Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Kernel support for the ptrace() and syscall tracing interfaces.
4 *
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 *
11 * Derived from the x86 and Alpha versions.
12 */
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/sched/task.h>
16#include <linux/sched/task_stack.h>
17#include <linux/mm.h>
18#include <linux/errno.h>
19#include <linux/ptrace.h>
20#include <linux/user.h>
21#include <linux/security.h>
22#include <linux/audit.h>
23#include <linux/signal.h>
24#include <linux/regset.h>
25#include <linux/elf.h>
26#include <linux/tracehook.h>
27
28#include <asm/processor.h>
29#include <asm/ptrace_offsets.h>
30#include <asm/rse.h>
31#include <linux/uaccess.h>
32#include <asm/unwind.h>
33#ifdef CONFIG_PERFMON
34#include <asm/perfmon.h>
35#endif
36
37#include "entry.h"
38
39/*
40 * Bits in the PSR that we allow ptrace() to change:
41 * be, up, ac, mfl, mfh (the user mask; five bits total)
42 * db (debug breakpoint fault; one bit)
43 * id (instruction debug fault disable; one bit)
44 * dd (data debug fault disable; one bit)
45 * ri (restart instruction; two bits)
46 * is (instruction set; one bit)
47 */
48#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
49 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
50
51#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
52#define PFM_MASK MASK(38)
53
54#define PTRACE_DEBUG 0
55
56#if PTRACE_DEBUG
57# define dprintk(format...) printk(format)
58# define inline
59#else
60# define dprintk(format...)
61#endif
62
63/* Return TRUE if PT was created due to kernel-entry via a system-call. */
64
65static inline int
66in_syscall (struct pt_regs *pt)
67{
68 return (long) pt->cr_ifs >= 0;
69}
70
71/*
72 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
73 * bitset where bit i is set iff the NaT bit of register i is set.
74 */
75unsigned long
76ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
77{
78# define GET_BITS(first, last, unat) \
79 ({ \
80 unsigned long bit = ia64_unat_pos(&pt->r##first); \
81 unsigned long nbits = (last - first + 1); \
82 unsigned long mask = MASK(nbits) << first; \
83 unsigned long dist; \
84 if (bit < first) \
85 dist = 64 + bit - first; \
86 else \
87 dist = bit - first; \
88 ia64_rotr(unat, dist) & mask; \
89 })
90 unsigned long val;
91
92 /*
93 * Registers that are stored consecutively in struct pt_regs
94 * can be handled in parallel. If the register order in
95 * struct_pt_regs changes, this code MUST be updated.
96 */
97 val = GET_BITS( 1, 1, scratch_unat);
98 val |= GET_BITS( 2, 3, scratch_unat);
99 val |= GET_BITS(12, 13, scratch_unat);
100 val |= GET_BITS(14, 14, scratch_unat);
101 val |= GET_BITS(15, 15, scratch_unat);
102 val |= GET_BITS( 8, 11, scratch_unat);
103 val |= GET_BITS(16, 31, scratch_unat);
104 return val;
105
106# undef GET_BITS
107}
108
109/*
110 * Set the NaT bits for the scratch registers according to NAT and
111 * return the resulting unat (assuming the scratch registers are
112 * stored in PT).
113 */
114unsigned long
115ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
116{
117# define PUT_BITS(first, last, nat) \
118 ({ \
119 unsigned long bit = ia64_unat_pos(&pt->r##first); \
120 unsigned long nbits = (last - first + 1); \
121 unsigned long mask = MASK(nbits) << first; \
122 long dist; \
123 if (bit < first) \
124 dist = 64 + bit - first; \
125 else \
126 dist = bit - first; \
127 ia64_rotl(nat & mask, dist); \
128 })
129 unsigned long scratch_unat;
130
131 /*
132 * Registers that are stored consecutively in struct pt_regs
133 * can be handled in parallel. If the register order in
134 * struct_pt_regs changes, this code MUST be updated.
135 */
136 scratch_unat = PUT_BITS( 1, 1, nat);
137 scratch_unat |= PUT_BITS( 2, 3, nat);
138 scratch_unat |= PUT_BITS(12, 13, nat);
139 scratch_unat |= PUT_BITS(14, 14, nat);
140 scratch_unat |= PUT_BITS(15, 15, nat);
141 scratch_unat |= PUT_BITS( 8, 11, nat);
142 scratch_unat |= PUT_BITS(16, 31, nat);
143
144 return scratch_unat;
145
146# undef PUT_BITS
147}
148
149#define IA64_MLX_TEMPLATE 0x2
150#define IA64_MOVL_OPCODE 6
151
152void
153ia64_increment_ip (struct pt_regs *regs)
154{
155 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
156
157 if (ri > 2) {
158 ri = 0;
159 regs->cr_iip += 16;
160 } else if (ri == 2) {
161 get_user(w0, (char __user *) regs->cr_iip + 0);
162 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
163 /*
164 * rfi'ing to slot 2 of an MLX bundle causes
165 * an illegal operation fault. We don't want
166 * that to happen...
167 */
168 ri = 0;
169 regs->cr_iip += 16;
170 }
171 }
172 ia64_psr(regs)->ri = ri;
173}
174
175void
176ia64_decrement_ip (struct pt_regs *regs)
177{
178 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
179
180 if (ia64_psr(regs)->ri == 0) {
181 regs->cr_iip -= 16;
182 ri = 2;
183 get_user(w0, (char __user *) regs->cr_iip + 0);
184 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
185 /*
186 * rfi'ing to slot 2 of an MLX bundle causes
187 * an illegal operation fault. We don't want
188 * that to happen...
189 */
190 ri = 1;
191 }
192 }
193 ia64_psr(regs)->ri = ri;
194}
195
196/*
197 * This routine is used to read an rnat bits that are stored on the
198 * kernel backing store. Since, in general, the alignment of the user
199 * and kernel are different, this is not completely trivial. In
200 * essence, we need to construct the user RNAT based on up to two
201 * kernel RNAT values and/or the RNAT value saved in the child's
202 * pt_regs.
203 *
204 * user rbs
205 *
206 * +--------+ <-- lowest address
207 * | slot62 |
208 * +--------+
209 * | rnat | 0x....1f8
210 * +--------+
211 * | slot00 | \
212 * +--------+ |
213 * | slot01 | > child_regs->ar_rnat
214 * +--------+ |
215 * | slot02 | / kernel rbs
216 * +--------+ +--------+
217 * <- child_regs->ar_bspstore | slot61 | <-- krbs
218 * +- - - - + +--------+
219 * | slot62 |
220 * +- - - - + +--------+
221 * | rnat |
222 * +- - - - + +--------+
223 * vrnat | slot00 |
224 * +- - - - + +--------+
225 * = =
226 * +--------+
227 * | slot00 | \
228 * +--------+ |
229 * | slot01 | > child_stack->ar_rnat
230 * +--------+ |
231 * | slot02 | /
232 * +--------+
233 * <--- child_stack->ar_bspstore
234 *
235 * The way to think of this code is as follows: bit 0 in the user rnat
236 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
237 * value. The kernel rnat value holding this bit is stored in
238 * variable rnat0. rnat1 is loaded with the kernel rnat value that
239 * form the upper bits of the user rnat value.
240 *
241 * Boundary cases:
242 *
243 * o when reading the rnat "below" the first rnat slot on the kernel
244 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
245 * merged in from pt->ar_rnat.
246 *
247 * o when reading the rnat "above" the last rnat slot on the kernel
248 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
249 */
250static unsigned long
251get_rnat (struct task_struct *task, struct switch_stack *sw,
252 unsigned long *krbs, unsigned long *urnat_addr,
253 unsigned long *urbs_end)
254{
255 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
256 unsigned long umask = 0, mask, m;
257 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
258 long num_regs, nbits;
259 struct pt_regs *pt;
260
261 pt = task_pt_regs(task);
262 kbsp = (unsigned long *) sw->ar_bspstore;
263 ubspstore = (unsigned long *) pt->ar_bspstore;
264
265 if (urbs_end < urnat_addr)
266 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
267 else
268 nbits = 63;
269 mask = MASK(nbits);
270 /*
271 * First, figure out which bit number slot 0 in user-land maps
272 * to in the kernel rnat. Do this by figuring out how many
273 * register slots we're beyond the user's backingstore and
274 * then computing the equivalent address in kernel space.
275 */
276 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
277 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
278 shift = ia64_rse_slot_num(slot0_kaddr);
279 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
280 rnat0_kaddr = rnat1_kaddr - 64;
281
282 if (ubspstore + 63 > urnat_addr) {
283 /* some bits need to be merged in from pt->ar_rnat */
284 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
285 urnat = (pt->ar_rnat & umask);
286 mask &= ~umask;
287 if (!mask)
288 return urnat;
289 }
290
291 m = mask << shift;
292 if (rnat0_kaddr >= kbsp)
293 rnat0 = sw->ar_rnat;
294 else if (rnat0_kaddr > krbs)
295 rnat0 = *rnat0_kaddr;
296 urnat |= (rnat0 & m) >> shift;
297
298 m = mask >> (63 - shift);
299 if (rnat1_kaddr >= kbsp)
300 rnat1 = sw->ar_rnat;
301 else if (rnat1_kaddr > krbs)
302 rnat1 = *rnat1_kaddr;
303 urnat |= (rnat1 & m) << (63 - shift);
304 return urnat;
305}
306
307/*
308 * The reverse of get_rnat.
309 */
310static void
311put_rnat (struct task_struct *task, struct switch_stack *sw,
312 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
313 unsigned long *urbs_end)
314{
315 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
316 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
317 long num_regs, nbits;
318 struct pt_regs *pt;
319 unsigned long cfm, *urbs_kargs;
320
321 pt = task_pt_regs(task);
322 kbsp = (unsigned long *) sw->ar_bspstore;
323 ubspstore = (unsigned long *) pt->ar_bspstore;
324
325 urbs_kargs = urbs_end;
326 if (in_syscall(pt)) {
327 /*
328 * If entered via syscall, don't allow user to set rnat bits
329 * for syscall args.
330 */
331 cfm = pt->cr_ifs;
332 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
333 }
334
335 if (urbs_kargs >= urnat_addr)
336 nbits = 63;
337 else {
338 if ((urnat_addr - 63) >= urbs_kargs)
339 return;
340 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
341 }
342 mask = MASK(nbits);
343
344 /*
345 * First, figure out which bit number slot 0 in user-land maps
346 * to in the kernel rnat. Do this by figuring out how many
347 * register slots we're beyond the user's backingstore and
348 * then computing the equivalent address in kernel space.
349 */
350 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
351 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
352 shift = ia64_rse_slot_num(slot0_kaddr);
353 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
354 rnat0_kaddr = rnat1_kaddr - 64;
355
356 if (ubspstore + 63 > urnat_addr) {
357 /* some bits need to be place in pt->ar_rnat: */
358 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
359 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
360 mask &= ~umask;
361 if (!mask)
362 return;
363 }
364 /*
365 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
366 * rnat slot is ignored. so we don't have to clear it here.
367 */
368 rnat0 = (urnat << shift);
369 m = mask << shift;
370 if (rnat0_kaddr >= kbsp)
371 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
372 else if (rnat0_kaddr > krbs)
373 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
374
375 rnat1 = (urnat >> (63 - shift));
376 m = mask >> (63 - shift);
377 if (rnat1_kaddr >= kbsp)
378 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
379 else if (rnat1_kaddr > krbs)
380 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
381}
382
383static inline int
384on_kernel_rbs (unsigned long addr, unsigned long bspstore,
385 unsigned long urbs_end)
386{
387 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
388 urbs_end);
389 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
390}
391
392/*
393 * Read a word from the user-level backing store of task CHILD. ADDR
394 * is the user-level address to read the word from, VAL a pointer to
395 * the return value, and USER_BSP gives the end of the user-level
396 * backing store (i.e., it's the address that would be in ar.bsp after
397 * the user executed a "cover" instruction).
398 *
399 * This routine takes care of accessing the kernel register backing
400 * store for those registers that got spilled there. It also takes
401 * care of calculating the appropriate RNaT collection words.
402 */
403long
404ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
405 unsigned long user_rbs_end, unsigned long addr, long *val)
406{
407 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
408 struct pt_regs *child_regs;
409 size_t copied;
410 long ret;
411
412 urbs_end = (long *) user_rbs_end;
413 laddr = (unsigned long *) addr;
414 child_regs = task_pt_regs(child);
415 bspstore = (unsigned long *) child_regs->ar_bspstore;
416 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
417 if (on_kernel_rbs(addr, (unsigned long) bspstore,
418 (unsigned long) urbs_end))
419 {
420 /*
421 * Attempt to read the RBS in an area that's actually
422 * on the kernel RBS => read the corresponding bits in
423 * the kernel RBS.
424 */
425 rnat_addr = ia64_rse_rnat_addr(laddr);
426 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
427
428 if (laddr == rnat_addr) {
429 /* return NaT collection word itself */
430 *val = ret;
431 return 0;
432 }
433
434 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
435 /*
436 * It is implementation dependent whether the
437 * data portion of a NaT value gets saved on a
438 * st8.spill or RSE spill (e.g., see EAS 2.6,
439 * 4.4.4.6 Register Spill and Fill). To get
440 * consistent behavior across all possible
441 * IA-64 implementations, we return zero in
442 * this case.
443 */
444 *val = 0;
445 return 0;
446 }
447
448 if (laddr < urbs_end) {
449 /*
450 * The desired word is on the kernel RBS and
451 * is not a NaT.
452 */
453 regnum = ia64_rse_num_regs(bspstore, laddr);
454 *val = *ia64_rse_skip_regs(krbs, regnum);
455 return 0;
456 }
457 }
458 copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
459 if (copied != sizeof(ret))
460 return -EIO;
461 *val = ret;
462 return 0;
463}
464
465long
466ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
467 unsigned long user_rbs_end, unsigned long addr, long val)
468{
469 unsigned long *bspstore, *krbs, regnum, *laddr;
470 unsigned long *urbs_end = (long *) user_rbs_end;
471 struct pt_regs *child_regs;
472
473 laddr = (unsigned long *) addr;
474 child_regs = task_pt_regs(child);
475 bspstore = (unsigned long *) child_regs->ar_bspstore;
476 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
477 if (on_kernel_rbs(addr, (unsigned long) bspstore,
478 (unsigned long) urbs_end))
479 {
480 /*
481 * Attempt to write the RBS in an area that's actually
482 * on the kernel RBS => write the corresponding bits
483 * in the kernel RBS.
