Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Common time routines among all ppc machines.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   6 * Paul Mackerras' version and mine for PReP and Pmac.
   7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   9 *
  10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  11 * to make clock more stable (2.4.0-test5). The only thing
  12 * that this code assumes is that the timebases have been synchronized
  13 * by firmware on SMP and are never stopped (never do sleep
  14 * on SMP then, nap and doze are OK).
  15 * 
  16 * Speeded up do_gettimeofday by getting rid of references to
  17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  18 *
  19 * TODO (not necessarily in this file):
  20 * - improve precision and reproducibility of timebase frequency
  21 * measurement at boot time.
  22 * - for astronomical applications: add a new function to get
  23 * non ambiguous timestamps even around leap seconds. This needs
  24 * a new timestamp format and a good name.
  25 *
  26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 
 
 
 
 
  28 */
  29
  30#include <linux/errno.h>
  31#include <linux/export.h>
  32#include <linux/sched.h>
  33#include <linux/sched/clock.h>
  34#include <linux/kernel.h>
  35#include <linux/param.h>
  36#include <linux/string.h>
  37#include <linux/mm.h>
  38#include <linux/interrupt.h>
  39#include <linux/timex.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/time.h>
 
  42#include <linux/init.h>
  43#include <linux/profile.h>
  44#include <linux/cpu.h>
  45#include <linux/security.h>
  46#include <linux/percpu.h>
  47#include <linux/rtc.h>
  48#include <linux/jiffies.h>
  49#include <linux/posix-timers.h>
  50#include <linux/irq.h>
  51#include <linux/delay.h>
  52#include <linux/irq_work.h>
  53#include <linux/of_clk.h>
  54#include <linux/suspend.h>
  55#include <linux/sched/cputime.h>
  56#include <linux/processor.h>
  57#include <asm/trace.h>
  58
  59#include <asm/io.h>
 
  60#include <asm/nvram.h>
  61#include <asm/cache.h>
  62#include <asm/machdep.h>
  63#include <linux/uaccess.h>
  64#include <asm/time.h>
  65#include <asm/prom.h>
  66#include <asm/irq.h>
  67#include <asm/div64.h>
  68#include <asm/smp.h>
  69#include <asm/vdso_datapage.h>
  70#include <asm/firmware.h>
  71#include <asm/asm-prototypes.h>
  72
  73/* powerpc clocksource/clockevent code */
  74
  75#include <linux/clockchips.h>
  76#include <linux/timekeeper_internal.h>
  77
  78static u64 rtc_read(struct clocksource *);
  79static struct clocksource clocksource_rtc = {
  80	.name         = "rtc",
  81	.rating       = 400,
  82	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  83	.mask         = CLOCKSOURCE_MASK(64),
  84	.read         = rtc_read,
  85};
  86
  87static u64 timebase_read(struct clocksource *);
  88static struct clocksource clocksource_timebase = {
  89	.name         = "timebase",
  90	.rating       = 400,
  91	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  92	.mask         = CLOCKSOURCE_MASK(64),
  93	.read         = timebase_read,
  94};
  95
  96#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  97u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  98
  99static int decrementer_set_next_event(unsigned long evt,
 100				      struct clock_event_device *dev);
 101static int decrementer_shutdown(struct clock_event_device *evt);
 102
 103struct clock_event_device decrementer_clockevent = {
 104	.name			= "decrementer",
 105	.rating			= 200,
 106	.irq			= 0,
 107	.set_next_event		= decrementer_set_next_event,
 108	.set_state_oneshot_stopped = decrementer_shutdown,
 109	.set_state_shutdown	= decrementer_shutdown,
 110	.tick_resume		= decrementer_shutdown,
 111	.features		= CLOCK_EVT_FEAT_ONESHOT |
 112				  CLOCK_EVT_FEAT_C3STOP,
 113};
 114EXPORT_SYMBOL(decrementer_clockevent);
 115
 116DEFINE_PER_CPU(u64, decrementers_next_tb);
 117static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 118
 119#define XSEC_PER_SEC (1024*1024)
 120
 121#ifdef CONFIG_PPC64
 122#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 123#else
 124/* compute ((xsec << 12) * max) >> 32 */
 125#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 126#endif
 127
 128unsigned long tb_ticks_per_jiffy;
 129unsigned long tb_ticks_per_usec = 100; /* sane default */
 130EXPORT_SYMBOL(tb_ticks_per_usec);
 131unsigned long tb_ticks_per_sec;
 132EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 133
 134DEFINE_SPINLOCK(rtc_lock);
 135EXPORT_SYMBOL_GPL(rtc_lock);
 136
 137static u64 tb_to_ns_scale __read_mostly;
 138static unsigned tb_to_ns_shift __read_mostly;
 139static u64 boot_tb __read_mostly;
 140
 141extern struct timezone sys_tz;
 142static long timezone_offset;
 143
 144unsigned long ppc_proc_freq;
 145EXPORT_SYMBOL_GPL(ppc_proc_freq);
 146unsigned long ppc_tb_freq;
 147EXPORT_SYMBOL_GPL(ppc_tb_freq);
 148
 149bool tb_invalid;
 150
 151#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 152/*
 153 * Factor for converting from cputime_t (timebase ticks) to
 154 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 
 155 */
 
 
 156u64 __cputime_usec_factor;
 157EXPORT_SYMBOL(__cputime_usec_factor);
 
 
 
 
 
 
 
 
 158
 159#ifdef CONFIG_PPC_SPLPAR
 160void (*dtl_consumer)(struct dtl_entry *, u64);
 161#endif
 162
 163static void calc_cputime_factors(void)
 164{
 165	struct div_result res;
 166
 
 
 167	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 168	__cputime_usec_factor = res.result_low;
 
 
 
 
 169}
 170
 171/*
 172 * Read the SPURR on systems that have it, otherwise the PURR,
 173 * or if that doesn't exist return the timebase value passed in.
 174 */
 175static inline unsigned long read_spurr(unsigned long tb)
 176{
 177	if (cpu_has_feature(CPU_FTR_SPURR))
 178		return mfspr(SPRN_SPURR);
 179	if (cpu_has_feature(CPU_FTR_PURR))
 180		return mfspr(SPRN_PURR);
 181	return tb;
 182}
 183
 184#ifdef CONFIG_PPC_SPLPAR
 185
 186#include <asm/dtl.h>
 187
 188/*
 189 * Scan the dispatch trace log and count up the stolen time.
 190 * Should be called with interrupts disabled.
 191 */
 192static u64 scan_dispatch_log(u64 stop_tb)
 193{
 194	u64 i = local_paca->dtl_ridx;
 195	struct dtl_entry *dtl = local_paca->dtl_curr;
 196	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 197	struct lppaca *vpa = local_paca->lppaca_ptr;
 198	u64 tb_delta;
 199	u64 stolen = 0;
 200	u64 dtb;
 201
 202	if (!dtl)
 203		return 0;
 204
 205	if (i == be64_to_cpu(vpa->dtl_idx))
 206		return 0;
 207	while (i < be64_to_cpu(vpa->dtl_idx)) {
 208		dtb = be64_to_cpu(dtl->timebase);
 209		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 210			be32_to_cpu(dtl->ready_to_enqueue_time);
 211		barrier();
 212		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 213			/* buffer has overflowed */
 214			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 215			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 216			continue;
 217		}
 218		if (dtb > stop_tb)
 219			break;
 220		if (dtl_consumer)
 221			dtl_consumer(dtl, i);
 222		stolen += tb_delta;
 223		++i;
 224		++dtl;
 225		if (dtl == dtl_end)
 226			dtl = local_paca->dispatch_log;
 227	}
 228	local_paca->dtl_ridx = i;
 229	local_paca->dtl_curr = dtl;
 230	return stolen;
 231}
 232
 233/*
 234 * Accumulate stolen time by scanning the dispatch trace log.
 235 * Called on entry from user mode.
 236 */
 237void notrace accumulate_stolen_time(void)
 238{
 239	u64 sst, ust;
 240	unsigned long save_irq_soft_mask = irq_soft_mask_return();
 241	struct cpu_accounting_data *acct = &local_paca->accounting;
 242
 243	/* We are called early in the exception entry, before
 244	 * soft/hard_enabled are sync'ed to the expected state
 245	 * for the exception. We are hard disabled but the PACA
 246	 * needs to reflect that so various debug stuff doesn't
 247	 * complain
 248	 */
 249	irq_soft_mask_set(IRQS_DISABLED);
 250
 251	sst = scan_dispatch_log(acct->starttime_user);
 252	ust = scan_dispatch_log(acct->starttime);
 253	acct->stime -= sst;
 254	acct->utime -= ust;
 255	acct->steal_time += ust + sst;
 256
 257	irq_soft_mask_set(save_irq_soft_mask);
 258}
 259
 260static inline u64 calculate_stolen_time(u64 stop_tb)
 261{
 262	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 263		return 0;
 264
 265	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 266		return scan_dispatch_log(stop_tb);
 
