Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Kernel support for the ptrace() and syscall tracing interfaces.
   4 *
   5 * Copyright (C) 1999-2005 Hewlett-Packard Co
   6 *	David Mosberger-Tang <davidm@hpl.hp.com>
   7 * Copyright (C) 2006 Intel Co
   8 *  2006-08-12	- IA64 Native Utrace implementation support added by
   9 *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  10 *
  11 * Derived from the x86 and Alpha versions.
  12 */
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/sched/task.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/mm.h>
  18#include <linux/errno.h>
  19#include <linux/ptrace.h>
  20#include <linux/user.h>
  21#include <linux/security.h>
  22#include <linux/audit.h>
  23#include <linux/signal.h>
  24#include <linux/regset.h>
  25#include <linux/elf.h>
  26#include <linux/tracehook.h>
  27
 
  28#include <asm/processor.h>
  29#include <asm/ptrace_offsets.h>
  30#include <asm/rse.h>
  31#include <linux/uaccess.h>
  32#include <asm/unwind.h>
  33#ifdef CONFIG_PERFMON
  34#include <asm/perfmon.h>
  35#endif
  36
  37#include "entry.h"
  38
  39/*
  40 * Bits in the PSR that we allow ptrace() to change:
  41 *	be, up, ac, mfl, mfh (the user mask; five bits total)
  42 *	db (debug breakpoint fault; one bit)
  43 *	id (instruction debug fault disable; one bit)
  44 *	dd (data debug fault disable; one bit)
  45 *	ri (restart instruction; two bits)
  46 *	is (instruction set; one bit)
  47 */
  48#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
  49		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
  50
  51#define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
  52#define PFM_MASK	MASK(38)
  53
  54#define PTRACE_DEBUG	0
  55
  56#if PTRACE_DEBUG
  57# define dprintk(format...)	printk(format)
  58# define inline
  59#else
  60# define dprintk(format...)
  61#endif
  62
  63/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
  64
  65static inline int
  66in_syscall (struct pt_regs *pt)
  67{
  68	return (long) pt->cr_ifs >= 0;
  69}
  70
  71/*
  72 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
  73 * bitset where bit i is set iff the NaT bit of register i is set.
  74 */
  75unsigned long
  76ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
  77{
  78#	define GET_BITS(first, last, unat)				\
  79	({								\
  80		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
  81		unsigned long nbits = (last - first + 1);		\
  82		unsigned long mask = MASK(nbits) << first;		\
  83		unsigned long dist;					\
  84		if (bit < first)					\
  85			dist = 64 + bit - first;			\
  86		else							\
  87			dist = bit - first;				\
  88		ia64_rotr(unat, dist) & mask;				\
  89	})
  90	unsigned long val;
  91
  92	/*
  93	 * Registers that are stored consecutively in struct pt_regs
  94	 * can be handled in parallel.  If the register order in
  95	 * struct_pt_regs changes, this code MUST be updated.
  96	 */
  97	val  = GET_BITS( 1,  1, scratch_unat);
  98	val |= GET_BITS( 2,  3, scratch_unat);
  99	val |= GET_BITS(12, 13, scratch_unat);
 100	val |= GET_BITS(14, 14, scratch_unat);
 101	val |= GET_BITS(15, 15, scratch_unat);
 102	val |= GET_BITS( 8, 11, scratch_unat);
 103	val |= GET_BITS(16, 31, scratch_unat);
 104	return val;
 105
 106#	undef GET_BITS
 107}
 108
 109/*
 110 * Set the NaT bits for the scratch registers according to NAT and
 111 * return the resulting unat (assuming the scratch registers are
 112 * stored in PT).
 113 */
 114unsigned long
 115ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
 116{
 117#	define PUT_BITS(first, last, nat)				\
 118	({								\
 119		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
 120		unsigned long nbits = (last - first + 1);		\
 121		unsigned long mask = MASK(nbits) << first;		\
 122		long dist;						\
 123		if (bit < first)					\
 124			dist = 64 + bit - first;			\
 125		else							\
 126			dist = bit - first;				\
 127		ia64_rotl(nat & mask, dist);				\
 128	})
 129	unsigned long scratch_unat;
 130
 131	/*
 132	 * Registers that are stored consecutively in struct pt_regs
 133	 * can be handled in parallel.  If the register order in
 134	 * struct_pt_regs changes, this code MUST be updated.
 135	 */
 136	scratch_unat  = PUT_BITS( 1,  1, nat);
 137	scratch_unat |= PUT_BITS( 2,  3, nat);
 138	scratch_unat |= PUT_BITS(12, 13, nat);
 139	scratch_unat |= PUT_BITS(14, 14, nat);
 140	scratch_unat |= PUT_BITS(15, 15, nat);
 141	scratch_unat |= PUT_BITS( 8, 11, nat);
 142	scratch_unat |= PUT_BITS(16, 31, nat);
 143
 144	return scratch_unat;
 145
 146#	undef PUT_BITS
 147}
 148
 149#define IA64_MLX_TEMPLATE	0x2
 150#define IA64_MOVL_OPCODE	6
 151
 152void
 153ia64_increment_ip (struct pt_regs *regs)
 154{
 155	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
 156
 157	if (ri > 2) {
 158		ri = 0;
 159		regs->cr_iip += 16;
 160	} else if (ri == 2) {
 161		get_user(w0, (char __user *) regs->cr_iip + 0);
 162		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 163			/*
 164			 * rfi'ing to slot 2 of an MLX bundle causes
 165			 * an illegal operation fault.  We don't want
 166			 * that to happen...
 167			 */
 168			ri = 0;
 169			regs->cr_iip += 16;
 170		}
 171	}
 172	ia64_psr(regs)->ri = ri;
 173}
 174
 175void
 176ia64_decrement_ip (struct pt_regs *regs)
 177{
 178	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
 179
 180	if (ia64_psr(regs)->ri == 0) {
 181		regs->cr_iip -= 16;
 182		ri = 2;
 183		get_user(w0, (char __user *) regs->cr_iip + 0);
 184		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 185			/*
 186			 * rfi'ing to slot 2 of an MLX bundle causes
 187			 * an illegal operation fault.  We don't want
 188			 * that to happen...
 189			 */
 190			ri = 1;
 191		}
 192	}
 193	ia64_psr(regs)->ri = ri;
 194}
 195
 196/*
 197 * This routine is used to read an rnat bits that are stored on the
 198 * kernel backing store.  Since, in general, the alignment of the user
 199 * and kernel are different, this is not completely trivial.  In
 200 * essence, we need to construct the user RNAT based on up to two
 201 * kernel RNAT values and/or the RNAT value saved in the child's
 202 * pt_regs.
 203 *
 204 * user rbs
 205 *
 206 * +--------+ <-- lowest address
 207 * | slot62 |
 208 * +--------+
 209 * |  rnat  | 0x....1f8
 210 * +--------+
 211 * | slot00 | \
 212 * +--------+ |
 213 * | slot01 | > child_regs->ar_rnat
 214 * +--------+ |
 215 * | slot02 | /				kernel rbs
 216 * +--------+				+--------+
 217 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
 218 * +- - - - +				+--------+
 219 *					| slot62 |
 220 * +- - - - +				+--------+
 221 *					|  rnat	 |
 222 * +- - - - +				+--------+
 223 *   vrnat				| slot00 |
 224 * +- - - - +				+--------+
 225 *					=	 =
 226 *					+--------+
 227 *					| slot00 | \
 228 *					+--------+ |
 229 *					| slot01 | > child_stack->ar_rnat
 230 *					+--------+ |
 231 *					| slot02 | /
 232 *					+--------+
 233 *						  <--- child_stack->ar_bspstore
 234 *
 235 * The way to think of this code is as follows: bit 0 in the user rnat
 236 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
 237 * value.  The kernel rnat value holding this bit is stored in
 238 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
 239 * form the upper bits of the user rnat value.
 240 *
 241 * Boundary cases:
 242 *
 243 * o when reading the rnat "below" the first rnat slot on the kernel
 244 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
 245 *   merged in from pt->ar_rnat.
 246 *
 247 * o when reading the rnat "above" the last rnat slot on the kernel
 248 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
 249 */
 250static unsigned long
 251get_rnat (struct task_struct *task, struct switch_stack *sw,
 252	  unsigned long *krbs, unsigned long *urnat_addr,
 253	  unsigned long *urbs_end)
 254{
 255	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
 256	unsigned long umask = 0, mask, m;