484 */
485 if (ia64_rse_is_rnat_slot(laddr))
486 put_rnat(child, child_stack, krbs, laddr, val,
487 urbs_end);
488 else {
489 if (laddr < urbs_end) {
490 regnum = ia64_rse_num_regs(bspstore, laddr);
491 *ia64_rse_skip_regs(krbs, regnum) = val;
492 }
493 }
494 } else if (access_process_vm(child, addr, &val, sizeof(val),
495 FOLL_FORCE | FOLL_WRITE)
496 != sizeof(val))
497 return -EIO;
498 return 0;
499}
500
501/*
502 * Calculate the address of the end of the user-level register backing
503 * store. This is the address that would have been stored in ar.bsp
504 * if the user had executed a "cover" instruction right before
505 * entering the kernel. If CFMP is not NULL, it is used to return the
506 * "current frame mask" that was active at the time the kernel was
507 * entered.
508 */
509unsigned long
510ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
511 unsigned long *cfmp)
512{
513 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
514 long ndirty;
515
516 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
517 bspstore = (unsigned long *) pt->ar_bspstore;
518 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
519
520 if (in_syscall(pt))
521 ndirty += (cfm & 0x7f);
522 else
523 cfm &= ~(1UL << 63); /* clear valid bit */
524
525 if (cfmp)
526 *cfmp = cfm;
527 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
528}
529
530/*
531 * Synchronize (i.e, write) the RSE backing store living in kernel
532 * space to the VM of the CHILD task. SW and PT are the pointers to
533 * the switch_stack and pt_regs structures, respectively.
534 * USER_RBS_END is the user-level address at which the backing store
535 * ends.
536 */
537long
538ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
539 unsigned long user_rbs_start, unsigned long user_rbs_end)
540{
541 unsigned long addr, val;
542 long ret;
543
544 /* now copy word for word from kernel rbs to user rbs: */
545 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
546 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
547 if (ret < 0)
548 return ret;
549 if (access_process_vm(child, addr, &val, sizeof(val),
550 FOLL_FORCE | FOLL_WRITE)
551 != sizeof(val))
552 return -EIO;
553 }
554 return 0;
555}
556
557static long
558ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
559 unsigned long user_rbs_start, unsigned long user_rbs_end)
560{
561 unsigned long addr, val;
562 long ret;
563
564 /* now copy word for word from user rbs to kernel rbs: */
565 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
566 if (access_process_vm(child, addr, &val, sizeof(val),
567 FOLL_FORCE)
568 != sizeof(val))
569 return -EIO;
570
571 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
572 if (ret < 0)
573 return ret;
574 }
575 return 0;
576}
577
578typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
579 unsigned long, unsigned long);
580
581static void do_sync_rbs(struct unw_frame_info *info, void *arg)
582{
583 struct pt_regs *pt;
584 unsigned long urbs_end;
585 syncfunc_t fn = arg;
586
587 if (unw_unwind_to_user(info) < 0)
588 return;
589 pt = task_pt_regs(info->task);
590 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
591
592 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
593}
594
595/*
596 * when a thread is stopped (ptraced), debugger might change thread's user
597 * stack (change memory directly), and we must avoid the RSE stored in kernel
598 * to override user stack (user space's RSE is newer than kernel's in the
599 * case). To workaround the issue, we copy kernel RSE to user RSE before the
600 * task is stopped, so user RSE has updated data. we then copy user RSE to
601 * kernel after the task is resummed from traced stop and kernel will use the
602 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
603 * synchronize user RSE to kernel.
604 */
605void ia64_ptrace_stop(void)
606{
607 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
608 return;
609 set_notify_resume(current);
610 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
611}
612
613/*
614 * This is called to read back the register backing store.
615 */
616void ia64_sync_krbs(void)
617{
618 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
619
620 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
621}
622
623/*
624 * After PTRACE_ATTACH, a thread's register backing store area in user
625 * space is assumed to contain correct data whenever the thread is
626 * stopped. arch_ptrace_stop takes care of this on tracing stops.
627 * But if the child was already stopped for job control when we attach
628 * to it, then it might not ever get into ptrace_stop by the time we
629 * want to examine the user memory containing the RBS.
630 */
631void
632ptrace_attach_sync_user_rbs (struct task_struct *child)
633{
634 int stopped = 0;
635 struct unw_frame_info info;
636
637 /*
638 * If the child is in TASK_STOPPED, we need to change that to
639 * TASK_TRACED momentarily while we operate on it. This ensures
640 * that the child won't be woken up and return to user mode while
641 * we are doing the sync. (It can only be woken up for SIGKILL.)
642 */
643
644 read_lock(&tasklist_lock);
645 if (child->sighand) {
646 spin_lock_irq(&child->sighand->siglock);
647 if (child->state == TASK_STOPPED &&
648 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
649 set_notify_resume(child);
650
651 child->state = TASK_TRACED;
652 stopped = 1;
653 }
654 spin_unlock_irq(&child->sighand->siglock);
655 }
656 read_unlock(&tasklist_lock);
657
658 if (!stopped)
659 return;
660
661 unw_init_from_blocked_task(&info, child);
662 do_sync_rbs(&info, ia64_sync_user_rbs);
663
664 /*
665 * Now move the child back into TASK_STOPPED if it should be in a
666 * job control stop, so that SIGCONT can be used to wake it up.
667 */
668 read_lock(&tasklist_lock);
669 if (child->sighand) {
670 spin_lock_irq(&child->sighand->siglock);
671 if (child->state == TASK_TRACED &&
672 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
673 child->state = TASK_STOPPED;
674 }
675 spin_unlock_irq(&child->sighand->siglock);
676 }
677 read_unlock(&tasklist_lock);
678}
679
680/*
681 * Write f32-f127 back to task->thread.fph if it has been modified.
682 */
683inline void
684ia64_flush_fph (struct task_struct *task)
685{
686 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
687
688 /*
689 * Prevent migrating this task while
690 * we're fiddling with the FPU state
691 */
692 preempt_disable();
693 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
694 psr->mfh = 0;
695 task->thread.flags |= IA64_THREAD_FPH_VALID;
696 ia64_save_fpu(&task->thread.fph[0]);
697 }
698 preempt_enable();
699}
700
701/*
702 * Sync the fph state of the task so that it can be manipulated
703 * through thread.fph. If necessary, f32-f127 are written back to
704 * thread.fph or, if the fph state hasn't been used before, thread.fph
705 * is cleared to zeroes. Also, access to f32-f127 is disabled to
706 * ensure that the task picks up the state from thread.fph when it
707 * executes again.
708 */
709void
710ia64_sync_fph (struct task_struct *task)
711{
712 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
713
714 ia64_flush_fph(task);
715 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
716 task->thread.flags |= IA64_THREAD_FPH_VALID;
717 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
718 }
719 ia64_drop_fpu(task);
720 psr->dfh = 1;
721}
722
723/*
724 * Change the machine-state of CHILD such that it will return via the normal
725 * kernel exit-path, rather than the syscall-exit path.
726 */
727static void
728convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
729 unsigned long cfm)
730{
731 struct unw_frame_info info, prev_info;
732 unsigned long ip, sp, pr;
733
734 unw_init_from_blocked_task(&info, child);
735 while (1) {
736 prev_info = info;
737 if (unw_unwind(&info) < 0)
738 return;
739
740 unw_get_sp(&info, &sp);
741 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
742 < IA64_PT_REGS_SIZE) {
743 dprintk("ptrace.%s: ran off the top of the kernel "
744 "stack\n", __func__);
745 return;
746 }
747 if (unw_get_pr (&prev_info, &pr) < 0) {
748 unw_get_rp(&prev_info, &ip);
749 dprintk("ptrace.%s: failed to read "
750 "predicate register (ip=0x%lx)\n",
751 __func__, ip);
752 return;
753 }
754 if (unw_is_intr_frame(&info)
755 && (pr & (1UL << PRED_USER_STACK)))
756 break;
757 }
758
759 /*
760 * Note: at the time of this call, the target task is blocked
761 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
762 * (aka, "pLvSys") we redirect execution from
763 * .work_pending_syscall_end to .work_processed_kernel.
764 */
765 unw_get_pr(&prev_info, &pr);
766 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
767 pr |= (1UL << PRED_NON_SYSCALL);
768 unw_set_pr(&prev_info, pr);
769
770 pt->cr_ifs = (1UL << 63) | cfm;
771 /*
772 * Clear the memory that is NOT written on syscall-entry to
773 * ensure we do not leak kernel-state to user when execution
774 * resumes.
775 */
776 pt->r2 = 0;
777 pt->r3 = 0;
778 pt->r14 = 0;
779 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
780 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
781 pt->b7 = 0;
782 pt->ar_ccv = 0;
783 pt->ar_csd = 0;
784 pt->ar_ssd = 0;
785}
786
787static int
788access_nat_bits (struct task_struct *child, struct pt_regs *pt,
789 struct unw_frame_info *info,
790 unsigned long *data, int write_access)
791{
792 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
793 char nat = 0;
794
795 if (write_access) {
796 nat_bits = *data;
797 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
798 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
799 dprintk("ptrace: failed to set ar.unat\n");
800 return -1;
801 }
802 for (regnum = 4; regnum <= 7; ++regnum) {
803 unw_get_gr(info, regnum, &dummy, &nat);
804 unw_set_gr(info, regnum, dummy,
805 (nat_bits >> regnum) & 1);
806 }
807 } else {
808 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
809 dprintk("ptrace: failed to read ar.unat\n");
810 return -1;
811 }
812 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
813 for (regnum = 4; regnum <= 7; ++regnum) {
814 unw_get_gr(info, regnum, &dummy, &nat);
815 nat_bits |= (nat != 0) << regnum;
816 }
817 *data = nat_bits;
818 }
819 return 0;
820}
821
822static int
823access_uarea (struct task_struct *child, unsigned long addr,
824 unsigned long *data, int write_access);
825
826static long
827ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
828{
829 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
830 struct unw_frame_info info;
831 struct ia64_fpreg fpval;
832 struct switch_stack *sw;
833 struct pt_regs *pt;
834 long ret, retval = 0;
835 char nat = 0;
836 int i;
837
838 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
839 return -EIO;
840
841 pt = task_pt_regs(child);
842 sw = (struct switch_stack *) (child->thread.ksp + 16);
843 unw_init_from_blocked_task(&info, child);
844 if (unw_unwind_to_user(&info) < 0) {
845 return -EIO;
846 }
847
848 if (((unsigned long) ppr & 0x7) != 0) {
849 dprintk("ptrace:unaligned register address %p\n", ppr);
850 return -EIO;
851 }
852
853 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
854 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
855 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
856 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
857 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
858 || access_uarea(child, PT_CFM, &cfm, 0)
859 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
860 return -EIO;
861
862 /* control regs */
863
864 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
865 retval |= __put_user(psr, &ppr->cr_ipsr);
866
867 /* app regs */
868
869 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
870 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
871 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
872 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
873 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
874 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
875
876 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
877 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
878 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
879 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
880 retval |= __put_user(cfm, &ppr->cfm);
881
882 /* gr1-gr3 */
883
884 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
885 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
886
887 /* gr4-gr7 */
888
889 for (i = 4; i < 8; i++) {
890 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
891 return -EIO;
892 retval |= __put_user(val, &ppr->gr[i]);
893 }
894
895 /* gr8-gr11 */
896
897 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
898
899 /* gr12-gr15 */
900
901 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
902 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
903 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
904
905 /* gr16-gr31 */
906
907 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
908
909 /* b0 */
910
911 retval |= __put_user(pt->b0, &ppr->br[0]);
912
913 /* b1-b5 */
914
915 for (i = 1; i < 6; i++) {
916 if (unw_access_br(&info, i, &val, 0) < 0)
917 return -EIO;
918 __put_user(val, &ppr->br[i]);
919 }
920
921 /* b6-b7 */
922
923 retval |= __put_user(pt->b6, &ppr->br[6]);
924 retval |= __put_user(pt->b7, &ppr->br[7]);
925
926 /* fr2-fr5 */
927
928 for (i = 2; i < 6; i++) {
929 if (unw_get_fr(&info, i, &fpval) < 0)
930 return -EIO;
931 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
932 }
933
934 /* fr6-fr11 */
935
936 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
937 sizeof(struct ia64_fpreg) * 6);
938
939 /* fp scratch regs(12-15) */
940
941 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
942 sizeof(struct ia64_fpreg) * 4);
943
944 /* fr16-fr31 */
945
946 for (i = 16; i < 32; i++) {
947 if (unw_get_fr(&info, i, &fpval) < 0)
948 return -EIO;
949 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
950 }
951
952 /* fph */
953
954 ia64_flush_fph(child);
955 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
956 sizeof(ppr->fr[32]) * 96);
957
958 /* preds */
959
960 retval |= __put_user(pt->pr, &ppr->pr);
961
962 /* nat bits */
963
964 retval |= __put_user(nat_bits, &ppr->nat);
965
966 ret = retval ? -EIO : 0;
967 return ret;
968}
969
970static long
971ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
972{
973 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
974 struct unw_frame_info info;
975 struct switch_stack *sw;
976 struct ia64_fpreg fpval;
977 struct pt_regs *pt;
978 long ret, retval = 0;
979 int i;
980
981 memset(&fpval, 0, sizeof(fpval));
982
983 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
984 return -EIO;
985
986 pt = task_pt_regs(child);
987 sw = (struct switch_stack *) (child->thread.ksp + 16);
988 unw_init_from_blocked_task(&info, child);
989 if (unw_unwind_to_user(&info) < 0) {
990 return -EIO;
991 }
992
993 if (((unsigned long) ppr & 0x7) != 0) {
994 dprintk("ptrace:unaligned register address %p\n", ppr);
995 return -EIO;
996 }
997
998 /* control regs */
999
1000 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1001 retval |= __get_user(psr, &ppr->cr_ipsr);
1002
1003 /* app regs */
1004
1005 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1006 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1007 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1008 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1009 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1010 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1011
1012 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1013 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1014 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1015 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1016 retval |= __get_user(cfm, &ppr->cfm);
1017
1018 /* gr1-gr3 */
1019
1020 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1021 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1022
1023 /* gr4-gr7 */
1024
1025 for (i = 4; i < 8; i++) {
1026 retval |= __get_user(val, &ppr->gr[i]);
1027 /* NaT bit will be set via PT_NAT_BITS: */
1028 if (unw_set_gr(&info, i, val, 0) < 0)
1029 return -EIO;
1030 }
1031
1032 /* gr8-gr11 */
1033
1034 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1035
1036 /* gr12-gr15 */
1037
1038 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1039 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1040 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1041
1042 /* gr16-gr31 */
1043
1044 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1045
1046 /* b0 */
1047
1048 retval |= __get_user(pt->b0, &ppr->br[0]);
1049
1050 /* b1-b5 */
1051
1052 for (i = 1; i < 6; i++) {
1053 retval |= __get_user(val, &ppr->br[i]);
1054 unw_set_br(&info, i, val);
1055 }
1056
1057 /* b6-b7 */
1058
1059 retval |= __get_user(pt->b6, &ppr->br[6]);
1060 retval |= __get_user(pt->b7, &ppr->br[7]);
1061
1062 /* fr2-fr5 */
1063
1064 for (i = 2; i < 6; i++) {
1065 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1066 if (unw_set_fr(&info, i, fpval) < 0)
1067 return -EIO;
1068 }
1069
1070 /* fr6-fr11 */
1071
1072 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1073 sizeof(ppr->fr[6]) * 6);
1074
1075 /* fp scratch regs(12-15) */
1076
1077 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1078 sizeof(ppr->fr[12]) * 4);
1079
1080 /* fr16-fr31 */
1081
1082 for (i = 16; i < 32; i++) {
1083 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1084 sizeof(fpval));
1085 if (unw_set_fr(&info, i, fpval) < 0)
1086 return -EIO;
1087 }
1088
1089 /* fph */
1090
1091 ia64_sync_fph(child);
1092 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1093 sizeof(ppr->fr[32]) * 96);
1094
1095 /* preds */
1096
1097 retval |= __get_user(pt->pr, &ppr->pr);
1098
1099 /* nat bits */
1100
1101 retval |= __get_user(nat_bits, &ppr->nat);
1102
1103 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1104 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1105 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1106 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1107 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1108 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1109 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1110 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1111
1112 ret = retval ? -EIO : 0;
1113 return ret;
1114}
1115
1116void
1117user_enable_single_step (struct task_struct *child)
1118{
1119 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1120
1121 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1122 child_psr->ss = 1;
1123}
1124
1125void
1126user_enable_block_step (struct task_struct *child)
1127{
1128 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1129
1130 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1131 child_psr->tb = 1;
1132}
1133
1134void
1135user_disable_single_step (struct task_struct *child)
1136{
1137 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1138
1139 /* make sure the single step/taken-branch trap bits are not set: */
1140 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1141 child_psr->ss = 0;
1142 child_psr->tb = 0;
1143}
1144
1145/*
1146 * Called by kernel/ptrace.c when detaching..
