Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 * Copyright 2001-2012 IBM Corporation.
7 *
8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9 */
10
11#include <linux/delay.h>
12#include <linux/sched.h>
13#include <linux/init.h>
14#include <linux/list.h>
15#include <linux/pci.h>
16#include <linux/iommu.h>
17#include <linux/proc_fs.h>
18#include <linux/rbtree.h>
19#include <linux/reboot.h>
20#include <linux/seq_file.h>
21#include <linux/spinlock.h>
22#include <linux/export.h>
23#include <linux/of.h>
24
25#include <linux/atomic.h>
26#include <asm/debugfs.h>
27#include <asm/eeh.h>
28#include <asm/eeh_event.h>
29#include <asm/io.h>
30#include <asm/iommu.h>
31#include <asm/machdep.h>
32#include <asm/ppc-pci.h>
33#include <asm/rtas.h>
34#include <asm/pte-walk.h>
35
36
37/** Overview:
38 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39 * dealing with PCI bus errors that can't be dealt with within the
40 * usual PCI framework, except by check-stopping the CPU. Systems
41 * that are designed for high-availability/reliability cannot afford
42 * to crash due to a "mere" PCI error, thus the need for EEH.
43 * An EEH-capable bridge operates by converting a detected error
44 * into a "slot freeze", taking the PCI adapter off-line, making
45 * the slot behave, from the OS'es point of view, as if the slot
46 * were "empty": all reads return 0xff's and all writes are silently
47 * ignored. EEH slot isolation events can be triggered by parity
48 * errors on the address or data busses (e.g. during posted writes),
49 * which in turn might be caused by low voltage on the bus, dust,
50 * vibration, humidity, radioactivity or plain-old failed hardware.
51 *
52 * Note, however, that one of the leading causes of EEH slot
53 * freeze events are buggy device drivers, buggy device microcode,
54 * or buggy device hardware. This is because any attempt by the
55 * device to bus-master data to a memory address that is not
56 * assigned to the device will trigger a slot freeze. (The idea
57 * is to prevent devices-gone-wild from corrupting system memory).
58 * Buggy hardware/drivers will have a miserable time co-existing
59 * with EEH.
60 *
61 * Ideally, a PCI device driver, when suspecting that an isolation
62 * event has occurred (e.g. by reading 0xff's), will then ask EEH
63 * whether this is the case, and then take appropriate steps to
64 * reset the PCI slot, the PCI device, and then resume operations.
65 * However, until that day, the checking is done here, with the
66 * eeh_check_failure() routine embedded in the MMIO macros. If
67 * the slot is found to be isolated, an "EEH Event" is synthesized
68 * and sent out for processing.
69 */
70
71/* If a device driver keeps reading an MMIO register in an interrupt
72 * handler after a slot isolation event, it might be broken.
73 * This sets the threshold for how many read attempts we allow
74 * before printing an error message.
75 */
76#define EEH_MAX_FAILS 2100000
77
78/* Time to wait for a PCI slot to report status, in milliseconds */
79#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80
81/*
82 * EEH probe mode support, which is part of the flags,
83 * is to support multiple platforms for EEH. Some platforms
84 * like pSeries do PCI emunation based on device tree.
85 * However, other platforms like powernv probe PCI devices
86 * from hardware. The flag is used to distinguish that.
87 * In addition, struct eeh_ops::probe would be invoked for
88 * particular OF node or PCI device so that the corresponding
89 * PE would be created there.
90 */
91int eeh_subsystem_flags;
92EXPORT_SYMBOL(eeh_subsystem_flags);
93
94/*
95 * EEH allowed maximal frozen times. If one particular PE's
96 * frozen count in last hour exceeds this limit, the PE will
97 * be forced to be offline permanently.
98 */
99u32 eeh_max_freezes = 5;
100
101/*
102 * Controls whether a recovery event should be scheduled when an
103 * isolated device is discovered. This is only really useful for
104 * debugging problems with the EEH core.
105 */
106bool eeh_debugfs_no_recover;
107
108/* Platform dependent EEH operations */
109struct eeh_ops *eeh_ops = NULL;
110
111/* Lock to avoid races due to multiple reports of an error */
112DEFINE_RAW_SPINLOCK(confirm_error_lock);
113EXPORT_SYMBOL_GPL(confirm_error_lock);
114
115/* Lock to protect passed flags */
116static DEFINE_MUTEX(eeh_dev_mutex);
117
118/* Buffer for reporting pci register dumps. Its here in BSS, and
119 * not dynamically alloced, so that it ends up in RMO where RTAS
120 * can access it.
121 */
122#define EEH_PCI_REGS_LOG_LEN 8192
123static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124
125/*
126 * The struct is used to maintain the EEH global statistic
127 * information. Besides, the EEH global statistics will be
128 * exported to user space through procfs
129 */
130struct eeh_stats {
131 u64 no_device; /* PCI device not found */
132 u64 no_dn; /* OF node not found */
133 u64 no_cfg_addr; /* Config address not found */
134 u64 ignored_check; /* EEH check skipped */
135 u64 total_mmio_ffs; /* Total EEH checks */
136 u64 false_positives; /* Unnecessary EEH checks */
137 u64 slot_resets; /* PE reset */
138};
139
140static struct eeh_stats eeh_stats;
141
142static int __init eeh_setup(char *str)
143{
144 if (!strcmp(str, "off"))
145 eeh_add_flag(EEH_FORCE_DISABLED);
146 else if (!strcmp(str, "early_log"))
147 eeh_add_flag(EEH_EARLY_DUMP_LOG);
148
149 return 1;
150}
151__setup("eeh=", eeh_setup);
152
153void eeh_show_enabled(void)
154{
155 if (eeh_has_flag(EEH_FORCE_DISABLED))
156 pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 else if (eeh_has_flag(EEH_ENABLED))
158 pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 else
160 pr_info("EEH: No capable adapters found: recovery disabled.\n");
161}
162
163/*
164 * This routine captures assorted PCI configuration space data
165 * for the indicated PCI device, and puts them into a buffer
166 * for RTAS error logging.
167 */
168static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169{
170 u32 cfg;
171 int cap, i;
172 int n = 0, l = 0;
173 char buffer[128];
174
175 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 edev->pe->phb->global_number, edev->bdfn >> 8,
177 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 edev->pe->phb->global_number, edev->bdfn >> 8,
180 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181
182 eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185
186 eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189
190 /* Gather bridge-specific registers */
191 if (edev->mode & EEH_DEV_BRIDGE) {
192 eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195
196 eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 pr_warn("EEH: Bridge control: %04x\n", cfg);
199 }
200
201 /* Dump out the PCI-X command and status regs */
202 cap = edev->pcix_cap;
203 if (cap) {
204 eeh_ops->read_config(edev, cap, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207
208 eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 }
212
213 /* If PCI-E capable, dump PCI-E cap 10 */
214 cap = edev->pcie_cap;
215 if (cap) {
216 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 pr_warn("EEH: PCI-E capabilities and status follow:\n");
218
219 for (i=0; i<=8; i++) {
220 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222
223 if ((i % 4) == 0) {
224 if (i != 0)
225 pr_warn("%s\n", buffer);
226
227 l = scnprintf(buffer, sizeof(buffer),
228 "EEH: PCI-E %02x: %08x ",
229 4*i, cfg);
230 } else {
231 l += scnprintf(buffer+l, sizeof(buffer)-l,
232 "%08x ", cfg);
233 }
234
235 }
236
237 pr_warn("%s\n", buffer);
238 }
239
240 /* If AER capable, dump it */
241 cap = edev->aer_cap;
242 if (cap) {
243 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 pr_warn("EEH: PCI-E AER capability register set follows:\n");
245
246 for (i=0; i<=13; i++) {
247 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249
250 if ((i % 4) == 0) {
251 if (i != 0)
252 pr_warn("%s\n", buffer);
253
254 l = scnprintf(buffer, sizeof(buffer),
255 "EEH: PCI-E AER %02x: %08x ",
256 4*i, cfg);
257 } else {
258 l += scnprintf(buffer+l, sizeof(buffer)-l,
259 "%08x ", cfg);
260 }
261 }
262
263 pr_warn("%s\n", buffer);
264 }
265
266 return n;
267}
268
269static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270{
271 struct eeh_dev *edev, *tmp;
272 size_t *plen = flag;
273
274 eeh_pe_for_each_dev(pe, edev, tmp)
275 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 EEH_PCI_REGS_LOG_LEN - *plen);
277
278 return NULL;
279}
280
281/**
282 * eeh_slot_error_detail - Generate combined log including driver log and error log
283 * @pe: EEH PE
284 * @severity: temporary or permanent error log
285 *
286 * This routine should be called to generate the combined log, which
287 * is comprised of driver log and error log. The driver log is figured
288 * out from the config space of the corresponding PCI device, while
289 * the error log is fetched through platform dependent function call.
290 */
291void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292{
293 size_t loglen = 0;
294
295 /*
296 * When the PHB is fenced or dead, it's pointless to collect
297 * the data from PCI config space because it should return
298 * 0xFF's. For ER, we still retrieve the data from the PCI
299 * config space.
300 *
301 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 * 0xFF's is always returned from PCI config space.
303 *
304 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 * removed. Prior to that, the drivers for devices included in
306 * the PE will be closed. The drivers rely on working IO path
307 * to bring the devices to quiet state. Otherwise, PCI traffic
308 * from those devices after they are removed is like to cause
309 * another unexpected EEH error.
310 */
311 if (!(pe->type & EEH_PE_PHB)) {
312 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 severity == EEH_LOG_PERM)
314 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315
316 /*
317 * The config space of some PCI devices can't be accessed
318 * when their PEs are in frozen state. Otherwise, fenced
319 * PHB might be seen. Those PEs are identified with flag
320 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 *
323 * Restoring BARs possibly triggers PCI config access in
324 * (OPAL) firmware and then causes fenced PHB. If the
325 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 * pointless to restore BARs and dump config space.
327 */
328 eeh_ops->configure_bridge(pe);
329 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 eeh_pe_restore_bars(pe);
331
332 pci_regs_buf[0] = 0;
333 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 }
335 }
336
337 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338}
339
340/**
341 * eeh_token_to_phys - Convert EEH address token to phys address
342 * @token: I/O token, should be address in the form 0xA....
343 *
344 * This routine should be called to convert virtual I/O address
345 * to physical one.
346 */
347static inline unsigned long eeh_token_to_phys(unsigned long token)
348{
349 pte_t *ptep;
350 unsigned long pa;
351 int hugepage_shift;
352
353 /*
354 * We won't find hugepages here(this is iomem). Hence we are not
355 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
356 * page table free, because of init_mm.
357 */
358 ptep = find_init_mm_pte(token, &hugepage_shift);
359 if (!ptep)
360 return token;
361
362 pa = pte_pfn(*ptep);
363
364 /* On radix we can do hugepage mappings for io, so handle that */
365 if (hugepage_shift) {
366 pa <<= hugepage_shift;
367 pa |= token & ((1ul << hugepage_shift) - 1);
368 } else {
369 pa <<= PAGE_SHIFT;
370 pa |= token & (PAGE_SIZE - 1);
371 }
372
373 return pa;
374}
375
376/*
377 * On PowerNV platform, we might already have fenced PHB there.
378 * For that case, it's meaningless to recover frozen PE. Intead,
379 * We have to handle fenced PHB firstly.
380 */
381static int eeh_phb_check_failure(struct eeh_pe *pe)
382{
383 struct eeh_pe *phb_pe;
384 unsigned long flags;
385 int ret;
386
387 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
388 return -EPERM;
389
390 /* Find the PHB PE */
391 phb_pe = eeh_phb_pe_get(pe->phb);
392 if (!phb_pe) {
393 pr_warn("%s Can't find PE for PHB#%x\n",
394 __func__, pe->phb->global_number);
395 return -EEXIST;
396 }
397
398 /* If the PHB has been in problematic state */
399 eeh_serialize_lock(&flags);
400 if (phb_pe->state & EEH_PE_ISOLATED) {
401 ret = 0;
402 goto out;
403 }
404
405 /* Check PHB state */
406 ret = eeh_ops->get_state(phb_pe, NULL);
407 if ((ret < 0) ||
408 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
409 ret = 0;
410 goto out;
411 }
412
413 /* Isolate the PHB and send event */
414 eeh_pe_mark_isolated(phb_pe);
415 eeh_serialize_unlock(flags);
416
417 pr_debug("EEH: PHB#%x failure detected, location: %s\n",
418 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
419 eeh_send_failure_event(phb_pe);
420 return 1;
421out:
422 eeh_serialize_unlock(flags);
423 return ret;
424}
425
426/**
427 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
428 * @edev: eeh device
429 *
430 * Check for an EEH failure for the given device node. Call this
431 * routine if the result of a read was all 0xff's and you want to
432 * find out if this is due to an EEH slot freeze. This routine
433 * will query firmware for the EEH status.
434 *
435 * Returns 0 if there has not been an EEH error; otherwise returns
436 * a non-zero value and queues up a slot isolation event notification.
437 *
438 * It is safe to call this routine in an interrupt context.
