Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright IBM Corporation 2001, 2005, 2006
   4 * Copyright Dave Engebretsen & Todd Inglett 2001
   5 * Copyright Linas Vepstas 2005, 2006
   6 * Copyright 2001-2012 IBM Corporation.
   7 *
   8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
   9 */
  10
  11#include <linux/delay.h>
  12#include <linux/sched.h>
  13#include <linux/init.h>
  14#include <linux/list.h>
  15#include <linux/pci.h>
  16#include <linux/iommu.h>
  17#include <linux/proc_fs.h>
  18#include <linux/rbtree.h>
  19#include <linux/reboot.h>
  20#include <linux/seq_file.h>
  21#include <linux/spinlock.h>
  22#include <linux/export.h>
  23#include <linux/of.h>
 
  24
  25#include <linux/atomic.h>
  26#include <asm/debugfs.h>
  27#include <asm/eeh.h>
  28#include <asm/eeh_event.h>
  29#include <asm/io.h>
  30#include <asm/iommu.h>
  31#include <asm/machdep.h>
  32#include <asm/ppc-pci.h>
  33#include <asm/rtas.h>
  34#include <asm/pte-walk.h>
  35
  36
  37/** Overview:
  38 *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
  39 *  dealing with PCI bus errors that can't be dealt with within the
  40 *  usual PCI framework, except by check-stopping the CPU.  Systems
  41 *  that are designed for high-availability/reliability cannot afford
  42 *  to crash due to a "mere" PCI error, thus the need for EEH.
  43 *  An EEH-capable bridge operates by converting a detected error
  44 *  into a "slot freeze", taking the PCI adapter off-line, making
  45 *  the slot behave, from the OS'es point of view, as if the slot
  46 *  were "empty": all reads return 0xff's and all writes are silently
  47 *  ignored.  EEH slot isolation events can be triggered by parity
  48 *  errors on the address or data busses (e.g. during posted writes),
  49 *  which in turn might be caused by low voltage on the bus, dust,
  50 *  vibration, humidity, radioactivity or plain-old failed hardware.
  51 *
  52 *  Note, however, that one of the leading causes of EEH slot
  53 *  freeze events are buggy device drivers, buggy device microcode,
  54 *  or buggy device hardware.  This is because any attempt by the
  55 *  device to bus-master data to a memory address that is not
  56 *  assigned to the device will trigger a slot freeze.   (The idea
  57 *  is to prevent devices-gone-wild from corrupting system memory).
  58 *  Buggy hardware/drivers will have a miserable time co-existing
  59 *  with EEH.
  60 *
  61 *  Ideally, a PCI device driver, when suspecting that an isolation
  62 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
  63 *  whether this is the case, and then take appropriate steps to
  64 *  reset the PCI slot, the PCI device, and then resume operations.
  65 *  However, until that day,  the checking is done here, with the
  66 *  eeh_check_failure() routine embedded in the MMIO macros.  If
  67 *  the slot is found to be isolated, an "EEH Event" is synthesized
  68 *  and sent out for processing.
  69 */
  70
  71/* If a device driver keeps reading an MMIO register in an interrupt
  72 * handler after a slot isolation event, it might be broken.
  73 * This sets the threshold for how many read attempts we allow
  74 * before printing an error message.
  75 */
  76#define EEH_MAX_FAILS	2100000
  77
  78/* Time to wait for a PCI slot to report status, in milliseconds */
  79#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
  80
  81/*
  82 * EEH probe mode support, which is part of the flags,
  83 * is to support multiple platforms for EEH. Some platforms
  84 * like pSeries do PCI emunation based on device tree.
  85 * However, other platforms like powernv probe PCI devices
  86 * from hardware. The flag is used to distinguish that.
  87 * In addition, struct eeh_ops::probe would be invoked for
  88 * particular OF node or PCI device so that the corresponding
  89 * PE would be created there.
  90 */
  91int eeh_subsystem_flags;
  92EXPORT_SYMBOL(eeh_subsystem_flags);
  93
  94/*
  95 * EEH allowed maximal frozen times. If one particular PE's
  96 * frozen count in last hour exceeds this limit, the PE will
  97 * be forced to be offline permanently.
  98 */
  99u32 eeh_max_freezes = 5;
 100
 101/*
 102 * Controls whether a recovery event should be scheduled when an
 103 * isolated device is discovered. This is only really useful for
 104 * debugging problems with the EEH core.
 105 */
 106bool eeh_debugfs_no_recover;
 107
 108/* Platform dependent EEH operations */
 109struct eeh_ops *eeh_ops = NULL;
 110
 111/* Lock to avoid races due to multiple reports of an error */
 112DEFINE_RAW_SPINLOCK(confirm_error_lock);
 113EXPORT_SYMBOL_GPL(confirm_error_lock);
 114
 115/* Lock to protect passed flags */
 116static DEFINE_MUTEX(eeh_dev_mutex);
 117
 118/* Buffer for reporting pci register dumps. Its here in BSS, and
 119 * not dynamically alloced, so that it ends up in RMO where RTAS
 120 * can access it.
 121 */
 122#define EEH_PCI_REGS_LOG_LEN 8192
 123static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
 124
 125/*
 126 * The struct is used to maintain the EEH global statistic
 127 * information. Besides, the EEH global statistics will be
 128 * exported to user space through procfs
 129 */
 130struct eeh_stats {
 131	u64 no_device;		/* PCI device not found		*/
 132	u64 no_dn;		/* OF node not found		*/
 133	u64 no_cfg_addr;	/* Config address not found	*/
 134	u64 ignored_check;	/* EEH check skipped		*/
 135	u64 total_mmio_ffs;	/* Total EEH checks		*/
 136	u64 false_positives;	/* Unnecessary EEH checks	*/
 137	u64 slot_resets;	/* PE reset			*/
 138};
 139
 140static struct eeh_stats eeh_stats;
 141
 142static int __init eeh_setup(char *str)
 143{
 144	if (!strcmp(str, "off"))
 145		eeh_add_flag(EEH_FORCE_DISABLED);
 146	else if (!strcmp(str, "early_log"))
 147		eeh_add_flag(EEH_EARLY_DUMP_LOG);
 148
 149	return 1;
 150}
 151__setup("eeh=", eeh_setup);
 152
 153void eeh_show_enabled(void)
 154{
 155	if (eeh_has_flag(EEH_FORCE_DISABLED))
 156		pr_info("EEH: Recovery disabled by kernel parameter.\n");
 157	else if (eeh_has_flag(EEH_ENABLED))
 158		pr_info("EEH: Capable adapter found: recovery enabled.\n");
 159	else
 160		pr_info("EEH: No capable adapters found: recovery disabled.\n");
 161}
 162
 163/*
 164 * This routine captures assorted PCI configuration space data
 165 * for the indicated PCI device, and puts them into a buffer
 166 * for RTAS error logging.
 167 */
 168static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
 169{
 170	u32 cfg;
 171	int cap, i;
 172	int n = 0, l = 0;
 173	char buffer[128];
 174
 175	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
 176			edev->pe->phb->global_number, edev->bdfn >> 8,
 177			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
 178	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
 179		edev->pe->phb->global_number, edev->bdfn >> 8,
 180		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
 181
 182	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
 183	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
 184	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
 185
 186	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
 187	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
 188	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
 189
 190	/* Gather bridge-specific registers */
 191	if (edev->mode & EEH_DEV_BRIDGE) {
 192		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
 193		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
 194		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
 195
 196		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
 197		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
 198		pr_warn("EEH: Bridge control: %04x\n", cfg);
 199	}
 200
 201	/* Dump out the PCI-X command and status regs */
 202	cap = edev->pcix_cap;
 203	if (cap) {
 204		eeh_ops->read_config(edev, cap, 4, &cfg);
 205		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
 206		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
 207
 208		eeh_ops->read_config(edev, cap+4, 4, &cfg);
 209		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
 210		pr_warn("EEH: PCI-X status: %08x\n", cfg);
 211	}
 212
 213	/* If PCI-E capable, dump PCI-E cap 10 */
 214	cap = edev->pcie_cap;
 215	if (cap) {
 216		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
 217		pr_warn("EEH: PCI-E capabilities and status follow:\n");
 218
 219		for (i=0; i<=8; i++) {
 220			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
 221			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 222
 223			if ((i % 4) == 0) {
 224				if (i != 0)
 225					pr_warn("%s\n", buffer);
 226
 227				l = scnprintf(buffer, sizeof(buffer),
 228					      "EEH: PCI-E %02x: %08x ",
 229					      4*i, cfg);
 230			} else {
 231				l += scnprintf(buffer+l, sizeof(buffer)-l,
 232					       "%08x ", cfg);
 233			}
 234
 235		}
 236
 237		pr_warn("%s\n", buffer);
 238	}
 239
 240	/* If AER capable, dump it */
 241	cap = edev->aer_cap;
 242	if (cap) {
 243		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
 244		pr_warn("EEH: PCI-E AER capability register set follows:\n");
 245
 246		for (i=0; i<=13; i++) {
 247			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
 248			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 249
 250			if ((i % 4) == 0) {
 251				if (i != 0)
 252					pr_warn("%s\n", buffer);
 253
 254				l = scnprintf(buffer, sizeof(buffer),
 255					      "EEH: PCI-E AER %02x: %08x ",
 256					      4*i, cfg);
 257			} else {
 258				l += scnprintf(buffer+l, sizeof(buffer)-l,
 259					       "%08x ", cfg);
 260			}
 261		}
 262
 263		pr_warn("%s\n", buffer);
 264	}
 265
 266	return n;
 267}
 268
 269static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
 270{
 271	struct eeh_dev *edev, *tmp;
 272	size_t *plen = flag;
 273
 274	eeh_pe_for_each_dev(pe, edev, tmp)
 275		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
 276					  EEH_PCI_REGS_LOG_LEN - *plen);
 277
 278	return NULL;
 279}
 280
 281/**
 282 * eeh_slot_error_detail - Generate combined log including driver log and error log
 283 * @pe: EEH PE
 284 * @severity: temporary or permanent error log
 285 *
 286 * This routine should be called to generate the combined log, which
 287 * is comprised of driver log and error log. The driver log is figured
 288 * out from the config space of the corresponding PCI device, while
 289 * the error log is fetched through platform dependent function call.
 290 */
 291void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
 292{
 293	size_t loglen = 0;
 294
 295	/*
 296	 * When the PHB is fenced or dead, it's pointless to collect
 297	 * the data from PCI config space because it should return
 298	 * 0xFF's. For ER, we still retrieve the data from the PCI
 299	 * config space.
 300	 *
 301	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
 302	 * 0xFF's is always returned from PCI config space.
 303	 *
 304	 * When the @severity is EEH_LOG_PERM, the PE is going to be
 305	 * removed. Prior to that, the drivers for devices included in
 306	 * the PE will be closed. The drivers rely on working IO path
 307	 * to bring the devices to quiet state. Otherwise, PCI traffic
 308	 * from those devices after they are removed is like to cause
 309	 * another unexpected EEH error.
 310	 */
 311	if (!(pe->type & EEH_PE_PHB)) {
 312		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
 313		    severity == EEH_LOG_PERM)
 314			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
 315
 316		/*
 317		 * The config space of some PCI devices can't be accessed
 318		 * when their PEs are in frozen state. Otherwise, fenced
 319		 * PHB might be seen. Those PEs are identified with flag
 320		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
 321		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
 322		 *
 323		 * Restoring BARs possibly triggers PCI config access in
 324		 * (OPAL) firmware and then causes fenced PHB. If the
 325		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
 326		 * pointless to restore BARs and dump config space.
 327		 */
 328		eeh_ops->configure_bridge(pe);
 329		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
 330			eeh_pe_restore_bars(pe);
 331
 332			pci_regs_buf[0] = 0;
 333			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
 334		}
 335	}
 336
 337	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
 338}
 339
 340/**
 341 * eeh_token_to_phys - Convert EEH address token to phys address
 342 * @token: I/O token, should be address in the form 0xA....
 343 *
 344 * This routine should be called to convert virtual I/O address
 345 * to physical one.
 346 */
 347static inline unsigned long eeh_token_to_phys(unsigned long token)
 348{
 349	pte_t *ptep;
 350	unsigned long pa;
 351	int hugepage_shift;
 352
 353	/*
 354	 * We won't find hugepages here(this is iomem). Hence we are not
 355	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
 356	 * page table free, because of init_mm.
 357	 */
 358	ptep = find_init_mm_pte(token, &hugepage_shift);
 359	if (!ptep)
 360		return token;
 361
 362	pa = pte_pfn(*ptep);
 363
 364	/* On radix we can do hugepage mappings for io, so handle that */
 365	if (hugepage_shift) {
 366		pa <<= hugepage_shift;
 367		pa |= token & ((1ul << hugepage_shift) - 1);
 368	} else {
 369		pa <<= PAGE_SHIFT;
 370		pa |= token & (PAGE_SIZE - 1);
 371	}
 372
 373	return pa;
 374}
 375
 376/*
 377 * On PowerNV platform, we might already have fenced PHB there.
 378 * For that case, it's meaningless to recover frozen PE. Intead,
 379 * We have to handle fenced PHB firstly.
 380 */
 381static int eeh_phb_check_failure(struct eeh_pe *pe)
 382{
 383	struct eeh_pe *phb_pe;
 384	unsigned long flags;
 385	int ret;
 386
 387	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
 388		return -EPERM;
 389
 390	/* Find the PHB PE */
 391	phb_pe = eeh_phb_pe_get(pe->phb);
 392	if (!phb_pe) {
 393		pr_warn("%s Can't find PE for PHB#%x\n",
 394			__func__, pe->phb->global_number);
 395		return -EEXIST;
 396	}
 397
 398	/* If the PHB has been in problematic state */
 399	eeh_serialize_lock(&flags);
 400	if (phb_pe->state & EEH_PE_ISOLATED) {
 401		ret = 0;
 402		goto out;
 403	}
 404
 405	/* Check PHB state */
 406	ret = eeh_ops->get_state(phb_pe, NULL);
 407	if ((ret < 0) ||
 408	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
 409		ret = 0;
 410		goto out;
 411	}
 412
 413	/* Isolate the PHB and send event */
 414	eeh_pe_mark_isolated(phb_pe);
 415	eeh_serialize_unlock(flags);
 416
 417	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
 418		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
 419	eeh_send_failure_event(phb_pe);
 420	return 1;
 421out:
 422	eeh_serialize_unlock(flags);
 423	return ret;
 424}
 425
 
 
 
 
 
 
 