 257	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 258	long num_regs, nbits;
 259	struct pt_regs *pt;
 260
 261	pt = task_pt_regs(task);
 262	kbsp = (unsigned long *) sw->ar_bspstore;
 263	ubspstore = (unsigned long *) pt->ar_bspstore;
 264
 265	if (urbs_end < urnat_addr)
 266		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
 267	else
 268		nbits = 63;
 269	mask = MASK(nbits);
 270	/*
 271	 * First, figure out which bit number slot 0 in user-land maps
 272	 * to in the kernel rnat.  Do this by figuring out how many
 273	 * register slots we're beyond the user's backingstore and
 274	 * then computing the equivalent address in kernel space.
 275	 */
 276	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 277	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 278	shift = ia64_rse_slot_num(slot0_kaddr);
 279	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 280	rnat0_kaddr = rnat1_kaddr - 64;
 281
 282	if (ubspstore + 63 > urnat_addr) {
 283		/* some bits need to be merged in from pt->ar_rnat */
 284		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 285		urnat = (pt->ar_rnat & umask);
 286		mask &= ~umask;
 287		if (!mask)
 288			return urnat;
 289	}
 290
 291	m = mask << shift;
 292	if (rnat0_kaddr >= kbsp)
 293		rnat0 = sw->ar_rnat;
 294	else if (rnat0_kaddr > krbs)
 295		rnat0 = *rnat0_kaddr;
 296	urnat |= (rnat0 & m) >> shift;
 297
 298	m = mask >> (63 - shift);
 299	if (rnat1_kaddr >= kbsp)
 300		rnat1 = sw->ar_rnat;
 301	else if (rnat1_kaddr > krbs)
 302		rnat1 = *rnat1_kaddr;
 303	urnat |= (rnat1 & m) << (63 - shift);
 304	return urnat;
 305}
 306
 307/*
 308 * The reverse of get_rnat.
 309 */
 310static void
 311put_rnat (struct task_struct *task, struct switch_stack *sw,
 312	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
 313	  unsigned long *urbs_end)
 314{
 315	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
 316	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 317	long num_regs, nbits;
 318	struct pt_regs *pt;
 319	unsigned long cfm, *urbs_kargs;
 320
 321	pt = task_pt_regs(task);
 322	kbsp = (unsigned long *) sw->ar_bspstore;
 323	ubspstore = (unsigned long *) pt->ar_bspstore;
 324
 325	urbs_kargs = urbs_end;
 326	if (in_syscall(pt)) {
 327		/*
 328		 * If entered via syscall, don't allow user to set rnat bits
 329		 * for syscall args.
 330		 */
 331		cfm = pt->cr_ifs;
 332		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
 333	}
 334
 335	if (urbs_kargs >= urnat_addr)
 336		nbits = 63;
 337	else {
 338		if ((urnat_addr - 63) >= urbs_kargs)
 339			return;
 340		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
 341	}
 342	mask = MASK(nbits);
 343
 344	/*
 345	 * First, figure out which bit number slot 0 in user-land maps
 346	 * to in the kernel rnat.  Do this by figuring out how many
 347	 * register slots we're beyond the user's backingstore and
 348	 * then computing the equivalent address in kernel space.
 349	 */
 350	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 351	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 352	shift = ia64_rse_slot_num(slot0_kaddr);
 353	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 354	rnat0_kaddr = rnat1_kaddr - 64;
 355
 356	if (ubspstore + 63 > urnat_addr) {
 357		/* some bits need to be place in pt->ar_rnat: */
 358		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 359		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
 360		mask &= ~umask;
 361		if (!mask)
 362			return;
 363	}
 364	/*
 365	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
 366	 * rnat slot is ignored. so we don't have to clear it here.
 367	 */
 368	rnat0 = (urnat << shift);
 369	m = mask << shift;
 370	if (rnat0_kaddr >= kbsp)
 371		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
 372	else if (rnat0_kaddr > krbs)
 373		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
 374
 375	rnat1 = (urnat >> (63 - shift));
 376	m = mask >> (63 - shift);
 377	if (rnat1_kaddr >= kbsp)
 378		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
 379	else if (rnat1_kaddr > krbs)
 380		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
 381}
 382
 383static inline int
 384on_kernel_rbs (unsigned long addr, unsigned long bspstore,
 385	       unsigned long urbs_end)
 386{
 387	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
 388						      urbs_end);
 389	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
 390}
 391
 392/*
 393 * Read a word from the user-level backing store of task CHILD.  ADDR
 394 * is the user-level address to read the word from, VAL a pointer to
 395 * the return value, and USER_BSP gives the end of the user-level
 396 * backing store (i.e., it's the address that would be in ar.bsp after
 397 * the user executed a "cover" instruction).
 398 *
 399 * This routine takes care of accessing the kernel register backing
 400 * store for those registers that got spilled there.  It also takes
 401 * care of calculating the appropriate RNaT collection words.
 402 */
 403long
 404ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
 405	   unsigned long user_rbs_end, unsigned long addr, long *val)
 406{
 407	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
 408	struct pt_regs *child_regs;
 409	size_t copied;
 410	long ret;
 411
 412	urbs_end = (long *) user_rbs_end;
 413	laddr = (unsigned long *) addr;
 414	child_regs = task_pt_regs(child);
 415	bspstore = (unsigned long *) child_regs->ar_bspstore;
 416	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 417	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 418			  (unsigned long) urbs_end))
 419	{
 420		/*
 421		 * Attempt to read the RBS in an area that's actually
 422		 * on the kernel RBS => read the corresponding bits in
 423		 * the kernel RBS.
 424		 */
 425		rnat_addr = ia64_rse_rnat_addr(laddr);
 426		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
 427
 428		if (laddr == rnat_addr) {
 429			/* return NaT collection word itself */
 430			*val = ret;
 431			return 0;
 432		}
 433
 434		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
 435			/*
 436			 * It is implementation dependent whether the
 437			 * data portion of a NaT value gets saved on a
 438			 * st8.spill or RSE spill (e.g., see EAS 2.6,
 439			 * 4.4.4.6 Register Spill and Fill).  To get
 440			 * consistent behavior across all possible
 441			 * IA-64 implementations, we return zero in
 442			 * this case.
 443			 */
 444			*val = 0;
 445			return 0;
 446		}
 447
 448		if (laddr < urbs_end) {
 449			/*
 450			 * The desired word is on the kernel RBS and
 451			 * is not a NaT.
 452			 */
 453			regnum = ia64_rse_num_regs(bspstore, laddr);
 454			*val = *ia64_rse_skip_regs(krbs, regnum);
 455			return 0;
 456		}
 457	}
 458	copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
 459	if (copied != sizeof(ret))
 460		return -EIO;
 461	*val = ret;
 462	return 0;
 463}
 464
 465long
 466ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
 467	   unsigned long user_rbs_end, unsigned long addr, long val)
 468{
 469	unsigned long *bspstore, *krbs, regnum, *laddr;
 470	unsigned long *urbs_end = (long *) user_rbs_end;
 471	struct pt_regs *child_regs;
 472
 473	laddr = (unsigned long *) addr;
 474	child_regs = task_pt_regs(child);
 475	bspstore = (unsigned long *) child_regs->ar_bspstore;
 476	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 477	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 478			  (unsigned long) urbs_end))
 479	{
 480		/*
 481		 * Attempt to write the RBS in an area that's actually
 482		 * on the kernel RBS => write the corresponding bits
 483		 * in the kernel RBS.
 484		 */
 485		if (ia64_rse_is_rnat_slot(laddr))
 486			put_rnat(child, child_stack, krbs, laddr, val,
 487				 urbs_end);
 488		else {
 489			if (laddr < urbs_end) {
 490				regnum = ia64_rse_num_regs(bspstore, laddr);
 491				*ia64_rse_skip_regs(krbs, regnum) = val;
 492			}
 493		}
 494	} else if (access_process_vm(child, addr, &val, sizeof(val),
