Linux Audio

Check our new training course

Loading...
  1/*
  2 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
  3 * Copyright(c) 2009 Intel Corporation
  4 *
  5 * based on raid6recov.c:
  6 *   Copyright 2002 H. Peter Anvin
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms of the GNU General Public License as published by the Free
 10 * Software Foundation; either version 2 of the License, or (at your option)
 11 * any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful, but WITHOUT
 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 16 * more details.
 17 *
 18 * You should have received a copy of the GNU General Public License along with
 19 * this program; if not, write to the Free Software Foundation, Inc., 51
 20 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 21 *
 22 */
 23#include <linux/kernel.h>
 24#include <linux/interrupt.h>
 25#include <linux/module.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/raid/pq.h>
 28#include <linux/async_tx.h>
 29
 30static struct dma_async_tx_descriptor *
 31async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
 32		  size_t len, struct async_submit_ctl *submit)
 33{
 34	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 35						      &dest, 1, srcs, 2, len);
 36	struct dma_device *dma = chan ? chan->device : NULL;
 37	const u8 *amul, *bmul;
 38	u8 ax, bx;
 39	u8 *a, *b, *c;
 40
 41	if (dma) {
 42		dma_addr_t dma_dest[2];
 43		dma_addr_t dma_src[2];
 44		struct device *dev = dma->dev;
 45		struct dma_async_tx_descriptor *tx;
 46		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
 47
 48		if (submit->flags & ASYNC_TX_FENCE)
 49			dma_flags |= DMA_PREP_FENCE;
 50		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
 51		dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
 52		dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
 53		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef,
 54					     len, dma_flags);
 55		if (tx) {
 56			async_tx_submit(chan, tx, submit);
 57			return tx;
 58		}
 59
 60		/* could not get a descriptor, unmap and fall through to
 61		 * the synchronous path
 62		 */
 63		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
 64		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
 65		dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE);
 66	}
 67
 68	/* run the operation synchronously */
 69	async_tx_quiesce(&submit->depend_tx);
 70	amul = raid6_gfmul[coef[0]];
 71	bmul = raid6_gfmul[coef[1]];
 72	a = page_address(srcs[0]);
 73	b = page_address(srcs[1]);
 74	c = page_address(dest);
 75
 76	while (len--) {
 77		ax    = amul[*a++];
 78		bx    = bmul[*b++];
 79		*c++ = ax ^ bx;
 80	}
 81
 82	return NULL;
 83}
 84
 85static struct dma_async_tx_descriptor *
 86async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
 87	   struct async_submit_ctl *submit)
 88{
 89	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 90						      &dest, 1, &src, 1, len);
 91	struct dma_device *dma = chan ? chan->device : NULL;
 92	const u8 *qmul; /* Q multiplier table */
 93	u8 *d, *s;
 94
 95	if (dma) {
 96		dma_addr_t dma_dest[2];
 97		dma_addr_t dma_src[1];
 98		struct device *dev = dma->dev;
 99		struct dma_async_tx_descriptor *tx;
100		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
101
102		if (submit->flags & ASYNC_TX_FENCE)
103			dma_flags |= DMA_PREP_FENCE;
104		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
105		dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
106		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef,
107					     len, dma_flags);
108		if (tx) {
109			async_tx_submit(chan, tx, submit);
110			return tx;
111		}
112
113		/* could not get a descriptor, unmap and fall through to
114		 * the synchronous path
115		 */
116		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
117		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
118	}
119
120	/* no channel available, or failed to allocate a descriptor, so
121	 * perform the operation synchronously
122	 */
123	async_tx_quiesce(&submit->depend_tx);
124	qmul  = raid6_gfmul[coef];
125	d = page_address(dest);
126	s = page_address(src);
127
128	while (len--)
129		*d++ = qmul[*s++];
130
131	return NULL;
132}
133
134static struct dma_async_tx_descriptor *
135__2data_recov_4(int disks, size_t bytes, int faila, int failb,
136		struct page **blocks, struct async_submit_ctl *submit)
137{
138	struct dma_async_tx_descriptor *tx = NULL;
139	struct page *p, *q, *a, *b;
140	struct page *srcs[2];
141	unsigned char coef[2];
142	enum async_tx_flags flags = submit->flags;
143	dma_async_tx_callback cb_fn = submit->cb_fn;
144	void *cb_param = submit->cb_param;
145	void *scribble = submit->scribble;
146
147	p = blocks[disks-2];
148	q = blocks[disks-1];
149
150	a = blocks[faila];
151	b = blocks[failb];
152
153	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
154	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
155	srcs[0] = p;
156	srcs[1] = q;
157	coef[0] = raid6_gfexi[failb-faila];
158	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
159	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
160	tx = async_sum_product(b, srcs, coef, bytes, submit);
161
162	/* Dy = P+Pxy+Dx */
163	srcs[0] = p;
164	srcs[1] = b;
165	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
166			  cb_param, scribble);
167	tx = async_xor(a, srcs, 0, 2, bytes, submit);