439 */
440int eeh_dev_check_failure(struct eeh_dev *edev)
441{
442 int ret;
443 unsigned long flags;
444 struct device_node *dn;
445 struct pci_dev *dev;
446 struct eeh_pe *pe, *parent_pe;
447 int rc = 0;
448 const char *location = NULL;
449
450 eeh_stats.total_mmio_ffs++;
451
452 if (!eeh_enabled())
453 return 0;
454
455 if (!edev) {
456 eeh_stats.no_dn++;
457 return 0;
458 }
459 dev = eeh_dev_to_pci_dev(edev);
460 pe = eeh_dev_to_pe(edev);
461
462 /* Access to IO BARs might get this far and still not want checking. */
463 if (!pe) {
464 eeh_stats.ignored_check++;
465 eeh_edev_dbg(edev, "Ignored check\n");
466 return 0;
467 }
468
469 if (!pe->addr && !pe->config_addr) {
470 eeh_stats.no_cfg_addr++;
471 return 0;
472 }
473
474 /*
475 * On PowerNV platform, we might already have fenced PHB
476 * there and we need take care of that firstly.
477 */
478 ret = eeh_phb_check_failure(pe);
479 if (ret > 0)
480 return ret;
481
482 /*
483 * If the PE isn't owned by us, we shouldn't check the
484 * state. Instead, let the owner handle it if the PE has
485 * been frozen.
486 */
487 if (eeh_pe_passed(pe))
488 return 0;
489
490 /* If we already have a pending isolation event for this
491 * slot, we know it's bad already, we don't need to check.
492 * Do this checking under a lock; as multiple PCI devices
493 * in one slot might report errors simultaneously, and we
494 * only want one error recovery routine running.
495 */
496 eeh_serialize_lock(&flags);
497 rc = 1;
498 if (pe->state & EEH_PE_ISOLATED) {
499 pe->check_count++;
500 if (pe->check_count == EEH_MAX_FAILS) {
501 dn = pci_device_to_OF_node(dev);
502 if (dn)
503 location = of_get_property(dn, "ibm,loc-code",
504 NULL);
505 eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
506 pe->check_count,
507 location ? location : "unknown",
508 eeh_driver_name(dev));
509 eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
510 eeh_driver_name(dev));
511 dump_stack();
512 }
513 goto dn_unlock;
514 }
515
516 /*
517 * Now test for an EEH failure. This is VERY expensive.
518 * Note that the eeh_config_addr may be a parent device
519 * in the case of a device behind a bridge, or it may be
520 * function zero of a multi-function device.
521 * In any case they must share a common PHB.
522 */
523 ret = eeh_ops->get_state(pe, NULL);
524
525 /* Note that config-io to empty slots may fail;
526 * they are empty when they don't have children.
527 * We will punt with the following conditions: Failure to get
528 * PE's state, EEH not support and Permanently unavailable
529 * state, PE is in good state.
530 */
531 if ((ret < 0) ||
532 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
533 eeh_stats.false_positives++;
534 pe->false_positives++;
535 rc = 0;
536 goto dn_unlock;
537 }
538
539 /*
540 * It should be corner case that the parent PE has been
541 * put into frozen state as well. We should take care
542 * that at first.
543 */
544 parent_pe = pe->parent;
545 while (parent_pe) {
546 /* Hit the ceiling ? */
547 if (parent_pe->type & EEH_PE_PHB)
548 break;
549
550 /* Frozen parent PE ? */
551 ret = eeh_ops->get_state(parent_pe, NULL);
552 if (ret > 0 && !eeh_state_active(ret)) {
553 pe = parent_pe;
554 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
555 pe->phb->global_number, pe->addr,
556 pe->phb->global_number, parent_pe->addr);
557 }
558
559 /* Next parent level */
560 parent_pe = parent_pe->parent;
561 }
562
563 eeh_stats.slot_resets++;
564
565 /* Avoid repeated reports of this failure, including problems
566 * with other functions on this device, and functions under
567 * bridges.
568 */
569 eeh_pe_mark_isolated(pe);
570 eeh_serialize_unlock(flags);
571
572 /* Most EEH events are due to device driver bugs. Having
573 * a stack trace will help the device-driver authors figure
574 * out what happened. So print that out.
575 */
576 pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
577 __func__, pe->phb->global_number, pe->addr);
578 eeh_send_failure_event(pe);
579
580 return 1;
581
582dn_unlock:
583 eeh_serialize_unlock(flags);
584 return rc;
585}
586
587EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
588
589/**
590 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
591 * @token: I/O address
592 *
593 * Check for an EEH failure at the given I/O address. Call this
594 * routine if the result of a read was all 0xff's and you want to
595 * find out if this is due to an EEH slot freeze event. This routine
596 * will query firmware for the EEH status.
597 *
598 * Note this routine is safe to call in an interrupt context.
599 */
600int eeh_check_failure(const volatile void __iomem *token)
601{
602 unsigned long addr;
603 struct eeh_dev *edev;
604
605 /* Finding the phys addr + pci device; this is pretty quick. */
606 addr = eeh_token_to_phys((unsigned long __force) token);
607 edev = eeh_addr_cache_get_dev(addr);
608 if (!edev) {
609 eeh_stats.no_device++;
610 return 0;
611 }
612
613 return eeh_dev_check_failure(edev);
614}
615EXPORT_SYMBOL(eeh_check_failure);
616
617
618/**
619 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
620 * @pe: EEH PE
621 *
622 * This routine should be called to reenable frozen MMIO or DMA
623 * so that it would work correctly again. It's useful while doing
624 * recovery or log collection on the indicated device.
625 */
626int eeh_pci_enable(struct eeh_pe *pe, int function)
627{
628 int active_flag, rc;
629
630 /*
631 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
632 * Also, it's pointless to enable them on unfrozen PE. So
633 * we have to check before enabling IO or DMA.
634 */
635 switch (function) {
636 case EEH_OPT_THAW_MMIO:
637 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
638 break;
639 case EEH_OPT_THAW_DMA:
640 active_flag = EEH_STATE_DMA_ACTIVE;
641 break;
642 case EEH_OPT_DISABLE:
643 case EEH_OPT_ENABLE:
644 case EEH_OPT_FREEZE_PE:
645 active_flag = 0;
646 break;
647 default:
648 pr_warn("%s: Invalid function %d\n",
649 __func__, function);
650 return -EINVAL;
651 }
652
653 /*
654 * Check if IO or DMA has been enabled before
655 * enabling them.
656 */
657 if (active_flag) {
658 rc = eeh_ops->get_state(pe, NULL);
659 if (rc < 0)
660 return rc;
661
662 /* Needn't enable it at all */
663 if (rc == EEH_STATE_NOT_SUPPORT)
664 return 0;
665
666 /* It's already enabled */
667 if (rc & active_flag)
668 return 0;
669 }
670
671
672 /* Issue the request */
673 rc = eeh_ops->set_option(pe, function);
674 if (rc)
675 pr_warn("%s: Unexpected state change %d on "
676 "PHB#%x-PE#%x, err=%d\n",
677 __func__, function, pe->phb->global_number,
678 pe->addr, rc);
679
680 /* Check if the request is finished successfully */
681 if (active_flag) {
682 rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
683 if (rc < 0)
684 return rc;
685
686 if (rc & active_flag)
687 return 0;
688
689 return -EIO;
690 }
691
692 return rc;
693}
694
695static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
696 void *userdata)
697{
698 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
699 struct pci_dev *dev = userdata;
700
701 /*
702 * The caller should have disabled and saved the
703 * state for the specified device
704 */
705 if (!pdev || pdev == dev)
706 return;
707
708 /* Ensure we have D0 power state */
709 pci_set_power_state(pdev, PCI_D0);
710
711 /* Save device state */
712 pci_save_state(pdev);
713
714 /*
715 * Disable device to avoid any DMA traffic and
716 * interrupt from the device
717 */
718 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
719}
720
721static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
722{
723 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
724 struct pci_dev *dev = userdata;
725
726 if (!pdev)
727 return;
728
729 /* Apply customization from firmware */
730 if (eeh_ops->restore_config)
731 eeh_ops->restore_config(edev);
732
733 /* The caller should restore state for the specified device */
734 if (pdev != dev)
735 pci_restore_state(pdev);
736}
737
738/**
739 * pcibios_set_pcie_reset_state - Set PCI-E reset state
740 * @dev: pci device struct
741 * @state: reset state to enter
742 *
743 * Return value:
744 * 0 if success
745 */
746int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
747{
748 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
749 struct eeh_pe *pe = eeh_dev_to_pe(edev);
750
751 if (!pe) {
752 pr_err("%s: No PE found on PCI device %s\n",
753 __func__, pci_name(dev));
754 return -EINVAL;
755 }
756
757 switch (state) {
758 case pcie_deassert_reset:
759 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
760 eeh_unfreeze_pe(pe);
761 if (!(pe->type & EEH_PE_VF))
762 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
763 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
764 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
765 break;
766 case pcie_hot_reset:
767 eeh_pe_mark_isolated(pe);
768 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
769 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
770 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
771 if (!(pe->type & EEH_PE_VF))
772 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
773 eeh_ops->reset(pe, EEH_RESET_HOT);
774 break;
775 case pcie_warm_reset:
776 eeh_pe_mark_isolated(pe);
777 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
778 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
779 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
780 if (!(pe->type & EEH_PE_VF))
781 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
782 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
783 break;
784 default:
785 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
786 return -EINVAL;
787 };
788
789 return 0;
790}
791
792/**
793 * eeh_set_pe_freset - Check the required reset for the indicated device
794 * @data: EEH device
795 * @flag: return value
796 *
797 * Each device might have its preferred reset type: fundamental or
798 * hot reset. The routine is used to collected the information for
799 * the indicated device and its children so that the bunch of the
800 * devices could be reset properly.
801 */
802static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
803{
804 struct pci_dev *dev;
805 unsigned int *freset = (unsigned int *)flag;
806
807 dev = eeh_dev_to_pci_dev(edev);
808 if (dev)
809 *freset |= dev->needs_freset;
810}
811
812static void eeh_pe_refreeze_passed(struct eeh_pe *root)
813{
814 struct eeh_pe *pe;
815 int state;
816
817 eeh_for_each_pe(root, pe) {
818 if (eeh_pe_passed(pe)) {
819 state = eeh_ops->get_state(pe, NULL);
820 if (state &
821 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
822 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
823 pe->phb->global_number, pe->addr);
824 eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
825 }
826 }
827 }
828}
829
830/**
831 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
832 * @pe: EEH PE
833 *
834 * This function executes a full reset procedure on a PE, including setting
835 * the appropriate flags, performing a fundamental or hot reset, and then
836 * deactivating the reset status. It is designed to be used within the EEH
837 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
838 * only performs a single operation at a time.
839 *
840 * This function will attempt to reset a PE three times before failing.
841 */
842int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
843{
844 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
845 int type = EEH_RESET_HOT;
846 unsigned int freset = 0;
847 int i, state = 0, ret;
848
849 /*
850 * Determine the type of reset to perform - hot or fundamental.
851 * Hot reset is the default operation, unless any device under the
852 * PE requires a fundamental reset.
853 */
854 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
855
856 if (freset)
857 type = EEH_RESET_FUNDAMENTAL;
858
859 /* Mark the PE as in reset state and block config space accesses */
860 eeh_pe_state_mark(pe, reset_state);
861
862 /* Make three attempts at resetting the bus */
863 for (i = 0; i < 3; i++) {
864 ret = eeh_pe_reset(pe, type, include_passed);
865 if (!ret)
866 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
867 include_passed);
868 if (ret) {
869 ret = -EIO;
870 pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
871 state, pe->phb->global_number, pe->addr, i + 1);
872 continue;
873 }
874 if (i)
875 pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
876 pe->phb->global_number, pe->addr, i + 1);
877
878 /* Wait until the PE is in a functioning state */
879 state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
880 if (state < 0) {
881 pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
882 pe->phb->global_number, pe->addr);
883 ret = -ENOTRECOVERABLE;
884 break;
885 }
886 if (eeh_state_active(state))
887 break;
888 else
889 pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
890 pe->phb->global_number, pe->addr, state, i + 1);
891 }
892
893 /* Resetting the PE may have unfrozen child PEs. If those PEs have been
894 * (potentially) passed through to a guest, re-freeze them:
895 */
896 if (!include_passed)
897 eeh_pe_refreeze_passed(pe);
898
899 eeh_pe_state_clear(pe, reset_state, true);
900 return ret;
901}
902
903/**
904 * eeh_save_bars - Save device bars
905 * @edev: PCI device associated EEH device
906 *
907 * Save the values of the device bars. Unlike the restore
908 * routine, this routine is *not* recursive. This is because
909 * PCI devices are added individually; but, for the restore,
910 * an entire slot is reset at a time.
911 */
912void eeh_save_bars(struct eeh_dev *edev)
913{
914 int i;
915
916 if (!edev)
917 return;
918
919 for (i = 0; i < 16; i++)
920 eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
921
922 /*
923 * For PCI bridges including root port, we need enable bus
924 * master explicitly. Otherwise, it can't fetch IODA table
925 * entries correctly. So we cache the bit in advance so that
926 * we can restore it after reset, either PHB range or PE range.
927 */
928 if (edev->mode & EEH_DEV_BRIDGE)
929 edev->config_space[1] |= PCI_COMMAND_MASTER;
930}
931
932/**
933 * eeh_ops_register - Register platform dependent EEH operations
934 * @ops: platform dependent EEH operations
935 *
936 * Register the platform dependent EEH operation callback
937 * functions. The platform should call this function before
938 * any other EEH operations.