1147 *
1148 * Make sure the single step bit is not set.
1149 */
1150void
1151ptrace_disable (struct task_struct *child)
1152{
1153 user_disable_single_step(child);
1154}
1155
1156long
1157arch_ptrace (struct task_struct *child, long request,
1158 unsigned long addr, unsigned long data)
1159{
1160 switch (request) {
1161 case PTRACE_PEEKTEXT:
1162 case PTRACE_PEEKDATA:
1163 /* read word at location addr */
1164 if (ptrace_access_vm(child, addr, &data, sizeof(data),
1165 FOLL_FORCE)
1166 != sizeof(data))
1167 return -EIO;
1168 /* ensure return value is not mistaken for error code */
1169 force_successful_syscall_return();
1170 return data;
1171
1172 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1173 * by the generic ptrace_request().
1174 */
1175
1176 case PTRACE_PEEKUSR:
1177 /* read the word at addr in the USER area */
1178 if (access_uarea(child, addr, &data, 0) < 0)
1179 return -EIO;
1180 /* ensure return value is not mistaken for error code */
1181 force_successful_syscall_return();
1182 return data;
1183
1184 case PTRACE_POKEUSR:
1185 /* write the word at addr in the USER area */
1186 if (access_uarea(child, addr, &data, 1) < 0)
1187 return -EIO;
1188 return 0;
1189
1190 case PTRACE_OLD_GETSIGINFO:
1191 /* for backwards-compatibility */
1192 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1193
1194 case PTRACE_OLD_SETSIGINFO:
1195 /* for backwards-compatibility */
1196 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1197
1198 case PTRACE_GETREGS:
1199 return ptrace_getregs(child,
1200 (struct pt_all_user_regs __user *) data);
1201
1202 case PTRACE_SETREGS:
1203 return ptrace_setregs(child,
1204 (struct pt_all_user_regs __user *) data);
1205
1206 default:
1207 return ptrace_request(child, request, addr, data);
1208 }
1209}
1210
1211
1212/* "asmlinkage" so the input arguments are preserved... */
1213
1214asmlinkage long
1215syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1216 long arg4, long arg5, long arg6, long arg7,
1217 struct pt_regs regs)
1218{
1219 if (test_thread_flag(TIF_SYSCALL_TRACE))
1220 if (tracehook_report_syscall_entry(®s))
1221 return -ENOSYS;
1222
1223 /* copy user rbs to kernel rbs */
1224 if (test_thread_flag(TIF_RESTORE_RSE))
1225 ia64_sync_krbs();
1226
1227
1228 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1229
1230 return 0;
1231}
1232
1233/* "asmlinkage" so the input arguments are preserved... */
1234
1235asmlinkage void
1236syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1237 long arg4, long arg5, long arg6, long arg7,
1238 struct pt_regs regs)
1239{
1240 int step;
1241
1242 audit_syscall_exit(®s);
1243
1244 step = test_thread_flag(TIF_SINGLESTEP);
1245 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1246 tracehook_report_syscall_exit(®s, step);
1247
1248 /* copy user rbs to kernel rbs */
1249 if (test_thread_flag(TIF_RESTORE_RSE))
1250 ia64_sync_krbs();
1251}
1252
1253/* Utrace implementation starts here */
1254struct regset_get {
1255 void *kbuf;
1256 void __user *ubuf;
1257};
1258
1259struct regset_set {
1260 const void *kbuf;
1261 const void __user *ubuf;
1262};
1263
1264struct regset_getset {
1265 struct task_struct *target;
1266 const struct user_regset *regset;
1267 union {
1268 struct regset_get get;
1269 struct regset_set set;
1270 } u;
1271 unsigned int pos;
1272 unsigned int count;
1273 int ret;
1274};
1275
1276static const ptrdiff_t pt_offsets[32] =
1277{
1278#define R(n) offsetof(struct pt_regs, r##n)
1279 [0] = -1, R(1), R(2), R(3),
1280 [4] = -1, [5] = -1, [6] = -1, [7] = -1,
1281 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1282 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1283 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1284#undef R
1285};
1286
1287static int
1288access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1289 unsigned long addr, unsigned long *data, int write_access)
1290{
1291 struct pt_regs *pt = task_pt_regs(target);
1292 unsigned reg = addr / sizeof(unsigned long);
1293 ptrdiff_t d = pt_offsets[reg];
1294
1295 if (d >= 0) {
1296 unsigned long *ptr = (void *)pt + d;
1297 if (write_access)
1298 *ptr = *data;
1299 else
1300 *data = *ptr;
1301 return 0;
1302 } else {
1303 char nat = 0;
1304 if (write_access) {
1305 /* read NaT bit first: */
1306 unsigned long dummy;
1307 int ret = unw_get_gr(info, reg, &dummy, &nat);
1308 if (ret < 0)
1309 return ret;
1310 }
1311 return unw_access_gr(info, reg, data, &nat, write_access);
1312 }
1313}
1314
1315static int
1316access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1317 unsigned long addr, unsigned long *data, int write_access)
1318{
1319 struct pt_regs *pt;
1320 unsigned long *ptr = NULL;
1321
1322 pt = task_pt_regs(target);
1323 switch (addr) {
1324 case ELF_BR_OFFSET(0):
1325 ptr = &pt->b0;
1326 break;
1327 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1328 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1329 data, write_access);
1330 case ELF_BR_OFFSET(6):
1331 ptr = &pt->b6;
1332 break;
1333 case ELF_BR_OFFSET(7):
1334 ptr = &pt->b7;
1335 }
1336 if (write_access)
1337 *ptr = *data;
1338 else
1339 *data = *ptr;
1340 return 0;
1341}
1342
1343static int
1344access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1345 unsigned long addr, unsigned long *data, int write_access)
1346{
1347 struct pt_regs *pt;
1348 unsigned long cfm, urbs_end;
1349 unsigned long *ptr = NULL;
1350
1351 pt = task_pt_regs(target);
1352 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1353 switch (addr) {
1354 case ELF_AR_RSC_OFFSET:
1355 /* force PL3 */
1356 if (write_access)
1357 pt->ar_rsc = *data | (3 << 2);
1358 else
1359 *data = pt->ar_rsc;
1360 return 0;
1361 case ELF_AR_BSP_OFFSET:
1362 /*
1363 * By convention, we use PT_AR_BSP to refer to
1364 * the end of the user-level backing store.
1365 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1366 * to get the real value of ar.bsp at the time
1367 * the kernel was entered.
1368 *
1369 * Furthermore, when changing the contents of
1370 * PT_AR_BSP (or PT_CFM) while the task is
1371 * blocked in a system call, convert the state
1372 * so that the non-system-call exit
1373 * path is used. This ensures that the proper
1374 * state will be picked up when resuming
1375 * execution. However, it *also* means that
1376 * once we write PT_AR_BSP/PT_CFM, it won't be
1377 * possible to modify the syscall arguments of
1378 * the pending system call any longer. This
1379 * shouldn't be an issue because modifying
1380 * PT_AR_BSP/PT_CFM generally implies that
1381 * we're either abandoning the pending system
1382 * call or that we defer it's re-execution
1383 * (e.g., due to GDB doing an inferior
1384 * function call).
1385 */
1386 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1387 if (write_access) {
1388 if (*data != urbs_end) {
1389 if (in_syscall(pt))
1390 convert_to_non_syscall(target,
1391 pt,
1392 cfm);
1393 /*
1394 * Simulate user-level write
1395 * of ar.bsp:
1396 */
1397 pt->loadrs = 0;
1398 pt->ar_bspstore = *data;
1399 }
1400 } else
1401 *data = urbs_end;
1402 return 0;
1403 case ELF_AR_BSPSTORE_OFFSET:
1404 ptr = &pt->ar_bspstore;
1405 break;
1406 case ELF_AR_RNAT_OFFSET:
1407 ptr = &pt->ar_rnat;
1408 break;
1409 case ELF_AR_CCV_OFFSET:
1410 ptr = &pt->ar_ccv;
1411 break;
1412 case ELF_AR_UNAT_OFFSET:
1413 ptr = &pt->ar_unat;
1414 break;
1415 case ELF_AR_FPSR_OFFSET:
1416 ptr = &pt->ar_fpsr;
1417 break;
1418 case ELF_AR_PFS_OFFSET:
1419 ptr = &pt->ar_pfs;
1420 break;
1421 case ELF_AR_LC_OFFSET:
1422 return unw_access_ar(info, UNW_AR_LC, data,
1423 write_access);
1424 case ELF_AR_EC_OFFSET:
1425 return unw_access_ar(info, UNW_AR_EC, data,
1426 write_access);
1427 case ELF_AR_CSD_OFFSET:
1428 ptr = &pt->ar_csd;
1429 break;
1430 case ELF_AR_SSD_OFFSET:
1431 ptr = &pt->ar_ssd;
1432 }
1433 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1434 switch (addr) {
1435 case ELF_CR_IIP_OFFSET:
1436 ptr = &pt->cr_iip;
1437 break;
1438 case ELF_CFM_OFFSET:
1439 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1440 if (write_access) {
1441 if (((cfm ^ *data) & PFM_MASK) != 0) {
1442 if (in_syscall(pt))
1443 convert_to_non_syscall(target,
1444 pt,
1445 cfm);
1446 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1447 | (*data & PFM_MASK));
1448 }
1449 } else
1450 *data = cfm;
1451 return 0;
1452 case ELF_CR_IPSR_OFFSET:
1453 if (write_access) {
1454 unsigned long tmp = *data;
1455 /* psr.ri==3 is a reserved value: SDM 2:25 */
1456 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1457 tmp &= ~IA64_PSR_RI;
1458 pt->cr_ipsr = ((tmp & IPSR_MASK)
1459 | (pt->cr_ipsr & ~IPSR_MASK));
1460 } else
1461 *data = (pt->cr_ipsr & IPSR_MASK);
1462 return 0;
1463 }
1464 } else if (addr == ELF_NAT_OFFSET)
1465 return access_nat_bits(target, pt, info,
1466 data, write_access);
1467 else if (addr == ELF_PR_OFFSET)
1468 ptr = &pt->pr;
1469 else
1470 return -1;
1471
1472 if (write_access)
1473 *ptr = *data;
1474 else
1475 *data = *ptr;
1476
1477 return 0;
1478}
1479
1480static int
1481access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1482 unsigned long addr, unsigned long *data, int write_access)
1483{
1484 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
1485 return access_elf_gpreg(target, info, addr, data, write_access);
1486 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1487 return access_elf_breg(target, info, addr, data, write_access);
1488 else
1489 return access_elf_areg(target, info, addr, data, write_access);
1490}
1491
1492struct regset_membuf {
1493 struct membuf to;
1494 int ret;
1495};
1496
1497void do_gpregs_get(struct unw_frame_info *info, void *arg)
1498{
1499 struct regset_membuf *dst = arg;
1500 struct membuf to = dst->to;
1501 unsigned int n;
1502 elf_greg_t reg;
1503
1504 if (unw_unwind_to_user(info) < 0)
1505 return;
1506
1507 /*
1508 * coredump format:
1509 * r0-r31
1510 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1511 * predicate registers (p0-p63)
1512 * b0-b7
1513 * ip cfm user-mask
1514 * ar.rsc ar.bsp ar.bspstore ar.rnat
1515 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1516 */
1517
1518
1519 /* Skip r0 */
1520 membuf_zero(&to, 8);
1521 for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
1522 if (access_elf_reg(info->task, info, n, ®, 0) < 0) {
1523 dst->ret = -EIO;
1524 return;
1525 }
1526 membuf_store(&to, reg);
1527 }
1528}
1529
1530void do_gpregs_set(struct unw_frame_info *info, void *arg)
1531{
1532 struct regset_getset *dst = arg;
1533
1534 if (unw_unwind_to_user(info) < 0)
1535 return;
1536
1537 if (!dst->count)
1538 return;
1539 /* Skip r0 */
1540 if (dst->pos < ELF_GR_OFFSET(1)) {
1541 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1542 &dst->u.set.kbuf,
1543 &dst->u.set.ubuf,
1544 0, ELF_GR_OFFSET(1));
1545 if (dst->ret)
1546 return;
1547 }
1548
1549 while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
1550 unsigned int n, from, to;
1551 elf_greg_t tmp[16];
1552
1553 from = dst->pos;
1554 to = from + sizeof(tmp);
1555 if (to > ELF_AR_END_OFFSET)
1556 to = ELF_AR_END_OFFSET;
1557 /* get up to 16 values */
1558 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1559 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1560 from, to);
1561 if (dst->ret)
1562 return;
1563 /* now copy them into registers */
1564 for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
1565 if (access_elf_reg(dst->target, info, from,
1566 &tmp[n], 1) < 0) {
1567 dst->ret = -EIO;
1568 return;
1569 }
1570 }
1571}
1572
1573#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1574
1575void do_fpregs_get(struct unw_frame_info *info, void *arg)
1576{
1577 struct task_struct *task = info->task;
1578 struct regset_membuf *dst = arg;
1579 struct membuf to = dst->to;
1580 elf_fpreg_t reg;
1581 unsigned int n;
1582
1583 if (unw_unwind_to_user(info) < 0)
1584 return;
1585
1586 /* Skip pos 0 and 1 */
1587 membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
1588
1589 /* fr2-fr31 */
1590 for (n = 2; to.left && n < 32; n++) {
1591 if (unw_get_fr(info, n, ®)) {
1592 dst->ret = -EIO;
1593 return;
1594 }
1595 membuf_write(&to, ®, sizeof(reg));
1596 }
1597
1598 /* fph */
1599 if (!to.left)
1600 return;
1601
1602 ia64_flush_fph(task);
1603 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1604 membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
1605 else
1606 membuf_zero(&to, 96 * sizeof(reg));
1607}
1608
1609void do_fpregs_set(struct unw_frame_info *info, void *arg)
1610{
1611 struct regset_getset *dst = arg;
1612 elf_fpreg_t fpreg, tmp[30];
1613 int index, start, end;
1614
1615 if (unw_unwind_to_user(info) < 0)
1616 return;
1617
1618 /* Skip pos 0 and 1 */
1619 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1620 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1621 &dst->u.set.kbuf,
1622 &dst->u.set.ubuf,
1623 0, ELF_FP_OFFSET(2));
1624 if (dst->count == 0 || dst->ret)
1625 return;
1626 }
1627
1628 /* fr2-fr31 */
1629 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1630 start = dst->pos;
1631 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1632 dst->pos + dst->count);
1633 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1634 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1635 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1636 if (dst->ret)
1637 return;
1638
1639 if (start & 0xF) { /* only write high part */
1640 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1641 &fpreg)) {
1642 dst->ret = -EIO;
1643 return;
1644 }
1645 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1646 = fpreg.u.bits[0];
1647 start &= ~0xFUL;
1648 }
1649 if (end & 0xF) { /* only write low part */
1650 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1651 &fpreg)) {
1652 dst->ret = -EIO;
1653 return;
1654 }
1655 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1656 = fpreg.u.bits[1];
1657 end = (end + 0xF) & ~0xFUL;
1658 }
1659
1660 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1661 index = start / sizeof(elf_fpreg_t);
1662 if (unw_set_fr(info, index, tmp[index - 2])) {
1663 dst->ret = -EIO;
1664 return;
1665 }
1666 }
1667 if (dst->ret || dst->count == 0)
1668 return;
1669 }
1670
1671 /* fph */
1672 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1673 ia64_sync_fph(dst->target);
1674 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1675 &dst->u.set.kbuf,
1676 &dst->u.set.ubuf,
1677 &dst->target->thread.fph,
1678 ELF_FP_OFFSET(32), -1);
1679 }
1680}
1681
1682static void
1683unwind_and_call(void (*call)(struct unw_frame_info *, void *),
1684 struct task_struct *target, void *data)
1685{
1686 if (target == current)
1687 unw_init_running(call, data);
1688 else {
1689 struct unw_frame_info info;
1690 memset(&info, 0, sizeof(info));
1691 unw_init_from_blocked_task(&info, target);
1692 (*call)(&info, data);
1693 }
1694}
1695
1696static int
1697do_regset_call(void (*call)(struct unw_frame_info *, void *),
1698 struct task_struct *target,
1699 const struct user_regset *regset,
1700 unsigned int pos, unsigned int count,
1701 const void *kbuf, const void __user *ubuf)
1702{
1703 struct regset_getset info = { .target = target, .regset = regset,
1704 .pos = pos, .count = count,
1705 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1706 .ret = 0 };
1707 unwind_and_call(call, target, &info);
1708 return info.ret;
1709}
1710
1711static int
1712gpregs_get(struct task_struct *target,
1713 const struct user_regset *regset,
1714 struct membuf to)
1715{
1716 struct regset_membuf info = {.to = to};
1717 unwind_and_call(do_gpregs_get, target, &info);
1718 return info.ret;
1719}
1720
1721static int gpregs_set(struct task_struct *target,
1722 const struct user_regset *regset,
1723 unsigned int pos, unsigned int count,
1724 const void *kbuf, const void __user *ubuf)
1725{
1726 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1727 kbuf, ubuf);
1728}
1729
1730static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1731{
1732 do_sync_rbs(info, ia64_sync_user_rbs);
1733}
1734
1735/*
1736 * This is called to write back the register backing store.