 495				FOLL_FORCE | FOLL_WRITE)
 496		   != sizeof(val))
 497		return -EIO;
 498	return 0;
 499}
 500
 501/*
 502 * Calculate the address of the end of the user-level register backing
 503 * store.  This is the address that would have been stored in ar.bsp
 504 * if the user had executed a "cover" instruction right before
 505 * entering the kernel.  If CFMP is not NULL, it is used to return the
 506 * "current frame mask" that was active at the time the kernel was
 507 * entered.
 508 */
 509unsigned long
 510ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
 511		       unsigned long *cfmp)
 512{
 513	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
 514	long ndirty;
 515
 516	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 517	bspstore = (unsigned long *) pt->ar_bspstore;
 518	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
 519
 520	if (in_syscall(pt))
 521		ndirty += (cfm & 0x7f);
 522	else
 523		cfm &= ~(1UL << 63);	/* clear valid bit */
 524
 525	if (cfmp)
 526		*cfmp = cfm;
 527	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
 528}
 529
 530/*
 531 * Synchronize (i.e, write) the RSE backing store living in kernel
 532 * space to the VM of the CHILD task.  SW and PT are the pointers to
 533 * the switch_stack and pt_regs structures, respectively.
 534 * USER_RBS_END is the user-level address at which the backing store
 535 * ends.
 536 */
 537long
 538ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
 539		    unsigned long user_rbs_start, unsigned long user_rbs_end)
 540{
 541	unsigned long addr, val;
 542	long ret;
 543
 544	/* now copy word for word from kernel rbs to user rbs: */
 545	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 546		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
 547		if (ret < 0)
 548			return ret;
 549		if (access_process_vm(child, addr, &val, sizeof(val),
 550				FOLL_FORCE | FOLL_WRITE)
 551		    != sizeof(val))
 552			return -EIO;
 553	}
 554	return 0;
 555}
 556
 557static long
 558ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
 559		unsigned long user_rbs_start, unsigned long user_rbs_end)
 560{
 561	unsigned long addr, val;
 562	long ret;
 563
 564	/* now copy word for word from user rbs to kernel rbs: */
 565	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 566		if (access_process_vm(child, addr, &val, sizeof(val),
 567				FOLL_FORCE)
 568				!= sizeof(val))
 569			return -EIO;
 570
 571		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
 572		if (ret < 0)
 573			return ret;
 574	}
 575	return 0;
 576}
 577
 578typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
 579			    unsigned long, unsigned long);
 580
 581static void do_sync_rbs(struct unw_frame_info *info, void *arg)
 582{
 583	struct pt_regs *pt;
 584	unsigned long urbs_end;
 585	syncfunc_t fn = arg;
 586
 587	if (unw_unwind_to_user(info) < 0)
 588		return;
 589	pt = task_pt_regs(info->task);
 590	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
 591
 592	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
 593}
 594
 595/*
 596 * when a thread is stopped (ptraced), debugger might change thread's user
 597 * stack (change memory directly), and we must avoid the RSE stored in kernel
 598 * to override user stack (user space's RSE is newer than kernel's in the
 599 * case). To workaround the issue, we copy kernel RSE to user RSE before the
 600 * task is stopped, so user RSE has updated data.  we then copy user RSE to
 601 * kernel after the task is resummed from traced stop and kernel will use the
 602 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
 603 * synchronize user RSE to kernel.
 604 */
 605void ia64_ptrace_stop(void)
 606{
 607	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
 608		return;
 609	set_notify_resume(current);
 610	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
 611}
 612
 613/*
 614 * This is called to read back the register backing store.
 615 */
 616void ia64_sync_krbs(void)
 617{
 618	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
 619
 620	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
 621}
 622
 623/*
 624 * After PTRACE_ATTACH, a thread's register backing store area in user
 625 * space is assumed to contain correct data whenever the thread is
 626 * stopped.  arch_ptrace_stop takes care of this on tracing stops.
 627 * But if the child was already stopped for job control when we attach
 628 * to it, then it might not ever get into ptrace_stop by the time we
 629 * want to examine the user memory containing the RBS.
 630 */
 631void
 632ptrace_attach_sync_user_rbs (struct task_struct *child)
 633{
 634	int stopped = 0;
 635	struct unw_frame_info info;
 636
 637	/*
 638	 * If the child is in TASK_STOPPED, we need to change that to
 639	 * TASK_TRACED momentarily while we operate on it.  This ensures
 640	 * that the child won't be woken up and return to user mode while
 641	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
 642	 */
 643
 644	read_lock(&tasklist_lock);
 645	if (child->sighand) {
 646		spin_lock_irq(&child->sighand->siglock);
 647		if (child->state == TASK_STOPPED &&
 648		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
 649			set_notify_resume(child);
 650
 651			child->state = TASK_TRACED;
 652			stopped = 1;
 653		}
 654		spin_unlock_irq(&child->sighand->siglock);
 655	}
 656	read_unlock(&tasklist_lock);
 657
 658	if (!stopped)
 659		return;
 660
 661	unw_init_from_blocked_task(&info, child);
 662	do_sync_rbs(&info, ia64_sync_user_rbs);
 663
 664	/*
 665	 * Now move the child back into TASK_STOPPED if it should be in a
 666	 * job control stop, so that SIGCONT can be used to wake it up.
 667	 */
 668	read_lock(&tasklist_lock);
 669	if (child->sighand) {
 670		spin_lock_irq(&child->sighand->siglock);
 671		if (child->state == TASK_TRACED &&
 672		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
 673			child->state = TASK_STOPPED;
 674		}
 675		spin_unlock_irq(&child->sighand->siglock);
 676	}
 677	read_unlock(&tasklist_lock);
 678}
 679
 680/*
 681 * Write f32-f127 back to task->thread.fph if it has been modified.
 682 */
 683inline void
 684ia64_flush_fph (struct task_struct *task)
 685{
 686	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 687
 688	/*
 689	 * Prevent migrating this task while
 690	 * we're fiddling with the FPU state
 691	 */
 692	preempt_disable();
 693	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
 694		psr->mfh = 0;
 695		task->thread.flags |= IA64_THREAD_FPH_VALID;
 696		ia64_save_fpu(&task->thread.fph[0]);
 697	}
 698	preempt_enable();
 699}
 700
 701/*
 702 * Sync the fph state of the task so that it can be manipulated
 703 * through thread.fph.  If necessary, f32-f127 are written back to
 704 * thread.fph or, if the fph state hasn't been used before, thread.fph
 705 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 706 * ensure that the task picks up the state from thread.fph when it
 707 * executes again.
 708 */
 709void
 710ia64_sync_fph (struct task_struct *task)
 711{
 712	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 713
 714	ia64_flush_fph(task);
 715	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
 716		task->thread.flags |= IA64_THREAD_FPH_VALID;
 717		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
 718	}
 719	ia64_drop_fpu(task);
 720	psr->dfh = 1;
 721}
 722
 723/*
 724 * Change the machine-state of CHILD such that it will return via the normal
 725 * kernel exit-path, rather than the syscall-exit path.
 726 */
 727static void
 728convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
 729			unsigned long cfm)
 730{
 731	struct unw_frame_info info, prev_info;
 732	unsigned long ip, sp, pr;
 733
 734	unw_init_from_blocked_task(&info, child);
 735	while (1) {
 736		prev_info = info;
 737		if (unw_unwind(&info) < 0)
 738			return;
 739
 740		unw_get_sp(&info, &sp);
