Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   4 *
   5 *  PowerPC version
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 * Copyright (C) 2001 IBM
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  10 *
  11 *  Derived from "arch/i386/kernel/signal.c"
  12 *    Copyright (C) 1991, 1992 Linus Torvalds
  13 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
 
 
 
 
 
  14 */
  15
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/smp.h>
  19#include <linux/kernel.h>
  20#include <linux/signal.h>
  21#include <linux/errno.h>
  22#include <linux/elf.h>
  23#include <linux/ptrace.h>
  24#include <linux/pagemap.h>
  25#include <linux/ratelimit.h>
  26#include <linux/syscalls.h>
  27#ifdef CONFIG_PPC64
 
  28#include <linux/compat.h>
  29#else
  30#include <linux/wait.h>
  31#include <linux/unistd.h>
  32#include <linux/stddef.h>
  33#include <linux/tty.h>
  34#include <linux/binfmts.h>
 
  35#endif
  36
  37#include <linux/uaccess.h>
  38#include <asm/cacheflush.h>
  39#include <asm/syscalls.h>
  40#include <asm/sigcontext.h>
  41#include <asm/vdso.h>
  42#include <asm/switch_to.h>
  43#include <asm/tm.h>
  44#include <asm/asm-prototypes.h>
  45#ifdef CONFIG_PPC64
  46#include "ppc32.h"
  47#include <asm/unistd.h>
  48#else
  49#include <asm/ucontext.h>
 
  50#endif
  51
  52#include "signal.h"
  53
 
  54
  55#ifdef CONFIG_PPC64
 
 
 
 
 
 
 
  56#define old_sigaction	old_sigaction32
  57#define sigcontext	sigcontext32
  58#define mcontext	mcontext32
  59#define ucontext	ucontext32
  60
  61#define __save_altstack __compat_save_altstack
  62
  63/*
  64 * Userspace code may pass a ucontext which doesn't include VSX added
  65 * at the end.  We need to check for this case.
  66 */
  67#define UCONTEXTSIZEWITHOUTVSX \
  68		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  69
  70/*
  71 * Returning 0 means we return to userspace via
  72 * ret_from_except and thus restore all user
  73 * registers from *regs.  This is what we need
  74 * to do when a signal has been delivered.
  75 */
  76
  77#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  78#undef __SIGNAL_FRAMESIZE
  79#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  80#undef ELF_NVRREG
  81#define ELF_NVRREG	ELF_NVRREG32
  82
  83/*
  84 * Functions for flipping sigsets (thanks to brain dead generic
  85 * implementation that makes things simple for little endian only)
  86 */
  87static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  88{
  89	return put_compat_sigset(uset, set, sizeof(*uset));
 
 
 
 
 
 
 
 
 
 
 
 
  90}
  91
  92static inline int get_sigset_t(sigset_t *set,
  93			       const compat_sigset_t __user *uset)
  94{
  95	return get_compat_sigset(set, uset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96}
  97
  98#define to_user_ptr(p)		ptr_to_compat(p)
  99#define from_user_ptr(p)	compat_ptr(p)
 100
 101static inline int save_general_regs(struct pt_regs *regs,
 102		struct mcontext __user *frame)
 103{
 104	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 105	int val, i;
 106
 107	WARN_ON(!FULL_REGS(regs));
 108
 109	for (i = 0; i <= PT_RESULT; i ++) {
 110		/* Force usr to alway see softe as 1 (interrupts enabled) */
 111		if (i == PT_SOFTE)
 112			val = 1;
 113		else
 114			val = gregs[i];
 115
 116		if (__put_user(val, &frame->mc_gregs[i]))
 117			return -EFAULT;
 118	}
 119	return 0;
 120}
 121
 122static inline int restore_general_regs(struct pt_regs *regs,
 123		struct mcontext __user *sr)
 124{
 125	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 126	int i;
 127
 128	for (i = 0; i <= PT_RESULT; i++) {
 129		if ((i == PT_MSR) || (i == PT_SOFTE))
 130			continue;
 131		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 132			return -EFAULT;
 133	}
 134	return 0;
 135}
 136
 137#else /* CONFIG_PPC64 */
 138
 139#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 140
 141static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 142{
 143	return copy_to_user(uset, set, sizeof(*uset));
 144}
 145
 146static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 147{
 148	return copy_from_user(set, uset, sizeof(*uset));
 149}
 150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151#define to_user_ptr(p)		((unsigned long)(p))
 152#define from_user_ptr(p)	((void __user *)(p))
 153
 154static inline int save_general_regs(struct pt_regs *regs,
 155		struct mcontext __user *frame)
 156{
 157	WARN_ON(!FULL_REGS(regs));
 158	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 159}
 160
 161static inline int restore_general_regs(struct pt_regs *regs,
 162		struct mcontext __user *sr)
 163{
 164	/* copy up to but not including MSR */
 165	if (__copy_from_user(regs, &sr->mc_gregs,
 166				PT_MSR * sizeof(elf_greg_t)))
 167		return -EFAULT;
 168	/* copy from orig_r3 (the word after the MSR) up to the end */
 169	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 170				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 171		return -EFAULT;
 172	return 0;
 173}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174#endif
 175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176/*
 177 * When we have signals to deliver, we set up on the
 178 * user stack, going down from the original stack pointer:
 179 *	an ABI gap of 56 words
 180 *	an mcontext struct
 181 *	a sigcontext struct
 182 *	a gap of __SIGNAL_FRAMESIZE bytes
 183 *
 184 * Each of these things must be a multiple of 16 bytes in size. The following
 185 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 186 *
 187 */
 188struct sigframe {
 189	struct sigcontext sctx;		/* the sigcontext */
 190	struct mcontext	mctx;		/* all the register values */
 191#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 192	struct sigcontext sctx_transact;
 193	struct mcontext	mctx_transact;
 194#endif
 195	/*
 196	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 197	 * regs and 18 fp regs below sp before decrementing it.
 198	 */
 199	int			abigap[56];
 200};
 201
 202/* We use the mc_pad field for the signal return trampoline. */
 203#define tramp	mc_pad
 204
 205/*
 206 *  When we have rt signals to deliver, we set up on the
 207 *  user stack, going down from the original stack pointer:
 208 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 209 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 210 *  (the +16 is to get the siginfo and ucontext in the same
 211 *  positions as in older kernels).
 212 *
 213 *  Each of these things must be a multiple of 16 bytes in size.
 214 *
 215 */
 216struct rt_sigframe {
 217#ifdef CONFIG_PPC64
 218	compat_siginfo_t info;
 219#else
 220	struct siginfo info;
 221#endif
 222	struct ucontext	uc;
 223#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 224	struct ucontext	uc_transact;
 225#endif
 226	/*
 227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 228	 * regs and 18 fp regs below sp before decrementing it.
 229	 */
 230	int			abigap[56];
 231};
 232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233/*
 234 * Save the current user registers on the user stack.
 235 * We only save the altivec/spe registers if the process has used
 236 * altivec/spe instructions at some point.
 237 */
 238static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 239			  struct mcontext __user *tm_frame, int sigret,
 240			  int ctx_has_vsx_region)
 241{
 242	unsigned long msr = regs->msr;
 243
 244	/* Make sure floating point registers are stored in regs */
 245	flush_fp_to_thread(current);
 246
 247	/* save general registers */
 248	if (save_general_regs(regs, frame))
 249		return 1;
 250
 251#ifdef CONFIG_ALTIVEC
 252	/* save altivec registers */
 253	if (current->thread.used_vr) {
 254		flush_altivec_to_thread(current);
 255		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 256				   ELF_NVRREG * sizeof(vector128)))
 257			return 1;
 258		/* set MSR_VEC in the saved MSR value to indicate that
 259		   frame->mc_vregs contains valid data */
 260		msr |= MSR_VEC;
 261	}
 262	/* else assert((regs->msr & MSR_VEC) == 0) */
 263
 264	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 265	 * use altivec. Since VSCR only contains 32 bits saved in the least
 266	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 267	 * most significant bits of that same vector. --BenH
 268	 * Note that the current VRSAVE value is in the SPR at this point.
 269	 */
 270	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 271		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 272	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 273		return 1;
 274#endif /* CONFIG_ALTIVEC */
 275	if (copy_fpr_to_user(&frame->mc_fregs, current))
 276		return 1;
 277
 278	/*
 279	 * Clear the MSR VSX bit to indicate there is no valid state attached
 280	 * to this context, except in the specific case below where we set it.
 281	 */
 282	msr &= ~MSR_VSX;
 283#ifdef CONFIG_VSX
 284	/*
 285	 * Copy VSR 0-31 upper half from thread_struct to local
 286	 * buffer, then write that to userspace.  Also set MSR_VSX in
 287	 * the saved MSR value to indicate that frame->mc_vregs
 288	 * contains valid data
 289	 */
 290	if (current->thread.used_vsr && ctx_has_vsx_region) {
 291		flush_vsx_to_thread(current);
 292		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 293			return 1;
 294		msr |= MSR_VSX;
 295	}
 296#endif /* CONFIG_VSX */
 297#ifdef CONFIG_SPE
 298	/* save spe registers */
 299	if (current->thread.used_spe) {
 300		flush_spe_to_thread(current);
 301		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 302				   ELF_NEVRREG * sizeof(u32)))
 303			return 1;
 304		/* set MSR_SPE in the saved MSR value to indicate that
 305		   frame->mc_vregs contains valid data */
 306		msr |= MSR_SPE;
 307	}
 308	/* else assert((regs->msr & MSR_SPE) == 0) */
 309
 310	/* We always copy to/from spefscr */
 311	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 312		return 1;
 313#endif /* CONFIG_SPE */
 314
 315	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 316		return 1;
 317	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 318	 * can check it on the restore to see if TM is active
 319	 */
 320	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 321		return 1;
 322
 323	if (sigret) {
 324		/* Set up the sigreturn trampoline: li 0,sigret; sc */
 325		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
 326		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
 327			return 1;
 328		flush_icache_range((unsigned long) &frame->tramp[0],
 329				   (unsigned long) &frame->tramp[2]);
 330	}
 331
 332	return 0;
 333}
 334
 335#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 336/*
 337 * Save the current user registers on the user stack.
 338 * We only save the altivec/spe registers if the process has used
 339 * altivec/spe instructions at some point.
 340 * We also save the transactional registers to a second ucontext in the
 341 * frame.
 342 *
 343 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 344 */
 345static int save_tm_user_regs(struct pt_regs *regs,
 346			     struct mcontext __user *frame,
 347			     struct mcontext __user *tm_frame, int sigret,
 348			     unsigned long msr)
 349{
 350	WARN_ON(tm_suspend_disabled);
 351
 352	/* Save both sets of general registers */
 353	if (save_general_regs(&current->thread.ckpt_regs, frame)
 354	    || save_general_regs(regs, tm_frame))
 355		return 1;
 356
 357	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 358	 * of the transactional mcontext.  This way we have a backward-compatible
 359	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 360	 * also look at what type of transaction (T or S) was active at the
 361	 * time of the signal.
 362	 */
 363	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 364		return 1;
 365
 366#ifdef CONFIG_ALTIVEC
 367	/* save altivec registers */
 368	if (current->thread.used_vr) {
 369		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 370				   ELF_NVRREG * sizeof(vector128)))
 371			return 1;
 372		if (msr & MSR_VEC) {
 373			if (__copy_to_user(&tm_frame->mc_vregs,
 374					   &current->thread.vr_state,
 375					   ELF_NVRREG * sizeof(vector128)))
 376				return 1;
 377		} else {
 378			if (__copy_to_user(&tm_frame->mc_vregs,
 379					   &current->thread.ckvr_state,
 380					   ELF_NVRREG * sizeof(vector128)))
 381				return 1;
 382		}
 383
 384		/* set MSR_VEC in the saved MSR value to indicate that
 385		 * frame->mc_vregs contains valid data
 386		 */
 387		msr |= MSR_VEC;
 388	}
 389
 390	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 391	 * use altivec. Since VSCR only contains 32 bits saved in the least
 392	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 393	 * most significant bits of that same vector. --BenH
 394	 */
 395	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 396		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 397	if (__put_user(current->thread.ckvrsave,
 398		       (u32 __user *)&frame->mc_vregs[32]))
 399		return 1;
 400	if (msr & MSR_VEC) {
 401		if (__put_user(current->thread.vrsave,
 402			       (u32 __user *)&tm_frame->mc_vregs[32]))
 403			return 1;
 404	} else {
 405		if (__put_user(current->thread.ckvrsave,
 406			       (u32 __user *)&tm_frame->mc_vregs[32]))
 407			return 1;
 408	}
 409#endif /* CONFIG_ALTIVEC */
 410
 411	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
 412		return 1;
 413	if (msr & MSR_FP) {
 414		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 415			return 1;
 416	} else {
 417		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
 418			return 1;
 419	}
 420
 421#ifdef CONFIG_VSX
 422	/*
 423	 * Copy VSR 0-31 upper half from thread_struct to local
 424	 * buffer, then write that to userspace.  Also set MSR_VSX in
 425	 * the saved MSR value to indicate that frame->mc_vregs
 426	 * contains valid data
 427	 */
 428	if (current->thread.used_vsr) {
 429		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
 430			return 1;
 431		if (msr & MSR_VSX) {
 432			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
 433						      current))
 434				return 1;
 435		} else {
 436			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
 437				return 1;
 438		}
 439
 440		msr |= MSR_VSX;
 441	}
 442#endif /* CONFIG_VSX */
 443#ifdef CONFIG_SPE
 444	/* SPE regs are not checkpointed with TM, so this section is
 445	 * simply the same as in save_user_regs().
 446	 */
 447	if (current->thread.used_spe) {
 448		flush_spe_to_thread(current);
 449		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 450				   ELF_NEVRREG * sizeof(u32)))
 451			return 1;
 452		/* set MSR_SPE in the saved MSR value to indicate that
 453		 * frame->mc_vregs contains valid data */
 454		msr |= MSR_SPE;
 455	}
 456
 457	/* We always copy to/from spefscr */
 458	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 459		return 1;
 460#endif /* CONFIG_SPE */
 461
 462	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 463		return 1;
 464	if (sigret) {
 465		/* Set up the sigreturn trampoline: li 0,sigret; sc */
 466		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
 467		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
 468			return 1;
 469		flush_icache_range((unsigned long) &frame->tramp[0],
 470				   (unsigned long) &frame->tramp[2]);
 471	}
 472
 473	return 0;
 474}
 475#endif
 476
 477/*
 478 * Restore the current user register values from the user stack,
 479 * (except for MSR).
 480 */
 481static long restore_user_regs(struct pt_regs *regs,
 482			      struct mcontext __user *sr, int sig)
 483{
 484	long err;
 485	unsigned int save_r2 = 0;
 486	unsigned long msr;
 487#ifdef CONFIG_VSX
 488	int i;
 489#endif
 490
 491	/*
 492	 * restore general registers but not including MSR or SOFTE. Also
 493	 * take care of keeping r2 (TLS) intact if not a signal
 494	 */
 495	if (!sig)
 496		save_r2 = (unsigned int)regs->gpr[2];
 497	err = restore_general_regs(regs, sr);
 498	set_trap_norestart(regs);
 499	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 500	if (!sig)
 501		regs->gpr[2] = (unsigned long) save_r2;
 502	if (err)
 503		return 1;
 504
 505	/* if doing signal return, restore the previous little-endian mode */
 506	if (sig)
 507		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 508
 
