Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#define ARCH_HAS_IOREMAP_WC
16
17#include <linux/compiler.h>
18#include <linux/kernel.h>
19#include <linux/types.h>
20#include <linux/irqflags.h>
21
22#include <asm/addrspace.h>
23#include <asm/barrier.h>
24#include <asm/bug.h>
25#include <asm/byteorder.h>
26#include <asm/cpu.h>
27#include <asm/cpu-features.h>
28#include <asm-generic/iomap.h>
29#include <asm/page.h>
30#include <asm/pgtable-bits.h>
31#include <asm/processor.h>
32#include <asm/string.h>
33#include <mangle-port.h>
34
35/*
36 * Raw operations are never swapped in software. OTOH values that raw
37 * operations are working on may or may not have been swapped by the bus
38 * hardware. An example use would be for flash memory that's used for
39 * execute in place.
40 */
41# define __raw_ioswabb(a, x) (x)
42# define __raw_ioswabw(a, x) (x)
43# define __raw_ioswabl(a, x) (x)
44# define __raw_ioswabq(a, x) (x)
45# define ____raw_ioswabq(a, x) (x)
46
47# define __relaxed_ioswabb ioswabb
48# define __relaxed_ioswabw ioswabw
49# define __relaxed_ioswabl ioswabl
50# define __relaxed_ioswabq ioswabq
51
52/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
53
54/*
55 * On MIPS I/O ports are memory mapped, so we access them using normal
56 * load/store instructions. mips_io_port_base is the virtual address to
57 * which all ports are being mapped. For sake of efficiency some code
58 * assumes that this is an address that can be loaded with a single lui
59 * instruction, so the lower 16 bits must be zero. Should be true on
60 * any sane architecture; generic code does not use this assumption.
61 */
62extern unsigned long mips_io_port_base;
63
64static inline void set_io_port_base(unsigned long base)
65{
66 mips_io_port_base = base;
67}
68
69/*
70 * Provide the necessary definitions for generic iomap. We make use of
71 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
72 * use with I/O ports.
73 */
74
75#define HAVE_ARCH_PIO_SIZE
76#define PIO_OFFSET mips_io_port_base
77#define PIO_MASK IO_SPACE_LIMIT
78#define PIO_RESERVED 0x0UL
79
80/*
81 * Enforce in-order execution of data I/O. In the MIPS architecture
82 * these are equivalent to corresponding platform-specific memory
83 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
84 * with sync additionally defined.
85 */
86#define iobarrier_rw() mb()
87#define iobarrier_r() rmb()
88#define iobarrier_w() wmb()
89#define iobarrier_sync() iob()
90
91/*
92 * virt_to_phys - map virtual addresses to physical
93 * @address: address to remap
94 *
95 * The returned physical address is the physical (CPU) mapping for
96 * the memory address given. It is only valid to use this function on
97 * addresses directly mapped or allocated via kmalloc.
98 *
99 * This function does not give bus mappings for DMA transfers. In
100 * almost all conceivable cases a device driver should not be using
101 * this function
102 */
103static inline unsigned long virt_to_phys(volatile const void *address)
104{
105 return __pa(address);
106}
107
108/*
109 * phys_to_virt - map physical address to virtual
110 * @address: address to remap
111 *
112 * The returned virtual address is a current CPU mapping for
113 * the memory address given. It is only valid to use this function on
114 * addresses that have a kernel mapping
115 *
116 * This function does not handle bus mappings for DMA transfers. In
117 * almost all conceivable cases a device driver should not be using
118 * this function
119 */
120static inline void * phys_to_virt(unsigned long address)
121{
122 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
123}
124
125/*
126 * ISA I/O bus memory addresses are 1:1 with the physical address.
127 */
128static inline unsigned long isa_virt_to_bus(volatile void *address)
129{
130 return virt_to_phys(address);
131}
132
133static inline void *isa_bus_to_virt(unsigned long address)
134{
135 return phys_to_virt(address);
136}
137
138/*
139 * However PCI ones are not necessarily 1:1 and therefore these interfaces
140 * are forbidden in portable PCI drivers.
141 *
142 * Allow them for x86 for legacy drivers, though.
143 */
144#define virt_to_bus virt_to_phys
145#define bus_to_virt phys_to_virt
146
147/*
148 * Change "struct page" to physical address.