 
 267
 268	return 0;
 
 
 269}
 270
 271#else /* CONFIG_PPC_SPLPAR */
 272static inline u64 calculate_stolen_time(u64 stop_tb)
 273{
 274	return 0;
 275}
 276
 277#endif /* CONFIG_PPC_SPLPAR */
 278
 279/*
 280 * Account time for a transition between system, hard irq
 281 * or soft irq state.
 282 */
 283static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
 284					unsigned long now, unsigned long stime)
 285{
 286	unsigned long stime_scaled = 0;
 287#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 288	unsigned long nowscaled, deltascaled;
 289	unsigned long utime, utime_scaled;
 290
 
 291	nowscaled = read_spurr(now);
 292	deltascaled = nowscaled - acct->startspurr;
 293	acct->startspurr = nowscaled;
 294	utime = acct->utime - acct->utime_sspurr;
 295	acct->utime_sspurr = acct->utime;
 
 
 
 
 
 
 
 296
 297	/*
 298	 * Because we don't read the SPURR on every kernel entry/exit,
 299	 * deltascaled includes both user and system SPURR ticks.
 300	 * Apportion these ticks to system SPURR ticks and user
 301	 * SPURR ticks in the same ratio as the system time (delta)
 302	 * and user time (udelta) values obtained from the timebase
 303	 * over the same interval.  The system ticks get accounted here;
 304	 * the user ticks get saved up in paca->user_time_scaled to be
 305	 * used by account_process_tick.
 306	 */
 307	stime_scaled = stime;
 308	utime_scaled = utime;
 309	if (deltascaled != stime + utime) {
 310		if (utime) {
 311			stime_scaled = deltascaled * stime / (stime + utime);
 312			utime_scaled = deltascaled - stime_scaled;
 313		} else {
 314			stime_scaled = deltascaled;
 315		}
 316	}
 317	acct->utime_scaled += utime_scaled;
 318#endif
 319
 320	return stime_scaled;
 321}
 322
 323static unsigned long vtime_delta(struct task_struct *tsk,
 324				 unsigned long *stime_scaled,
 325				 unsigned long *steal_time)
 326{
 327	unsigned long now, stime;
 328	struct cpu_accounting_data *acct = get_accounting(tsk);
 329
 330	WARN_ON_ONCE(!irqs_disabled());
 331
 332	now = mftb();
 333	stime = now - acct->starttime;
 334	acct->starttime = now;
 335
 336	*stime_scaled = vtime_delta_scaled(acct, now, stime);
 337
 338	*steal_time = calculate_stolen_time(now);
 339
 340	return stime;
 341}
 342
 343void vtime_account_kernel(struct task_struct *tsk)
 344{
 345	unsigned long stime, stime_scaled, steal_time;
 346	struct cpu_accounting_data *acct = get_accounting(tsk);
 347
 348	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 349
 350	stime -= min(stime, steal_time);
 351	acct->steal_time += steal_time;
 352
 353	if ((tsk->flags & PF_VCPU) && !irq_count()) {
 354		acct->gtime += stime;
 355#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 356		acct->utime_scaled += stime_scaled;
 357#endif
 358	} else {
 359		if (hardirq_count())
 360			acct->hardirq_time += stime;
 361		else if (in_serving_softirq())
 362			acct->softirq_time += stime;
 363		else
 364			acct->stime += stime;
 365
 366#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 367		acct->stime_scaled += stime_scaled;
 368#endif
 369	}
 370}
 371EXPORT_SYMBOL_GPL(vtime_account_kernel);
 372
 373void vtime_account_idle(struct task_struct *tsk)
 374{
 375	unsigned long stime, stime_scaled, steal_time;
 376	struct cpu_accounting_data *acct = get_accounting(tsk);
 377
 378	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 379	acct->idle_time += stime + steal_time;
 380}
 381
 382static void vtime_flush_scaled(struct task_struct *tsk,
 383			       struct cpu_accounting_data *acct)
 384{
 385#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 386	if (acct->utime_scaled)
 387		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 388	if (acct->stime_scaled)
 389		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 390
 391	acct->utime_scaled = 0;
 392	acct->utime_sspurr = 0;
 393	acct->stime_scaled = 0;
 394#endif
 395}
 396
 397/*
 398 * Account the whole cputime accumulated in the paca
 
 
 399 * Must be called with interrupts disabled.
 400 * Assumes that vtime_account_kernel/idle() has been called
 401 * recently (i.e. since the last entry from usermode) so that
 402 * get_paca()->user_time_scaled is up to date.
 403 */
 404void vtime_flush(struct task_struct *tsk)
 405{
 406	struct cpu_accounting_data *acct = get_accounting(tsk);
 407
 408	if (acct->utime)
 409		account_user_time(tsk, cputime_to_nsecs(acct->utime));
 410
 411	if (acct->gtime)
 412		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 413
 414	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
 415		account_steal_time(cputime_to_nsecs(acct->steal_time));
 416		acct->steal_time = 0;
 417	}
 418
 419	if (acct->idle_time)
 420		account_idle_time(cputime_to_nsecs(acct->idle_time));
 421
 422	if (acct->stime)
 423		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 424					  CPUTIME_SYSTEM);
 425
 426	if (acct->hardirq_time)
 427		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 428					  CPUTIME_IRQ);
 429	if (acct->softirq_time)
 430		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 431					  CPUTIME_SOFTIRQ);
 432
 433	vtime_flush_scaled(tsk, acct);
 434
 435	acct->utime = 0;
 436	acct->gtime = 0;
 437	acct->idle_time = 0;
 438	acct->stime = 0;
 439	acct->hardirq_time = 0;
 440	acct->softirq_time = 0;
 441}
 442
 443#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 444#define calc_cputime_factors()
 445#endif
 446
 447void __delay(unsigned long loops)
 448{
 449	unsigned long start;
 450	int diff;
 451
 452	spin_begin();
 453	if (__USE_RTC()) {
 454		start = get_rtcl();
 455		do {
 456			/* the RTCL register wraps at 1000000000 */
 457			diff = get_rtcl() - start;
 458			if (diff < 0)
 459				diff += 1000000000;
 460			spin_cpu_relax();
 461		} while (diff < loops);
 462	} else if (tb_invalid) {
 463		/*
 464		 * TB is in error state and isn't ticking anymore.
 465		 * HMI handler was unable to recover from TB error.
 466		 * Return immediately, so that kernel won't get stuck here.
 467		 */
 468		spin_cpu_relax();
 469	} else {
 470		start = get_tbl();
 471		while (get_tbl() - start < loops)
 472			spin_cpu_relax();
 
 473	}
 474	spin_end();
 475}
 476EXPORT_SYMBOL(__delay);
 477
 478void udelay(unsigned long usecs)
 479{
 480	__delay(tb_ticks_per_usec * usecs);
 481}
 482EXPORT_SYMBOL(udelay);
 483
 484#ifdef CONFIG_SMP
 485unsigned long profile_pc(struct pt_regs *regs)
 486{
 487	unsigned long pc = instruction_pointer(regs);
 488
 489	if (in_lock_functions(pc))
 490		return regs->link;
 491
 492	return pc;
 493}
 494EXPORT_SYMBOL(profile_pc);
 495#endif
 496
 497#ifdef CONFIG_IRQ_WORK
 498
 499/*
 500 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 501 */
 502#ifdef CONFIG_PPC64
 503static inline unsigned long test_irq_work_pending(void)
 504{
 505	unsigned long x;
 506
 507	asm volatile("lbz %0,%1(13)"
 508		: "=r" (x)
 509		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 510	return x;
 511}
 512
 513static inline void set_irq_work_pending_flag(void)
 514{
 515	asm volatile("stb %0,%1(13)" : :
 516		"r" (1),
 517		"i" (offsetof(struct paca_struct, irq_work_pending)));
 518}
 519
 520static inline void clear_irq_work_pending(void)
 521{
 522	asm volatile("stb %0,%1(13)" : :
 523		"r" (0),
 524		"i" (offsetof(struct paca_struct, irq_work_pending)));
 525}
 526
 527#else /* 32-bit */
 528
 529DEFINE_PER_CPU(u8, irq_work_pending);
 530
 531#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 532#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 533#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 534
 535#endif /* 32 vs 64 bit */
 536
 537void arch_irq_work_raise(void)
 538{
 539	/*
 540	 * 64-bit code that uses irq soft-mask can just cause an immediate
 541	 * interrupt here that gets soft masked, if this is called under
 542	 * local_irq_disable(). It might be possible to prevent that happening
 543	 * by noticing interrupts are disabled and setting decrementer pending
 544	 * to be replayed when irqs are enabled. The problem there is that
 545	 * tracing can call irq_work_raise, including in code that does low
 546	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
 547	 * which could get tangled up if we're messing with the same state
 548	 * here.
 549	 */
 550	preempt_disable();
 551	set_irq_work_pending_flag();
 552	set_dec(1);
 553	preempt_enable();
 554}
 555
 556#else  /* CONFIG_IRQ_WORK */
 557
 558#define test_irq_work_pending()	0
 559#define clear_irq_work_pending()
 560
 561#endif /* CONFIG_IRQ_WORK */
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563/*
 564 * timer_interrupt - gets called when the decrementer overflows,
 565 * with interrupts disabled.
 566 */
 567void timer_interrupt(struct pt_regs *regs)
 568{
 569	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 570	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 571	struct pt_regs *old_regs;
 572	u64 now;
 