 
 
 
 
 
 
 
 
 509#ifdef CONFIG_ALTIVEC
 510	/*
 511	 * Force the process to reload the altivec registers from
 512	 * current->thread when it next does altivec instructions
 513	 */
 514	regs->msr &= ~MSR_VEC;
 515	if (msr & MSR_VEC) {
 516		/* restore altivec registers from the stack */
 517		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 518				     sizeof(sr->mc_vregs)))
 519			return 1;
 520		current->thread.used_vr = true;
 521	} else if (current->thread.used_vr)
 522		memset(&current->thread.vr_state, 0,
 523		       ELF_NVRREG * sizeof(vector128));
 524
 525	/* Always get VRSAVE back */
 526	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 527		return 1;
 528	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 529		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 530#endif /* CONFIG_ALTIVEC */
 531	if (copy_fpr_from_user(current, &sr->mc_fregs))
 532		return 1;
 533
 534#ifdef CONFIG_VSX
 535	/*
 536	 * Force the process to reload the VSX registers from
 537	 * current->thread when it next does VSX instruction.
 538	 */
 539	regs->msr &= ~MSR_VSX;
 540	if (msr & MSR_VSX) {
 541		/*
 542		 * Restore altivec registers from the stack to a local
 543		 * buffer, then write this out to the thread_struct
 544		 */
 545		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 546			return 1;
 547		current->thread.used_vsr = true;
 548	} else if (current->thread.used_vsr)
 549		for (i = 0; i < 32 ; i++)
 550			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 551#endif /* CONFIG_VSX */
 552	/*
 553	 * force the process to reload the FP registers from
 554	 * current->thread when it next does FP instructions
 555	 */
 556	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 557
 558#ifdef CONFIG_SPE
 559	/* force the process to reload the spe registers from
 560	   current->thread when it next does spe instructions */
 561	regs->msr &= ~MSR_SPE;
 562	if (msr & MSR_SPE) {
 563		/* restore spe registers from the stack */
 564		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 565				     ELF_NEVRREG * sizeof(u32)))
 566			return 1;
 567		current->thread.used_spe = true;
 568	} else if (current->thread.used_spe)
 569		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 570
 571	/* Always get SPEFSCR back */
 572	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 573		return 1;
 574#endif /* CONFIG_SPE */
 575
 576	return 0;
 577}
 578
 579#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 580/*
 581 * Restore the current user register values from the user stack, except for
 582 * MSR, and recheckpoint the original checkpointed register state for processes
 583 * in transactions.
 584 */
 585static long restore_tm_user_regs(struct pt_regs *regs,
 586				 struct mcontext __user *sr,
 587				 struct mcontext __user *tm_sr)
 588{
 589	long err;
 590	unsigned long msr, msr_hi;
 591#ifdef CONFIG_VSX
 592	int i;
 593#endif
 594
 595	if (tm_suspend_disabled)
 596		return 1;
 597	/*
 598	 * restore general registers but not including MSR or SOFTE. Also
 599	 * take care of keeping r2 (TLS) intact if not a signal.
 600	 * See comment in signal_64.c:restore_tm_sigcontexts();
 601	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 602	 * were set by the signal delivery.
 603	 */
 604	err = restore_general_regs(regs, tm_sr);
 605	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 606
 607	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 608
 609	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 610	if (err)
 611		return 1;
 612
 613	/* Restore the previous little-endian mode */
 614	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 615
 616#ifdef CONFIG_ALTIVEC
 617	regs->msr &= ~MSR_VEC;
 618	if (msr & MSR_VEC) {
 619		/* restore altivec registers from the stack */
 620		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 621				     sizeof(sr->mc_vregs)) ||
 622		    __copy_from_user(&current->thread.vr_state,
 623				     &tm_sr->mc_vregs,
 624				     sizeof(sr->mc_vregs)))
 625			return 1;
 626		current->thread.used_vr = true;
 627	} else if (current->thread.used_vr) {
 628		memset(&current->thread.vr_state, 0,
 629		       ELF_NVRREG * sizeof(vector128));
 630		memset(&current->thread.ckvr_state, 0,
 631		       ELF_NVRREG * sizeof(vector128));
 632	}
 633
 634	/* Always get VRSAVE back */
 635	if (__get_user(current->thread.ckvrsave,
 636		       (u32 __user *)&sr->mc_vregs[32]) ||
 637	    __get_user(current->thread.vrsave,
 638		       (u32 __user *)&tm_sr->mc_vregs[32]))
 639		return 1;
 640	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 641		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 642#endif /* CONFIG_ALTIVEC */
 643
 644	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 645
 646	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 647	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
 648		return 1;
 
 649
 650#ifdef CONFIG_VSX
 651	regs->msr &= ~MSR_VSX;
 652	if (msr & MSR_VSX) {
 653		/*
 654		 * Restore altivec registers from the stack to a local
 655		 * buffer, then write this out to the thread_struct
 656		 */
 657		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
 658		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
 659			return 1;
 660		current->thread.used_vsr = true;
 661	} else if (current->thread.used_vsr)
 662		for (i = 0; i < 32 ; i++) {
 663			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 664			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 665		}
 666#endif /* CONFIG_VSX */
 667
 668#ifdef CONFIG_SPE
 669	/* SPE regs are not checkpointed with TM, so this section is
 670	 * simply the same as in restore_user_regs().
 671	 */
 672	regs->msr &= ~MSR_SPE;
 673	if (msr & MSR_SPE) {
 674		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 675				     ELF_NEVRREG * sizeof(u32)))
 676			return 1;
 677		current->thread.used_spe = true;
 678	} else if (current->thread.used_spe)
 679		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 
 
 
 