149 */
150#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
151
152void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
153 unsigned long prot_val);
154void iounmap(const volatile void __iomem *addr);
155
156/*
157 * ioremap - map bus memory into CPU space
158 * @offset: bus address of the memory
159 * @size: size of the resource to map
160 *
161 * ioremap performs a platform specific sequence of operations to
162 * make bus memory CPU accessible via the readb/readw/readl/writeb/
163 * writew/writel functions and the other mmio helpers. The returned
164 * address is not guaranteed to be usable directly as a virtual
165 * address.
166 */
167#define ioremap(offset, size) \
168 ioremap_prot((offset), (size), _CACHE_UNCACHED)
169#define ioremap_uc ioremap
170
171/*
172 * ioremap_cache - map bus memory into CPU space
173 * @offset: bus address of the memory
174 * @size: size of the resource to map
175 *
176 * ioremap_cache performs a platform specific sequence of operations to
177 * make bus memory CPU accessible via the readb/readw/readl/writeb/
178 * writew/writel functions and the other mmio helpers. The returned
179 * address is not guaranteed to be usable directly as a virtual
180 * address.
181 *
182 * This version of ioremap ensures that the memory is marked cachable by
183 * the CPU. Also enables full write-combining. Useful for some
184 * memory-like regions on I/O busses.
185 */
186#define ioremap_cache(offset, size) \
187 ioremap_prot((offset), (size), _page_cachable_default)
188
189/*
190 * ioremap_wc - map bus memory into CPU space
191 * @offset: bus address of the memory
192 * @size: size of the resource to map
193 *
194 * ioremap_wc performs a platform specific sequence of operations to
195 * make bus memory CPU accessible via the readb/readw/readl/writeb/
196 * writew/writel functions and the other mmio helpers. The returned
197 * address is not guaranteed to be usable directly as a virtual
198 * address.
199 *
200 * This version of ioremap ensures that the memory is marked uncachable
201 * but accelerated by means of write-combining feature. It is specifically
202 * useful for PCIe prefetchable windows, which may vastly improve a
203 * communications performance. If it was determined on boot stage, what
204 * CPU CCA doesn't support UCA, the method shall fall-back to the
205 * _CACHE_UNCACHED option (see cpu_probe() method).
206 */
207#define ioremap_wc(offset, size) \
208 ioremap_prot((offset), (size), boot_cpu_data.writecombine)
209
210#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON64)
211#define war_io_reorder_wmb() wmb()
212#else
213#define war_io_reorder_wmb() barrier()
214#endif
215
216#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
217 \
218static inline void pfx##write##bwlq(type val, \
219 volatile void __iomem *mem) \
220{ \
221 volatile type *__mem; \
222 type __val; \
223 \
224 if (barrier) \
225 iobarrier_rw(); \
226 else \
227 war_io_reorder_wmb(); \
228 \
229 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
230 \
231 __val = pfx##ioswab##bwlq(__mem, val); \
232 \
233 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
234 *__mem = __val; \
235 else if (cpu_has_64bits) { \
236 unsigned long __flags; \
237 type __tmp; \
238 \
239 if (irq) \
240 local_irq_save(__flags); \
241 __asm__ __volatile__( \
242 ".set push" "\t\t# __writeq""\n\t" \
243 ".set arch=r4000" "\n\t" \
244 "dsll32 %L0, %L0, 0" "\n\t" \
245 "dsrl32 %L0, %L0, 0" "\n\t" \
246 "dsll32 %M0, %M0, 0" "\n\t" \
247 "or %L0, %L0, %M0" "\n\t" \
248 "sd %L0, %2" "\n\t" \
249 ".set pop" "\n" \
250 : "=r" (__tmp) \
251 : "0" (__val), "m" (*__mem)); \
252 if (irq) \
253 local_irq_restore(__flags); \
254 } else \
255 BUG(); \
256} \
257 \
258static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
259{ \
260 volatile type *__mem; \
261 type __val; \
262 \
263 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
264 \
265 if (barrier) \
266 iobarrier_rw(); \
267 \
268 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
269 __val = *__mem; \
270 else if (cpu_has_64bits) { \
271 unsigned long __flags; \
272 \
273 if (irq) \
274 local_irq_save(__flags); \
275 __asm__ __volatile__( \
276 ".set push" "\t\t# __readq" "\n\t" \
277 ".set arch=r4000" "\n\t" \
278 "ld %L0, %1" "\n\t" \
279 "dsra32 %M0, %L0, 0" "\n\t" \
280 "sll %L0, %L0, 0" "\n\t" \
281 ".set pop" "\n" \
282 : "=r" (__val) \
283 : "m" (*__mem)); \
284 if (irq) \
