Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   4 *
   5 *  PowerPC version
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 * Copyright (C) 2001 IBM
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  10 *
  11 *  Derived from "arch/i386/kernel/signal.c"
  12 *    Copyright (C) 1991, 1992 Linus Torvalds
  13 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
 
 
 
 
 
  14 */
  15
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/smp.h>
  19#include <linux/kernel.h>
  20#include <linux/signal.h>
  21#include <linux/errno.h>
  22#include <linux/elf.h>
  23#include <linux/ptrace.h>
  24#include <linux/pagemap.h>
  25#include <linux/ratelimit.h>
  26#include <linux/syscalls.h>
  27#ifdef CONFIG_PPC64
 
  28#include <linux/compat.h>
  29#else
  30#include <linux/wait.h>
  31#include <linux/unistd.h>
  32#include <linux/stddef.h>
  33#include <linux/tty.h>
  34#include <linux/binfmts.h>
  35#endif
  36
  37#include <linux/uaccess.h>
  38#include <asm/cacheflush.h>
  39#include <asm/syscalls.h>
  40#include <asm/sigcontext.h>
  41#include <asm/vdso.h>
  42#include <asm/switch_to.h>
  43#include <asm/tm.h>
  44#include <asm/asm-prototypes.h>
  45#ifdef CONFIG_PPC64
  46#include "ppc32.h"
  47#include <asm/unistd.h>
  48#else
  49#include <asm/ucontext.h>
 
  50#endif
  51
  52#include "signal.h"
  53
  54
  55#ifdef CONFIG_PPC64
 
 
 
 
  56#define old_sigaction	old_sigaction32
  57#define sigcontext	sigcontext32
  58#define mcontext	mcontext32
  59#define ucontext	ucontext32
  60
  61#define __save_altstack __compat_save_altstack
  62
  63/*
  64 * Userspace code may pass a ucontext which doesn't include VSX added
  65 * at the end.  We need to check for this case.
  66 */
  67#define UCONTEXTSIZEWITHOUTVSX \
  68		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  69
  70/*
  71 * Returning 0 means we return to userspace via
  72 * ret_from_except and thus restore all user
  73 * registers from *regs.  This is what we need
  74 * to do when a signal has been delivered.
  75 */
  76
  77#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  78#undef __SIGNAL_FRAMESIZE
  79#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  80#undef ELF_NVRREG
  81#define ELF_NVRREG	ELF_NVRREG32
  82
  83/*
  84 * Functions for flipping sigsets (thanks to brain dead generic
  85 * implementation that makes things simple for little endian only)
  86 */
  87static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  88{
  89	return put_compat_sigset(uset, set, sizeof(*uset));
 
 
 
 
 
 
 
 
 
 
 
 
  90}
  91
  92static inline int get_sigset_t(sigset_t *set,
  93			       const compat_sigset_t __user *uset)
  94{
  95	return get_compat_sigset(set, uset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96}
  97
  98#define to_user_ptr(p)		ptr_to_compat(p)
  99#define from_user_ptr(p)	compat_ptr(p)
 100
 101static inline int save_general_regs(struct pt_regs *regs,
 102		struct mcontext __user *frame)
 103{
 104	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 105	int val, i;
 106
 107	WARN_ON(!FULL_REGS(regs));
 108
 109	for (i = 0; i <= PT_RESULT; i ++) {
 110		/* Force usr to alway see softe as 1 (interrupts enabled) */
 111		if (i == PT_SOFTE)
 112			val = 1;
 113		else
 114			val = gregs[i];
 115
 116		if (__put_user(val, &frame->mc_gregs[i]))
 117			return -EFAULT;
 118	}
 119	return 0;
 120}
 121
 122static inline int restore_general_regs(struct pt_regs *regs,
 123		struct mcontext __user *sr)
 124{
 125	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 126	int i;
 127
 128	for (i = 0; i <= PT_RESULT; i++) {
 129		if ((i == PT_MSR) || (i == PT_SOFTE))
 130			continue;
 131		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 132			return -EFAULT;
 133	}
 134	return 0;
 135}
 136
 137#else /* CONFIG_PPC64 */
 138
 139#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 140
 141static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 142{
 143	return copy_to_user(uset, set, sizeof(*uset));
 144}
 145
 146static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 147{
 148	return copy_from_user(set, uset, sizeof(*uset));
 149}
 150
 151#define to_user_ptr(p)		((unsigned long)(p))
 152#define from_user_ptr(p)	((void __user *)(p))
 153
 154static inline int save_general_regs(struct pt_regs *regs,
 155		struct mcontext __user *frame)
 156{
 157	WARN_ON(!FULL_REGS(regs));
 158	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 159}
 160
 161static inline int restore_general_regs(struct pt_regs *regs,
 162		struct mcontext __user *sr)
 163{
 164	/* copy up to but not including MSR */
 165	if (__copy_from_user(regs, &sr->mc_gregs,
 166				PT_MSR * sizeof(elf_greg_t)))
 167		return -EFAULT;
 168	/* copy from orig_r3 (the word after the MSR) up to the end */
 169	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 170				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 171		return -EFAULT;
 172	return 0;
 173}
 174#endif
 175
 176/*
 177 * When we have signals to deliver, we set up on the
 178 * user stack, going down from the original stack pointer:
 179 *	an ABI gap of 56 words
 180 *	an mcontext struct
 181 *	a sigcontext struct
 182 *	a gap of __SIGNAL_FRAMESIZE bytes
 183 *
 184 * Each of these things must be a multiple of 16 bytes in size. The following
 185 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 186 *
 187 */
 188struct sigframe {
 189	struct sigcontext sctx;		/* the sigcontext */
 190	struct mcontext	mctx;		/* all the register values */
 191#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 192	struct sigcontext sctx_transact;
 193	struct mcontext	mctx_transact;
 194#endif
 195	/*
 196	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 197	 * regs and 18 fp regs below sp before decrementing it.
 198	 */
 199	int			abigap[56];
 200};
 201
 202/* We use the mc_pad field for the signal return trampoline. */
 203#define tramp	mc_pad
 204
 205/*
 206 *  When we have rt signals to deliver, we set up on the
 207 *  user stack, going down from the original stack pointer:
 208 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 209 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 210 *  (the +16 is to get the siginfo and ucontext in the same
 211 *  positions as in older kernels).
 212 *
 213 *  Each of these things must be a multiple of 16 bytes in size.
 214 *
 215 */
 216struct rt_sigframe {
 217#ifdef CONFIG_PPC64
 218	compat_siginfo_t info;
 219#else
 220	struct siginfo info;
 221#endif
 222	struct ucontext	uc;
 223#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 224	struct ucontext	uc_transact;
 225#endif
 226	/*
 227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 228	 * regs and 18 fp regs below sp before decrementing it.
 229	 */
 230	int			abigap[56];
 231};
 232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233/*
 234 * Save the current user registers on the user stack.
 235 * We only save the altivec/spe registers if the process has used
 236 * altivec/spe instructions at some point.
 237 */
 238static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 239			  struct mcontext __user *tm_frame, int sigret,
 240			  int ctx_has_vsx_region)
 241{
 242	unsigned long msr = regs->msr;
 243
 244	/* Make sure floating point registers are stored in regs */
 245	flush_fp_to_thread(current);
 246
 247	/* save general registers */
 248	if (save_general_regs(regs, frame))
 249		return 1;
 250
 251#ifdef CONFIG_ALTIVEC
 252	/* save altivec registers */
 253	if (current->thread.used_vr) {
 254		flush_altivec_to_thread(current);
 255		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 256				   ELF_NVRREG * sizeof(vector128)))
 257			return 1;
 258		/* set MSR_VEC in the saved MSR value to indicate that
 259		   frame->mc_vregs contains valid data */
 260		msr |= MSR_VEC;
 261	}
 262	/* else assert((regs->msr & MSR_VEC) == 0) */
 263
 264	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 265	 * use altivec. Since VSCR only contains 32 bits saved in the least
 266	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 267	 * most significant bits of that same vector. --BenH
 268	 * Note that the current VRSAVE value is in the SPR at this point.
 269	 */
 270	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 271		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 272	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 273		return 1;
 274#endif /* CONFIG_ALTIVEC */
 275	if (copy_fpr_to_user(&frame->mc_fregs, current))
 276		return 1;
 277
 278	/*
 279	 * Clear the MSR VSX bit to indicate there is no valid state attached
 280	 * to this context, except in the specific case below where we set it.
 281	 */
 282	msr &= ~MSR_VSX;
 283#ifdef CONFIG_VSX
 284	/*
 285	 * Copy VSR 0-31 upper half from thread_struct to local
 286	 * buffer, then write that to userspace.  Also set MSR_VSX in
 287	 * the saved MSR value to indicate that frame->mc_vregs
 288	 * contains valid data
 289	 */
 290	if (current->thread.used_vsr && ctx_has_vsx_region) {
 291		flush_vsx_to_thread(current);
 292		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 293			return 1;
 294		msr |= MSR_VSX;
 295	}
 296#endif /* CONFIG_VSX */
 297#ifdef CONFIG_SPE
 298	/* save spe registers */
 299	if (current->thread.used_spe) {
 300		flush_spe_to_thread(current);
 301		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 302				   ELF_NEVRREG * sizeof(u32)))
 303			return 1;
 304		/* set MSR_SPE in the saved MSR value to indicate that
 305		   frame->mc_vregs contains valid data */
 306		msr |= MSR_SPE;
 307	}
 308	/* else assert((regs->msr & MSR_SPE) == 0) */
 309
 310	/* We always copy to/from spefscr */
 311	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 312		return 1;
 313#endif /* CONFIG_SPE */
 314
 315	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 316		return 1;
 317	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 318	 * can check it on the restore to see if TM is active
 319	 */
 320	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 321		return 1;
 322
 323	if (sigret) {
 324		/* Set up the sigreturn trampoline: li 0,sigret; sc */
 325		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
 326		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
 327			return 1;
 328		flush_icache_range((unsigned long) &frame->tramp[0],
 329				   (unsigned long) &frame->tramp[2]);
 330	}
 331
 332	return 0;
 333}
 334
 335#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 336/*
 337 * Save the current user registers on the user stack.
 338 * We only save the altivec/spe registers if the process has used
 339 * altivec/spe instructions at some point.
 340 * We also save the transactional registers to a second ucontext in the
 341 * frame.
 342 *
 343 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 344 */
 345static int save_tm_user_regs(struct pt_regs *regs,
 346			     struct mcontext __user *frame,
 347			     struct mcontext __user *tm_frame, int sigret,
 348			     unsigned long msr)
 349{
 350	WARN_ON(tm_suspend_disabled);
 
 
 
 
 
 
 
 
 