 680
 681	/* Always get SPEFSCR back */
 682	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 683		       + ELF_NEVRREG))
 684		return 1;
 685#endif /* CONFIG_SPE */
 686
 687	/* Get the top half of the MSR from the user context */
 688	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 689		return 1;
 690	msr_hi <<= 32;
 691	/* If TM bits are set to the reserved value, it's an invalid context */
 692	if (MSR_TM_RESV(msr_hi))
 693		return 1;
 694
 695	/*
 696	 * Disabling preemption, since it is unsafe to be preempted
 697	 * with MSR[TS] set without recheckpointing.
 698	 */
 699	preempt_disable();
 700
 701	/*
 702	 * CAUTION:
 703	 * After regs->MSR[TS] being updated, make sure that get_user(),
 704	 * put_user() or similar functions are *not* called. These
 705	 * functions can generate page faults which will cause the process
 706	 * to be de-scheduled with MSR[TS] set but without calling
 707	 * tm_recheckpoint(). This can cause a bug.
 708	 *
 709	 * Pull in the MSR TM bits from the user context
 710	 */
 711	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
 712	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 713	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 714	 * transactional versions should be loaded.
 715	 */
 716	tm_enable();
 717	/* Make sure the transaction is marked as failed */
 718	current->thread.tm_texasr |= TEXASR_FS;
 719	/* This loads the checkpointed FP/VEC state, if used */
 720	tm_recheckpoint(&current->thread);
 721
 722	/* This loads the speculative FP/VEC state, if used */
 723	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 724	if (msr & MSR_FP) {
 725		load_fp_state(&current->thread.fp_state);
 726		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727	}
 728#ifdef CONFIG_ALTIVEC
 729	if (msr & MSR_VEC) {
 730		load_vr_state(&current->thread.vr_state);
 731		regs->msr |= MSR_VEC;
 732	}
 733#endif
 734
 735	preempt_enable();
 
 
 
 
 
 
 
 
 
 736
 737	return 0;
 738}
 739#endif
 740
 741#ifdef CONFIG_PPC64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742
 743#define copy_siginfo_to_user	copy_siginfo_to_user32
 
 
 
 
 
 
 
 
 
 744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745#endif /* CONFIG_PPC64 */
 746
 747/*
 748 * Set up a signal frame for a "real-time" signal handler
 749 * (one which gets siginfo).
 750 */
 751int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 752		       struct task_struct *tsk)
 
 753{
 754	struct rt_sigframe __user *rt_sf;
 755	struct mcontext __user *frame;
 756	struct mcontext __user *tm_frame = NULL;
 757	void __user *addr;
 758	unsigned long newsp = 0;
 759	int sigret;
 760	unsigned long tramp;
 761	struct pt_regs *regs = tsk->thread.regs;
 762#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 763	/* Save the thread's msr before get_tm_stackpointer() changes it */
 764	unsigned long msr = regs->msr;
 765#endif
 766
 767	BUG_ON(tsk != current);
 768
 769	/* Set up Signal Frame */
 770	/* Put a Real Time Context onto stack */
 771	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
 772	addr = rt_sf;
 773	if (unlikely(rt_sf == NULL))
 774		goto badframe;
 775
 776	/* Put the siginfo & fill in most of the ucontext */
 777	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
 778	    || __put_user(0, &rt_sf->uc.uc_flags)
 779	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
 
 
 
 
 780	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
 781		    &rt_sf->uc.uc_regs)
 782	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
 783		goto badframe;
 784
 785	/* Save user registers on the stack */
 786	frame = &rt_sf->uc.uc_mcontext;
 787	addr = frame;
 788	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
 789		sigret = 0;
 790		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
 791	} else {
 792		sigret = __NR_rt_sigreturn;
 793		tramp = (unsigned long) frame->tramp;
 794	}
 795
 796#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 797	tm_frame = &rt_sf->uc_transact.uc_mcontext;
 798	if (MSR_TM_ACTIVE(msr)) {
 799		if (__put_user((unsigned long)&rt_sf->uc_transact,
 800			       &rt_sf->uc.uc_link) ||
 801		    __put_user((unsigned long)tm_frame,
 802			       &rt_sf->uc_transact.uc_regs))
 803			goto badframe;
 804		if (save_tm_user_regs(regs, frame, tm_frame, sigret, msr))
 805			goto badframe;
 806	}
 807	else
 808#endif
 809	{
 810		if (__put_user(0, &rt_sf->uc.uc_link))
 811			goto badframe;
 812		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
 
 
 813			goto badframe;
 
 814	}
 815	regs->link = tramp;
 816
 817	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 818
 819	/* create a stack frame for the caller of the handler */
 820	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
 821	addr = (void __user *)regs->gpr[1];
 822	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 823		goto badframe;
 824
 825	/* Fill registers for signal handler */
 826	regs->gpr[1] = newsp;
 827	regs->gpr[3] = ksig->sig;
 828	regs->gpr[4] = (unsigned long) &rt_sf->info;
 829	regs->gpr[5] = (unsigned long) &rt_sf->uc;
 830	regs->gpr[6] = (unsigned long) rt_sf;
 831	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
 832	/* enter the signal handler in native-endian mode */
 833	regs->msr &= ~MSR_LE;
 834	regs->msr |= (MSR_KERNEL & MSR_LE);
 835	return 0;
 836
 837badframe:
 
 
 
 
 838	if (show_unhandled_signals)
 839		printk_ratelimited(KERN_INFO
 840				   "%s[%d]: bad frame in handle_rt_signal32: "
 841				   "%p nip %08lx lr %08lx\n",
 842				   tsk->comm, tsk->pid,
 843				   addr, regs->nip, regs->link);
 844
 845	return 1;
 
 846}
 847
 848static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 849{
 850	sigset_t set;
 851	struct mcontext __user *mcp;
 852
 853	if (get_sigset_t(&set, &ucp->uc_sigmask))
 854		return -EFAULT;
 855#ifdef CONFIG_PPC64
 856	{
 857		u32 cmcp;
 858
 859		if (__get_user(cmcp, &ucp->uc_regs))
 860			return -EFAULT;
 861		mcp = (struct mcontext __user *)(u64)cmcp;
 862		/* no need to check access_ok(mcp), since mcp < 4GB */
 863	}
 864#else
 865	if (__get_user(mcp, &ucp->uc_regs))
 866		return -EFAULT;
 867	if (!access_ok(mcp, sizeof(*mcp)))
 868		return -EFAULT;
 869#endif
 870	set_current_blocked(&set);
 871	if (restore_user_regs(regs, mcp, sig))
 872		return -EFAULT;
 873
 874	return 0;
 875}
 876
 877#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 878static int do_setcontext_tm(struct ucontext __user *ucp,
 879			    struct ucontext __user *tm_ucp,
 880			    struct pt_regs *regs)
 881{
 882	sigset_t set;
 883	struct mcontext __user *mcp;
 884	struct mcontext __user *tm_mcp;
 885	u32 cmcp;
 886	u32 tm_cmcp;
 887
 888	if (get_sigset_t(&set, &ucp->uc_sigmask))
 889		return -EFAULT;
 890
 891	if (__get_user(cmcp, &ucp->uc_regs) ||
 892	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
 893		return -EFAULT;
 894	mcp = (struct mcontext __user *)(u64)cmcp;
 895	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
 896	/* no need to check access_ok(mcp), since mcp < 4GB */
 897
 898	set_current_blocked(&set);
 899	if (restore_tm_user_regs(regs, mcp, tm_mcp))
 900		return -EFAULT;
 901
 902	return 0;
 903}
 904#endif
 905
 906#ifdef CONFIG_PPC64
 907COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 908		       struct ucontext __user *, new_ctx, int, ctx_size)
 909#else
 910SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 911		       struct ucontext __user *, new_ctx, long, ctx_size)
 912#endif
 913{
 914	struct pt_regs *regs = current_pt_regs();
 915	int ctx_has_vsx_region = 0;
 916
 917#ifdef CONFIG_PPC64
 918	unsigned long new_msr = 0;
 919
 920	if (new_ctx) {
 921		struct mcontext __user *mcp;
 922		u32 cmcp;
 923
 924		/*
 925		 * Get pointer to the real mcontext.  No need for
 926		 * access_ok since we are dealing with compat
 927		 * pointers.
 928		 */
 929		if (__get_user(cmcp, &new_ctx->uc_regs))
 930			return -EFAULT;
 931		mcp = (struct mcontext __user *)(u64)cmcp;
 932		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
 933			return -EFAULT;
 934	}
 935	/*
 936	 * Check that the context is not smaller than the original
 937	 * size (with VMX but without VSX)
 938	 */
 939	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
 940		return -EINVAL;
 941	/*
 942	 * If the new context state sets the MSR VSX bits but
 943	 * it doesn't provide VSX state.
 944	 */
 945	if ((ctx_size < sizeof(struct ucontext)) &&
 946	    (new_msr & MSR_VSX))
 947		return -EINVAL;
 948	/* Does the context have enough room to store VSX data? */
 949	if (ctx_size >= sizeof(struct ucontext))
 950		ctx_has_vsx_region = 1;
 951#else
 952	/* Context size is for future use. Right now, we only make sure
 953	 * we are passed something we understand
 954	 */
 955	if (ctx_size < sizeof(struct ucontext))
 956		return -EINVAL;
 957#endif
 958	if (old_ctx != NULL) {
 959		struct mcontext __user *mctx;
 960
 961		/*
 962		 * old_ctx might not be 16-byte aligned, in which
 963		 * case old_ctx->uc_mcontext won't be either.
 964		 * Because we have the old_ctx->uc_pad2 field
 965		 * before old_ctx->uc_mcontext, we need to round down
 966		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
 967		 */
 968		mctx = (struct mcontext __user *)
 969			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
 970		if (!access_ok(old_ctx, ctx_size)
 971		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
 972		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
 973		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
 974			return -EFAULT;
 975	}
 976	if (new_ctx == NULL)
 977		return 0;
 978	if (!access_ok(new_ctx, ctx_size) ||
 979	    fault_in_pages_readable((u8 __user *)new_ctx, ctx_size))
 