 741		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
 742		    < IA64_PT_REGS_SIZE) {
 743			dprintk("ptrace.%s: ran off the top of the kernel "
 744				"stack\n", __func__);
 745			return;
 746		}
 747		if (unw_get_pr (&prev_info, &pr) < 0) {
 748			unw_get_rp(&prev_info, &ip);
 749			dprintk("ptrace.%s: failed to read "
 750				"predicate register (ip=0x%lx)\n",
 751				__func__, ip);
 752			return;
 753		}
 754		if (unw_is_intr_frame(&info)
 755		    && (pr & (1UL << PRED_USER_STACK)))
 756			break;
 757	}
 758
 759	/*
 760	 * Note: at the time of this call, the target task is blocked
 761	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
 762	 * (aka, "pLvSys") we redirect execution from
 763	 * .work_pending_syscall_end to .work_processed_kernel.
 764	 */
 765	unw_get_pr(&prev_info, &pr);
 766	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
 767	pr |=  (1UL << PRED_NON_SYSCALL);
 768	unw_set_pr(&prev_info, pr);
 769
 770	pt->cr_ifs = (1UL << 63) | cfm;
 771	/*
 772	 * Clear the memory that is NOT written on syscall-entry to
 773	 * ensure we do not leak kernel-state to user when execution
 774	 * resumes.
 775	 */
 776	pt->r2 = 0;
 777	pt->r3 = 0;
 778	pt->r14 = 0;
 779	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
 780	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
 781	pt->b7 = 0;
 782	pt->ar_ccv = 0;
 783	pt->ar_csd = 0;
 784	pt->ar_ssd = 0;
 785}
 786
 787static int
 788access_nat_bits (struct task_struct *child, struct pt_regs *pt,
 789		 struct unw_frame_info *info,
 790		 unsigned long *data, int write_access)
 791{
 792	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
 793	char nat = 0;
 794
 795	if (write_access) {
 796		nat_bits = *data;
 797		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
 798		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
 799			dprintk("ptrace: failed to set ar.unat\n");
 800			return -1;
 801		}
 802		for (regnum = 4; regnum <= 7; ++regnum) {
 803			unw_get_gr(info, regnum, &dummy, &nat);
 804			unw_set_gr(info, regnum, dummy,
 805				   (nat_bits >> regnum) & 1);
 806		}
 807	} else {
 808		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
 809			dprintk("ptrace: failed to read ar.unat\n");
 810			return -1;
 811		}
 812		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
 813		for (regnum = 4; regnum <= 7; ++regnum) {
 814			unw_get_gr(info, regnum, &dummy, &nat);
 815			nat_bits |= (nat != 0) << regnum;
 816		}
 817		*data = nat_bits;
 818	}
 819	return 0;
 820}
 821
 822static int
 823access_uarea (struct task_struct *child, unsigned long addr,
 824	      unsigned long *data, int write_access);
 825
 826static long
 827ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 828{
 829	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
 830	struct unw_frame_info info;
 831	struct ia64_fpreg fpval;
 832	struct switch_stack *sw;
 833	struct pt_regs *pt;
 834	long ret, retval = 0;
 835	char nat = 0;
 836	int i;
 837
 838	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
 839		return -EIO;
 840
 841	pt = task_pt_regs(child);
 842	sw = (struct switch_stack *) (child->thread.ksp + 16);
 843	unw_init_from_blocked_task(&info, child);
 844	if (unw_unwind_to_user(&info) < 0) {
 845		return -EIO;
 846	}
 847
 848	if (((unsigned long) ppr & 0x7) != 0) {
 849		dprintk("ptrace:unaligned register address %p\n", ppr);
 850		return -EIO;
 851	}
 852
 853	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
 854	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
 855	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
 856	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
 857	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
 858	    || access_uarea(child, PT_CFM, &cfm, 0)
 859	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
 860		return -EIO;
 861
 862	/* control regs */
 863
 864	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
 865	retval |= __put_user(psr, &ppr->cr_ipsr);
 866
 867	/* app regs */
 868
 869	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
 870	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
 871	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
 872	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
 873	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
 874	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
 875
 876	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
 877	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
 878	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
 879	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
 880	retval |= __put_user(cfm, &ppr->cfm);
 881
 882	/* gr1-gr3 */
 883
 884	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
 885	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
 886
 887	/* gr4-gr7 */
 888
 889	for (i = 4; i < 8; i++) {
 890		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
 891			return -EIO;
 892		retval |= __put_user(val, &ppr->gr[i]);
 893	}
 894
 895	/* gr8-gr11 */
 896
 897	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
 898
 899	/* gr12-gr15 */
 900
 901	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
 902	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
 903	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
 904
 905	/* gr16-gr31 */
 906
 907	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
 908
 909	/* b0 */
 910
 911	retval |= __put_user(pt->b0, &ppr->br[0]);
 912
 913	/* b1-b5 */
 914
 915	for (i = 1; i < 6; i++) {
 916		if (unw_access_br(&info, i, &val, 0) < 0)
 917			return -EIO;
 918		__put_user(val, &ppr->br[i]);
 919	}
 920
 921	/* b6-b7 */
 922
 923	retval |= __put_user(pt->b6, &ppr->br[6]);
 924	retval |= __put_user(pt->b7, &ppr->br[7]);
 925
 926	/* fr2-fr5 */
 927
 928	for (i = 2; i < 6; i++) {
 929		if (unw_get_fr(&info, i, &fpval) < 0)
 930			return -EIO;
 931		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 932	}
 933
 934	/* fr6-fr11 */
 935
 936	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
 937				 sizeof(struct ia64_fpreg) * 6);
 938
 939	/* fp scratch regs(12-15) */
 940
 941	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
 942				 sizeof(struct ia64_fpreg) * 4);
 943
 944	/* fr16-fr31 */
 945
 946	for (i = 16; i < 32; i++) {
 947		if (unw_get_fr(&info, i, &fpval) < 0)
 948			return -EIO;
 949		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 950	}
 951
 952	/* fph */
 953
 954	ia64_flush_fph(child);
 955	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
 956				 sizeof(ppr->fr[32]) * 96);
 957
 958	/*  preds */
 959
 960	retval |= __put_user(pt->pr, &ppr->pr);
 961
 962	/* nat bits */
 963
 964	retval |= __put_user(nat_bits, &ppr->nat);
 965
 966	ret = retval ? -EIO : 0;
 967	return ret;
 968}
 969
 970static long
 971ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 972{
 973	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
 974	struct unw_frame_info info;
 975	struct switch_stack *sw;
 976	struct ia64_fpreg fpval;
 977	struct pt_regs *pt;
 978	long ret, retval = 0;
 979	int i;
 980
 981	memset(&fpval, 0, sizeof(fpval));
 982
 983	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
 984		return -EIO;
 985
 986	pt = task_pt_regs(child);
 987	sw = (struct switch_stack *) (child->thread.ksp + 16);
 988	unw_init_from_blocked_task(&info, child);
 989	if (unw_unwind_to_user(&info) < 0) {
 990		return -EIO;
 991	}
 992
 993	if (((unsigned long) ppr & 0x7) != 0) {
 994		dprintk("ptrace:unaligned register address %p\n", ppr);
 995		return -EIO;
 996	}
 997
 998	/* control regs */
 999
1000	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1001	retval |= __get_user(psr, &ppr->cr_ipsr);
1002
1003	/* app regs */
1004
1005	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1006	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1007	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1008	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1009	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1010	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1011