 
 
 
 
 573
 574	/* Some implementations of hotplug will get timer interrupts while
 575	 * offline, just ignore these and we also need to set
 576	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 577	 * don't replay timer interrupt when return, otherwise we'll trap
 578	 * here infinitely :(
 579	 */
 580	if (unlikely(!cpu_online(smp_processor_id()))) {
 581		*next_tb = ~(u64)0;
 582		set_dec(decrementer_max);
 583		return;
 584	}
 585
 586	/* Ensure a positive value is written to the decrementer, or else
 587	 * some CPUs will continue to take decrementer exceptions. When the
 588	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
 589	 * 31 bits, which is about 4 seconds on most systems, which gives
 590	 * the watchdog a chance of catching timer interrupt hard lockups.
 591	 */
 592	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
 593		set_dec(0x7fffffff);
 594	else
 595		set_dec(decrementer_max);
 596
 597	/* Conditionally hard-enable interrupts now that the DEC has been
 598	 * bumped to its maximum value
 599	 */
 600	may_hard_irq_enable();
 601
 602
 603#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 604	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 605		do_IRQ(regs);
 606#endif
 607
 608	old_regs = set_irq_regs(regs);
 609	irq_enter();
 610	trace_timer_interrupt_entry(regs);
 611
 612	if (test_irq_work_pending()) {
 613		clear_irq_work_pending();
 614		irq_work_run();
 615	}
 616
 617	now = get_tb_or_rtc();
 618	if (now >= *next_tb) {
 619		*next_tb = ~(u64)0;
 620		if (evt->event_handler)
 621			evt->event_handler(evt);
 622		__this_cpu_inc(irq_stat.timer_irqs_event);
 623	} else {
 624		now = *next_tb - now;
 625		if (now <= decrementer_max)
 626			set_dec(now);
 627		/* We may have raced with new irq work */
 628		if (test_irq_work_pending())
 629			set_dec(1);
 630		__this_cpu_inc(irq_stat.timer_irqs_others);
 631	}
 632
 633	trace_timer_interrupt_exit(regs);
 634	irq_exit();
 635	set_irq_regs(old_regs);
 636}
 637EXPORT_SYMBOL(timer_interrupt);
 638
 639#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 640void timer_broadcast_interrupt(void)
 
 
 
 
 641{
 642	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 643
 644	*next_tb = ~(u64)0;
 645	tick_receive_broadcast();
 646	__this_cpu_inc(irq_stat.broadcast_irqs_event);
 647}
 648#endif
 649
 650#ifdef CONFIG_SUSPEND
 651static void generic_suspend_disable_irqs(void)
 652{
 653	/* Disable the decrementer, so that it doesn't interfere
 654	 * with suspending.
 655	 */
 656
 657	set_dec(decrementer_max);
 658	local_irq_disable();
 659	set_dec(decrementer_max);
 660}
 661
 662static void generic_suspend_enable_irqs(void)
 663{
 664	local_irq_enable();
 665}
 666
 667/* Overrides the weak version in kernel/power/main.c */
 668void arch_suspend_disable_irqs(void)
 669{
 670	if (ppc_md.suspend_disable_irqs)
 671		ppc_md.suspend_disable_irqs();
 672	generic_suspend_disable_irqs();
 673}
 674
 675/* Overrides the weak version in kernel/power/main.c */
 676void arch_suspend_enable_irqs(void)
 677{
 678	generic_suspend_enable_irqs();
 679	if (ppc_md.suspend_enable_irqs)
 680		ppc_md.suspend_enable_irqs();
 681}
 682#endif
 683
 684unsigned long long tb_to_ns(unsigned long long ticks)
 685{
 686	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 687}
 688EXPORT_SYMBOL_GPL(tb_to_ns);
 689
 690/*
 691 * Scheduler clock - returns current time in nanosec units.
 692 *
 693 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 694 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 695 * are 64-bit unsigned numbers.
 696 */
 697notrace unsigned long long sched_clock(void)
 698{
 699	if (__USE_RTC())
 700		return get_rtc();
 701	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 702}
 703
 704
 705#ifdef CONFIG_PPC_PSERIES
 706
 707/*
 708 * Running clock - attempts to give a view of time passing for a virtualised
 709 * kernels.
 710 * Uses the VTB register if available otherwise a next best guess.
 711 */
 712unsigned long long running_clock(void)
 713{
 714	/*
 715	 * Don't read the VTB as a host since KVM does not switch in host
 716	 * timebase into the VTB when it takes a guest off the CPU, reading the
 717	 * VTB would result in reading 'last switched out' guest VTB.
 718	 *
 719	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 720	 * would be unsafe to rely only on the #ifdef above.
 721	 */
 722	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 723	    cpu_has_feature(CPU_FTR_ARCH_207S))
 724		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 725
 726	/*
 727	 * This is a next best approximation without a VTB.
 728	 * On a host which is running bare metal there should never be any stolen
 729	 * time and on a host which doesn't do any virtualisation TB *should* equal
 730	 * VTB so it makes no difference anyway.
 731	 */
 732	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 733}
 734#endif
 735
 736static int __init get_freq(char *name, int cells, unsigned long *val)
 737{
 738	struct device_node *cpu;
 739	const __be32 *fp;
 740	int found = 0;
 741
 742	/* The cpu node should have timebase and clock frequency properties */
 743	cpu = of_find_node_by_type(NULL, "cpu");
 744
 745	if (cpu) {
 746		fp = of_get_property(cpu, name, NULL);
 747		if (fp) {
 748			found = 1;
 749			*val = of_read_ulong(fp, cells);
 750		}
 751
 752		of_node_put(cpu);
 753	}
 754
 755	return found;
 756}
 757
 758static void start_cpu_decrementer(void)
 759{
 760#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 761	unsigned int tcr;
 762
 763	/* Clear any pending timer interrupts */
 764	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 765
 766	tcr = mfspr(SPRN_TCR);
 767	/*
 768	 * The watchdog may have already been enabled by u-boot. So leave
 769	 * TRC[WP] (Watchdog Period) alone.
 770	 */
 771	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
 772	tcr |= TCR_DIE;		/* Enable decrementer */
 773	mtspr(SPRN_TCR, tcr);
 774#endif
 775}
 776
 777void __init generic_calibrate_decr(void)
 778{
 779	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 780
 781	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 782	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 783
 784		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 785				"(not found)\n");
 786	}
 787
 788	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 789
 790	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 791	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 792
 793		printk(KERN_ERR "WARNING: Estimating processor frequency "
 794				"(not found)\n");
 795	}
 796}
 797
 798int update_persistent_clock64(struct timespec64 now)
 799{
 800	struct rtc_time tm;
 801
 802	if (!ppc_md.set_rtc_time)
 803		return -ENODEV;
 804
 805	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 
 
 806
 807	return ppc_md.set_rtc_time(&tm);
 808}
 809
 810static void __read_persistent_clock(struct timespec64 *ts)
 811{
 812	struct rtc_time tm;
 813	static int first = 1;
 814
 815	ts->tv_nsec = 0;
 816	/* XXX this is a litle fragile but will work okay in the short term */
 817	if (first) {
 818		first = 0;
 819		if (ppc_md.time_init)
 820			timezone_offset = ppc_md.time_init();
 821
 822		/* get_boot_time() isn't guaranteed to be safe to call late */
 823		if (ppc_md.get_boot_time) {
 824			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 825			return;
 826		}
 827	}
 828	if (!ppc_md.get_rtc_time) {
 829		ts->tv_sec = 0;
 830		return;
 831	}
 832	ppc_md.get_rtc_time(&tm);
 833
 834	ts->tv_sec = rtc_tm_to_time64(&tm);
 