939 */
940int __init eeh_ops_register(struct eeh_ops *ops)
941{
942 if (!ops->name) {
943 pr_warn("%s: Invalid EEH ops name for %p\n",
944 __func__, ops);
945 return -EINVAL;
946 }
947
948 if (eeh_ops && eeh_ops != ops) {
949 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
950 __func__, eeh_ops->name, ops->name);
951 return -EEXIST;
952 }
953
954 eeh_ops = ops;
955
956 return 0;
957}
958
959/**
960 * eeh_ops_unregister - Unreigster platform dependent EEH operations
961 * @name: name of EEH platform operations
962 *
963 * Unregister the platform dependent EEH operation callback
964 * functions.
965 */
966int __exit eeh_ops_unregister(const char *name)
967{
968 if (!name || !strlen(name)) {
969 pr_warn("%s: Invalid EEH ops name\n",
970 __func__);
971 return -EINVAL;
972 }
973
974 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
975 eeh_ops = NULL;
976 return 0;
977 }
978
979 return -EEXIST;
980}
981
982static int eeh_reboot_notifier(struct notifier_block *nb,
983 unsigned long action, void *unused)
984{
985 eeh_clear_flag(EEH_ENABLED);
986 return NOTIFY_DONE;
987}
988
989static struct notifier_block eeh_reboot_nb = {
990 .notifier_call = eeh_reboot_notifier,
991};
992
993/**
994 * eeh_init - EEH initialization
995 *
996 * Initialize EEH by trying to enable it for all of the adapters in the system.
997 * As a side effect we can determine here if eeh is supported at all.
998 * Note that we leave EEH on so failed config cycles won't cause a machine
999 * check. If a user turns off EEH for a particular adapter they are really
1000 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1001 * grant access to a slot if EEH isn't enabled, and so we always enable
1002 * EEH for all slots/all devices.
1003 *
1004 * The eeh-force-off option disables EEH checking globally, for all slots.
1005 * Even if force-off is set, the EEH hardware is still enabled, so that
1006 * newer systems can boot.
1007 */
1008static int eeh_init(void)
1009{
1010 struct pci_controller *hose, *tmp;
1011 int ret = 0;
1012
1013 /* Register reboot notifier */
1014 ret = register_reboot_notifier(&eeh_reboot_nb);
1015 if (ret) {
1016 pr_warn("%s: Failed to register notifier (%d)\n",
1017 __func__, ret);
1018 return ret;
1019 }
1020
1021 /* call platform initialization function */
1022 if (!eeh_ops) {
1023 pr_warn("%s: Platform EEH operation not found\n",
1024 __func__);
1025 return -EEXIST;
1026 } else if ((ret = eeh_ops->init()))
1027 return ret;
1028
1029 /* Initialize PHB PEs */
1030 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1031 eeh_phb_pe_create(hose);
1032
1033 eeh_addr_cache_init();
1034
1035 /* Initialize EEH event */
1036 return eeh_event_init();
1037}
1038
1039core_initcall_sync(eeh_init);
1040
1041static int eeh_device_notifier(struct notifier_block *nb,
1042 unsigned long action, void *data)
1043{
1044 struct device *dev = data;
1045
1046 switch (action) {
1047 /*
1048 * Note: It's not possible to perform EEH device addition (i.e.
1049 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
1050 * the device's resources, which have not yet been set up.
1051 */
1052 case BUS_NOTIFY_DEL_DEVICE:
1053 eeh_remove_device(to_pci_dev(dev));
1054 break;
1055 default:
1056 break;
1057 }
1058 return NOTIFY_DONE;
1059}
1060
1061static struct notifier_block eeh_device_nb = {
1062 .notifier_call = eeh_device_notifier,
1063};
1064
1065static __init int eeh_set_bus_notifier(void)
1066{
1067 bus_register_notifier(&pci_bus_type, &eeh_device_nb);
1068 return 0;
1069}
1070arch_initcall(eeh_set_bus_notifier);
1071
1072/**
1073 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1074 * @dev: pci device for which to set up EEH
1075 *
1076 * This routine must be used to complete EEH initialization for PCI
1077 * devices that were added after system boot (e.g. hotplug, dlpar).
1078 */
1079void eeh_probe_device(struct pci_dev *dev)
1080{
1081 struct eeh_dev *edev;
1082
1083 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1084
1085 /*
1086 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1087 * already called for this device.
1088 */
1089 if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1090 pci_dbg(dev, "Already bound to an eeh_dev!\n");
1091 return;
1092 }
1093
1094 edev = eeh_ops->probe(dev);
1095 if (!edev) {
1096 pr_debug("EEH: Adding device failed\n");
1097 return;
1098 }
1099
1100 /*
1101 * FIXME: We rely on pcibios_release_device() to remove the
1102 * existing EEH state. The release function is only called if
1103 * the pci_dev's refcount drops to zero so if something is
1104 * keeping a ref to a device (e.g. a filesystem) we need to
1105 * remove the old EEH state.
1106 *
1107 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1108 */
1109 if (edev->pdev && edev->pdev != dev) {
1110 eeh_pe_tree_remove(edev);
1111 eeh_addr_cache_rmv_dev(edev->pdev);
1112 eeh_sysfs_remove_device(edev->pdev);
1113
1114 /*
1115 * We definitely should have the PCI device removed
1116 * though it wasn't correctly. So we needn't call
1117 * into error handler afterwards.
1118 */
1119 edev->mode |= EEH_DEV_NO_HANDLER;
1120 }
1121
1122 /* bind the pdev and the edev together */
1123 edev->pdev = dev;
1124 dev->dev.archdata.edev = edev;
1125 eeh_addr_cache_insert_dev(dev);
1126 eeh_sysfs_add_device(dev);
1127}
1128
1129/**
1130 * eeh_remove_device - Undo EEH setup for the indicated pci device
1131 * @dev: pci device to be removed
1132 *
1133 * This routine should be called when a device is removed from
1134 * a running system (e.g. by hotplug or dlpar). It unregisters
1135 * the PCI device from the EEH subsystem. I/O errors affecting
1136 * this device will no longer be detected after this call; thus,
1137 * i/o errors affecting this slot may leave this device unusable.
1138 */
1139void eeh_remove_device(struct pci_dev *dev)
1140{
1141 struct eeh_dev *edev;
1142
1143 if (!dev || !eeh_enabled())
1144 return;
1145 edev = pci_dev_to_eeh_dev(dev);
1146
1147 /* Unregister the device with the EEH/PCI address search system */
1148 dev_dbg(&dev->dev, "EEH: Removing device\n");
1149
1150 if (!edev || !edev->pdev || !edev->pe) {
1151 dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1152 return;
1153 }
1154
1155 /*
1156 * During the hotplug for EEH error recovery, we need the EEH
1157 * device attached to the parent PE in order for BAR restore
1158 * a bit later. So we keep it for BAR restore and remove it
1159 * from the parent PE during the BAR resotre.
1160 */
1161 edev->pdev = NULL;
1162
1163 /*
1164 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1165 * remove the sysfs files before clearing dev.archdata.edev
1166 */
1167 if (edev->mode & EEH_DEV_SYSFS)
1168 eeh_sysfs_remove_device(dev);
1169
1170 /*
1171 * We're removing from the PCI subsystem, that means
1172 * the PCI device driver can't support EEH or not
1173 * well. So we rely on hotplug completely to do recovery
1174 * for the specific PCI device.
1175 */
1176 edev->mode |= EEH_DEV_NO_HANDLER;
1177
1178 eeh_addr_cache_rmv_dev(dev);
1179
1180 /*
1181 * The flag "in_error" is used to trace EEH devices for VFs
1182 * in error state or not. It's set in eeh_report_error(). If
1183 * it's not set, eeh_report_{reset,resume}() won't be called
1184 * for the VF EEH device.
1185 */
1186 edev->in_error = false;
1187 dev->dev.archdata.edev = NULL;
1188 if (!(edev->pe->state & EEH_PE_KEEP))
1189 eeh_pe_tree_remove(edev);
1190 else
1191 edev->mode |= EEH_DEV_DISCONNECTED;
1192}
1193
1194int eeh_unfreeze_pe(struct eeh_pe *pe)
1195{
1196 int ret;
1197
1198 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1199 if (ret) {
1200 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1201 __func__, ret, pe->phb->global_number, pe->addr);
1202 return ret;
1203 }
1204
1205 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1206 if (ret) {
1207 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1208 __func__, ret, pe->phb->global_number, pe->addr);
1209 return ret;
1210 }
1211
1212 return ret;
1213}
1214
1215
1216static struct pci_device_id eeh_reset_ids[] = {
1217 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1218 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1219 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1220 { 0 }
1221};
1222
1223static int eeh_pe_change_owner(struct eeh_pe *pe)
1224{
1225 struct eeh_dev *edev, *tmp;
1226 struct pci_dev *pdev;
1227 struct pci_device_id *id;
1228 int ret;
1229
1230 /* Check PE state */
1231 ret = eeh_ops->get_state(pe, NULL);
1232 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1233 return 0;
1234
1235 /* Unfrozen PE, nothing to do */
1236 if (eeh_state_active(ret))
1237 return 0;
1238
1239 /* Frozen PE, check if it needs PE level reset */
1240 eeh_pe_for_each_dev(pe, edev, tmp) {
1241 pdev = eeh_dev_to_pci_dev(edev);
1242 if (!pdev)
1243 continue;
1244
1245 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1246 if (id->vendor != PCI_ANY_ID &&
1247 id->vendor != pdev->vendor)
1248 continue;
1249 if (id->device != PCI_ANY_ID &&
1250 id->device != pdev->device)
1251 continue;
1252 if (id->subvendor != PCI_ANY_ID &&
1253 id->subvendor != pdev->subsystem_vendor)
1254 continue;
1255 if (id->subdevice != PCI_ANY_ID &&
1256 id->subdevice != pdev->subsystem_device)
1257 continue;
1258
1259 return eeh_pe_reset_and_recover(pe);
1260 }
1261 }
1262
1263 ret = eeh_unfreeze_pe(pe);
1264 if (!ret)
1265 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1266 return ret;
1267}
1268
1269/**
1270 * eeh_dev_open - Increase count of pass through devices for PE
1271 * @pdev: PCI device
1272 *
1273 * Increase count of passed through devices for the indicated
1274 * PE. In the result, the EEH errors detected on the PE won't be
1275 * reported. The PE owner will be responsible for detection
1276 * and recovery.
1277 */
1278int eeh_dev_open(struct pci_dev *pdev)
1279{
1280 struct eeh_dev *edev;
1281 int ret = -ENODEV;
1282
1283 mutex_lock(&eeh_dev_mutex);
1284
1285 /* No PCI device ? */
1286 if (!pdev)
1287 goto out;
1288
1289 /* No EEH device or PE ? */
1290 edev = pci_dev_to_eeh_dev(pdev);
1291 if (!edev || !edev->pe)
1292 goto out;
1293
1294 /*
1295 * The PE might have been put into frozen state, but we
1296 * didn't detect that yet. The passed through PCI devices
1297 * in frozen PE won't work properly. Clear the frozen state
1298 * in advance.
1299 */
1300 ret = eeh_pe_change_owner(edev->pe);
1301 if (ret)
1302 goto out;
1303
1304 /* Increase PE's pass through count */
1305 atomic_inc(&edev->pe->pass_dev_cnt);
1306 mutex_unlock(&eeh_dev_mutex);
1307
1308 return 0;
1309out:
1310 mutex_unlock(&eeh_dev_mutex);
1311 return ret;
1312}
1313EXPORT_SYMBOL_GPL(eeh_dev_open);
1314
1315/**
1316 * eeh_dev_release - Decrease count of pass through devices for PE
1317 * @pdev: PCI device
1318 *
1319 * Decrease count of pass through devices for the indicated PE. If
1320 * there is no passed through device in PE, the EEH errors detected
1321 * on the PE will be reported and handled as usual.
1322 */
1323void eeh_dev_release(struct pci_dev *pdev)
1324{
1325 struct eeh_dev *edev;
1326
1327 mutex_lock(&eeh_dev_mutex);
1328
1329 /* No PCI device ? */
1330 if (!pdev)
1331 goto out;
1332
1333 /* No EEH device ? */
1334 edev = pci_dev_to_eeh_dev(pdev);
1335 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1336 goto out;
1337
1338 /* Decrease PE's pass through count */
1339 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1340 eeh_pe_change_owner(edev->pe);
1341out:
1342 mutex_unlock(&eeh_dev_mutex);
1343}
1344EXPORT_SYMBOL(eeh_dev_release);
1345
1346#ifdef CONFIG_IOMMU_API
1347
1348static int dev_has_iommu_table(struct device *dev, void *data)
1349{
1350 struct pci_dev *pdev = to_pci_dev(dev);
1351 struct pci_dev **ppdev = data;
1352
1353 if (!dev)
1354 return 0;
1355
1356 if (device_iommu_mapped(dev)) {
1357 *ppdev = pdev;
1358 return 1;
1359 }
1360
1361 return 0;
1362}
1363
1364/**
1365 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1366 * @group: IOMMU group
1367 *
1368 * The routine is called to convert IOMMU group to EEH PE.
1369 */
1370struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1371{
1372 struct pci_dev *pdev = NULL;
1373 struct eeh_dev *edev;
1374 int ret;
1375
1376 /* No IOMMU group ? */
1377 if (!group)
1378 return NULL;
1379
1380 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1381 if (!ret || !pdev)
1382 return NULL;
1383
1384 /* No EEH device or PE ? */
1385 edev = pci_dev_to_eeh_dev(pdev);
1386 if (!edev || !edev->pe)
1387 return NULL;
1388
1389 return edev->pe;
1390}
1391EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1392
1393#endif /* CONFIG_IOMMU_API */
1394
1395/**
1396 * eeh_pe_set_option - Set options for the indicated PE
1397 * @pe: EEH PE
1398 * @option: requested option
1399 *
1400 * The routine is called to enable or disable EEH functionality
1401 * on the indicated PE, to enable IO or DMA for the frozen PE.