285 local_irq_restore(__flags); \
286 } else { \
287 __val = 0; \
288 BUG(); \
289 } \
290 \
291 /* prevent prefetching of coherent DMA data prematurely */ \
292 if (!relax) \
293 rmb(); \
294 return pfx##ioswab##bwlq(__mem, __val); \
295}
296
297#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \
298 \
299static inline void pfx##out##bwlq##p(type val, unsigned long port) \
300{ \
301 volatile type *__addr; \
302 type __val; \
303 \
304 if (barrier) \
305 iobarrier_rw(); \
306 else \
307 war_io_reorder_wmb(); \
308 \
309 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
310 \
311 __val = pfx##ioswab##bwlq(__addr, val); \
312 \
313 /* Really, we want this to be atomic */ \
314 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
315 \
316 *__addr = __val; \
317} \
318 \
319static inline type pfx##in##bwlq##p(unsigned long port) \
320{ \
321 volatile type *__addr; \
322 type __val; \
323 \
324 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
325 \
326 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
327 \
328 if (barrier) \
329 iobarrier_rw(); \
330 \
331 __val = *__addr; \
332 \
333 /* prevent prefetching of coherent DMA data prematurely */ \
334 if (!relax) \
335 rmb(); \
336 return pfx##ioswab##bwlq(__addr, __val); \
337}
338
339#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
340 \
341__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
342
343#define BUILDIO_MEM(bwlq, type) \
344 \
345__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
346__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
347__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
348__BUILD_MEMORY_PFX(, bwlq, type, 0)
349
350BUILDIO_MEM(b, u8)
351BUILDIO_MEM(w, u16)
352BUILDIO_MEM(l, u32)
353#ifdef CONFIG_64BIT
354BUILDIO_MEM(q, u64)
355#else
356__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
357__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
358#endif
359
360#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
361 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \
362 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
363
364#define BUILDIO_IOPORT(bwlq, type) \
365 __BUILD_IOPORT_PFX(, bwlq, type) \
366 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
367
368BUILDIO_IOPORT(b, u8)
369BUILDIO_IOPORT(w, u16)
370BUILDIO_IOPORT(l, u32)
371#ifdef CONFIG_64BIT
372BUILDIO_IOPORT(q, u64)
373#endif
374
375#define __BUILDIO(bwlq, type) \
376 \
377__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
378
379__BUILDIO(q, u64)
380
381#define readb_relaxed __relaxed_readb
382#define readw_relaxed __relaxed_readw
383#define readl_relaxed __relaxed_readl
384#ifdef CONFIG_64BIT
385#define readq_relaxed __relaxed_readq
386#endif
387
388#define writeb_relaxed __relaxed_writeb
389#define writew_relaxed __relaxed_writew
390#define writel_relaxed __relaxed_writel
391#ifdef CONFIG_64BIT
392#define writeq_relaxed __relaxed_writeq
393#endif
394
395#define readb_be(addr) \
396 __raw_readb((__force unsigned *)(addr))
397#define readw_be(addr) \
398 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
399#define readl_be(addr) \
400 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
401#define readq_be(addr) \
402 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
403
404#define writeb_be(val, addr) \
405 __raw_writeb((val), (__force unsigned *)(addr))
406#define writew_be(val, addr) \
407 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
408#define writel_be(val, addr) \
409 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
410#define writeq_be(val, addr) \
411 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
412
413/*
414 * Some code tests for these symbols
415 */
416#ifdef CONFIG_64BIT
417#define readq readq
418#define writeq writeq
419#endif
420
421#define __BUILD_MEMORY_STRING(bwlq, type) \
422 \
423static inline void writes##bwlq(volatile void __iomem *mem, \
424 const void *addr, unsigned int count) \
425{ \
426 const volatile type *__addr = addr; \
427 \
428 while (count--) { \
429 __mem_write##bwlq(*__addr, mem); \
430 __addr++; \
431 } \
432} \
433 \
434static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
435 unsigned int count) \
436{ \
437 volatile type *__addr = addr; \
438 \
439 while (count--) { \
440 *__addr = __mem_read##bwlq(mem); \
441 __addr++; \
442 } \
443}
444
445#define __BUILD_IOPORT_STRING(bwlq, type) \
446 \
447static inline void outs##bwlq(unsigned long port, const void *addr, \