 
 426/**
 427 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
 428 * @edev: eeh device
 429 *
 430 * Check for an EEH failure for the given device node.  Call this
 431 * routine if the result of a read was all 0xff's and you want to
 432 * find out if this is due to an EEH slot freeze.  This routine
 433 * will query firmware for the EEH status.
 434 *
 435 * Returns 0 if there has not been an EEH error; otherwise returns
 436 * a non-zero value and queues up a slot isolation event notification.
 437 *
 438 * It is safe to call this routine in an interrupt context.
 439 */
 440int eeh_dev_check_failure(struct eeh_dev *edev)
 441{
 442	int ret;
 443	unsigned long flags;
 444	struct device_node *dn;
 445	struct pci_dev *dev;
 446	struct eeh_pe *pe, *parent_pe;
 447	int rc = 0;
 448	const char *location = NULL;
 449
 450	eeh_stats.total_mmio_ffs++;
 451
 452	if (!eeh_enabled())
 453		return 0;
 454
 455	if (!edev) {
 456		eeh_stats.no_dn++;
 457		return 0;
 458	}
 459	dev = eeh_dev_to_pci_dev(edev);
 460	pe = eeh_dev_to_pe(edev);
 461
 462	/* Access to IO BARs might get this far and still not want checking. */
 463	if (!pe) {
 464		eeh_stats.ignored_check++;
 465		eeh_edev_dbg(edev, "Ignored check\n");
 466		return 0;
 467	}
 468
 469	if (!pe->addr && !pe->config_addr) {
 470		eeh_stats.no_cfg_addr++;
 471		return 0;
 472	}
 473
 474	/*
 475	 * On PowerNV platform, we might already have fenced PHB
 476	 * there and we need take care of that firstly.
 477	 */
 478	ret = eeh_phb_check_failure(pe);
 479	if (ret > 0)
 480		return ret;
 481
 482	/*
 483	 * If the PE isn't owned by us, we shouldn't check the
 484	 * state. Instead, let the owner handle it if the PE has
 485	 * been frozen.
 486	 */
 487	if (eeh_pe_passed(pe))
 488		return 0;
 489
 490	/* If we already have a pending isolation event for this
 491	 * slot, we know it's bad already, we don't need to check.
 492	 * Do this checking under a lock; as multiple PCI devices
 493	 * in one slot might report errors simultaneously, and we
 494	 * only want one error recovery routine running.
 495	 */
 496	eeh_serialize_lock(&flags);
 497	rc = 1;
 498	if (pe->state & EEH_PE_ISOLATED) {
 499		pe->check_count++;
 500		if (pe->check_count == EEH_MAX_FAILS) {
 501			dn = pci_device_to_OF_node(dev);
 502			if (dn)
 503				location = of_get_property(dn, "ibm,loc-code",
 504						NULL);
 505			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
 506				pe->check_count,
 507				location ? location : "unknown",
 508				eeh_driver_name(dev));
 509			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
 510				eeh_driver_name(dev));
 511			dump_stack();
 512		}
 513		goto dn_unlock;
 514	}
 515
 516	/*
 517	 * Now test for an EEH failure.  This is VERY expensive.
 518	 * Note that the eeh_config_addr may be a parent device
 519	 * in the case of a device behind a bridge, or it may be
 520	 * function zero of a multi-function device.
 521	 * In any case they must share a common PHB.
 522	 */
 523	ret = eeh_ops->get_state(pe, NULL);
 524
 525	/* Note that config-io to empty slots may fail;
 526	 * they are empty when they don't have children.
 527	 * We will punt with the following conditions: Failure to get
 528	 * PE's state, EEH not support and Permanently unavailable
 529	 * state, PE is in good state.
 
 
 
 
 
 
 
 530	 */
 531	if ((ret < 0) ||
 532	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
 
 
 533		eeh_stats.false_positives++;
 534		pe->false_positives++;
 535		rc = 0;
 536		goto dn_unlock;
 537	}
 538
 539	/*
 540	 * It should be corner case that the parent PE has been
 541	 * put into frozen state as well. We should take care
 542	 * that at first.
 543	 */
 544	parent_pe = pe->parent;
 545	while (parent_pe) {
 546		/* Hit the ceiling ? */
 547		if (parent_pe->type & EEH_PE_PHB)
 548			break;
 549
 550		/* Frozen parent PE ? */
 551		ret = eeh_ops->get_state(parent_pe, NULL);
 552		if (ret > 0 && !eeh_state_active(ret)) {
 553			pe = parent_pe;
 554			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
 555			       pe->phb->global_number, pe->addr,
 556			       pe->phb->global_number, parent_pe->addr);
 557		}
 558
 559		/* Next parent level */
 560		parent_pe = parent_pe->parent;
 561	}
 562
 563	eeh_stats.slot_resets++;
 564
 565	/* Avoid repeated reports of this failure, including problems
 566	 * with other functions on this device, and functions under
 567	 * bridges.
 568	 */
 569	eeh_pe_mark_isolated(pe);
 570	eeh_serialize_unlock(flags);
 571
 572	/* Most EEH events are due to device driver bugs.  Having
 573	 * a stack trace will help the device-driver authors figure
 574	 * out what happened.  So print that out.
 575	 */
 576	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
 577		__func__, pe->phb->global_number, pe->addr);
 578	eeh_send_failure_event(pe);
 579
 580	return 1;
 581
 582dn_unlock:
 583	eeh_serialize_unlock(flags);
 584	return rc;
 585}
 586
 587EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
 588
 589/**
 590 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
 591 * @token: I/O address
 592 *
 593 * Check for an EEH failure at the given I/O address. Call this
 594 * routine if the result of a read was all 0xff's and you want to
 595 * find out if this is due to an EEH slot freeze event. This routine
 596 * will query firmware for the EEH status.
 597 *
 598 * Note this routine is safe to call in an interrupt context.
 599 */
 600int eeh_check_failure(const volatile void __iomem *token)
 601{
 602	unsigned long addr;
 603	struct eeh_dev *edev;
 604
 605	/* Finding the phys addr + pci device; this is pretty quick. */
 606	addr = eeh_token_to_phys((unsigned long __force) token);
 607	edev = eeh_addr_cache_get_dev(addr);
 608	if (!edev) {
 609		eeh_stats.no_device++;
 610		return 0;
 611	}
 612
 613	return eeh_dev_check_failure(edev);
 614}
 615EXPORT_SYMBOL(eeh_check_failure);
 616
 617
 618/**
 619 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
 620 * @pe: EEH PE
 
 621 *
 622 * This routine should be called to reenable frozen MMIO or DMA
 623 * so that it would work correctly again. It's useful while doing
 624 * recovery or log collection on the indicated device.
 625 */
 626int eeh_pci_enable(struct eeh_pe *pe, int function)
 627{
 628	int active_flag, rc;
 629
 630	/*
 631	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
 632	 * Also, it's pointless to enable them on unfrozen PE. So
 633	 * we have to check before enabling IO or DMA.
 634	 */
 635	switch (function) {
 636	case EEH_OPT_THAW_MMIO:
 637		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
 638		break;
 639	case EEH_OPT_THAW_DMA:
 640		active_flag = EEH_STATE_DMA_ACTIVE;
 641		break;
 642	case EEH_OPT_DISABLE:
 643	case EEH_OPT_ENABLE:
 644	case EEH_OPT_FREEZE_PE:
 645		active_flag = 0;
 646		break;
 647	default:
 648		pr_warn("%s: Invalid function %d\n",
 649			__func__, function);
 650		return -EINVAL;
 651	}
 652
 653	/*
 654	 * Check if IO or DMA has been enabled before
 655	 * enabling them.
 656	 */
 657	if (active_flag) {
 658		rc = eeh_ops->get_state(pe, NULL);
 659		if (rc < 0)
 660			return rc;
 661
 662		/* Needn't enable it at all */
 663		if (rc == EEH_STATE_NOT_SUPPORT)
 664			return 0;
 665
 666		/* It's already enabled */
 667		if (rc & active_flag)
 668			return 0;
 669	}
 670
 671
 672	/* Issue the request */
 673	rc = eeh_ops->set_option(pe, function);
 674	if (rc)
 675		pr_warn("%s: Unexpected state change %d on "
 676			"PHB#%x-PE#%x, err=%d\n",
 677			__func__, function, pe->phb->global_number,
 678			pe->addr, rc);
 679
 680	/* Check if the request is finished successfully */
 681	if (active_flag) {
 682		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 683		if (rc < 0)
 684			return rc;
 685
 686		if (rc & active_flag)
 687			return 0;
 688
 689		return -EIO;
 690	}
 691
 692	return rc;
 693}
 694
 695static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
 696					    void *userdata)
 697{
 698	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 699	struct pci_dev *dev = userdata;
 700
 701	/*
 702	 * The caller should have disabled and saved the
 703	 * state for the specified device
 704	 */
 705	if (!pdev || pdev == dev)
 706		return;
 707
 708	/* Ensure we have D0 power state */
 709	pci_set_power_state(pdev, PCI_D0);
 710
 711	/* Save device state */
 712	pci_save_state(pdev);
 713
 714	/*
 715	 * Disable device to avoid any DMA traffic and
 716	 * interrupt from the device
 717	 */
 718	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
 719}
 720
 721static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
 722{
 723	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 724	struct pci_dev *dev = userdata;
 725
 726	if (!pdev)
 727		return;
 728
 729	/* Apply customization from firmware */
 730	if (eeh_ops->restore_config)
 731		eeh_ops->restore_config(edev);
 732
 733	/* The caller should restore state for the specified device */
 734	if (pdev != dev)
 735		pci_restore_state(pdev);
 736}
 737
 738/**
 739 * pcibios_set_pcie_reset_state - Set PCI-E reset state
 740 * @dev: pci device struct
 741 * @state: reset state to enter
 742 *
 743 * Return value:
 744 * 	0 if success
 745 */
 746int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
 747{
 748	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
 749	struct eeh_pe *pe = eeh_dev_to_pe(edev);
 750
 751	if (!pe) {
 752		pr_err("%s: No PE found on PCI device %s\n",
 753			__func__, pci_name(dev));
 754		return -EINVAL;
 755	}
 756
 757	switch (state) {
 758	case pcie_deassert_reset:
 759		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 760		eeh_unfreeze_pe(pe);
 761		if (!(pe->type & EEH_PE_VF))
 762			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 763		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
 764		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
 765		break;
 766	case pcie_hot_reset:
 767		eeh_pe_mark_isolated(pe);
 768		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 769		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 770		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 771		if (!(pe->type & EEH_PE_VF))
 772			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 773		eeh_ops->reset(pe, EEH_RESET_HOT);
 774		break;
 775	case pcie_warm_reset:
 776		eeh_pe_mark_isolated(pe);
 777		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 778		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 779		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 780		if (!(pe->type & EEH_PE_VF))
 781			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 782		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 783		break;
 784	default:
 785		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
 786		return -EINVAL;
 787	};
 788
 789	return 0;
 790}
 791
 792/**
 793 * eeh_set_pe_freset - Check the required reset for the indicated device
 794 * @data: EEH device
 795 * @flag: return value
 796 *
 797 * Each device might have its preferred reset type: fundamental or
 798 * hot reset. The routine is used to collected the information for
 799 * the indicated device and its children so that the bunch of the
 800 * devices could be reset properly.
 801 */
 802static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
 803{
 804	struct pci_dev *dev;
 805	unsigned int *freset = (unsigned int *)flag;
 806
 807	dev = eeh_dev_to_pci_dev(edev);
 808	if (dev)
 809		*freset |= dev->needs_freset;
 810}
 811
 812static void eeh_pe_refreeze_passed(struct eeh_pe *root)
 813{
 814	struct eeh_pe *pe;
 815	int state;
 816
 817	eeh_for_each_pe(root, pe) {
 818		if (eeh_pe_passed(pe)) {
 819			state = eeh_ops->get_state(pe, NULL);
 820			if (state &
 821			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
 822				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
 823					pe->phb->global_number, pe->addr);
 824				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
 825			}
 826		}
 827	}
 828}
 829
 830/**
 831 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
 832 * @pe: EEH PE
 
 833 *
 834 * This function executes a full reset procedure on a PE, including setting
 835 * the appropriate flags, performing a fundamental or hot reset, and then
 836 * deactivating the reset status.  It is designed to be used within the EEH
 837 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
 838 * only performs a single operation at a time.
 839 *
 840 * This function will attempt to reset a PE three times before failing.
 841 */
 842int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
 843{
 844	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
 845	int type = EEH_RESET_HOT;
 846	unsigned int freset = 0;
 847	int i, state = 0, ret;
 848
 849	/*
 850	 * Determine the type of reset to perform - hot or fundamental.
 851	 * Hot reset is the default operation, unless any device under the
 852	 * PE requires a fundamental reset.
 853	 */
 854	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
 855
 856	if (freset)
 857		type = EEH_RESET_FUNDAMENTAL;
 858
 859	/* Mark the PE as in reset state and block config space accesses */
 860	eeh_pe_state_mark(pe, reset_state);
 861
 862	/* Make three attempts at resetting the bus */
 863	for (i = 0; i < 3; i++) {
 864		ret = eeh_pe_reset(pe, type, include_passed);
 865		if (!ret)
 866			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
 867					   include_passed);
 868		if (ret) {
 869			ret = -EIO;
 870			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
 871				state, pe->phb->global_number, pe->addr, i + 1);
 872			continue;
 873		}
 874		if (i)
 875			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
 876				pe->phb->global_number, pe->addr, i + 1);
 877
 878		/* Wait until the PE is in a functioning state */
 879		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 880		if (state < 0) {
 881			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
 882				pe->phb->global_number, pe->addr);
 883			ret = -ENOTRECOVERABLE;
 884			break;
 885		}
 886		if (eeh_state_active(state))
 887			break;
 888		else
 889			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
 890				pe->phb->global_number, pe->addr, state, i + 1);
 891	}
 892
 893	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
 894	 * (potentially) passed through to a guest, re-freeze them:
 895	 */
 896	if (!include_passed)
 897		eeh_pe_refreeze_passed(pe);
 898
 899	eeh_pe_state_clear(pe, reset_state, true);
 900	return ret;
 901}
 902
 903/**
 904 * eeh_save_bars - Save device bars
 905 * @edev: PCI device associated EEH device
 906 *
 907 * Save the values of the device bars. Unlike the restore
 908 * routine, this routine is *not* recursive. This is because
 909 * PCI devices are added individually; but, for the restore,
 910 * an entire slot is reset at a time.
 911 */
 912void eeh_save_bars(struct eeh_dev *edev)
 913{
 914	int i;
 915
 916	if (!edev)
 917		return;
 918
 919	for (i = 0; i < 16; i++)
 920		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
 921
 922	/*
 923	 * For PCI bridges including root port, we need enable bus
 924	 * master explicitly. Otherwise, it can't fetch IODA table
 925	 * entries correctly. So we cache the bit in advance so that
 926	 * we can restore it after reset, either PHB range or PE range.
 927	 */
 928	if (edev->mode & EEH_DEV_BRIDGE)
 929		edev->config_space[1] |= PCI_COMMAND_MASTER;
 930}
 931
 932/**
 933 * eeh_ops_register - Register platform dependent EEH operations
 934 * @ops: platform dependent EEH operations
 935 *
 936 * Register the platform dependent EEH operation callback
 937 * functions. The platform should call this function before
 938 * any other EEH operations.
 939 */
 940int __init eeh_ops_register(struct eeh_ops *ops)
 941{
 942	if (!ops->name) {
 943		pr_warn("%s: Invalid EEH ops name for %p\n",
 944			__func__, ops);
 945		return -EINVAL;
 946	}
 947
 948	if (eeh_ops && eeh_ops != ops) {
 949		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
 950			__func__, eeh_ops->name, ops->name);
 951		return -EEXIST;
 952	}
 953
 954	eeh_ops = ops;
 955
 956	return 0;
 957}
 958
 959/**
 960 * eeh_ops_unregister - Unreigster platform dependent EEH operations
 961 * @name: name of EEH platform operations
 962 *
 963 * Unregister the platform dependent EEH operation callback
 964 * functions.
 965 */
 966int __exit eeh_ops_unregister(const char *name)
 967{
 968	if (!name || !strlen(name)) {
 969		pr_warn("%s: Invalid EEH ops name\n",
 970			__func__);
 971		return -EINVAL;
 972	}
 973
 974	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
 975		eeh_ops = NULL;
 976		return 0;
 977	}
 978
 979	return -EEXIST;
 980}
 981
 982static int eeh_reboot_notifier(struct notifier_block *nb,
 983			       unsigned long action, void *unused)
 984{
 985	eeh_clear_flag(EEH_ENABLED);
 986	return NOTIFY_DONE;
 987}
 988
 989static struct notifier_block eeh_reboot_nb = {
 990	.notifier_call = eeh_reboot_notifier,
 991};
 992
 993/**
 994 * eeh_init - EEH initialization
 995 *
 996 * Initialize EEH by trying to enable it for all of the adapters in the system.
 997 * As a side effect we can determine here if eeh is supported at all.
 998 * Note that we leave EEH on so failed config cycles won't cause a machine
 999 * check.  If a user turns off EEH for a particular adapter they are really
1000 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
1001 * grant access to a slot if EEH isn't enabled, and so we always enable
1002 * EEH for all slots/all devices.
1003 *
1004 * The eeh-force-off option disables EEH checking globally, for all slots.
1005 * Even if force-off is set, the EEH hardware is still enabled, so that
1006 * newer systems can boot.
1007 */
1008static int eeh_init(void)
1009{
1010	struct pci_controller *hose, *tmp;
1011	int ret = 0;
1012
1013	/* Register reboot notifier */
1014	ret = register_reboot_notifier(&eeh_reboot_nb);
1015	if (ret) {
1016		pr_warn("%s: Failed to register notifier (%d)\n",
1017			__func__, ret);
1018		return ret;
1019	}
1020
1021	/* call platform initialization function */
1022	if (!eeh_ops) {
1023		pr_warn("%s: Platform EEH operation not found\n",
1024			__func__);
1025		return -EEXIST;
1026	} else if ((ret = eeh_ops->init()))
1027		return ret;
1028
1029	/* Initialize PHB PEs */
1030	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1031		eeh_phb_pe_create(hose);
1032
1033	eeh_addr_cache_init();
1034
1035	/* Initialize EEH event */
1036	return eeh_event_init();
1037}
1038
1039core_initcall_sync(eeh_init);
1040
1041static int eeh_device_notifier(struct notifier_block *nb,
1042			       unsigned long action, void *data)
1043{
1044	struct device *dev = data;
1045
1046	switch (action) {
1047	/*
1048	 * Note: It's not possible to perform EEH device addition (i.e.
1049	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
1050	 * the device's resources, which have not yet been set up.
1051	 */
1052	case BUS_NOTIFY_DEL_DEVICE:
1053		eeh_remove_device(to_pci_dev(dev));
1054		break;
1055	default:
1056		break;
1057	}
1058	return NOTIFY_DONE;
1059}
1060
1061static struct notifier_block eeh_device_nb = {
1062	.notifier_call = eeh_device_notifier,
1063};
1064
1065static __init int eeh_set_bus_notifier(void)
 