 980		return -EFAULT;
 981
 982	/*
 983	 * If we get a fault copying the context into the kernel's
 984	 * image of the user's registers, we can't just return -EFAULT
 985	 * because the user's registers will be corrupted.  For instance
 986	 * the NIP value may have been updated but not some of the
 987	 * other registers.  Given that we have done the access_ok
 988	 * and successfully read the first and last bytes of the region
 989	 * above, this should only happen in an out-of-memory situation
 990	 * or if another thread unmaps the region containing the context.
 991	 * We kill the task with a SIGSEGV in this situation.
 992	 */
 993	if (do_setcontext(new_ctx, regs, 0))
 994		do_exit(SIGSEGV);
 995
 996	set_thread_flag(TIF_RESTOREALL);
 997	return 0;
 998}
 999
1000#ifdef CONFIG_PPC64
1001COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1002#else
1003SYSCALL_DEFINE0(rt_sigreturn)
1004#endif
1005{
1006	struct rt_sigframe __user *rt_sf;
1007	struct pt_regs *regs = current_pt_regs();
1008	int tm_restore = 0;
1009#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1010	struct ucontext __user *uc_transact;
1011	unsigned long msr_hi;
1012	unsigned long tmp;
1013#endif
1014	/* Always make any pending restarted system calls return -EINTR */
1015	current->restart_block.fn = do_no_restart_syscall;
1016
1017	rt_sf = (struct rt_sigframe __user *)
1018		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1019	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1020		goto bad;
1021
1022#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1023	/*
1024	 * If there is a transactional state then throw it away.
1025	 * The purpose of a sigreturn is to destroy all traces of the
1026	 * signal frame, this includes any transactional state created
1027	 * within in. We only check for suspended as we can never be
1028	 * active in the kernel, we are active, there is nothing better to
1029	 * do than go ahead and Bad Thing later.
1030	 * The cause is not important as there will never be a
1031	 * recheckpoint so it's not user visible.
1032	 */
1033	if (MSR_TM_SUSPENDED(mfmsr()))
1034		tm_reclaim_current(0);
1035
1036	if (__get_user(tmp, &rt_sf->uc.uc_link))
1037		goto bad;
1038	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1039	if (uc_transact) {
1040		u32 cmcp;
1041		struct mcontext __user *mcp;
1042
1043		if (__get_user(cmcp, &uc_transact->uc_regs))
1044			return -EFAULT;
1045		mcp = (struct mcontext __user *)(u64)cmcp;
1046		/* The top 32 bits of the MSR are stashed in the transactional
1047		 * ucontext. */
1048		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1049			goto bad;
1050
1051		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1052			/* Trying to start TM on non TM system */
1053			if (!cpu_has_feature(CPU_FTR_TM))
1054				goto bad;
1055			/* We only recheckpoint on return if we're
1056			 * transaction.
1057			 */
1058			tm_restore = 1;
1059			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1060				goto bad;
1061		}
1062	}
1063	if (!tm_restore) {
1064		/*
1065		 * Unset regs->msr because ucontext MSR TS is not
1066		 * set, and recheckpoint was not called. This avoid
1067		 * hitting a TM Bad thing at RFID
1068		 */
1069		regs->msr &= ~MSR_TS_MASK;
1070	}
1071	/* Fall through, for non-TM restore */
1072#endif
1073	if (!tm_restore)
1074		if (do_setcontext(&rt_sf->uc, regs, 1))
1075			goto bad;
1076
1077	/*
1078	 * It's not clear whether or why it is desirable to save the
1079	 * sigaltstack setting on signal delivery and restore it on
1080	 * signal return.  But other architectures do this and we have
1081	 * always done it up until now so it is probably better not to
1082	 * change it.  -- paulus
1083	 */
1084#ifdef CONFIG_PPC64
1085	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1086		goto bad;
 
 
 
 
1087#else
1088	if (restore_altstack(&rt_sf->uc.uc_stack))
1089		goto bad;
1090#endif
1091	set_thread_flag(TIF_RESTOREALL);
1092	return 0;
1093
1094 bad:
1095	if (show_unhandled_signals)
1096		printk_ratelimited(KERN_INFO
1097				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1098				   "%p nip %08lx lr %08lx\n",
1099				   current->comm, current->pid,
1100				   rt_sf, regs->nip, regs->link);
1101
1102	force_sig(SIGSEGV);
1103	return 0;
1104}
1105
1106#ifdef CONFIG_PPC32
1107SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1108			 int, ndbg, struct sig_dbg_op __user *, dbg)
 
 
1109{
1110	struct pt_regs *regs = current_pt_regs();
1111	struct sig_dbg_op op;
1112	int i;
 
1113	unsigned long new_msr = regs->msr;
1114#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1115	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1116#endif
1117
1118	for (i=0; i<ndbg; i++) {
1119		if (copy_from_user(&op, dbg + i, sizeof(op)))
1120			return -EFAULT;
1121		switch (op.dbg_type) {
1122		case SIG_DBG_SINGLE_STEPPING:
1123#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1124			if (op.dbg_value) {
1125				new_msr |= MSR_DE;
1126				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1127			} else {
1128				new_dbcr0 &= ~DBCR0_IC;
1129				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1130						current->thread.debug.dbcr1)) {
1131					new_msr &= ~MSR_DE;
1132					new_dbcr0 &= ~DBCR0_IDM;
1133				}
1134			}
1135#else
1136			if (op.dbg_value)
1137				new_msr |= MSR_SE;
1138			else
1139				new_msr &= ~MSR_SE;
1140#endif
1141			break;
1142		case SIG_DBG_BRANCH_TRACING:
1143#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1144			return -EINVAL;
1145#else
1146			if (op.dbg_value)
1147				new_msr |= MSR_BE;
1148			else
1149				new_msr &= ~MSR_BE;
1150#endif
1151			break;
1152
1153		default:
1154			return -EINVAL;
1155		}
1156	}
1157
1158	/* We wait until here to actually install the values in the
1159	   registers so if we fail in the above loop, it will not
1160	   affect the contents of these registers.  After this point,
1161	   failure is a problem, anyway, and it's very unlikely unless
1162	   the user is really doing something wrong. */
1163	regs->msr = new_msr;
1164#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1165	current->thread.debug.dbcr0 = new_dbcr0;
1166#endif
1167
1168	if (!access_ok(ctx, sizeof(*ctx)) ||
1169	    fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx)))
 
1170		return -EFAULT;
1171
1172	/*
1173	 * If we get a fault copying the context into the kernel's
1174	 * image of the user's registers, we can't just return -EFAULT
1175	 * because the user's registers will be corrupted.  For instance
1176	 * the NIP value may have been updated but not some of the
1177	 * other registers.  Given that we have done the access_ok
1178	 * and successfully read the first and last bytes of the region
1179	 * above, this should only happen in an out-of-memory situation
1180	 * or if another thread unmaps the region containing the context.
1181	 * We kill the task with a SIGSEGV in this situation.
1182	 */
1183	if (do_setcontext(ctx, regs, 1)) {
1184		if (show_unhandled_signals)
1185			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1186					   "sys_debug_setcontext: %p nip %08lx "
1187					   "lr %08lx\n",
1188					   current->comm, current->pid,
1189					   ctx, regs->nip, regs->link);
1190
1191		force_sig(SIGSEGV);
1192		goto out;
1193	}
1194
1195	/*
1196	 * It's not clear whether or why it is desirable to save the
1197	 * sigaltstack setting on signal delivery and restore it on
1198	 * signal return.  But other architectures do this and we have
1199	 * always done it up until now so it is probably better not to
1200	 * change it.  -- paulus
1201	 */
1202	restore_altstack(&ctx->uc_stack);
1203
1204	set_thread_flag(TIF_RESTOREALL);
1205 out:
1206	return 0;
1207}
1208#endif
1209
1210/*
1211 * OK, we're invoking a handler
1212 */
1213int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1214		struct task_struct *tsk)
1215{
1216	struct sigcontext __user *sc;
1217	struct sigframe __user *frame;
1218	struct mcontext __user *tm_mctx = NULL;
1219	unsigned long newsp = 0;
1220	int sigret;
1221	unsigned long tramp;
1222	struct pt_regs *regs = tsk->thread.regs;
1223#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1224	/* Save the thread's msr before get_tm_stackpointer() changes it */
1225	unsigned long msr = regs->msr;
1226#endif
1227
1228	BUG_ON(tsk != current);
1229
1230	/* Set up Signal Frame */
1231	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1232	if (unlikely(frame == NULL))
1233		goto badframe;
1234	sc = (struct sigcontext __user *) &frame->sctx;
1235
1236#if _NSIG != 64
1237#error "Please adjust handle_signal()"
1238#endif
1239	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1240	    || __put_user(oldset->sig[0], &sc->oldmask)
1241#ifdef CONFIG_PPC64
1242	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1243#else
1244	    || __put_user(oldset->sig[1], &sc->_unused[3])
1245#endif
1246	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1247	    || __put_user(ksig->sig, &sc->signal))
1248		goto badframe;
1249
1250	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1251		sigret = 0;
1252		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1253	} else {
1254		sigret = __NR_sigreturn;
1255		tramp = (unsigned long) frame->mctx.tramp;
1256	}
1257
1258#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1259	tm_mctx = &frame->mctx_transact;
1260	if (MSR_TM_ACTIVE(msr)) {
1261		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1262				      sigret, msr))
1263			goto badframe;
1264	}
1265	else
1266#endif
1267	{
1268		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1269			goto badframe;
 
1270	}
1271
1272	regs->link = tramp;
1273
1274	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1275
1276	/* create a stack frame for the caller of the handler */
1277	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1278	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1279		goto badframe;
1280
1281	regs->gpr[1] = newsp;
1282	regs->gpr[3] = ksig->sig;
1283	regs->gpr[4] = (unsigned long) sc;
1284	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1285	/* enter the signal handler in big-endian mode */
1286	regs->msr &= ~MSR_LE;
1287	return 0;
 
1288
1289badframe:
 
 
 
 
1290	if (show_unhandled_signals)
1291		printk_ratelimited(KERN_INFO
1292				   "%s[%d]: bad frame in handle_signal32: "
1293				   "%p nip %08lx lr %08lx\n",
1294				   tsk->comm, tsk->pid,
1295				   frame, regs->nip, regs->link);
1296
1297	return 1;
 
1298}
1299
1300/*
1301 * Do a signal return; undo the signal stack.
1302 */
1303#ifdef CONFIG_PPC64
1304COMPAT_SYSCALL_DEFINE0(sigreturn)
1305#else
1306SYSCALL_DEFINE0(sigreturn)
1307#endif
1308{
1309	struct pt_regs *regs = current_pt_regs();
1310	struct sigframe __user *sf;
1311	struct sigcontext __user *sc;
1312	struct sigcontext sigctx;
1313	struct mcontext __user *sr;
1314	void __user *addr;
1315	sigset_t set;
1316#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1317	struct mcontext __user *mcp, *tm_mcp;
1318	unsigned long msr_hi;
1319#endif
1320
1321	/* Always make any pending restarted system calls return -EINTR */
1322	current->restart_block.fn = do_no_restart_syscall;
1323
1324	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1325	sc = &sf->sctx;
1326	addr = sc;
1327	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1328		goto badframe;
1329
1330#ifdef CONFIG_PPC64
1331	/*
1332	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1333	 * unused part of the signal stackframe
1334	 */
1335	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1336#else
1337	set.sig[0] = sigctx.oldmask;
1338	set.sig[1] = sigctx._unused[3];
1339#endif
1340	set_current_blocked(&set);
1341
1342#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1343	mcp = (struct mcontext __user *)&sf->mctx;
1344	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1345	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1346		goto badframe;
1347	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1348		if (!cpu_has_feature(CPU_FTR_TM))
1349			goto badframe;
1350		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1351			goto badframe;
1352	} else
1353#endif
1354	{
1355		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1356		addr = sr;
1357		if (!access_ok(sr, sizeof(*sr))
1358		    || restore_user_regs(regs, sr, 1))
1359			goto badframe;
1360	}
1361
1362	set_thread_flag(TIF_RESTOREALL);
1363	return 0;
1364
1365badframe:
1366	if (show_unhandled_signals)
1367		printk_ratelimited(KERN_INFO
1368				   "%s[%d]: bad frame in sys_sigreturn: "
1369				   "%p nip %08lx lr %08lx\n",
1370				   current->comm, current->pid,
1371				   addr, regs->nip, regs->link);
1372
1373	force_sig(SIGSEGV);
1374	return 0;
1375}
v3.5.6
 