 835}
 836
 837void read_persistent_clock64(struct timespec64 *ts)
 838{
 839	__read_persistent_clock(ts);
 840
 841	/* Sanitize it in case real time clock is set below EPOCH */
 842	if (ts->tv_sec < 0) {
 843		ts->tv_sec = 0;
 844		ts->tv_nsec = 0;
 845	}
 846		
 847}
 848
 849/* clocksource code */
 850static notrace u64 rtc_read(struct clocksource *cs)
 851{
 852	return (u64)get_rtc();
 853}
 854
 855static notrace u64 timebase_read(struct clocksource *cs)
 856{
 857	return (u64)get_tb();
 858}
 859
 860
 861void update_vsyscall(struct timekeeper *tk)
 862{
 863	struct timespec64 xt;
 864	struct clocksource *clock = tk->tkr_mono.clock;
 865	u32 mult = tk->tkr_mono.mult;
 866	u32 shift = tk->tkr_mono.shift;
 867	u64 cycle_last = tk->tkr_mono.cycle_last;
 868	u64 new_tb_to_xs, new_stamp_xsec;
 869	u64 frac_sec;
 870
 871	if (clock != &clocksource_timebase)
 872		return;
 873
 874	xt.tv_sec = tk->xtime_sec;
 875	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 876
 877	/* Make userspace gettimeofday spin until we're done. */
 878	++vdso_data->tb_update_count;
 879	smp_mb();
 880
 881	/*
 882	 * This computes ((2^20 / 1e9) * mult) >> shift as a
 883	 * 0.64 fixed-point fraction.
 884	 * The computation in the else clause below won't overflow
 885	 * (as long as the timebase frequency is >= 1.049 MHz)
 886	 * but loses precision because we lose the low bits of the constant
 887	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
 888	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
 889	 * over a second.  (Shift values are usually 22, 23 or 24.)
 890	 * For high frequency clocks such as the 512MHz timebase clock
 891	 * on POWER[6789], the mult value is small (e.g. 32768000)
 892	 * and so we can shift the constant by 16 initially
 893	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
 894	 * remaining shifts after the multiplication, which gives a
 895	 * more accurate result (e.g. with mult = 32768000, shift = 24,
 896	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
 897	 */
 898	if (mult <= 62500000 && clock->shift >= 16)
 899		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
 900	else
 901		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 902
 903	/*
 904	 * Compute the fractional second in units of 2^-32 seconds.
 905	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
 906	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
 907	 * it in units of 2^-32 seconds.
 908	 * We assume shift <= 32 because clocks_calc_mult_shift()
 909	 * generates shift values in the range 0 - 32.
 910	 */
 911	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
 912	do_div(frac_sec, NSEC_PER_SEC);
 913
 914	/*
 915	 * Work out new stamp_xsec value for any legacy users of systemcfg.
 916	 * stamp_xsec is in units of 2^-20 seconds.
 917	 */
 918	new_stamp_xsec = frac_sec >> 12;
 919	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
 920
 921	/*
 922	 * tb_update_count is used to allow the userspace gettimeofday code
 923	 * to assure itself that it sees a consistent view of the tb_to_xs and
 924	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 925	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 926	 * the two values of tb_update_count match and are even then the
 927	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 928	 * loops back and reads them again until this criteria is met.
 
 
 929	 */
 930	vdso_data->tb_orig_stamp = cycle_last;
 931	vdso_data->stamp_xsec = new_stamp_xsec;
 932	vdso_data->tb_to_xs = new_tb_to_xs;
 933	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
 934	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
 935	vdso_data->stamp_xtime_sec = xt.tv_sec;
 936	vdso_data->stamp_xtime_nsec = xt.tv_nsec;
 937	vdso_data->stamp_sec_fraction = frac_sec;
 938	vdso_data->hrtimer_res = hrtimer_resolution;
 939	smp_wmb();
 940	++(vdso_data->tb_update_count);
 941}
 942
 943void update_vsyscall_tz(void)
 944{
 945	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 946	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 947}
 948
 949static void __init clocksource_init(void)
 950{
 951	struct clocksource *clock;
 952
 953	if (__USE_RTC())
 954		clock = &clocksource_rtc;
 955	else
 956		clock = &clocksource_timebase;
 957
 958	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 959		printk(KERN_ERR "clocksource: %s is already registered\n",
 960		       clock->name);
 961		return;
 962	}
 963
 964	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 965	       clock->name, clock->mult, clock->shift);
 966}
 967
 968static int decrementer_set_next_event(unsigned long evt,
 969				      struct clock_event_device *dev)
 970{
 971	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 972	set_dec(evt);
 973
 974	/* We may have raced with new irq work */
 975	if (test_irq_work_pending())
 976		set_dec(1);
 977
 978	return 0;
 979}
 980
 981static int decrementer_shutdown(struct clock_event_device *dev)
 982{
 983	decrementer_set_next_event(decrementer_max, dev);
 984	return 0;
 985}
 986
 
 
 
 
 
 
 
 
 
 987static void register_decrementer_clockevent(int cpu)
 988{
 989	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 990
 991	*dec = decrementer_clockevent;
 992	dec->cpumask = cpumask_of(cpu);
 993
 994	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
 995
 996	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 997		    dec->name, dec->mult, dec->shift, cpu);
 998
 999	/* Set values for KVM, see kvm_emulate_dec() */
1000	decrementer_clockevent.mult = dec->mult;
1001	decrementer_clockevent.shift = dec->shift;
1002}
1003
1004static void enable_large_decrementer(void)
1005{
1006	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1007		return;
1008
1009	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1010		return;
1011
1012	/*
1013	 * If we're running as the hypervisor we need to enable the LD manually
1014	 * otherwise firmware should have done it for us.
1015	 */
1016	if (cpu_has_feature(CPU_FTR_HVMODE))
1017		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1018}
1019
1020static void __init set_decrementer_max(void)
1021{
1022	struct device_node *cpu;
1023	u32 bits = 32;
1024
1025	/* Prior to ISAv3 the decrementer is always 32 bit */
1026	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1027		return;
1028
1029	cpu = of_find_node_by_type(NULL, "cpu");
1030
1031	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1032		if (bits > 64 || bits < 32) {
1033			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1034			bits = 32;
1035		}
1036
1037		/* calculate the signed maximum given this many bits */
1038		decrementer_max = (1ul << (bits - 1)) - 1;
1039	}
1040
1041	of_node_put(cpu);
1042
1043	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1044		bits, decrementer_max);
1045}
 
1046
1047static void __init init_decrementer_clockevent(void)
1048{
1049	register_decrementer_clockevent(smp_processor_id());
1050}
1051
1052void secondary_cpu_time_init(void)
1053{
1054	/* Enable and test the large decrementer for this cpu */
1055	enable_large_decrementer();
1056
1057	/* Start the decrementer on CPUs that have manual control
1058	 * such as BookE
1059	 */
1060	start_cpu_decrementer();
1061
1062	/* FIME: Should make unrelatred change to move snapshot_timebase
1063	 * call here ! */
1064	register_decrementer_clockevent(smp_processor_id());
1065}
1066
1067/* This function is only called on the boot processor */
1068void __init time_init(void)
1069{
1070	struct div_result res;
1071	u64 scale;
1072	unsigned shift;
1073
1074	if (__USE_RTC()) {
1075		/* 601 processor: dec counts down by 128 every 128ns */
1076		ppc_tb_freq = 1000000000;
1077	} else {
1078		/* Normal PowerPC with timebase register */
1079		ppc_md.calibrate_decr();
1080		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1081		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1082		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1083		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1084	}
1085
1086	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1087	tb_ticks_per_sec = ppc_tb_freq;
1088	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1089	calc_cputime_factors();
 
1090
1091	/*
1092	 * Compute scale factor for sched_clock.
1093	 * The calibrate_decr() function has set tb_ticks_per_sec,
1094	 * which is the timebase frequency.
1095	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1096	 * the 128-bit result as a 64.64 fixed-point number.
1097	 * We then shift that number right until it is less than 1.0,
1098	 * giving us the scale factor and shift count to use in
1099	 * sched_clock().
1100	 */
1101	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1102	scale = res.result_low;
1103	for (shift = 0; res.result_high != 0; ++shift) {
1104		scale = (scale >> 1) | (res.result_high << 63);
1105		res.result_high >>= 1;
1106	}
1107	tb_to_ns_scale = scale;
1108	tb_to_ns_shift = shift;
1109	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1110	boot_tb = get_tb_or_rtc();
1111
1112	/* If platform provided a timezone (pmac), we correct the time */
1113	if (timezone_offset) {
1114		sys_tz.tz_minuteswest = -timezone_offset / 60;
1115		sys_tz.tz_dsttime = 0;
1116	}
1117
1118	vdso_data->tb_update_count = 0;
1119	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1120
1121	/* initialise and enable the large decrementer (if we have one) */
1122	set_decrementer_max();
1123	enable_large_decrementer();
1124
1125	/* Start the decrementer on CPUs that have manual control
1126	 * such as BookE
1127	 */
1128	start_cpu_decrementer();
1129
1130	/* Register the clocksource */
1131	clocksource_init();
1132
1133	init_decrementer_clockevent();
1134	tick_setup_hrtimer_broadcast();
1135
 
1136	of_clk_init(NULL);
 