 
 351
 352	/* Save both sets of general registers */
 353	if (save_general_regs(&current->thread.ckpt_regs, frame)
 354	    || save_general_regs(regs, tm_frame))
 355		return 1;
 356
 357	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 358	 * of the transactional mcontext.  This way we have a backward-compatible
 359	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 360	 * also look at what type of transaction (T or S) was active at the
 361	 * time of the signal.
 362	 */
 363	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 364		return 1;
 365
 366#ifdef CONFIG_ALTIVEC
 367	/* save altivec registers */
 368	if (current->thread.used_vr) {
 369		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 
 370				   ELF_NVRREG * sizeof(vector128)))
 371			return 1;
 372		if (msr & MSR_VEC) {
 373			if (__copy_to_user(&tm_frame->mc_vregs,
 374					   &current->thread.vr_state,
 375					   ELF_NVRREG * sizeof(vector128)))
 376				return 1;
 377		} else {
 378			if (__copy_to_user(&tm_frame->mc_vregs,
 379					   &current->thread.ckvr_state,
 380					   ELF_NVRREG * sizeof(vector128)))
 381				return 1;
 382		}
 383
 384		/* set MSR_VEC in the saved MSR value to indicate that
 385		 * frame->mc_vregs contains valid data
 386		 */
 387		msr |= MSR_VEC;
 388	}
 389
 390	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 391	 * use altivec. Since VSCR only contains 32 bits saved in the least
 392	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 393	 * most significant bits of that same vector. --BenH
 394	 */
 395	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 396		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 397	if (__put_user(current->thread.ckvrsave,
 398		       (u32 __user *)&frame->mc_vregs[32]))
 399		return 1;
 400	if (msr & MSR_VEC) {
 401		if (__put_user(current->thread.vrsave,
 402			       (u32 __user *)&tm_frame->mc_vregs[32]))
 403			return 1;
 404	} else {
 405		if (__put_user(current->thread.ckvrsave,
 406			       (u32 __user *)&tm_frame->mc_vregs[32]))
 407			return 1;
 408	}
 409#endif /* CONFIG_ALTIVEC */
 410
 411	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
 412		return 1;
 413	if (msr & MSR_FP) {
 414		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 415			return 1;
 416	} else {
 417		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
 418			return 1;
 419	}
 420
 421#ifdef CONFIG_VSX
 422	/*
 423	 * Copy VSR 0-31 upper half from thread_struct to local
 424	 * buffer, then write that to userspace.  Also set MSR_VSX in
 425	 * the saved MSR value to indicate that frame->mc_vregs
 426	 * contains valid data
 427	 */
 428	if (current->thread.used_vsr) {
 429		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
 
 430			return 1;
 431		if (msr & MSR_VSX) {
 432			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
 433						      current))
 434				return 1;
 435		} else {
 436			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
 437				return 1;
 438		}
 439
 440		msr |= MSR_VSX;
 441	}
 442#endif /* CONFIG_VSX */
 443#ifdef CONFIG_SPE
 444	/* SPE regs are not checkpointed with TM, so this section is
 445	 * simply the same as in save_user_regs().
 446	 */
 447	if (current->thread.used_spe) {
 448		flush_spe_to_thread(current);
 449		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 450				   ELF_NEVRREG * sizeof(u32)))
 451			return 1;
 452		/* set MSR_SPE in the saved MSR value to indicate that
 453		 * frame->mc_vregs contains valid data */
 454		msr |= MSR_SPE;
 455	}
 456
 457	/* We always copy to/from spefscr */
 458	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 459		return 1;
 460#endif /* CONFIG_SPE */
 461
 462	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 463		return 1;
 464	if (sigret) {
 465		/* Set up the sigreturn trampoline: li 0,sigret; sc */
 466		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
 467		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
 468			return 1;
 469		flush_icache_range((unsigned long) &frame->tramp[0],
 470				   (unsigned long) &frame->tramp[2]);
 471	}
 472
 473	return 0;
 474}
 475#endif
 476
 477/*
 478 * Restore the current user register values from the user stack,
 479 * (except for MSR).
 480 */
 481static long restore_user_regs(struct pt_regs *regs,
 482			      struct mcontext __user *sr, int sig)
 483{
 484	long err;
 485	unsigned int save_r2 = 0;
 486	unsigned long msr;
 487#ifdef CONFIG_VSX
 488	int i;
 489#endif
 490
 491	/*
 492	 * restore general registers but not including MSR or SOFTE. Also
 493	 * take care of keeping r2 (TLS) intact if not a signal
 494	 */
 495	if (!sig)
 496		save_r2 = (unsigned int)regs->gpr[2];
 497	err = restore_general_regs(regs, sr);
 498	set_trap_norestart(regs);
 499	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 500	if (!sig)
 501		regs->gpr[2] = (unsigned long) save_r2;
 502	if (err)
 503		return 1;
 504
 505	/* if doing signal return, restore the previous little-endian mode */
 506	if (sig)
 507		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 508
 509#ifdef CONFIG_ALTIVEC
 510	/*
 511	 * Force the process to reload the altivec registers from
 512	 * current->thread when it next does altivec instructions
 513	 */
 514	regs->msr &= ~MSR_VEC;
 515	if (msr & MSR_VEC) {
 516		/* restore altivec registers from the stack */
 517		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 518				     sizeof(sr->mc_vregs)))
 519			return 1;
 520		current->thread.used_vr = true;
 521	} else if (current->thread.used_vr)
 522		memset(&current->thread.vr_state, 0,
 523		       ELF_NVRREG * sizeof(vector128));
 524
 525	/* Always get VRSAVE back */
 526	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 527		return 1;
 528	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 529		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 530#endif /* CONFIG_ALTIVEC */
 531	if (copy_fpr_from_user(current, &sr->mc_fregs))
 532		return 1;
 533
 534#ifdef CONFIG_VSX
 535	/*
 536	 * Force the process to reload the VSX registers from
 537	 * current->thread when it next does VSX instruction.
 538	 */
 539	regs->msr &= ~MSR_VSX;
 540	if (msr & MSR_VSX) {
 541		/*
 542		 * Restore altivec registers from the stack to a local
 543		 * buffer, then write this out to the thread_struct
 544		 */
 545		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 546			return 1;
 547		current->thread.used_vsr = true;
 548	} else if (current->thread.used_vsr)
 549		for (i = 0; i < 32 ; i++)
 550			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 551#endif /* CONFIG_VSX */
 552	/*
 553	 * force the process to reload the FP registers from
 554	 * current->thread when it next does FP instructions
 555	 */
 556	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 557
 558#ifdef CONFIG_SPE
 559	/* force the process to reload the spe registers from
 560	   current->thread when it next does spe instructions */
 561	regs->msr &= ~MSR_SPE;
 562	if (msr & MSR_SPE) {
 563		/* restore spe registers from the stack */
 564		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 565				     ELF_NEVRREG * sizeof(u32)))
 566			return 1;
 567		current->thread.used_spe = true;
 568	} else if (current->thread.used_spe)
 569		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 570
 571	/* Always get SPEFSCR back */
 572	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 573		return 1;
 574#endif /* CONFIG_SPE */
 575
 576	return 0;
 577}
 578
 579#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 580/*
 581 * Restore the current user register values from the user stack, except for
 582 * MSR, and recheckpoint the original checkpointed register state for processes
 583 * in transactions.
 584 */
 585static long restore_tm_user_regs(struct pt_regs *regs,
 586				 struct mcontext __user *sr,
 587				 struct mcontext __user *tm_sr)
 588{
 589	long err;
 590	unsigned long msr, msr_hi;
 591#ifdef CONFIG_VSX
 592	int i;
 593#endif
 594
 595	if (tm_suspend_disabled)
 596		return 1;
 597	/*
 598	 * restore general registers but not including MSR or SOFTE. Also
 599	 * take care of keeping r2 (TLS) intact if not a signal.
 600	 * See comment in signal_64.c:restore_tm_sigcontexts();
 601	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 602	 * were set by the signal delivery.
 603	 */
 604	err = restore_general_regs(regs, tm_sr);
 605	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 606
 607	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 608
 609	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 610	if (err)
 611		return 1;
 612
 613	/* Restore the previous little-endian mode */
 614	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 615
 616#ifdef CONFIG_ALTIVEC
 617	regs->msr &= ~MSR_VEC;
 618	if (msr & MSR_VEC) {
 619		/* restore altivec registers from the stack */
 620		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 621				     sizeof(sr->mc_vregs)) ||
 622		    __copy_from_user(&current->thread.vr_state,
 623				     &tm_sr->mc_vregs,
 624				     sizeof(sr->mc_vregs)))
 625			return 1;
 626		current->thread.used_vr = true;
 627	} else if (current->thread.used_vr) {
 628		memset(&current->thread.vr_state, 0,
 629		       ELF_NVRREG * sizeof(vector128));
 630		memset(&current->thread.ckvr_state, 0,
 631		       ELF_NVRREG * sizeof(vector128));
 632	}
 633
 634	/* Always get VRSAVE back */
 635	if (__get_user(current->thread.ckvrsave,
 636		       (u32 __user *)&sr->mc_vregs[32]) ||
 637	    __get_user(current->thread.vrsave,
 638		       (u32 __user *)&tm_sr->mc_vregs[32]))
 639		return 1;
 640	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 641		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 642#endif /* CONFIG_ALTIVEC */
 643
 644	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 645
 646	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 647	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
 648		return 1;
 649
 650#ifdef CONFIG_VSX
 651	regs->msr &= ~MSR_VSX;
 652	if (msr & MSR_VSX) {
 653		/*
 654		 * Restore altivec registers from the stack to a local
 655		 * buffer, then write this out to the thread_struct
 656		 */
 657		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
 658		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
 659			return 1;
 660		current->thread.used_vsr = true;
 661	} else if (current->thread.used_vsr)
 662		for (i = 0; i < 32 ; i++) {
 663			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 664			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 665		}
 666#endif /* CONFIG_VSX */
 667
 668#ifdef CONFIG_SPE
 669	/* SPE regs are not checkpointed with TM, so this section is
 670	 * simply the same as in restore_user_regs().
 671	 */
 672	regs->msr &= ~MSR_SPE;
 673	if (msr & MSR_SPE) {
 674		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 675				     ELF_NEVRREG * sizeof(u32)))
 676			return 1;
 677		current->thread.used_spe = true;
 678	} else if (current->thread.used_spe)
 679		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 680
 681	/* Always get SPEFSCR back */
 682	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 683		       + ELF_NEVRREG))
 684		return 1;
 685#endif /* CONFIG_SPE */
 686
 687	/* Get the top half of the MSR from the user context */
 688	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 689		return 1;
 690	msr_hi <<= 32;
 691	/* If TM bits are set to the reserved value, it's an invalid context */
 692	if (MSR_TM_RESV(msr_hi))
 693		return 1;
 694
 695	/*
 696	 * Disabling preemption, since it is unsafe to be preempted
 697	 * with MSR[TS] set without recheckpointing.
 698	 */
 699	preempt_disable();
 700
 701	/*
 702	 * CAUTION:
 703	 * After regs->MSR[TS] being updated, make sure that get_user(),
 704	 * put_user() or similar functions are *not* called. These
 705	 * functions can generate page faults which will cause the process
 706	 * to be de-scheduled with MSR[TS] set but without calling
 707	 * tm_recheckpoint(). This can cause a bug.
 708	 *
 709	 * Pull in the MSR TM bits from the user context
 710	 */
 711	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
 712	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 713	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 714	 * transactional versions should be loaded.
 715	 */
 716	tm_enable();
 717	/* Make sure the transaction is marked as failed */
 718	current->thread.tm_texasr |= TEXASR_FS;
 719	/* This loads the checkpointed FP/VEC state, if used */
 720	tm_recheckpoint(&current->thread);
 721
 722	/* This loads the speculative FP/VEC state, if used */
 723	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 724	if (msr & MSR_FP) {
 725		load_fp_state(&current->thread.fp_state);
 726		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 727	}
 728#ifdef CONFIG_ALTIVEC
 729	if (msr & MSR_VEC) {
 730		load_vr_state(&current->thread.vr_state);
 731		regs->msr |= MSR_VEC;
 732	}
 733#endif
 734
 735	preempt_enable();
 736
 737	return 0;
 738}
 739#endif
 740
 741#ifdef CONFIG_PPC64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742
 743#define copy_siginfo_to_user	copy_siginfo_to_user32
 744
 