   1/*
   2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   3 *
   4 *  PowerPC version
   5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   6 * Copyright (C) 2001 IBM
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
   9 *
  10 *  Derived from "arch/i386/kernel/signal.c"
  11 *    Copyright (C) 1991, 1992 Linus Torvalds
  12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  13 *
  14 *  This program is free software; you can redistribute it and/or
  15 *  modify it under the terms of the GNU General Public License
  16 *  as published by the Free Software Foundation; either version
  17 *  2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/sched.h>
  21#include <linux/mm.h>
  22#include <linux/smp.h>
  23#include <linux/kernel.h>
  24#include <linux/signal.h>
  25#include <linux/errno.h>
  26#include <linux/elf.h>
  27#include <linux/ptrace.h>
 
  28#include <linux/ratelimit.h>
 
  29#ifdef CONFIG_PPC64
  30#include <linux/syscalls.h>
  31#include <linux/compat.h>
  32#else
  33#include <linux/wait.h>
  34#include <linux/unistd.h>
  35#include <linux/stddef.h>
  36#include <linux/tty.h>
  37#include <linux/binfmts.h>
  38#include <linux/freezer.h>
  39#endif
  40
  41#include <asm/uaccess.h>
  42#include <asm/cacheflush.h>
  43#include <asm/syscalls.h>
  44#include <asm/sigcontext.h>
  45#include <asm/vdso.h>
  46#include <asm/switch_to.h>
 
 
  47#ifdef CONFIG_PPC64
  48#include "ppc32.h"
  49#include <asm/unistd.h>
  50#else
  51#include <asm/ucontext.h>
  52#include <asm/pgtable.h>
  53#endif
  54
  55#include "signal.h"
  56
  57#undef DEBUG_SIG
  58
  59#ifdef CONFIG_PPC64
  60#define sys_sigsuspend	compat_sys_sigsuspend
  61#define sys_rt_sigsuspend	compat_sys_rt_sigsuspend
  62#define sys_rt_sigreturn	compat_sys_rt_sigreturn
  63#define sys_sigaction	compat_sys_sigaction
  64#define sys_swapcontext	compat_sys_swapcontext
  65#define sys_sigreturn	compat_sys_sigreturn
  66
  67#define old_sigaction	old_sigaction32
  68#define sigcontext	sigcontext32
  69#define mcontext	mcontext32
  70#define ucontext	ucontext32
  71
 
 
  72/*
  73 * Userspace code may pass a ucontext which doesn't include VSX added
  74 * at the end.  We need to check for this case.
  75 */
  76#define UCONTEXTSIZEWITHOUTVSX \
  77		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  78
  79/*
  80 * Returning 0 means we return to userspace via
  81 * ret_from_except and thus restore all user
  82 * registers from *regs.  This is what we need
  83 * to do when a signal has been delivered.
  84 */
  85
  86#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  87#undef __SIGNAL_FRAMESIZE
  88#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  89#undef ELF_NVRREG
  90#define ELF_NVRREG	ELF_NVRREG32
  91
  92/*
  93 * Functions for flipping sigsets (thanks to brain dead generic
  94 * implementation that makes things simple for little endian only)
  95 */
  96static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  97{
  98	compat_sigset_t	cset;
  99
 100	switch (_NSIG_WORDS) {
 101	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
 102		cset.sig[7] = set->sig[3] >> 32;
 103	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
 104		cset.sig[5] = set->sig[2] >> 32;
 105	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
 106		cset.sig[3] = set->sig[1] >> 32;
 107	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
 108		cset.sig[1] = set->sig[0] >> 32;
 109	}
 110	return copy_to_user(uset, &cset, sizeof(*uset));
 111}
 112
 113static inline int get_sigset_t(sigset_t *set,
 114			       const compat_sigset_t __user *uset)
 115{
 116	compat_sigset_t s32;
 117
 118	if (copy_from_user(&s32, uset, sizeof(*uset)))
 119		return -EFAULT;
 120
 121	/*
 122	 * Swap the 2 words of the 64-bit sigset_t (they are stored
 123	 * in the "wrong" endian in 32-bit user storage).
 124	 */
 125	switch (_NSIG_WORDS) {
 126	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
 127	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
 128	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
 129	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
 130	}
 131	return 0;
 132}
 133
 134static inline int get_old_sigaction(struct k_sigaction *new_ka,
 135		struct old_sigaction __user *act)
 136{
 137	compat_old_sigset_t mask;
 138	compat_uptr_t handler, restorer;
 139
 140	if (get_user(handler, &act->sa_handler) ||
 141	    __get_user(restorer, &act->sa_restorer) ||
 142	    __get_user(new_ka->sa.sa_flags, &act->sa_flags) ||
 143	    __get_user(mask, &act->sa_mask))
 144		return -EFAULT;
 145	new_ka->sa.sa_handler = compat_ptr(handler);
 146	new_ka->sa.sa_restorer = compat_ptr(restorer);
 147	siginitset(&new_ka->sa.sa_mask, mask);
 148	return 0;
 149}
 150
 151#define to_user_ptr(p)		ptr_to_compat(p)
 152#define from_user_ptr(p)	compat_ptr(p)
 153
 154static inline int save_general_regs(struct pt_regs *regs,
 155		struct mcontext __user *frame)
 156{
 157	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 158	int i;
 159
 160	WARN_ON(!FULL_REGS(regs));
 161
 162	for (i = 0; i <= PT_RESULT; i ++) {
 163		if (i == 14 && !FULL_REGS(regs))
 164			i = 32;
 165		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
 
 
 
 
 166			return -EFAULT;
 167	}
 168	return 0;
 169}
 170
 171static inline int restore_general_regs(struct pt_regs *regs,
 172		struct mcontext __user *sr)
 173{
 174	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 175	int i;
 176
 177	for (i = 0; i <= PT_RESULT; i++) {
 178		if ((i == PT_MSR) || (i == PT_SOFTE))
 179			continue;
 180		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 181			return -EFAULT;
 182	}
 183	return 0;
 184}
 185
 186#else /* CONFIG_PPC64 */
 187
 188#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 189
 190static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 191{
 192	return copy_to_user(uset, set, sizeof(*uset));
 193}
 194
 195static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 196{
 197	return copy_from_user(set, uset, sizeof(*uset));
 198}
 199
 200static inline int get_old_sigaction(struct k_sigaction *new_ka,
 201		struct old_sigaction __user *act)
 202{
 203	old_sigset_t mask;
 204
 205	if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
 206			__get_user(new_ka->sa.sa_handler, &act->sa_handler) ||
 207			__get_user(new_ka->sa.sa_restorer, &act->sa_restorer) ||
 208			__get_user(new_ka->sa.sa_flags, &act->sa_flags) ||
 209			__get_user(mask, &act->sa_mask))
 210		return -EFAULT;
 211	siginitset(&new_ka->sa.sa_mask, mask);
 212	return 0;
 213}
 214
 215#define to_user_ptr(p)		((unsigned long)(p))
 216#define from_user_ptr(p)	((void __user *)(p))
 217
 218static inline int save_general_regs(struct pt_regs *regs,
 219		struct mcontext __user *frame)
 220{
 221	WARN_ON(!FULL_REGS(regs));
 222	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 223}
 224
 225static inline int restore_general_regs(struct pt_regs *regs,
 226		struct mcontext __user *sr)
 227{
 228	/* copy up to but not including MSR */
 229	if (__copy_from_user(regs, &sr->mc_gregs,
 230				PT_MSR * sizeof(elf_greg_t)))
 231		return -EFAULT;
 232	/* copy from orig_r3 (the word after the MSR) up to the end */
 233	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 234				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 235		return -EFAULT;
 236	return 0;
 237}
 238
 239#endif /* CONFIG_PPC64 */
 240
 241/*
 242 * Atomically swap in the new signal mask, and wait for a signal.
 243 */
 244long sys_sigsuspend(old_sigset_t mask)
 245{
 246	sigset_t blocked;
 247	siginitset(&blocked, mask);
 248	return sigsuspend(&blocked);
 249}
 250
 251long sys_sigaction(int sig, struct old_sigaction __user *act,
 252		struct old_sigaction __user *oact)
 253{
 254	struct k_sigaction new_ka, old_ka;
 255	int ret;
 256
 257#ifdef CONFIG_PPC64
 258	if (sig < 0)
 259		sig = -sig;
 260#endif
 261
 262	if (act) {
 263		if (get_old_sigaction(&new_ka, act))
 264			return -EFAULT;
 265	}
 266
 267	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
 268	if (!ret && oact) {
 269		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
 270		    __put_user(to_user_ptr(old_ka.sa.sa_handler),
 271			    &oact->sa_handler) ||
 272		    __put_user(to_user_ptr(old_ka.sa.sa_restorer),
 273			    &oact->sa_restorer) ||
 274		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
 275		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
 276			return -EFAULT;
 277	}
 278
 279	return ret;
 280}
 281
 282/*
 283 * When we have signals to deliver, we set up on the
 284 * user stack, going down from the original stack pointer:
 285 *	an ABI gap of 56 words
 286 *	an mcontext struct
 287 *	a sigcontext struct
 288 *	a gap of __SIGNAL_FRAMESIZE bytes
 289 *
 290 * Each of these things must be a multiple of 16 bytes in size. The following
 291 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 292 *
 293 */
 294struct sigframe {
 295	struct sigcontext sctx;		/* the sigcontext */
 296	struct mcontext	mctx;		/* all the register values */
 
 
 
 
 297	/*
 298	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 299	 * regs and 18 fp regs below sp before decrementing it.
 300	 */
 301	int			abigap[56];
 302};
 303
 304/* We use the mc_pad field for the signal return trampoline. */
 305#define tramp	mc_pad
 306
 307/*
 308 *  When we have rt signals to deliver, we set up on the
 309 *  user stack, going down from the original stack pointer:
 310 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 311 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 312 *  (the +16 is to get the siginfo and ucontext in the same
 313 *  positions as in older kernels).
 314 *
 315 *  Each of these things must be a multiple of 16 bytes in size.
 316 *
 317 */
 318struct rt_sigframe {
 319#ifdef CONFIG_PPC64
 320	compat_siginfo_t info;
 321#else
 322	struct siginfo info;
 323#endif
 324	struct ucontext	uc;
 
 
 