1737 * ptrace does this before it stops, so that a tracer reading the user
1738 * memory after the thread stops will get the current register data.
1739 */
1740static int
1741gpregs_writeback(struct task_struct *target,
1742 const struct user_regset *regset,
1743 int now)
1744{
1745 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1746 return 0;
1747 set_notify_resume(target);
1748 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1749 NULL, NULL);
1750}
1751
1752static int
1753fpregs_active(struct task_struct *target, const struct user_regset *regset)
1754{
1755 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1756}
1757
1758static int fpregs_get(struct task_struct *target,
1759 const struct user_regset *regset,
1760 struct membuf to)
1761{
1762 struct regset_membuf info = {.to = to};
1763 unwind_and_call(do_fpregs_get, target, &info);
1764 return info.ret;
1765}
1766
1767static int fpregs_set(struct task_struct *target,
1768 const struct user_regset *regset,
1769 unsigned int pos, unsigned int count,
1770 const void *kbuf, const void __user *ubuf)
1771{
1772 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1773 kbuf, ubuf);
1774}
1775
1776static int
1777access_uarea(struct task_struct *child, unsigned long addr,
1778 unsigned long *data, int write_access)
1779{
1780 unsigned int pos = -1; /* an invalid value */
1781 unsigned long *ptr, regnum;
1782
1783 if ((addr & 0x7) != 0) {
1784 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1785 return -1;
1786 }
1787 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1788 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1789 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1790 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1791 dprintk("ptrace: rejecting access to register "
1792 "address 0x%lx\n", addr);
1793 return -1;
1794 }
1795
1796 switch (addr) {
1797 case PT_F32 ... (PT_F127 + 15):
1798 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1799 break;
1800 case PT_F2 ... (PT_F5 + 15):
1801 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1802 break;
1803 case PT_F10 ... (PT_F31 + 15):
1804 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1805 break;
1806 case PT_F6 ... (PT_F9 + 15):
1807 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1808 break;
1809 }
1810
1811 if (pos != -1) {
1812 unsigned reg = pos / sizeof(elf_fpreg_t);
1813 int which_half = (pos / sizeof(unsigned long)) & 1;
1814
1815 if (reg < 32) { /* fr2-fr31 */
1816 struct unw_frame_info info;
1817 elf_fpreg_t fpreg;
1818
1819 memset(&info, 0, sizeof(info));
1820 unw_init_from_blocked_task(&info, child);
1821 if (unw_unwind_to_user(&info) < 0)
1822 return 0;
1823
1824 if (unw_get_fr(&info, reg, &fpreg))
1825 return -1;
1826 if (write_access) {
1827 fpreg.u.bits[which_half] = *data;
1828 if (unw_set_fr(&info, reg, fpreg))
1829 return -1;
1830 } else {
1831 *data = fpreg.u.bits[which_half];
1832 }
1833 } else { /* fph */
1834 elf_fpreg_t *p = &child->thread.fph[reg - 32];
1835 unsigned long *bits = &p->u.bits[which_half];
1836
1837 ia64_sync_fph(child);
1838 if (write_access)
1839 *bits = *data;
1840 else if (child->thread.flags & IA64_THREAD_FPH_VALID)
1841 *data = *bits;
1842 else
1843 *data = 0;
1844 }
1845 return 0;
1846 }
1847
1848 switch (addr) {
1849 case PT_NAT_BITS:
1850 pos = ELF_NAT_OFFSET;
1851 break;
1852 case PT_R4 ... PT_R7:
1853 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1854 break;
1855 case PT_B1 ... PT_B5:
1856 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1857 break;
1858 case PT_AR_EC:
1859 pos = ELF_AR_EC_OFFSET;
1860 break;
1861 case PT_AR_LC:
1862 pos = ELF_AR_LC_OFFSET;
1863 break;
1864 case PT_CR_IPSR:
1865 pos = ELF_CR_IPSR_OFFSET;
1866 break;
1867 case PT_CR_IIP:
1868 pos = ELF_CR_IIP_OFFSET;
1869 break;
1870 case PT_CFM:
1871 pos = ELF_CFM_OFFSET;
1872 break;
1873 case PT_AR_UNAT:
1874 pos = ELF_AR_UNAT_OFFSET;
1875 break;
1876 case PT_AR_PFS:
1877 pos = ELF_AR_PFS_OFFSET;
1878 break;
1879 case PT_AR_RSC:
1880 pos = ELF_AR_RSC_OFFSET;
1881 break;
1882 case PT_AR_RNAT:
1883 pos = ELF_AR_RNAT_OFFSET;
1884 break;
1885 case PT_AR_BSPSTORE:
1886 pos = ELF_AR_BSPSTORE_OFFSET;
1887 break;
1888 case PT_PR:
1889 pos = ELF_PR_OFFSET;
1890 break;
1891 case PT_B6:
1892 pos = ELF_BR_OFFSET(6);
1893 break;
1894 case PT_AR_BSP:
1895 pos = ELF_AR_BSP_OFFSET;
1896 break;
1897 case PT_R1 ... PT_R3:
1898 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
1899 break;
1900 case PT_R12 ... PT_R15:
1901 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
1902 break;
1903 case PT_R8 ... PT_R11:
1904 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
1905 break;
1906 case PT_R16 ... PT_R31:
1907 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
1908 break;
1909 case PT_AR_CCV:
1910 pos = ELF_AR_CCV_OFFSET;
1911 break;
1912 case PT_AR_FPSR:
1913 pos = ELF_AR_FPSR_OFFSET;
1914 break;
1915 case PT_B0:
1916 pos = ELF_BR_OFFSET(0);
1917 break;
1918 case PT_B7:
1919 pos = ELF_BR_OFFSET(7);
1920 break;
1921 case PT_AR_CSD:
1922 pos = ELF_AR_CSD_OFFSET;
1923 break;
1924 case PT_AR_SSD:
1925 pos = ELF_AR_SSD_OFFSET;
1926 break;
1927 }
1928
1929 if (pos != -1) {
1930 struct unw_frame_info info;
1931
1932 memset(&info, 0, sizeof(info));
1933 unw_init_from_blocked_task(&info, child);
1934 if (unw_unwind_to_user(&info) < 0)
1935 return 0;
1936
1937 return access_elf_reg(child, &info, pos, data, write_access);
1938 }
1939
1940 /* access debug registers */
1941 if (addr >= PT_IBR) {
1942 regnum = (addr - PT_IBR) >> 3;
1943 ptr = &child->thread.ibr[0];
1944 } else {
1945 regnum = (addr - PT_DBR) >> 3;
1946 ptr = &child->thread.dbr[0];
1947 }
1948
1949 if (regnum >= 8) {
1950 dprintk("ptrace: rejecting access to register "
1951 "address 0x%lx\n", addr);
1952 return -1;
1953 }
1954#ifdef CONFIG_PERFMON
1955 /*
1956 * Check if debug registers are used by perfmon. This
1957 * test must be done once we know that we can do the
1958 * operation, i.e. the arguments are all valid, but
1959 * before we start modifying the state.
1960 *
1961 * Perfmon needs to keep a count of how many processes
1962 * are trying to modify the debug registers for system
1963 * wide monitoring sessions.
1964 *
1965 * We also include read access here, because they may
1966 * cause the PMU-installed debug register state
1967 * (dbr[], ibr[]) to be reset. The two arrays are also
1968 * used by perfmon, but we do not use
1969 * IA64_THREAD_DBG_VALID. The registers are restored
1970 * by the PMU context switch code.
1971 */
1972 if (pfm_use_debug_registers(child))
1973 return -1;
1974#endif
1975
1976 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1977 child->thread.flags |= IA64_THREAD_DBG_VALID;
1978 memset(child->thread.dbr, 0,
1979 sizeof(child->thread.dbr));
1980 memset(child->thread.ibr, 0,
1981 sizeof(child->thread.ibr));
1982 }
1983
1984 ptr += regnum;
1985
1986 if ((regnum & 1) && write_access) {
1987 /* don't let the user set kernel-level breakpoints: */
1988 *ptr = *data & ~(7UL << 56);
1989 return 0;
1990 }
1991 if (write_access)
1992 *ptr = *data;
1993 else
1994 *data = *ptr;
1995 return 0;
1996}
1997
1998static const struct user_regset native_regsets[] = {
1999 {
2000 .core_note_type = NT_PRSTATUS,
2001 .n = ELF_NGREG,
2002 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2003 .regset_get = gpregs_get, .set = gpregs_set,
2004 .writeback = gpregs_writeback
2005 },
2006 {
2007 .core_note_type = NT_PRFPREG,
2008 .n = ELF_NFPREG,
2009 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2010 .regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2011 },
2012};
2013
2014static const struct user_regset_view user_ia64_view = {
2015 .name = "ia64",
2016 .e_machine = EM_IA_64,
2017 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2018};
2019
2020const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2021{
2022 return &user_ia64_view;
2023}
2024
2025struct syscall_get_set_args {
2026 unsigned int i;
2027 unsigned int n;
2028 unsigned long *args;
2029 struct pt_regs *regs;
2030 int rw;
2031};
2032
2033static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2034{
2035 struct syscall_get_set_args *args = data;
2036 struct pt_regs *pt = args->regs;
2037 unsigned long *krbs, cfm, ndirty;
2038 int i, count;
2039
2040 if (unw_unwind_to_user(info) < 0)
2041 return;
2042
2043 cfm = pt->cr_ifs;
2044 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2045 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2046
2047 count = 0;
2048 if (in_syscall(pt))
2049 count = min_t(int, args->n, cfm & 0x7f);
2050
2051 for (i = 0; i < count; i++) {
2052 if (args->rw)
2053 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2054 args->args[i];
2055 else
2056 args->args[i] = *ia64_rse_skip_regs(krbs,
2057 ndirty + i + args->i);
2058 }
2059
2060 if (!args->rw) {
2061 while (i < args->n) {
2062 args->args[i] = 0;
2063 i++;
2064 }
2065 }
2066}
2067
2068void ia64_syscall_get_set_arguments(struct task_struct *task,
2069 struct pt_regs *regs, unsigned long *args, int rw)
2070{
2071 struct syscall_get_set_args data = {
2072 .i = 0,
2073 .n = 6,
2074 .args = args,
2075 .regs = regs,
2076 .rw = rw,
2077 };
2078
2079 if (task == current)
2080 unw_init_running(syscall_get_set_args_cb, &data);
2081 else {
2082 struct unw_frame_info ufi;
2083 memset(&ufi, 0, sizeof(ufi));
2084 unw_init_from_blocked_task(&ufi, task);
2085 syscall_get_set_args_cb(&ufi, &data);
2086 }
2087}
1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * Derived from the x86 and Alpha versions.