 
 
 
 
 
 
 
 
 745#endif /* CONFIG_PPC64 */
 746
 747/*
 748 * Set up a signal frame for a "real-time" signal handler
 749 * (one which gets siginfo).
 750 */
 751int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 752		       struct task_struct *tsk)
 753{
 754	struct rt_sigframe __user *rt_sf;
 755	struct mcontext __user *frame;
 756	struct mcontext __user *tm_frame = NULL;
 757	void __user *addr;
 758	unsigned long newsp = 0;
 759	int sigret;
 760	unsigned long tramp;
 761	struct pt_regs *regs = tsk->thread.regs;
 762#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 763	/* Save the thread's msr before get_tm_stackpointer() changes it */
 764	unsigned long msr = regs->msr;
 765#endif
 766
 767	BUG_ON(tsk != current);
 768
 769	/* Set up Signal Frame */
 770	/* Put a Real Time Context onto stack */
 771	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
 772	addr = rt_sf;
 773	if (unlikely(rt_sf == NULL))
 774		goto badframe;
 775
 776	/* Put the siginfo & fill in most of the ucontext */
 777	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
 778	    || __put_user(0, &rt_sf->uc.uc_flags)
 779	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
 780	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
 781		    &rt_sf->uc.uc_regs)
 782	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
 783		goto badframe;
 784
 785	/* Save user registers on the stack */
 786	frame = &rt_sf->uc.uc_mcontext;
 787	addr = frame;
 788	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
 789		sigret = 0;
 790		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
 791	} else {
 792		sigret = __NR_rt_sigreturn;
 793		tramp = (unsigned long) frame->tramp;
 794	}
 795
 796#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 797	tm_frame = &rt_sf->uc_transact.uc_mcontext;
 798	if (MSR_TM_ACTIVE(msr)) {
 799		if (__put_user((unsigned long)&rt_sf->uc_transact,
 800			       &rt_sf->uc.uc_link) ||
 801		    __put_user((unsigned long)tm_frame,
 802			       &rt_sf->uc_transact.uc_regs))
 803			goto badframe;
 804		if (save_tm_user_regs(regs, frame, tm_frame, sigret, msr))
 805			goto badframe;
 806	}
 807	else
 808#endif
 809	{
 810		if (__put_user(0, &rt_sf->uc.uc_link))
 811			goto badframe;
 812		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
 813			goto badframe;
 814	}
 815	regs->link = tramp;
 816
 817	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 818
 819	/* create a stack frame for the caller of the handler */
 820	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
 821	addr = (void __user *)regs->gpr[1];
 822	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 823		goto badframe;
 824
 825	/* Fill registers for signal handler */
 826	regs->gpr[1] = newsp;
 827	regs->gpr[3] = ksig->sig;
 828	regs->gpr[4] = (unsigned long) &rt_sf->info;
 829	regs->gpr[5] = (unsigned long) &rt_sf->uc;
 830	regs->gpr[6] = (unsigned long) rt_sf;
 831	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
 832	/* enter the signal handler in native-endian mode */
 833	regs->msr &= ~MSR_LE;
 834	regs->msr |= (MSR_KERNEL & MSR_LE);
 835	return 0;
 836
 837badframe:
 838	if (show_unhandled_signals)
 839		printk_ratelimited(KERN_INFO
 840				   "%s[%d]: bad frame in handle_rt_signal32: "
 841				   "%p nip %08lx lr %08lx\n",
 842				   tsk->comm, tsk->pid,
 843				   addr, regs->nip, regs->link);
 844
 845	return 1;
 846}
 847
 848static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 849{
 850	sigset_t set;
 851	struct mcontext __user *mcp;
 852
 853	if (get_sigset_t(&set, &ucp->uc_sigmask))
 854		return -EFAULT;
 855#ifdef CONFIG_PPC64
 856	{
 857		u32 cmcp;
 858
 859		if (__get_user(cmcp, &ucp->uc_regs))
 860			return -EFAULT;
 861		mcp = (struct mcontext __user *)(u64)cmcp;
 862		/* no need to check access_ok(mcp), since mcp < 4GB */
 863	}
 864#else
 865	if (__get_user(mcp, &ucp->uc_regs))
 866		return -EFAULT;
 867	if (!access_ok(mcp, sizeof(*mcp)))
 868		return -EFAULT;
 869#endif
 870	set_current_blocked(&set);
 871	if (restore_user_regs(regs, mcp, sig))
 872		return -EFAULT;
 873
 874	return 0;
 875}
 876
 877#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 878static int do_setcontext_tm(struct ucontext __user *ucp,
 879			    struct ucontext __user *tm_ucp,
 880			    struct pt_regs *regs)
 881{
 882	sigset_t set;
 883	struct mcontext __user *mcp;
 884	struct mcontext __user *tm_mcp;
 885	u32 cmcp;
 886	u32 tm_cmcp;
 887
 888	if (get_sigset_t(&set, &ucp->uc_sigmask))
 889		return -EFAULT;
 890
 891	if (__get_user(cmcp, &ucp->uc_regs) ||
 892	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
 893		return -EFAULT;
 894	mcp = (struct mcontext __user *)(u64)cmcp;
 895	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
 896	/* no need to check access_ok(mcp), since mcp < 4GB */
 897
 898	set_current_blocked(&set);
 899	if (restore_tm_user_regs(regs, mcp, tm_mcp))
 900		return -EFAULT;
 901
 902	return 0;
 903}
 904#endif
 905
 906#ifdef CONFIG_PPC64
 907COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 908		       struct ucontext __user *, new_ctx, int, ctx_size)
 909#else
 910SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 911		       struct ucontext __user *, new_ctx, long, ctx_size)
 912#endif
 913{
 914	struct pt_regs *regs = current_pt_regs();
 915	int ctx_has_vsx_region = 0;
 916
 917#ifdef CONFIG_PPC64
 918	unsigned long new_msr = 0;
 919
 920	if (new_ctx) {
 921		struct mcontext __user *mcp;
 922		u32 cmcp;
 923
 924		/*
 925		 * Get pointer to the real mcontext.  No need for
 926		 * access_ok since we are dealing with compat
 927		 * pointers.
 928		 */
 929		if (__get_user(cmcp, &new_ctx->uc_regs))
 930			return -EFAULT;
 931		mcp = (struct mcontext __user *)(u64)cmcp;
 932		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
 933			return -EFAULT;
 934	}
 935	/*
 936	 * Check that the context is not smaller than the original
 937	 * size (with VMX but without VSX)
 938	 */
 939	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
 940		return -EINVAL;
 941	/*
 942	 * If the new context state sets the MSR VSX bits but
 943	 * it doesn't provide VSX state.
 944	 */
 945	if ((ctx_size < sizeof(struct ucontext)) &&
 946	    (new_msr & MSR_VSX))
 947		return -EINVAL;
 948	/* Does the context have enough room to store VSX data? */
 949	if (ctx_size >= sizeof(struct ucontext))
 950		ctx_has_vsx_region = 1;
 951#else
 952	/* Context size is for future use. Right now, we only make sure
 953	 * we are passed something we understand
 954	 */
 955	if (ctx_size < sizeof(struct ucontext))
 956		return -EINVAL;
 957#endif
 958	if (old_ctx != NULL) {
 959		struct mcontext __user *mctx;
 960
 961		/*
 962		 * old_ctx might not be 16-byte aligned, in which
 963		 * case old_ctx->uc_mcontext won't be either.
 964		 * Because we have the old_ctx->uc_pad2 field
 965		 * before old_ctx->uc_mcontext, we need to round down
 966		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
 967		 */
 968		mctx = (struct mcontext __user *)
 969			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
 970		if (!access_ok(old_ctx, ctx_size)
 971		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
 972		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
 973		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
 974			return -EFAULT;
 975	}
 976	if (new_ctx == NULL)
 977		return 0;
 978	if (!access_ok(new_ctx, ctx_size) ||
 979	    fault_in_pages_readable((u8 __user *)new_ctx, ctx_size))
 
 980		return -EFAULT;
 981
 982	/*
 983	 * If we get a fault copying the context into the kernel's
 984	 * image of the user's registers, we can't just return -EFAULT
 985	 * because the user's registers will be corrupted.  For instance
 986	 * the NIP value may have been updated but not some of the
 987	 * other registers.  Given that we have done the access_ok
 988	 * and successfully read the first and last bytes of the region
 989	 * above, this should only happen in an out-of-memory situation
 990	 * or if another thread unmaps the region containing the context.
 991	 * We kill the task with a SIGSEGV in this situation.
 992	 */
 993	if (do_setcontext(new_ctx, regs, 0))
 994		do_exit(SIGSEGV);
 995
 996	set_thread_flag(TIF_RESTOREALL);
 997	return 0;
 998}
 999
1000#ifdef CONFIG_PPC64
1001COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1002#else
1003SYSCALL_DEFINE0(rt_sigreturn)
1004#endif
1005{
1006	struct rt_sigframe __user *rt_sf;
1007	struct pt_regs *regs = current_pt_regs();
1008	int tm_restore = 0;
1009#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1010	struct ucontext __user *uc_transact;
1011	unsigned long msr_hi;
1012	unsigned long tmp;
 
1013#endif
1014	/* Always make any pending restarted system calls return -EINTR */
1015	current->restart_block.fn = do_no_restart_syscall;
1016
1017	rt_sf = (struct rt_sigframe __user *)
1018		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1019	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1020		goto bad;
1021
1022#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1023	/*
1024	 * If there is a transactional state then throw it away.
1025	 * The purpose of a sigreturn is to destroy all traces of the
1026	 * signal frame, this includes any transactional state created
1027	 * within in. We only check for suspended as we can never be
1028	 * active in the kernel, we are active, there is nothing better to
1029	 * do than go ahead and Bad Thing later.
1030	 * The cause is not important as there will never be a
1031	 * recheckpoint so it's not user visible.
1032	 */
1033	if (MSR_TM_SUSPENDED(mfmsr()))
1034		tm_reclaim_current(0);
1035
1036	if (__get_user(tmp, &rt_sf->uc.uc_link))
1037		goto bad;
1038	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1039	if (uc_transact) {
1040		u32 cmcp;
1041		struct mcontext __user *mcp;
1042
1043		if (__get_user(cmcp, &uc_transact->uc_regs))
1044			return -EFAULT;
1045		mcp = (struct mcontext __user *)(u64)cmcp;
1046		/* The top 32 bits of the MSR are stashed in the transactional
1047		 * ucontext. */
1048		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1049			goto bad;
1050
1051		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1052			/* Trying to start TM on non TM system */
1053			if (!cpu_has_feature(CPU_FTR_TM))
1054				goto bad;
1055			/* We only recheckpoint on return if we're
1056			 * transaction.
1057			 */
1058			tm_restore = 1;
1059			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1060				goto bad;
1061		}
1062	}
1063	if (!tm_restore) {
1064		/*
1065		 * Unset regs->msr because ucontext MSR TS is not
1066		 * set, and recheckpoint was not called. This avoid
1067		 * hitting a TM Bad thing at RFID
1068		 */
1069		regs->msr &= ~MSR_TS_MASK;
1070	}
1071	/* Fall through, for non-TM restore */
1072#endif
1073	if (!tm_restore)
1074		if (do_setcontext(&rt_sf->uc, regs, 1))
1075			goto bad;
 