 325	/*
 326	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 327	 * regs and 18 fp regs below sp before decrementing it.
 328	 */
 329	int			abigap[56];
 330};
 331
 332#ifdef CONFIG_VSX
 333unsigned long copy_fpr_to_user(void __user *to,
 334			       struct task_struct *task)
 335{
 336	double buf[ELF_NFPREG];
 337	int i;
 338
 339	/* save FPR copy to local buffer then write to the thread_struct */
 340	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 341		buf[i] = task->thread.TS_FPR(i);
 342	memcpy(&buf[i], &task->thread.fpscr, sizeof(double));
 343	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 344}
 345
 346unsigned long copy_fpr_from_user(struct task_struct *task,
 347				 void __user *from)
 348{
 349	double buf[ELF_NFPREG];
 350	int i;
 351
 352	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 353		return 1;
 354	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 355		task->thread.TS_FPR(i) = buf[i];
 356	memcpy(&task->thread.fpscr, &buf[i], sizeof(double));
 357
 358	return 0;
 359}
 360
 361unsigned long copy_vsx_to_user(void __user *to,
 362			       struct task_struct *task)
 363{
 364	double buf[ELF_NVSRHALFREG];
 365	int i;
 366
 367	/* save FPR copy to local buffer then write to the thread_struct */
 368	for (i = 0; i < ELF_NVSRHALFREG; i++)
 369		buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET];
 370	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 371}
 372
 373unsigned long copy_vsx_from_user(struct task_struct *task,
 374				 void __user *from)
 375{
 376	double buf[ELF_NVSRHALFREG];
 377	int i;
 378
 379	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 380		return 1;
 381	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 382		task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 383	return 0;
 384}
 385#else
 386inline unsigned long copy_fpr_to_user(void __user *to,
 387				      struct task_struct *task)
 388{
 389	return __copy_to_user(to, task->thread.fpr,
 390			      ELF_NFPREG * sizeof(double));
 391}
 392
 393inline unsigned long copy_fpr_from_user(struct task_struct *task,
 394					void __user *from)
 395{
 396	return __copy_from_user(task->thread.fpr, from,
 397			      ELF_NFPREG * sizeof(double));
 398}
 399#endif
 400
 401/*
 402 * Save the current user registers on the user stack.
 403 * We only save the altivec/spe registers if the process has used
 404 * altivec/spe instructions at some point.
 405 */
 406static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 407		int sigret, int ctx_has_vsx_region)
 
 408{
 409	unsigned long msr = regs->msr;
 410
 411	/* Make sure floating point registers are stored in regs */
 412	flush_fp_to_thread(current);
 413
 414	/* save general registers */
 415	if (save_general_regs(regs, frame))
 416		return 1;
 417
 418#ifdef CONFIG_ALTIVEC
 419	/* save altivec registers */
 420	if (current->thread.used_vr) {
 421		flush_altivec_to_thread(current);
 422		if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
 423				   ELF_NVRREG * sizeof(vector128)))
 424			return 1;
 425		/* set MSR_VEC in the saved MSR value to indicate that
 426		   frame->mc_vregs contains valid data */
 427		msr |= MSR_VEC;
 428	}
 429	/* else assert((regs->msr & MSR_VEC) == 0) */
 430
 431	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 432	 * use altivec. Since VSCR only contains 32 bits saved in the least
 433	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 434	 * most significant bits of that same vector. --BenH
 
 435	 */
 
 
 436	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 437		return 1;
 438#endif /* CONFIG_ALTIVEC */
 439	if (copy_fpr_to_user(&frame->mc_fregs, current))
 440		return 1;
 
 
 
 
 
 
 441#ifdef CONFIG_VSX
 442	/*
 443	 * Copy VSR 0-31 upper half from thread_struct to local
 444	 * buffer, then write that to userspace.  Also set MSR_VSX in
 445	 * the saved MSR value to indicate that frame->mc_vregs
 446	 * contains valid data
 447	 */
 448	if (current->thread.used_vsr && ctx_has_vsx_region) {
 449		__giveup_vsx(current);
 450		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 451			return 1;
 452		msr |= MSR_VSX;
 453	}
 454#endif /* CONFIG_VSX */
 455#ifdef CONFIG_SPE
 456	/* save spe registers */
 457	if (current->thread.used_spe) {
 458		flush_spe_to_thread(current);
 459		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 460				   ELF_NEVRREG * sizeof(u32)))
 461			return 1;
 462		/* set MSR_SPE in the saved MSR value to indicate that
 463		   frame->mc_vregs contains valid data */
 464		msr |= MSR_SPE;
 465	}
 466	/* else assert((regs->msr & MSR_SPE) == 0) */
 467
 468	/* We always copy to/from spefscr */
 469	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 470		return 1;
 471#endif /* CONFIG_SPE */
 472
 473	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 474		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475	if (sigret) {
 476		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 477		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 478		    || __put_user(0x44000002UL, &frame->tramp[1]))
 479			return 1;
 480		flush_icache_range((unsigned long) &frame->tramp[0],
 481				   (unsigned long) &frame->tramp[2]);
 482	}
 483
 484	return 0;
 485}
 
 486
 487/*
 488 * Restore the current user register values from the user stack,
 489 * (except for MSR).
 490 */
 491static long restore_user_regs(struct pt_regs *regs,
 492			      struct mcontext __user *sr, int sig)
 493{
 494	long err;
 495	unsigned int save_r2 = 0;
 496	unsigned long msr;
 497#ifdef CONFIG_VSX
 498	int i;
 499#endif
 500
 501	/*
 502	 * restore general registers but not including MSR or SOFTE. Also
 503	 * take care of keeping r2 (TLS) intact if not a signal
 504	 */
 505	if (!sig)
 506		save_r2 = (unsigned int)regs->gpr[2];
 507	err = restore_general_regs(regs, sr);
 508	regs->trap = 0;
 509	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 510	if (!sig)
 511		regs->gpr[2] = (unsigned long) save_r2;
 512	if (err)
 513		return 1;
 514
 515	/* if doing signal return, restore the previous little-endian mode */
 516	if (sig)
 517		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 518
 519	/*
 520	 * Do this before updating the thread state in
 521	 * current->thread.fpr/vr/evr.  That way, if we get preempted
 522	 * and another task grabs the FPU/Altivec/SPE, it won't be
 523	 * tempted to save the current CPU state into the thread_struct
 524	 * and corrupt what we are writing there.
 525	 */
 526	discard_lazy_cpu_state();
 527
 528#ifdef CONFIG_ALTIVEC
 529	/*
 530	 * Force the process to reload the altivec registers from
 531	 * current->thread when it next does altivec instructions
 532	 */
 533	regs->msr &= ~MSR_VEC;
 534	if (msr & MSR_VEC) {
 535		/* restore altivec registers from the stack */
 536		if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
 537				     sizeof(sr->mc_vregs)))
 538			return 1;
 
 539	} else if (current->thread.used_vr)
 540		memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
 
 541
 542	/* Always get VRSAVE back */
 543	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 544		return 1;
 
 
 545#endif /* CONFIG_ALTIVEC */
 546	if (copy_fpr_from_user(current, &sr->mc_fregs))
 547		return 1;
 548
 549#ifdef CONFIG_VSX
 550	/*
 551	 * Force the process to reload the VSX registers from
 552	 * current->thread when it next does VSX instruction.
 553	 */
 554	regs->msr &= ~MSR_VSX;
 555	if (msr & MSR_VSX) {
 556		/*
 557		 * Restore altivec registers from the stack to a local
 558		 * buffer, then write this out to the thread_struct
 559		 */
 560		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 561			return 1;
 
 562	} else if (current->thread.used_vsr)
 563		for (i = 0; i < 32 ; i++)
 564			current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
 565#endif /* CONFIG_VSX */
 566	/*
 567	 * force the process to reload the FP registers from
 568	 * current->thread when it next does FP instructions
 569	 */
 570	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 571
 572#ifdef CONFIG_SPE
 573	/* force the process to reload the spe registers from
 574	   current->thread when it next does spe instructions */
 575	regs->msr &= ~MSR_SPE;
 576	if (msr & MSR_SPE) {
 577		/* restore spe registers from the stack */
 578		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 579				     ELF_NEVRREG * sizeof(u32)))
 580			return 1;
 
 581	} else if (current->thread.used_spe)
 582		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 583
 584	/* Always get SPEFSCR back */
 585	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 586		return 1;
 587#endif /* CONFIG_SPE */
 588
 589	return 0;
 590}
 591
 592#ifdef CONFIG_PPC64
 593long compat_sys_rt_sigaction(int sig, const struct sigaction32 __user *act,
 594		struct sigaction32 __user *oact, size_t sigsetsize)
 
 
 
 
 
 
 595{
 596	struct k_sigaction new_ka, old_ka;
 597	int ret;
 
 
 
 598
 599	/* XXX: Don't preclude handling different sized sigset_t's.  */
 600	if (sigsetsize != sizeof(compat_sigset_t))
 601		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602
 603	if (act) {
 604		compat_uptr_t handler;
 605
 606		ret = get_user(handler, &act->sa_handler);
 607		new_ka.sa.sa_handler = compat_ptr(handler);
 608		ret |= get_sigset_t(&new_ka.sa.sa_mask, &act->sa_mask);
 609		ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags);
 610		if (ret)
 611			return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 612	}
 613
 614	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
 615	if (!ret && oact) {
 616		ret = put_user(to_user_ptr(old_ka.sa.sa_handler), &oact->sa_handler);
 617		ret |= put_sigset_t(&oact->sa_mask, &old_ka.sa.sa_mask);
 618		ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags);
 619	}
 620	return ret;
 621}
 
 622
 623/*
 624 * Note: it is necessary to treat how as an unsigned int, with the
 625 * corresponding cast to a signed int to insure that the proper
 626 * conversion (sign extension) between the register representation
 627 * of a signed int (msr in 32-bit mode) and the register representation
 628 * of a signed int (msr in 64-bit mode) is performed.
 629 */
 630long compat_sys_rt_sigprocmask(u32 how, compat_sigset_t __user *set,
 631		compat_sigset_t __user *oset, size_t sigsetsize)
 632{
 633	sigset_t s;
 634	sigset_t __user *up;
 635	int ret;
 636	mm_segment_t old_fs = get_fs();
 637
 638	if (set) {
 639		if (get_sigset_t(&s, set))
 640			return -EFAULT;
 641	}
 642
 643	set_fs(KERNEL_DS);
 644	/* This is valid because of the set_fs() */
 645	up = (sigset_t __user *) &s;
 646	ret = sys_rt_sigprocmask((int)how, set ? up : NULL, oset ? up : NULL,
 647				 sigsetsize);
 648	set_fs(old_fs);
 649	if (ret)
 650		return ret;
 651	if (oset) {
 652		if (put_sigset_t(oset, &s))
 653			return -EFAULT;
 654	}
 655	return 0;
 656}
 
 
 
 657
 658long compat_sys_rt_sigpending(compat_sigset_t __user *set, compat_size_t sigsetsize)
 659{
 660	sigset_t s;
 661	int ret;
 662	mm_segment_t old_fs = get_fs();
 663
 664	set_fs(KERNEL_DS);
 665	/* The __user pointer cast is valid because of the set_fs() */
 666	ret = sys_rt_sigpending((sigset_t __user *) &s, sigsetsize);
 667	set_fs(old_fs);
 668	if (!ret) {
 669		if (put_sigset_t(set, &s))
 670			return -EFAULT;
 671	}
 672	return ret;
 673}
 674
 
 
 
 
 
 675
 676int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
 677{
 678	int err;
 
 
 
 
 679
 680	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
 681		return -EFAULT;
 
 
 