1402 */
1403int eeh_pe_set_option(struct eeh_pe *pe, int option)
1404{
1405 int ret = 0;
1406
1407 /* Invalid PE ? */
1408 if (!pe)
1409 return -ENODEV;
1410
1411 /*
1412 * EEH functionality could possibly be disabled, just
1413 * return error for the case. And the EEH functinality
1414 * isn't expected to be disabled on one specific PE.
1415 */
1416 switch (option) {
1417 case EEH_OPT_ENABLE:
1418 if (eeh_enabled()) {
1419 ret = eeh_pe_change_owner(pe);
1420 break;
1421 }
1422 ret = -EIO;
1423 break;
1424 case EEH_OPT_DISABLE:
1425 break;
1426 case EEH_OPT_THAW_MMIO:
1427 case EEH_OPT_THAW_DMA:
1428 case EEH_OPT_FREEZE_PE:
1429 if (!eeh_ops || !eeh_ops->set_option) {
1430 ret = -ENOENT;
1431 break;
1432 }
1433
1434 ret = eeh_pci_enable(pe, option);
1435 break;
1436 default:
1437 pr_debug("%s: Option %d out of range (%d, %d)\n",
1438 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1439 ret = -EINVAL;
1440 }
1441
1442 return ret;
1443}
1444EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1445
1446/**
1447 * eeh_pe_get_state - Retrieve PE's state
1448 * @pe: EEH PE
1449 *
1450 * Retrieve the PE's state, which includes 3 aspects: enabled
1451 * DMA, enabled IO and asserted reset.
1452 */
1453int eeh_pe_get_state(struct eeh_pe *pe)
1454{
1455 int result, ret = 0;
1456 bool rst_active, dma_en, mmio_en;
1457
1458 /* Existing PE ? */
1459 if (!pe)
1460 return -ENODEV;
1461
1462 if (!eeh_ops || !eeh_ops->get_state)
1463 return -ENOENT;
1464
1465 /*
1466 * If the parent PE is owned by the host kernel and is undergoing
1467 * error recovery, we should return the PE state as temporarily
1468 * unavailable so that the error recovery on the guest is suspended
1469 * until the recovery completes on the host.
1470 */
1471 if (pe->parent &&
1472 !(pe->state & EEH_PE_REMOVED) &&
1473 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1474 return EEH_PE_STATE_UNAVAIL;
1475
1476 result = eeh_ops->get_state(pe, NULL);
1477 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1478 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1479 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1480
1481 if (rst_active)
1482 ret = EEH_PE_STATE_RESET;
1483 else if (dma_en && mmio_en)
1484 ret = EEH_PE_STATE_NORMAL;
1485 else if (!dma_en && !mmio_en)
1486 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1487 else if (!dma_en && mmio_en)
1488 ret = EEH_PE_STATE_STOPPED_DMA;
1489 else
1490 ret = EEH_PE_STATE_UNAVAIL;
1491
1492 return ret;
1493}
1494EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1495
1496static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1497{
1498 struct eeh_dev *edev, *tmp;
1499 struct pci_dev *pdev;
1500 int ret = 0;
1501
1502 eeh_pe_restore_bars(pe);
1503
1504 /*
1505 * Reenable PCI devices as the devices passed
1506 * through are always enabled before the reset.
1507 */
1508 eeh_pe_for_each_dev(pe, edev, tmp) {
1509 pdev = eeh_dev_to_pci_dev(edev);
1510 if (!pdev)
1511 continue;
1512
1513 ret = pci_reenable_device(pdev);
1514 if (ret) {
1515 pr_warn("%s: Failure %d reenabling %s\n",
1516 __func__, ret, pci_name(pdev));
1517 return ret;
1518 }
1519 }
1520
1521 /* The PE is still in frozen state */
1522 if (include_passed || !eeh_pe_passed(pe)) {
1523 ret = eeh_unfreeze_pe(pe);
1524 } else
1525 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1526 pe->phb->global_number, pe->addr);
1527 if (!ret)
1528 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1529 return ret;
1530}
1531
1532
1533/**
1534 * eeh_pe_reset - Issue PE reset according to specified type
1535 * @pe: EEH PE
1536 * @option: reset type
1537 *
1538 * The routine is called to reset the specified PE with the
1539 * indicated type, either fundamental reset or hot reset.
1540 * PE reset is the most important part for error recovery.
1541 */
1542int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1543{
1544 int ret = 0;
1545
1546 /* Invalid PE ? */
1547 if (!pe)
1548 return -ENODEV;
1549
1550 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1551 return -ENOENT;
1552
1553 switch (option) {
1554 case EEH_RESET_DEACTIVATE:
1555 ret = eeh_ops->reset(pe, option);
1556 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1557 if (ret)
1558 break;
1559
1560 ret = eeh_pe_reenable_devices(pe, include_passed);
1561 break;
1562 case EEH_RESET_HOT:
1563 case EEH_RESET_FUNDAMENTAL:
1564 /*
1565 * Proactively freeze the PE to drop all MMIO access
1566 * during reset, which should be banned as it's always
1567 * cause recursive EEH error.
1568 */
1569 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1570
1571 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1572 ret = eeh_ops->reset(pe, option);
1573 break;
1574 default:
1575 pr_debug("%s: Unsupported option %d\n",
1576 __func__, option);
1577 ret = -EINVAL;
1578 }
1579
1580 return ret;
1581}
1582EXPORT_SYMBOL_GPL(eeh_pe_reset);
1583
1584/**
1585 * eeh_pe_configure - Configure PCI bridges after PE reset
1586 * @pe: EEH PE
1587 *
1588 * The routine is called to restore the PCI config space for
1589 * those PCI devices, especially PCI bridges affected by PE
1590 * reset issued previously.
1591 */
1592int eeh_pe_configure(struct eeh_pe *pe)
1593{
1594 int ret = 0;
1595
1596 /* Invalid PE ? */
1597 if (!pe)
1598 return -ENODEV;
1599
1600 return ret;
1601}
1602EXPORT_SYMBOL_GPL(eeh_pe_configure);
1603
1604/**
1605 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1606 * @pe: the indicated PE
1607 * @type: error type
1608 * @function: error function
1609 * @addr: address
1610 * @mask: address mask
1611 *
1612 * The routine is called to inject the specified PCI error, which
1613 * is determined by @type and @function, to the indicated PE for
1614 * testing purpose.
1615 */
1616int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1617 unsigned long addr, unsigned long mask)
1618{
1619 /* Invalid PE ? */
1620 if (!pe)
1621 return -ENODEV;
1622
1623 /* Unsupported operation ? */
1624 if (!eeh_ops || !eeh_ops->err_inject)
1625 return -ENOENT;
1626
1627 /* Check on PCI error type */
1628 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1629 return -EINVAL;
1630
1631 /* Check on PCI error function */
1632 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1633 return -EINVAL;
1634
1635 return eeh_ops->err_inject(pe, type, func, addr, mask);
1636}
1637EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1638
1639static int proc_eeh_show(struct seq_file *m, void *v)
1640{
1641 if (!eeh_enabled()) {
1642 seq_printf(m, "EEH Subsystem is globally disabled\n");
1643 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1644 } else {
1645 seq_printf(m, "EEH Subsystem is enabled\n");
1646 seq_printf(m,
1647 "no device=%llu\n"
1648 "no device node=%llu\n"
1649 "no config address=%llu\n"
1650 "check not wanted=%llu\n"
1651 "eeh_total_mmio_ffs=%llu\n"
1652 "eeh_false_positives=%llu\n"
1653 "eeh_slot_resets=%llu\n",
1654 eeh_stats.no_device,
1655 eeh_stats.no_dn,
1656 eeh_stats.no_cfg_addr,
1657 eeh_stats.ignored_check,
1658 eeh_stats.total_mmio_ffs,
1659 eeh_stats.false_positives,
1660 eeh_stats.slot_resets);
1661 }
1662
1663 return 0;
1664}
1665
1666#ifdef CONFIG_DEBUG_FS
1667static int eeh_enable_dbgfs_set(void *data, u64 val)
1668{
1669 if (val)
1670 eeh_clear_flag(EEH_FORCE_DISABLED);
1671 else
1672 eeh_add_flag(EEH_FORCE_DISABLED);
1673
1674 return 0;
1675}
1676
1677static int eeh_enable_dbgfs_get(void *data, u64 *val)
1678{
1679 if (eeh_enabled())
1680 *val = 0x1ul;
1681 else
1682 *val = 0x0ul;
1683 return 0;
1684}
1685
1686DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1687 eeh_enable_dbgfs_set, "0x%llx\n");
1688
1689static ssize_t eeh_force_recover_write(struct file *filp,
1690 const char __user *user_buf,
1691 size_t count, loff_t *ppos)
1692{
1693 struct pci_controller *hose;
1694 uint32_t phbid, pe_no;
1695 struct eeh_pe *pe;
1696 char buf[20];
1697 int ret;
1698
1699 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1700 if (!ret)
1701 return -EFAULT;
1702
1703 /*
1704 * When PE is NULL the event is a "special" event. Rather than
1705 * recovering a specific PE it forces the EEH core to scan for failed
1706 * PHBs and recovers each. This needs to be done before any device
1707 * recoveries can occur.
1708 */
1709 if (!strncmp(buf, "hwcheck", 7)) {
1710 __eeh_send_failure_event(NULL);
1711 return count;
1712 }
1713
1714 ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1715 if (ret != 2)
1716 return -EINVAL;
1717
1718 hose = pci_find_controller_for_domain(phbid);
1719 if (!hose)
1720 return -ENODEV;
1721
1722 /* Retrieve PE */
1723 pe = eeh_pe_get(hose, pe_no, 0);
1724 if (!pe)
1725 return -ENODEV;
1726
1727 /*
1728 * We don't do any state checking here since the detection
1729 * process is async to the recovery process. The recovery
1730 * thread *should* not break even if we schedule a recovery
1731 * from an odd state (e.g. PE removed, or recovery of a
1732 * non-isolated PE)
1733 */
1734 __eeh_send_failure_event(pe);
1735
1736 return ret < 0 ? ret : count;
1737}
1738
1739static const struct file_operations eeh_force_recover_fops = {
1740 .open = simple_open,
1741 .llseek = no_llseek,
1742 .write = eeh_force_recover_write,
1743};
1744
1745static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1746 char __user *user_buf,
1747 size_t count, loff_t *ppos)
1748{
1749 static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1750
1751 return simple_read_from_buffer(user_buf, count, ppos,
1752 usage, sizeof(usage) - 1);
1753}
1754
1755static ssize_t eeh_dev_check_write(struct file *filp,
1756 const char __user *user_buf,
1757 size_t count, loff_t *ppos)
1758{
1759 uint32_t domain, bus, dev, fn;
1760 struct pci_dev *pdev;
1761 struct eeh_dev *edev;
1762 char buf[20];
1763 int ret;
1764
1765 memset(buf, 0, sizeof(buf));
1766 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1767 if (!ret)
1768 return -EFAULT;
1769
1770 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1771 if (ret != 4) {
1772 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1773 return -EINVAL;
1774 }
1775
1776 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1777 if (!pdev)
1778 return -ENODEV;
1779
1780 edev = pci_dev_to_eeh_dev(pdev);
1781 if (!edev) {
1782 pci_err(pdev, "No eeh_dev for this device!\n");
1783 pci_dev_put(pdev);
1784 return -ENODEV;
1785 }
1786
1787 ret = eeh_dev_check_failure(edev);
1788 pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n",
1789 domain, bus, dev, fn, ret);
1790
1791 pci_dev_put(pdev);
1792
1793 return count;
1794}
1795
1796static const struct file_operations eeh_dev_check_fops = {
1797 .open = simple_open,
1798 .llseek = no_llseek,
1799 .write = eeh_dev_check_write,
1800 .read = eeh_debugfs_dev_usage,
1801};
1802
1803static int eeh_debugfs_break_device(struct pci_dev *pdev)
1804{
1805 struct resource *bar = NULL;
1806 void __iomem *mapped;
1807 u16 old, bit;
1808 int i, pos;
1809
1810 /* Do we have an MMIO BAR to disable? */
1811 for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1812 struct resource *r = &pdev->resource[i];
1813
1814 if (!r->flags || !r->start)
1815 continue;
1816 if (r->flags & IORESOURCE_IO)
1817 continue;
1818 if (r->flags & IORESOURCE_UNSET)
1819 continue;
1820
1821 bar = r;
1822 break;
1823 }
1824
1825 if (!bar) {
1826 pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1827 return -ENXIO;
1828 }
1829
1830 pci_err(pdev, "Going to break: %pR\n", bar);
1831
1832 if (pdev->is_virtfn) {
1833#ifndef CONFIG_PCI_IOV
1834 return -ENXIO;
1835#else
1836 /*
1837 * VFs don't have a per-function COMMAND register, so the best
1838 * we can do is clear the Memory Space Enable bit in the PF's
1839 * SRIOV control reg.
1840 *
1841 * Unfortunately, this requires that we have a PF (i.e doesn't
1842 * work for a passed-through VF) and it has the potential side
1843 * effect of also causing an EEH on every other VF under the
1844 * PF. Oh well.
