq
396		 * operation (in contrast to the synchronous case), so
397		 * explicitly handle the special case of a 4 disk array with
398		 * both data disks missing.
399		 */
400		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
401	case 3:
402		/* dma devices do not uniformly understand a single
403		 * source pq operation (in contrast to the synchronous
404		 * case), so explicitly handle the special case of a 5 disk
405		 * array with 2 of 3 data disks missing.
406		 */
407		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
408	default:
409		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
410	}
411}
412EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
413
414/**
415 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
416 * @disks: number of disks in the RAID-6 array
417 * @bytes: block size
418 * @faila: failed drive index
419 * @blocks: array of source pointers where the last two entries are p and q
420 * @submit: submission/completion modifiers
421 */
422struct dma_async_tx_descriptor *
423async_raid6_datap_recov(int disks, size_t bytes, int faila,
424			struct page **blocks, struct async_submit_ctl *submit)
425{
426	struct dma_async_tx_descriptor *tx = NULL;
427	struct page *p, *q, *dq;
428	u8 coef;
429	enum async_tx_flags flags = submit->flags;
430	dma_async_tx_callback cb_fn = submit->cb_fn;
431	void *cb_param = submit->cb_param;
432	void *scribble = submit->scribble;
433	int good_srcs, good, i;
434	struct page *srcs[2];
435
436	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
437
438	/* if a dma resource is not available or a scribble buffer is not
439	 * available punt to the synchronous path.  In the 'dma not
440	 * available' case be sure to use the scribble buffer to
441	 * preserve the content of 'blocks' as the caller intended.
442	 */
443	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
444		void **ptrs = scribble ? scribble : (void **) blocks;
445
446		async_tx_quiesce(&submit->depend_tx);
447		for (i = 0; i < disks; i++)
448			if (blocks[i] == NULL)
449				ptrs[i] = (void*)raid6_empty_zero_page;
450			else
451				ptrs[i] = page_address(blocks[i]);
452
453		raid6_datap_recov(disks, bytes, faila, ptrs);
454
455		async_tx_sync_epilog(submit);
456
457		return NULL;
458	}
459
460	good_srcs = 0;
461	good = -1;
462	for (i = 0; i < disks-2; i++) {
463		if (i == faila)
464			continue;
465		if (blocks[i]) {
466			good = i;
467			good_srcs++;
468			if (good_srcs > 1)
469				break;
470		}
471	}
472	BUG_ON(good_srcs == 0);
473
474	p = blocks[disks-2];
475	q = blocks[disks-1];
476
477	/* Compute syndrome with zero for the missing data page
478	 * Use the dead data page as temporary storage for delta q
479	 */
480	dq = blocks[faila];
481	blocks[faila] = NULL;
482	blocks[disks-1] = dq;
483
484	/* in the 4-disk case we only need to perform a single source
485	 * multiplication with the one good data block.
486	 */
487	if (good_srcs == 1) {
488		struct page *g = blocks[good];
489
490		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
491				  scribble);
492		tx = async_memcpy(p, g, 0, 0, bytes, submit);
493
494		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
495				  scribble);
496		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
497	} else {
498		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
499				  scribble);
500		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
501	}
502
503	/* Restore pointer table */
504	blocks[faila]   = dq;
505	blocks[disks-1] = q;
506
507	/* calculate g^{-faila} */
508	coef = raid6_gfinv[raid6_gfexp[faila]];
509
510	srcs[0] = dq;
511	srcs[1] = q;
512	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
513			  NULL, NULL, scribble);
514	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
515
516	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
517	tx = async_mult(dq, dq, coef, bytes, submit);
518
519	srcs[0] = p;
520	srcs[1] = dq;
521	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
522			  cb_param, scribble);
523	tx = async_xor(p, srcs, 0, 2, bytes, submit);
524
525	return tx;
526}
527EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
528
529MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
530MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
531MODULE_LICENSE("GPL");