448 unsigned int count) \
449{ \
450 const volatile type *__addr = addr; \
451 \
452 while (count--) { \
453 __mem_out##bwlq(*__addr, port); \
454 __addr++; \
455 } \
456} \
457 \
458static inline void ins##bwlq(unsigned long port, void *addr, \
459 unsigned int count) \
460{ \
461 volatile type *__addr = addr; \
462 \
463 while (count--) { \
464 *__addr = __mem_in##bwlq(port); \
465 __addr++; \
466 } \
467}
468
469#define BUILDSTRING(bwlq, type) \
470 \
471__BUILD_MEMORY_STRING(bwlq, type) \
472__BUILD_IOPORT_STRING(bwlq, type)
473
474BUILDSTRING(b, u8)
475BUILDSTRING(w, u16)
476BUILDSTRING(l, u32)
477#ifdef CONFIG_64BIT
478BUILDSTRING(q, u64)
479#endif
480
481static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
482{
483 memset((void __force *) addr, val, count);
484}
485static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
486{
487 memcpy(dst, (void __force *) src, count);
488}
489static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
490{
491 memcpy((void __force *) dst, src, count);
492}
493
494/*
495 * The caches on some architectures aren't dma-coherent and have need to
496 * handle this in software. There are three types of operations that
497 * can be applied to dma buffers.
498 *
499 * - dma_cache_wback_inv(start, size) makes caches and coherent by
500 * writing the content of the caches back to memory, if necessary.
501 * The function also invalidates the affected part of the caches as
502 * necessary before DMA transfers from outside to memory.
503 * - dma_cache_wback(start, size) makes caches and coherent by
504 * writing the content of the caches back to memory, if necessary.
505 * The function also invalidates the affected part of the caches as
506 * necessary before DMA transfers from outside to memory.
507 * - dma_cache_inv(start, size) invalidates the affected parts of the
508 * caches. Dirty lines of the caches may be written back or simply
509 * be discarded. This operation is necessary before dma operations
510 * to the memory.
511 *
512 * This API used to be exported; it now is for arch code internal use only.
513 */
514#ifdef CONFIG_DMA_NONCOHERENT
515
516extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
517extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
518extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
519
520#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
521#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
522#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
523
524#else /* Sane hardware */
525
526#define dma_cache_wback_inv(start,size) \
527 do { (void) (start); (void) (size); } while (0)
528#define dma_cache_wback(start,size) \
529 do { (void) (start); (void) (size); } while (0)
530#define dma_cache_inv(start,size) \
531 do { (void) (start); (void) (size); } while (0)
532
533#endif /* CONFIG_DMA_NONCOHERENT */
534
535/*
536 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
537 * Avoid interrupt mucking, just adjust the address for 4-byte access.
538 * Assume the addresses are 8-byte aligned.
539 */
540#ifdef __MIPSEB__
541#define __CSR_32_ADJUST 4
542#else
543#define __CSR_32_ADJUST 0
544#endif
545
546#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
547#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
548
549/*
550 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
551 * access
552 */
553#define xlate_dev_mem_ptr(p) __va(p)
554
555/*
556 * Convert a virtual cached pointer to an uncached pointer
557 */
558#define xlate_dev_kmem_ptr(p) p
559
560void __ioread64_copy(void *to, const void __iomem *from, size_t count);
561
562#endif /* _ASM_IO_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#include <linux/compiler.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/irqflags.h>
19
20#include <asm/addrspace.h>
21#include <asm/bug.h>
22#include <asm/byteorder.h>
23#include <asm/cpu.h>
24#include <asm/cpu-features.h>
25#include <asm-generic/iomap.h>
26#include <asm/page.h>
27#include <asm/pgtable-bits.h>
28#include <asm/processor.h>
29#include <asm/string.h>
30
31#include <ioremap.h>
32#include <mangle-port.h>
33
34/*
35 * Slowdown I/O port space accesses for antique hardware.
36 */
37#undef CONF_SLOWDOWN_IO
38
39/*
40 * Raw operations are never swapped in software. OTOH values that raw
41 * operations are working on may or may not have been swapped by the bus
42 * hardware. An example use would be for flash memory that's used for
43 * execute in place.