11 */
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/errno.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
20#include <linux/signal.h>
21#include <linux/regset.h>
22#include <linux/elf.h>
23#include <linux/tracehook.h>
24
25#include <asm/pgtable.h>
26#include <asm/processor.h>
27#include <asm/ptrace_offsets.h>
28#include <asm/rse.h>
29#include <asm/uaccess.h>
30#include <asm/unwind.h>
31#ifdef CONFIG_PERFMON
32#include <asm/perfmon.h>
33#endif
34
35#include "entry.h"
36
37/*
38 * Bits in the PSR that we allow ptrace() to change:
39 * be, up, ac, mfl, mfh (the user mask; five bits total)
40 * db (debug breakpoint fault; one bit)
41 * id (instruction debug fault disable; one bit)
42 * dd (data debug fault disable; one bit)
43 * ri (restart instruction; two bits)
44 * is (instruction set; one bit)
45 */
46#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
47 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
48
49#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
50#define PFM_MASK MASK(38)
51
52#define PTRACE_DEBUG 0
53
54#if PTRACE_DEBUG
55# define dprintk(format...) printk(format)
56# define inline
57#else
58# define dprintk(format...)
59#endif
60
61/* Return TRUE if PT was created due to kernel-entry via a system-call. */
62
63static inline int
64in_syscall (struct pt_regs *pt)
65{
66 return (long) pt->cr_ifs >= 0;
67}
68
69/*
70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
71 * bitset where bit i is set iff the NaT bit of register i is set.
72 */
73unsigned long
74ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
75{
76# define GET_BITS(first, last, unat) \
77 ({ \
78 unsigned long bit = ia64_unat_pos(&pt->r##first); \
79 unsigned long nbits = (last - first + 1); \
80 unsigned long mask = MASK(nbits) << first; \
81 unsigned long dist; \
82 if (bit < first) \
83 dist = 64 + bit - first; \
84 else \
85 dist = bit - first; \
86 ia64_rotr(unat, dist) & mask; \
87 })
88 unsigned long val;
89
90 /*
91 * Registers that are stored consecutively in struct pt_regs
92 * can be handled in parallel. If the register order in
93 * struct_pt_regs changes, this code MUST be updated.
94 */
95 val = GET_BITS( 1, 1, scratch_unat);
96 val |= GET_BITS( 2, 3, scratch_unat);
97 val |= GET_BITS(12, 13, scratch_unat);
98 val |= GET_BITS(14, 14, scratch_unat);
99 val |= GET_BITS(15, 15, scratch_unat);
100 val |= GET_BITS( 8, 11, scratch_unat);
101 val |= GET_BITS(16, 31, scratch_unat);
102 return val;
103
104# undef GET_BITS
105}
106
107/*
108 * Set the NaT bits for the scratch registers according to NAT and
109 * return the resulting unat (assuming the scratch registers are
110 * stored in PT).
111 */
112unsigned long
113ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
114{
115# define PUT_BITS(first, last, nat) \
116 ({ \
117 unsigned long bit = ia64_unat_pos(&pt->r##first); \
118 unsigned long nbits = (last - first + 1); \
119 unsigned long mask = MASK(nbits) << first; \
120 long dist; \
121 if (bit < first) \
122 dist = 64 + bit - first; \
123 else \
124 dist = bit - first; \
125 ia64_rotl(nat & mask, dist); \
126 })
127 unsigned long scratch_unat;
128
129 /*
130 * Registers that are stored consecutively in struct pt_regs
131 * can be handled in parallel. If the register order in
132 * struct_pt_regs changes, this code MUST be updated.
133 */
134 scratch_unat = PUT_BITS( 1, 1, nat);
135 scratch_unat |= PUT_BITS( 2, 3, nat);
136 scratch_unat |= PUT_BITS(12, 13, nat);
137 scratch_unat |= PUT_BITS(14, 14, nat);
138 scratch_unat |= PUT_BITS(15, 15, nat);
139 scratch_unat |= PUT_BITS( 8, 11, nat);
140 scratch_unat |= PUT_BITS(16, 31, nat);
141
142 return scratch_unat;
143
144# undef PUT_BITS
145}
146
147#define IA64_MLX_TEMPLATE 0x2
148#define IA64_MOVL_OPCODE 6
149
150void
151ia64_increment_ip (struct pt_regs *regs)
152{
153 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
154
155 if (ri > 2) {
156 ri = 0;
157 regs->cr_iip += 16;
158 } else if (ri == 2) {
159 get_user(w0, (char __user *) regs->cr_iip + 0);
160 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
161 /*
162 * rfi'ing to slot 2 of an MLX bundle causes
163 * an illegal operation fault. We don't want
164 * that to happen...
165 */
166 ri = 0;
167 regs->cr_iip += 16;
168 }
169 }
170 ia64_psr(regs)->ri = ri;
171}
172
173void
174ia64_decrement_ip (struct pt_regs *regs)
175{
176 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
177
178 if (ia64_psr(regs)->ri == 0) {
179 regs->cr_iip -= 16;
180 ri = 2;
181 get_user(w0, (char __user *) regs->cr_iip + 0);
182 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
183 /*
184 * rfi'ing to slot 2 of an MLX bundle causes
185 * an illegal operation fault. We don't want
186 * that to happen...
187 */
188 ri = 1;
189 }
190 }
191 ia64_psr(regs)->ri = ri;
192}
193
194/*
195 * This routine is used to read an rnat bits that are stored on the
196 * kernel backing store. Since, in general, the alignment of the user
197 * and kernel are different, this is not completely trivial. In
198 * essence, we need to construct the user RNAT based on up to two
199 * kernel RNAT values and/or the RNAT value saved in the child's
200 * pt_regs.
201 *
202 * user rbs
203 *
204 * +--------+ <-- lowest address
205 * | slot62 |
206 * +--------+
207 * | rnat | 0x....1f8
208 * +--------+
209 * | slot00 | \
210 * +--------+ |
211 * | slot01 | > child_regs->ar_rnat
212 * +--------+ |
213 * | slot02 | / kernel rbs
214 * +--------+ +--------+
215 * <- child_regs->ar_bspstore | slot61 | <-- krbs
216 * +- - - - + +--------+
217 * | slot62 |
218 * +- - - - + +--------+
219 * | rnat |
220 * +- - - - + +--------+
221 * vrnat | slot00 |
222 * +- - - - + +--------+
223 * = =
224 * +--------+
225 * | slot00 | \
226 * +--------+ |
227 * | slot01 | > child_stack->ar_rnat
228 * +--------+ |
229 * | slot02 | /
230 * +--------+
231 * <--- child_stack->ar_bspstore
232 *
233 * The way to think of this code is as follows: bit 0 in the user rnat
234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
235 * value. The kernel rnat value holding this bit is stored in
236 * variable rnat0. rnat1 is loaded with the kernel rnat value that
237 * form the upper bits of the user rnat value.
238 *
239 * Boundary cases:
240 *
241 * o when reading the rnat "below" the first rnat slot on the kernel
242 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
243 * merged in from pt->ar_rnat.
244 *
245 * o when reading the rnat "above" the last rnat slot on the kernel
246 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
247 */
248static unsigned long
249get_rnat (struct task_struct *task, struct switch_stack *sw,
250 unsigned long *krbs, unsigned long *urnat_addr,
251 unsigned long *urbs_end)
252{
253 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
254 unsigned long umask = 0, mask, m;
255 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
256 long num_regs, nbits;
257 struct pt_regs *pt;
258
259 pt = task_pt_regs(task);
260 kbsp = (unsigned long *) sw->ar_bspstore;
261 ubspstore = (unsigned long *) pt->ar_bspstore;
262
263 if (urbs_end < urnat_addr)
264 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
265 else
266 nbits = 63;
267 mask = MASK(nbits);
268 /*
269 * First, figure out which bit number slot 0 in user-land maps
270 * to in the kernel rnat. Do this by figuring out how many
271 * register slots we're beyond the user's backingstore and
272 * then computing the equivalent address in kernel space.
273 */
274 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
275 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
276 shift = ia64_rse_slot_num(slot0_kaddr);
277 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
278 rnat0_kaddr = rnat1_kaddr - 64;
279
280 if (ubspstore + 63 > urnat_addr) {
281 /* some bits need to be merged in from pt->ar_rnat */
282 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
283 urnat = (pt->ar_rnat & umask);
284 mask &= ~umask;
285 if (!mask)
286 return urnat;
287 }
288
289 m = mask << shift;
290 if (rnat0_kaddr >= kbsp)
291 rnat0 = sw->ar_rnat;
292 else if (rnat0_kaddr > krbs)
293 rnat0 = *rnat0_kaddr;
294 urnat |= (rnat0 & m) >> shift;
295
296 m = mask >> (63 - shift);
297 if (rnat1_kaddr >= kbsp)
298 rnat1 = sw->ar_rnat;
299 else if (rnat1_kaddr > krbs)
300 rnat1 = *rnat1_kaddr;
301 urnat |= (rnat1 & m) << (63 - shift);
302 return urnat;
303}
304
305/*
306 * The reverse of get_rnat.
307 */
308static void
309put_rnat (struct task_struct *task, struct switch_stack *sw,
310 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
311 unsigned long *urbs_end)
312{
313 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
314 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
315 long num_regs, nbits;
316 struct pt_regs *pt;
317 unsigned long cfm, *urbs_kargs;
318
319 pt = task_pt_regs(task);
320 kbsp = (unsigned long *) sw->ar_bspstore;
321 ubspstore = (unsigned long *) pt->ar_bspstore;
322
323 urbs_kargs = urbs_end;
324 if (in_syscall(pt)) {
325 /*
326 * If entered via syscall, don't allow user to set rnat bits
327 * for syscall args.
328 */
329 cfm = pt->cr_ifs;
330 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
331 }
332
333 if (urbs_kargs >= urnat_addr)
334 nbits = 63;
335 else {
336 if ((urnat_addr - 63) >= urbs_kargs)
337 return;
338 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
339 }
340 mask = MASK(nbits);
341
342 /*
343 * First, figure out which bit number slot 0 in user-land maps
344 * to in the kernel rnat. Do this by figuring out how many
345 * register slots we're beyond the user's backingstore and
346 * then computing the equivalent address in kernel space.
347 */
348 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
349 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
350 shift = ia64_rse_slot_num(slot0_kaddr);
351 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
352 rnat0_kaddr = rnat1_kaddr - 64;
353
354 if (ubspstore + 63 > urnat_addr) {
355 /* some bits need to be place in pt->ar_rnat: */
356 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
357 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
358 mask &= ~umask;
359 if (!mask)
360 return;
361 }
362 /*
363 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
364 * rnat slot is ignored. so we don't have to clear it here.
365 */
366 rnat0 = (urnat << shift);
367 m = mask << shift;
368 if (rnat0_kaddr >= kbsp)
369 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
370 else if (rnat0_kaddr > krbs)
371 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
372
373 rnat1 = (urnat >> (63 - shift));
374 m = mask >> (63 - shift);
375 if (rnat1_kaddr >= kbsp)
376 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
377 else if (rnat1_kaddr > krbs)
378 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
379}
380
381static inline int
382on_kernel_rbs (unsigned long addr, unsigned long bspstore,
383 unsigned long urbs_end)
384{
385 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
386 urbs_end);
387 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
388}
389
390/*
391 * Read a word from the user-level backing store of task CHILD. ADDR
392 * is the user-level address to read the word from, VAL a pointer to
393 * the return value, and USER_BSP gives the end of the user-level
394 * backing store (i.e., it's the address that would be in ar.bsp after
395 * the user executed a "cover" instruction).
396 *
397 * This routine takes care of accessing the kernel register backing
398 * store for those registers that got spilled there. It also takes
399 * care of calculating the appropriate RNaT collection words.
400 */
401long
402ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
403 unsigned long user_rbs_end, unsigned long addr, long *val)
404{
405 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
406 struct pt_regs *child_regs;
407 size_t copied;
408 long ret;
409
410 urbs_end = (long *) user_rbs_end;
411 laddr = (unsigned long *) addr;
412 child_regs = task_pt_regs(child);
413 bspstore = (unsigned long *) child_regs->ar_bspstore;
414 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
415 if (on_kernel_rbs(addr, (unsigned long) bspstore,
416 (unsigned long) urbs_end))
417 {
418 /*
419 * Attempt to read the RBS in an area that's actually
420 * on the kernel RBS => read the corresponding bits in
421 * the kernel RBS.
422 */
423 rnat_addr = ia64_rse_rnat_addr(laddr);
424 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
425
426 if (laddr == rnat_addr) {
427 /* return NaT collection word itself */
428 *val = ret;
429 return 0;
430 }
431
432 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
433 /*
434 * It is implementation dependent whether the
435 * data portion of a NaT value gets saved on a
436 * st8.spill or RSE spill (e.g., see EAS 2.6,
437 * 4.4.4.6 Register Spill and Fill). To get
438 * consistent behavior across all possible
439 * IA-64 implementations, we return zero in
440 * this case.
441 */
442 *val = 0;
443 return 0;
444 }
445
446 if (laddr < urbs_end) {
447 /*
448 * The desired word is on the kernel RBS and
449 * is not a NaT.
450 */
451 regnum = ia64_rse_num_regs(bspstore, laddr);
452 *val = *ia64_rse_skip_regs(krbs, regnum);
453 return 0;
454 }
455 }
456 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
457 if (copied != sizeof(ret))
458 return -EIO;
459 *val = ret;
460 return 0;
461}
462
463long
464ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
465 unsigned long user_rbs_end, unsigned long addr, long val)
466{
467 unsigned long *bspstore, *krbs, regnum, *laddr;
468 unsigned long *urbs_end = (long *) user_rbs_end;
469 struct pt_regs *child_regs;
470
471 laddr = (unsigned long *) addr;
472 child_regs = task_pt_regs(child);
473 bspstore = (unsigned long *) child_regs->ar_bspstore;
474 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
475 if (on_kernel_rbs(addr, (unsigned long) bspstore,
476 (unsigned long) urbs_end))
477 {
478 /*
479 * Attempt to write the RBS in an area that's actually
480 * on the kernel RBS => write the corresponding bits
481 * in the kernel RBS.
482 */
483 if (ia64_rse_is_rnat_slot(laddr))
484 put_rnat(child, child_stack, krbs, laddr, val,
485 urbs_end);
486 else {
487 if (laddr < urbs_end) {
488 regnum = ia64_rse_num_regs(bspstore, laddr);
489 *ia64_rse_skip_regs(krbs, regnum) = val;
490 }
491 }
492 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
493 != sizeof(val))
494 return -EIO;
495 return 0;
496}
497
498/*
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
504 * entered.
505 */
506unsigned long
507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 unsigned long *cfmp)
509{
510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 long ndirty;
512
513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 bspstore = (unsigned long *) pt->ar_bspstore;
515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516
517 if (in_syscall(pt))
518 ndirty += (cfm & 0x7f);
519 else
520 cfm &= ~(1UL << 63); /* clear valid bit */
521
522 if (cfmp)
523 *cfmp = cfm;
524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525}
526
527/*
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
532 * ends.