1845 */
1846 pdev = pdev->physfn;
1847 if (!pdev)
1848 return -ENXIO; /* passed through VFs have no PF */
1849
1850 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1851 pos += PCI_SRIOV_CTRL;
1852 bit = PCI_SRIOV_CTRL_MSE;
1853#endif /* !CONFIG_PCI_IOV */
1854 } else {
1855 bit = PCI_COMMAND_MEMORY;
1856 pos = PCI_COMMAND;
1857 }
1858
1859 /*
1860 * Process here is:
1861 *
1862 * 1. Disable Memory space.
1863 *
1864 * 2. Perform an MMIO to the device. This should result in an error
1865 * (CA / UR) being raised by the device which results in an EEH
1866 * PE freeze. Using the in_8() accessor skips the eeh detection hook
1867 * so the freeze hook so the EEH Detection machinery won't be
1868 * triggered here. This is to match the usual behaviour of EEH
1869 * where the HW will asyncronously freeze a PE and it's up to
1870 * the kernel to notice and deal with it.
1871 *
1872 * 3. Turn Memory space back on. This is more important for VFs
1873 * since recovery will probably fail if we don't. For normal
1874 * the COMMAND register is reset as a part of re-initialising
1875 * the device.
1876 *
1877 * Breaking stuff is the point so who cares if it's racy ;)
1878 */
1879 pci_read_config_word(pdev, pos, &old);
1880
1881 mapped = ioremap(bar->start, PAGE_SIZE);
1882 if (!mapped) {
1883 pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1884 return -ENXIO;
1885 }
1886
1887 pci_write_config_word(pdev, pos, old & ~bit);
1888 in_8(mapped);
1889 pci_write_config_word(pdev, pos, old);
1890
1891 iounmap(mapped);
1892
1893 return 0;
1894}
1895
1896static ssize_t eeh_dev_break_write(struct file *filp,
1897 const char __user *user_buf,
1898 size_t count, loff_t *ppos)
1899{
1900 uint32_t domain, bus, dev, fn;
1901 struct pci_dev *pdev;
1902 char buf[20];
1903 int ret;
1904
1905 memset(buf, 0, sizeof(buf));
1906 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1907 if (!ret)
1908 return -EFAULT;
1909
1910 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1911 if (ret != 4) {
1912 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1913 return -EINVAL;
1914 }
1915
1916 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1917 if (!pdev)
1918 return -ENODEV;
1919
1920 ret = eeh_debugfs_break_device(pdev);
1921 pci_dev_put(pdev);
1922
1923 if (ret < 0)
1924 return ret;
1925
1926 return count;
1927}
1928
1929static const struct file_operations eeh_dev_break_fops = {
1930 .open = simple_open,
1931 .llseek = no_llseek,
1932 .write = eeh_dev_break_write,
1933 .read = eeh_debugfs_dev_usage,
1934};
1935
1936#endif
1937
1938static int __init eeh_init_proc(void)
1939{
1940 if (machine_is(pseries) || machine_is(powernv)) {
1941 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1942#ifdef CONFIG_DEBUG_FS
1943 debugfs_create_file_unsafe("eeh_enable", 0600,
1944 powerpc_debugfs_root, NULL,
1945 &eeh_enable_dbgfs_ops);
1946 debugfs_create_u32("eeh_max_freezes", 0600,
1947 powerpc_debugfs_root, &eeh_max_freezes);
1948 debugfs_create_bool("eeh_disable_recovery", 0600,
1949 powerpc_debugfs_root,
1950 &eeh_debugfs_no_recover);
1951 debugfs_create_file_unsafe("eeh_dev_check", 0600,
1952 powerpc_debugfs_root, NULL,
1953 &eeh_dev_check_fops);
1954 debugfs_create_file_unsafe("eeh_dev_break", 0600,
1955 powerpc_debugfs_root, NULL,
1956 &eeh_dev_break_fops);
1957 debugfs_create_file_unsafe("eeh_force_recover", 0600,
1958 powerpc_debugfs_root, NULL,
1959 &eeh_force_recover_fops);
1960 eeh_cache_debugfs_init();
1961#endif
1962 }
1963
1964 return 0;
1965}
1966__initcall(eeh_init_proc);
1/*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24#include <linux/delay.h>
25#include <linux/debugfs.h>
26#include <linux/sched.h>
27#include <linux/init.h>
28#include <linux/list.h>
29#include <linux/pci.h>
30#include <linux/iommu.h>
31#include <linux/proc_fs.h>
32#include <linux/rbtree.h>
33#include <linux/reboot.h>
34#include <linux/seq_file.h>
35#include <linux/spinlock.h>
36#include <linux/export.h>
37#include <linux/of.h>
38
39#include <linux/atomic.h>
40#include <asm/debug.h>
41#include <asm/eeh.h>
42#include <asm/eeh_event.h>
43#include <asm/io.h>
44#include <asm/iommu.h>
45#include <asm/machdep.h>
46#include <asm/ppc-pci.h>
47#include <asm/rtas.h>
48
49
50/** Overview:
51 * EEH, or "Extended Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84/* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89#define EEH_MAX_FAILS 2100000
90
91/* Time to wait for a PCI slot to report status, in milliseconds */
92#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94/*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104int eeh_subsystem_flags;
105EXPORT_SYMBOL(eeh_subsystem_flags);
106
107/*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112int eeh_max_freezes = 5;
113
114/* Platform dependent EEH operations */
115struct eeh_ops *eeh_ops = NULL;
116
117/* Lock to avoid races due to multiple reports of an error */
118DEFINE_RAW_SPINLOCK(confirm_error_lock);
119
120/* Lock to protect passed flags */
121static DEFINE_MUTEX(eeh_dev_mutex);
122
123/* Buffer for reporting pci register dumps. Its here in BSS, and
124 * not dynamically alloced, so that it ends up in RMO where RTAS
125 * can access it.
126 */
127#define EEH_PCI_REGS_LOG_LEN 8192
128static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129
130/*
131 * The struct is used to maintain the EEH global statistic
132 * information. Besides, the EEH global statistics will be
133 * exported to user space through procfs
134 */
135struct eeh_stats {
136 u64 no_device; /* PCI device not found */
137 u64 no_dn; /* OF node not found */
138 u64 no_cfg_addr; /* Config address not found */
139 u64 ignored_check; /* EEH check skipped */
140 u64 total_mmio_ffs; /* Total EEH checks */
141 u64 false_positives; /* Unnecessary EEH checks */
142 u64 slot_resets; /* PE reset */
143};
144
145static struct eeh_stats eeh_stats;
146
147static int __init eeh_setup(char *str)
148{
149 if (!strcmp(str, "off"))
150 eeh_add_flag(EEH_FORCE_DISABLED);
151 else if (!strcmp(str, "early_log"))
152 eeh_add_flag(EEH_EARLY_DUMP_LOG);
153
154 return 1;
155}
156__setup("eeh=", eeh_setup);
157
158/*
159 * This routine captures assorted PCI configuration space data
160 * for the indicated PCI device, and puts them into a buffer
161 * for RTAS error logging.
162 */
163static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
164{
165 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
166 u32 cfg;
167 int cap, i;
168 int n = 0, l = 0;
169 char buffer[128];
170
171 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
172 edev->phb->global_number, pdn->busno,
173 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
175 edev->phb->global_number, pdn->busno,
176 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
177
178 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
181
182 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
185
186 /* Gather bridge-specific registers */
187 if (edev->mode & EEH_DEV_BRIDGE) {
188 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
191
192 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 pr_warn("EEH: Bridge control: %04x\n", cfg);
195 }
196
197 /* Dump out the PCI-X command and status regs */
198 cap = edev->pcix_cap;
199 if (cap) {
200 eeh_ops->read_config(pdn, cap, 4, &cfg);
201 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
203
204 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 pr_warn("EEH: PCI-X status: %08x\n", cfg);
207 }
208
209 /* If PCI-E capable, dump PCI-E cap 10 */
210 cap = edev->pcie_cap;
211 if (cap) {
212 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 pr_warn("EEH: PCI-E capabilities and status follow:\n");
214
215 for (i=0; i<=8; i++) {
216 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218
219 if ((i % 4) == 0) {
220 if (i != 0)
221 pr_warn("%s\n", buffer);
222
223 l = scnprintf(buffer, sizeof(buffer),
224 "EEH: PCI-E %02x: %08x ",
225 4*i, cfg);
226 } else {
227 l += scnprintf(buffer+l, sizeof(buffer)-l,
228 "%08x ", cfg);
229 }
230
231 }
232
233 pr_warn("%s\n", buffer);
234 }
235
236 /* If AER capable, dump it */
237 cap = edev->aer_cap;
238 if (cap) {
239 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 pr_warn("EEH: PCI-E AER capability register set follows:\n");
241
242 for (i=0; i<=13; i++) {
243 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
245
246 if ((i % 4) == 0) {
247 if (i != 0)
248 pr_warn("%s\n", buffer);
249
250 l = scnprintf(buffer, sizeof(buffer),
251 "EEH: PCI-E AER %02x: %08x ",
252 4*i, cfg);
253 } else {
254 l += scnprintf(buffer+l, sizeof(buffer)-l,
255 "%08x ", cfg);
256 }
257 }
258
259 pr_warn("%s\n", buffer);
260 }
261
262 return n;
263}
264
265static void *eeh_dump_pe_log(void *data, void *flag)
266{
267 struct eeh_pe *pe = data;
268 struct eeh_dev *edev, *tmp;
269 size_t *plen = flag;
270
271 eeh_pe_for_each_dev(pe, edev, tmp)
272 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
273 EEH_PCI_REGS_LOG_LEN - *plen);
274
275 return NULL;
276}
277
278/**
279 * eeh_slot_error_detail - Generate combined log including driver log and error log
280 * @pe: EEH PE
281 * @severity: temporary or permanent error log
282 *
283 * This routine should be called to generate the combined log, which
284 * is comprised of driver log and error log. The driver log is figured
285 * out from the config space of the corresponding PCI device, while
286 * the error log is fetched through platform dependent function call.
287 */
288void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
289{
290 size_t loglen = 0;
291
292 /*
293 * When the PHB is fenced or dead, it's pointless to collect
294 * the data from PCI config space because it should return
295 * 0xFF's. For ER, we still retrieve the data from the PCI
296 * config space.
297 *
298 * For pHyp, we have to enable IO for log retrieval. Otherwise,
299 * 0xFF's is always returned from PCI config space.
300 */
301 if (!(pe->type & EEH_PE_PHB)) {
302 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
303 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
304
305 /*
306 * The config space of some PCI devices can't be accessed
307 * when their PEs are in frozen state. Otherwise, fenced
308 * PHB might be seen. Those PEs are identified with flag
309 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
310 * is set automatically when the PE is put to EEH_PE_ISOLATED.
311 *
312 * Restoring BARs possibly triggers PCI config access in
313 * (OPAL) firmware and then causes fenced PHB. If the
314 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
315 * pointless to restore BARs and dump config space.
316 */
317 eeh_ops->configure_bridge(pe);
318 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
319 eeh_pe_restore_bars(pe);
320
321 pci_regs_buf[0] = 0;
322 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
323 }
324 }
325
326 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
327}
328
329/**
330 * eeh_token_to_phys - Convert EEH address token to phys address
331 * @token: I/O token, should be address in the form 0xA....
332 *
333 * This routine should be called to convert virtual I/O address
334 * to physical one.
335 */
336static inline unsigned long eeh_token_to_phys(unsigned long token)
337{
338 pte_t *ptep;
339 unsigned long pa;
340 int hugepage_shift;
341
342 /*
343 * We won't find hugepages here(this is iomem). Hence we are not
344 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
345 * page table free, because of init_mm.
346 */
347 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
348 NULL, &hugepage_shift);
349 if (!ptep)
350 return token;
351 WARN_ON(hugepage_shift);
352 pa = pte_pfn(*ptep) << PAGE_SHIFT;
353
354 return pa | (token & (PAGE_SIZE-1));
355}
356
357/*
358 * On PowerNV platform, we might already have fenced PHB there.
359 * For that case, it's meaningless to recover frozen PE. Intead,
360 * We have to handle fenced PHB firstly.
361 */
362static int eeh_phb_check_failure(struct eeh_pe *pe)
363{
364 struct eeh_pe *phb_pe;
365 unsigned long flags;
366 int ret;
367
368 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
369 return -EPERM;
370
371 /* Find the PHB PE */
372 phb_pe = eeh_phb_pe_get(pe->phb);
373 if (!phb_pe) {
374 pr_warn("%s Can't find PE for PHB#%d\n",
375 __func__, pe->phb->global_number);
376 return -EEXIST;
377 }
378
379 /* If the PHB has been in problematic state */
380 eeh_serialize_lock(&flags);
381 if (phb_pe->state & EEH_PE_ISOLATED) {
382 ret = 0;
383 goto out;
384 }
385
386 /* Check PHB state */
387 ret = eeh_ops->get_state(phb_pe, NULL);
388 if ((ret < 0) ||
389 (ret == EEH_STATE_NOT_SUPPORT) ||
390 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
391 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
392 ret = 0;
393 goto out;
394 }
395
396 /* Isolate the PHB and send event */
397 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
398 eeh_serialize_unlock(flags);
399
400 pr_err("EEH: PHB#%x failure detected, location: %s\n",
401 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
402 dump_stack();
403 eeh_send_failure_event(phb_pe);
404
405 return 1;
406out:
407 eeh_serialize_unlock(flags);
408 return ret;
409}
410
411/**
412 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
413 * @edev: eeh device
414 *
415 * Check for an EEH failure for the given device node. Call this
416 * routine if the result of a read was all 0xff's and you want to
417 * find out if this is due to an EEH slot freeze. This routine
418 * will query firmware for the EEH status.