 
 
 
 
 
1066{
1067	bus_register_notifier(&pci_bus_type, &eeh_device_nb);
1068	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069}
1070arch_initcall(eeh_set_bus_notifier);
1071
1072/**
1073 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1074 * @dev: pci device for which to set up EEH
1075 *
1076 * This routine must be used to complete EEH initialization for PCI
1077 * devices that were added after system boot (e.g. hotplug, dlpar).
1078 */
1079void eeh_probe_device(struct pci_dev *dev)
1080{
1081	struct eeh_dev *edev;
1082
1083	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1084
1085	/*
1086	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1087	 * already called for this device.
1088	 */
1089	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1090		pci_dbg(dev, "Already bound to an eeh_dev!\n");
1091		return;
1092	}
1093
1094	edev = eeh_ops->probe(dev);
1095	if (!edev) {
1096		pr_debug("EEH: Adding device failed\n");
1097		return;
1098	}
1099
1100	/*
1101	 * FIXME: We rely on pcibios_release_device() to remove the
1102	 * existing EEH state. The release function is only called if
1103	 * the pci_dev's refcount drops to zero so if something is
1104	 * keeping a ref to a device (e.g. a filesystem) we need to
1105	 * remove the old EEH state.
1106	 *
1107	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1108	 */
1109	if (edev->pdev && edev->pdev != dev) {
1110		eeh_pe_tree_remove(edev);
1111		eeh_addr_cache_rmv_dev(edev->pdev);
1112		eeh_sysfs_remove_device(edev->pdev);
1113
1114		/*
1115		 * We definitely should have the PCI device removed
1116		 * though it wasn't correctly. So we needn't call
1117		 * into error handler afterwards.
1118		 */
1119		edev->mode |= EEH_DEV_NO_HANDLER;
1120	}
1121
1122	/* bind the pdev and the edev together */
1123	edev->pdev = dev;
1124	dev->dev.archdata.edev = edev;
1125	eeh_addr_cache_insert_dev(dev);
1126	eeh_sysfs_add_device(dev);
1127}
1128
1129/**
1130 * eeh_remove_device - Undo EEH setup for the indicated pci device
1131 * @dev: pci device to be removed
1132 *
1133 * This routine should be called when a device is removed from
1134 * a running system (e.g. by hotplug or dlpar).  It unregisters
1135 * the PCI device from the EEH subsystem.  I/O errors affecting
1136 * this device will no longer be detected after this call; thus,
1137 * i/o errors affecting this slot may leave this device unusable.
1138 */
1139void eeh_remove_device(struct pci_dev *dev)
1140{
1141	struct eeh_dev *edev;
1142
1143	if (!dev || !eeh_enabled())
1144		return;
1145	edev = pci_dev_to_eeh_dev(dev);
1146
1147	/* Unregister the device with the EEH/PCI address search system */
1148	dev_dbg(&dev->dev, "EEH: Removing device\n");
1149
1150	if (!edev || !edev->pdev || !edev->pe) {
1151		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1152		return;
1153	}
1154
1155	/*
1156	 * During the hotplug for EEH error recovery, we need the EEH
1157	 * device attached to the parent PE in order for BAR restore
1158	 * a bit later. So we keep it for BAR restore and remove it
1159	 * from the parent PE during the BAR resotre.
1160	 */
1161	edev->pdev = NULL;
1162
1163	/*
1164	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1165	 * remove the sysfs files before clearing dev.archdata.edev
1166	 */
1167	if (edev->mode & EEH_DEV_SYSFS)
1168		eeh_sysfs_remove_device(dev);
1169
1170	/*
1171	 * We're removing from the PCI subsystem, that means
1172	 * the PCI device driver can't support EEH or not
1173	 * well. So we rely on hotplug completely to do recovery
1174	 * for the specific PCI device.
1175	 */
1176	edev->mode |= EEH_DEV_NO_HANDLER;
1177
1178	eeh_addr_cache_rmv_dev(dev);
1179
1180	/*
1181	 * The flag "in_error" is used to trace EEH devices for VFs
1182	 * in error state or not. It's set in eeh_report_error(). If
1183	 * it's not set, eeh_report_{reset,resume}() won't be called
1184	 * for the VF EEH device.
1185	 */
1186	edev->in_error = false;
1187	dev->dev.archdata.edev = NULL;
1188	if (!(edev->pe->state & EEH_PE_KEEP))
1189		eeh_pe_tree_remove(edev);
1190	else
1191		edev->mode |= EEH_DEV_DISCONNECTED;
1192}
1193
1194int eeh_unfreeze_pe(struct eeh_pe *pe)
1195{
1196	int ret;
1197
1198	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1199	if (ret) {
1200		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1201			__func__, ret, pe->phb->global_number, pe->addr);
1202		return ret;
1203	}
1204
1205	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1206	if (ret) {
1207		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1208			__func__, ret, pe->phb->global_number, pe->addr);
1209		return ret;
1210	}
1211
1212	return ret;
1213}
1214
1215
1216static struct pci_device_id eeh_reset_ids[] = {
1217	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1218	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1219	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1220	{ 0 }
1221};
1222
1223static int eeh_pe_change_owner(struct eeh_pe *pe)
1224{
1225	struct eeh_dev *edev, *tmp;
1226	struct pci_dev *pdev;
1227	struct pci_device_id *id;
1228	int ret;
1229
1230	/* Check PE state */
1231	ret = eeh_ops->get_state(pe, NULL);
1232	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1233		return 0;
1234
1235	/* Unfrozen PE, nothing to do */
1236	if (eeh_state_active(ret))
1237		return 0;
1238
1239	/* Frozen PE, check if it needs PE level reset */
1240	eeh_pe_for_each_dev(pe, edev, tmp) {
1241		pdev = eeh_dev_to_pci_dev(edev);
1242		if (!pdev)
1243			continue;
1244
1245		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1246			if (id->vendor != PCI_ANY_ID &&
1247			    id->vendor != pdev->vendor)
1248				continue;
1249			if (id->device != PCI_ANY_ID &&
1250			    id->device != pdev->device)
1251				continue;
1252			if (id->subvendor != PCI_ANY_ID &&
1253			    id->subvendor != pdev->subsystem_vendor)
1254				continue;
1255			if (id->subdevice != PCI_ANY_ID &&
1256			    id->subdevice != pdev->subsystem_device)
1257				continue;
1258
1259			return eeh_pe_reset_and_recover(pe);
1260		}
1261	}
1262
1263	ret = eeh_unfreeze_pe(pe);
1264	if (!ret)
1265		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1266	return ret;
1267}
1268
1269/**
1270 * eeh_dev_open - Increase count of pass through devices for PE
1271 * @pdev: PCI device
1272 *
1273 * Increase count of passed through devices for the indicated
1274 * PE. In the result, the EEH errors detected on the PE won't be
1275 * reported. The PE owner will be responsible for detection
1276 * and recovery.
1277 */
1278int eeh_dev_open(struct pci_dev *pdev)
1279{
1280	struct eeh_dev *edev;
1281	int ret = -ENODEV;
1282
1283	mutex_lock(&eeh_dev_mutex);
1284
1285	/* No PCI device ? */
1286	if (!pdev)
1287		goto out;
1288
1289	/* No EEH device or PE ? */
1290	edev = pci_dev_to_eeh_dev(pdev);
1291	if (!edev || !edev->pe)
1292		goto out;
1293
1294	/*
1295	 * The PE might have been put into frozen state, but we
1296	 * didn't detect that yet. The passed through PCI devices
1297	 * in frozen PE won't work properly. Clear the frozen state
1298	 * in advance.
1299	 */
1300	ret = eeh_pe_change_owner(edev->pe);
1301	if (ret)
1302		goto out;
1303
1304	/* Increase PE's pass through count */
1305	atomic_inc(&edev->pe->pass_dev_cnt);
1306	mutex_unlock(&eeh_dev_mutex);
1307
1308	return 0;
1309out:
1310	mutex_unlock(&eeh_dev_mutex);
1311	return ret;
1312}
1313EXPORT_SYMBOL_GPL(eeh_dev_open);
1314
1315/**
1316 * eeh_dev_release - Decrease count of pass through devices for PE
1317 * @pdev: PCI device
1318 *
1319 * Decrease count of pass through devices for the indicated PE. If
1320 * there is no passed through device in PE, the EEH errors detected
1321 * on the PE will be reported and handled as usual.
1322 */
1323void eeh_dev_release(struct pci_dev *pdev)
1324{
1325	struct eeh_dev *edev;
1326
1327	mutex_lock(&eeh_dev_mutex);
1328
1329	/* No PCI device ? */
1330	if (!pdev)
1331		goto out;
1332
1333	/* No EEH device ? */
1334	edev = pci_dev_to_eeh_dev(pdev);
1335	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1336		goto out;
1337
1338	/* Decrease PE's pass through count */
1339	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1340	eeh_pe_change_owner(edev->pe);
1341out:
1342	mutex_unlock(&eeh_dev_mutex);
1343}
1344EXPORT_SYMBOL(eeh_dev_release);
1345
1346#ifdef CONFIG_IOMMU_API
1347
1348static int dev_has_iommu_table(struct device *dev, void *data)
1349{
1350	struct pci_dev *pdev = to_pci_dev(dev);
1351	struct pci_dev **ppdev = data;
1352
1353	if (!dev)
1354		return 0;
1355
1356	if (device_iommu_mapped(dev)) {
1357		*ppdev = pdev;
1358		return 1;
1359	}
1360
1361	return 0;
1362}
1363
1364/**
1365 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1366 * @group: IOMMU group
1367 *
1368 * The routine is called to convert IOMMU group to EEH PE.
1369 */
1370struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1371{
1372	struct pci_dev *pdev = NULL;
1373	struct eeh_dev *edev;
1374	int ret;
1375
1376	/* No IOMMU group ? */
1377	if (!group)
1378		return NULL;
1379
1380	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1381	if (!ret || !pdev)
1382		return NULL;
1383
1384	/* No EEH device or PE ? */
1385	edev = pci_dev_to_eeh_dev(pdev);
1386	if (!edev || !edev->pe)
1387		return NULL;
1388
1389	return edev->pe;
1390}
1391EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1392
1393#endif /* CONFIG_IOMMU_API */
1394
1395/**
1396 * eeh_pe_set_option - Set options for the indicated PE
1397 * @pe: EEH PE
1398 * @option: requested option
1399 *
1400 * The routine is called to enable or disable EEH functionality
1401 * on the indicated PE, to enable IO or DMA for the frozen PE.
1402 */
1403int eeh_pe_set_option(struct eeh_pe *pe, int option)
1404{
1405	int ret = 0;
1406
1407	/* Invalid PE ? */
1408	if (!pe)
1409		return -ENODEV;
1410
1411	/*
1412	 * EEH functionality could possibly be disabled, just
1413	 * return error for the case. And the EEH functinality
1414	 * isn't expected to be disabled on one specific PE.
1415	 */
1416	switch (option) {
1417	case EEH_OPT_ENABLE:
1418		if (eeh_enabled()) {
1419			ret = eeh_pe_change_owner(pe);
1420			break;
1421		}
1422		ret = -EIO;
1423		break;
1424	case EEH_OPT_DISABLE:
1425		break;
1426	case EEH_OPT_THAW_MMIO:
1427	case EEH_OPT_THAW_DMA:
1428	case EEH_OPT_FREEZE_PE:
1429		if (!eeh_ops || !eeh_ops->set_option) {
1430			ret = -ENOENT;
1431			break;
1432		}
1433
1434		ret = eeh_pci_enable(pe, option);
1435		break;
1436	default:
1437		pr_debug("%s: Option %d out of range (%d, %d)\n",
1438			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1439		ret = -EINVAL;
1440	}
1441
1442	return ret;
1443}
1444EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1445
1446/**
1447 * eeh_pe_get_state - Retrieve PE's state
1448 * @pe: EEH PE
1449 *
1450 * Retrieve the PE's state, which includes 3 aspects: enabled
1451 * DMA, enabled IO and asserted reset.
1452 */
1453int eeh_pe_get_state(struct eeh_pe *pe)
1454{
1455	int result, ret = 0;
1456	bool rst_active, dma_en, mmio_en;
1457
1458	/* Existing PE ? */
1459	if (!pe)
1460		return -ENODEV;
1461
1462	if (!eeh_ops || !eeh_ops->get_state)
1463		return -ENOENT;
1464
1465	/*
1466	 * If the parent PE is owned by the host kernel and is undergoing
1467	 * error recovery, we should return the PE state as temporarily
1468	 * unavailable so that the error recovery on the guest is suspended
1469	 * until the recovery completes on the host.
1470	 */
1471	if (pe->parent &&
1472	    !(pe->state & EEH_PE_REMOVED) &&
1473	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1474		return EEH_PE_STATE_UNAVAIL;
1475
1476	result = eeh_ops->get_state(pe, NULL);
1477	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1478	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1479	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1480
1481	if (rst_active)
1482		ret = EEH_PE_STATE_RESET;
1483	else if (dma_en && mmio_en)
1484		ret = EEH_PE_STATE_NORMAL;
1485	else if (!dma_en && !mmio_en)
1486		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1487	else if (!dma_en && mmio_en)
1488		ret = EEH_PE_STATE_STOPPED_DMA;
1489	else
1490		ret = EEH_PE_STATE_UNAVAIL;
1491
1492	return ret;
1493}
1494EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1495
1496static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1497{
1498	struct eeh_dev *edev, *tmp;
1499	struct pci_dev *pdev;
1500	int ret = 0;
1501
1502	eeh_pe_restore_bars(pe);
1503
1504	/*
1505	 * Reenable PCI devices as the devices passed
1506	 * through are always enabled before the reset.
1507	 */
1508	eeh_pe_for_each_dev(pe, edev, tmp) {
1509		pdev = eeh_dev_to_pci_dev(edev);
1510		if (!pdev)
1511			continue;
1512
1513		ret = pci_reenable_device(pdev);
1514		if (ret) {
1515			pr_warn("%s: Failure %d reenabling %s\n",
1516				__func__, ret, pci_name(pdev));
1517			return ret;
1518		}
1519	}
1520
1521	/* The PE is still in frozen state */
1522	if (include_passed || !eeh_pe_passed(pe)) {
1523		ret = eeh_unfreeze_pe(pe);
1524	} else
1525		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1526			pe->phb->global_number, pe->addr);
1527	if (!ret)
1528		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1529	return ret;
1530}
1531
1532
1533/**
1534 * eeh_pe_reset - Issue PE reset according to specified type
1535 * @pe: EEH PE
1536 * @option: reset type
 