533 */
534long
535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 unsigned long user_rbs_start, unsigned long user_rbs_end)
537{
538 unsigned long addr, val;
539 long ret;
540
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 if (ret < 0)
545 return ret;
546 if (access_process_vm(child, addr, &val, sizeof(val), 1)
547 != sizeof(val))
548 return -EIO;
549 }
550 return 0;
551}
552
553static long
554ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
555 unsigned long user_rbs_start, unsigned long user_rbs_end)
556{
557 unsigned long addr, val;
558 long ret;
559
560 /* now copy word for word from user rbs to kernel rbs: */
561 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
562 if (access_process_vm(child, addr, &val, sizeof(val), 0)
563 != sizeof(val))
564 return -EIO;
565
566 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
567 if (ret < 0)
568 return ret;
569 }
570 return 0;
571}
572
573typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
574 unsigned long, unsigned long);
575
576static void do_sync_rbs(struct unw_frame_info *info, void *arg)
577{
578 struct pt_regs *pt;
579 unsigned long urbs_end;
580 syncfunc_t fn = arg;
581
582 if (unw_unwind_to_user(info) < 0)
583 return;
584 pt = task_pt_regs(info->task);
585 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
586
587 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
588}
589
590/*
591 * when a thread is stopped (ptraced), debugger might change thread's user
592 * stack (change memory directly), and we must avoid the RSE stored in kernel
593 * to override user stack (user space's RSE is newer than kernel's in the
594 * case). To workaround the issue, we copy kernel RSE to user RSE before the
595 * task is stopped, so user RSE has updated data. we then copy user RSE to
596 * kernel after the task is resummed from traced stop and kernel will use the
597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
598 * synchronize user RSE to kernel.
599 */
600void ia64_ptrace_stop(void)
601{
602 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
603 return;
604 set_notify_resume(current);
605 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
606}
607
608/*
609 * This is called to read back the register backing store.
610 */
611void ia64_sync_krbs(void)
612{
613 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
614
615 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
616}
617
618/*
619 * After PTRACE_ATTACH, a thread's register backing store area in user
620 * space is assumed to contain correct data whenever the thread is
621 * stopped. arch_ptrace_stop takes care of this on tracing stops.
622 * But if the child was already stopped for job control when we attach
623 * to it, then it might not ever get into ptrace_stop by the time we
624 * want to examine the user memory containing the RBS.
625 */
626void
627ptrace_attach_sync_user_rbs (struct task_struct *child)
628{
629 int stopped = 0;
630 struct unw_frame_info info;
631
632 /*
633 * If the child is in TASK_STOPPED, we need to change that to
634 * TASK_TRACED momentarily while we operate on it. This ensures
635 * that the child won't be woken up and return to user mode while
636 * we are doing the sync. (It can only be woken up for SIGKILL.)
637 */
638
639 read_lock(&tasklist_lock);
640 if (child->sighand) {
641 spin_lock_irq(&child->sighand->siglock);
642 if (child->state == TASK_STOPPED &&
643 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
644 set_notify_resume(child);
645
646 child->state = TASK_TRACED;
647 stopped = 1;
648 }
649 spin_unlock_irq(&child->sighand->siglock);
650 }
651 read_unlock(&tasklist_lock);
652
653 if (!stopped)
654 return;
655
656 unw_init_from_blocked_task(&info, child);
657 do_sync_rbs(&info, ia64_sync_user_rbs);
658
659 /*
660 * Now move the child back into TASK_STOPPED if it should be in a
661 * job control stop, so that SIGCONT can be used to wake it up.
662 */
663 read_lock(&tasklist_lock);
664 if (child->sighand) {
665 spin_lock_irq(&child->sighand->siglock);
666 if (child->state == TASK_TRACED &&
667 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
668 child->state = TASK_STOPPED;
669 }
670 spin_unlock_irq(&child->sighand->siglock);
671 }
672 read_unlock(&tasklist_lock);
673}
674
675/*
676 * Write f32-f127 back to task->thread.fph if it has been modified.
677 */
678inline void
679ia64_flush_fph (struct task_struct *task)
680{
681 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
682
683 /*
684 * Prevent migrating this task while
685 * we're fiddling with the FPU state
686 */
687 preempt_disable();
688 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
689 psr->mfh = 0;
690 task->thread.flags |= IA64_THREAD_FPH_VALID;
691 ia64_save_fpu(&task->thread.fph[0]);
692 }
693 preempt_enable();
694}
695
696/*
697 * Sync the fph state of the task so that it can be manipulated
698 * through thread.fph. If necessary, f32-f127 are written back to
699 * thread.fph or, if the fph state hasn't been used before, thread.fph
700 * is cleared to zeroes. Also, access to f32-f127 is disabled to
701 * ensure that the task picks up the state from thread.fph when it
702 * executes again.
703 */
704void
705ia64_sync_fph (struct task_struct *task)
706{
707 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
708
709 ia64_flush_fph(task);
710 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
711 task->thread.flags |= IA64_THREAD_FPH_VALID;
712 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
713 }
714 ia64_drop_fpu(task);
715 psr->dfh = 1;
716}
717
718/*
719 * Change the machine-state of CHILD such that it will return via the normal
720 * kernel exit-path, rather than the syscall-exit path.
721 */
722static void
723convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
724 unsigned long cfm)
725{
726 struct unw_frame_info info, prev_info;
727 unsigned long ip, sp, pr;
728
729 unw_init_from_blocked_task(&info, child);
730 while (1) {
731 prev_info = info;
732 if (unw_unwind(&info) < 0)
733 return;
734
735 unw_get_sp(&info, &sp);
736 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
737 < IA64_PT_REGS_SIZE) {
738 dprintk("ptrace.%s: ran off the top of the kernel "
739 "stack\n", __func__);
740 return;
741 }
742 if (unw_get_pr (&prev_info, &pr) < 0) {
743 unw_get_rp(&prev_info, &ip);
744 dprintk("ptrace.%s: failed to read "
745 "predicate register (ip=0x%lx)\n",
746 __func__, ip);
747 return;
748 }
749 if (unw_is_intr_frame(&info)
750 && (pr & (1UL << PRED_USER_STACK)))
751 break;
752 }
753
754 /*
755 * Note: at the time of this call, the target task is blocked
756 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
757 * (aka, "pLvSys") we redirect execution from
758 * .work_pending_syscall_end to .work_processed_kernel.
759 */
760 unw_get_pr(&prev_info, &pr);
761 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
762 pr |= (1UL << PRED_NON_SYSCALL);
763 unw_set_pr(&prev_info, pr);
764
765 pt->cr_ifs = (1UL << 63) | cfm;
766 /*
767 * Clear the memory that is NOT written on syscall-entry to
768 * ensure we do not leak kernel-state to user when execution
769 * resumes.
770 */
771 pt->r2 = 0;
772 pt->r3 = 0;
773 pt->r14 = 0;
774 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
775 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
776 pt->b7 = 0;
777 pt->ar_ccv = 0;
778 pt->ar_csd = 0;
779 pt->ar_ssd = 0;
780}
781
782static int
783access_nat_bits (struct task_struct *child, struct pt_regs *pt,
784 struct unw_frame_info *info,
785 unsigned long *data, int write_access)
786{
787 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
788 char nat = 0;
789
790 if (write_access) {
791 nat_bits = *data;
792 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
793 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
794 dprintk("ptrace: failed to set ar.unat\n");
795 return -1;
796 }
797 for (regnum = 4; regnum <= 7; ++regnum) {
798 unw_get_gr(info, regnum, &dummy, &nat);
799 unw_set_gr(info, regnum, dummy,
800 (nat_bits >> regnum) & 1);
801 }
802 } else {
803 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
804 dprintk("ptrace: failed to read ar.unat\n");
805 return -1;
806 }
807 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
808 for (regnum = 4; regnum <= 7; ++regnum) {
809 unw_get_gr(info, regnum, &dummy, &nat);
810 nat_bits |= (nat != 0) << regnum;
811 }
812 *data = nat_bits;
813 }
814 return 0;
815}
816
817static int
818access_uarea (struct task_struct *child, unsigned long addr,
819 unsigned long *data, int write_access);
820
821static long
822ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
823{
824 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
825 struct unw_frame_info info;
826 struct ia64_fpreg fpval;
827 struct switch_stack *sw;
828 struct pt_regs *pt;
829 long ret, retval = 0;
830 char nat = 0;
831 int i;
832
833 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
834 return -EIO;
835
836 pt = task_pt_regs(child);
837 sw = (struct switch_stack *) (child->thread.ksp + 16);
838 unw_init_from_blocked_task(&info, child);
839 if (unw_unwind_to_user(&info) < 0) {
840 return -EIO;
841 }
842
843 if (((unsigned long) ppr & 0x7) != 0) {
844 dprintk("ptrace:unaligned register address %p\n", ppr);
845 return -EIO;
846 }
847
848 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
849 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
850 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
851 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
852 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
853 || access_uarea(child, PT_CFM, &cfm, 0)
854 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
855 return -EIO;
856
857 /* control regs */
858
859 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
860 retval |= __put_user(psr, &ppr->cr_ipsr);
861
862 /* app regs */
863
864 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
865 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
866 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
867 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
868 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
869 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
870
871 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
872 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
873 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
874 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
875 retval |= __put_user(cfm, &ppr->cfm);
876
877 /* gr1-gr3 */
878
879 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
880 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
881
882 /* gr4-gr7 */
883
884 for (i = 4; i < 8; i++) {
885 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
886 return -EIO;
887 retval |= __put_user(val, &ppr->gr[i]);
888 }
889
890 /* gr8-gr11 */
891
892 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
893
894 /* gr12-gr15 */
895
896 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
897 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
898 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
899
900 /* gr16-gr31 */
901
902 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
903
904 /* b0 */
905
906 retval |= __put_user(pt->b0, &ppr->br[0]);
907
908 /* b1-b5 */
909
910 for (i = 1; i < 6; i++) {
911 if (unw_access_br(&info, i, &val, 0) < 0)
912 return -EIO;
913 __put_user(val, &ppr->br[i]);
914 }
915
916 /* b6-b7 */
917
918 retval |= __put_user(pt->b6, &ppr->br[6]);
919 retval |= __put_user(pt->b7, &ppr->br[7]);
920
921 /* fr2-fr5 */
922
923 for (i = 2; i < 6; i++) {
924 if (unw_get_fr(&info, i, &fpval) < 0)
925 return -EIO;
926 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
927 }
928
929 /* fr6-fr11 */
930
931 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
932 sizeof(struct ia64_fpreg) * 6);
933
934 /* fp scratch regs(12-15) */
935
936 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
937 sizeof(struct ia64_fpreg) * 4);
938
939 /* fr16-fr31 */
940
941 for (i = 16; i < 32; i++) {
942 if (unw_get_fr(&info, i, &fpval) < 0)
943 return -EIO;
944 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
945 }
946
947 /* fph */
948
949 ia64_flush_fph(child);
950 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
951 sizeof(ppr->fr[32]) * 96);
952
953 /* preds */
954
955 retval |= __put_user(pt->pr, &ppr->pr);
956
957 /* nat bits */
958
959 retval |= __put_user(nat_bits, &ppr->nat);
960
961 ret = retval ? -EIO : 0;
962 return ret;
963}
964
965static long
966ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
967{
968 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
969 struct unw_frame_info info;
970 struct switch_stack *sw;
971 struct ia64_fpreg fpval;
972 struct pt_regs *pt;
973 long ret, retval = 0;
974 int i;
975
976 memset(&fpval, 0, sizeof(fpval));
977
978 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
979 return -EIO;
980
981 pt = task_pt_regs(child);
982 sw = (struct switch_stack *) (child->thread.ksp + 16);
983 unw_init_from_blocked_task(&info, child);
984 if (unw_unwind_to_user(&info) < 0) {
985 return -EIO;
986 }
987
988 if (((unsigned long) ppr & 0x7) != 0) {
989 dprintk("ptrace:unaligned register address %p\n", ppr);
990 return -EIO;
991 }
992
993 /* control regs */
994
995 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
996 retval |= __get_user(psr, &ppr->cr_ipsr);
997
998 /* app regs */
999
1000 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1001 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1002 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1003 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1004 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1005 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1006
1007 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1008 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1009 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1010 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1011 retval |= __get_user(cfm, &ppr->cfm);
1012
1013 /* gr1-gr3 */
1014
1015 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1016 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1017
1018 /* gr4-gr7 */
1019
1020 for (i = 4; i < 8; i++) {
1021 retval |= __get_user(val, &ppr->gr[i]);
1022 /* NaT bit will be set via PT_NAT_BITS: */
1023 if (unw_set_gr(&info, i, val, 0) < 0)
1024 return -EIO;
1025 }
1026
1027 /* gr8-gr11 */
1028
1029 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1030
1031 /* gr12-gr15 */
1032
1033 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1034 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1035 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1036
1037 /* gr16-gr31 */
1038
1039 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1040
1041 /* b0 */
1042
1043 retval |= __get_user(pt->b0, &ppr->br[0]);
1044
1045 /* b1-b5 */
1046
1047 for (i = 1; i < 6; i++) {
1048 retval |= __get_user(val, &ppr->br[i]);
1049 unw_set_br(&info, i, val);
1050 }
1051
1052 /* b6-b7 */
1053
1054 retval |= __get_user(pt->b6, &ppr->br[6]);
1055 retval |= __get_user(pt->b7, &ppr->br[7]);
1056
1057 /* fr2-fr5 */
1058
1059 for (i = 2; i < 6; i++) {
1060 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1061 if (unw_set_fr(&info, i, fpval) < 0)
1062 return -EIO;
1063 }
1064
1065 /* fr6-fr11 */
1066
1067 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1068 sizeof(ppr->fr[6]) * 6);
1069
1070 /* fp scratch regs(12-15) */
1071
1072 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1073 sizeof(ppr->fr[12]) * 4);
1074
1075 /* fr16-fr31 */
1076
1077 for (i = 16; i < 32; i++) {
1078 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1079 sizeof(fpval));
1080 if (unw_set_fr(&info, i, fpval) < 0)
1081 return -EIO;
1082 }
1083
1084 /* fph */
1085
1086 ia64_sync_fph(child);
1087 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1088 sizeof(ppr->fr[32]) * 96);
1089
1090 /* preds */
1091
1092 retval |= __get_user(pt->pr, &ppr->pr);
1093
1094 /* nat bits */
1095
1096 retval |= __get_user(nat_bits, &ppr->nat);
1097
1098 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1099 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1100 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1101 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1102 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1103 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1104 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1105 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1106
1107 ret = retval ? -EIO : 0;
1108 return ret;
1109}
1110
1111void
1112user_enable_single_step (struct task_struct *child)
1113{
1114 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1115
1116 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1117 child_psr->ss = 1;
1118}
1119
1120void
1121user_enable_block_step (struct task_struct *child)
1122{
1123 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1124
1125 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1126 child_psr->tb = 1;
1127}
1128
1129void
1130user_disable_single_step (struct task_struct *child)
1131{
1132 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1133
1134 /* make sure the single step/taken-branch trap bits are not set: */
1135 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1136 child_psr->ss = 0;
1137 child_psr->tb = 0;
1138}
1139
1140/*
1141 * Called by kernel/ptrace.c when detaching..