419 *
420 * Returns 0 if there has not been an EEH error; otherwise returns
421 * a non-zero value and queues up a slot isolation event notification.
422 *
423 * It is safe to call this routine in an interrupt context.
424 */
425int eeh_dev_check_failure(struct eeh_dev *edev)
426{
427 int ret;
428 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
429 unsigned long flags;
430 struct pci_dn *pdn;
431 struct pci_dev *dev;
432 struct eeh_pe *pe, *parent_pe, *phb_pe;
433 int rc = 0;
434 const char *location = NULL;
435
436 eeh_stats.total_mmio_ffs++;
437
438 if (!eeh_enabled())
439 return 0;
440
441 if (!edev) {
442 eeh_stats.no_dn++;
443 return 0;
444 }
445 dev = eeh_dev_to_pci_dev(edev);
446 pe = eeh_dev_to_pe(edev);
447
448 /* Access to IO BARs might get this far and still not want checking. */
449 if (!pe) {
450 eeh_stats.ignored_check++;
451 pr_debug("EEH: Ignored check for %s\n",
452 eeh_pci_name(dev));
453 return 0;
454 }
455
456 if (!pe->addr && !pe->config_addr) {
457 eeh_stats.no_cfg_addr++;
458 return 0;
459 }
460
461 /*
462 * On PowerNV platform, we might already have fenced PHB
463 * there and we need take care of that firstly.
464 */
465 ret = eeh_phb_check_failure(pe);
466 if (ret > 0)
467 return ret;
468
469 /*
470 * If the PE isn't owned by us, we shouldn't check the
471 * state. Instead, let the owner handle it if the PE has
472 * been frozen.
473 */
474 if (eeh_pe_passed(pe))
475 return 0;
476
477 /* If we already have a pending isolation event for this
478 * slot, we know it's bad already, we don't need to check.
479 * Do this checking under a lock; as multiple PCI devices
480 * in one slot might report errors simultaneously, and we
481 * only want one error recovery routine running.
482 */
483 eeh_serialize_lock(&flags);
484 rc = 1;
485 if (pe->state & EEH_PE_ISOLATED) {
486 pe->check_count++;
487 if (pe->check_count % EEH_MAX_FAILS == 0) {
488 pdn = eeh_dev_to_pdn(edev);
489 if (pdn->node)
490 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
491 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
492 "location=%s driver=%s pci addr=%s\n",
493 pe->check_count,
494 location ? location : "unknown",
495 eeh_driver_name(dev), eeh_pci_name(dev));
496 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
497 eeh_driver_name(dev));
498 dump_stack();
499 }
500 goto dn_unlock;
501 }
502
503 /*
504 * Now test for an EEH failure. This is VERY expensive.
505 * Note that the eeh_config_addr may be a parent device
506 * in the case of a device behind a bridge, or it may be
507 * function zero of a multi-function device.
508 * In any case they must share a common PHB.
509 */
510 ret = eeh_ops->get_state(pe, NULL);
511
512 /* Note that config-io to empty slots may fail;
513 * they are empty when they don't have children.
514 * We will punt with the following conditions: Failure to get
515 * PE's state, EEH not support and Permanently unavailable
516 * state, PE is in good state.
517 */
518 if ((ret < 0) ||
519 (ret == EEH_STATE_NOT_SUPPORT) ||
520 ((ret & active_flags) == active_flags)) {
521 eeh_stats.false_positives++;
522 pe->false_positives++;
523 rc = 0;
524 goto dn_unlock;
525 }
526
527 /*
528 * It should be corner case that the parent PE has been
529 * put into frozen state as well. We should take care
530 * that at first.
531 */
532 parent_pe = pe->parent;
533 while (parent_pe) {
534 /* Hit the ceiling ? */
535 if (parent_pe->type & EEH_PE_PHB)
536 break;
537
538 /* Frozen parent PE ? */
539 ret = eeh_ops->get_state(parent_pe, NULL);
540 if (ret > 0 &&
541 (ret & active_flags) != active_flags)
542 pe = parent_pe;
543
544 /* Next parent level */
545 parent_pe = parent_pe->parent;
546 }
547
548 eeh_stats.slot_resets++;
549
550 /* Avoid repeated reports of this failure, including problems
551 * with other functions on this device, and functions under
552 * bridges.
553 */
554 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
555 eeh_serialize_unlock(flags);
556
557 /* Most EEH events are due to device driver bugs. Having
558 * a stack trace will help the device-driver authors figure
559 * out what happened. So print that out.
560 */
561 phb_pe = eeh_phb_pe_get(pe->phb);
562 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
563 pe->phb->global_number, pe->addr);
564 pr_err("EEH: PE location: %s, PHB location: %s\n",
565 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
566 dump_stack();
567
568 eeh_send_failure_event(pe);
569
570 return 1;
571
572dn_unlock:
573 eeh_serialize_unlock(flags);
574 return rc;
575}
576
577EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
578
579/**
580 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
581 * @token: I/O address
582 *
583 * Check for an EEH failure at the given I/O address. Call this
584 * routine if the result of a read was all 0xff's and you want to
585 * find out if this is due to an EEH slot freeze event. This routine
586 * will query firmware for the EEH status.
587 *
588 * Note this routine is safe to call in an interrupt context.
589 */
590int eeh_check_failure(const volatile void __iomem *token)
591{
592 unsigned long addr;
593 struct eeh_dev *edev;
594
595 /* Finding the phys addr + pci device; this is pretty quick. */
596 addr = eeh_token_to_phys((unsigned long __force) token);
597 edev = eeh_addr_cache_get_dev(addr);
598 if (!edev) {
599 eeh_stats.no_device++;
600 return 0;
601 }
602
603 return eeh_dev_check_failure(edev);
604}
605EXPORT_SYMBOL(eeh_check_failure);
606
607
608/**
609 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
610 * @pe: EEH PE
611 *
612 * This routine should be called to reenable frozen MMIO or DMA
613 * so that it would work correctly again. It's useful while doing
614 * recovery or log collection on the indicated device.
615 */
616int eeh_pci_enable(struct eeh_pe *pe, int function)
617{
618 int active_flag, rc;
619
620 /*
621 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
622 * Also, it's pointless to enable them on unfrozen PE. So
623 * we have to check before enabling IO or DMA.
624 */
625 switch (function) {
626 case EEH_OPT_THAW_MMIO:
627 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
628 break;
629 case EEH_OPT_THAW_DMA:
630 active_flag = EEH_STATE_DMA_ACTIVE;
631 break;
632 case EEH_OPT_DISABLE:
633 case EEH_OPT_ENABLE:
634 case EEH_OPT_FREEZE_PE:
635 active_flag = 0;
636 break;
637 default:
638 pr_warn("%s: Invalid function %d\n",
639 __func__, function);
640 return -EINVAL;
641 }
642
643 /*
644 * Check if IO or DMA has been enabled before
645 * enabling them.
646 */
647 if (active_flag) {
648 rc = eeh_ops->get_state(pe, NULL);
649 if (rc < 0)
650 return rc;
651
652 /* Needn't enable it at all */
653 if (rc == EEH_STATE_NOT_SUPPORT)
654 return 0;
655
656 /* It's already enabled */
657 if (rc & active_flag)
658 return 0;
659 }
660
661
662 /* Issue the request */
663 rc = eeh_ops->set_option(pe, function);
664 if (rc)
665 pr_warn("%s: Unexpected state change %d on "
666 "PHB#%d-PE#%x, err=%d\n",
667 __func__, function, pe->phb->global_number,
668 pe->addr, rc);
669
670 /* Check if the request is finished successfully */
671 if (active_flag) {
672 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
673 if (rc < 0)
674 return rc;
675
676 if (rc & active_flag)
677 return 0;
678
679 return -EIO;
680 }
681
682 return rc;
683}
684
685static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
686{
687 struct eeh_dev *edev = data;
688 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
689 struct pci_dev *dev = userdata;
690
691 /*
692 * The caller should have disabled and saved the
693 * state for the specified device
694 */
695 if (!pdev || pdev == dev)
696 return NULL;
697
698 /* Ensure we have D0 power state */
699 pci_set_power_state(pdev, PCI_D0);
700
701 /* Save device state */
702 pci_save_state(pdev);
703
704 /*
705 * Disable device to avoid any DMA traffic and
706 * interrupt from the device
707 */
708 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
709
710 return NULL;
711}
712
713static void *eeh_restore_dev_state(void *data, void *userdata)
714{
715 struct eeh_dev *edev = data;
716 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
717 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
718 struct pci_dev *dev = userdata;
719
720 if (!pdev)
721 return NULL;
722
723 /* Apply customization from firmware */
724 if (pdn && eeh_ops->restore_config)
725 eeh_ops->restore_config(pdn);
726
727 /* The caller should restore state for the specified device */
728 if (pdev != dev)
729 pci_restore_state(pdev);
730
731 return NULL;
732}
733
734/**
735 * pcibios_set_pcie_reset_state - Set PCI-E reset state
736 * @dev: pci device struct
737 * @state: reset state to enter
738 *
739 * Return value:
740 * 0 if success
741 */
742int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
743{
744 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
745 struct eeh_pe *pe = eeh_dev_to_pe(edev);
746
747 if (!pe) {
748 pr_err("%s: No PE found on PCI device %s\n",
749 __func__, pci_name(dev));
750 return -EINVAL;
751 }
752
753 switch (state) {
754 case pcie_deassert_reset:
755 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
756 eeh_unfreeze_pe(pe, false);
757 if (!(pe->type & EEH_PE_VF))
758 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
759 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
760 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
761 break;
762 case pcie_hot_reset:
763 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
764 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
765 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
766 if (!(pe->type & EEH_PE_VF))
767 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
768 eeh_ops->reset(pe, EEH_RESET_HOT);
769 break;
770 case pcie_warm_reset:
771 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
772 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
773 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
774 if (!(pe->type & EEH_PE_VF))
775 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
776 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
777 break;
778 default:
779 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
780 return -EINVAL;
781 };
782
783 return 0;
784}
785
786/**
787 * eeh_set_pe_freset - Check the required reset for the indicated device
788 * @data: EEH device
789 * @flag: return value
790 *
791 * Each device might have its preferred reset type: fundamental or
792 * hot reset. The routine is used to collected the information for
793 * the indicated device and its children so that the bunch of the
794 * devices could be reset properly.
795 */
796static void *eeh_set_dev_freset(void *data, void *flag)
797{
798 struct pci_dev *dev;
799 unsigned int *freset = (unsigned int *)flag;
800 struct eeh_dev *edev = (struct eeh_dev *)data;
801
802 dev = eeh_dev_to_pci_dev(edev);
803 if (dev)
804 *freset |= dev->needs_freset;
805
806 return NULL;
807}
808
809/**
810 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
811 * @pe: EEH PE
812 *
813 * Assert the PCI #RST line for 1/4 second.
814 */
815static void eeh_reset_pe_once(struct eeh_pe *pe)
816{
817 unsigned int freset = 0;
818
819 /* Determine type of EEH reset required for
820 * Partitionable Endpoint, a hot-reset (1)
821 * or a fundamental reset (3).
822 * A fundamental reset required by any device under
823 * Partitionable Endpoint trumps hot-reset.
824 */
825 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
826
827 if (freset)
828 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
829 else
830 eeh_ops->reset(pe, EEH_RESET_HOT);
831
832 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
833}
834
835/**
836 * eeh_reset_pe - Reset the indicated PE
837 * @pe: EEH PE
838 *
839 * This routine should be called to reset indicated device, including
840 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
841 * might be involved as well.
842 */
843int eeh_reset_pe(struct eeh_pe *pe)
844{
845 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
846 int i, state, ret;
847
848 /* Mark as reset and block config space */
849 eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
850
851 /* Take three shots at resetting the bus */
852 for (i = 0; i < 3; i++) {
853 eeh_reset_pe_once(pe);
854
855 /*
856 * EEH_PE_ISOLATED is expected to be removed after
857 * BAR restore.
858 */
859 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
860 if ((state & flags) == flags) {
861 ret = 0;
862 goto out;
863 }
864
865 if (state < 0) {
866 pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
867 __func__, pe->phb->global_number, pe->addr);
868 ret = -ENOTRECOVERABLE;
869 goto out;
870 }
871
872 /* We might run out of credits */
873 ret = -EIO;
874 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
875 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
876 }
877
878out:
879 eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
880 return ret;
881}
882
883/**
884 * eeh_save_bars - Save device bars
885 * @edev: PCI device associated EEH device
886 *
887 * Save the values of the device bars. Unlike the restore
888 * routine, this routine is *not* recursive. This is because
889 * PCI devices are added individually; but, for the restore,
890 * an entire slot is reset at a time.
891 */
892void eeh_save_bars(struct eeh_dev *edev)
893{
894 struct pci_dn *pdn;
895 int i;
896
897 pdn = eeh_dev_to_pdn(edev);
898 if (!pdn)
899 return;
900
901 for (i = 0; i < 16; i++)
902 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
903
904 /*
905 * For PCI bridges including root port, we need enable bus
906 * master explicitly. Otherwise, it can't fetch IODA table
907 * entries correctly. So we cache the bit in advance so that
908 * we can restore it after reset, either PHB range or PE range.