 
1076
1077	/*
1078	 * It's not clear whether or why it is desirable to save the
1079	 * sigaltstack setting on signal delivery and restore it on
1080	 * signal return.  But other architectures do this and we have
1081	 * always done it up until now so it is probably better not to
1082	 * change it.  -- paulus
1083	 */
1084#ifdef CONFIG_PPC64
1085	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1086		goto bad;
1087#else
1088	if (restore_altstack(&rt_sf->uc.uc_stack))
1089		goto bad;
1090#endif
1091	set_thread_flag(TIF_RESTOREALL);
1092	return 0;
1093
1094 bad:
1095	if (show_unhandled_signals)
1096		printk_ratelimited(KERN_INFO
1097				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1098				   "%p nip %08lx lr %08lx\n",
1099				   current->comm, current->pid,
1100				   rt_sf, regs->nip, regs->link);
1101
1102	force_sig(SIGSEGV);
1103	return 0;
1104}
1105
1106#ifdef CONFIG_PPC32
1107SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1108			 int, ndbg, struct sig_dbg_op __user *, dbg)
 
 
1109{
1110	struct pt_regs *regs = current_pt_regs();
1111	struct sig_dbg_op op;
1112	int i;
 
1113	unsigned long new_msr = regs->msr;
1114#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1115	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1116#endif
1117
1118	for (i=0; i<ndbg; i++) {
1119		if (copy_from_user(&op, dbg + i, sizeof(op)))
1120			return -EFAULT;
1121		switch (op.dbg_type) {
1122		case SIG_DBG_SINGLE_STEPPING:
1123#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1124			if (op.dbg_value) {
1125				new_msr |= MSR_DE;
1126				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1127			} else {
1128				new_dbcr0 &= ~DBCR0_IC;
1129				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1130						current->thread.debug.dbcr1)) {
1131					new_msr &= ~MSR_DE;
1132					new_dbcr0 &= ~DBCR0_IDM;
1133				}
1134			}
1135#else
1136			if (op.dbg_value)
1137				new_msr |= MSR_SE;
1138			else
1139				new_msr &= ~MSR_SE;
1140#endif
1141			break;
1142		case SIG_DBG_BRANCH_TRACING:
1143#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1144			return -EINVAL;
1145#else
1146			if (op.dbg_value)
1147				new_msr |= MSR_BE;
1148			else
1149				new_msr &= ~MSR_BE;
1150#endif
1151			break;
1152
1153		default:
1154			return -EINVAL;
1155		}
1156	}
1157
1158	/* We wait until here to actually install the values in the
1159	   registers so if we fail in the above loop, it will not
1160	   affect the contents of these registers.  After this point,
1161	   failure is a problem, anyway, and it's very unlikely unless
1162	   the user is really doing something wrong. */
1163	regs->msr = new_msr;
1164#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1165	current->thread.debug.dbcr0 = new_dbcr0;
1166#endif
1167
1168	if (!access_ok(ctx, sizeof(*ctx)) ||
1169	    fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx)))
 
1170		return -EFAULT;
1171
1172	/*
1173	 * If we get a fault copying the context into the kernel's
1174	 * image of the user's registers, we can't just return -EFAULT
1175	 * because the user's registers will be corrupted.  For instance
1176	 * the NIP value may have been updated but not some of the
1177	 * other registers.  Given that we have done the access_ok
1178	 * and successfully read the first and last bytes of the region
1179	 * above, this should only happen in an out-of-memory situation
1180	 * or if another thread unmaps the region containing the context.
1181	 * We kill the task with a SIGSEGV in this situation.
1182	 */
1183	if (do_setcontext(ctx, regs, 1)) {
1184		if (show_unhandled_signals)
1185			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1186					   "sys_debug_setcontext: %p nip %08lx "
1187					   "lr %08lx\n",
1188					   current->comm, current->pid,
1189					   ctx, regs->nip, regs->link);
1190
1191		force_sig(SIGSEGV);
1192		goto out;
1193	}
1194
1195	/*
1196	 * It's not clear whether or why it is desirable to save the
1197	 * sigaltstack setting on signal delivery and restore it on
1198	 * signal return.  But other architectures do this and we have
1199	 * always done it up until now so it is probably better not to
1200	 * change it.  -- paulus
1201	 */
1202	restore_altstack(&ctx->uc_stack);
1203
1204	set_thread_flag(TIF_RESTOREALL);
1205 out:
1206	return 0;
1207}
1208#endif
1209
1210/*
1211 * OK, we're invoking a handler
1212 */
1213int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1214		struct task_struct *tsk)
1215{
1216	struct sigcontext __user *sc;
1217	struct sigframe __user *frame;
1218	struct mcontext __user *tm_mctx = NULL;
1219	unsigned long newsp = 0;
1220	int sigret;
1221	unsigned long tramp;
1222	struct pt_regs *regs = tsk->thread.regs;
1223#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1224	/* Save the thread's msr before get_tm_stackpointer() changes it */
1225	unsigned long msr = regs->msr;
1226#endif
1227
1228	BUG_ON(tsk != current);
1229
1230	/* Set up Signal Frame */
1231	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1232	if (unlikely(frame == NULL))
1233		goto badframe;
1234	sc = (struct sigcontext __user *) &frame->sctx;
1235
1236#if _NSIG != 64
1237#error "Please adjust handle_signal()"
1238#endif
1239	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1240	    || __put_user(oldset->sig[0], &sc->oldmask)
1241#ifdef CONFIG_PPC64
1242	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1243#else
1244	    || __put_user(oldset->sig[1], &sc->_unused[3])
1245#endif
1246	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1247	    || __put_user(ksig->sig, &sc->signal))
1248		goto badframe;
1249
1250	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1251		sigret = 0;
1252		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1253	} else {
1254		sigret = __NR_sigreturn;
1255		tramp = (unsigned long) frame->mctx.tramp;
1256	}
1257
1258#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1259	tm_mctx = &frame->mctx_transact;
1260	if (MSR_TM_ACTIVE(msr)) {
1261		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1262				      sigret, msr))
1263			goto badframe;
1264	}
1265	else
1266#endif
1267	{
1268		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1269			goto badframe;
1270	}
1271
1272	regs->link = tramp;
1273
1274	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1275
1276	/* create a stack frame for the caller of the handler */
1277	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1278	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1279		goto badframe;
1280
1281	regs->gpr[1] = newsp;
1282	regs->gpr[3] = ksig->sig;
1283	regs->gpr[4] = (unsigned long) sc;
1284	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1285	/* enter the signal handler in big-endian mode */
1286	regs->msr &= ~MSR_LE;
1287	return 0;
1288
1289badframe:
1290	if (show_unhandled_signals)
1291		printk_ratelimited(KERN_INFO
1292				   "%s[%d]: bad frame in handle_signal32: "
1293				   "%p nip %08lx lr %08lx\n",
1294				   tsk->comm, tsk->pid,
1295				   frame, regs->nip, regs->link);
1296
1297	return 1;
1298}
1299
1300/*
1301 * Do a signal return; undo the signal stack.
1302 */
1303#ifdef CONFIG_PPC64
1304COMPAT_SYSCALL_DEFINE0(sigreturn)
1305#else
1306SYSCALL_DEFINE0(sigreturn)
1307#endif
1308{
1309	struct pt_regs *regs = current_pt_regs();
1310	struct sigframe __user *sf;
1311	struct sigcontext __user *sc;
1312	struct sigcontext sigctx;
1313	struct mcontext __user *sr;
1314	void __user *addr;
1315	sigset_t set;
1316#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1317	struct mcontext __user *mcp, *tm_mcp;
1318	unsigned long msr_hi;
1319#endif
1320
1321	/* Always make any pending restarted system calls return -EINTR */
1322	current->restart_block.fn = do_no_restart_syscall;
1323
1324	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1325	sc = &sf->sctx;
1326	addr = sc;
1327	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1328		goto badframe;
1329
1330#ifdef CONFIG_PPC64
1331	/*
1332	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1333	 * unused part of the signal stackframe
1334	 */
1335	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1336#else
1337	set.sig[0] = sigctx.oldmask;
1338	set.sig[1] = sigctx._unused[3];
1339#endif
1340	set_current_blocked(&set);
1341
1342#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1343	mcp = (struct mcontext __user *)&sf->mctx;
1344	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1345	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1346		goto badframe;
1347	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1348		if (!cpu_has_feature(CPU_FTR_TM))
1349			goto badframe;
1350		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1351			goto badframe;
1352	} else
1353#endif
1354	{
1355		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1356		addr = sr;
1357		if (!access_ok(sr, sizeof(*sr))
1358		    || restore_user_regs(regs, sr, 1))
1359			goto badframe;
1360	}
1361
1362	set_thread_flag(TIF_RESTOREALL);
1363	return 0;
1364
1365badframe:
1366	if (show_unhandled_signals)
1367		printk_ratelimited(KERN_INFO
1368				   "%s[%d]: bad frame in sys_sigreturn: "
1369				   "%p nip %08lx lr %08lx\n",
1370				   current->comm, current->pid,
1371				   addr, regs->nip, regs->link);
1372
1373	force_sig(SIGSEGV);
1374	return 0;
1375}
v4.6
 
   1/*
   2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   3 *
   4 *  PowerPC version
   5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   6 * Copyright (C) 2001 IBM
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
   9 *
  10 *  Derived from "arch/i386/kernel/signal.c"
  11 *    Copyright (C) 1991, 1992 Linus Torvalds
  12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  13 *
  14 *  This program is free software; you can redistribute it and/or
  15 *  modify it under the terms of the GNU General Public License
  16 *  as published by the Free Software Foundation; either version
  17 *  2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/sched.h>
  21#include <linux/mm.h>
  22#include <linux/smp.h>
  23#include <linux/kernel.h>
  24#include <linux/signal.h>
  25#include <linux/errno.h>
  26#include <linux/elf.h>
  27#include <linux/ptrace.h>
 
  28#include <linux/ratelimit.h>
 
  29#ifdef CONFIG_PPC64
  30#include <linux/syscalls.h>
  31#include <linux/compat.h>
  32#else
  33#include <linux/wait.h>
  34#include <linux/unistd.h>
  35#include <linux/stddef.h>
  36#include <linux/tty.h>
  37#include <linux/binfmts.h>
  38#endif
  39
  40#include <asm/uaccess.h>
  41#include <asm/cacheflush.h>
  42#include <asm/syscalls.h>
  43#include <asm/sigcontext.h>
  44#include <asm/vdso.h>
  45#include <asm/switch_to.h>
  46#include <asm/tm.h>
 