1137}
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139/*
1140 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1141 * result.
1142 */
1143void div128_by_32(u64 dividend_high, u64 dividend_low,
1144		  unsigned divisor, struct div_result *dr)
1145{
1146	unsigned long a, b, c, d;
1147	unsigned long w, x, y, z;
1148	u64 ra, rb, rc;
1149
1150	a = dividend_high >> 32;
1151	b = dividend_high & 0xffffffff;
1152	c = dividend_low >> 32;
1153	d = dividend_low & 0xffffffff;
1154
1155	w = a / divisor;
1156	ra = ((u64)(a - (w * divisor)) << 32) + b;
1157
1158	rb = ((u64) do_div(ra, divisor) << 32) + c;
1159	x = ra;
1160
1161	rc = ((u64) do_div(rb, divisor) << 32) + d;
1162	y = rb;
1163
1164	do_div(rc, divisor);
1165	z = rc;
1166
1167	dr->result_high = ((u64)w << 32) + x;
1168	dr->result_low  = ((u64)y << 32) + z;
1169
1170}
1171
1172/* We don't need to calibrate delay, we use the CPU timebase for that */
1173void calibrate_delay(void)
1174{
1175	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1176	 * as the number of __delay(1) in a jiffy, so make it so
1177	 */
1178	loops_per_jiffy = tb_ticks_per_jiffy;
1179}
1180
1181#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1182static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1183{
1184	ppc_md.get_rtc_time(tm);
1185	return 0;
1186}
1187
1188static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1189{
1190	if (!ppc_md.set_rtc_time)
1191		return -EOPNOTSUPP;
1192
1193	if (ppc_md.set_rtc_time(tm) < 0)
1194		return -EOPNOTSUPP;
1195
1196	return 0;
1197}
1198
1199static const struct rtc_class_ops rtc_generic_ops = {
1200	.read_time = rtc_generic_get_time,
1201	.set_time = rtc_generic_set_time,
1202};
1203
1204static int __init rtc_init(void)
1205{
1206	struct platform_device *pdev;
1207
1208	if (!ppc_md.get_rtc_time)
1209		return -ENODEV;
1210
1211	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1212					     &rtc_generic_ops,
1213					     sizeof(rtc_generic_ops));
1214
1215	return PTR_ERR_OR_ZERO(pdev);
1216}
1217
1218device_initcall(rtc_init);
1219#endif
v4.6
 
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
 
  37#include <linux/kernel.h>
  38#include <linux/param.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/timex.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/time.h>
  45#include <linux/clockchips.h>
  46#include <linux/init.h>
  47#include <linux/profile.h>
  48#include <linux/cpu.h>
  49#include <linux/security.h>
  50#include <linux/percpu.h>
  51#include <linux/rtc.h>
  52#include <linux/jiffies.h>
  53#include <linux/posix-timers.h>
  54#include <linux/irq.h>
  55#include <linux/delay.h>
  56#include <linux/irq_work.h>
  57#include <linux/clk-provider.h>
 
 
 
  58#include <asm/trace.h>
  59
  60#include <asm/io.h>
  61#include <asm/processor.h>
  62#include <asm/nvram.h>
  63#include <asm/cache.h>
  64#include <asm/machdep.h>
  65#include <asm/uaccess.h>
  66#include <asm/time.h>
  67#include <asm/prom.h>
  68#include <asm/irq.h>
  69#include <asm/div64.h>
  70#include <asm/smp.h>
  71#include <asm/vdso_datapage.h>
  72#include <asm/firmware.h>
  73#include <asm/cputime.h>
  74
  75/* powerpc clocksource/clockevent code */
  76
  77#include <linux/clockchips.h>
  78#include <linux/timekeeper_internal.h>
  79
  80static cycle_t rtc_read(struct clocksource *);
  81static struct clocksource clocksource_rtc = {
  82	.name         = "rtc",
  83	.rating       = 400,
  84	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  85	.mask         = CLOCKSOURCE_MASK(64),
  86	.read         = rtc_read,
  87};
  88
  89static cycle_t timebase_read(struct clocksource *);
  90static struct clocksource clocksource_timebase = {
  91	.name         = "timebase",
  92	.rating       = 400,
  93	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  94	.mask         = CLOCKSOURCE_MASK(64),
  95	.read         = timebase_read,
  96};
  97
  98#define DECREMENTER_MAX	0x7fffffff
 
  99
 100static int decrementer_set_next_event(unsigned long evt,
 101				      struct clock_event_device *dev);
 102static int decrementer_shutdown(struct clock_event_device *evt);
 103
 104struct clock_event_device decrementer_clockevent = {
 105	.name			= "decrementer",
 106	.rating			= 200,
 107	.irq			= 0,
 108	.set_next_event		= decrementer_set_next_event,
 
 109	.set_state_shutdown	= decrementer_shutdown,
 110	.tick_resume		= decrementer_shutdown,
 111	.features		= CLOCK_EVT_FEAT_ONESHOT |
 112				  CLOCK_EVT_FEAT_C3STOP,
 113};
 114EXPORT_SYMBOL(decrementer_clockevent);
 115
 116DEFINE_PER_CPU(u64, decrementers_next_tb);
 117static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 118
 119#define XSEC_PER_SEC (1024*1024)
 120
 121#ifdef CONFIG_PPC64
 122#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 123#else
 124/* compute ((xsec << 12) * max) >> 32 */
 125#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 126#endif
 127
 128unsigned long tb_ticks_per_jiffy;
 129unsigned long tb_ticks_per_usec = 100; /* sane default */
 130EXPORT_SYMBOL(tb_ticks_per_usec);
 131unsigned long tb_ticks_per_sec;
 132EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 133
 134DEFINE_SPINLOCK(rtc_lock);
 135EXPORT_SYMBOL_GPL(rtc_lock);
 136
 137static u64 tb_to_ns_scale __read_mostly;
 138static unsigned tb_to_ns_shift __read_mostly;
 139static u64 boot_tb __read_mostly;
 140
 141extern struct timezone sys_tz;
 142static long timezone_offset;
 143
 144unsigned long ppc_proc_freq;
 145EXPORT_SYMBOL_GPL(ppc_proc_freq);
 146unsigned long ppc_tb_freq;
 147EXPORT_SYMBOL_GPL(ppc_tb_freq);
 148
 
 
 149#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 150/*
 151 * Factors for converting from cputime_t (timebase ticks) to
 152 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 153 * These are all stored as 0.64 fixed-point binary fractions.
 154 */
 155u64 __cputime_jiffies_factor;
 156EXPORT_SYMBOL(__cputime_jiffies_factor);
 157u64 __cputime_usec_factor;
 158EXPORT_SYMBOL(__cputime_usec_factor);
 159u64 __cputime_sec_factor;
 160EXPORT_SYMBOL(__cputime_sec_factor);
 161u64 __cputime_clockt_factor;
 162EXPORT_SYMBOL(__cputime_clockt_factor);
 163DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 164DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 165
 166cputime_t cputime_one_jiffy;
 167
 
 168void (*dtl_consumer)(struct dtl_entry *, u64);
 
 169
 170static void calc_cputime_factors(void)
 171{
 172	struct div_result res;
 173
 174	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 175	__cputime_jiffies_factor = res.result_low;
 176	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 177	__cputime_usec_factor = res.result_low;
 178	div128_by_32(1, 0, tb_ticks_per_sec, &res);
 179	__cputime_sec_factor = res.result_low;
 180	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 181	__cputime_clockt_factor = res.result_low;
 182}
 183
 184/*
 185 * Read the SPURR on systems that have it, otherwise the PURR,
 186 * or if that doesn't exist return the timebase value passed in.
 187 */
 188static u64 read_spurr(u64 tb)
 189{
 190	if (cpu_has_feature(CPU_FTR_SPURR))
 191		return mfspr(SPRN_SPURR);
 192	if (cpu_has_feature(CPU_FTR_PURR))
 193		return mfspr(SPRN_PURR);
 194	return tb;
 195}
 196
 197#ifdef CONFIG_PPC_SPLPAR
 198
 