 682
 683	/* If you change siginfo_t structure, please be sure
 684	 * this code is fixed accordingly.
 685	 * It should never copy any pad contained in the structure
 686	 * to avoid security leaks, but must copy the generic
 687	 * 3 ints plus the relevant union member.
 688	 * This routine must convert siginfo from 64bit to 32bit as well
 689	 * at the same time.
 690	 */
 691	err = __put_user(s->si_signo, &d->si_signo);
 692	err |= __put_user(s->si_errno, &d->si_errno);
 693	err |= __put_user((short)s->si_code, &d->si_code);
 694	if (s->si_code < 0)
 695		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
 696				      SI_PAD_SIZE32);
 697	else switch(s->si_code >> 16) {
 698	case __SI_CHLD >> 16:
 699		err |= __put_user(s->si_pid, &d->si_pid);
 700		err |= __put_user(s->si_uid, &d->si_uid);
 701		err |= __put_user(s->si_utime, &d->si_utime);
 702		err |= __put_user(s->si_stime, &d->si_stime);
 703		err |= __put_user(s->si_status, &d->si_status);
 704		break;
 705	case __SI_FAULT >> 16:
 706		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
 707				  &d->si_addr);
 708		break;
 709	case __SI_POLL >> 16:
 710		err |= __put_user(s->si_band, &d->si_band);
 711		err |= __put_user(s->si_fd, &d->si_fd);
 712		break;
 713	case __SI_TIMER >> 16:
 714		err |= __put_user(s->si_tid, &d->si_tid);
 715		err |= __put_user(s->si_overrun, &d->si_overrun);
 716		err |= __put_user(s->si_int, &d->si_int);
 717		break;
 718	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
 719	case __SI_MESGQ >> 16:
 720		err |= __put_user(s->si_int, &d->si_int);
 721		/* fallthrough */
 722	case __SI_KILL >> 16:
 723	default:
 724		err |= __put_user(s->si_pid, &d->si_pid);
 725		err |= __put_user(s->si_uid, &d->si_uid);
 726		break;
 727	}
 728	return err;
 729}
 
 
 
 
 730
 731#define copy_siginfo_to_user	copy_siginfo_to_user32
 732
 733int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
 734{
 735	memset(to, 0, sizeof *to);
 736
 737	if (copy_from_user(to, from, 3*sizeof(int)) ||
 738	    copy_from_user(to->_sifields._pad,
 739			   from->_sifields._pad, SI_PAD_SIZE32))
 740		return -EFAULT;
 741
 742	return 0;
 743}
 
 744
 745/*
 746 * Note: it is necessary to treat pid and sig as unsigned ints, with the
 747 * corresponding cast to a signed int to insure that the proper conversion
 748 * (sign extension) between the register representation of a signed int
 749 * (msr in 32-bit mode) and the register representation of a signed int
 750 * (msr in 64-bit mode) is performed.
 751 */
 752long compat_sys_rt_sigqueueinfo(u32 pid, u32 sig, compat_siginfo_t __user *uinfo)
 753{
 754	siginfo_t info;
 755	int ret;
 756	mm_segment_t old_fs = get_fs();
 757
 758	ret = copy_siginfo_from_user32(&info, uinfo);
 759	if (unlikely(ret))
 760		return ret;
 761
 762	set_fs (KERNEL_DS);
 763	/* The __user pointer cast is valid becasuse of the set_fs() */
 764	ret = sys_rt_sigqueueinfo((int)pid, (int)sig, (siginfo_t __user *) &info);
 765	set_fs (old_fs);
 766	return ret;
 767}
 768/*
 769 *  Start Alternate signal stack support
 770 *
 771 *  System Calls
 772 *       sigaltatck               compat_sys_sigaltstack
 773 */
 774
 775int compat_sys_sigaltstack(u32 __new, u32 __old, int r5,
 776		      int r6, int r7, int r8, struct pt_regs *regs)
 777{
 778	stack_32_t __user * newstack = compat_ptr(__new);
 779	stack_32_t __user * oldstack = compat_ptr(__old);
 780	stack_t uss, uoss;
 781	int ret;
 782	mm_segment_t old_fs;
 783	unsigned long sp;
 784	compat_uptr_t ss_sp;
 785
 786	/*
 787	 * set sp to the user stack on entry to the system call
 788	 * the system call router sets R9 to the saved registers
 789	 */
 790	sp = regs->gpr[1];
 791
 792	/* Put new stack info in local 64 bit stack struct */
 793	if (newstack) {
 794		if (get_user(ss_sp, &newstack->ss_sp) ||
 795		    __get_user(uss.ss_flags, &newstack->ss_flags) ||
 796		    __get_user(uss.ss_size, &newstack->ss_size))
 797			return -EFAULT;
 798		uss.ss_sp = compat_ptr(ss_sp);
 799	}
 800
 801	old_fs = get_fs();
 802	set_fs(KERNEL_DS);
 803	/* The __user pointer casts are valid because of the set_fs() */
 804	ret = do_sigaltstack(
 805		newstack ? (stack_t __user *) &uss : NULL,
 806		oldstack ? (stack_t __user *) &uoss : NULL,
 807		sp);
 808	set_fs(old_fs);
 809	/* Copy the stack information to the user output buffer */
 810	if (!ret && oldstack  &&
 811		(put_user(ptr_to_compat(uoss.ss_sp), &oldstack->ss_sp) ||
 812		 __put_user(uoss.ss_flags, &oldstack->ss_flags) ||
 813		 __put_user(uoss.ss_size, &oldstack->ss_size)))
 814		return -EFAULT;
 815	return ret;
 816}
 817#endif /* CONFIG_PPC64 */
 818
 819/*
 820 * Set up a signal frame for a "real-time" signal handler
 821 * (one which gets siginfo).
 822 */
 823int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
 824		siginfo_t *info, sigset_t *oldset,
 825		struct pt_regs *regs)
 826{
 827	struct rt_sigframe __user *rt_sf;
 828	struct mcontext __user *frame;
 
 829	void __user *addr;
 830	unsigned long newsp = 0;
 
 
 
 
 
 
 
 
 
 831
 832	/* Set up Signal Frame */
 833	/* Put a Real Time Context onto stack */
 834	rt_sf = get_sigframe(ka, regs, sizeof(*rt_sf), 1);
 835	addr = rt_sf;
 836	if (unlikely(rt_sf == NULL))
 837		goto badframe;
 838
 839	/* Put the siginfo & fill in most of the ucontext */
 840	if (copy_siginfo_to_user(&rt_sf->info, info)
 841	    || __put_user(0, &rt_sf->uc.uc_flags)
 842	    || __put_user(0, &rt_sf->uc.uc_link)
 843	    || __put_user(current->sas_ss_sp, &rt_sf->uc.uc_stack.ss_sp)
 844	    || __put_user(sas_ss_flags(regs->gpr[1]),
 845			  &rt_sf->uc.uc_stack.ss_flags)
 846	    || __put_user(current->sas_ss_size, &rt_sf->uc.uc_stack.ss_size)
 847	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
 848		    &rt_sf->uc.uc_regs)
 849	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
 850		goto badframe;
 851
 852	/* Save user registers on the stack */
 853	frame = &rt_sf->uc.uc_mcontext;
 854	addr = frame;
 855	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
 856		if (save_user_regs(regs, frame, 0, 1))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857			goto badframe;
 858		regs->link = current->mm->context.vdso_base + vdso32_rt_sigtramp;
 859	} else {
 860		if (save_user_regs(regs, frame, __NR_rt_sigreturn, 1))
 861			goto badframe;
 862		regs->link = (unsigned long) frame->tramp;
 863	}
 
 864
 865	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
 866
 867	/* create a stack frame for the caller of the handler */
 868	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
 869	addr = (void __user *)regs->gpr[1];
 870	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 871		goto badframe;
 872
 873	/* Fill registers for signal handler */
 874	regs->gpr[1] = newsp;
 875	regs->gpr[3] = sig;
 876	regs->gpr[4] = (unsigned long) &rt_sf->info;
 877	regs->gpr[5] = (unsigned long) &rt_sf->uc;
 878	regs->gpr[6] = (unsigned long) rt_sf;
 879	regs->nip = (unsigned long) ka->sa.sa_handler;
 880	/* enter the signal handler in big-endian mode */
 881	regs->msr &= ~MSR_LE;
 882	return 1;
 
 883
 884badframe:
 885#ifdef DEBUG_SIG
 886	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
 887	       regs, frame, newsp);
 888#endif
 889	if (show_unhandled_signals)
 890		printk_ratelimited(KERN_INFO
 891				   "%s[%d]: bad frame in handle_rt_signal32: "
 892				   "%p nip %08lx lr %08lx\n",
 893				   current->comm, current->pid,
 894				   addr, regs->nip, regs->link);
 895
 896	force_sigsegv(sig, current);
 897	return 0;
 898}
 899
 900static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 901{
 902	sigset_t set;
 903	struct mcontext __user *mcp;
 904
 905	if (get_sigset_t(&set, &ucp->uc_sigmask))
 906		return -EFAULT;
 907#ifdef CONFIG_PPC64
 908	{
 909		u32 cmcp;
 910
 911		if (__get_user(cmcp, &ucp->uc_regs))
 912			return -EFAULT;
 913		mcp = (struct mcontext __user *)(u64)cmcp;
 914		/* no need to check access_ok(mcp), since mcp < 4GB */
 915	}
 916#else
 917	if (__get_user(mcp, &ucp->uc_regs))
 918		return -EFAULT;
 919	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
 920		return -EFAULT;
 921#endif
 922	set_current_blocked(&set);
 923	if (restore_user_regs(regs, mcp, sig))
 924		return -EFAULT;
 925
 926	return 0;
 927}
 928
 929long sys_swapcontext(struct ucontext __user *old_ctx,
 930		     struct ucontext __user *new_ctx,
 931		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932{
 933	unsigned char tmp;
 934	int ctx_has_vsx_region = 0;
 935
 936#ifdef CONFIG_PPC64
 937	unsigned long new_msr = 0;
 938
 939	if (new_ctx) {
 940		struct mcontext __user *mcp;
 941		u32 cmcp;
 942
 943		/*
 944		 * Get pointer to the real mcontext.  No need for
 945		 * access_ok since we are dealing with compat
 946		 * pointers.
 947		 */
 948		if (__get_user(cmcp, &new_ctx->uc_regs))
 949			return -EFAULT;
 950		mcp = (struct mcontext __user *)(u64)cmcp;
 951		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
 952			return -EFAULT;
 953	}
 954	/*
 955	 * Check that the context is not smaller than the original
 956	 * size (with VMX but without VSX)
 957	 */
 958	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
 959		return -EINVAL;
 960	/*
 961	 * If the new context state sets the MSR VSX bits but
 962	 * it doesn't provide VSX state.
 963	 */
 964	if ((ctx_size < sizeof(struct ucontext)) &&
 965	    (new_msr & MSR_VSX))
 966		return -EINVAL;
 967	/* Does the context have enough room to store VSX data? */
 968	if (ctx_size >= sizeof(struct ucontext))
 969		ctx_has_vsx_region = 1;
 970#else
 971	/* Context size is for future use. Right now, we only make sure
 972	 * we are passed something we understand
 973	 */
 974	if (ctx_size < sizeof(struct ucontext))
 975		return -EINVAL;
 976#endif
 977	if (old_ctx != NULL) {
 978		struct mcontext __user *mctx;
 979
 980		/*
 981		 * old_ctx might not be 16-byte aligned, in which
 982		 * case old_ctx->uc_mcontext won't be either.
 983		 * Because we have the old_ctx->uc_pad2 field
 984		 * before old_ctx->uc_mcontext, we need to round down
 985		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
 986		 */
 987		mctx = (struct mcontext __user *)
 988			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
 989		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
 990		    || save_user_regs(regs, mctx, 0, ctx_has_vsx_region)
 991		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
 992		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
 993			return -EFAULT;
 994	}
 995	if (new_ctx == NULL)
 996		return 0;
 997	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
 998	    || __get_user(tmp, (u8 __user *) new_ctx)
 999	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1000		return -EFAULT;
1001
1002	/*
1003	 * If we get a fault copying the context into the kernel's
1004	 * image of the user's registers, we can't just return -EFAULT
1005	 * because the user's registers will be corrupted.  For instance
1006	 * the NIP value may have been updated but not some of the
1007	 * other registers.  Given that we have done the access_ok
1008	 * and successfully read the first and last bytes of the region
1009	 * above, this should only happen in an out-of-memory situation
1010	 * or if another thread unmaps the region containing the context.
1011	 * We kill the task with a SIGSEGV in this situation.
1012	 */
1013	if (do_setcontext(new_ctx, regs, 0))
1014		do_exit(SIGSEGV);
1015
1016	set_thread_flag(TIF_RESTOREALL);
1017	return 0;
1018}
1019
1020long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1021		     struct pt_regs *regs)
 