1142 *
1143 * Make sure the single step bit is not set.
1144 */
1145void
1146ptrace_disable (struct task_struct *child)
1147{
1148 user_disable_single_step(child);
1149}
1150
1151long
1152arch_ptrace (struct task_struct *child, long request,
1153 unsigned long addr, unsigned long data)
1154{
1155 switch (request) {
1156 case PTRACE_PEEKTEXT:
1157 case PTRACE_PEEKDATA:
1158 /* read word at location addr */
1159 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1160 != sizeof(data))
1161 return -EIO;
1162 /* ensure return value is not mistaken for error code */
1163 force_successful_syscall_return();
1164 return data;
1165
1166 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1167 * by the generic ptrace_request().
1168 */
1169
1170 case PTRACE_PEEKUSR:
1171 /* read the word at addr in the USER area */
1172 if (access_uarea(child, addr, &data, 0) < 0)
1173 return -EIO;
1174 /* ensure return value is not mistaken for error code */
1175 force_successful_syscall_return();
1176 return data;
1177
1178 case PTRACE_POKEUSR:
1179 /* write the word at addr in the USER area */
1180 if (access_uarea(child, addr, &data, 1) < 0)
1181 return -EIO;
1182 return 0;
1183
1184 case PTRACE_OLD_GETSIGINFO:
1185 /* for backwards-compatibility */
1186 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1187
1188 case PTRACE_OLD_SETSIGINFO:
1189 /* for backwards-compatibility */
1190 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1191
1192 case PTRACE_GETREGS:
1193 return ptrace_getregs(child,
1194 (struct pt_all_user_regs __user *) data);
1195
1196 case PTRACE_SETREGS:
1197 return ptrace_setregs(child,
1198 (struct pt_all_user_regs __user *) data);
1199
1200 default:
1201 return ptrace_request(child, request, addr, data);
1202 }
1203}
1204
1205
1206/* "asmlinkage" so the input arguments are preserved... */
1207
1208asmlinkage long
1209syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1210 long arg4, long arg5, long arg6, long arg7,
1211 struct pt_regs regs)
1212{
1213 if (test_thread_flag(TIF_SYSCALL_TRACE))
1214 if (tracehook_report_syscall_entry(®s))
1215 return -ENOSYS;
1216
1217 /* copy user rbs to kernel rbs */
1218 if (test_thread_flag(TIF_RESTORE_RSE))
1219 ia64_sync_krbs();
1220
1221
1222 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1223
1224 return 0;
1225}
1226
1227/* "asmlinkage" so the input arguments are preserved... */
1228
1229asmlinkage void
1230syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1231 long arg4, long arg5, long arg6, long arg7,
1232 struct pt_regs regs)
1233{
1234 int step;
1235
1236 audit_syscall_exit(®s);
1237
1238 step = test_thread_flag(TIF_SINGLESTEP);
1239 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1240 tracehook_report_syscall_exit(®s, step);
1241
1242 /* copy user rbs to kernel rbs */
1243 if (test_thread_flag(TIF_RESTORE_RSE))
1244 ia64_sync_krbs();
1245}
1246
1247/* Utrace implementation starts here */
1248struct regset_get {
1249 void *kbuf;
1250 void __user *ubuf;
1251};
1252
1253struct regset_set {
1254 const void *kbuf;
1255 const void __user *ubuf;
1256};
1257
1258struct regset_getset {
1259 struct task_struct *target;
1260 const struct user_regset *regset;
1261 union {
1262 struct regset_get get;
1263 struct regset_set set;
1264 } u;
1265 unsigned int pos;
1266 unsigned int count;
1267 int ret;
1268};
1269
1270static int
1271access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1272 unsigned long addr, unsigned long *data, int write_access)
1273{
1274 struct pt_regs *pt;
1275 unsigned long *ptr = NULL;
1276 int ret;
1277 char nat = 0;
1278
1279 pt = task_pt_regs(target);
1280 switch (addr) {
1281 case ELF_GR_OFFSET(1):
1282 ptr = &pt->r1;
1283 break;
1284 case ELF_GR_OFFSET(2):
1285 case ELF_GR_OFFSET(3):
1286 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1287 break;
1288 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1289 if (write_access) {
1290 /* read NaT bit first: */
1291 unsigned long dummy;
1292
1293 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1294 if (ret < 0)
1295 return ret;
1296 }
1297 return unw_access_gr(info, addr/8, data, &nat, write_access);
1298 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1299 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1300 break;
1301 case ELF_GR_OFFSET(12):
1302 case ELF_GR_OFFSET(13):
1303 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1304 break;
1305 case ELF_GR_OFFSET(14):
1306 ptr = &pt->r14;
1307 break;
1308 case ELF_GR_OFFSET(15):
1309 ptr = &pt->r15;
1310 }
1311 if (write_access)
1312 *ptr = *data;
1313 else
1314 *data = *ptr;
1315 return 0;
1316}
1317
1318static int
1319access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1320 unsigned long addr, unsigned long *data, int write_access)
1321{
1322 struct pt_regs *pt;
1323 unsigned long *ptr = NULL;
1324
1325 pt = task_pt_regs(target);
1326 switch (addr) {
1327 case ELF_BR_OFFSET(0):
1328 ptr = &pt->b0;
1329 break;
1330 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1331 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1332 data, write_access);
1333 case ELF_BR_OFFSET(6):
1334 ptr = &pt->b6;
1335 break;
1336 case ELF_BR_OFFSET(7):
1337 ptr = &pt->b7;
1338 }
1339 if (write_access)
1340 *ptr = *data;
1341 else
1342 *data = *ptr;
1343 return 0;
1344}
1345
1346static int
1347access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1348 unsigned long addr, unsigned long *data, int write_access)
1349{
1350 struct pt_regs *pt;
1351 unsigned long cfm, urbs_end;
1352 unsigned long *ptr = NULL;
1353
1354 pt = task_pt_regs(target);
1355 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1356 switch (addr) {
1357 case ELF_AR_RSC_OFFSET:
1358 /* force PL3 */
1359 if (write_access)
1360 pt->ar_rsc = *data | (3 << 2);
1361 else
1362 *data = pt->ar_rsc;
1363 return 0;
1364 case ELF_AR_BSP_OFFSET:
1365 /*
1366 * By convention, we use PT_AR_BSP to refer to
1367 * the end of the user-level backing store.
1368 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1369 * to get the real value of ar.bsp at the time
1370 * the kernel was entered.
1371 *
1372 * Furthermore, when changing the contents of
1373 * PT_AR_BSP (or PT_CFM) while the task is
1374 * blocked in a system call, convert the state
1375 * so that the non-system-call exit
1376 * path is used. This ensures that the proper
1377 * state will be picked up when resuming
1378 * execution. However, it *also* means that
1379 * once we write PT_AR_BSP/PT_CFM, it won't be
1380 * possible to modify the syscall arguments of
1381 * the pending system call any longer. This
1382 * shouldn't be an issue because modifying
1383 * PT_AR_BSP/PT_CFM generally implies that
1384 * we're either abandoning the pending system
1385 * call or that we defer it's re-execution
1386 * (e.g., due to GDB doing an inferior
1387 * function call).
1388 */
1389 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1390 if (write_access) {
1391 if (*data != urbs_end) {
1392 if (in_syscall(pt))
1393 convert_to_non_syscall(target,
1394 pt,
1395 cfm);
1396 /*
1397 * Simulate user-level write
1398 * of ar.bsp:
1399 */
1400 pt->loadrs = 0;
1401 pt->ar_bspstore = *data;
1402 }
1403 } else
1404 *data = urbs_end;
1405 return 0;
1406 case ELF_AR_BSPSTORE_OFFSET:
1407 ptr = &pt->ar_bspstore;
1408 break;
1409 case ELF_AR_RNAT_OFFSET:
1410 ptr = &pt->ar_rnat;
1411 break;
1412 case ELF_AR_CCV_OFFSET:
1413 ptr = &pt->ar_ccv;
1414 break;
1415 case ELF_AR_UNAT_OFFSET:
1416 ptr = &pt->ar_unat;
1417 break;
1418 case ELF_AR_FPSR_OFFSET:
1419 ptr = &pt->ar_fpsr;
1420 break;
1421 case ELF_AR_PFS_OFFSET:
1422 ptr = &pt->ar_pfs;
1423 break;
1424 case ELF_AR_LC_OFFSET:
1425 return unw_access_ar(info, UNW_AR_LC, data,
1426 write_access);
1427 case ELF_AR_EC_OFFSET:
1428 return unw_access_ar(info, UNW_AR_EC, data,
1429 write_access);
1430 case ELF_AR_CSD_OFFSET:
1431 ptr = &pt->ar_csd;
1432 break;
1433 case ELF_AR_SSD_OFFSET:
1434 ptr = &pt->ar_ssd;
1435 }
1436 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1437 switch (addr) {
1438 case ELF_CR_IIP_OFFSET:
1439 ptr = &pt->cr_iip;
1440 break;
1441 case ELF_CFM_OFFSET:
1442 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1443 if (write_access) {
1444 if (((cfm ^ *data) & PFM_MASK) != 0) {
1445 if (in_syscall(pt))
1446 convert_to_non_syscall(target,
1447 pt,
1448 cfm);
1449 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1450 | (*data & PFM_MASK));
1451 }
1452 } else
1453 *data = cfm;
1454 return 0;
1455 case ELF_CR_IPSR_OFFSET:
1456 if (write_access) {
1457 unsigned long tmp = *data;
1458 /* psr.ri==3 is a reserved value: SDM 2:25 */
1459 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1460 tmp &= ~IA64_PSR_RI;
1461 pt->cr_ipsr = ((tmp & IPSR_MASK)
1462 | (pt->cr_ipsr & ~IPSR_MASK));
1463 } else
1464 *data = (pt->cr_ipsr & IPSR_MASK);
1465 return 0;
1466 }
1467 } else if (addr == ELF_NAT_OFFSET)
1468 return access_nat_bits(target, pt, info,
1469 data, write_access);
1470 else if (addr == ELF_PR_OFFSET)
1471 ptr = &pt->pr;
1472 else
1473 return -1;
1474
1475 if (write_access)
1476 *ptr = *data;
1477 else
1478 *data = *ptr;
1479
1480 return 0;
1481}
1482
1483static int
1484access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1485 unsigned long addr, unsigned long *data, int write_access)
1486{
1487 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1488 return access_elf_gpreg(target, info, addr, data, write_access);
1489 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1490 return access_elf_breg(target, info, addr, data, write_access);
1491 else
1492 return access_elf_areg(target, info, addr, data, write_access);
1493}
1494
1495void do_gpregs_get(struct unw_frame_info *info, void *arg)
1496{
1497 struct pt_regs *pt;
1498 struct regset_getset *dst = arg;
1499 elf_greg_t tmp[16];
1500 unsigned int i, index, min_copy;
1501
1502 if (unw_unwind_to_user(info) < 0)
1503 return;
1504
1505 /*
1506 * coredump format:
1507 * r0-r31
1508 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1509 * predicate registers (p0-p63)
1510 * b0-b7
1511 * ip cfm user-mask
1512 * ar.rsc ar.bsp ar.bspstore ar.rnat
1513 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1514 */
1515
1516
1517 /* Skip r0 */
1518 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1519 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1520 &dst->u.get.kbuf,
1521 &dst->u.get.ubuf,
1522 0, ELF_GR_OFFSET(1));
1523 if (dst->ret || dst->count == 0)
1524 return;
1525 }
1526
1527 /* gr1 - gr15 */
1528 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1529 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1530 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1531 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1532 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1533 index++)
1534 if (access_elf_reg(dst->target, info, i,
1535 &tmp[index], 0) < 0) {
1536 dst->ret = -EIO;
1537 return;
1538 }
1539 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1540 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1541 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1542 if (dst->ret || dst->count == 0)
1543 return;
1544 }
1545
1546 /* r16-r31 */
1547 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1548 pt = task_pt_regs(dst->target);
1549 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1550 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1551 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1552 if (dst->ret || dst->count == 0)
1553 return;
1554 }
1555
1556 /* nat, pr, b0 - b7 */
1557 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1558 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1559 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1560 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1561 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1562 index++)
1563 if (access_elf_reg(dst->target, info, i,
1564 &tmp[index], 0) < 0) {
1565 dst->ret = -EIO;
1566 return;
1567 }
1568 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1569 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1570 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1571 if (dst->ret || dst->count == 0)
1572 return;
1573 }
1574
1575 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1576 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1577 */
1578 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1579 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1580 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1581 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1582 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1583 index++)
1584 if (access_elf_reg(dst->target, info, i,
1585 &tmp[index], 0) < 0) {
1586 dst->ret = -EIO;
1587 return;
1588 }
1589 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1590 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1591 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1592 }
1593}
1594
1595void do_gpregs_set(struct unw_frame_info *info, void *arg)
1596{
1597 struct pt_regs *pt;
1598 struct regset_getset *dst = arg;
1599 elf_greg_t tmp[16];
1600 unsigned int i, index;
1601
1602 if (unw_unwind_to_user(info) < 0)
1603 return;
1604
1605 /* Skip r0 */
1606 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1607 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1608 &dst->u.set.kbuf,
1609 &dst->u.set.ubuf,
1610 0, ELF_GR_OFFSET(1));
1611 if (dst->ret || dst->count == 0)
1612 return;
1613 }
1614
1615 /* gr1-gr15 */
1616 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1617 i = dst->pos;
1618 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1619 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1620 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1621 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1622 if (dst->ret)
1623 return;
1624 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1625 if (access_elf_reg(dst->target, info, i,
1626 &tmp[index], 1) < 0) {
1627 dst->ret = -EIO;
1628 return;
1629 }
1630 if (dst->count == 0)
1631 return;
1632 }
1633
1634 /* gr16-gr31 */
1635 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1636 pt = task_pt_regs(dst->target);
1637 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1638 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1639 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1640 if (dst->ret || dst->count == 0)
1641 return;
1642 }
1643
1644 /* nat, pr, b0 - b7 */
1645 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1646 i = dst->pos;
1647 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1648 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1649 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1650 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1651 if (dst->ret)
1652 return;
1653 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1654 if (access_elf_reg(dst->target, info, i,