 
 199/*
 200 * Scan the dispatch trace log and count up the stolen time.
 201 * Should be called with interrupts disabled.
 202 */
 203static u64 scan_dispatch_log(u64 stop_tb)
 204{
 205	u64 i = local_paca->dtl_ridx;
 206	struct dtl_entry *dtl = local_paca->dtl_curr;
 207	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 208	struct lppaca *vpa = local_paca->lppaca_ptr;
 209	u64 tb_delta;
 210	u64 stolen = 0;
 211	u64 dtb;
 212
 213	if (!dtl)
 214		return 0;
 215
 216	if (i == be64_to_cpu(vpa->dtl_idx))
 217		return 0;
 218	while (i < be64_to_cpu(vpa->dtl_idx)) {
 219		dtb = be64_to_cpu(dtl->timebase);
 220		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 221			be32_to_cpu(dtl->ready_to_enqueue_time);
 222		barrier();
 223		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 224			/* buffer has overflowed */
 225			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 226			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 227			continue;
 228		}
 229		if (dtb > stop_tb)
 230			break;
 231		if (dtl_consumer)
 232			dtl_consumer(dtl, i);
 233		stolen += tb_delta;
 234		++i;
 235		++dtl;
 236		if (dtl == dtl_end)
 237			dtl = local_paca->dispatch_log;
 238	}
 239	local_paca->dtl_ridx = i;
 240	local_paca->dtl_curr = dtl;
 241	return stolen;
 242}
 243
 244/*
 245 * Accumulate stolen time by scanning the dispatch trace log.
 246 * Called on entry from user mode.
 247 */
 248void accumulate_stolen_time(void)
 249{
 250	u64 sst, ust;
 251
 252	u8 save_soft_enabled = local_paca->soft_enabled;
 253
 254	/* We are called early in the exception entry, before
 255	 * soft/hard_enabled are sync'ed to the expected state
 256	 * for the exception. We are hard disabled but the PACA
 257	 * needs to reflect that so various debug stuff doesn't
 258	 * complain
 259	 */
 260	local_paca->soft_enabled = 0;
 261
 262	sst = scan_dispatch_log(local_paca->starttime_user);
 263	ust = scan_dispatch_log(local_paca->starttime);
 264	local_paca->system_time -= sst;
 265	local_paca->user_time -= ust;
 266	local_paca->stolen_time += ust + sst;
 267
 268	local_paca->soft_enabled = save_soft_enabled;
 269}
 270
 271static inline u64 calculate_stolen_time(u64 stop_tb)
 272{
 273	u64 stolen = 0;
 
 274
 275	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
 276		stolen = scan_dispatch_log(stop_tb);
 277		get_paca()->system_time -= stolen;
 278	}
 279
 280	stolen += get_paca()->stolen_time;
 281	get_paca()->stolen_time = 0;
 282	return stolen;
 283}
 284
 285#else /* CONFIG_PPC_SPLPAR */
 286static inline u64 calculate_stolen_time(u64 stop_tb)
 287{
 288	return 0;
 289}
 290
 291#endif /* CONFIG_PPC_SPLPAR */
 292
 293/*
 294 * Account time for a transition between system, hard irq
 295 * or soft irq state.
 296 */
 297static u64 vtime_delta(struct task_struct *tsk,
 298			u64 *sys_scaled, u64 *stolen)
 299{
 300	u64 now, nowscaled, deltascaled;
 301	u64 udelta, delta, user_scaled;
 302
 303	WARN_ON_ONCE(!irqs_disabled());
 304
 305	now = mftb();
 306	nowscaled = read_spurr(now);
 307	get_paca()->system_time += now - get_paca()->starttime;
 308	get_paca()->starttime = now;
 309	deltascaled = nowscaled - get_paca()->startspurr;
 310	get_paca()->startspurr = nowscaled;
 311
 312	*stolen = calculate_stolen_time(now);
 313
 314	delta = get_paca()->system_time;
 315	get_paca()->system_time = 0;
 316	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 317	get_paca()->utime_sspurr = get_paca()->user_time;
 318
 319	/*
 320	 * Because we don't read the SPURR on every kernel entry/exit,
 321	 * deltascaled includes both user and system SPURR ticks.
 322	 * Apportion these ticks to system SPURR ticks and user
 323	 * SPURR ticks in the same ratio as the system time (delta)
 324	 * and user time (udelta) values obtained from the timebase
 325	 * over the same interval.  The system ticks get accounted here;
 326	 * the user ticks get saved up in paca->user_time_scaled to be
 327	 * used by account_process_tick.
 328	 */
 329	*sys_scaled = delta;
 330	user_scaled = udelta;
 331	if (deltascaled != delta + udelta) {
 332		if (udelta) {
 333			*sys_scaled = deltascaled * delta / (delta + udelta);
 334			user_scaled = deltascaled - *sys_scaled;
 335		} else {
 336			*sys_scaled = deltascaled;
 337		}
 338	}
 339	get_paca()->user_time_scaled += user_scaled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340
 341	return delta;
 342}
 343
 344void vtime_account_system(struct task_struct *tsk)
 345{
 346	u64 delta, sys_scaled, stolen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347
 348	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 349	account_system_time(tsk, 0, delta, sys_scaled);
 350	if (stolen)
 351		account_steal_time(stolen);
 352}
 353EXPORT_SYMBOL_GPL(vtime_account_system);
 354
 355void vtime_account_idle(struct task_struct *tsk)
 356{
 357	u64 delta, sys_scaled, stolen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358
 359	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 360	account_idle_time(delta + stolen);
 
 
 361}
 362
 363/*
 364 * Transfer the user time accumulated in the paca
 365 * by the exception entry and exit code to the generic
 366 * process user time records.
 367 * Must be called with interrupts disabled.
 368 * Assumes that vtime_account_system/idle() has been called
 369 * recently (i.e. since the last entry from usermode) so that
 370 * get_paca()->user_time_scaled is up to date.
 371 */
 372void vtime_account_user(struct task_struct *tsk)
 373{
 374	cputime_t utime, utimescaled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375
 376	utime = get_paca()->user_time;
 377	utimescaled = get_paca()->user_time_scaled;
 378	get_paca()->user_time = 0;
 379	get_paca()->user_time_scaled = 0;
 380	get_paca()->utime_sspurr = 0;
 381	account_user_time(tsk, utime, utimescaled);
 
 
 
 
 
 
 
 
 
 
 
 
 
 382}
 383
 384#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 385#define calc_cputime_factors()
 386#endif
 387
 388void __delay(unsigned long loops)
 389{
 390	unsigned long start;
 391	int diff;
 392
 
 393	if (__USE_RTC()) {
 394		start = get_rtcl();
 395		do {
 396			/* the RTCL register wraps at 1000000000 */
 397			diff = get_rtcl() - start;
 398			if (diff < 0)
 399				diff += 1000000000;
 
 400		} while (diff < loops);
 
 
 
 
 
 
 
 401	} else {
 402		start = get_tbl();
 403		while (get_tbl() - start < loops)
 404			HMT_low();
 405		HMT_medium();
 406	}
 
 407}
 408EXPORT_SYMBOL(__delay);
 409
 410void udelay(unsigned long usecs)
 411{
 412	__delay(tb_ticks_per_usec * usecs);
 413}
 414EXPORT_SYMBOL(udelay);
 415
 416#ifdef CONFIG_SMP
 417unsigned long profile_pc(struct pt_regs *regs)
 418{
 419	unsigned long pc = instruction_pointer(regs);
 420
 421	if (in_lock_functions(pc))
 422		return regs->link;
 423
 424	return pc;
 425}
 426EXPORT_SYMBOL(profile_pc);
 427#endif
 428
 429#ifdef CONFIG_IRQ_WORK
 430
 431/*
 432 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 433 */
 434#ifdef CONFIG_PPC64
 435static inline unsigned long test_irq_work_pending(void)
 436{
 437	unsigned long x;
 438
 439	asm volatile("lbz %0,%1(13)"
 440		: "=r" (x)
 441		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 442	return x;
 443}
 444
 445static inline void set_irq_work_pending_flag(void)
 446{
 447	asm volatile("stb %0,%1(13)" : :
 448		"r" (1),
 449		"i" (offsetof(struct paca_struct, irq_work_pending)));
 450}
 451
 452static inline void clear_irq_work_pending(void)
 453{
 454	asm volatile("stb %0,%1(13)" : :
 455		"r" (0),
 456		"i" (offsetof(struct paca_struct, irq_work_pending)));
 457}
 458
 459#else /* 32-bit */
 460
 461DEFINE_PER_CPU(u8, irq_work_pending);
 462
 463#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 464#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 465#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 466
 467#endif /* 32 vs 64 bit */
 468
 469void arch_irq_work_raise(void)
 470{
 
 
 
 
 
 
 
 
 
 
 