  47#ifdef CONFIG_PPC64
  48#include "ppc32.h"
  49#include <asm/unistd.h>
  50#else
  51#include <asm/ucontext.h>
  52#include <asm/pgtable.h>
  53#endif
  54
  55#include "signal.h"
  56
  57
  58#ifdef CONFIG_PPC64
  59#define sys_rt_sigreturn	compat_sys_rt_sigreturn
  60#define sys_swapcontext	compat_sys_swapcontext
  61#define sys_sigreturn	compat_sys_sigreturn
  62
  63#define old_sigaction	old_sigaction32
  64#define sigcontext	sigcontext32
  65#define mcontext	mcontext32
  66#define ucontext	ucontext32
  67
  68#define __save_altstack __compat_save_altstack
  69
  70/*
  71 * Userspace code may pass a ucontext which doesn't include VSX added
  72 * at the end.  We need to check for this case.
  73 */
  74#define UCONTEXTSIZEWITHOUTVSX \
  75		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  76
  77/*
  78 * Returning 0 means we return to userspace via
  79 * ret_from_except and thus restore all user
  80 * registers from *regs.  This is what we need
  81 * to do when a signal has been delivered.
  82 */
  83
  84#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  85#undef __SIGNAL_FRAMESIZE
  86#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  87#undef ELF_NVRREG
  88#define ELF_NVRREG	ELF_NVRREG32
  89
  90/*
  91 * Functions for flipping sigsets (thanks to brain dead generic
  92 * implementation that makes things simple for little endian only)
  93 */
  94static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  95{
  96	compat_sigset_t	cset;
  97
  98	switch (_NSIG_WORDS) {
  99	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
 100		cset.sig[7] = set->sig[3] >> 32;
 101	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
 102		cset.sig[5] = set->sig[2] >> 32;
 103	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
 104		cset.sig[3] = set->sig[1] >> 32;
 105	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
 106		cset.sig[1] = set->sig[0] >> 32;
 107	}
 108	return copy_to_user(uset, &cset, sizeof(*uset));
 109}
 110
 111static inline int get_sigset_t(sigset_t *set,
 112			       const compat_sigset_t __user *uset)
 113{
 114	compat_sigset_t s32;
 115
 116	if (copy_from_user(&s32, uset, sizeof(*uset)))
 117		return -EFAULT;
 118
 119	/*
 120	 * Swap the 2 words of the 64-bit sigset_t (they are stored
 121	 * in the "wrong" endian in 32-bit user storage).
 122	 */
 123	switch (_NSIG_WORDS) {
 124	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
 125	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
 126	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
 127	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
 128	}
 129	return 0;
 130}
 131
 132#define to_user_ptr(p)		ptr_to_compat(p)
 133#define from_user_ptr(p)	compat_ptr(p)
 134
 135static inline int save_general_regs(struct pt_regs *regs,
 136		struct mcontext __user *frame)
 137{
 138	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 139	int i;
 140
 141	WARN_ON(!FULL_REGS(regs));
 142
 143	for (i = 0; i <= PT_RESULT; i ++) {
 144		if (i == 14 && !FULL_REGS(regs))
 145			i = 32;
 146		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
 
 
 
 
 147			return -EFAULT;
 148	}
 149	return 0;
 150}
 151
 152static inline int restore_general_regs(struct pt_regs *regs,
 153		struct mcontext __user *sr)
 154{
 155	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 156	int i;
 157
 158	for (i = 0; i <= PT_RESULT; i++) {
 159		if ((i == PT_MSR) || (i == PT_SOFTE))
 160			continue;
 161		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 162			return -EFAULT;
 163	}
 164	return 0;
 165}
 166
 167#else /* CONFIG_PPC64 */
 168
 169#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 170
 171static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 172{
 173	return copy_to_user(uset, set, sizeof(*uset));
 174}
 175
 176static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 177{
 178	return copy_from_user(set, uset, sizeof(*uset));
 179}
 180
 181#define to_user_ptr(p)		((unsigned long)(p))
 182#define from_user_ptr(p)	((void __user *)(p))
 183
 184static inline int save_general_regs(struct pt_regs *regs,
 185		struct mcontext __user *frame)
 186{
 187	WARN_ON(!FULL_REGS(regs));
 188	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 189}
 190
 191static inline int restore_general_regs(struct pt_regs *regs,
 192		struct mcontext __user *sr)
 193{
 194	/* copy up to but not including MSR */
 195	if (__copy_from_user(regs, &sr->mc_gregs,
 196				PT_MSR * sizeof(elf_greg_t)))
 197		return -EFAULT;
 198	/* copy from orig_r3 (the word after the MSR) up to the end */
 199	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 200				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 201		return -EFAULT;
 202	return 0;
 203}
 204#endif
 205
 206/*
 207 * When we have signals to deliver, we set up on the
 208 * user stack, going down from the original stack pointer:
 209 *	an ABI gap of 56 words
 210 *	an mcontext struct
 211 *	a sigcontext struct
 212 *	a gap of __SIGNAL_FRAMESIZE bytes
 213 *
 214 * Each of these things must be a multiple of 16 bytes in size. The following
 215 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 216 *
 217 */
 218struct sigframe {
 219	struct sigcontext sctx;		/* the sigcontext */
 220	struct mcontext	mctx;		/* all the register values */
 221#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 222	struct sigcontext sctx_transact;
 223	struct mcontext	mctx_transact;
 224#endif
 225	/*
 226	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 227	 * regs and 18 fp regs below sp before decrementing it.
 228	 */
 229	int			abigap[56];
 230};
 231
 232/* We use the mc_pad field for the signal return trampoline. */
 233#define tramp	mc_pad
 234
 235/*
 236 *  When we have rt signals to deliver, we set up on the
 237 *  user stack, going down from the original stack pointer:
 238 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 239 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 240 *  (the +16 is to get the siginfo and ucontext in the same
 241 *  positions as in older kernels).
 242 *
 243 *  Each of these things must be a multiple of 16 bytes in size.
 244 *
 245 */
 246struct rt_sigframe {
 247#ifdef CONFIG_PPC64
 248	compat_siginfo_t info;
 249#else
 250	struct siginfo info;
 251#endif
 252	struct ucontext	uc;
 253#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 254	struct ucontext	uc_transact;
 255#endif
 256	/*
 257	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 258	 * regs and 18 fp regs below sp before decrementing it.
 259	 */
 260	int			abigap[56];
 261};
 262
 263#ifdef CONFIG_VSX
 264unsigned long copy_fpr_to_user(void __user *to,
 265			       struct task_struct *task)
 266{
 267	u64 buf[ELF_NFPREG];
 268	int i;
 269
 270	/* save FPR copy to local buffer then write to the thread_struct */
 271	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 272		buf[i] = task->thread.TS_FPR(i);
 273	buf[i] = task->thread.fp_state.fpscr;
 274	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 275}
 276
 277unsigned long copy_fpr_from_user(struct task_struct *task,
 278				 void __user *from)
 279{
 280	u64 buf[ELF_NFPREG];
 281	int i;
 282
 283	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 284		return 1;
 285	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 286		task->thread.TS_FPR(i) = buf[i];
 287	task->thread.fp_state.fpscr = buf[i];
 288
 289	return 0;
 290}
 291
 292unsigned long copy_vsx_to_user(void __user *to,
 293			       struct task_struct *task)
 294{
 295	u64 buf[ELF_NVSRHALFREG];
 296	int i;
 297
 298	/* save FPR copy to local buffer then write to the thread_struct */
 299	for (i = 0; i < ELF_NVSRHALFREG; i++)
 300		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 301	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 302}
 303
 304unsigned long copy_vsx_from_user(struct task_struct *task,
 305				 void __user *from)
 306{
 307	u64 buf[ELF_NVSRHALFREG];
 308	int i;
 309
 310	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 311		return 1;
 312	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 313		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 314	return 0;
 315}
 316
 317#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 318unsigned long copy_transact_fpr_to_user(void __user *to,
 319				  struct task_struct *task)
 320{
 321	u64 buf[ELF_NFPREG];
 322	int i;
 323
 324	/* save FPR copy to local buffer then write to the thread_struct */
 325	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 326		buf[i] = task->thread.TS_TRANS_FPR(i);
 327	buf[i] = task->thread.transact_fp.fpscr;
 328	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 329}
 330
 331unsigned long copy_transact_fpr_from_user(struct task_struct *task,
 332					  void __user *from)
 333{
 334	u64 buf[ELF_NFPREG];
 335	int i;
 336
 337	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 338		return 1;
 339	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 340		task->thread.TS_TRANS_FPR(i) = buf[i];
 341	task->thread.transact_fp.fpscr = buf[i];
 342
 343	return 0;
 344}
 345
 346unsigned long copy_transact_vsx_to_user(void __user *to,
 347				  struct task_struct *task)
 348{
 349	u64 buf[ELF_NVSRHALFREG];
 350	int i;
 351
 352	/* save FPR copy to local buffer then write to the thread_struct */
 353	for (i = 0; i < ELF_NVSRHALFREG; i++)
 354		buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
 355	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 356}
 357
 358unsigned long copy_transact_vsx_from_user(struct task_struct *task,
 359					  void __user *from)
 360{
 361	u64 buf[ELF_NVSRHALFREG];
 362	int i;
 363
 364	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 365		return 1;
 366	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 367		task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 368	return 0;
 369}
 370#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 371#else
 372inline unsigned long copy_fpr_to_user(void __user *to,
 373				      struct task_struct *task)
 374{
 375	return __copy_to_user(to, task->thread.fp_state.fpr,
 376			      ELF_NFPREG * sizeof(double));
 377}
 378
 379inline unsigned long copy_fpr_from_user(struct task_struct *task,
 380					void __user *from)
 381{
 382	return __copy_from_user(task->thread.fp_state.fpr, from,
 383			      ELF_NFPREG * sizeof(double));
 384}
 385
 386#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 387inline unsigned long copy_transact_fpr_to_user(void __user *to,
 388					 struct task_struct *task)
 389{
 390	return __copy_to_user(to, task->thread.transact_fp.fpr,
 391			      ELF_NFPREG * sizeof(double));
 392}
 393
 394inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
 395						 void __user *from)
 396{
 397	return __copy_from_user(task->thread.transact_fp.fpr, from,
 398				ELF_NFPREG * sizeof(double));
 399}
 400#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 401#endif
 402
 403/*
 404 * Save the current user registers on the user stack.
 405 * We only save the altivec/spe registers if the process has used
 406 * altivec/spe instructions at some point.
 407 */
 408static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 409			  struct mcontext __user *tm_frame, int sigret,
 410			  int ctx_has_vsx_region)
 411{
 412	unsigned long msr = regs->msr;
 413
 414	/* Make sure floating point registers are stored in regs */
 415	flush_fp_to_thread(current);
 416
 417	/* save general registers */
 418	if (save_general_regs(regs, frame))
 419		return 1;
 420
 421#ifdef CONFIG_ALTIVEC
 422	/* save altivec registers */
 423	if (current->thread.used_vr) {
 424		flush_altivec_to_thread(current);
 425		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 426				   ELF_NVRREG * sizeof(vector128)))
 427			return 1;
 428		/* set MSR_VEC in the saved MSR value to indicate that
 429		   frame->mc_vregs contains valid data */
 430		msr |= MSR_VEC;
 431	}
 432	/* else assert((regs->msr & MSR_VEC) == 0) */
 433
 434	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 435	 * use altivec. Since VSCR only contains 32 bits saved in the least
 436	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 437	 * most significant bits of that same vector. --BenH
 438	 * Note that the current VRSAVE value is in the SPR at this point.
 439	 */
 440	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 441		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 442	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 443		return 1;
 444#endif /* CONFIG_ALTIVEC */
 445	if (copy_fpr_to_user(&frame->mc_fregs, current))
 446		return 1;
 447
 448	/*
 449	 * Clear the MSR VSX bit to indicate there is no valid state attached
 450	 * to this context, except in the specific case below where we set it.
 451	 */
 452	msr &= ~MSR_VSX;
 453#ifdef CONFIG_VSX
 454	/*
 455	 * Copy VSR 0-31 upper half from thread_struct to local
 456	 * buffer, then write that to userspace.  Also set MSR_VSX in
 457	 * the saved MSR value to indicate that frame->mc_vregs
 458	 * contains valid data
 459	 */
 460	if (current->thread.used_vsr && ctx_has_vsx_region) {
 461		flush_vsx_to_thread(current);
 462		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 463			return 1;
 464		msr |= MSR_VSX;
 465	}
 466#endif /* CONFIG_VSX */
 467#ifdef CONFIG_SPE
 468	/* save spe registers */
 469	if (current->thread.used_spe) {
 470		flush_spe_to_thread(current);
 471		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 472				   ELF_NEVRREG * sizeof(u32)))
 473			return 1;
 474		/* set MSR_SPE in the saved MSR value to indicate that
 475		   frame->mc_vregs contains valid data */
 476		msr |= MSR_SPE;
 477	}
 478	/* else assert((regs->msr & MSR_SPE) == 0) */
 479
 480	/* We always copy to/from spefscr */
 481	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 482		return 1;
 483#endif /* CONFIG_SPE */
 484
 485	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 486		return 1;
 487	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 488	 * can check it on the restore to see if TM is active
 489	 */
 490	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 491		return 1;
 492
 493	if (sigret) {
 494		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 495		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 496		    || __put_user(0x44000002UL, &frame->tramp[1]))
 497			return 1;
 498		flush_icache_range((unsigned long) &frame->tramp[0],
 499				   (unsigned long) &frame->tramp[2]);
 500	}
 501
 502	return 0;
 503}
 504
 505#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 506/*
 507 * Save the current user registers on the user stack.
 508 * We only save the altivec/spe registers if the process has used
 509 * altivec/spe instructions at some point.
 510 * We also save the transactional registers to a second ucontext in the
 511 * frame.
 512 *
 513 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 514 */
 515static int save_tm_user_regs(struct pt_regs *regs,
 516			     struct mcontext __user *frame,
 517			     struct mcontext __user *tm_frame, int sigret)
 