44 */
45# define __raw_ioswabb(a, x) (x)
46# define __raw_ioswabw(a, x) (x)
47# define __raw_ioswabl(a, x) (x)
48# define __raw_ioswabq(a, x) (x)
49# define ____raw_ioswabq(a, x) (x)
50
51/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
52
53#define IO_SPACE_LIMIT 0xffff
54
55/*
56 * On MIPS I/O ports are memory mapped, so we access them using normal
57 * load/store instructions. mips_io_port_base is the virtual address to
58 * which all ports are being mapped. For sake of efficiency some code
59 * assumes that this is an address that can be loaded with a single lui
60 * instruction, so the lower 16 bits must be zero. Should be true on
61 * on any sane architecture; generic code does not use this assumption.
62 */
63extern const unsigned long mips_io_port_base;
64
65/*
66 * Gcc will generate code to load the value of mips_io_port_base after each
67 * function call which may be fairly wasteful in some cases. So we don't
68 * play quite by the book. We tell gcc mips_io_port_base is a long variable
69 * which solves the code generation issue. Now we need to violate the
70 * aliasing rules a little to make initialization possible and finally we
71 * will need the barrier() to fight side effects of the aliasing chat.
72 * This trickery will eventually collapse under gcc's optimizer. Oh well.
73 */
74static inline void set_io_port_base(unsigned long base)
75{
76 * (unsigned long *) &mips_io_port_base = base;
77 barrier();
78}
79
80/*
81 * Thanks to James van Artsdalen for a better timing-fix than
82 * the two short jumps: using outb's to a nonexistent port seems
83 * to guarantee better timings even on fast machines.
84 *
85 * On the other hand, I'd like to be sure of a non-existent port:
86 * I feel a bit unsafe about using 0x80 (should be safe, though)
87 *
88 * Linus
89 *
90 */
91
92#define __SLOW_DOWN_IO \
93 __asm__ __volatile__( \
94 "sb\t$0,0x80(%0)" \
95 : : "r" (mips_io_port_base));
96
97#ifdef CONF_SLOWDOWN_IO
98#ifdef REALLY_SLOW_IO
99#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
100#else
101#define SLOW_DOWN_IO __SLOW_DOWN_IO
102#endif
103#else
104#define SLOW_DOWN_IO
105#endif
106
107/*
108 * virt_to_phys - map virtual addresses to physical
109 * @address: address to remap
110 *
111 * The returned physical address is the physical (CPU) mapping for
112 * the memory address given. It is only valid to use this function on
113 * addresses directly mapped or allocated via kmalloc.
114 *
115 * This function does not give bus mappings for DMA transfers. In
116 * almost all conceivable cases a device driver should not be using
117 * this function
118 */
119static inline unsigned long virt_to_phys(volatile const void *address)
120{
121 return __pa(address);
122}
123
124/*
125 * phys_to_virt - map physical address to virtual
126 * @address: address to remap
127 *
128 * The returned virtual address is a current CPU mapping for
129 * the memory address given. It is only valid to use this function on
130 * addresses that have a kernel mapping
131 *
132 * This function does not handle bus mappings for DMA transfers. In
133 * almost all conceivable cases a device driver should not be using
134 * this function
135 */
136static inline void * phys_to_virt(unsigned long address)
137{
138 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
139}
140
141/*
142 * ISA I/O bus memory addresses are 1:1 with the physical address.
143 */
144static inline unsigned long isa_virt_to_bus(volatile void * address)
145{
146 return (unsigned long)address - PAGE_OFFSET;
147}
148
149static inline void * isa_bus_to_virt(unsigned long address)
150{
151 return (void *)(address + PAGE_OFFSET);
152}
153
154#define isa_page_to_bus page_to_phys
155
156/*
157 * However PCI ones are not necessarily 1:1 and therefore these interfaces
158 * are forbidden in portable PCI drivers.
159 *
160 * Allow them for x86 for legacy drivers, though.
161 */
162#define virt_to_bus virt_to_phys
163#define bus_to_virt phys_to_virt
164
165/*
166 * Change "struct page" to physical address.
167 */
168#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
169
170extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
171extern void __iounmap(const volatile void __iomem *addr);
172
173#ifndef CONFIG_PCI
174struct pci_dev;
175static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
176#endif
177
178static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
179 unsigned long flags)
180{
181 void __iomem *addr = plat_ioremap(offset, size, flags);
182
183 if (addr)
184 return addr;
185
186#define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
187
188 if (cpu_has_64bit_addresses) {
189 u64 base = UNCAC_BASE;
190
191 /*
192 * R10000 supports a 2 bit uncached attribute therefore
193 * UNCAC_BASE may not equal IO_BASE.