 471	preempt_disable();
 472	set_irq_work_pending_flag();
 473	set_dec(1);
 474	preempt_enable();
 475}
 476
 477#else  /* CONFIG_IRQ_WORK */
 478
 479#define test_irq_work_pending()	0
 480#define clear_irq_work_pending()
 481
 482#endif /* CONFIG_IRQ_WORK */
 483
 484static void __timer_interrupt(void)
 485{
 486	struct pt_regs *regs = get_irq_regs();
 487	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 488	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 489	u64 now;
 490
 491	trace_timer_interrupt_entry(regs);
 492
 493	if (test_irq_work_pending()) {
 494		clear_irq_work_pending();
 495		irq_work_run();
 496	}
 497
 498	now = get_tb_or_rtc();
 499	if (now >= *next_tb) {
 500		*next_tb = ~(u64)0;
 501		if (evt->event_handler)
 502			evt->event_handler(evt);
 503		__this_cpu_inc(irq_stat.timer_irqs_event);
 504	} else {
 505		now = *next_tb - now;
 506		if (now <= DECREMENTER_MAX)
 507			set_dec((int)now);
 508		/* We may have raced with new irq work */
 509		if (test_irq_work_pending())
 510			set_dec(1);
 511		__this_cpu_inc(irq_stat.timer_irqs_others);
 512	}
 513
 514#ifdef CONFIG_PPC64
 515	/* collect purr register values often, for accurate calculations */
 516	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 517		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 518		cu->current_tb = mfspr(SPRN_PURR);
 519	}
 520#endif
 521
 522	trace_timer_interrupt_exit(regs);
 523}
 524
 525/*
 526 * timer_interrupt - gets called when the decrementer overflows,
 527 * with interrupts disabled.
 528 */
 529void timer_interrupt(struct pt_regs * regs)
 530{
 
 
 531	struct pt_regs *old_regs;
 532	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 533
 534	/* Ensure a positive value is written to the decrementer, or else
 535	 * some CPUs will continue to take decrementer exceptions.
 536	 */
 537	set_dec(DECREMENTER_MAX);
 538
 539	/* Some implementations of hotplug will get timer interrupts while
 540	 * offline, just ignore these and we also need to set
 541	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 542	 * don't replay timer interrupt when return, otherwise we'll trap
 543	 * here infinitely :(
 544	 */
 545	if (!cpu_online(smp_processor_id())) {
 546		*next_tb = ~(u64)0;
 
 547		return;
 548	}
 549
 
 
 
 
 
 
 
 
 
 
 
 550	/* Conditionally hard-enable interrupts now that the DEC has been
 551	 * bumped to its maximum value
 552	 */
 553	may_hard_irq_enable();
 554
 555
 556#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 557	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 558		do_IRQ(regs);
 559#endif
 560
 561	old_regs = set_irq_regs(regs);
 562	irq_enter();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563
 564	__timer_interrupt();
 565	irq_exit();
 566	set_irq_regs(old_regs);
 567}
 
 568
 569/*
 570 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 571 * left pending on exit from a KVM guest.  We don't need to do anything
 572 * to clear them, as they are edge-triggered.
 573 */
 574void hdec_interrupt(struct pt_regs *regs)
 575{
 
 
 
 
 
 576}
 
 577
 578#ifdef CONFIG_SUSPEND
 579static void generic_suspend_disable_irqs(void)
 580{
 581	/* Disable the decrementer, so that it doesn't interfere
 582	 * with suspending.
 583	 */
 584
 585	set_dec(DECREMENTER_MAX);
 586	local_irq_disable();
 587	set_dec(DECREMENTER_MAX);
 588}
 589
 590static void generic_suspend_enable_irqs(void)
 591{
 592	local_irq_enable();
 593}
 594
 595/* Overrides the weak version in kernel/power/main.c */
 596void arch_suspend_disable_irqs(void)
 597{
 598	if (ppc_md.suspend_disable_irqs)
 599		ppc_md.suspend_disable_irqs();
 600	generic_suspend_disable_irqs();
 601}
 602
 603/* Overrides the weak version in kernel/power/main.c */
 604void arch_suspend_enable_irqs(void)
 605{
 606	generic_suspend_enable_irqs();
 607	if (ppc_md.suspend_enable_irqs)
 608		ppc_md.suspend_enable_irqs();
 609}
 610#endif
 611
 612unsigned long long tb_to_ns(unsigned long long ticks)
 613{
 614	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 615}
 616EXPORT_SYMBOL_GPL(tb_to_ns);
 617
 618/*
 619 * Scheduler clock - returns current time in nanosec units.
 620 *
 621 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 622 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 623 * are 64-bit unsigned numbers.
 624 */
 625unsigned long long sched_clock(void)
 626{
 627	if (__USE_RTC())
 628		return get_rtc();
 629	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 630}
 631
 632
 633#ifdef CONFIG_PPC_PSERIES
 634
 635/*
 636 * Running clock - attempts to give a view of time passing for a virtualised
 637 * kernels.
 638 * Uses the VTB register if available otherwise a next best guess.
 639 */
 640unsigned long long running_clock(void)
 641{
 642	/*
 643	 * Don't read the VTB as a host since KVM does not switch in host
 644	 * timebase into the VTB when it takes a guest off the CPU, reading the
 645	 * VTB would result in reading 'last switched out' guest VTB.
 646	 *
 647	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 648	 * would be unsafe to rely only on the #ifdef above.
 649	 */
 650	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 651	    cpu_has_feature(CPU_FTR_ARCH_207S))
 652		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 653
 654	/*
 655	 * This is a next best approximation without a VTB.
 656	 * On a host which is running bare metal there should never be any stolen
 657	 * time and on a host which doesn't do any virtualisation TB *should* equal
 658	 * VTB so it makes no difference anyway.
 659	 */
 660	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
 661}
 662#endif
 663
 664static int __init get_freq(char *name, int cells, unsigned long *val)
 665{
 666	struct device_node *cpu;
 667	const __be32 *fp;
 668	int found = 0;
 669
 670	/* The cpu node should have timebase and clock frequency properties */
 671	cpu = of_find_node_by_type(NULL, "cpu");
 672
 673	if (cpu) {
 674		fp = of_get_property(cpu, name, NULL);
 675		if (fp) {
 676			found = 1;
 677			*val = of_read_ulong(fp, cells);
 678		}
 679
 680		of_node_put(cpu);
 681	}
 682
 683	return found;
 684}
 685
 686static void start_cpu_decrementer(void)
 687{
 688#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 
 
 689	/* Clear any pending timer interrupts */
 690	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 691
 692	/* Enable decrementer interrupt */
 693	mtspr(SPRN_TCR, TCR_DIE);
 694#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 
 
 
 
 
 
 695}
 696
 697void __init generic_calibrate_decr(void)
 698{
 699	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 700
 701	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 702	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 703
 704		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 705				"(not found)\n");
 706	}
 707
 708	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 709
 710	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 711	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 712
 713		printk(KERN_ERR "WARNING: Estimating processor frequency "
 714				"(not found)\n");
 715	}
 716}
 717
 718int update_persistent_clock(struct timespec now)
 719{
 720	struct rtc_time tm;
 721
 722	if (!ppc_md.set_rtc_time)
 723		return -ENODEV;
 724
 725	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 726	tm.tm_year -= 1900;
 727	tm.tm_mon -= 1;
 728
 729	return ppc_md.set_rtc_time(&tm);
 730}
 731
 732static void __read_persistent_clock(struct timespec *ts)
 733{
 734	struct rtc_time tm;
 735	static int first = 1;
 736
 737	ts->tv_nsec = 0;
 738	/* XXX this is a litle fragile but will work okay in the short term */
 739	if (first) {
 740		first = 0;
 741		if (ppc_md.time_init)
 742			timezone_offset = ppc_md.time_init();
 743
 744		/* get_boot_time() isn't guaranteed to be safe to call late */
 745		if (ppc_md.get_boot_time) {
 746			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 747			return;
 748		}
 749	}
 750	if (!ppc_md.get_rtc_time) {
 751		ts->tv_sec = 0;
 752		return;
 753	}
 754	ppc_md.get_rtc_time(&tm);
 755
 756	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 757			    tm.tm_hour, tm.tm_min, tm.tm_sec);
 758}
 759
 760void read_persistent_clock(struct timespec *ts)
 761{
 762	__read_persistent_clock(ts);
 763
 764	/* Sanitize it in case real time clock is set below EPOCH */
 765	if (ts->tv_sec < 0) {
 766		ts->tv_sec = 0;
 767		ts->tv_nsec = 0;
 768	}
 769		
 770}
 771
 772/* clocksource code */
 773static cycle_t rtc_read(struct clocksource *cs)
 774{
 775	return (cycle_t)get_rtc();
 776}
 777
 778static cycle_t timebase_read(struct clocksource *cs)
 779{
 780	return (cycle_t)get_tb();
 781}
 782
 783void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
 784			 struct clocksource *clock, u32 mult, cycle_t cycle_last)
 785{
 
 
 
 
 
 786	u64 new_tb_to_xs, new_stamp_xsec;
 787	u32 frac_sec;
 788
 789	if (clock != &clocksource_timebase)
 790		return;
 791
 
 
 