 518{
 519	unsigned long msr = regs->msr;
 520
 521	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
 522	 * just indicates to userland that we were doing a transaction, but we
 523	 * don't want to return in transactional state.  This also ensures
 524	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
 525	 */
 526	regs->msr &= ~MSR_TS_MASK;
 527
 528	/* Make sure floating point registers are stored in regs */
 529	flush_fp_to_thread(current);
 530
 531	/* Save both sets of general registers */
 532	if (save_general_regs(&current->thread.ckpt_regs, frame)
 533	    || save_general_regs(regs, tm_frame))
 534		return 1;
 535
 536	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 537	 * of the transactional mcontext.  This way we have a backward-compatible
 538	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 539	 * also look at what type of transaction (T or S) was active at the
 540	 * time of the signal.
 541	 */
 542	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 543		return 1;
 544
 545#ifdef CONFIG_ALTIVEC
 546	/* save altivec registers */
 547	if (current->thread.used_vr) {
 548		flush_altivec_to_thread(current);
 549		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 550				   ELF_NVRREG * sizeof(vector128)))
 551			return 1;
 552		if (msr & MSR_VEC) {
 553			if (__copy_to_user(&tm_frame->mc_vregs,
 554					   &current->thread.transact_vr,
 555					   ELF_NVRREG * sizeof(vector128)))
 556				return 1;
 557		} else {
 558			if (__copy_to_user(&tm_frame->mc_vregs,
 559					   &current->thread.vr_state,
 560					   ELF_NVRREG * sizeof(vector128)))
 561				return 1;
 562		}
 563
 564		/* set MSR_VEC in the saved MSR value to indicate that
 565		 * frame->mc_vregs contains valid data
 566		 */
 567		msr |= MSR_VEC;
 568	}
 569
 570	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 571	 * use altivec. Since VSCR only contains 32 bits saved in the least
 572	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 573	 * most significant bits of that same vector. --BenH
 574	 */
 575	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 576		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 577	if (__put_user(current->thread.vrsave,
 578		       (u32 __user *)&frame->mc_vregs[32]))
 579		return 1;
 580	if (msr & MSR_VEC) {
 581		if (__put_user(current->thread.transact_vrsave,
 582			       (u32 __user *)&tm_frame->mc_vregs[32]))
 583			return 1;
 584	} else {
 585		if (__put_user(current->thread.vrsave,
 586			       (u32 __user *)&tm_frame->mc_vregs[32]))
 587			return 1;
 588	}
 589#endif /* CONFIG_ALTIVEC */
 590
 591	if (copy_fpr_to_user(&frame->mc_fregs, current))
 592		return 1;
 593	if (msr & MSR_FP) {
 594		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
 595			return 1;
 596	} else {
 597		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 598			return 1;
 599	}
 600
 601#ifdef CONFIG_VSX
 602	/*
 603	 * Copy VSR 0-31 upper half from thread_struct to local
 604	 * buffer, then write that to userspace.  Also set MSR_VSX in
 605	 * the saved MSR value to indicate that frame->mc_vregs
 606	 * contains valid data
 607	 */
 608	if (current->thread.used_vsr) {
 609		flush_vsx_to_thread(current);
 610		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 611			return 1;
 612		if (msr & MSR_VSX) {
 613			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
 614						      current))
 615				return 1;
 616		} else {
 617			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
 618				return 1;
 619		}
 620
 621		msr |= MSR_VSX;
 622	}
 623#endif /* CONFIG_VSX */
 624#ifdef CONFIG_SPE
 625	/* SPE regs are not checkpointed with TM, so this section is
 626	 * simply the same as in save_user_regs().
 627	 */
 628	if (current->thread.used_spe) {
 629		flush_spe_to_thread(current);
 630		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 631				   ELF_NEVRREG * sizeof(u32)))
 632			return 1;
 633		/* set MSR_SPE in the saved MSR value to indicate that
 634		 * frame->mc_vregs contains valid data */
 635		msr |= MSR_SPE;
 636	}
 637
 638	/* We always copy to/from spefscr */
 639	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 640		return 1;
 641#endif /* CONFIG_SPE */
 642
 643	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 644		return 1;
 645	if (sigret) {
 646		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 647		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 648		    || __put_user(0x44000002UL, &frame->tramp[1]))
 649			return 1;
 650		flush_icache_range((unsigned long) &frame->tramp[0],
 651				   (unsigned long) &frame->tramp[2]);
 652	}
 653
 654	return 0;
 655}
 656#endif
 657
 658/*
 659 * Restore the current user register values from the user stack,
 660 * (except for MSR).
 661 */
 662static long restore_user_regs(struct pt_regs *regs,
 663			      struct mcontext __user *sr, int sig)
 664{
 665	long err;
 666	unsigned int save_r2 = 0;
 667	unsigned long msr;
 668#ifdef CONFIG_VSX
 669	int i;
 670#endif
 671
 672	/*
 673	 * restore general registers but not including MSR or SOFTE. Also
 674	 * take care of keeping r2 (TLS) intact if not a signal
 675	 */
 676	if (!sig)
 677		save_r2 = (unsigned int)regs->gpr[2];
 678	err = restore_general_regs(regs, sr);
 679	regs->trap = 0;
 680	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 681	if (!sig)
 682		regs->gpr[2] = (unsigned long) save_r2;
 683	if (err)
 684		return 1;
 685
 686	/* if doing signal return, restore the previous little-endian mode */
 687	if (sig)
 688		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 689
 690#ifdef CONFIG_ALTIVEC
 691	/*
 692	 * Force the process to reload the altivec registers from
 693	 * current->thread when it next does altivec instructions
 694	 */
 695	regs->msr &= ~MSR_VEC;
 696	if (msr & MSR_VEC) {
 697		/* restore altivec registers from the stack */
 698		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 699				     sizeof(sr->mc_vregs)))
 700			return 1;
 
 701	} else if (current->thread.used_vr)
 702		memset(&current->thread.vr_state, 0,
 703		       ELF_NVRREG * sizeof(vector128));
 704
 705	/* Always get VRSAVE back */
 706	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 707		return 1;
 708	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 709		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 710#endif /* CONFIG_ALTIVEC */
 711	if (copy_fpr_from_user(current, &sr->mc_fregs))
 712		return 1;
 713
 714#ifdef CONFIG_VSX
 715	/*
 716	 * Force the process to reload the VSX registers from
 717	 * current->thread when it next does VSX instruction.
 718	 */
 719	regs->msr &= ~MSR_VSX;
 720	if (msr & MSR_VSX) {
 721		/*
 722		 * Restore altivec registers from the stack to a local
 723		 * buffer, then write this out to the thread_struct
 724		 */
 725		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 726			return 1;
 
 727	} else if (current->thread.used_vsr)
 728		for (i = 0; i < 32 ; i++)
 729			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 730#endif /* CONFIG_VSX */
 731	/*
 732	 * force the process to reload the FP registers from
 733	 * current->thread when it next does FP instructions
 734	 */
 735	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 736
 737#ifdef CONFIG_SPE
 738	/* force the process to reload the spe registers from
 739	   current->thread when it next does spe instructions */
 740	regs->msr &= ~MSR_SPE;
 741	if (msr & MSR_SPE) {
 742		/* restore spe registers from the stack */
 743		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 744				     ELF_NEVRREG * sizeof(u32)))
 745			return 1;
 
 746	} else if (current->thread.used_spe)
 747		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 748
 749	/* Always get SPEFSCR back */
 750	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 751		return 1;
 752#endif /* CONFIG_SPE */
 753
 754	return 0;
 755}
 756
 757#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 758/*
 759 * Restore the current user register values from the user stack, except for
 760 * MSR, and recheckpoint the original checkpointed register state for processes
 761 * in transactions.
 762 */
 763static long restore_tm_user_regs(struct pt_regs *regs,
 764				 struct mcontext __user *sr,
 765				 struct mcontext __user *tm_sr)
 766{
 767	long err;
 768	unsigned long msr, msr_hi;
 769#ifdef CONFIG_VSX
 770	int i;
 771#endif
 772
 
 
 773	/*
 774	 * restore general registers but not including MSR or SOFTE. Also
 775	 * take care of keeping r2 (TLS) intact if not a signal.
 776	 * See comment in signal_64.c:restore_tm_sigcontexts();
 777	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 778	 * were set by the signal delivery.
 779	 */
 780	err = restore_general_regs(regs, tm_sr);
 781	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 782
 783	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 784
 785	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 786	if (err)
 787		return 1;
 788
 789	/* Restore the previous little-endian mode */
 790	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 791
 792#ifdef CONFIG_ALTIVEC
 793	regs->msr &= ~MSR_VEC;
 794	if (msr & MSR_VEC) {
 795		/* restore altivec registers from the stack */
 796		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 797				     sizeof(sr->mc_vregs)) ||
 798		    __copy_from_user(&current->thread.transact_vr,
 799				     &tm_sr->mc_vregs,
 800				     sizeof(sr->mc_vregs)))
 801			return 1;
 
 802	} else if (current->thread.used_vr) {
 803		memset(&current->thread.vr_state, 0,
 804		       ELF_NVRREG * sizeof(vector128));
 805		memset(&current->thread.transact_vr, 0,
 806		       ELF_NVRREG * sizeof(vector128));
 807	}
 808
 809	/* Always get VRSAVE back */
 810	if (__get_user(current->thread.vrsave,
 811		       (u32 __user *)&sr->mc_vregs[32]) ||
 812	    __get_user(current->thread.transact_vrsave,
 813		       (u32 __user *)&tm_sr->mc_vregs[32]))
 814		return 1;
 815	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 816		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 817#endif /* CONFIG_ALTIVEC */
 818
 819	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 820
 821	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 822	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
 823		return 1;
 824
 825#ifdef CONFIG_VSX
 826	regs->msr &= ~MSR_VSX;
 827	if (msr & MSR_VSX) {
 828		/*
 829		 * Restore altivec registers from the stack to a local
 830		 * buffer, then write this out to the thread_struct
 831		 */
 832		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
 833		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
 834			return 1;
 