194 */
195 if (flags == _CACHE_UNCACHED)
196 base = (u64) IO_BASE;
197 return (void __iomem *) (unsigned long) (base + offset);
198 } else if (__builtin_constant_p(offset) &&
199 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
200 phys_addr_t phys_addr, last_addr;
201
202 phys_addr = fixup_bigphys_addr(offset, size);
203
204 /* Don't allow wraparound or zero size. */
205 last_addr = phys_addr + size - 1;
206 if (!size || last_addr < phys_addr)
207 return NULL;
208
209 /*
210 * Map uncached objects in the low 512MB of address
211 * space using KSEG1.
212 */
213 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
214 flags == _CACHE_UNCACHED)
215 return (void __iomem *)
216 (unsigned long)CKSEG1ADDR(phys_addr);
217 }
218
219 return __ioremap(offset, size, flags);
220
221#undef __IS_LOW512
222}
223
224/*
225 * ioremap - map bus memory into CPU space
226 * @offset: bus address of the memory
227 * @size: size of the resource to map
228 *
229 * ioremap performs a platform specific sequence of operations to
230 * make bus memory CPU accessible via the readb/readw/readl/writeb/
231 * writew/writel functions and the other mmio helpers. The returned
232 * address is not guaranteed to be usable directly as a virtual
233 * address.
234 */
235#define ioremap(offset, size) \
236 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
237
238/*
239 * ioremap_nocache - map bus memory into CPU space
240 * @offset: bus address of the memory
241 * @size: size of the resource to map
242 *
243 * ioremap_nocache performs a platform specific sequence of operations to
244 * make bus memory CPU accessible via the readb/readw/readl/writeb/
245 * writew/writel functions and the other mmio helpers. The returned
246 * address is not guaranteed to be usable directly as a virtual
247 * address.
248 *
249 * This version of ioremap ensures that the memory is marked uncachable
250 * on the CPU as well as honouring existing caching rules from things like
251 * the PCI bus. Note that there are other caches and buffers on many
252 * busses. In particular driver authors should read up on PCI writes
253 *
254 * It's useful if some control registers are in such an area and
255 * write combining or read caching is not desirable:
256 */
257#define ioremap_nocache(offset, size) \
258 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
259#define ioremap_uc ioremap_nocache
260
261/*
262 * ioremap_cachable - map bus memory into CPU space
263 * @offset: bus address of the memory
264 * @size: size of the resource to map
265 *
266 * ioremap_nocache performs a platform specific sequence of operations to
267 * make bus memory CPU accessible via the readb/readw/readl/writeb/
268 * writew/writel functions and the other mmio helpers. The returned
269 * address is not guaranteed to be usable directly as a virtual
270 * address.
271 *
272 * This version of ioremap ensures that the memory is marked cachable by
273 * the CPU. Also enables full write-combining. Useful for some
274 * memory-like regions on I/O busses.
275 */
276#define ioremap_cachable(offset, size) \
277 __ioremap_mode((offset), (size), _page_cachable_default)
278#define ioremap_cache ioremap_cachable
279
280/*
281 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
282 * requests a cachable mapping, ioremap_uncached_accelerated requests a
283 * mapping using the uncached accelerated mode which isn't supported on
284 * all processors.