1537 *
1538 * The routine is called to reset the specified PE with the
1539 * indicated type, either fundamental reset or hot reset.
1540 * PE reset is the most important part for error recovery.
1541 */
1542int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1543{
1544	int ret = 0;
1545
1546	/* Invalid PE ? */
1547	if (!pe)
1548		return -ENODEV;
1549
1550	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1551		return -ENOENT;
1552
1553	switch (option) {
1554	case EEH_RESET_DEACTIVATE:
1555		ret = eeh_ops->reset(pe, option);
1556		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1557		if (ret)
1558			break;
1559
1560		ret = eeh_pe_reenable_devices(pe, include_passed);
1561		break;
1562	case EEH_RESET_HOT:
1563	case EEH_RESET_FUNDAMENTAL:
1564		/*
1565		 * Proactively freeze the PE to drop all MMIO access
1566		 * during reset, which should be banned as it's always
1567		 * cause recursive EEH error.
1568		 */
1569		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1570
1571		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1572		ret = eeh_ops->reset(pe, option);
1573		break;
1574	default:
1575		pr_debug("%s: Unsupported option %d\n",
1576			__func__, option);
1577		ret = -EINVAL;
1578	}
1579
1580	return ret;
1581}
1582EXPORT_SYMBOL_GPL(eeh_pe_reset);
1583
1584/**
1585 * eeh_pe_configure - Configure PCI bridges after PE reset
1586 * @pe: EEH PE
1587 *
1588 * The routine is called to restore the PCI config space for
1589 * those PCI devices, especially PCI bridges affected by PE
1590 * reset issued previously.
1591 */
1592int eeh_pe_configure(struct eeh_pe *pe)
1593{
1594	int ret = 0;
1595
1596	/* Invalid PE ? */
1597	if (!pe)
1598		return -ENODEV;
1599
1600	return ret;
1601}
1602EXPORT_SYMBOL_GPL(eeh_pe_configure);
1603
1604/**
1605 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1606 * @pe: the indicated PE
1607 * @type: error type
1608 * @function: error function
1609 * @addr: address
1610 * @mask: address mask
1611 *
1612 * The routine is called to inject the specified PCI error, which
1613 * is determined by @type and @function, to the indicated PE for
1614 * testing purpose.
1615 */
1616int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1617		      unsigned long addr, unsigned long mask)
1618{
1619	/* Invalid PE ? */
1620	if (!pe)
1621		return -ENODEV;
1622
1623	/* Unsupported operation ? */
1624	if (!eeh_ops || !eeh_ops->err_inject)
1625		return -ENOENT;
1626
1627	/* Check on PCI error type */
1628	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1629		return -EINVAL;
1630
1631	/* Check on PCI error function */
1632	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1633		return -EINVAL;
1634
1635	return eeh_ops->err_inject(pe, type, func, addr, mask);
1636}
1637EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1638
 
1639static int proc_eeh_show(struct seq_file *m, void *v)
1640{
1641	if (!eeh_enabled()) {
1642		seq_printf(m, "EEH Subsystem is globally disabled\n");
1643		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1644	} else {
1645		seq_printf(m, "EEH Subsystem is enabled\n");
1646		seq_printf(m,
1647				"no device=%llu\n"
1648				"no device node=%llu\n"
1649				"no config address=%llu\n"
1650				"check not wanted=%llu\n"
1651				"eeh_total_mmio_ffs=%llu\n"
1652				"eeh_false_positives=%llu\n"
1653				"eeh_slot_resets=%llu\n",
1654				eeh_stats.no_device,
1655				eeh_stats.no_dn,
1656				eeh_stats.no_cfg_addr,
1657				eeh_stats.ignored_check,
1658				eeh_stats.total_mmio_ffs,
1659				eeh_stats.false_positives,
1660				eeh_stats.slot_resets);
1661	}
1662
1663	return 0;
1664}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665
1666#ifdef CONFIG_DEBUG_FS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1667static int eeh_enable_dbgfs_set(void *data, u64 val)
1668{
1669	if (val)
1670		eeh_clear_flag(EEH_FORCE_DISABLED);
1671	else
1672		eeh_add_flag(EEH_FORCE_DISABLED);
1673
1674	return 0;
1675}
1676
1677static int eeh_enable_dbgfs_get(void *data, u64 *val)
1678{
1679	if (eeh_enabled())
1680		*val = 0x1ul;
1681	else
1682		*val = 0x0ul;
1683	return 0;
1684}
1685
1686DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1687			 eeh_enable_dbgfs_set, "0x%llx\n");
1688
1689static ssize_t eeh_force_recover_write(struct file *filp,
1690				const char __user *user_buf,
1691				size_t count, loff_t *ppos)
1692{
1693	struct pci_controller *hose;
1694	uint32_t phbid, pe_no;
1695	struct eeh_pe *pe;
1696	char buf[20];
1697	int ret;
1698
1699	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1700	if (!ret)
1701		return -EFAULT;
1702
1703	/*
1704	 * When PE is NULL the event is a "special" event. Rather than
1705	 * recovering a specific PE it forces the EEH core to scan for failed
1706	 * PHBs and recovers each. This needs to be done before any device
1707	 * recoveries can occur.
1708	 */
1709	if (!strncmp(buf, "hwcheck", 7)) {
1710		__eeh_send_failure_event(NULL);
1711		return count;
1712	}
1713
1714	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1715	if (ret != 2)
1716		return -EINVAL;
1717
1718	hose = pci_find_controller_for_domain(phbid);
1719	if (!hose)
1720		return -ENODEV;
1721
1722	/* Retrieve PE */
1723	pe = eeh_pe_get(hose, pe_no, 0);
1724	if (!pe)
1725		return -ENODEV;
1726
1727	/*
1728	 * We don't do any state checking here since the detection
1729	 * process is async to the recovery process. The recovery
1730	 * thread *should* not break even if we schedule a recovery
1731	 * from an odd state (e.g. PE removed, or recovery of a
1732	 * non-isolated PE)
1733	 */
1734	__eeh_send_failure_event(pe);
1735
1736	return ret < 0 ? ret : count;
1737}
1738
1739static const struct file_operations eeh_force_recover_fops = {
1740	.open	= simple_open,
1741	.llseek	= no_llseek,
1742	.write	= eeh_force_recover_write,
1743};
1744
1745static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1746				char __user *user_buf,
1747				size_t count, loff_t *ppos)
1748{
1749	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1750
1751	return simple_read_from_buffer(user_buf, count, ppos,
1752				       usage, sizeof(usage) - 1);
1753}
1754
1755static ssize_t eeh_dev_check_write(struct file *filp,
1756				const char __user *user_buf,
1757				size_t count, loff_t *ppos)
1758{
1759	uint32_t domain, bus, dev, fn;
1760	struct pci_dev *pdev;
1761	struct eeh_dev *edev;
1762	char buf[20];
1763	int ret;
1764
1765	memset(buf, 0, sizeof(buf));
1766	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1767	if (!ret)
1768		return -EFAULT;
1769
1770	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1771	if (ret != 4) {
1772		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1773		return -EINVAL;
1774	}
1775
1776	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1777	if (!pdev)
1778		return -ENODEV;
1779
1780	edev = pci_dev_to_eeh_dev(pdev);
1781	if (!edev) {
1782		pci_err(pdev, "No eeh_dev for this device!\n");
1783		pci_dev_put(pdev);
1784		return -ENODEV;
1785	}
1786
1787	ret = eeh_dev_check_failure(edev);
1788	pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n",
1789			domain, bus, dev, fn, ret);
1790
1791	pci_dev_put(pdev);
1792
1793	return count;
1794}
1795
1796static const struct file_operations eeh_dev_check_fops = {
1797	.open	= simple_open,
1798	.llseek	= no_llseek,
1799	.write	= eeh_dev_check_write,
1800	.read   = eeh_debugfs_dev_usage,
1801};
1802
1803static int eeh_debugfs_break_device(struct pci_dev *pdev)
1804{
1805	struct resource *bar = NULL;
1806	void __iomem *mapped;
1807	u16 old, bit;
1808	int i, pos;
1809
1810	/* Do we have an MMIO BAR to disable? */
1811	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1812		struct resource *r = &pdev->resource[i];
1813
1814		if (!r->flags || !r->start)
1815			continue;
1816		if (r->flags & IORESOURCE_IO)
1817			continue;
1818		if (r->flags & IORESOURCE_UNSET)
1819			continue;
1820
1821		bar = r;
1822		break;
1823	}
1824
1825	if (!bar) {
1826		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1827		return -ENXIO;
1828	}
1829
1830	pci_err(pdev, "Going to break: %pR\n", bar);
1831
1832	if (pdev->is_virtfn) {
1833#ifndef CONFIG_PCI_IOV
1834		return -ENXIO;
1835#else
1836		/*
1837		 * VFs don't have a per-function COMMAND register, so the best
1838		 * we can do is clear the Memory Space Enable bit in the PF's
1839		 * SRIOV control reg.
1840		 *
1841		 * Unfortunately, this requires that we have a PF (i.e doesn't
1842		 * work for a passed-through VF) and it has the potential side
1843		 * effect of also causing an EEH on every other VF under the
1844		 * PF. Oh well.
1845		 */
1846		pdev = pdev->physfn;
1847		if (!pdev)
1848			return -ENXIO; /* passed through VFs have no PF */
1849
1850		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1851		pos += PCI_SRIOV_CTRL;
1852		bit  = PCI_SRIOV_CTRL_MSE;
1853#endif /* !CONFIG_PCI_IOV */
1854	} else {
1855		bit = PCI_COMMAND_MEMORY;
1856		pos = PCI_COMMAND;
1857	}
1858
1859	/*
1860	 * Process here is:
1861	 *
1862	 * 1. Disable Memory space.
1863	 *
1864	 * 2. Perform an MMIO to the device. This should result in an error
1865	 *    (CA  / UR) being raised by the device which results in an EEH
1866	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1867	 *    so the freeze hook so the EEH Detection machinery won't be
1868	 *    triggered here. This is to match the usual behaviour of EEH
1869	 *    where the HW will asyncronously freeze a PE and it's up to
1870	 *    the kernel to notice and deal with it.
1871	 *
1872	 * 3. Turn Memory space back on. This is more important for VFs
1873	 *    since recovery will probably fail if we don't. For normal
1874	 *    the COMMAND register is reset as a part of re-initialising
1875	 *    the device.
1876	 *
1877	 * Breaking stuff is the point so who cares if it's racy ;)
1878	 */
1879	pci_read_config_word(pdev, pos, &old);
1880
1881	mapped = ioremap(bar->start, PAGE_SIZE);
1882	if (!mapped) {
1883		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1884		return -ENXIO;
1885	}
1886
1887	pci_write_config_word(pdev, pos, old & ~bit);
1888	in_8(mapped);
1889	pci_write_config_word(pdev, pos, old);
1890
1891	iounmap(mapped);
1892
1893	return 0;
1894}
1895
1896static ssize_t eeh_dev_break_write(struct file *filp,
1897				const char __user *user_buf,
1898				size_t count, loff_t *ppos)
1899{
1900	uint32_t domain, bus, dev, fn;
1901	struct pci_dev *pdev;
1902	char buf[20];
1903	int ret;
1904
1905	memset(buf, 0, sizeof(buf));
1906	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1907	if (!ret)
1908		return -EFAULT;
1909
1910	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1911	if (ret != 4) {
1912		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1913		return -EINVAL;
1914	}
1915
1916	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1917	if (!pdev)
1918		return -ENODEV;
1919
1920	ret = eeh_debugfs_break_device(pdev);
1921	pci_dev_put(pdev);
1922
1923	if (ret < 0)
1924		return ret;
1925
1926	return count;
1927}
1928
1929static const struct file_operations eeh_dev_break_fops = {
1930	.open	= simple_open,
1931	.llseek	= no_llseek,
1932	.write	= eeh_dev_break_write,
1933	.read   = eeh_debugfs_dev_usage,
1934};
1935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1936#endif
1937
1938static int __init eeh_init_proc(void)
1939{
1940	if (machine_is(pseries) || machine_is(powernv)) {
1941		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1942#ifdef CONFIG_DEBUG_FS
1943		debugfs_create_file_unsafe("eeh_enable", 0600,
1944					   powerpc_debugfs_root, NULL,
1945					   &eeh_enable_dbgfs_ops);
1946		debugfs_create_u32("eeh_max_freezes", 0600,
1947				powerpc_debugfs_root, &eeh_max_freezes);
1948		debugfs_create_bool("eeh_disable_recovery", 0600,
1949				powerpc_debugfs_root,
1950				&eeh_debugfs_no_recover);
1951		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1952				powerpc_debugfs_root, NULL,
1953				&eeh_dev_check_fops);
1954		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1955				powerpc_debugfs_root, NULL,
1956				&eeh_dev_break_fops);
1957		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1958				powerpc_debugfs_root, NULL,
1959				&eeh_force_recover_fops);
 