168
169	return tx;
170
171}
172
173static struct dma_async_tx_descriptor *
174__2data_recov_5(int disks, size_t bytes, int faila, int failb,
175		struct page **blocks, struct async_submit_ctl *submit)
176{
177	struct dma_async_tx_descriptor *tx = NULL;
178	struct page *p, *q, *g, *dp, *dq;
179	struct page *srcs[2];
180	unsigned char coef[2];
181	enum async_tx_flags flags = submit->flags;
182	dma_async_tx_callback cb_fn = submit->cb_fn;
183	void *cb_param = submit->cb_param;
184	void *scribble = submit->scribble;
185	int good_srcs, good, i;
186
187	good_srcs = 0;
188	good = -1;
189	for (i = 0; i < disks-2; i++) {
190		if (blocks[i] == NULL)
191			continue;
192		if (i == faila || i == failb)
193			continue;
194		good = i;
195		good_srcs++;
196	}
197	BUG_ON(good_srcs > 1);
198
199	p = blocks[disks-2];
200	q = blocks[disks-1];
201	g = blocks[good];
202
203	/* Compute syndrome with zero for the missing data pages
204	 * Use the dead data pages as temporary storage for delta p and
205	 * delta q
206	 */
207	dp = blocks[faila];
208	dq = blocks[failb];
209
210	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
211	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
212	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
213	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
214
215	/* compute P + Pxy */
216	srcs[0] = dp;
217	srcs[1] = p;
218	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
219			  NULL, NULL, scribble);
220	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
221
222	/* compute Q + Qxy */
223	srcs[0] = dq;
224	srcs[1] = q;
225	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
226			  NULL, NULL, scribble);
227	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
228
229	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
230	srcs[0] = dp;
231	srcs[1] = dq;
232	coef[0] = raid6_gfexi[failb-faila];
233	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
234	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
235	tx = async_sum_product(dq, srcs, coef, bytes, submit);
236
237	/* Dy = P+Pxy+Dx */
238	srcs[0] = dp;
239	srcs[1] = dq;
240	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
241			  cb_param, scribble);
242	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
243
244	return tx;
245}
246
247static struct dma_async_tx_descriptor *
248__2data_recov_n(int disks, size_t bytes, int faila, int failb,
249	      struct page **blocks, struct async_submit_ctl *submit)
250{
251	struct dma_async_tx_descriptor *tx = NULL;
252	struct page *p, *q, *dp, *dq;
253	struct page *srcs[2];
254	unsigned char coef[2];
255	enum async_tx_flags flags = submit->flags;
256	dma_async_tx_callback cb_fn = submit->cb_fn;
257	void *cb_param = submit->cb_param;
258	void *scribble = submit->scribble;
259
260	p = blocks[disks-2];
261	q = blocks[disks-1];
262
263	/* Compute syndrome with zero for the missing data pages
264	 * Use the dead data pages as temporary storage for
265	 * delta p and delta q
266	 */
267	dp = blocks[faila];
268	blocks[faila] = NULL;
269	blocks[disks-2] = dp;
270	dq = blocks[failb];
271	blocks[failb] = NULL;
272	blocks[disks-1] = dq;
273
274	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
275	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
276
277	/* Restore pointer table */
278	blocks[faila]   = dp;
279	blocks[failb]   = dq;
280	blocks[disks-2] = p;
281	blocks[disks-1] = q;
282
283	/* compute P + Pxy */
284	srcs[0] = dp;
285	srcs[1] = p;
286	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
287			  NULL, NULL, scribble);
288	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
289
290	/* compute Q + Qxy */
291	srcs[0] = dq;
292	srcs[1] = q;
293	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
294			  NULL, NULL, scribble);
295	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
296
297	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
298	srcs[0] = dp;
299	srcs[1] = dq;
300	coef[0] = raid6_gfexi[failb-faila];
301	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
302	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
303	tx = async_sum_product(dq, srcs, coef, bytes, submit);
304
305	/* Dy = P+Pxy+Dx */
306	srcs[0] = dp;
307	srcs[1] = dq;
308	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
309			  cb_param, scribble);
310	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
311
312	return tx;
313}
314
315/**
316 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
317 * @disks: number of disks in the RAID-6 array
318 * @bytes: block size
319 * @faila: first failed drive index
320 * @failb: second failed drive index
321 * @blocks: array of source pointers where the last two entries are p and q
322 * @submit: submission/completion modifiers
323 */
324struct dma_async_tx_descriptor *
325async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
326			struct page **blocks, struct async_submit_ctl *submit)
327{
328	void *scribble = submit->scribble;
329	int non_zero_srcs, i;
330
331	BUG_ON(faila == failb);
332	if (failb < faila)
333		swap(faila, failb);
334
335	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
336
337	/* if a dma resource is not available or a scribble buffer is not
338	 * available punt to the synchronous path.  In the 'dma not
339	 * available' case be sure to use the scribble buffer to
340	 * preserve the content of 'blocks' as the caller intended.