 
 
1022{
1023	struct rt_sigframe __user *rt_sf;
1024
 
 
 
 
 
 
1025	/* Always make any pending restarted system calls return -EINTR */
1026	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1027
1028	rt_sf = (struct rt_sigframe __user *)
1029		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1030	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1031		goto bad;
1032	if (do_setcontext(&rt_sf->uc, regs, 1))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033		goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034
1035	/*
1036	 * It's not clear whether or why it is desirable to save the
1037	 * sigaltstack setting on signal delivery and restore it on
1038	 * signal return.  But other architectures do this and we have
1039	 * always done it up until now so it is probably better not to
1040	 * change it.  -- paulus
1041	 */
1042#ifdef CONFIG_PPC64
1043	/*
1044	 * We use the compat_sys_ version that does the 32/64 bits conversion
1045	 * and takes userland pointer directly. What about error checking ?
1046	 * nobody does any...
1047	 */
1048	compat_sys_sigaltstack((u32)(u64)&rt_sf->uc.uc_stack, 0, 0, 0, 0, 0, regs);
1049#else
1050	do_sigaltstack(&rt_sf->uc.uc_stack, NULL, regs->gpr[1]);
 
1051#endif
1052	set_thread_flag(TIF_RESTOREALL);
1053	return 0;
1054
1055 bad:
1056	if (show_unhandled_signals)
1057		printk_ratelimited(KERN_INFO
1058				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1059				   "%p nip %08lx lr %08lx\n",
1060				   current->comm, current->pid,
1061				   rt_sf, regs->nip, regs->link);
1062
1063	force_sig(SIGSEGV, current);
1064	return 0;
1065}
1066
1067#ifdef CONFIG_PPC32
1068int sys_debug_setcontext(struct ucontext __user *ctx,
1069			 int ndbg, struct sig_dbg_op __user *dbg,
1070			 int r6, int r7, int r8,
1071			 struct pt_regs *regs)
1072{
 
1073	struct sig_dbg_op op;
1074	int i;
1075	unsigned char tmp;
1076	unsigned long new_msr = regs->msr;
1077#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1078	unsigned long new_dbcr0 = current->thread.dbcr0;
1079#endif
1080
1081	for (i=0; i<ndbg; i++) {
1082		if (copy_from_user(&op, dbg + i, sizeof(op)))
1083			return -EFAULT;
1084		switch (op.dbg_type) {
1085		case SIG_DBG_SINGLE_STEPPING:
1086#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1087			if (op.dbg_value) {
1088				new_msr |= MSR_DE;
1089				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1090			} else {
1091				new_dbcr0 &= ~DBCR0_IC;
1092				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1093						current->thread.dbcr1)) {
1094					new_msr &= ~MSR_DE;
1095					new_dbcr0 &= ~DBCR0_IDM;
1096				}
1097			}
1098#else
1099			if (op.dbg_value)
1100				new_msr |= MSR_SE;
1101			else
1102				new_msr &= ~MSR_SE;
1103#endif
1104			break;
1105		case SIG_DBG_BRANCH_TRACING:
1106#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1107			return -EINVAL;
1108#else
1109			if (op.dbg_value)
1110				new_msr |= MSR_BE;
1111			else
1112				new_msr &= ~MSR_BE;
1113#endif
1114			break;
1115
1116		default:
1117			return -EINVAL;
1118		}
1119	}
1120
1121	/* We wait until here to actually install the values in the
1122	   registers so if we fail in the above loop, it will not
1123	   affect the contents of these registers.  After this point,
1124	   failure is a problem, anyway, and it's very unlikely unless
1125	   the user is really doing something wrong. */
1126	regs->msr = new_msr;
1127#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1128	current->thread.dbcr0 = new_dbcr0;
1129#endif
1130
1131	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1132	    || __get_user(tmp, (u8 __user *) ctx)
1133	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1134		return -EFAULT;
1135
1136	/*
1137	 * If we get a fault copying the context into the kernel's
1138	 * image of the user's registers, we can't just return -EFAULT
1139	 * because the user's registers will be corrupted.  For instance
1140	 * the NIP value may have been updated but not some of the
1141	 * other registers.  Given that we have done the access_ok
1142	 * and successfully read the first and last bytes of the region
1143	 * above, this should only happen in an out-of-memory situation
1144	 * or if another thread unmaps the region containing the context.
1145	 * We kill the task with a SIGSEGV in this situation.
1146	 */
1147	if (do_setcontext(ctx, regs, 1)) {
1148		if (show_unhandled_signals)
1149			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1150					   "sys_debug_setcontext: %p nip %08lx "
1151					   "lr %08lx\n",
1152					   current->comm, current->pid,
1153					   ctx, regs->nip, regs->link);
1154
1155		force_sig(SIGSEGV, current);
1156		goto out;
1157	}
1158
1159	/*
1160	 * It's not clear whether or why it is desirable to save the
1161	 * sigaltstack setting on signal delivery and restore it on
1162	 * signal return.  But other architectures do this and we have
1163	 * always done it up until now so it is probably better not to
1164	 * change it.  -- paulus
1165	 */
1166	do_sigaltstack(&ctx->uc_stack, NULL, regs->gpr[1]);
1167
1168	set_thread_flag(TIF_RESTOREALL);
1169 out:
1170	return 0;
1171}
1172#endif
1173
1174/*
1175 * OK, we're invoking a handler
1176 */
1177int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1178		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1179{
1180	struct sigcontext __user *sc;
1181	struct sigframe __user *frame;
 
1182	unsigned long newsp = 0;
 
 
 
 
 
 
 
 
 
1183
1184	/* Set up Signal Frame */
1185	frame = get_sigframe(ka, regs, sizeof(*frame), 1);
1186	if (unlikely(frame == NULL))
1187		goto badframe;
1188	sc = (struct sigcontext __user *) &frame->sctx;
1189
1190#if _NSIG != 64
1191#error "Please adjust handle_signal()"
1192#endif
1193	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1194	    || __put_user(oldset->sig[0], &sc->oldmask)
1195#ifdef CONFIG_PPC64
1196	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1197#else
1198	    || __put_user(oldset->sig[1], &sc->_unused[3])
1199#endif
1200	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1201	    || __put_user(sig, &sc->signal))
1202		goto badframe;
1203
1204	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1205		if (save_user_regs(regs, &frame->mctx, 0, 1))
 
 
 
 
 
 
 
 
 
 
 
1206			goto badframe;
1207		regs->link = current->mm->context.vdso_base + vdso32_sigtramp;
1208	} else {
1209		if (save_user_regs(regs, &frame->mctx, __NR_sigreturn, 1))
 
 
1210			goto badframe;
1211		regs->link = (unsigned long) frame->mctx.tramp;
1212	}
1213
1214	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
 
 
1215
1216	/* create a stack frame for the caller of the handler */
1217	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1218	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1219		goto badframe;
1220
1221	regs->gpr[1] = newsp;
1222	regs->gpr[3] = sig;
1223	regs->gpr[4] = (unsigned long) sc;
1224	regs->nip = (unsigned long) ka->sa.sa_handler;
1225	/* enter the signal handler in big-endian mode */
1226	regs->msr &= ~MSR_LE;
1227
1228	return 1;
1229
1230badframe:
1231#ifdef DEBUG_SIG
1232	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1233	       regs, frame, newsp);
1234#endif
1235	if (show_unhandled_signals)
1236		printk_ratelimited(KERN_INFO
1237				   "%s[%d]: bad frame in handle_signal32: "
1238				   "%p nip %08lx lr %08lx\n",
1239				   current->comm, current->pid,
1240				   frame, regs->nip, regs->link);
1241
1242	force_sigsegv(sig, current);
1243	return 0;
1244}
1245
1246/*
1247 * Do a signal return; undo the signal stack.
1248 */
1249long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1250		       struct pt_regs *regs)
 
 
 
1251{
 
 
1252	struct sigcontext __user *sc;
1253	struct sigcontext sigctx;
1254	struct mcontext __user *sr;
1255	void __user *addr;
1256	sigset_t set;
 
 
 
 
1257
1258	/* Always make any pending restarted system calls return -EINTR */
1259	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1260
1261	sc = (struct sigcontext __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
 
1262	addr = sc;
1263	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1264		goto badframe;
1265
1266#ifdef CONFIG_PPC64
1267	/*
1268	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1269	 * unused part of the signal stackframe
1270	 */
1271	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1272#else
1273	set.sig[0] = sigctx.oldmask;
1274	set.sig[1] = sigctx._unused[3];
1275#endif
1276	set_current_blocked(&set);
1277
1278	sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1279	addr = sr;
1280	if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1281	    || restore_user_regs(regs, sr, 1))
1282		goto badframe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283
1284	set_thread_flag(TIF_RESTOREALL);
1285	return 0;
1286
1287badframe:
1288	if (show_unhandled_signals)
1289		printk_ratelimited(KERN_INFO
1290				   "%s[%d]: bad frame in sys_sigreturn: "
1291				   "%p nip %08lx lr %08lx\n",
1292				   current->comm, current->pid,
1293				   addr, regs->nip, regs->link);
1294
1295	force_sig(SIGSEGV, current);
1296	return 0;
1297}