285 */
286#define ioremap_cacheable_cow(offset, size) \
287 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
288#define ioremap_uncached_accelerated(offset, size) \
289 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
290
291static inline void iounmap(const volatile void __iomem *addr)
292{
293 if (plat_iounmap(addr))
294 return;
295
296#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
297
298 if (cpu_has_64bit_addresses ||
299 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
300 return;
301
302 __iounmap(addr);
303
304#undef __IS_KSEG1
305}
306
307#ifdef CONFIG_CPU_CAVIUM_OCTEON
308#define war_octeon_io_reorder_wmb() wmb()
309#else
310#define war_octeon_io_reorder_wmb() do { } while (0)
311#endif
312
313#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
314 \
315static inline void pfx##write##bwlq(type val, \
316 volatile void __iomem *mem) \
317{ \
318 volatile type *__mem; \
319 type __val; \
320 \
321 war_octeon_io_reorder_wmb(); \
322 \
323 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
324 \
325 __val = pfx##ioswab##bwlq(__mem, val); \
326 \
327 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
328 *__mem = __val; \
329 else if (cpu_has_64bits) { \
330 unsigned long __flags; \
331 type __tmp; \
332 \
333 if (irq) \
334 local_irq_save(__flags); \
335 __asm__ __volatile__( \
336 ".set arch=r4000" "\t\t# __writeq""\n\t" \
337 "dsll32 %L0, %L0, 0" "\n\t" \
338 "dsrl32 %L0, %L0, 0" "\n\t" \
339 "dsll32 %M0, %M0, 0" "\n\t" \
340 "or %L0, %L0, %M0" "\n\t" \
341 "sd %L0, %2" "\n\t" \
342 ".set mips0" "\n" \
343 : "=r" (__tmp) \
344 : "0" (__val), "m" (*__mem)); \
345 if (irq) \
346 local_irq_restore(__flags); \
347 } else \
348 BUG(); \
349} \
350 \
351static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
352{ \
353 volatile type *__mem; \
354 type __val; \
355 \
356 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
357 \
358 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
359 __val = *__mem; \
360 else if (cpu_has_64bits) { \
361 unsigned long __flags; \
362 \
363 if (irq) \
364 local_irq_save(__flags); \
365 __asm__ __volatile__( \
366 ".set arch=r4000" "\t\t# __readq" "\n\t" \
367 "ld %L0, %1" "\n\t" \
368 "dsra32 %M0, %L0, 0" "\n\t" \
369 "sll %L0, %L0, 0" "\n\t" \
370 ".set mips0" "\n" \
371 : "=r" (__val) \
372 : "m" (*__mem)); \
373 if (irq) \
374 local_irq_restore(__flags); \
375 } else { \
376 __val = 0; \
377 BUG(); \
378 } \
379 \
380 return pfx##ioswab##bwlq(__mem, __val); \
381}
382
383#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
384 \
385static inline void pfx##out##bwlq##p(type val, unsigned long port) \
386{ \
387 volatile type *__addr; \
388 type __val; \
389 \
390 war_octeon_io_reorder_wmb(); \
391 \
392 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
393 \
394 __val = pfx##ioswab##bwlq(__addr, val); \
395 \
396 /* Really, we want this to be atomic */ \
397 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
398 \
399 *__addr = __val; \
400 slow; \
401} \
402 \
403static inline type pfx##in##bwlq##p(unsigned long port) \
404{ \
405 volatile type *__addr; \
406 type __val; \
407 \
408 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409 \
410 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
411 \
412 __val = *__addr; \
413 slow; \
414 \
415 return pfx##ioswab##bwlq(__addr, __val); \
416}
417
418#define __BUILD_MEMORY_PFX(bus, bwlq, type) \
419 \
420__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
421
422#define BUILDIO_MEM(bwlq, type) \
423 \
424__BUILD_MEMORY_PFX(__raw_, bwlq, type) \
425__BUILD_MEMORY_PFX(, bwlq, type) \
426__BUILD_MEMORY_PFX(__mem_, bwlq, type) \
427
428BUILDIO_MEM(b, u8)
429BUILDIO_MEM(w, u16)
430BUILDIO_MEM(l, u32)
431BUILDIO_MEM(q, u64)
432
433#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
434 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
435 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
436
437#define BUILDIO_IOPORT(bwlq, type) \
438 __BUILD_IOPORT_PFX(, bwlq, type) \
439 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
440
441BUILDIO_IOPORT(b, u8)
442BUILDIO_IOPORT(w, u16)
443BUILDIO_IOPORT(l, u32)
444#ifdef CONFIG_64BIT
445BUILDIO_IOPORT(q, u64)
446#endif
447
448#define __BUILDIO(bwlq, type) \
449 \
450__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
451
452__BUILDIO(q, u64)
453
454#define readb_relaxed readb
455#define readw_relaxed readw
456#define readl_relaxed readl
457#define readq_relaxed readq
458
459#define writeb_relaxed writeb
460#define writew_relaxed writew
461#define writel_relaxed writel
462#define writeq_relaxed writeq
463
464#define readb_be(addr) \
465 __raw_readb((__force unsigned *)(addr))
466#define readw_be(addr) \
467 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
468#define readl_be(addr) \
469 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
470#define readq_be(addr) \
471 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
472