1655 &tmp[index], 1) < 0) {
1656 dst->ret = -EIO;
1657 return;
1658 }
1659 if (dst->count == 0)
1660 return;
1661 }
1662
1663 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1664 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1665 */
1666 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1667 i = dst->pos;
1668 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1669 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1670 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1671 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1672 if (dst->ret)
1673 return;
1674 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1675 if (access_elf_reg(dst->target, info, i,
1676 &tmp[index], 1) < 0) {
1677 dst->ret = -EIO;
1678 return;
1679 }
1680 }
1681}
1682
1683#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1684
1685void do_fpregs_get(struct unw_frame_info *info, void *arg)
1686{
1687 struct regset_getset *dst = arg;
1688 struct task_struct *task = dst->target;
1689 elf_fpreg_t tmp[30];
1690 int index, min_copy, i;
1691
1692 if (unw_unwind_to_user(info) < 0)
1693 return;
1694
1695 /* Skip pos 0 and 1 */
1696 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1697 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1698 &dst->u.get.kbuf,
1699 &dst->u.get.ubuf,
1700 0, ELF_FP_OFFSET(2));
1701 if (dst->count == 0 || dst->ret)
1702 return;
1703 }
1704
1705 /* fr2-fr31 */
1706 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1707 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1708
1709 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1710 dst->pos + dst->count);
1711 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1712 index++)
1713 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1714 &tmp[index])) {
1715 dst->ret = -EIO;
1716 return;
1717 }
1718 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1719 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1720 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1721 if (dst->count == 0 || dst->ret)
1722 return;
1723 }
1724
1725 /* fph */
1726 if (dst->count > 0) {
1727 ia64_flush_fph(dst->target);
1728 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1729 dst->ret = user_regset_copyout(
1730 &dst->pos, &dst->count,
1731 &dst->u.get.kbuf, &dst->u.get.ubuf,
1732 &dst->target->thread.fph,
1733 ELF_FP_OFFSET(32), -1);
1734 else
1735 /* Zero fill instead. */
1736 dst->ret = user_regset_copyout_zero(
1737 &dst->pos, &dst->count,
1738 &dst->u.get.kbuf, &dst->u.get.ubuf,
1739 ELF_FP_OFFSET(32), -1);
1740 }
1741}
1742
1743void do_fpregs_set(struct unw_frame_info *info, void *arg)
1744{
1745 struct regset_getset *dst = arg;
1746 elf_fpreg_t fpreg, tmp[30];
1747 int index, start, end;
1748
1749 if (unw_unwind_to_user(info) < 0)
1750 return;
1751
1752 /* Skip pos 0 and 1 */
1753 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1754 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1755 &dst->u.set.kbuf,
1756 &dst->u.set.ubuf,
1757 0, ELF_FP_OFFSET(2));
1758 if (dst->count == 0 || dst->ret)
1759 return;
1760 }
1761
1762 /* fr2-fr31 */
1763 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1764 start = dst->pos;
1765 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1766 dst->pos + dst->count);
1767 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1768 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1769 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1770 if (dst->ret)
1771 return;
1772
1773 if (start & 0xF) { /* only write high part */
1774 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1775 &fpreg)) {
1776 dst->ret = -EIO;
1777 return;
1778 }
1779 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1780 = fpreg.u.bits[0];
1781 start &= ~0xFUL;
1782 }
1783 if (end & 0xF) { /* only write low part */
1784 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1785 &fpreg)) {
1786 dst->ret = -EIO;
1787 return;
1788 }
1789 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1790 = fpreg.u.bits[1];
1791 end = (end + 0xF) & ~0xFUL;
1792 }
1793
1794 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1795 index = start / sizeof(elf_fpreg_t);
1796 if (unw_set_fr(info, index, tmp[index - 2])) {
1797 dst->ret = -EIO;
1798 return;
1799 }
1800 }
1801 if (dst->ret || dst->count == 0)
1802 return;
1803 }
1804
1805 /* fph */
1806 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1807 ia64_sync_fph(dst->target);
1808 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1809 &dst->u.set.kbuf,
1810 &dst->u.set.ubuf,
1811 &dst->target->thread.fph,
1812 ELF_FP_OFFSET(32), -1);
1813 }
1814}
1815
1816static int
1817do_regset_call(void (*call)(struct unw_frame_info *, void *),
1818 struct task_struct *target,
1819 const struct user_regset *regset,
1820 unsigned int pos, unsigned int count,
1821 const void *kbuf, const void __user *ubuf)
1822{
1823 struct regset_getset info = { .target = target, .regset = regset,
1824 .pos = pos, .count = count,
1825 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1826 .ret = 0 };
1827
1828 if (target == current)
1829 unw_init_running(call, &info);
1830 else {
1831 struct unw_frame_info ufi;
1832 memset(&ufi, 0, sizeof(ufi));
1833 unw_init_from_blocked_task(&ufi, target);
1834 (*call)(&ufi, &info);
1835 }
1836
1837 return info.ret;
1838}
1839
1840static int
1841gpregs_get(struct task_struct *target,
1842 const struct user_regset *regset,
1843 unsigned int pos, unsigned int count,
1844 void *kbuf, void __user *ubuf)
1845{
1846 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1847 kbuf, ubuf);
1848}
1849
1850static int gpregs_set(struct task_struct *target,
1851 const struct user_regset *regset,
1852 unsigned int pos, unsigned int count,
1853 const void *kbuf, const void __user *ubuf)
1854{
1855 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1856 kbuf, ubuf);
1857}
1858
1859static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1860{
1861 do_sync_rbs(info, ia64_sync_user_rbs);
1862}
1863
1864/*
1865 * This is called to write back the register backing store.
1866 * ptrace does this before it stops, so that a tracer reading the user
1867 * memory after the thread stops will get the current register data.
1868 */
1869static int
1870gpregs_writeback(struct task_struct *target,
1871 const struct user_regset *regset,
1872 int now)
1873{
1874 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1875 return 0;
1876 set_notify_resume(target);
1877 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1878 NULL, NULL);
1879}
1880
1881static int
1882fpregs_active(struct task_struct *target, const struct user_regset *regset)
1883{
1884 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1885}
1886
1887static int fpregs_get(struct task_struct *target,
1888 const struct user_regset *regset,
1889 unsigned int pos, unsigned int count,
1890 void *kbuf, void __user *ubuf)
1891{
1892 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1893 kbuf, ubuf);
1894}
1895
1896static int fpregs_set(struct task_struct *target,
1897 const struct user_regset *regset,
1898 unsigned int pos, unsigned int count,
1899 const void *kbuf, const void __user *ubuf)
1900{
1901 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1902 kbuf, ubuf);
1903}
1904
1905static int
1906access_uarea(struct task_struct *child, unsigned long addr,
1907 unsigned long *data, int write_access)
1908{
1909 unsigned int pos = -1; /* an invalid value */
1910 int ret;
1911 unsigned long *ptr, regnum;
1912
1913 if ((addr & 0x7) != 0) {
1914 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1915 return -1;
1916 }
1917 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1918 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1919 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1920 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1921 dprintk("ptrace: rejecting access to register "
1922 "address 0x%lx\n", addr);
1923 return -1;
1924 }
1925
1926 switch (addr) {
1927 case PT_F32 ... (PT_F127 + 15):
1928 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1929 break;
1930 case PT_F2 ... (PT_F5 + 15):
1931 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1932 break;
1933 case PT_F10 ... (PT_F31 + 15):
1934 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1935 break;
1936 case PT_F6 ... (PT_F9 + 15):
1937 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1938 break;
1939 }
1940
1941 if (pos != -1) {
1942 if (write_access)
1943 ret = fpregs_set(child, NULL, pos,
1944 sizeof(unsigned long), data, NULL);
1945 else
1946 ret = fpregs_get(child, NULL, pos,
1947 sizeof(unsigned long), data, NULL);
1948 if (ret != 0)
1949 return -1;
1950 return 0;
1951 }
1952
1953 switch (addr) {
1954 case PT_NAT_BITS:
1955 pos = ELF_NAT_OFFSET;
1956 break;
1957 case PT_R4 ... PT_R7:
1958 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1959 break;
1960 case PT_B1 ... PT_B5:
1961 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1962 break;
1963 case PT_AR_EC:
1964 pos = ELF_AR_EC_OFFSET;
1965 break;
1966 case PT_AR_LC:
1967 pos = ELF_AR_LC_OFFSET;
1968 break;
1969 case PT_CR_IPSR:
1970 pos = ELF_CR_IPSR_OFFSET;
1971 break;
1972 case PT_CR_IIP:
1973 pos = ELF_CR_IIP_OFFSET;
1974 break;
1975 case PT_CFM:
1976 pos = ELF_CFM_OFFSET;
1977 break;
1978 case PT_AR_UNAT:
1979 pos = ELF_AR_UNAT_OFFSET;
1980 break;
1981 case PT_AR_PFS:
1982 pos = ELF_AR_PFS_OFFSET;
1983 break;
1984 case PT_AR_RSC:
1985 pos = ELF_AR_RSC_OFFSET;
1986 break;
1987 case PT_AR_RNAT:
1988 pos = ELF_AR_RNAT_OFFSET;
1989 break;
1990 case PT_AR_BSPSTORE:
1991 pos = ELF_AR_BSPSTORE_OFFSET;
1992 break;
1993 case PT_PR:
1994 pos = ELF_PR_OFFSET;
1995 break;
1996 case PT_B6:
1997 pos = ELF_BR_OFFSET(6);
1998 break;
1999 case PT_AR_BSP:
2000 pos = ELF_AR_BSP_OFFSET;
2001 break;
2002 case PT_R1 ... PT_R3:
2003 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2004 break;
2005 case PT_R12 ... PT_R15:
2006 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2007 break;
2008 case PT_R8 ... PT_R11:
2009 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2010 break;
2011 case PT_R16 ... PT_R31:
2012 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2013 break;
2014 case PT_AR_CCV:
2015 pos = ELF_AR_CCV_OFFSET;
2016 break;
2017 case PT_AR_FPSR:
2018 pos = ELF_AR_FPSR_OFFSET;
2019 break;
2020 case PT_B0:
2021 pos = ELF_BR_OFFSET(0);
2022 break;
2023 case PT_B7:
2024 pos = ELF_BR_OFFSET(7);
2025 break;
2026 case PT_AR_CSD:
2027 pos = ELF_AR_CSD_OFFSET;
2028 break;
2029 case PT_AR_SSD:
2030 pos = ELF_AR_SSD_OFFSET;
2031 break;
2032 }
2033
2034 if (pos != -1) {
2035 if (write_access)
2036 ret = gpregs_set(child, NULL, pos,
2037 sizeof(unsigned long), data, NULL);
2038 else
2039 ret = gpregs_get(child, NULL, pos,
2040 sizeof(unsigned long), data, NULL);
2041 if (ret != 0)
2042 return -1;
2043 return 0;
2044 }
2045
2046 /* access debug registers */
2047 if (addr >= PT_IBR) {
2048 regnum = (addr - PT_IBR) >> 3;
2049 ptr = &child->thread.ibr[0];
2050 } else {
2051 regnum = (addr - PT_DBR) >> 3;
2052 ptr = &child->thread.dbr[0];
2053 }
2054
2055 if (regnum >= 8) {
2056 dprintk("ptrace: rejecting access to register "
2057 "address 0x%lx\n", addr);
2058 return -1;
2059 }
2060#ifdef CONFIG_PERFMON
2061 /*
2062 * Check if debug registers are used by perfmon. This
2063 * test must be done once we know that we can do the
2064 * operation, i.e. the arguments are all valid, but
2065 * before we start modifying the state.
2066 *
2067 * Perfmon needs to keep a count of how many processes
2068 * are trying to modify the debug registers for system
2069 * wide monitoring sessions.
2070 *
2071 * We also include read access here, because they may
2072 * cause the PMU-installed debug register state
2073 * (dbr[], ibr[]) to be reset. The two arrays are also
2074 * used by perfmon, but we do not use
2075 * IA64_THREAD_DBG_VALID. The registers are restored
2076 * by the PMU context switch code.
2077 */
2078 if (pfm_use_debug_registers(child))
2079 return -1;
2080#endif
2081
2082 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2083 child->thread.flags |= IA64_THREAD_DBG_VALID;
2084 memset(child->thread.dbr, 0,
2085 sizeof(child->thread.dbr));
2086 memset(child->thread.ibr, 0,
2087 sizeof(child->thread.ibr));
2088 }
2089
2090 ptr += regnum;
2091
2092 if ((regnum & 1) && write_access) {
2093 /* don't let the user set kernel-level breakpoints: */
2094 *ptr = *data & ~(7UL << 56);
2095 return 0;
2096 }
2097 if (write_access)
2098 *ptr = *data;
2099 else
2100 *data = *ptr;
2101 return 0;
2102}
2103
2104static const struct user_regset native_regsets[] = {
2105 {
2106 .core_note_type = NT_PRSTATUS,
2107 .n = ELF_NGREG,
2108 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2109 .get = gpregs_get, .set = gpregs_set,
2110 .writeback = gpregs_writeback
2111 },
2112 {
2113 .core_note_type = NT_PRFPREG,
2114 .n = ELF_NFPREG,
2115 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2116 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2117 },
2118};
2119
2120static const struct user_regset_view user_ia64_view = {
2121 .name = "ia64",
2122 .e_machine = EM_IA_64,
2123 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2124};
2125
2126const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2127{
2128 return &user_ia64_view;
2129}
2130
2131struct syscall_get_set_args {
2132 unsigned int i;
2133 unsigned int n;
2134 unsigned long *args;
2135 struct pt_regs *regs;
2136 int rw;
2137};
2138
2139static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2140{
2141 struct syscall_get_set_args *args = data;
2142 struct pt_regs *pt = args->regs;
2143 unsigned long *krbs, cfm, ndirty;
2144 int i, count;
2145
2146 if (unw_unwind_to_user(info) < 0)
2147 return;
2148
2149 cfm = pt->cr_ifs;
2150 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2151 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2152
2153 count = 0;
2154 if (in_syscall(pt))
2155 count = min_t(int, args->n, cfm & 0x7f);
2156
2157 for (i = 0; i < count; i++) {
2158 if (args->rw)
2159 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2160 args->args[i];
2161 else
2162 args->args[i] = *ia64_rse_skip_regs(krbs,
2163 ndirty + i + args->i);
2164 }
2165
2166 if (!args->rw) {
2167 while (i < args->n) {
2168 args->args[i] = 0;
2169 i++;
2170 }
2171 }
2172}
2173
2174void ia64_syscall_get_set_arguments(struct task_struct *task,
2175 struct pt_regs *regs, unsigned int i, unsigned int n,
2176 unsigned long *args, int rw)
2177{
2178 struct syscall_get_set_args data = {
2179 .i = i,
2180 .n = n,
2181 .args = args,
2182 .regs = regs,
2183 .rw = rw,
2184 };
2185
2186 if (task == current)
2187 unw_init_running(syscall_get_set_args_cb, &data);
2188 else {
2189 struct unw_frame_info ufi;
2190 memset(&ufi, 0, sizeof(ufi));
2191 unw_init_from_blocked_task(&ufi, task);
2192 syscall_get_set_args_cb(&ufi, &data);
2193 }
2194}