 
 
1960		eeh_cache_debugfs_init();
1961#endif
1962	}
1963
1964	return 0;
1965}
1966__initcall(eeh_init_proc);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright IBM Corporation 2001, 2005, 2006
   4 * Copyright Dave Engebretsen & Todd Inglett 2001
   5 * Copyright Linas Vepstas 2005, 2006
   6 * Copyright 2001-2012 IBM Corporation.
   7 *
   8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
   9 */
  10
  11#include <linux/delay.h>
  12#include <linux/sched.h>
  13#include <linux/init.h>
  14#include <linux/list.h>
  15#include <linux/pci.h>
  16#include <linux/iommu.h>
  17#include <linux/proc_fs.h>
  18#include <linux/rbtree.h>
  19#include <linux/reboot.h>
  20#include <linux/seq_file.h>
  21#include <linux/spinlock.h>
  22#include <linux/export.h>
  23#include <linux/of.h>
  24#include <linux/debugfs.h>
  25
  26#include <linux/atomic.h>
 
  27#include <asm/eeh.h>
  28#include <asm/eeh_event.h>
  29#include <asm/io.h>
  30#include <asm/iommu.h>
  31#include <asm/machdep.h>
  32#include <asm/ppc-pci.h>
  33#include <asm/rtas.h>
  34#include <asm/pte-walk.h>
  35
  36
  37/** Overview:
  38 *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
  39 *  dealing with PCI bus errors that can't be dealt with within the
  40 *  usual PCI framework, except by check-stopping the CPU.  Systems
  41 *  that are designed for high-availability/reliability cannot afford
  42 *  to crash due to a "mere" PCI error, thus the need for EEH.
  43 *  An EEH-capable bridge operates by converting a detected error
  44 *  into a "slot freeze", taking the PCI adapter off-line, making
  45 *  the slot behave, from the OS'es point of view, as if the slot
  46 *  were "empty": all reads return 0xff's and all writes are silently
  47 *  ignored.  EEH slot isolation events can be triggered by parity
  48 *  errors on the address or data busses (e.g. during posted writes),
  49 *  which in turn might be caused by low voltage on the bus, dust,
  50 *  vibration, humidity, radioactivity or plain-old failed hardware.
  51 *
  52 *  Note, however, that one of the leading causes of EEH slot
  53 *  freeze events are buggy device drivers, buggy device microcode,
  54 *  or buggy device hardware.  This is because any attempt by the
  55 *  device to bus-master data to a memory address that is not
  56 *  assigned to the device will trigger a slot freeze.   (The idea
  57 *  is to prevent devices-gone-wild from corrupting system memory).
  58 *  Buggy hardware/drivers will have a miserable time co-existing
  59 *  with EEH.
  60 *
  61 *  Ideally, a PCI device driver, when suspecting that an isolation
  62 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
  63 *  whether this is the case, and then take appropriate steps to
  64 *  reset the PCI slot, the PCI device, and then resume operations.
  65 *  However, until that day,  the checking is done here, with the
  66 *  eeh_check_failure() routine embedded in the MMIO macros.  If
  67 *  the slot is found to be isolated, an "EEH Event" is synthesized
  68 *  and sent out for processing.
  69 */
  70
  71/* If a device driver keeps reading an MMIO register in an interrupt
  72 * handler after a slot isolation event, it might be broken.
  73 * This sets the threshold for how many read attempts we allow
  74 * before printing an error message.
  75 */
  76#define EEH_MAX_FAILS	2100000
  77
  78/* Time to wait for a PCI slot to report status, in milliseconds */
  79#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
  80
  81/*
  82 * EEH probe mode support, which is part of the flags,
  83 * is to support multiple platforms for EEH. Some platforms
  84 * like pSeries do PCI emunation based on device tree.
  85 * However, other platforms like powernv probe PCI devices
  86 * from hardware. The flag is used to distinguish that.
  87 * In addition, struct eeh_ops::probe would be invoked for
  88 * particular OF node or PCI device so that the corresponding
  89 * PE would be created there.
  90 */
  91int eeh_subsystem_flags;
  92EXPORT_SYMBOL(eeh_subsystem_flags);
  93
  94/*
  95 * EEH allowed maximal frozen times. If one particular PE's
  96 * frozen count in last hour exceeds this limit, the PE will
  97 * be forced to be offline permanently.
  98 */
  99u32 eeh_max_freezes = 5;
 100
 101/*
 102 * Controls whether a recovery event should be scheduled when an
 103 * isolated device is discovered. This is only really useful for
 104 * debugging problems with the EEH core.
 105 */
 106bool eeh_debugfs_no_recover;
 107
 108/* Platform dependent EEH operations */
 109struct eeh_ops *eeh_ops = NULL;
 110
 111/* Lock to avoid races due to multiple reports of an error */
 112DEFINE_RAW_SPINLOCK(confirm_error_lock);
 113EXPORT_SYMBOL_GPL(confirm_error_lock);
 114
 115/* Lock to protect passed flags */
 116static DEFINE_MUTEX(eeh_dev_mutex);
 117
 118/* Buffer for reporting pci register dumps. Its here in BSS, and
 119 * not dynamically alloced, so that it ends up in RMO where RTAS
 120 * can access it.
 121 */
 122#define EEH_PCI_REGS_LOG_LEN 8192
 123static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
 124
 125/*
 126 * The struct is used to maintain the EEH global statistic
 127 * information. Besides, the EEH global statistics will be
 128 * exported to user space through procfs
 129 */
 130struct eeh_stats {
 131	u64 no_device;		/* PCI device not found		*/
 132	u64 no_dn;		/* OF node not found		*/
 133	u64 no_cfg_addr;	/* Config address not found	*/
 134	u64 ignored_check;	/* EEH check skipped		*/
 135	u64 total_mmio_ffs;	/* Total EEH checks		*/
 136	u64 false_positives;	/* Unnecessary EEH checks	*/
 137	u64 slot_resets;	/* PE reset			*/
 138};
 139
 140static struct eeh_stats eeh_stats;
 141
 142static int __init eeh_setup(char *str)
 143{
 144	if (!strcmp(str, "off"))
 145		eeh_add_flag(EEH_FORCE_DISABLED);
 146	else if (!strcmp(str, "early_log"))
 147		eeh_add_flag(EEH_EARLY_DUMP_LOG);
 148
 149	return 1;
 150}
 151__setup("eeh=", eeh_setup);
 152
 153void eeh_show_enabled(void)
 154{
 155	if (eeh_has_flag(EEH_FORCE_DISABLED))
 156		pr_info("EEH: Recovery disabled by kernel parameter.\n");
 157	else if (eeh_has_flag(EEH_ENABLED))
 158		pr_info("EEH: Capable adapter found: recovery enabled.\n");
 159	else
 160		pr_info("EEH: No capable adapters found: recovery disabled.\n");
 161}
 162
 163/*
 164 * This routine captures assorted PCI configuration space data
 165 * for the indicated PCI device, and puts them into a buffer
 166 * for RTAS error logging.
 167 */
 168static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
 169{
 170	u32 cfg;
 171	int cap, i;
 172	int n = 0, l = 0;
 173	char buffer[128];
 174
 175	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
 176			edev->pe->phb->global_number, edev->bdfn >> 8,
 177			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
 178	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
 179		edev->pe->phb->global_number, edev->bdfn >> 8,
 180		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
 181
 182	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
 183	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
 184	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
 185
 186	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
 187	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
 188	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
 189
 190	/* Gather bridge-specific registers */
 191	if (edev->mode & EEH_DEV_BRIDGE) {
 192		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
 193		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
 194		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
 195
 196		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
 197		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
 198		pr_warn("EEH: Bridge control: %04x\n", cfg);
 199	}
 200
 201	/* Dump out the PCI-X command and status regs */
 202	cap = edev->pcix_cap;
 203	if (cap) {
 204		eeh_ops->read_config(edev, cap, 4, &cfg);
 205		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
 206		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
 207
 208		eeh_ops->read_config(edev, cap+4, 4, &cfg);
 209		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
 210		pr_warn("EEH: PCI-X status: %08x\n", cfg);
 211	}
 212
 213	/* If PCI-E capable, dump PCI-E cap 10 */
 214	cap = edev->pcie_cap;
 215	if (cap) {
 216		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
 217		pr_warn("EEH: PCI-E capabilities and status follow:\n");
 218
 219		for (i=0; i<=8; i++) {
 220			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
 221			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 222
 223			if ((i % 4) == 0) {
 224				if (i != 0)
 225					pr_warn("%s\n", buffer);
 226
 227				l = scnprintf(buffer, sizeof(buffer),
 228					      "EEH: PCI-E %02x: %08x ",
 229					      4*i, cfg);
 230			} else {
 231				l += scnprintf(buffer+l, sizeof(buffer)-l,
 232					       "%08x ", cfg);
 233			}
 234
 235		}
 236
 237		pr_warn("%s\n", buffer);
 238	}
 239
 240	/* If AER capable, dump it */
 241	cap = edev->aer_cap;
 242	if (cap) {
 243		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
 244		pr_warn("EEH: PCI-E AER capability register set follows:\n");
 245
 246		for (i=0; i<=13; i++) {
 247			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
 248			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 249
 250			if ((i % 4) == 0) {
 251				if (i != 0)
 252					pr_warn("%s\n", buffer);
 253
 254				l = scnprintf(buffer, sizeof(buffer),
 255					      "EEH: PCI-E AER %02x: %08x ",
 256					      4*i, cfg);
 257			} else {
 258				l += scnprintf(buffer+l, sizeof(buffer)-l,
 259					       "%08x ", cfg);
 260			}
 261		}
 262
 263		pr_warn("%s\n", buffer);
 264	}
 265
 266	return n;
 267}
 268
 269static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
 270{
 271	struct eeh_dev *edev, *tmp;
 272	size_t *plen = flag;
 273
 274	eeh_pe_for_each_dev(pe, edev, tmp)
 275		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
 276					  EEH_PCI_REGS_LOG_LEN - *plen);
 277
 278	return NULL;
 279}
 280
 281/**
 282 * eeh_slot_error_detail - Generate combined log including driver log and error log
 283 * @pe: EEH PE
 284 * @severity: temporary or permanent error log
 285 *
 286 * This routine should be called to generate the combined log, which
 287 * is comprised of driver log and error log. The driver log is figured
 288 * out from the config space of the corresponding PCI device, while
 289 * the error log is fetched through platform dependent function call.
 290 */
 291void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
 292{
 293	size_t loglen = 0;
 294
 295	/*
 296	 * When the PHB is fenced or dead, it's pointless to collect
 297	 * the data from PCI config space because it should return
 298	 * 0xFF's. For ER, we still retrieve the data from the PCI
 299	 * config space.
 300	 *
 301	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
 302	 * 0xFF's is always returned from PCI config space.
 303	 *
 304	 * When the @severity is EEH_LOG_PERM, the PE is going to be
 305	 * removed. Prior to that, the drivers for devices included in
 306	 * the PE will be closed. The drivers rely on working IO path
 307	 * to bring the devices to quiet state. Otherwise, PCI traffic
 308	 * from those devices after they are removed is like to cause
 309	 * another unexpected EEH error.
 310	 */
 311	if (!(pe->type & EEH_PE_PHB)) {
 312		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
 313		    severity == EEH_LOG_PERM)
 314			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
 315
 316		/*
 317		 * The config space of some PCI devices can't be accessed
 318		 * when their PEs are in frozen state. Otherwise, fenced
 319		 * PHB might be seen. Those PEs are identified with flag
 320		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
 321		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
 322		 *
 323		 * Restoring BARs possibly triggers PCI config access in
 324		 * (OPAL) firmware and then causes fenced PHB. If the
 325		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
 326		 * pointless to restore BARs and dump config space.
 327		 */
 328		eeh_ops->configure_bridge(pe);
 329		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
 330			eeh_pe_restore_bars(pe);
 331
 332			pci_regs_buf[0] = 0;
 333			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
 334		}
 335	}
 336
 337	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
 338}
 339
 340/**
 341 * eeh_token_to_phys - Convert EEH address token to phys address
 342 * @token: I/O token, should be address in the form 0xA....
 343 *
 344 * This routine should be called to convert virtual I/O address
 345 * to physical one.
 346 */
 347static inline unsigned long eeh_token_to_phys(unsigned long token)
 348{
 349	return ppc_find_vmap_phys(token);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350}
 351
 352/*
 353 * On PowerNV platform, we might already have fenced PHB there.
 354 * For that case, it's meaningless to recover frozen PE. Intead,
 355 * We have to handle fenced PHB firstly.
 356 */
 357static int eeh_phb_check_failure(struct eeh_pe *pe)
 358{
 359	struct eeh_pe *phb_pe;
 360	unsigned long flags;
 361	int ret;
 362
 363	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
 364		return -EPERM;
 365
 366	/* Find the PHB PE */
 367	phb_pe = eeh_phb_pe_get(pe->phb);
 368	if (!phb_pe) {
 369		pr_warn("%s Can't find PE for PHB#%x\n",
 370			__func__, pe->phb->global_number);
 371		return -EEXIST;
 372	}
 373
 374	/* If the PHB has been in problematic state */
 375	eeh_serialize_lock(&flags);
 376	if (phb_pe->state & EEH_PE_ISOLATED) {
 377		ret = 0;
 378		goto out;
 379	}
 380
 381	/* Check PHB state */
 382	ret = eeh_ops->get_state(phb_pe, NULL);
 383	if ((ret < 0) ||
 384	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
 385		ret = 0;
 386		goto out;
 387	}
 388
 389	/* Isolate the PHB and send event */
 390	eeh_pe_mark_isolated(phb_pe);
 391	eeh_serialize_unlock(flags);
 392
 393	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
 394		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
 395	eeh_send_failure_event(phb_pe);
 396	return 1;
 397out:
 398	eeh_serialize_unlock(flags);
 399	return ret;
 400}
 401
 402static inline const char *eeh_driver_name(struct pci_dev *pdev)
 403{
 404	if (pdev)
 405		return dev_driver_string(&pdev->dev);
 406
 407	return "<null>";
 408}
 409
 410/**
 411 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
 412 * @edev: eeh device
 413 *
 414 * Check for an EEH failure for the given device node.  Call this
 415 * routine if the result of a read was all 0xff's and you want to
 416 * find out if this is due to an EEH slot freeze.  This routine
 417 * will query firmware for the EEH status.
 418 *
 419 * Returns 0 if there has not been an EEH error; otherwise returns
 420 * a non-zero value and queues up a slot isolation event notification.
 421 *
 422 * It is safe to call this routine in an interrupt context.
 423 */
 424int eeh_dev_check_failure(struct eeh_dev *edev)
 425{
 426	int ret;
 427	unsigned long flags;
 428	struct device_node *dn;
 429	struct pci_dev *dev;
 430	struct eeh_pe *pe, *parent_pe;
 431	int rc = 0;
 432	const char *location = NULL;
 433
 434	eeh_stats.total_mmio_ffs++;
 435
 436	if (!eeh_enabled())
 437		return 0;
 438
 439	if (!edev) {
 440		eeh_stats.no_dn++;
 441		return 0;
 442	}
 443	dev = eeh_dev_to_pci_dev(edev);
 444	pe = eeh_dev_to_pe(edev);
 445
 446	/* Access to IO BARs might get this far and still not want checking. */
 447	if (!pe) {
 448		eeh_stats.ignored_check++;
 449		eeh_edev_dbg(edev, "Ignored check\n");
 450		return 0;
 451	}
 452
 