 792	/* Make userspace gettimeofday spin until we're done. */
 793	++vdso_data->tb_update_count;
 794	smp_mb();
 795
 796	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
 797	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 798	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 799	do_div(new_stamp_xsec, 1000000000);
 800	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 801
 802	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 803	/* this is tv_nsec / 1e9 as a 0.32 fraction */
 804	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805
 806	/*
 807	 * tb_update_count is used to allow the userspace gettimeofday code
 808	 * to assure itself that it sees a consistent view of the tb_to_xs and
 809	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 810	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 811	 * the two values of tb_update_count match and are even then the
 812	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 813	 * loops back and reads them again until this criteria is met.
 814	 * We expect the caller to have done the first increment of
 815	 * vdso_data->tb_update_count already.
 816	 */
 817	vdso_data->tb_orig_stamp = cycle_last;
 818	vdso_data->stamp_xsec = new_stamp_xsec;
 819	vdso_data->tb_to_xs = new_tb_to_xs;
 820	vdso_data->wtom_clock_sec = wtm->tv_sec;
 821	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 822	vdso_data->stamp_xtime = *wall_time;
 
 823	vdso_data->stamp_sec_fraction = frac_sec;
 
 824	smp_wmb();
 825	++(vdso_data->tb_update_count);
 826}
 827
 828void update_vsyscall_tz(void)
 829{
 830	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 831	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 832}
 833
 834static void __init clocksource_init(void)
 835{
 836	struct clocksource *clock;
 837
 838	if (__USE_RTC())
 839		clock = &clocksource_rtc;
 840	else
 841		clock = &clocksource_timebase;
 842
 843	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 844		printk(KERN_ERR "clocksource: %s is already registered\n",
 845		       clock->name);
 846		return;
 847	}
 848
 849	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 850	       clock->name, clock->mult, clock->shift);
 851}
 852
 853static int decrementer_set_next_event(unsigned long evt,
 854				      struct clock_event_device *dev)
 855{
 856	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 857	set_dec(evt);
 858
 859	/* We may have raced with new irq work */
 860	if (test_irq_work_pending())
 861		set_dec(1);
 862
 863	return 0;
 864}
 865
 866static int decrementer_shutdown(struct clock_event_device *dev)
 867{
 868	decrementer_set_next_event(DECREMENTER_MAX, dev);
 869	return 0;
 870}
 871
 872/* Interrupt handler for the timer broadcast IPI */
 873void tick_broadcast_ipi_handler(void)
 874{
 875	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 876
 877	*next_tb = get_tb_or_rtc();
 878	__timer_interrupt();
 879}
 880
 881static void register_decrementer_clockevent(int cpu)
 882{
 883	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 884
 885	*dec = decrementer_clockevent;
 886	dec->cpumask = cpumask_of(cpu);
 887
 
 
 888	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 889		    dec->name, dec->mult, dec->shift, cpu);
 890
 891	clockevents_register_device(dec);
 
 
 892}
 893
 894static void __init init_decrementer_clockevent(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895{
 896	int cpu = smp_processor_id();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897
 898	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 899
 900	decrementer_clockevent.max_delta_ns =
 901		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 902	decrementer_clockevent.min_delta_ns =
 903		clockevent_delta2ns(2, &decrementer_clockevent);
 904
 905	register_decrementer_clockevent(cpu);
 
 
 906}
 907
 908void secondary_cpu_time_init(void)
 909{
 
 
 
 910	/* Start the decrementer on CPUs that have manual control
 911	 * such as BookE
 912	 */
 913	start_cpu_decrementer();
 914
 915	/* FIME: Should make unrelatred change to move snapshot_timebase
 916	 * call here ! */
 917	register_decrementer_clockevent(smp_processor_id());
 918}
 919
 920/* This function is only called on the boot processor */
 921void __init time_init(void)
 922{
 923	struct div_result res;
 924	u64 scale;
 925	unsigned shift;
 926
 927	if (__USE_RTC()) {
 928		/* 601 processor: dec counts down by 128 every 128ns */
 929		ppc_tb_freq = 1000000000;
 930	} else {
 931		/* Normal PowerPC with timebase register */
 932		ppc_md.calibrate_decr();
 933		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 934		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 935		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 936		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 937	}
 938
 939	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 940	tb_ticks_per_sec = ppc_tb_freq;
 941	tb_ticks_per_usec = ppc_tb_freq / 1000000;
 942	calc_cputime_factors();
 943	setup_cputime_one_jiffy();
 944
 945	/*
 946	 * Compute scale factor for sched_clock.
 947	 * The calibrate_decr() function has set tb_ticks_per_sec,
 948	 * which is the timebase frequency.
 949	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 950	 * the 128-bit result as a 64.64 fixed-point number.
 951	 * We then shift that number right until it is less than 1.0,
 952	 * giving us the scale factor and shift count to use in
 953	 * sched_clock().
 954	 */
 955	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 956	scale = res.result_low;
 957	for (shift = 0; res.result_high != 0; ++shift) {
 958		scale = (scale >> 1) | (res.result_high << 63);
 959		res.result_high >>= 1;
 960	}
 961	tb_to_ns_scale = scale;
 962	tb_to_ns_shift = shift;
 963	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 964	boot_tb = get_tb_or_rtc();
 965
 966	/* If platform provided a timezone (pmac), we correct the time */
 967	if (timezone_offset) {
 968		sys_tz.tz_minuteswest = -timezone_offset / 60;
 969		sys_tz.tz_dsttime = 0;
 970	}
 971
 972	vdso_data->tb_update_count = 0;
 973	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 974
 
 
 
 
 975	/* Start the decrementer on CPUs that have manual control
 976	 * such as BookE
 977	 */
 978	start_cpu_decrementer();
 979
 980	/* Register the clocksource */
 981	clocksource_init();
 982
 983	init_decrementer_clockevent();
 984	tick_setup_hrtimer_broadcast();
 985
 986#ifdef CONFIG_COMMON_CLK
 987	of_clk_init(NULL);
 988#endif
 989}
 990
 991
 992#define FEBRUARY	2
 993#define	STARTOFTIME	1970
 994#define SECDAY		86400L
 995#define SECYR		(SECDAY * 365)
 996#define	leapyear(year)		((year) % 4 == 0 && \
 997				 ((year) % 100 != 0 || (year) % 400 == 0))
 998#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
 999#define	days_in_month(a) 	(month_days[(a) - 1])
1000
1001static int month_days[12] = {
1002	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1003};
1004
1005void to_tm(int tim, struct rtc_time * tm)
1006{
1007	register int    i;
1008	register long   hms, day;
1009
1010	day = tim / SECDAY;
1011	hms = tim % SECDAY;
1012
1013	/* Hours, minutes, seconds are easy */
1014	tm->tm_hour = hms / 3600;
1015	tm->tm_min = (hms % 3600) / 60;
1016	tm->tm_sec = (hms % 3600) % 60;
1017
1018	/* Number of years in days */
1019	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1020		day -= days_in_year(i);
1021	tm->tm_year = i;
1022
1023	/* Number of months in days left */
1024	if (leapyear(tm->tm_year))
1025		days_in_month(FEBRUARY) = 29;
1026	for (i = 1; day >= days_in_month(i); i++)
1027		day -= days_in_month(i);
1028	days_in_month(FEBRUARY) = 28;
1029	tm->tm_mon = i;
1030
1031	/* Days are what is left over (+1) from all that. */
1032	tm->tm_mday = day + 1;
1033
1034	/*
1035	 * No-one uses the day of the week.
1036	 */
1037	tm->tm_wday = -1;
1038}
1039EXPORT_SYMBOL(to_tm);
1040
1041/*
1042 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1043 * result.
1044 */
1045void div128_by_32(u64 dividend_high, u64 dividend_low,
1046		  unsigned divisor, struct div_result *dr)
1047{
1048	unsigned long a, b, c, d;
1049	unsigned long w, x, y, z;
1050	u64 ra, rb, rc;
1051
1052	a = dividend_high >> 32;
1053	b = dividend_high & 0xffffffff;
1054	c = dividend_low >> 32;
1055	d = dividend_low & 0xffffffff;
1056
1057	w = a / divisor;
1058	ra = ((u64)(a - (w * divisor)) << 32) + b;
1059
1060	rb = ((u64) do_div(ra, divisor) << 32) + c;
1061	x = ra;
1062
1063	rc = ((u64) do_div(rb, divisor) << 32) + d;
1064	y = rb;
1065
1066	do_div(rc, divisor);
1067	z = rc;
1068
1069	dr->result_high = ((u64)w << 32) + x;
1070	dr->result_low  = ((u64)y << 32) + z;
1071
1072}
1073
1074/* We don't need to calibrate delay, we use the CPU timebase for that */
1075void calibrate_delay(void)
1076{
1077	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1078	 * as the number of __delay(1) in a jiffy, so make it so
1079	 */
1080	loops_per_jiffy = tb_ticks_per_jiffy;
1081}
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083static int __init rtc_init(void)
1084{
1085	struct platform_device *pdev;
1086
1087	if (!ppc_md.get_rtc_time)
1088		return -ENODEV;
1089
1090	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
 
 
1091
1092	return PTR_ERR_OR_ZERO(pdev);
1093}
1094
1095device_initcall(rtc_init);