1012	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1013	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1014	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1015	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1016	retval |= __get_user(cfm, &ppr->cfm);
1017
1018	/* gr1-gr3 */
1019
1020	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1021	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1022
1023	/* gr4-gr7 */
1024
1025	for (i = 4; i < 8; i++) {
1026		retval |= __get_user(val, &ppr->gr[i]);
1027		/* NaT bit will be set via PT_NAT_BITS: */
1028		if (unw_set_gr(&info, i, val, 0) < 0)
1029			return -EIO;
1030	}
1031
1032	/* gr8-gr11 */
1033
1034	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1035
1036	/* gr12-gr15 */
1037
1038	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1039	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1040	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1041
1042	/* gr16-gr31 */
1043
1044	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1045
1046	/* b0 */
1047
1048	retval |= __get_user(pt->b0, &ppr->br[0]);
1049
1050	/* b1-b5 */
1051
1052	for (i = 1; i < 6; i++) {
1053		retval |= __get_user(val, &ppr->br[i]);
1054		unw_set_br(&info, i, val);
1055	}
1056
1057	/* b6-b7 */
1058
1059	retval |= __get_user(pt->b6, &ppr->br[6]);
1060	retval |= __get_user(pt->b7, &ppr->br[7]);
1061
1062	/* fr2-fr5 */
1063
1064	for (i = 2; i < 6; i++) {
1065		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1066		if (unw_set_fr(&info, i, fpval) < 0)
1067			return -EIO;
1068	}
1069
1070	/* fr6-fr11 */
1071
1072	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1073				   sizeof(ppr->fr[6]) * 6);
1074
1075	/* fp scratch regs(12-15) */
1076
1077	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1078				   sizeof(ppr->fr[12]) * 4);
1079
1080	/* fr16-fr31 */
1081
1082	for (i = 16; i < 32; i++) {
1083		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1084					   sizeof(fpval));
1085		if (unw_set_fr(&info, i, fpval) < 0)
1086			return -EIO;
1087	}
1088
1089	/* fph */
1090
1091	ia64_sync_fph(child);
1092	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1093				   sizeof(ppr->fr[32]) * 96);
1094
1095	/* preds */
1096
1097	retval |= __get_user(pt->pr, &ppr->pr);
1098
1099	/* nat bits */
1100
1101	retval |= __get_user(nat_bits, &ppr->nat);
1102
1103	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1104	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1105	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1106	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1107	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1108	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1109	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1110	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1111
1112	ret = retval ? -EIO : 0;
1113	return ret;
1114}
1115
1116void
1117user_enable_single_step (struct task_struct *child)
1118{
1119	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1120
1121	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1122	child_psr->ss = 1;
1123}
1124
1125void
1126user_enable_block_step (struct task_struct *child)
1127{
1128	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1129
1130	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1131	child_psr->tb = 1;
1132}
1133
1134void
1135user_disable_single_step (struct task_struct *child)
1136{
1137	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1138
1139	/* make sure the single step/taken-branch trap bits are not set: */
1140	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1141	child_psr->ss = 0;
1142	child_psr->tb = 0;
1143}
1144
1145/*
1146 * Called by kernel/ptrace.c when detaching..
1147 *
1148 * Make sure the single step bit is not set.
1149 */
1150void
1151ptrace_disable (struct task_struct *child)
1152{
1153	user_disable_single_step(child);
1154}
1155
1156long
1157arch_ptrace (struct task_struct *child, long request,
1158	     unsigned long addr, unsigned long data)
1159{
1160	switch (request) {
1161	case PTRACE_PEEKTEXT:
1162	case PTRACE_PEEKDATA:
1163		/* read word at location addr */
1164		if (ptrace_access_vm(child, addr, &data, sizeof(data),
1165				FOLL_FORCE)
1166		    != sizeof(data))
1167			return -EIO;
1168		/* ensure return value is not mistaken for error code */
1169		force_successful_syscall_return();
1170		return data;
1171
1172	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1173	 * by the generic ptrace_request().
1174	 */
1175
1176	case PTRACE_PEEKUSR:
1177		/* read the word at addr in the USER area */
1178		if (access_uarea(child, addr, &data, 0) < 0)
1179			return -EIO;
1180		/* ensure return value is not mistaken for error code */
1181		force_successful_syscall_return();
1182		return data;
1183
1184	case PTRACE_POKEUSR:
1185		/* write the word at addr in the USER area */
1186		if (access_uarea(child, addr, &data, 1) < 0)
1187			return -EIO;
1188		return 0;
1189
1190	case PTRACE_OLD_GETSIGINFO:
1191		/* for backwards-compatibility */
1192		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1193
1194	case PTRACE_OLD_SETSIGINFO:
1195		/* for backwards-compatibility */
1196		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1197
1198	case PTRACE_GETREGS:
1199		return ptrace_getregs(child,
1200				      (struct pt_all_user_regs __user *) data);
1201
1202	case PTRACE_SETREGS:
1203		return ptrace_setregs(child,
1204				      (struct pt_all_user_regs __user *) data);
1205
1206	default:
1207		return ptrace_request(child, request, addr, data);
1208	}
1209}
1210
1211
1212/* "asmlinkage" so the input arguments are preserved... */
1213
1214asmlinkage long
1215syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1216		     long arg4, long arg5, long arg6, long arg7,
1217		     struct pt_regs regs)
1218{
1219	if (test_thread_flag(TIF_SYSCALL_TRACE))
1220		if (tracehook_report_syscall_entry(&regs))
1221			return -ENOSYS;
1222
1223	/* copy user rbs to kernel rbs */
1224	if (test_thread_flag(TIF_RESTORE_RSE))
1225		ia64_sync_krbs();
1226
1227
1228	audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1229
1230	return 0;
1231}
1232
1233/* "asmlinkage" so the input arguments are preserved... */
1234
1235asmlinkage void
1236syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1237		     long arg4, long arg5, long arg6, long arg7,
1238		     struct pt_regs regs)
1239{
1240	int step;
1241
1242	audit_syscall_exit(&regs);
1243
1244	step = test_thread_flag(TIF_SINGLESTEP);
1245	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1246		tracehook_report_syscall_exit(&regs, step);
1247
1248	/* copy user rbs to kernel rbs */
1249	if (test_thread_flag(TIF_RESTORE_RSE))
1250		ia64_sync_krbs();
1251}
1252
1253/* Utrace implementation starts here */
1254struct regset_get {
1255	void *kbuf;
1256	void __user *ubuf;
1257};
1258
1259struct regset_set {
1260	const void *kbuf;
1261	const void __user *ubuf;
1262};
1263
1264struct regset_getset {
1265	struct task_struct *target;
1266	const struct user_regset *regset;
1267	union {
1268		struct regset_get get;
1269		struct regset_set set;
1270	} u;
1271	unsigned int pos;
1272	unsigned int count;
1273	int ret;
1274};
1275
1276static const ptrdiff_t pt_offsets[32] =
1277{
1278#define R(n) offsetof(struct pt_regs, r##n)
1279	[0] = -1, R(1), R(2), R(3),
1280	[4] = -1, [5] = -1, [6] = -1, [7] = -1,
1281	R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1282	R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1283	R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1284#undef R
1285};
1286
1287static int
1288access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1289		unsigned long addr, unsigned long *data, int write_access)
1290{
1291	struct pt_regs *pt = task_pt_regs(target);
1292	unsigned reg = addr / sizeof(unsigned long);
1293	ptrdiff_t d = pt_offsets[reg];
 