 
 
 
 
 453	/*
 454	 * On PowerNV platform, we might already have fenced PHB
 455	 * there and we need take care of that firstly.
 456	 */
 457	ret = eeh_phb_check_failure(pe);
 458	if (ret > 0)
 459		return ret;
 460
 461	/*
 462	 * If the PE isn't owned by us, we shouldn't check the
 463	 * state. Instead, let the owner handle it if the PE has
 464	 * been frozen.
 465	 */
 466	if (eeh_pe_passed(pe))
 467		return 0;
 468
 469	/* If we already have a pending isolation event for this
 470	 * slot, we know it's bad already, we don't need to check.
 471	 * Do this checking under a lock; as multiple PCI devices
 472	 * in one slot might report errors simultaneously, and we
 473	 * only want one error recovery routine running.
 474	 */
 475	eeh_serialize_lock(&flags);
 476	rc = 1;
 477	if (pe->state & EEH_PE_ISOLATED) {
 478		pe->check_count++;
 479		if (pe->check_count == EEH_MAX_FAILS) {
 480			dn = pci_device_to_OF_node(dev);
 481			if (dn)
 482				location = of_get_property(dn, "ibm,loc-code",
 483						NULL);
 484			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
 485				pe->check_count,
 486				location ? location : "unknown",
 487				eeh_driver_name(dev));
 488			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
 489				eeh_driver_name(dev));
 490			dump_stack();
 491		}
 492		goto dn_unlock;
 493	}
 494
 495	/*
 496	 * Now test for an EEH failure.  This is VERY expensive.
 497	 * Note that the eeh_config_addr may be a parent device
 498	 * in the case of a device behind a bridge, or it may be
 499	 * function zero of a multi-function device.
 500	 * In any case they must share a common PHB.
 501	 */
 502	ret = eeh_ops->get_state(pe, NULL);
 503
 504	/* Note that config-io to empty slots may fail;
 505	 * they are empty when they don't have children.
 506	 * We will punt with the following conditions: Failure to get
 507	 * PE's state, EEH not support and Permanently unavailable
 508	 * state, PE is in good state.
 509	 *
 510	 * On the pSeries, after reaching the threshold, get_state might
 511	 * return EEH_STATE_NOT_SUPPORT. However, it's possible that the
 512	 * device state remains uncleared if the device is not marked
 513	 * pci_channel_io_perm_failure. Therefore, consider logging the
 514	 * event to let device removal happen.
 515	 *
 516	 */
 517	if ((ret < 0) ||
 518	    (ret == EEH_STATE_NOT_SUPPORT &&
 519	     dev->error_state == pci_channel_io_perm_failure) ||
 520	    eeh_state_active(ret)) {
 521		eeh_stats.false_positives++;
 522		pe->false_positives++;
 523		rc = 0;
 524		goto dn_unlock;
 525	}
 526
 527	/*
 528	 * It should be corner case that the parent PE has been
 529	 * put into frozen state as well. We should take care
 530	 * that at first.
 531	 */
 532	parent_pe = pe->parent;
 533	while (parent_pe) {
 534		/* Hit the ceiling ? */
 535		if (parent_pe->type & EEH_PE_PHB)
 536			break;
 537
 538		/* Frozen parent PE ? */
 539		ret = eeh_ops->get_state(parent_pe, NULL);
 540		if (ret > 0 && !eeh_state_active(ret)) {
 541			pe = parent_pe;
 542			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
 543			       pe->phb->global_number, pe->addr,
 544			       pe->phb->global_number, parent_pe->addr);
 545		}
 546
 547		/* Next parent level */
 548		parent_pe = parent_pe->parent;
 549	}
 550
 551	eeh_stats.slot_resets++;
 552
 553	/* Avoid repeated reports of this failure, including problems
 554	 * with other functions on this device, and functions under
 555	 * bridges.
 556	 */
 557	eeh_pe_mark_isolated(pe);
 558	eeh_serialize_unlock(flags);
 559
 560	/* Most EEH events are due to device driver bugs.  Having
 561	 * a stack trace will help the device-driver authors figure
 562	 * out what happened.  So print that out.
 563	 */
 564	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
 565		__func__, pe->phb->global_number, pe->addr);
 566	eeh_send_failure_event(pe);
 567
 568	return 1;
 569
 570dn_unlock:
 571	eeh_serialize_unlock(flags);
 572	return rc;
 573}
 574
 575EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
 576
 577/**
 578 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
 579 * @token: I/O address
 580 *
 581 * Check for an EEH failure at the given I/O address. Call this
 582 * routine if the result of a read was all 0xff's and you want to
 583 * find out if this is due to an EEH slot freeze event. This routine
 584 * will query firmware for the EEH status.
 585 *
 586 * Note this routine is safe to call in an interrupt context.
 587 */
 588int eeh_check_failure(const volatile void __iomem *token)
 589{
 590	unsigned long addr;
 591	struct eeh_dev *edev;
 592
 593	/* Finding the phys addr + pci device; this is pretty quick. */
 594	addr = eeh_token_to_phys((unsigned long __force) token);
 595	edev = eeh_addr_cache_get_dev(addr);
 596	if (!edev) {
 597		eeh_stats.no_device++;
 598		return 0;
 599	}
 600
 601	return eeh_dev_check_failure(edev);
 602}
 603EXPORT_SYMBOL(eeh_check_failure);
 604
 605
 606/**
 607 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
 608 * @pe: EEH PE
 609 * @function: EEH option
 610 *
 611 * This routine should be called to reenable frozen MMIO or DMA
 612 * so that it would work correctly again. It's useful while doing
 613 * recovery or log collection on the indicated device.
 614 */
 615int eeh_pci_enable(struct eeh_pe *pe, int function)
 616{
 617	int active_flag, rc;
 618
 619	/*
 620	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
 621	 * Also, it's pointless to enable them on unfrozen PE. So
 622	 * we have to check before enabling IO or DMA.
 623	 */
 624	switch (function) {
 625	case EEH_OPT_THAW_MMIO:
 626		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
 627		break;
 628	case EEH_OPT_THAW_DMA:
 629		active_flag = EEH_STATE_DMA_ACTIVE;
 630		break;
 631	case EEH_OPT_DISABLE:
 632	case EEH_OPT_ENABLE:
 633	case EEH_OPT_FREEZE_PE:
 634		active_flag = 0;
 635		break;
 636	default:
 637		pr_warn("%s: Invalid function %d\n",
 638			__func__, function);
 639		return -EINVAL;
 640	}
 641
 642	/*
 643	 * Check if IO or DMA has been enabled before
 644	 * enabling them.
 645	 */
 646	if (active_flag) {
 647		rc = eeh_ops->get_state(pe, NULL);
 648		if (rc < 0)
 649			return rc;
 650
 651		/* Needn't enable it at all */
 652		if (rc == EEH_STATE_NOT_SUPPORT)
 653			return 0;
 654
 655		/* It's already enabled */
 656		if (rc & active_flag)
 657			return 0;
 658	}
 659
 660
 661	/* Issue the request */
 662	rc = eeh_ops->set_option(pe, function);
 663	if (rc)
 664		pr_warn("%s: Unexpected state change %d on "
 665			"PHB#%x-PE#%x, err=%d\n",
 666			__func__, function, pe->phb->global_number,
 667			pe->addr, rc);
 668
 669	/* Check if the request is finished successfully */
 670	if (active_flag) {
 671		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 672		if (rc < 0)
 673			return rc;
 674
 675		if (rc & active_flag)
 676			return 0;
 677
 678		return -EIO;
 679	}
 680
 681	return rc;
 682}
 683
 684static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
 685					    void *userdata)
 686{
 687	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 688	struct pci_dev *dev = userdata;
 689
 690	/*
 691	 * The caller should have disabled and saved the
 692	 * state for the specified device
 693	 */
 694	if (!pdev || pdev == dev)
 695		return;
 696
 697	/* Ensure we have D0 power state */
 698	pci_set_power_state(pdev, PCI_D0);
 699
 700	/* Save device state */
 701	pci_save_state(pdev);
 702
 703	/*
 704	 * Disable device to avoid any DMA traffic and
 705	 * interrupt from the device
 706	 */
 707	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
 708}
 709
 710static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
 711{
 712	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 713	struct pci_dev *dev = userdata;
 714
 715	if (!pdev)
 716		return;
 717
 718	/* Apply customization from firmware */
 719	if (eeh_ops->restore_config)
 720		eeh_ops->restore_config(edev);
 721
 722	/* The caller should restore state for the specified device */
 723	if (pdev != dev)
 724		pci_restore_state(pdev);
 725}
 726
 727/**
 728 * pcibios_set_pcie_reset_state - Set PCI-E reset state
 729 * @dev: pci device struct
 730 * @state: reset state to enter
 731 *
 732 * Return value:
 733 * 	0 if success
 734 */
 735int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
 736{
 737	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
 738	struct eeh_pe *pe = eeh_dev_to_pe(edev);
 739
 740	if (!pe) {
 741		pr_err("%s: No PE found on PCI device %s\n",
 742			__func__, pci_name(dev));
 743		return -EINVAL;
 744	}
 745
 746	switch (state) {
 747	case pcie_deassert_reset:
 748		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 749		eeh_unfreeze_pe(pe);
 750		if (!(pe->type & EEH_PE_VF))
 751			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 752		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
 753		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
 754		break;
 755	case pcie_hot_reset:
 756		eeh_pe_mark_isolated(pe);
 757		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 758		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 759		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 760		if (!(pe->type & EEH_PE_VF))
 761			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 762		eeh_ops->reset(pe, EEH_RESET_HOT);
 763		break;
 764	case pcie_warm_reset:
 765		eeh_pe_mark_isolated(pe);
 766		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 767		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 768		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 769		if (!(pe->type & EEH_PE_VF))
 770			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 771		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 772		break;
 773	default:
 774		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
 775		return -EINVAL;
 776	}
 777
 778	return 0;
 779}
 780
 781/**
 782 * eeh_set_dev_freset - Check the required reset for the indicated device
 783 * @edev: EEH device
 784 * @flag: return value
 785 *
 786 * Each device might have its preferred reset type: fundamental or
 787 * hot reset. The routine is used to collected the information for
 788 * the indicated device and its children so that the bunch of the
 789 * devices could be reset properly.
 790 */
 791static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
 792{
 793	struct pci_dev *dev;
 794	unsigned int *freset = (unsigned int *)flag;
 795
 796	dev = eeh_dev_to_pci_dev(edev);
 797	if (dev)
 798		*freset |= dev->needs_freset;
 799}
 800
 801static void eeh_pe_refreeze_passed(struct eeh_pe *root)
 802{
 803	struct eeh_pe *pe;
 804	int state;
 805
 806	eeh_for_each_pe(root, pe) {
 807		if (eeh_pe_passed(pe)) {
 808			state = eeh_ops->get_state(pe, NULL);
 809			if (state &
 810			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
 811				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
 812					pe->phb->global_number, pe->addr);
 813				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
 814			}
 815		}
 816	}
 817}
 818
 819/**
 820 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
 821 * @pe: EEH PE
 822 * @include_passed: include passed-through devices?
 823 *
 824 * This function executes a full reset procedure on a PE, including setting
 825 * the appropriate flags, performing a fundamental or hot reset, and then
 826 * deactivating the reset status.  It is designed to be used within the EEH
 827 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
 828 * only performs a single operation at a time.
 829 *
 830 * This function will attempt to reset a PE three times before failing.
 831 */
 832int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
 833{
 834	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
 835	int type = EEH_RESET_HOT;
 836	unsigned int freset = 0;
 837	int i, state = 0, ret;
 838
 839	/*
 840	 * Determine the type of reset to perform - hot or fundamental.
 841	 * Hot reset is the default operation, unless any device under the
 842	 * PE requires a fundamental reset.
 843	 */
 844	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
 845
 846	if (freset)
 847		type = EEH_RESET_FUNDAMENTAL;
 848
 849	/* Mark the PE as in reset state and block config space accesses */
 850	eeh_pe_state_mark(pe, reset_state);
 851
 852	/* Make three attempts at resetting the bus */
 853	for (i = 0; i < 3; i++) {
 854		ret = eeh_pe_reset(pe, type, include_passed);
 855		if (!ret)
 856			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
 857					   include_passed);
 858		if (ret) {
 859			ret = -EIO;
 860			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
 861				state, pe->phb->global_number, pe->addr, i + 1);
 862			continue;
 863		}
 864		if (i)
 865			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
 866				pe->phb->global_number, pe->addr, i + 1);
 867
 868		/* Wait until the PE is in a functioning state */
 869		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 870		if (state < 0) {
 871			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
 872				pe->phb->global_number, pe->addr);
 873			ret = -ENOTRECOVERABLE;
 874			break;
 875		}
 876		if (eeh_state_active(state))
 877			break;
 878		else
 879			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
 880				pe->phb->global_number, pe->addr, state, i + 1);
 881	}
 882
 883	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
 884	 * (potentially) passed through to a guest, re-freeze them:
 885	 */
 886	if (!include_passed)
 887		eeh_pe_refreeze_passed(pe);
 888
 889	eeh_pe_state_clear(pe, reset_state, true);
 890	return ret;
 891}
 892
 893/**
 894 * eeh_save_bars - Save device bars
 895 * @edev: PCI device associated EEH device
 896 *
 897 * Save the values of the device bars. Unlike the restore
 898 * routine, this routine is *not* recursive. This is because
 899 * PCI devices are added individually; but, for the restore,
 900 * an entire slot is reset at a time.
 901 */
 902void eeh_save_bars(struct eeh_dev *edev)
 903{
 904	int i;
 905
 906	if (!edev)
 907		return;
 908
 909	for (i = 0; i < 16; i++)
 910		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
 911
 912	/*
 913	 * For PCI bridges including root port, we need enable bus
 914	 * master explicitly. Otherwise, it can't fetch IODA table
 915	 * entries correctly. So we cache the bit in advance so that
 916	 * we can restore it after reset, either PHB range or PE range.
 917	 */
 918	if (edev->mode & EEH_DEV_BRIDGE)
 919		edev->config_space[1] |= PCI_COMMAND_MASTER;
 920}
 921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922static int eeh_reboot_notifier(struct notifier_block *nb,
 923			       unsigned long action, void *unused)
 924{
 925	eeh_clear_flag(EEH_ENABLED);
 926	return NOTIFY_DONE;
 927}
 928
 929static struct notifier_block eeh_reboot_nb = {
 930	.notifier_call = eeh_reboot_notifier,
 931};
 932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933static int eeh_device_notifier(struct notifier_block *nb,
 934			       unsigned long action, void *data)
 935{
 936	struct device *dev = data;
 937
 938	switch (action) {
 939	/*
 940	 * Note: It's not possible to perform EEH device addition (i.e.
 941	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
 942	 * the device's resources, which have not yet been set up.
 943	 */
 944	case BUS_NOTIFY_DEL_DEVICE:
 945		eeh_remove_device(to_pci_dev(dev));
 946		break;
 947	default:
 948		break;
 949	}
 950	return NOTIFY_DONE;
 951}
 952
 953static struct notifier_block eeh_device_nb = {
 954	.notifier_call = eeh_device_notifier,
 955};
 956
 957/**
 958 * eeh_init - System wide EEH initialization
 959 * @ops: struct to trace EEH operation callback functions
 960 *
 961 * It's the platform's job to call this from an arch_initcall().
 962 */
 963int eeh_init(struct eeh_ops *ops)
 964{
 965	struct pci_controller *hose, *tmp;
 966	int ret = 0;
 967
 968	/* the platform should only initialise EEH once */
 969	if (WARN_ON(eeh_ops))
 970		return -EEXIST;
 971	if (WARN_ON(!ops))
 972		return -ENOENT;
 973	eeh_ops = ops;
 974
 975	/* Register reboot notifier */
 976	ret = register_reboot_notifier(&eeh_reboot_nb);
 977	if (ret) {
 978		pr_warn("%s: Failed to register reboot notifier (%d)\n",
 979			__func__, ret);
 980		return ret;
 981	}
 982
 983	ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
 984	if (ret) {
 985		pr_warn("%s: Failed to register bus notifier (%d)\n",
 986			__func__, ret);
 987		return ret;
 988	}
 989
 990	/* Initialize PHB PEs */
 991	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
 992		eeh_phb_pe_create(hose);
 993
 994	eeh_addr_cache_init();
 995
 996	/* Initialize EEH event */
 997	return eeh_event_init();
 998}
 