341	 */
342	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
343		void **ptrs = scribble ? scribble : (void **) blocks;
344
345		async_tx_quiesce(&submit->depend_tx);
346		for (i = 0; i < disks; i++)
347			if (blocks[i] == NULL)
348				ptrs[i] = (void *) raid6_empty_zero_page;
349			else
350				ptrs[i] = page_address(blocks[i]);
351
352		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
353
354		async_tx_sync_epilog(submit);
355
356		return NULL;
357	}
358
359	non_zero_srcs = 0;
360	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
361		if (blocks[i])
362			non_zero_srcs++;
363	switch (non_zero_srcs) {
364	case 0:
365	case 1:
366		/* There must be at least 2 sources - the failed devices. */
367		BUG();
368
369	case 2:
370		/* dma devices do not uniformly understand a zero source pq
371		 * operation (in contrast to the synchronous case), so
372		 * explicitly handle the special case of a 4 disk array with
373		 * both data disks missing.
374		 */
375		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
376	case 3:
377		/* dma devices do not uniformly understand a single
378		 * source pq operation (in contrast to the synchronous
379		 * case), so explicitly handle the special case of a 5 disk
380		 * array with 2 of 3 data disks missing.
381		 */
382		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
383	default:
384		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
385	}
386}
387EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
388
389/**
390 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
391 * @disks: number of disks in the RAID-6 array
392 * @bytes: block size
393 * @faila: failed drive index
394 * @blocks: array of source pointers where the last two entries are p and q
395 * @submit: submission/completion modifiers
396 */
397struct dma_async_tx_descriptor *
398async_raid6_datap_recov(int disks, size_t bytes, int faila,
399			struct page **blocks, struct async_submit_ctl *submit)
400{
401	struct dma_async_tx_descriptor *tx = NULL;
402	struct page *p, *q, *dq;
403	u8 coef;
404	enum async_tx_flags flags = submit->flags;
405	dma_async_tx_callback cb_fn = submit->cb_fn;
406	void *cb_param = submit->cb_param;
407	void *scribble = submit->scribble;
408	int good_srcs, good, i;
409	struct page *srcs[2];
410
411	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
412
413	/* if a dma resource is not available or a scribble buffer is not
414	 * available punt to the synchronous path.  In the 'dma not
415	 * available' case be sure to use the scribble buffer to
416	 * preserve the content of 'blocks' as the caller intended.
417	 */
418	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
419		void **ptrs = scribble ? scribble : (void **) blocks;
420
421		async_tx_quiesce(&submit->depend_tx);
422		for (i = 0; i < disks; i++)
423			if (blocks[i] == NULL)
424				ptrs[i] = (void*)raid6_empty_zero_page;
425			else
426				ptrs[i] = page_address(blocks[i]);
427
428		raid6_datap_recov(disks, bytes, faila, ptrs);
429
430		async_tx_sync_epilog(submit);
431
432		return NULL;
433	}
434
435	good_srcs = 0;
436	good = -1;
437	for (i = 0; i < disks-2; i++) {
438		if (i == faila)
439			continue;
440		if (blocks[i]) {
441			good = i;
442			good_srcs++;
443			if (good_srcs > 1)
444				break;
445		}
446	}
447	BUG_ON(good_srcs == 0);
448
449	p = blocks[disks-2];
450	q = blocks[disks-1];
451
452	/* Compute syndrome with zero for the missing data page
453	 * Use the dead data page as temporary storage for delta q
454	 */
455	dq = blocks[faila];
456	blocks[faila] = NULL;
457	blocks[disks-1] = dq;
458
459	/* in the 4-disk case we only need to perform a single source
460	 * multiplication with the one good data block.
461	 */
462	if (good_srcs == 1) {
463		struct page *g = blocks[good];
464
465		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
466				  scribble);
467		tx = async_memcpy(p, g, 0, 0, bytes, submit);
468
469		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
470				  scribble);
471		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
472	} else {
473		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
474				  scribble);
475		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
476	}
477
478	/* Restore pointer table */
479	blocks[faila]   = dq;
480	blocks[disks-1] = q;
481
482	/* calculate g^{-faila} */
483	coef = raid6_gfinv[raid6_gfexp[faila]];
484
485	srcs[0] = dq;
486	srcs[1] = q;
487	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
488			  NULL, NULL, scribble);
489	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
490
491	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
492	tx = async_mult(dq, dq, coef, bytes, submit);
493
494	srcs[0] = p;
495	srcs[1] = dq;
496	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
497			  cb_param, scribble);
498	tx = async_xor(p, srcs, 0, 2, bytes, submit);
499
500	return tx;
501}
502EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
503
504MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
505MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
506MODULE_LICENSE("GPL");