1294
1295	if (d >= 0) {
1296		unsigned long *ptr = (void *)pt + d;
1297		if (write_access)
1298			*ptr = *data;
1299		else
1300			*data = *ptr;
1301		return 0;
1302	} else {
1303		char nat = 0;
 
1304		if (write_access) {
1305			/* read NaT bit first: */
1306			unsigned long dummy;
1307			int ret = unw_get_gr(info, reg, &dummy, &nat);
 
1308			if (ret < 0)
1309				return ret;
1310		}
1311		return unw_access_gr(info, reg, data, &nat, write_access);
 
 
 
 
 
 
 
 
 
 
 
 
1312	}
 
 
 
 
 
1313}
1314
1315static int
1316access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1317		unsigned long addr, unsigned long *data, int write_access)
1318{
1319	struct pt_regs *pt;
1320	unsigned long *ptr = NULL;
1321
1322	pt = task_pt_regs(target);
1323	switch (addr) {
1324	case ELF_BR_OFFSET(0):
1325		ptr = &pt->b0;
1326		break;
1327	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1328		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1329				     data, write_access);
1330	case ELF_BR_OFFSET(6):
1331		ptr = &pt->b6;
1332		break;
1333	case ELF_BR_OFFSET(7):
1334		ptr = &pt->b7;
1335	}
1336	if (write_access)
1337		*ptr = *data;
1338	else
1339		*data = *ptr;
1340	return 0;
1341}
1342
1343static int
1344access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1345		unsigned long addr, unsigned long *data, int write_access)
1346{
1347	struct pt_regs *pt;
1348	unsigned long cfm, urbs_end;
1349	unsigned long *ptr = NULL;
1350
1351	pt = task_pt_regs(target);
1352	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1353		switch (addr) {
1354		case ELF_AR_RSC_OFFSET:
1355			/* force PL3 */
1356			if (write_access)
1357				pt->ar_rsc = *data | (3 << 2);
1358			else
1359				*data = pt->ar_rsc;
1360			return 0;
1361		case ELF_AR_BSP_OFFSET:
1362			/*
1363			 * By convention, we use PT_AR_BSP to refer to
1364			 * the end of the user-level backing store.
1365			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1366			 * to get the real value of ar.bsp at the time
1367			 * the kernel was entered.
1368			 *
1369			 * Furthermore, when changing the contents of
1370			 * PT_AR_BSP (or PT_CFM) while the task is
1371			 * blocked in a system call, convert the state
1372			 * so that the non-system-call exit
1373			 * path is used.  This ensures that the proper
1374			 * state will be picked up when resuming
1375			 * execution.  However, it *also* means that
1376			 * once we write PT_AR_BSP/PT_CFM, it won't be
1377			 * possible to modify the syscall arguments of
1378			 * the pending system call any longer.  This
1379			 * shouldn't be an issue because modifying
1380			 * PT_AR_BSP/PT_CFM generally implies that
1381			 * we're either abandoning the pending system
1382			 * call or that we defer it's re-execution
1383			 * (e.g., due to GDB doing an inferior
1384			 * function call).
1385			 */
1386			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1387			if (write_access) {
1388				if (*data != urbs_end) {
1389					if (in_syscall(pt))
1390						convert_to_non_syscall(target,
1391								       pt,
1392								       cfm);
1393					/*
1394					 * Simulate user-level write
1395					 * of ar.bsp:
1396					 */
1397					pt->loadrs = 0;
1398					pt->ar_bspstore = *data;
1399				}
1400			} else
1401				*data = urbs_end;
1402			return 0;
1403		case ELF_AR_BSPSTORE_OFFSET:
1404			ptr = &pt->ar_bspstore;
1405			break;
1406		case ELF_AR_RNAT_OFFSET:
1407			ptr = &pt->ar_rnat;
1408			break;
1409		case ELF_AR_CCV_OFFSET:
1410			ptr = &pt->ar_ccv;
1411			break;
1412		case ELF_AR_UNAT_OFFSET:
1413			ptr = &pt->ar_unat;
1414			break;
1415		case ELF_AR_FPSR_OFFSET:
1416			ptr = &pt->ar_fpsr;
1417			break;
1418		case ELF_AR_PFS_OFFSET:
1419			ptr = &pt->ar_pfs;
1420			break;
1421		case ELF_AR_LC_OFFSET:
1422			return unw_access_ar(info, UNW_AR_LC, data,
1423					     write_access);
1424		case ELF_AR_EC_OFFSET:
1425			return unw_access_ar(info, UNW_AR_EC, data,
1426					     write_access);
1427		case ELF_AR_CSD_OFFSET:
1428			ptr = &pt->ar_csd;
1429			break;
1430		case ELF_AR_SSD_OFFSET:
1431			ptr = &pt->ar_ssd;
1432		}
1433	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1434		switch (addr) {
1435		case ELF_CR_IIP_OFFSET:
1436			ptr = &pt->cr_iip;
1437			break;
1438		case ELF_CFM_OFFSET:
1439			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1440			if (write_access) {
1441				if (((cfm ^ *data) & PFM_MASK) != 0) {
1442					if (in_syscall(pt))
1443						convert_to_non_syscall(target,
1444								       pt,
1445								       cfm);
1446					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1447						      | (*data & PFM_MASK));
1448				}
1449			} else
1450				*data = cfm;
1451			return 0;
1452		case ELF_CR_IPSR_OFFSET:
1453			if (write_access) {
1454				unsigned long tmp = *data;
1455				/* psr.ri==3 is a reserved value: SDM 2:25 */
1456				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1457					tmp &= ~IA64_PSR_RI;
1458				pt->cr_ipsr = ((tmp & IPSR_MASK)
1459					       | (pt->cr_ipsr & ~IPSR_MASK));
1460			} else
1461				*data = (pt->cr_ipsr & IPSR_MASK);
1462			return 0;
1463		}
1464	} else if (addr == ELF_NAT_OFFSET)
1465		return access_nat_bits(target, pt, info,
1466				       data, write_access);
1467	else if (addr == ELF_PR_OFFSET)
1468		ptr = &pt->pr;
1469	else
1470		return -1;
1471
1472	if (write_access)
1473		*ptr = *data;
1474	else
1475		*data = *ptr;
1476
1477	return 0;
1478}
1479
1480static int
1481access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1482		unsigned long addr, unsigned long *data, int write_access)
1483{
1484	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
1485		return access_elf_gpreg(target, info, addr, data, write_access);
1486	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1487		return access_elf_breg(target, info, addr, data, write_access);
1488	else
1489		return access_elf_areg(target, info, addr, data, write_access);
1490}
1491
1492struct regset_membuf {
1493	struct membuf to;
1494	int ret;
1495};
1496
1497void do_gpregs_get(struct unw_frame_info *info, void *arg)
1498{
1499	struct regset_membuf *dst = arg;
1500	struct membuf to = dst->to;
1501	unsigned int n;
1502	elf_greg_t reg;
1503
1504	if (unw_unwind_to_user(info) < 0)
1505		return;
1506
1507	/*
1508	 * coredump format:
1509	 *      r0-r31
1510	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1511	 *      predicate registers (p0-p63)
1512	 *      b0-b7
1513	 *      ip cfm user-mask
1514	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
1515	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1516	 */
1517
1518
1519	/* Skip r0 */
1520	membuf_zero(&to, 8);
1521	for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
1522		if (access_elf_reg(info->task, info, n, &reg, 0) < 0) {
1523			dst->ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524			return;
1525		}
1526		membuf_store(&to, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527	}
1528}
1529
1530void do_gpregs_set(struct unw_frame_info *info, void *arg)
1531{
 
1532	struct regset_getset *dst = arg;
 
 
1533
1534	if (unw_unwind_to_user(info) < 0)
1535		return;
1536
1537	if (!dst->count)
1538		return;
1539	/* Skip r0 */
1540	if (dst->pos < ELF_GR_OFFSET(1)) {
1541		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1542						       &dst->u.set.kbuf,
1543						       &dst->u.set.ubuf,
1544						       0, ELF_GR_OFFSET(1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545		if (dst->ret)
1546			return;
 
 
 
 
 
 
 
 
1547	}
1548
1549	while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
1550		unsigned int n, from, to;
1551		elf_greg_t tmp[16];
1552
1553		from = dst->pos;
1554		to = from + sizeof(tmp);
1555		if (to > ELF_AR_END_OFFSET)
1556			to = ELF_AR_END_OFFSET;
1557		/* get up to 16 values */
1558		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1559				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1560				from, to);
1561		if (dst->ret)
1562			return;
1563		/* now copy them into registers */
1564		for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
1565			if (access_elf_reg(dst->target, info, from,
1566						&tmp[n], 1) < 0) {
1567				dst->ret = -EIO;
1568				return;
1569			}
1570	}
1571}
1572
1573#define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
1574
1575void do_fpregs_get(struct unw_frame_info *info, void *arg)
1576{
1577	struct task_struct *task = info->task;
1578	struct regset_membuf *dst = arg;
1579	struct membuf to = dst->to;
1580	elf_fpreg_t reg;
1581	unsigned int n;
1582
1583	if (unw_unwind_to_user(info) < 0)
1584		return;
1585
1586	/* Skip pos 0 and 1 */
1587	membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
 
 
 
 
 
 
 
1588
1589	/* fr2-fr31 */
1590	for (n = 2; to.left && n < 32; n++) {
1591		if (unw_get_fr(info, n, &reg)) {
1592			dst->ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
1593			return;
1594		}
1595		membuf_write(&to, &reg, sizeof(reg));
1596	}
1597
1598	/* fph */
1599	if (!to.left)
1600		return;
1601
1602	ia64_flush_fph(task);
1603	if (task->thread.flags & IA64_THREAD_FPH_VALID)
1604		membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
1605	else
1606		membuf_zero(&to, 96 * sizeof(reg));
 
 
 
 
 
 
 
1607}
1608
1609void do_fpregs_set(struct unw_frame_info *info, void *arg)
1610{
1611	struct regset_getset *dst = arg;
1612	elf_fpreg_t fpreg, tmp[30];
1613	int index, start, end;
1614
1615	if (unw_unwind_to_user(info) < 0)
1616		return;
1617
1618	/* Skip pos 0 and 1 */
1619	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1620		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1621						       &dst->u.set.kbuf,
1622						       &dst->u.set.ubuf,
1623						       0, ELF_FP_OFFSET(2));
1624		if (dst->count == 0 || dst->ret)
1625			return;
1626	}
1627
1628	/* fr2-fr31 */
1629	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1630		start = dst->pos;
1631		end = min(((unsigned int)ELF_FP_OFFSET(32)),
1632			 dst->pos + dst->count);
1633		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1634				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1635				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1636		if (dst->ret)
1637			return;
1638
1639		if (start & 0xF) { /* only write high part */
1640			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1641					 &fpreg)) {
1642				dst->ret = -EIO;
1643				return;
1644			}
1645			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1646				= fpreg.u.bits[0];
1647			start &= ~0xFUL;
1648		}
1649		if (end & 0xF) { /* only write low part */
1650			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1651					&fpreg)) {
1652				dst->ret = -EIO;
1653				return;
1654			}
1655			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1656				= fpreg.u.bits[1];
1657			end = (end + 0xF) & ~0xFUL;
1658		}
1659
1660		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
1661			index = start / sizeof(elf_fpreg_t);
1662			if (unw_set_fr(info, index, tmp[index - 2])) {
1663				dst->ret = -EIO;
1664				return;
1665			}
1666		}
1667		if (dst->ret || dst->count == 0)
1668			return;
1669	}
1670
1671	/* fph */
1672	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1673		ia64_sync_fph(dst->target);
1674		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1675						&dst->u.set.kbuf,
1676						&dst->u.set.ubuf,
1677						&dst->target->thread.fph,
1678						ELF_FP_OFFSET(32), -1);
1679	}
1680}
1681
1682static void
1683unwind_and_call(void (*call)(struct unw_frame_info *, void *),
1684	       struct task_struct *target, void *data)
1685{
1686	if (target == current)
1687		unw_init_running(call, data);
1688	else {
1689		struct unw_frame_info info;
1690		memset(&info, 0, sizeof(info));
1691		unw_init_from_blocked_task(&info, target);
1692		(*call)(&info, data);
1693	}
1694}
1695
1696static int
1697do_regset_call(void (*call)(struct unw_frame_info *, void *),
1698	       struct task_struct *target,
1699	       const struct user_regset *regset,
1700	       unsigned int pos, unsigned int count,
1701	       const void *kbuf, const void __user *ubuf)
1702{
1703	struct regset_getset info = { .target = target, .regset = regset,
1704				 .pos = pos, .count = count,
1705				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1706				 .ret = 0 };
1707	unwind_and_call(call, target, &info);
 