473#define writeb_be(val, addr) \
474 __raw_writeb((val), (__force unsigned *)(addr))
475#define writew_be(val, addr) \
476 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
477#define writel_be(val, addr) \
478 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
479#define writeq_be(val, addr) \
480 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
481
482/*
483 * Some code tests for these symbols
484 */
485#define readq readq
486#define writeq writeq
487
488#define __BUILD_MEMORY_STRING(bwlq, type) \
489 \
490static inline void writes##bwlq(volatile void __iomem *mem, \
491 const void *addr, unsigned int count) \
492{ \
493 const volatile type *__addr = addr; \
494 \
495 while (count--) { \
496 __mem_write##bwlq(*__addr, mem); \
497 __addr++; \
498 } \
499} \
500 \
501static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
502 unsigned int count) \
503{ \
504 volatile type *__addr = addr; \
505 \
506 while (count--) { \
507 *__addr = __mem_read##bwlq(mem); \
508 __addr++; \
509 } \
510}
511
512#define __BUILD_IOPORT_STRING(bwlq, type) \
513 \
514static inline void outs##bwlq(unsigned long port, const void *addr, \
515 unsigned int count) \
516{ \
517 const volatile type *__addr = addr; \
518 \
519 while (count--) { \
520 __mem_out##bwlq(*__addr, port); \
521 __addr++; \
522 } \
523} \
524 \
525static inline void ins##bwlq(unsigned long port, void *addr, \
526 unsigned int count) \
527{ \
528 volatile type *__addr = addr; \
529 \
530 while (count--) { \
531 *__addr = __mem_in##bwlq(port); \
532 __addr++; \
533 } \
534}
535
536#define BUILDSTRING(bwlq, type) \
537 \
538__BUILD_MEMORY_STRING(bwlq, type) \
539__BUILD_IOPORT_STRING(bwlq, type)
540
541BUILDSTRING(b, u8)
542BUILDSTRING(w, u16)
543BUILDSTRING(l, u32)
544#ifdef CONFIG_64BIT
545BUILDSTRING(q, u64)
546#endif
547
548
549#ifdef CONFIG_CPU_CAVIUM_OCTEON
550#define mmiowb() wmb()
551#else
552/* Depends on MIPS II instruction set */
553#define mmiowb() asm volatile ("sync" ::: "memory")
554#endif
555
556static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
557{
558 memset((void __force *) addr, val, count);
559}
560static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
561{
562 memcpy(dst, (void __force *) src, count);
563}
564static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
565{
566 memcpy((void __force *) dst, src, count);
567}
568
569/*
570 * The caches on some architectures aren't dma-coherent and have need to
571 * handle this in software. There are three types of operations that
572 * can be applied to dma buffers.
573 *
574 * - dma_cache_wback_inv(start, size) makes caches and coherent by
575 * writing the content of the caches back to memory, if necessary.
576 * The function also invalidates the affected part of the caches as
577 * necessary before DMA transfers from outside to memory.
578 * - dma_cache_wback(start, size) makes caches and coherent by
579 * writing the content of the caches back to memory, if necessary.
580 * The function also invalidates the affected part of the caches as
581 * necessary before DMA transfers from outside to memory.
582 * - dma_cache_inv(start, size) invalidates the affected parts of the
583 * caches. Dirty lines of the caches may be written back or simply
584 * be discarded. This operation is necessary before dma operations
585 * to the memory.
586 *
587 * This API used to be exported; it now is for arch code internal use only.
588 */
589#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
590
591extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
592extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
593extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
594
595#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
596#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
597#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
598
599#else /* Sane hardware */
600
601#define dma_cache_wback_inv(start,size) \
602 do { (void) (start); (void) (size); } while (0)
603#define dma_cache_wback(start,size) \
604 do { (void) (start); (void) (size); } while (0)
605#define dma_cache_inv(start,size) \
606 do { (void) (start); (void) (size); } while (0)
607
608#endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
609
610/*
611 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
612 * Avoid interrupt mucking, just adjust the address for 4-byte access.
613 * Assume the addresses are 8-byte aligned.
614 */
615#ifdef __MIPSEB__
616#define __CSR_32_ADJUST 4
617#else
618#define __CSR_32_ADJUST 0
619#endif
620
621#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
622#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
623
624/*
625 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
626 * access
627 */
628#define xlate_dev_mem_ptr(p) __va(p)
629
630/*
631 * Convert a virtual cached pointer to an uncached pointer
632 */
633#define xlate_dev_kmem_ptr(p) p
634
635#endif /* _ASM_IO_H */