 835	} else if (current->thread.used_vsr)
 836		for (i = 0; i < 32 ; i++) {
 837			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 838			current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
 839		}
 840#endif /* CONFIG_VSX */
 841
 842#ifdef CONFIG_SPE
 843	/* SPE regs are not checkpointed with TM, so this section is
 844	 * simply the same as in restore_user_regs().
 845	 */
 846	regs->msr &= ~MSR_SPE;
 847	if (msr & MSR_SPE) {
 848		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 849				     ELF_NEVRREG * sizeof(u32)))
 850			return 1;
 
 851	} else if (current->thread.used_spe)
 852		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 853
 854	/* Always get SPEFSCR back */
 855	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 856		       + ELF_NEVRREG))
 857		return 1;
 858#endif /* CONFIG_SPE */
 859
 860	/* Get the top half of the MSR from the user context */
 861	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 862		return 1;
 863	msr_hi <<= 32;
 864	/* If TM bits are set to the reserved value, it's an invalid context */
 865	if (MSR_TM_RESV(msr_hi))
 866		return 1;
 867	/* Pull in the MSR TM bits from the user context */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
 869	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 870	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 871	 * transactional versions should be loaded.
 872	 */
 873	tm_enable();
 874	/* Make sure the transaction is marked as failed */
 875	current->thread.tm_texasr |= TEXASR_FS;
 876	/* This loads the checkpointed FP/VEC state, if used */
 877	tm_recheckpoint(&current->thread, msr);
 878
 879	/* This loads the speculative FP/VEC state, if used */
 
 880	if (msr & MSR_FP) {
 881		do_load_up_transact_fpu(&current->thread);
 882		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 883	}
 884#ifdef CONFIG_ALTIVEC
 885	if (msr & MSR_VEC) {
 886		do_load_up_transact_altivec(&current->thread);
 887		regs->msr |= MSR_VEC;
 888	}
 889#endif
 890
 
 
 891	return 0;
 892}
 893#endif
 894
 895#ifdef CONFIG_PPC64
 896int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
 897{
 898	int err;
 899
 900	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
 901		return -EFAULT;
 902
 903	/* If you change siginfo_t structure, please be sure
 904	 * this code is fixed accordingly.
 905	 * It should never copy any pad contained in the structure
 906	 * to avoid security leaks, but must copy the generic
 907	 * 3 ints plus the relevant union member.
 908	 * This routine must convert siginfo from 64bit to 32bit as well
 909	 * at the same time.
 910	 */
 911	err = __put_user(s->si_signo, &d->si_signo);
 912	err |= __put_user(s->si_errno, &d->si_errno);
 913	err |= __put_user((short)s->si_code, &d->si_code);
 914	if (s->si_code < 0)
 915		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
 916				      SI_PAD_SIZE32);
 917	else switch(s->si_code >> 16) {
 918	case __SI_CHLD >> 16:
 919		err |= __put_user(s->si_pid, &d->si_pid);
 920		err |= __put_user(s->si_uid, &d->si_uid);
 921		err |= __put_user(s->si_utime, &d->si_utime);
 922		err |= __put_user(s->si_stime, &d->si_stime);
 923		err |= __put_user(s->si_status, &d->si_status);
 924		break;
 925	case __SI_FAULT >> 16:
 926		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
 927				  &d->si_addr);
 928		break;
 929	case __SI_POLL >> 16:
 930		err |= __put_user(s->si_band, &d->si_band);
 931		err |= __put_user(s->si_fd, &d->si_fd);
 932		break;
 933	case __SI_TIMER >> 16:
 934		err |= __put_user(s->si_tid, &d->si_tid);
 935		err |= __put_user(s->si_overrun, &d->si_overrun);
 936		err |= __put_user(s->si_int, &d->si_int);
 937		break;
 938	case __SI_SYS >> 16:
 939		err |= __put_user(ptr_to_compat(s->si_call_addr), &d->si_call_addr);
 940		err |= __put_user(s->si_syscall, &d->si_syscall);
 941		err |= __put_user(s->si_arch, &d->si_arch);
 942		break;
 943	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
 944	case __SI_MESGQ >> 16:
 945		err |= __put_user(s->si_int, &d->si_int);
 946		/* fallthrough */
 947	case __SI_KILL >> 16:
 948	default:
 949		err |= __put_user(s->si_pid, &d->si_pid);
 950		err |= __put_user(s->si_uid, &d->si_uid);
 951		break;
 952	}
 953	return err;
 954}
 955
 956#define copy_siginfo_to_user	copy_siginfo_to_user32
 957
 958int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
 959{
 960	if (copy_from_user(to, from, 3*sizeof(int)) ||
 961	    copy_from_user(to->_sifields._pad,
 962			   from->_sifields._pad, SI_PAD_SIZE32))
 963		return -EFAULT;
 964
 965	return 0;
 966}
 967#endif /* CONFIG_PPC64 */
 968
 969/*
 970 * Set up a signal frame for a "real-time" signal handler
 971 * (one which gets siginfo).
 972 */
 973int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 974		       struct pt_regs *regs)
 975{
 976	struct rt_sigframe __user *rt_sf;
 977	struct mcontext __user *frame;
 978	struct mcontext __user *tm_frame = NULL;
 979	void __user *addr;
 980	unsigned long newsp = 0;
 981	int sigret;
 982	unsigned long tramp;
 
 
 
 
 
 
 
 983
 984	/* Set up Signal Frame */
 985	/* Put a Real Time Context onto stack */
 986	rt_sf = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
 987	addr = rt_sf;
 988	if (unlikely(rt_sf == NULL))
 989		goto badframe;
 990
 991	/* Put the siginfo & fill in most of the ucontext */
 992	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
 993	    || __put_user(0, &rt_sf->uc.uc_flags)
 994	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
 995	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
 996		    &rt_sf->uc.uc_regs)
 997	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
 998		goto badframe;
 999
1000	/* Save user registers on the stack */
1001	frame = &rt_sf->uc.uc_mcontext;
1002	addr = frame;
1003	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1004		sigret = 0;
1005		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1006	} else {
1007		sigret = __NR_rt_sigreturn;
1008		tramp = (unsigned long) frame->tramp;
1009	}
1010
1011#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1012	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1013	if (MSR_TM_ACTIVE(regs->msr)) {
1014		if (__put_user((unsigned long)&rt_sf->uc_transact,
1015			       &rt_sf->uc.uc_link) ||
1016		    __put_user((unsigned long)tm_frame,
1017			       &rt_sf->uc_transact.uc_regs))
1018			goto badframe;
1019		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1020			goto badframe;
1021	}
1022	else
1023#endif
1024	{
1025		if (__put_user(0, &rt_sf->uc.uc_link))
1026			goto badframe;
1027		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1028			goto badframe;
1029	}
1030	regs->link = tramp;
1031
1032	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1033
1034	/* create a stack frame for the caller of the handler */
1035	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1036	addr = (void __user *)regs->gpr[1];
1037	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1038		goto badframe;
1039
1040	/* Fill registers for signal handler */
1041	regs->gpr[1] = newsp;
1042	regs->gpr[3] = ksig->sig;
1043	regs->gpr[4] = (unsigned long) &rt_sf->info;
1044	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1045	regs->gpr[6] = (unsigned long) rt_sf;
1046	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1047	/* enter the signal handler in native-endian mode */
1048	regs->msr &= ~MSR_LE;
1049	regs->msr |= (MSR_KERNEL & MSR_LE);
1050	return 0;
1051
1052badframe:
1053	if (show_unhandled_signals)
1054		printk_ratelimited(KERN_INFO
1055				   "%s[%d]: bad frame in handle_rt_signal32: "
1056				   "%p nip %08lx lr %08lx\n",
1057				   current->comm, current->pid,
1058				   addr, regs->nip, regs->link);
1059
1060	return 1;
1061}
1062
1063static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1064{
1065	sigset_t set;
1066	struct mcontext __user *mcp;
1067
1068	if (get_sigset_t(&set, &ucp->uc_sigmask))
1069		return -EFAULT;
1070#ifdef CONFIG_PPC64
1071	{
1072		u32 cmcp;
1073
1074		if (__get_user(cmcp, &ucp->uc_regs))
1075			return -EFAULT;
1076		mcp = (struct mcontext __user *)(u64)cmcp;
1077		/* no need to check access_ok(mcp), since mcp < 4GB */
1078	}
1079#else
1080	if (__get_user(mcp, &ucp->uc_regs))
1081		return -EFAULT;
1082	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1083		return -EFAULT;
1084#endif
1085	set_current_blocked(&set);
1086	if (restore_user_regs(regs, mcp, sig))
1087		return -EFAULT;
1088
1089	return 0;
1090}
1091
1092#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1093static int do_setcontext_tm(struct ucontext __user *ucp,
1094			    struct ucontext __user *tm_ucp,
1095			    struct pt_regs *regs)
1096{
1097	sigset_t set;
1098	struct mcontext __user *mcp;
1099	struct mcontext __user *tm_mcp;
1100	u32 cmcp;
1101	u32 tm_cmcp;
1102
1103	if (get_sigset_t(&set, &ucp->uc_sigmask))
1104		return -EFAULT;
1105
1106	if (__get_user(cmcp, &ucp->uc_regs) ||
1107	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1108		return -EFAULT;
1109	mcp = (struct mcontext __user *)(u64)cmcp;
1110	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1111	/* no need to check access_ok(mcp), since mcp < 4GB */
1112
1113	set_current_blocked(&set);
1114	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1115		return -EFAULT;
1116
1117	return 0;
1118}
1119#endif
1120
1121long sys_swapcontext(struct ucontext __user *old_ctx,
1122		     struct ucontext __user *new_ctx,
1123		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
 
 
 
 
1124{
1125	unsigned char tmp;
1126	int ctx_has_vsx_region = 0;
1127
1128#ifdef CONFIG_PPC64
1129	unsigned long new_msr = 0;
1130
1131	if (new_ctx) {
1132		struct mcontext __user *mcp;
1133		u32 cmcp;
1134
1135		/*
1136		 * Get pointer to the real mcontext.  No need for
1137		 * access_ok since we are dealing with compat
1138		 * pointers.
1139		 */
1140		if (__get_user(cmcp, &new_ctx->uc_regs))
1141			return -EFAULT;
1142		mcp = (struct mcontext __user *)(u64)cmcp;
1143		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1144			return -EFAULT;
1145	}
1146	/*
1147	 * Check that the context is not smaller than the original
1148	 * size (with VMX but without VSX)
1149	 */
1150	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1151		return -EINVAL;
1152	/*
1153	 * If the new context state sets the MSR VSX bits but
1154	 * it doesn't provide VSX state.
1155	 */
1156	if ((ctx_size < sizeof(struct ucontext)) &&
1157	    (new_msr & MSR_VSX))
1158		return -EINVAL;
1159	/* Does the context have enough room to store VSX data? */
1160	if (ctx_size >= sizeof(struct ucontext))
1161		ctx_has_vsx_region = 1;
1162#else
1163	/* Context size is for future use. Right now, we only make sure
1164	 * we are passed something we understand
1165	 */
1166	if (ctx_size < sizeof(struct ucontext))
1167		return -EINVAL;
1168#endif
1169	if (old_ctx != NULL) {
1170		struct mcontext __user *mctx;
1171
1172		/*
1173		 * old_ctx might not be 16-byte aligned, in which
1174		 * case old_ctx->uc_mcontext won't be either.
1175		 * Because we have the old_ctx->uc_pad2 field
1176		 * before old_ctx->uc_mcontext, we need to round down
1177		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1178		 */
1179		mctx = (struct mcontext __user *)
1180			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1181		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1182		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1183		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1184		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1185			return -EFAULT;
1186	}
1187	if (new_ctx == NULL)
1188		return 0;
1189	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1190	    || __get_user(tmp, (u8 __user *) new_ctx)
1191	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1192		return -EFAULT;
1193
1194	/*
1195	 * If we get a fault copying the context into the kernel's
1196	 * image of the user's registers, we can't just return -EFAULT
1197	 * because the user's registers will be corrupted.  For instance
1198	 * the NIP value may have been updated but not some of the
1199	 * other registers.  Given that we have done the access_ok
1200	 * and successfully read the first and last bytes of the region
1201	 * above, this should only happen in an out-of-memory situation
1202	 * or if another thread unmaps the region containing the context.
1203	 * We kill the task with a SIGSEGV in this situation.
1204	 */
1205	if (do_setcontext(new_ctx, regs, 0))
1206		do_exit(SIGSEGV);
1207
1208	set_thread_flag(TIF_RESTOREALL);
1209	return 0;
1210}
1211
1212long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1213		     struct pt_regs *regs)
 