 
 
 
 
 
 
 
 
1708	return info.ret;
1709}
1710
1711static int
1712gpregs_get(struct task_struct *target,
1713	   const struct user_regset *regset,
1714	   struct membuf to)
 
1715{
1716	struct regset_membuf info = {.to = to};
1717	unwind_and_call(do_gpregs_get, target, &info);
1718	return info.ret;
1719}
1720
1721static int gpregs_set(struct task_struct *target,
1722		const struct user_regset *regset,
1723		unsigned int pos, unsigned int count,
1724		const void *kbuf, const void __user *ubuf)
1725{
1726	return do_regset_call(do_gpregs_set, target, regset, pos, count,
1727		kbuf, ubuf);
1728}
1729
1730static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1731{
1732	do_sync_rbs(info, ia64_sync_user_rbs);
1733}
1734
1735/*
1736 * This is called to write back the register backing store.
1737 * ptrace does this before it stops, so that a tracer reading the user
1738 * memory after the thread stops will get the current register data.
1739 */
1740static int
1741gpregs_writeback(struct task_struct *target,
1742		 const struct user_regset *regset,
1743		 int now)
1744{
1745	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1746		return 0;
1747	set_notify_resume(target);
1748	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1749		NULL, NULL);
1750}
1751
1752static int
1753fpregs_active(struct task_struct *target, const struct user_regset *regset)
1754{
1755	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1756}
1757
1758static int fpregs_get(struct task_struct *target,
1759		const struct user_regset *regset,
1760		struct membuf to)
 
1761{
1762	struct regset_membuf info = {.to = to};
1763	unwind_and_call(do_fpregs_get, target, &info);
1764	return info.ret;
1765}
1766
1767static int fpregs_set(struct task_struct *target,
1768		const struct user_regset *regset,
1769		unsigned int pos, unsigned int count,
1770		const void *kbuf, const void __user *ubuf)
1771{
1772	return do_regset_call(do_fpregs_set, target, regset, pos, count,
1773		kbuf, ubuf);
1774}
1775
1776static int
1777access_uarea(struct task_struct *child, unsigned long addr,
1778	      unsigned long *data, int write_access)
1779{
1780	unsigned int pos = -1; /* an invalid value */
 
1781	unsigned long *ptr, regnum;
1782
1783	if ((addr & 0x7) != 0) {
1784		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1785		return -1;
1786	}
1787	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1788		(addr >= PT_R7 + 8 && addr < PT_B1) ||
1789		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1790		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1791		dprintk("ptrace: rejecting access to register "
1792					"address 0x%lx\n", addr);
1793		return -1;
1794	}
1795
1796	switch (addr) {
1797	case PT_F32 ... (PT_F127 + 15):
1798		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1799		break;
1800	case PT_F2 ... (PT_F5 + 15):
1801		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1802		break;
1803	case PT_F10 ... (PT_F31 + 15):
1804		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1805		break;
1806	case PT_F6 ... (PT_F9 + 15):
1807		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1808		break;
1809	}
1810
1811	if (pos != -1) {
1812		unsigned reg = pos / sizeof(elf_fpreg_t);
1813		int which_half = (pos / sizeof(unsigned long)) & 1;
1814
1815		if (reg < 32) { /* fr2-fr31 */
1816			struct unw_frame_info info;
1817			elf_fpreg_t fpreg;
1818
1819			memset(&info, 0, sizeof(info));
1820			unw_init_from_blocked_task(&info, child);
1821			if (unw_unwind_to_user(&info) < 0)
1822				return 0;
1823
1824			if (unw_get_fr(&info, reg, &fpreg))
1825				return -1;
1826			if (write_access) {
1827				fpreg.u.bits[which_half] = *data;
1828				if (unw_set_fr(&info, reg, fpreg))
1829					return -1;
1830			} else {
1831				*data = fpreg.u.bits[which_half];
1832			}
1833		} else { /* fph */
1834			elf_fpreg_t *p = &child->thread.fph[reg - 32];
1835			unsigned long *bits = &p->u.bits[which_half];
1836
1837			ia64_sync_fph(child);
1838			if (write_access)
1839				*bits = *data;
1840			else if (child->thread.flags & IA64_THREAD_FPH_VALID)
1841				*data = *bits;
1842			else
1843				*data = 0;
1844		}
1845		return 0;
1846	}
1847
1848	switch (addr) {
1849	case PT_NAT_BITS:
1850		pos = ELF_NAT_OFFSET;
1851		break;
1852	case PT_R4 ... PT_R7:
1853		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1854		break;
1855	case PT_B1 ... PT_B5:
1856		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1857		break;
1858	case PT_AR_EC:
1859		pos = ELF_AR_EC_OFFSET;
1860		break;
1861	case PT_AR_LC:
1862		pos = ELF_AR_LC_OFFSET;
1863		break;
1864	case PT_CR_IPSR:
1865		pos = ELF_CR_IPSR_OFFSET;
1866		break;
1867	case PT_CR_IIP:
1868		pos = ELF_CR_IIP_OFFSET;
1869		break;
1870	case PT_CFM:
1871		pos = ELF_CFM_OFFSET;
1872		break;
1873	case PT_AR_UNAT:
1874		pos = ELF_AR_UNAT_OFFSET;
1875		break;
1876	case PT_AR_PFS:
1877		pos = ELF_AR_PFS_OFFSET;
1878		break;
1879	case PT_AR_RSC:
1880		pos = ELF_AR_RSC_OFFSET;
1881		break;
1882	case PT_AR_RNAT:
1883		pos = ELF_AR_RNAT_OFFSET;
1884		break;
1885	case PT_AR_BSPSTORE:
1886		pos = ELF_AR_BSPSTORE_OFFSET;
1887		break;
1888	case PT_PR:
1889		pos = ELF_PR_OFFSET;
1890		break;
1891	case PT_B6:
1892		pos = ELF_BR_OFFSET(6);
1893		break;
1894	case PT_AR_BSP:
1895		pos = ELF_AR_BSP_OFFSET;
1896		break;
1897	case PT_R1 ... PT_R3:
1898		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
1899		break;
1900	case PT_R12 ... PT_R15:
1901		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
1902		break;
1903	case PT_R8 ... PT_R11:
1904		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
1905		break;
1906	case PT_R16 ... PT_R31:
1907		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
1908		break;
1909	case PT_AR_CCV:
1910		pos = ELF_AR_CCV_OFFSET;
1911		break;
1912	case PT_AR_FPSR:
1913		pos = ELF_AR_FPSR_OFFSET;
1914		break;
1915	case PT_B0:
1916		pos = ELF_BR_OFFSET(0);
1917		break;
1918	case PT_B7:
1919		pos = ELF_BR_OFFSET(7);
1920		break;
1921	case PT_AR_CSD:
1922		pos = ELF_AR_CSD_OFFSET;
1923		break;
1924	case PT_AR_SSD:
1925		pos = ELF_AR_SSD_OFFSET;
1926		break;
1927	}
1928
1929	if (pos != -1) {
1930		struct unw_frame_info info;
1931
1932		memset(&info, 0, sizeof(info));
1933		unw_init_from_blocked_task(&info, child);
1934		if (unw_unwind_to_user(&info) < 0)
1935			return 0;
1936
1937		return access_elf_reg(child, &info, pos, data, write_access);
 