 999
1000/**
1001 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1002 * @dev: pci device for which to set up EEH
1003 *
1004 * This routine must be used to complete EEH initialization for PCI
1005 * devices that were added after system boot (e.g. hotplug, dlpar).
1006 */
1007void eeh_probe_device(struct pci_dev *dev)
1008{
1009	struct eeh_dev *edev;
1010
1011	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1012
1013	/*
1014	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1015	 * already called for this device.
1016	 */
1017	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1018		pci_dbg(dev, "Already bound to an eeh_dev!\n");
1019		return;
1020	}
1021
1022	edev = eeh_ops->probe(dev);
1023	if (!edev) {
1024		pr_debug("EEH: Adding device failed\n");
1025		return;
1026	}
1027
1028	/*
1029	 * FIXME: We rely on pcibios_release_device() to remove the
1030	 * existing EEH state. The release function is only called if
1031	 * the pci_dev's refcount drops to zero so if something is
1032	 * keeping a ref to a device (e.g. a filesystem) we need to
1033	 * remove the old EEH state.
1034	 *
1035	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1036	 */
1037	if (edev->pdev && edev->pdev != dev) {
1038		eeh_pe_tree_remove(edev);
1039		eeh_addr_cache_rmv_dev(edev->pdev);
1040		eeh_sysfs_remove_device(edev->pdev);
1041
1042		/*
1043		 * We definitely should have the PCI device removed
1044		 * though it wasn't correctly. So we needn't call
1045		 * into error handler afterwards.
1046		 */
1047		edev->mode |= EEH_DEV_NO_HANDLER;
1048	}
1049
1050	/* bind the pdev and the edev together */
1051	edev->pdev = dev;
1052	dev->dev.archdata.edev = edev;
1053	eeh_addr_cache_insert_dev(dev);
1054	eeh_sysfs_add_device(dev);
1055}
1056
1057/**
1058 * eeh_remove_device - Undo EEH setup for the indicated pci device
1059 * @dev: pci device to be removed
1060 *
1061 * This routine should be called when a device is removed from
1062 * a running system (e.g. by hotplug or dlpar).  It unregisters
1063 * the PCI device from the EEH subsystem.  I/O errors affecting
1064 * this device will no longer be detected after this call; thus,
1065 * i/o errors affecting this slot may leave this device unusable.
1066 */
1067void eeh_remove_device(struct pci_dev *dev)
1068{
1069	struct eeh_dev *edev;
1070
1071	if (!dev || !eeh_enabled())
1072		return;
1073	edev = pci_dev_to_eeh_dev(dev);
1074
1075	/* Unregister the device with the EEH/PCI address search system */
1076	dev_dbg(&dev->dev, "EEH: Removing device\n");
1077
1078	if (!edev || !edev->pdev || !edev->pe) {
1079		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1080		return;
1081	}
1082
1083	/*
1084	 * During the hotplug for EEH error recovery, we need the EEH
1085	 * device attached to the parent PE in order for BAR restore
1086	 * a bit later. So we keep it for BAR restore and remove it
1087	 * from the parent PE during the BAR resotre.
1088	 */
1089	edev->pdev = NULL;
1090
1091	/*
1092	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1093	 * remove the sysfs files before clearing dev.archdata.edev
1094	 */
1095	if (edev->mode & EEH_DEV_SYSFS)
1096		eeh_sysfs_remove_device(dev);
1097
1098	/*
1099	 * We're removing from the PCI subsystem, that means
1100	 * the PCI device driver can't support EEH or not
1101	 * well. So we rely on hotplug completely to do recovery
1102	 * for the specific PCI device.
1103	 */
1104	edev->mode |= EEH_DEV_NO_HANDLER;
1105
1106	eeh_addr_cache_rmv_dev(dev);
1107
1108	/*
1109	 * The flag "in_error" is used to trace EEH devices for VFs
1110	 * in error state or not. It's set in eeh_report_error(). If
1111	 * it's not set, eeh_report_{reset,resume}() won't be called
1112	 * for the VF EEH device.
1113	 */
1114	edev->in_error = false;
1115	dev->dev.archdata.edev = NULL;
1116	if (!(edev->pe->state & EEH_PE_KEEP))
1117		eeh_pe_tree_remove(edev);
1118	else
1119		edev->mode |= EEH_DEV_DISCONNECTED;
1120}
1121
1122int eeh_unfreeze_pe(struct eeh_pe *pe)
1123{
1124	int ret;
1125
1126	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1127	if (ret) {
1128		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1129			__func__, ret, pe->phb->global_number, pe->addr);
1130		return ret;
1131	}
1132
1133	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1134	if (ret) {
1135		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1136			__func__, ret, pe->phb->global_number, pe->addr);
1137		return ret;
1138	}
1139
1140	return ret;
1141}
1142
1143
1144static struct pci_device_id eeh_reset_ids[] = {
1145	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1146	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1147	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1148	{ 0 }
1149};
1150
1151static int eeh_pe_change_owner(struct eeh_pe *pe)
1152{
1153	struct eeh_dev *edev, *tmp;
1154	struct pci_dev *pdev;
1155	struct pci_device_id *id;
1156	int ret;
1157
1158	/* Check PE state */
1159	ret = eeh_ops->get_state(pe, NULL);
1160	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1161		return 0;
1162
1163	/* Unfrozen PE, nothing to do */
1164	if (eeh_state_active(ret))
1165		return 0;
1166
1167	/* Frozen PE, check if it needs PE level reset */
1168	eeh_pe_for_each_dev(pe, edev, tmp) {
1169		pdev = eeh_dev_to_pci_dev(edev);
1170		if (!pdev)
1171			continue;
1172
1173		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1174			if (id->vendor != PCI_ANY_ID &&
1175			    id->vendor != pdev->vendor)
1176				continue;
1177			if (id->device != PCI_ANY_ID &&
1178			    id->device != pdev->device)
1179				continue;
1180			if (id->subvendor != PCI_ANY_ID &&
1181			    id->subvendor != pdev->subsystem_vendor)
1182				continue;
1183			if (id->subdevice != PCI_ANY_ID &&
1184			    id->subdevice != pdev->subsystem_device)
1185				continue;
1186
1187			return eeh_pe_reset_and_recover(pe);
1188		}
1189	}
1190
1191	ret = eeh_unfreeze_pe(pe);
1192	if (!ret)
1193		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1194	return ret;
1195}
1196
1197/**
1198 * eeh_dev_open - Increase count of pass through devices for PE
1199 * @pdev: PCI device
1200 *
1201 * Increase count of passed through devices for the indicated
1202 * PE. In the result, the EEH errors detected on the PE won't be
1203 * reported. The PE owner will be responsible for detection
1204 * and recovery.
1205 */
1206int eeh_dev_open(struct pci_dev *pdev)
1207{
1208	struct eeh_dev *edev;
1209	int ret = -ENODEV;
1210
1211	mutex_lock(&eeh_dev_mutex);
1212
1213	/* No PCI device ? */
1214	if (!pdev)
1215		goto out;
1216
1217	/* No EEH device or PE ? */
1218	edev = pci_dev_to_eeh_dev(pdev);
1219	if (!edev || !edev->pe)
1220		goto out;
1221
1222	/*
1223	 * The PE might have been put into frozen state, but we
1224	 * didn't detect that yet. The passed through PCI devices
1225	 * in frozen PE won't work properly. Clear the frozen state
1226	 * in advance.
1227	 */
1228	ret = eeh_pe_change_owner(edev->pe);
1229	if (ret)
1230		goto out;
1231
1232	/* Increase PE's pass through count */
1233	atomic_inc(&edev->pe->pass_dev_cnt);
1234	mutex_unlock(&eeh_dev_mutex);
1235
1236	return 0;
1237out:
1238	mutex_unlock(&eeh_dev_mutex);
1239	return ret;
1240}
1241EXPORT_SYMBOL_GPL(eeh_dev_open);
1242
1243/**
1244 * eeh_dev_release - Decrease count of pass through devices for PE
1245 * @pdev: PCI device
1246 *
1247 * Decrease count of pass through devices for the indicated PE. If
1248 * there is no passed through device in PE, the EEH errors detected
1249 * on the PE will be reported and handled as usual.
1250 */
1251void eeh_dev_release(struct pci_dev *pdev)
1252{
1253	struct eeh_dev *edev;
1254
1255	mutex_lock(&eeh_dev_mutex);
1256
1257	/* No PCI device ? */
1258	if (!pdev)
1259		goto out;
1260
1261	/* No EEH device ? */
1262	edev = pci_dev_to_eeh_dev(pdev);
1263	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1264		goto out;
1265
1266	/* Decrease PE's pass through count */
1267	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1268	eeh_pe_change_owner(edev->pe);
1269out:
1270	mutex_unlock(&eeh_dev_mutex);
1271}
1272EXPORT_SYMBOL(eeh_dev_release);
1273
1274#ifdef CONFIG_IOMMU_API
1275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1276/**
1277 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1278 * @group: IOMMU group
1279 *
1280 * The routine is called to convert IOMMU group to EEH PE.
1281 */
1282struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1283{
1284	struct pci_dev *pdev = NULL;
1285	struct eeh_dev *edev;
1286	int ret;
1287
1288	/* No IOMMU group ? */
1289	if (!group)
1290		return NULL;
1291
1292	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1293	if (!ret || !pdev)
1294		return NULL;
1295
1296	/* No EEH device or PE ? */
1297	edev = pci_dev_to_eeh_dev(pdev);
1298	if (!edev || !edev->pe)
1299		return NULL;
1300
1301	return edev->pe;
1302}
1303EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1304
1305#endif /* CONFIG_IOMMU_API */
1306
1307/**
1308 * eeh_pe_set_option - Set options for the indicated PE
1309 * @pe: EEH PE
1310 * @option: requested option
1311 *
1312 * The routine is called to enable or disable EEH functionality
1313 * on the indicated PE, to enable IO or DMA for the frozen PE.
1314 */
1315int eeh_pe_set_option(struct eeh_pe *pe, int option)
1316{
1317	int ret = 0;
1318
1319	/* Invalid PE ? */
1320	if (!pe)
1321		return -ENODEV;
1322
1323	/*
1324	 * EEH functionality could possibly be disabled, just
1325	 * return error for the case. And the EEH functionality
1326	 * isn't expected to be disabled on one specific PE.
1327	 */
1328	switch (option) {
1329	case EEH_OPT_ENABLE:
1330		if (eeh_enabled()) {
1331			ret = eeh_pe_change_owner(pe);
1332			break;
1333		}
1334		ret = -EIO;
1335		break;
1336	case EEH_OPT_DISABLE:
1337		break;
1338	case EEH_OPT_THAW_MMIO:
1339	case EEH_OPT_THAW_DMA:
1340	case EEH_OPT_FREEZE_PE:
1341		if (!eeh_ops || !eeh_ops->set_option) {
1342			ret = -ENOENT;
1343			break;
1344		}
1345
1346		ret = eeh_pci_enable(pe, option);
1347		break;
1348	default:
1349		pr_debug("%s: Option %d out of range (%d, %d)\n",
1350			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1351		ret = -EINVAL;
1352	}
1353
1354	return ret;
1355}
1356EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1357
1358/**
1359 * eeh_pe_get_state - Retrieve PE's state
1360 * @pe: EEH PE
1361 *
1362 * Retrieve the PE's state, which includes 3 aspects: enabled
1363 * DMA, enabled IO and asserted reset.
1364 */
1365int eeh_pe_get_state(struct eeh_pe *pe)
1366{
1367	int result, ret = 0;
1368	bool rst_active, dma_en, mmio_en;
1369
1370	/* Existing PE ? */
1371	if (!pe)
1372		return -ENODEV;
1373
1374	if (!eeh_ops || !eeh_ops->get_state)
1375		return -ENOENT;
1376
1377	/*
1378	 * If the parent PE is owned by the host kernel and is undergoing
1379	 * error recovery, we should return the PE state as temporarily
1380	 * unavailable so that the error recovery on the guest is suspended
1381	 * until the recovery completes on the host.
1382	 */
1383	if (pe->parent &&
1384	    !(pe->state & EEH_PE_REMOVED) &&
1385	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1386		return EEH_PE_STATE_UNAVAIL;
1387
1388	result = eeh_ops->get_state(pe, NULL);
1389	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1390	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1391	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1392
1393	if (rst_active)
1394		ret = EEH_PE_STATE_RESET;
1395	else if (dma_en && mmio_en)
1396		ret = EEH_PE_STATE_NORMAL;
1397	else if (!dma_en && !mmio_en)
1398		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1399	else if (!dma_en && mmio_en)
1400		ret = EEH_PE_STATE_STOPPED_DMA;
1401	else
1402		ret = EEH_PE_STATE_UNAVAIL;
1403
1404	return ret;
1405}
1406EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1407
1408static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1409{
1410	struct eeh_dev *edev, *tmp;
1411	struct pci_dev *pdev;
1412	int ret = 0;
1413
1414	eeh_pe_restore_bars(pe);
1415
1416	/*
1417	 * Reenable PCI devices as the devices passed
1418	 * through are always enabled before the reset.
1419	 */
1420	eeh_pe_for_each_dev(pe, edev, tmp) {
1421		pdev = eeh_dev_to_pci_dev(edev);
1422		if (!pdev)
1423			continue;
1424
1425		ret = pci_reenable_device(pdev);
1426		if (ret) {
1427			pr_warn("%s: Failure %d reenabling %s\n",
1428				__func__, ret, pci_name(pdev));
1429			return ret;
1430		}
1431	}
1432
1433	/* The PE is still in frozen state */
1434	if (include_passed || !eeh_pe_passed(pe)) {
1435		ret = eeh_unfreeze_pe(pe);
1436	} else
1437		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1438			pe->phb->global_number, pe->addr);
1439	if (!ret)
1440		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1441	return ret;
1442}
1443
1444
1445/**
1446 * eeh_pe_reset - Issue PE reset according to specified type
1447 * @pe: EEH PE
1448 * @option: reset type
1449 * @include_passed: include passed-through devices?
1450 *
1451 * The routine is called to reset the specified PE with the
1452 * indicated type, either fundamental reset or hot reset.
1453 * PE reset is the most important part for error recovery.
1454 */
1455int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1456{
1457	int ret = 0;
1458
1459	/* Invalid PE ? */
1460	if (!pe)
1461		return -ENODEV;
1462
1463	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1464		return -ENOENT;
1465
1466	switch (option) {
1467	case EEH_RESET_DEACTIVATE:
1468		ret = eeh_ops->reset(pe, option);
1469		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1470		if (ret)
1471			break;
1472
1473		ret = eeh_pe_reenable_devices(pe, include_passed);
1474		break;
1475	case EEH_RESET_HOT:
1476	case EEH_RESET_FUNDAMENTAL:
1477		/*
1478		 * Proactively freeze the PE to drop all MMIO access
1479		 * during reset, which should be banned as it's always
1480		 * cause recursive EEH error.
1481		 */
1482		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1483
1484		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1485		ret = eeh_ops->reset(pe, option);
1486		break;
1487	default:
1488		pr_debug("%s: Unsupported option %d\n",
1489			__func__, option);
1490		ret = -EINVAL;
1491	}
1492
1493	return ret;
1494}
1495EXPORT_SYMBOL_GPL(eeh_pe_reset);
1496
1497/**
1498 * eeh_pe_configure - Configure PCI bridges after PE reset
1499 * @pe: EEH PE
1500 *
1501 * The routine is called to restore the PCI config space for
1502 * those PCI devices, especially PCI bridges affected by PE
1503 * reset issued previously.
1504 */
1505int eeh_pe_configure(struct eeh_pe *pe)
1506{
1507	int ret = 0;
1508
1509	/* Invalid PE ? */
1510	if (!pe)
1511		return -ENODEV;
1512
1513	return ret;
1514}
1515EXPORT_SYMBOL_GPL(eeh_pe_configure);
1516
1517/**
1518 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1519 * @pe: the indicated PE
1520 * @type: error type
1521 * @func: error function
1522 * @addr: address
1523 * @mask: address mask
1524 *
1525 * The routine is called to inject the specified PCI error, which
1526 * is determined by @type and @func, to the indicated PE for
1527 * testing purpose.
1528 */
1529int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1530		      unsigned long addr, unsigned long mask)
1531{
1532	/* Invalid PE ? */
1533	if (!pe)
1534		return -ENODEV;
1535
1536	/* Unsupported operation ? */
1537	if (!eeh_ops || !eeh_ops->err_inject)
1538		return -ENOENT;
1539
 