 
 
1214{
1215	struct rt_sigframe __user *rt_sf;
 
 
1216#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1217	struct ucontext __user *uc_transact;
1218	unsigned long msr_hi;
1219	unsigned long tmp;
1220	int tm_restore = 0;
1221#endif
1222	/* Always make any pending restarted system calls return -EINTR */
1223	current->restart_block.fn = do_no_restart_syscall;
1224
1225	rt_sf = (struct rt_sigframe __user *)
1226		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1227	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1228		goto bad;
 
1229#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
 
 
 
 
 
 
 
 
 
 
 
 
1230	if (__get_user(tmp, &rt_sf->uc.uc_link))
1231		goto bad;
1232	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1233	if (uc_transact) {
1234		u32 cmcp;
1235		struct mcontext __user *mcp;
1236
1237		if (__get_user(cmcp, &uc_transact->uc_regs))
1238			return -EFAULT;
1239		mcp = (struct mcontext __user *)(u64)cmcp;
1240		/* The top 32 bits of the MSR are stashed in the transactional
1241		 * ucontext. */
1242		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1243			goto bad;
1244
1245		if (MSR_TM_ACTIVE(msr_hi<<32)) {
 
 
 
1246			/* We only recheckpoint on return if we're
1247			 * transaction.
1248			 */
1249			tm_restore = 1;
1250			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1251				goto bad;
1252		}
1253	}
 
 
 
 
 
 
 
 
 
 
1254	if (!tm_restore)
1255		/* Fall through, for non-TM restore */
1256#endif
1257	if (do_setcontext(&rt_sf->uc, regs, 1))
1258		goto bad;
1259
1260	/*
1261	 * It's not clear whether or why it is desirable to save the
1262	 * sigaltstack setting on signal delivery and restore it on
1263	 * signal return.  But other architectures do this and we have
1264	 * always done it up until now so it is probably better not to
1265	 * change it.  -- paulus
1266	 */
1267#ifdef CONFIG_PPC64
1268	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1269		goto bad;
1270#else
1271	if (restore_altstack(&rt_sf->uc.uc_stack))
1272		goto bad;
1273#endif
1274	set_thread_flag(TIF_RESTOREALL);
1275	return 0;
1276
1277 bad:
1278	if (show_unhandled_signals)
1279		printk_ratelimited(KERN_INFO
1280				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1281				   "%p nip %08lx lr %08lx\n",
1282				   current->comm, current->pid,
1283				   rt_sf, regs->nip, regs->link);
1284
1285	force_sig(SIGSEGV, current);
1286	return 0;
1287}
1288
1289#ifdef CONFIG_PPC32
1290int sys_debug_setcontext(struct ucontext __user *ctx,
1291			 int ndbg, struct sig_dbg_op __user *dbg,
1292			 int r6, int r7, int r8,
1293			 struct pt_regs *regs)
1294{
 
1295	struct sig_dbg_op op;
1296	int i;
1297	unsigned char tmp;
1298	unsigned long new_msr = regs->msr;
1299#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1300	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1301#endif
1302
1303	for (i=0; i<ndbg; i++) {
1304		if (copy_from_user(&op, dbg + i, sizeof(op)))
1305			return -EFAULT;
1306		switch (op.dbg_type) {
1307		case SIG_DBG_SINGLE_STEPPING:
1308#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1309			if (op.dbg_value) {
1310				new_msr |= MSR_DE;
1311				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1312			} else {
1313				new_dbcr0 &= ~DBCR0_IC;
1314				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1315						current->thread.debug.dbcr1)) {
1316					new_msr &= ~MSR_DE;
1317					new_dbcr0 &= ~DBCR0_IDM;
1318				}
1319			}
1320#else
1321			if (op.dbg_value)
1322				new_msr |= MSR_SE;
1323			else
1324				new_msr &= ~MSR_SE;
1325#endif
1326			break;
1327		case SIG_DBG_BRANCH_TRACING:
1328#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1329			return -EINVAL;
1330#else
1331			if (op.dbg_value)
1332				new_msr |= MSR_BE;
1333			else
1334				new_msr &= ~MSR_BE;
1335#endif
1336			break;
1337
1338		default:
1339			return -EINVAL;
1340		}
1341	}
1342
1343	/* We wait until here to actually install the values in the
1344	   registers so if we fail in the above loop, it will not
1345	   affect the contents of these registers.  After this point,
1346	   failure is a problem, anyway, and it's very unlikely unless
1347	   the user is really doing something wrong. */
1348	regs->msr = new_msr;
1349#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1350	current->thread.debug.dbcr0 = new_dbcr0;
1351#endif
1352
1353	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1354	    || __get_user(tmp, (u8 __user *) ctx)
1355	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1356		return -EFAULT;
1357
1358	/*
1359	 * If we get a fault copying the context into the kernel's
1360	 * image of the user's registers, we can't just return -EFAULT
1361	 * because the user's registers will be corrupted.  For instance
1362	 * the NIP value may have been updated but not some of the
1363	 * other registers.  Given that we have done the access_ok
1364	 * and successfully read the first and last bytes of the region
1365	 * above, this should only happen in an out-of-memory situation
1366	 * or if another thread unmaps the region containing the context.
1367	 * We kill the task with a SIGSEGV in this situation.
1368	 */
1369	if (do_setcontext(ctx, regs, 1)) {
1370		if (show_unhandled_signals)
1371			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1372					   "sys_debug_setcontext: %p nip %08lx "
1373					   "lr %08lx\n",
1374					   current->comm, current->pid,
1375					   ctx, regs->nip, regs->link);
1376
1377		force_sig(SIGSEGV, current);
1378		goto out;
1379	}
1380
1381	/*
1382	 * It's not clear whether or why it is desirable to save the
1383	 * sigaltstack setting on signal delivery and restore it on
1384	 * signal return.  But other architectures do this and we have
1385	 * always done it up until now so it is probably better not to
1386	 * change it.  -- paulus
1387	 */
1388	restore_altstack(&ctx->uc_stack);
1389
1390	set_thread_flag(TIF_RESTOREALL);
1391 out:
1392	return 0;
1393}
1394#endif
1395
1396/*
1397 * OK, we're invoking a handler
1398 */
1399int handle_signal32(struct ksignal *ksig, sigset_t *oldset, struct pt_regs *regs)
 
1400{
1401	struct sigcontext __user *sc;
1402	struct sigframe __user *frame;
1403	struct mcontext __user *tm_mctx = NULL;
1404	unsigned long newsp = 0;
1405	int sigret;
1406	unsigned long tramp;
 
 
 
 
 
 
 
1407
1408	/* Set up Signal Frame */
1409	frame = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*frame), 1);
1410	if (unlikely(frame == NULL))
1411		goto badframe;
1412	sc = (struct sigcontext __user *) &frame->sctx;
1413
1414#if _NSIG != 64
1415#error "Please adjust handle_signal()"
1416#endif
1417	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1418	    || __put_user(oldset->sig[0], &sc->oldmask)
1419#ifdef CONFIG_PPC64
1420	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1421#else
1422	    || __put_user(oldset->sig[1], &sc->_unused[3])
1423#endif
1424	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1425	    || __put_user(ksig->sig, &sc->signal))
1426		goto badframe;
1427
1428	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1429		sigret = 0;
1430		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1431	} else {
1432		sigret = __NR_sigreturn;
1433		tramp = (unsigned long) frame->mctx.tramp;
1434	}
1435
1436#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1437	tm_mctx = &frame->mctx_transact;
1438	if (MSR_TM_ACTIVE(regs->msr)) {
1439		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1440				      sigret))
1441			goto badframe;
1442	}
1443	else
1444#endif
1445	{
1446		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1447			goto badframe;
1448	}
1449
1450	regs->link = tramp;
1451
1452	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1453
1454	/* create a stack frame for the caller of the handler */
1455	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1456	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1457		goto badframe;
1458
1459	regs->gpr[1] = newsp;
1460	regs->gpr[3] = ksig->sig;
1461	regs->gpr[4] = (unsigned long) sc;
1462	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1463	/* enter the signal handler in big-endian mode */
1464	regs->msr &= ~MSR_LE;
1465	return 0;
1466
1467badframe:
1468	if (show_unhandled_signals)
1469		printk_ratelimited(KERN_INFO
1470				   "%s[%d]: bad frame in handle_signal32: "
1471				   "%p nip %08lx lr %08lx\n",
1472				   current->comm, current->pid,
1473				   frame, regs->nip, regs->link);
1474
1475	return 1;
1476}
1477
1478/*
1479 * Do a signal return; undo the signal stack.
1480 */
1481long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1482		       struct pt_regs *regs)
 
 
 
1483{
 
1484	struct sigframe __user *sf;
1485	struct sigcontext __user *sc;
1486	struct sigcontext sigctx;
1487	struct mcontext __user *sr;
1488	void __user *addr;
1489	sigset_t set;
1490#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1491	struct mcontext __user *mcp, *tm_mcp;
1492	unsigned long msr_hi;
1493#endif
1494
1495	/* Always make any pending restarted system calls return -EINTR */
1496	current->restart_block.fn = do_no_restart_syscall;
1497
1498	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1499	sc = &sf->sctx;
1500	addr = sc;
1501	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1502		goto badframe;
1503
1504#ifdef CONFIG_PPC64
1505	/*
1506	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1507	 * unused part of the signal stackframe
1508	 */
1509	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1510#else
1511	set.sig[0] = sigctx.oldmask;
1512	set.sig[1] = sigctx._unused[3];
1513#endif
1514	set_current_blocked(&set);
1515
1516#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1517	mcp = (struct mcontext __user *)&sf->mctx;
1518	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1519	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1520		goto badframe;
1521	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1522		if (!cpu_has_feature(CPU_FTR_TM))
1523			goto badframe;
1524		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1525			goto badframe;
1526	} else
1527#endif
1528	{
1529		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1530		addr = sr;
1531		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1532		    || restore_user_regs(regs, sr, 1))
1533			goto badframe;
1534	}
1535
1536	set_thread_flag(TIF_RESTOREALL);
1537	return 0;
1538
1539badframe:
1540	if (show_unhandled_signals)
1541		printk_ratelimited(KERN_INFO
1542				   "%s[%d]: bad frame in sys_sigreturn: "
1543				   "%p nip %08lx lr %08lx\n",
1544				   current->comm, current->pid,
1545				   addr, regs->nip, regs->link);
1546
1547	force_sig(SIGSEGV, current);
1548	return 0;
1549}