909 */
910 if (edev->mode & EEH_DEV_BRIDGE)
911 edev->config_space[1] |= PCI_COMMAND_MASTER;
912}
913
914/**
915 * eeh_ops_register - Register platform dependent EEH operations
916 * @ops: platform dependent EEH operations
917 *
918 * Register the platform dependent EEH operation callback
919 * functions. The platform should call this function before
920 * any other EEH operations.
921 */
922int __init eeh_ops_register(struct eeh_ops *ops)
923{
924 if (!ops->name) {
925 pr_warn("%s: Invalid EEH ops name for %p\n",
926 __func__, ops);
927 return -EINVAL;
928 }
929
930 if (eeh_ops && eeh_ops != ops) {
931 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
932 __func__, eeh_ops->name, ops->name);
933 return -EEXIST;
934 }
935
936 eeh_ops = ops;
937
938 return 0;
939}
940
941/**
942 * eeh_ops_unregister - Unreigster platform dependent EEH operations
943 * @name: name of EEH platform operations
944 *
945 * Unregister the platform dependent EEH operation callback
946 * functions.
947 */
948int __exit eeh_ops_unregister(const char *name)
949{
950 if (!name || !strlen(name)) {
951 pr_warn("%s: Invalid EEH ops name\n",
952 __func__);
953 return -EINVAL;
954 }
955
956 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
957 eeh_ops = NULL;
958 return 0;
959 }
960
961 return -EEXIST;
962}
963
964static int eeh_reboot_notifier(struct notifier_block *nb,
965 unsigned long action, void *unused)
966{
967 eeh_clear_flag(EEH_ENABLED);
968 return NOTIFY_DONE;
969}
970
971static struct notifier_block eeh_reboot_nb = {
972 .notifier_call = eeh_reboot_notifier,
973};
974
975/**
976 * eeh_init - EEH initialization
977 *
978 * Initialize EEH by trying to enable it for all of the adapters in the system.
979 * As a side effect we can determine here if eeh is supported at all.
980 * Note that we leave EEH on so failed config cycles won't cause a machine
981 * check. If a user turns off EEH for a particular adapter they are really
982 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
983 * grant access to a slot if EEH isn't enabled, and so we always enable
984 * EEH for all slots/all devices.
985 *
986 * The eeh-force-off option disables EEH checking globally, for all slots.
987 * Even if force-off is set, the EEH hardware is still enabled, so that
988 * newer systems can boot.
989 */
990int eeh_init(void)
991{
992 struct pci_controller *hose, *tmp;
993 struct pci_dn *pdn;
994 static int cnt = 0;
995 int ret = 0;
996
997 /*
998 * We have to delay the initialization on PowerNV after
999 * the PCI hierarchy tree has been built because the PEs
1000 * are figured out based on PCI devices instead of device
1001 * tree nodes
1002 */
1003 if (machine_is(powernv) && cnt++ <= 0)
1004 return ret;
1005
1006 /* Register reboot notifier */
1007 ret = register_reboot_notifier(&eeh_reboot_nb);
1008 if (ret) {
1009 pr_warn("%s: Failed to register notifier (%d)\n",
1010 __func__, ret);
1011 return ret;
1012 }
1013
1014 /* call platform initialization function */
1015 if (!eeh_ops) {
1016 pr_warn("%s: Platform EEH operation not found\n",
1017 __func__);
1018 return -EEXIST;
1019 } else if ((ret = eeh_ops->init()))
1020 return ret;
1021
1022 /* Initialize EEH event */
1023 ret = eeh_event_init();
1024 if (ret)
1025 return ret;
1026
1027 /* Enable EEH for all adapters */
1028 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1029 pdn = hose->pci_data;
1030 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1031 }
1032
1033 /*
1034 * Call platform post-initialization. Actually, It's good chance
1035 * to inform platform that EEH is ready to supply service if the
1036 * I/O cache stuff has been built up.
1037 */
1038 if (eeh_ops->post_init) {
1039 ret = eeh_ops->post_init();
1040 if (ret)
1041 return ret;
1042 }
1043
1044 if (eeh_enabled())
1045 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1046 else
1047 pr_warn("EEH: No capable adapters found\n");
1048
1049 return ret;
1050}
1051
1052core_initcall_sync(eeh_init);
1053
1054/**
1055 * eeh_add_device_early - Enable EEH for the indicated device node
1056 * @pdn: PCI device node for which to set up EEH
1057 *
1058 * This routine must be used to perform EEH initialization for PCI
1059 * devices that were added after system boot (e.g. hotplug, dlpar).
1060 * This routine must be called before any i/o is performed to the
1061 * adapter (inluding any config-space i/o).
1062 * Whether this actually enables EEH or not for this device depends
1063 * on the CEC architecture, type of the device, on earlier boot
1064 * command-line arguments & etc.
1065 */
1066void eeh_add_device_early(struct pci_dn *pdn)
1067{
1068 struct pci_controller *phb;
1069 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1070
1071 if (!edev || !eeh_enabled())
1072 return;
1073
1074 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1075 return;
1076
1077 /* USB Bus children of PCI devices will not have BUID's */
1078 phb = edev->phb;
1079 if (NULL == phb ||
1080 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1081 return;
1082
1083 eeh_ops->probe(pdn, NULL);
1084}
1085
1086/**
1087 * eeh_add_device_tree_early - Enable EEH for the indicated device
1088 * @pdn: PCI device node
1089 *
1090 * This routine must be used to perform EEH initialization for the
1091 * indicated PCI device that was added after system boot (e.g.
1092 * hotplug, dlpar).
1093 */
1094void eeh_add_device_tree_early(struct pci_dn *pdn)
1095{
1096 struct pci_dn *n;
1097
1098 if (!pdn)
1099 return;
1100
1101 list_for_each_entry(n, &pdn->child_list, list)
1102 eeh_add_device_tree_early(n);
1103 eeh_add_device_early(pdn);
1104}
1105EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1106
1107/**
1108 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1109 * @dev: pci device for which to set up EEH
1110 *
1111 * This routine must be used to complete EEH initialization for PCI
1112 * devices that were added after system boot (e.g. hotplug, dlpar).
1113 */
1114void eeh_add_device_late(struct pci_dev *dev)
1115{
1116 struct pci_dn *pdn;
1117 struct eeh_dev *edev;
1118
1119 if (!dev || !eeh_enabled())
1120 return;
1121
1122 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1123
1124 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1125 edev = pdn_to_eeh_dev(pdn);
1126 if (edev->pdev == dev) {
1127 pr_debug("EEH: Already referenced !\n");
1128 return;
1129 }
1130
1131 /*
1132 * The EEH cache might not be removed correctly because of
1133 * unbalanced kref to the device during unplug time, which
1134 * relies on pcibios_release_device(). So we have to remove
1135 * that here explicitly.
1136 */
1137 if (edev->pdev) {
1138 eeh_rmv_from_parent_pe(edev);
1139 eeh_addr_cache_rmv_dev(edev->pdev);
1140 eeh_sysfs_remove_device(edev->pdev);
1141 edev->mode &= ~EEH_DEV_SYSFS;
1142
1143 /*
1144 * We definitely should have the PCI device removed
1145 * though it wasn't correctly. So we needn't call
1146 * into error handler afterwards.
1147 */
1148 edev->mode |= EEH_DEV_NO_HANDLER;
1149
1150 edev->pdev = NULL;
1151 dev->dev.archdata.edev = NULL;
1152 }
1153
1154 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1155 eeh_ops->probe(pdn, NULL);
1156
1157 edev->pdev = dev;
1158 dev->dev.archdata.edev = edev;
1159
1160 eeh_addr_cache_insert_dev(dev);
1161}
1162
1163/**
1164 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1165 * @bus: PCI bus
1166 *
1167 * This routine must be used to perform EEH initialization for PCI
1168 * devices which are attached to the indicated PCI bus. The PCI bus
1169 * is added after system boot through hotplug or dlpar.
1170 */
1171void eeh_add_device_tree_late(struct pci_bus *bus)
1172{
1173 struct pci_dev *dev;
1174
1175 list_for_each_entry(dev, &bus->devices, bus_list) {
1176 eeh_add_device_late(dev);
1177 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1178 struct pci_bus *subbus = dev->subordinate;
1179 if (subbus)
1180 eeh_add_device_tree_late(subbus);
1181 }
1182 }
1183}
1184EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1185
1186/**
1187 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1188 * @bus: PCI bus
1189 *
1190 * This routine must be used to add EEH sysfs files for PCI
1191 * devices which are attached to the indicated PCI bus. The PCI bus
1192 * is added after system boot through hotplug or dlpar.
1193 */
1194void eeh_add_sysfs_files(struct pci_bus *bus)
1195{
1196 struct pci_dev *dev;
1197
1198 list_for_each_entry(dev, &bus->devices, bus_list) {
1199 eeh_sysfs_add_device(dev);
1200 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1201 struct pci_bus *subbus = dev->subordinate;
1202 if (subbus)
1203 eeh_add_sysfs_files(subbus);
1204 }
1205 }
1206}
1207EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1208
1209/**
1210 * eeh_remove_device - Undo EEH setup for the indicated pci device
1211 * @dev: pci device to be removed
1212 *
1213 * This routine should be called when a device is removed from
1214 * a running system (e.g. by hotplug or dlpar). It unregisters
1215 * the PCI device from the EEH subsystem. I/O errors affecting
1216 * this device will no longer be detected after this call; thus,
1217 * i/o errors affecting this slot may leave this device unusable.
1218 */
1219void eeh_remove_device(struct pci_dev *dev)
1220{
1221 struct eeh_dev *edev;
1222
1223 if (!dev || !eeh_enabled())
1224 return;
1225 edev = pci_dev_to_eeh_dev(dev);
1226
1227 /* Unregister the device with the EEH/PCI address search system */
1228 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1229
1230 if (!edev || !edev->pdev || !edev->pe) {
1231 pr_debug("EEH: Not referenced !\n");
1232 return;
1233 }
1234
1235 /*
1236 * During the hotplug for EEH error recovery, we need the EEH
1237 * device attached to the parent PE in order for BAR restore
1238 * a bit later. So we keep it for BAR restore and remove it
1239 * from the parent PE during the BAR resotre.
1240 */
1241 edev->pdev = NULL;
1242
1243 /*
1244 * The flag "in_error" is used to trace EEH devices for VFs
1245 * in error state or not. It's set in eeh_report_error(). If
1246 * it's not set, eeh_report_{reset,resume}() won't be called
1247 * for the VF EEH device.
1248 */
1249 edev->in_error = false;
1250 dev->dev.archdata.edev = NULL;
1251 if (!(edev->pe->state & EEH_PE_KEEP))
1252 eeh_rmv_from_parent_pe(edev);
1253 else
1254 edev->mode |= EEH_DEV_DISCONNECTED;
1255
1256 /*
1257 * We're removing from the PCI subsystem, that means
1258 * the PCI device driver can't support EEH or not
1259 * well. So we rely on hotplug completely to do recovery
1260 * for the specific PCI device.
1261 */
1262 edev->mode |= EEH_DEV_NO_HANDLER;
1263
1264 eeh_addr_cache_rmv_dev(dev);
1265 eeh_sysfs_remove_device(dev);
1266 edev->mode &= ~EEH_DEV_SYSFS;
1267}
1268
1269int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1270{
1271 int ret;
1272
1273 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1274 if (ret) {
1275 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1276 __func__, ret, pe->phb->global_number, pe->addr);
1277 return ret;
1278 }
1279
1280 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1281 if (ret) {
1282 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1283 __func__, ret, pe->phb->global_number, pe->addr);
1284 return ret;
1285 }
1286
1287 /* Clear software isolated state */
1288 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1289 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1290
1291 return ret;
1292}
1293
1294
1295static struct pci_device_id eeh_reset_ids[] = {
1296 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1297 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1298 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1299 { 0 }
1300};
1301
1302static int eeh_pe_change_owner(struct eeh_pe *pe)
1303{
1304 struct eeh_dev *edev, *tmp;
1305 struct pci_dev *pdev;
1306 struct pci_device_id *id;
1307 int flags, ret;
1308
1309 /* Check PE state */
1310 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1311 ret = eeh_ops->get_state(pe, NULL);
1312 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1313 return 0;
1314
1315 /* Unfrozen PE, nothing to do */
1316 if ((ret & flags) == flags)
1317 return 0;
1318
1319 /* Frozen PE, check if it needs PE level reset */
1320 eeh_pe_for_each_dev(pe, edev, tmp) {
1321 pdev = eeh_dev_to_pci_dev(edev);
1322 if (!pdev)
1323 continue;
1324
1325 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1326 if (id->vendor != PCI_ANY_ID &&
1327 id->vendor != pdev->vendor)
1328 continue;
1329 if (id->device != PCI_ANY_ID &&
1330 id->device != pdev->device)
1331 continue;
1332 if (id->subvendor != PCI_ANY_ID &&
1333 id->subvendor != pdev->subsystem_vendor)
1334 continue;
1335 if (id->subdevice != PCI_ANY_ID &&
1336 id->subdevice != pdev->subsystem_device)
1337 continue;
1338
1339 goto reset;
1340 }
1341 }
1342
1343 return eeh_unfreeze_pe(pe, true);
1344
1345reset:
1346 return eeh_pe_reset_and_recover(pe);
1347}
1348
1349/**
1350 * eeh_dev_open - Increase count of pass through devices for PE
1351 * @pdev: PCI device
1352 *
1353 * Increase count of passed through devices for the indicated
1354 * PE. In the result, the EEH errors detected on the PE won't be
1355 * reported. The PE owner will be responsible for detection
1356 * and recovery.