 
 
 
1540	/* Check on PCI error function */
1541	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1542		return -EINVAL;
1543
1544	return eeh_ops->err_inject(pe, type, func, addr, mask);
1545}
1546EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1547
1548#ifdef CONFIG_PROC_FS
1549static int proc_eeh_show(struct seq_file *m, void *v)
1550{
1551	if (!eeh_enabled()) {
1552		seq_printf(m, "EEH Subsystem is globally disabled\n");
1553		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1554	} else {
1555		seq_printf(m, "EEH Subsystem is enabled\n");
1556		seq_printf(m,
1557				"no device=%llu\n"
1558				"no device node=%llu\n"
1559				"no config address=%llu\n"
1560				"check not wanted=%llu\n"
1561				"eeh_total_mmio_ffs=%llu\n"
1562				"eeh_false_positives=%llu\n"
1563				"eeh_slot_resets=%llu\n",
1564				eeh_stats.no_device,
1565				eeh_stats.no_dn,
1566				eeh_stats.no_cfg_addr,
1567				eeh_stats.ignored_check,
1568				eeh_stats.total_mmio_ffs,
1569				eeh_stats.false_positives,
1570				eeh_stats.slot_resets);
1571	}
1572
1573	return 0;
1574}
1575#endif /* CONFIG_PROC_FS */
1576
1577static int eeh_break_device(struct pci_dev *pdev)
1578{
1579	struct resource *bar = NULL;
1580	void __iomem *mapped;
1581	u16 old, bit;
1582	int i, pos;
1583
1584	/* Do we have an MMIO BAR to disable? */
1585	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1586		struct resource *r = &pdev->resource[i];
1587
1588		if (!r->flags || !r->start)
1589			continue;
1590		if (r->flags & IORESOURCE_IO)
1591			continue;
1592		if (r->flags & IORESOURCE_UNSET)
1593			continue;
1594
1595		bar = r;
1596		break;
1597	}
1598
1599	if (!bar) {
1600		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1601		return -ENXIO;
1602	}
1603
1604	pci_err(pdev, "Going to break: %pR\n", bar);
1605
1606	if (pdev->is_virtfn) {
1607#ifndef CONFIG_PCI_IOV
1608		return -ENXIO;
1609#else
1610		/*
1611		 * VFs don't have a per-function COMMAND register, so the best
1612		 * we can do is clear the Memory Space Enable bit in the PF's
1613		 * SRIOV control reg.
1614		 *
1615		 * Unfortunately, this requires that we have a PF (i.e doesn't
1616		 * work for a passed-through VF) and it has the potential side
1617		 * effect of also causing an EEH on every other VF under the
1618		 * PF. Oh well.
1619		 */
1620		pdev = pdev->physfn;
1621		if (!pdev)
1622			return -ENXIO; /* passed through VFs have no PF */
1623
1624		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1625		pos += PCI_SRIOV_CTRL;
1626		bit  = PCI_SRIOV_CTRL_MSE;
1627#endif /* !CONFIG_PCI_IOV */
1628	} else {
1629		bit = PCI_COMMAND_MEMORY;
1630		pos = PCI_COMMAND;
1631	}
1632
1633	/*
1634	 * Process here is:
1635	 *
1636	 * 1. Disable Memory space.
1637	 *
1638	 * 2. Perform an MMIO to the device. This should result in an error
1639	 *    (CA  / UR) being raised by the device which results in an EEH
1640	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1641	 *    so the freeze hook so the EEH Detection machinery won't be
1642	 *    triggered here. This is to match the usual behaviour of EEH
1643	 *    where the HW will asynchronously freeze a PE and it's up to
1644	 *    the kernel to notice and deal with it.
1645	 *
1646	 * 3. Turn Memory space back on. This is more important for VFs
1647	 *    since recovery will probably fail if we don't. For normal
1648	 *    the COMMAND register is reset as a part of re-initialising
1649	 *    the device.
1650	 *
1651	 * Breaking stuff is the point so who cares if it's racy ;)
1652	 */
1653	pci_read_config_word(pdev, pos, &old);
1654
1655	mapped = ioremap(bar->start, PAGE_SIZE);
1656	if (!mapped) {
1657		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1658		return -ENXIO;
1659	}
1660
1661	pci_write_config_word(pdev, pos, old & ~bit);
1662	in_8(mapped);
1663	pci_write_config_word(pdev, pos, old);
1664
1665	iounmap(mapped);
1666
1667	return 0;
1668}
1669
1670int eeh_pe_inject_mmio_error(struct pci_dev *pdev)
1671{
1672	return eeh_break_device(pdev);
1673}
1674
1675#ifdef CONFIG_DEBUG_FS
1676
1677
1678static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1679					     const char __user *user_buf,
1680					     size_t count, loff_t *ppos)
1681{
1682	uint32_t domain, bus, dev, fn;
1683	struct pci_dev *pdev;
1684	char buf[20];
1685	int ret;
1686
1687	memset(buf, 0, sizeof(buf));
1688	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1689	if (!ret)
1690		return ERR_PTR(-EFAULT);
1691
1692	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1693	if (ret != 4) {
1694		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1695		return ERR_PTR(-EINVAL);
1696	}
1697
1698	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1699	if (!pdev)
1700		return ERR_PTR(-ENODEV);
1701
1702	return pdev;
1703}
1704
1705static int eeh_enable_dbgfs_set(void *data, u64 val)
1706{
1707	if (val)
1708		eeh_clear_flag(EEH_FORCE_DISABLED);
1709	else
1710		eeh_add_flag(EEH_FORCE_DISABLED);
1711
1712	return 0;
1713}
1714
1715static int eeh_enable_dbgfs_get(void *data, u64 *val)
1716{
1717	if (eeh_enabled())
1718		*val = 0x1ul;
1719	else
1720		*val = 0x0ul;
1721	return 0;
1722}
1723
1724DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1725			 eeh_enable_dbgfs_set, "0x%llx\n");
1726
1727static ssize_t eeh_force_recover_write(struct file *filp,
1728				const char __user *user_buf,
1729				size_t count, loff_t *ppos)
1730{
1731	struct pci_controller *hose;
1732	uint32_t phbid, pe_no;
1733	struct eeh_pe *pe;
1734	char buf[20];
1735	int ret;
1736
1737	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1738	if (!ret)
1739		return -EFAULT;
1740
1741	/*
1742	 * When PE is NULL the event is a "special" event. Rather than
1743	 * recovering a specific PE it forces the EEH core to scan for failed
1744	 * PHBs and recovers each. This needs to be done before any device
1745	 * recoveries can occur.
1746	 */
1747	if (!strncmp(buf, "hwcheck", 7)) {
1748		__eeh_send_failure_event(NULL);
1749		return count;
1750	}
1751
1752	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1753	if (ret != 2)
1754		return -EINVAL;
1755
1756	hose = pci_find_controller_for_domain(phbid);
1757	if (!hose)
1758		return -ENODEV;
1759
1760	/* Retrieve PE */
1761	pe = eeh_pe_get(hose, pe_no);
1762	if (!pe)
1763		return -ENODEV;
1764
1765	/*
1766	 * We don't do any state checking here since the detection
1767	 * process is async to the recovery process. The recovery
1768	 * thread *should* not break even if we schedule a recovery
1769	 * from an odd state (e.g. PE removed, or recovery of a
1770	 * non-isolated PE)
1771	 */
1772	__eeh_send_failure_event(pe);
1773
1774	return ret < 0 ? ret : count;
1775}
1776
1777static const struct file_operations eeh_force_recover_fops = {
1778	.open	= simple_open,
 
1779	.write	= eeh_force_recover_write,
1780};
1781
1782static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1783				char __user *user_buf,
1784				size_t count, loff_t *ppos)
1785{
1786	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1787
1788	return simple_read_from_buffer(user_buf, count, ppos,
1789				       usage, sizeof(usage) - 1);
1790}
1791
1792static ssize_t eeh_dev_check_write(struct file *filp,
1793				const char __user *user_buf,
1794				size_t count, loff_t *ppos)
1795{
 
1796	struct pci_dev *pdev;
1797	struct eeh_dev *edev;
 
1798	int ret;
1799
1800	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1801	if (IS_ERR(pdev))
1802		return PTR_ERR(pdev);
 
 
 
 
 
 
 
 
 
 
 
1803
1804	edev = pci_dev_to_eeh_dev(pdev);
1805	if (!edev) {
1806		pci_err(pdev, "No eeh_dev for this device!\n");
1807		pci_dev_put(pdev);
1808		return -ENODEV;
1809	}
1810
1811	ret = eeh_dev_check_failure(edev);
1812	pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1813			pci_name(pdev), ret);
1814
1815	pci_dev_put(pdev);
1816
1817	return count;
1818}
1819
1820static const struct file_operations eeh_dev_check_fops = {
1821	.open	= simple_open,
 
1822	.write	= eeh_dev_check_write,
1823	.read   = eeh_debugfs_dev_usage,
1824};
1825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826static ssize_t eeh_dev_break_write(struct file *filp,
1827				const char __user *user_buf,
1828				size_t count, loff_t *ppos)
1829{
 
1830	struct pci_dev *pdev;
 
1831	int ret;
1832
1833	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1834	if (IS_ERR(pdev))
1835		return PTR_ERR(pdev);
 
 
 
 
 
 
 
 
 
 
 
1836
1837	ret = eeh_break_device(pdev);
1838	pci_dev_put(pdev);
1839
1840	if (ret < 0)
1841		return ret;
1842
1843	return count;
1844}
1845
1846static const struct file_operations eeh_dev_break_fops = {
1847	.open	= simple_open,
 
1848	.write	= eeh_dev_break_write,
1849	.read   = eeh_debugfs_dev_usage,
1850};
1851
1852static ssize_t eeh_dev_can_recover(struct file *filp,
1853				   const char __user *user_buf,
1854				   size_t count, loff_t *ppos)
1855{
1856	struct pci_driver *drv;
1857	struct pci_dev *pdev;
1858	size_t ret;
1859
1860	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1861	if (IS_ERR(pdev))
1862		return PTR_ERR(pdev);
1863
1864	/*
1865	 * In order for error recovery to work the driver needs to implement
1866	 * .error_detected(), so it can quiesce IO to the device, and
1867	 * .slot_reset() so it can re-initialise the device after a reset.
1868	 *
1869	 * Ideally they'd implement .resume() too, but some drivers which
1870	 * we need to support (notably IPR) don't so I guess we can tolerate
1871	 * that.
1872	 *
1873	 * .mmio_enabled() is mostly there as a work-around for devices which
1874	 * take forever to re-init after a hot reset. Implementing that is
1875	 * strictly optional.
1876	 */
1877	drv = pci_dev_driver(pdev);
1878	if (drv &&
1879	    drv->err_handler &&
1880	    drv->err_handler->error_detected &&
1881	    drv->err_handler->slot_reset) {
1882		ret = count;
1883	} else {
1884		ret = -EOPNOTSUPP;
1885	}
1886
1887	pci_dev_put(pdev);
1888
1889	return ret;
1890}
1891
1892static const struct file_operations eeh_dev_can_recover_fops = {
1893	.open	= simple_open,
1894	.write	= eeh_dev_can_recover,
1895	.read   = eeh_debugfs_dev_usage,
1896};
1897
1898#endif
1899
1900static int __init eeh_init_proc(void)
1901{
1902	if (machine_is(pseries) || machine_is(powernv)) {
1903		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1904#ifdef CONFIG_DEBUG_FS
1905		debugfs_create_file_unsafe("eeh_enable", 0600,
1906					   arch_debugfs_dir, NULL,
1907					   &eeh_enable_dbgfs_ops);
1908		debugfs_create_u32("eeh_max_freezes", 0600,
1909				arch_debugfs_dir, &eeh_max_freezes);
1910		debugfs_create_bool("eeh_disable_recovery", 0600,
1911				arch_debugfs_dir,
1912				&eeh_debugfs_no_recover);
1913		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1914				arch_debugfs_dir, NULL,
1915				&eeh_dev_check_fops);
1916		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1917				arch_debugfs_dir, NULL,
1918				&eeh_dev_break_fops);
1919		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1920				arch_debugfs_dir, NULL,
1921				&eeh_force_recover_fops);
1922		debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1923				arch_debugfs_dir, NULL,
1924				&eeh_dev_can_recover_fops);
1925		eeh_cache_debugfs_init();
1926#endif
1927	}
1928
1929	return 0;
1930}
1931__initcall(eeh_init_proc);