1357 */
1358int eeh_dev_open(struct pci_dev *pdev)
1359{
1360 struct eeh_dev *edev;
1361 int ret = -ENODEV;
1362
1363 mutex_lock(&eeh_dev_mutex);
1364
1365 /* No PCI device ? */
1366 if (!pdev)
1367 goto out;
1368
1369 /* No EEH device or PE ? */
1370 edev = pci_dev_to_eeh_dev(pdev);
1371 if (!edev || !edev->pe)
1372 goto out;
1373
1374 /*
1375 * The PE might have been put into frozen state, but we
1376 * didn't detect that yet. The passed through PCI devices
1377 * in frozen PE won't work properly. Clear the frozen state
1378 * in advance.
1379 */
1380 ret = eeh_pe_change_owner(edev->pe);
1381 if (ret)
1382 goto out;
1383
1384 /* Increase PE's pass through count */
1385 atomic_inc(&edev->pe->pass_dev_cnt);
1386 mutex_unlock(&eeh_dev_mutex);
1387
1388 return 0;
1389out:
1390 mutex_unlock(&eeh_dev_mutex);
1391 return ret;
1392}
1393EXPORT_SYMBOL_GPL(eeh_dev_open);
1394
1395/**
1396 * eeh_dev_release - Decrease count of pass through devices for PE
1397 * @pdev: PCI device
1398 *
1399 * Decrease count of pass through devices for the indicated PE. If
1400 * there is no passed through device in PE, the EEH errors detected
1401 * on the PE will be reported and handled as usual.
1402 */
1403void eeh_dev_release(struct pci_dev *pdev)
1404{
1405 struct eeh_dev *edev;
1406
1407 mutex_lock(&eeh_dev_mutex);
1408
1409 /* No PCI device ? */
1410 if (!pdev)
1411 goto out;
1412
1413 /* No EEH device ? */
1414 edev = pci_dev_to_eeh_dev(pdev);
1415 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1416 goto out;
1417
1418 /* Decrease PE's pass through count */
1419 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1420 eeh_pe_change_owner(edev->pe);
1421out:
1422 mutex_unlock(&eeh_dev_mutex);
1423}
1424EXPORT_SYMBOL(eeh_dev_release);
1425
1426#ifdef CONFIG_IOMMU_API
1427
1428static int dev_has_iommu_table(struct device *dev, void *data)
1429{
1430 struct pci_dev *pdev = to_pci_dev(dev);
1431 struct pci_dev **ppdev = data;
1432
1433 if (!dev)
1434 return 0;
1435
1436 if (dev->iommu_group) {
1437 *ppdev = pdev;
1438 return 1;
1439 }
1440
1441 return 0;
1442}
1443
1444/**
1445 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1446 * @group: IOMMU group
1447 *
1448 * The routine is called to convert IOMMU group to EEH PE.
1449 */
1450struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1451{
1452 struct pci_dev *pdev = NULL;
1453 struct eeh_dev *edev;
1454 int ret;
1455
1456 /* No IOMMU group ? */
1457 if (!group)
1458 return NULL;
1459
1460 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1461 if (!ret || !pdev)
1462 return NULL;
1463
1464 /* No EEH device or PE ? */
1465 edev = pci_dev_to_eeh_dev(pdev);
1466 if (!edev || !edev->pe)
1467 return NULL;
1468
1469 return edev->pe;
1470}
1471EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1472
1473#endif /* CONFIG_IOMMU_API */
1474
1475/**
1476 * eeh_pe_set_option - Set options for the indicated PE
1477 * @pe: EEH PE
1478 * @option: requested option
1479 *
1480 * The routine is called to enable or disable EEH functionality
1481 * on the indicated PE, to enable IO or DMA for the frozen PE.
1482 */
1483int eeh_pe_set_option(struct eeh_pe *pe, int option)
1484{
1485 int ret = 0;
1486
1487 /* Invalid PE ? */
1488 if (!pe)
1489 return -ENODEV;
1490
1491 /*
1492 * EEH functionality could possibly be disabled, just
1493 * return error for the case. And the EEH functinality
1494 * isn't expected to be disabled on one specific PE.
1495 */
1496 switch (option) {
1497 case EEH_OPT_ENABLE:
1498 if (eeh_enabled()) {
1499 ret = eeh_pe_change_owner(pe);
1500 break;
1501 }
1502 ret = -EIO;
1503 break;
1504 case EEH_OPT_DISABLE:
1505 break;
1506 case EEH_OPT_THAW_MMIO:
1507 case EEH_OPT_THAW_DMA:
1508 if (!eeh_ops || !eeh_ops->set_option) {
1509 ret = -ENOENT;
1510 break;
1511 }
1512
1513 ret = eeh_pci_enable(pe, option);
1514 break;
1515 default:
1516 pr_debug("%s: Option %d out of range (%d, %d)\n",
1517 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1518 ret = -EINVAL;
1519 }
1520
1521 return ret;
1522}
1523EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1524
1525/**
1526 * eeh_pe_get_state - Retrieve PE's state
1527 * @pe: EEH PE
1528 *
1529 * Retrieve the PE's state, which includes 3 aspects: enabled
1530 * DMA, enabled IO and asserted reset.
1531 */
1532int eeh_pe_get_state(struct eeh_pe *pe)
1533{
1534 int result, ret = 0;
1535 bool rst_active, dma_en, mmio_en;
1536
1537 /* Existing PE ? */
1538 if (!pe)
1539 return -ENODEV;
1540
1541 if (!eeh_ops || !eeh_ops->get_state)
1542 return -ENOENT;
1543
1544 /*
1545 * If the parent PE is owned by the host kernel and is undergoing
1546 * error recovery, we should return the PE state as temporarily
1547 * unavailable so that the error recovery on the guest is suspended
1548 * until the recovery completes on the host.
1549 */
1550 if (pe->parent &&
1551 !(pe->state & EEH_PE_REMOVED) &&
1552 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1553 return EEH_PE_STATE_UNAVAIL;
1554
1555 result = eeh_ops->get_state(pe, NULL);
1556 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1557 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1558 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1559
1560 if (rst_active)
1561 ret = EEH_PE_STATE_RESET;
1562 else if (dma_en && mmio_en)
1563 ret = EEH_PE_STATE_NORMAL;
1564 else if (!dma_en && !mmio_en)
1565 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1566 else if (!dma_en && mmio_en)
1567 ret = EEH_PE_STATE_STOPPED_DMA;
1568 else
1569 ret = EEH_PE_STATE_UNAVAIL;
1570
1571 return ret;
1572}
1573EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1574
1575static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1576{
1577 struct eeh_dev *edev, *tmp;
1578 struct pci_dev *pdev;
1579 int ret = 0;
1580
1581 /* Restore config space */
1582 eeh_pe_restore_bars(pe);
1583
1584 /*
1585 * Reenable PCI devices as the devices passed
1586 * through are always enabled before the reset.
1587 */
1588 eeh_pe_for_each_dev(pe, edev, tmp) {
1589 pdev = eeh_dev_to_pci_dev(edev);
1590 if (!pdev)
1591 continue;
1592
1593 ret = pci_reenable_device(pdev);
1594 if (ret) {
1595 pr_warn("%s: Failure %d reenabling %s\n",
1596 __func__, ret, pci_name(pdev));
1597 return ret;
1598 }
1599 }
1600
1601 /* The PE is still in frozen state */
1602 return eeh_unfreeze_pe(pe, true);
1603}
1604
1605/**
1606 * eeh_pe_reset - Issue PE reset according to specified type
1607 * @pe: EEH PE
1608 * @option: reset type
1609 *
1610 * The routine is called to reset the specified PE with the
1611 * indicated type, either fundamental reset or hot reset.
1612 * PE reset is the most important part for error recovery.
1613 */
1614int eeh_pe_reset(struct eeh_pe *pe, int option)
1615{
1616 int ret = 0;
1617
1618 /* Invalid PE ? */
1619 if (!pe)
1620 return -ENODEV;
1621
1622 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1623 return -ENOENT;
1624
1625 switch (option) {
1626 case EEH_RESET_DEACTIVATE:
1627 ret = eeh_ops->reset(pe, option);
1628 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1629 if (ret)
1630 break;
1631
1632 ret = eeh_pe_reenable_devices(pe);
1633 break;
1634 case EEH_RESET_HOT:
1635 case EEH_RESET_FUNDAMENTAL:
1636 /*
1637 * Proactively freeze the PE to drop all MMIO access
1638 * during reset, which should be banned as it's always
1639 * cause recursive EEH error.
1640 */
1641 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1642
1643 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1644 ret = eeh_ops->reset(pe, option);
1645 break;
1646 default:
1647 pr_debug("%s: Unsupported option %d\n",
1648 __func__, option);
1649 ret = -EINVAL;
1650 }
1651
1652 return ret;
1653}
1654EXPORT_SYMBOL_GPL(eeh_pe_reset);
1655
1656/**
1657 * eeh_pe_configure - Configure PCI bridges after PE reset
1658 * @pe: EEH PE
1659 *
1660 * The routine is called to restore the PCI config space for
1661 * those PCI devices, especially PCI bridges affected by PE
1662 * reset issued previously.
1663 */
1664int eeh_pe_configure(struct eeh_pe *pe)
1665{
1666 int ret = 0;
1667
1668 /* Invalid PE ? */
1669 if (!pe)
1670 return -ENODEV;
1671
1672 return ret;
1673}
1674EXPORT_SYMBOL_GPL(eeh_pe_configure);
1675
1676/**
1677 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1678 * @pe: the indicated PE
1679 * @type: error type
1680 * @function: error function
1681 * @addr: address
1682 * @mask: address mask
1683 *
1684 * The routine is called to inject the specified PCI error, which
1685 * is determined by @type and @function, to the indicated PE for
1686 * testing purpose.
1687 */
1688int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1689 unsigned long addr, unsigned long mask)
1690{
1691 /* Invalid PE ? */
1692 if (!pe)
1693 return -ENODEV;
1694
1695 /* Unsupported operation ? */
1696 if (!eeh_ops || !eeh_ops->err_inject)
1697 return -ENOENT;
1698
1699 /* Check on PCI error type */
1700 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1701 return -EINVAL;
1702
1703 /* Check on PCI error function */
1704 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1705 return -EINVAL;
1706
1707 return eeh_ops->err_inject(pe, type, func, addr, mask);
1708}
1709EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1710
1711static int proc_eeh_show(struct seq_file *m, void *v)
1712{
1713 if (!eeh_enabled()) {
1714 seq_printf(m, "EEH Subsystem is globally disabled\n");
1715 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1716 } else {
1717 seq_printf(m, "EEH Subsystem is enabled\n");
1718 seq_printf(m,
1719 "no device=%llu\n"
1720 "no device node=%llu\n"
1721 "no config address=%llu\n"
1722 "check not wanted=%llu\n"
1723 "eeh_total_mmio_ffs=%llu\n"
1724 "eeh_false_positives=%llu\n"
1725 "eeh_slot_resets=%llu\n",
1726 eeh_stats.no_device,
1727 eeh_stats.no_dn,
1728 eeh_stats.no_cfg_addr,
1729 eeh_stats.ignored_check,
1730 eeh_stats.total_mmio_ffs,
1731 eeh_stats.false_positives,
1732 eeh_stats.slot_resets);
1733 }
1734
1735 return 0;
1736}
1737
1738static int proc_eeh_open(struct inode *inode, struct file *file)
1739{
1740 return single_open(file, proc_eeh_show, NULL);
1741}
1742
1743static const struct file_operations proc_eeh_operations = {
1744 .open = proc_eeh_open,
1745 .read = seq_read,
1746 .llseek = seq_lseek,
1747 .release = single_release,
1748};
1749
1750#ifdef CONFIG_DEBUG_FS
1751static int eeh_enable_dbgfs_set(void *data, u64 val)
1752{
1753 if (val)
1754 eeh_clear_flag(EEH_FORCE_DISABLED);
1755 else
1756 eeh_add_flag(EEH_FORCE_DISABLED);
1757
1758 /* Notify the backend */
1759 if (eeh_ops->post_init)
1760 eeh_ops->post_init();
1761
1762 return 0;
1763}
1764
1765static int eeh_enable_dbgfs_get(void *data, u64 *val)
1766{
1767 if (eeh_enabled())
1768 *val = 0x1ul;
1769 else
1770 *val = 0x0ul;
1771 return 0;
1772}
1773
1774static int eeh_freeze_dbgfs_set(void *data, u64 val)
1775{
1776 eeh_max_freezes = val;
1777 return 0;
1778}
1779
1780static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1781{
1782 *val = eeh_max_freezes;
1783 return 0;
1784}
1785
1786DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1787 eeh_enable_dbgfs_set, "0x%llx\n");
1788DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1789 eeh_freeze_dbgfs_set, "0x%llx\n");
1790#endif
1791
1792static int __init eeh_init_proc(void)
1793{
1794 if (machine_is(pseries) || machine_is(powernv)) {
1795 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1796#ifdef CONFIG_DEBUG_FS
1797 debugfs_create_file("eeh_enable", 0600,
1798 powerpc_debugfs_root, NULL,
1799 &eeh_enable_dbgfs_ops);
1800 debugfs_create_file("eeh_max_freezes", 0600,
1801 powerpc_debugfs_root, NULL,
1802 &eeh_freeze_dbgfs_ops);
1803#endif
1804 }
1805
1806 return 0;
1807}
1808__initcall(eeh_init_proc);