1938	}
1939
1940	/* access debug registers */
1941	if (addr >= PT_IBR) {
1942		regnum = (addr - PT_IBR) >> 3;
1943		ptr = &child->thread.ibr[0];
1944	} else {
1945		regnum = (addr - PT_DBR) >> 3;
1946		ptr = &child->thread.dbr[0];
1947	}
1948
1949	if (regnum >= 8) {
1950		dprintk("ptrace: rejecting access to register "
1951				"address 0x%lx\n", addr);
1952		return -1;
1953	}
1954#ifdef CONFIG_PERFMON
1955	/*
1956	 * Check if debug registers are used by perfmon. This
1957	 * test must be done once we know that we can do the
1958	 * operation, i.e. the arguments are all valid, but
1959	 * before we start modifying the state.
1960	 *
1961	 * Perfmon needs to keep a count of how many processes
1962	 * are trying to modify the debug registers for system
1963	 * wide monitoring sessions.
1964	 *
1965	 * We also include read access here, because they may
1966	 * cause the PMU-installed debug register state
1967	 * (dbr[], ibr[]) to be reset. The two arrays are also
1968	 * used by perfmon, but we do not use
1969	 * IA64_THREAD_DBG_VALID. The registers are restored
1970	 * by the PMU context switch code.
1971	 */
1972	if (pfm_use_debug_registers(child))
1973		return -1;
1974#endif
1975
1976	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1977		child->thread.flags |= IA64_THREAD_DBG_VALID;
1978		memset(child->thread.dbr, 0,
1979				sizeof(child->thread.dbr));
1980		memset(child->thread.ibr, 0,
1981				sizeof(child->thread.ibr));
1982	}
1983
1984	ptr += regnum;
1985
1986	if ((regnum & 1) && write_access) {
1987		/* don't let the user set kernel-level breakpoints: */
1988		*ptr = *data & ~(7UL << 56);
1989		return 0;
1990	}
1991	if (write_access)
1992		*ptr = *data;
1993	else
1994		*data = *ptr;
1995	return 0;
1996}
1997
1998static const struct user_regset native_regsets[] = {
1999	{
2000		.core_note_type = NT_PRSTATUS,
2001		.n = ELF_NGREG,
2002		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2003		.regset_get = gpregs_get, .set = gpregs_set,
2004		.writeback = gpregs_writeback
2005	},
2006	{
2007		.core_note_type = NT_PRFPREG,
2008		.n = ELF_NFPREG,
2009		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2010		.regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2011	},
2012};
2013
2014static const struct user_regset_view user_ia64_view = {
2015	.name = "ia64",
2016	.e_machine = EM_IA_64,
2017	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2018};
2019
2020const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2021{
2022	return &user_ia64_view;
2023}
2024
2025struct syscall_get_set_args {
2026	unsigned int i;
2027	unsigned int n;
2028	unsigned long *args;
2029	struct pt_regs *regs;
2030	int rw;
2031};
2032
2033static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2034{
2035	struct syscall_get_set_args *args = data;
2036	struct pt_regs *pt = args->regs;
2037	unsigned long *krbs, cfm, ndirty;
2038	int i, count;
2039
2040	if (unw_unwind_to_user(info) < 0)
2041		return;
2042
2043	cfm = pt->cr_ifs;
2044	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2045	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2046
2047	count = 0;
2048	if (in_syscall(pt))
2049		count = min_t(int, args->n, cfm & 0x7f);
2050
2051	for (i = 0; i < count; i++) {
2052		if (args->rw)
2053			*ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2054				args->args[i];
2055		else
2056			args->args[i] = *ia64_rse_skip_regs(krbs,
2057				ndirty + i + args->i);
2058	}
2059
2060	if (!args->rw) {
2061		while (i < args->n) {
2062			args->args[i] = 0;
2063			i++;
2064		}
2065	}
2066}
2067
2068void ia64_syscall_get_set_arguments(struct task_struct *task,
2069	struct pt_regs *regs, unsigned long *args, int rw)
 
2070{
2071	struct syscall_get_set_args data = {
2072		.i = 0,
2073		.n = 6,
2074		.args = args,
2075		.regs = regs,
2076		.rw = rw,
2077	};
2078
2079	if (task == current)
2080		unw_init_running(syscall_get_set_args_cb, &data);
2081	else {
2082		struct unw_frame_info ufi;
2083		memset(&ufi, 0, sizeof(ufi));
2084		unw_init_from_blocked_task(&ufi, task);
2085		syscall_get_set_args_cb(&ufi, &data);
2086	}
2087}
v4.10.11
 
   1/*
   2 * Kernel support for the ptrace() and syscall tracing interfaces.
   3 *
   4 * Copyright (C) 1999-2005 Hewlett-Packard Co
   5 *	David Mosberger-Tang <davidm@hpl.hp.com>
   6 * Copyright (C) 2006 Intel Co
   7 *  2006-08-12	- IA64 Native Utrace implementation support added by
   8 *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * Derived from the x86 and Alpha versions.
  11 */
  12#include <linux/kernel.h>
  13#include <linux/sched.h>
 
 
  14#include <linux/mm.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/regset.h>
  22#include <linux/elf.h>
  23#include <linux/tracehook.h>
  24
  25#include <asm/pgtable.h>
  26#include <asm/processor.h>
  27#include <asm/ptrace_offsets.h>
  28#include <asm/rse.h>
  29#include <linux/uaccess.h>
  30#include <asm/unwind.h>
  31#ifdef CONFIG_PERFMON
  32#include <asm/perfmon.h>
  33#endif
  34
  35#include "entry.h"
  36
  37/*
  38 * Bits in the PSR that we allow ptrace() to change:
  39 *	be, up, ac, mfl, mfh (the user mask; five bits total)
  40 *	db (debug breakpoint fault; one bit)
  41 *	id (instruction debug fault disable; one bit)
  42 *	dd (data debug fault disable; one bit)
  43 *	ri (restart instruction; two bits)
  44 *	is (instruction set; one bit)
  45 */
  46#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
  47		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
  48
  49#define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
  50#define PFM_MASK	MASK(38)
  51
  52#define PTRACE_DEBUG	0
  53
  54#if PTRACE_DEBUG
  55# define dprintk(format...)	printk(format)
  56# define inline
  57#else
  58# define dprintk(format...)
  59#endif
  60
  61/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
  62
  63static inline int
  64in_syscall (struct pt_regs *pt)
  65{
  66	return (long) pt->cr_ifs >= 0;
  67}
  68
  69/*
  70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
  71 * bitset where bit i is set iff the NaT bit of register i is set.
  72 */
  73unsigned long
  74ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
  75{
  76#	define GET_BITS(first, last, unat)				\
  77	({								\
  78		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
  79		unsigned long nbits = (last - first + 1);		\
  80		unsigned long mask = MASK(nbits) << first;		\
  81		unsigned long dist;					\
  82		if (bit < first)					\
  83			dist = 64 + bit - first;			\
  84		else							\
  85			dist = bit - first;				\
  86		ia64_rotr(unat, dist) & mask;				\
  87	})
  88	unsigned long val;
  89
  90	/*
  91	 * Registers that are stored consecutively in struct pt_regs
  92	 * can be handled in parallel.  If the register order in
  93	 * struct_pt_regs changes, this code MUST be updated.
  94	 */
  95	val  = GET_BITS( 1,  1, scratch_unat);
  96	val |= GET_BITS( 2,  3, scratch_unat);
  97	val |= GET_BITS(12, 13, scratch_unat);
  98	val |= GET_BITS(14, 14, scratch_unat);
  99	val |= GET_BITS(15, 15, scratch_unat);
 100	val |= GET_BITS( 8, 11, scratch_unat);
 101	val |= GET_BITS(16, 31, scratch_unat);
 102	return val;
 103
 104#	undef GET_BITS
 105}
 106
 107/*
 108 * Set the NaT bits for the scratch registers according to NAT and
 109 * return the resulting unat (assuming the scratch registers are
 110 * stored in PT).
 111 */
 112unsigned long
 113ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
 114{
 115#	define PUT_BITS(first, last, nat)				\
 116	({								\
 117		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
 118		unsigned long nbits = (last - first + 1);		\
 119		unsigned long mask = MASK(nbits) << first;		\
 120		long dist;						\
 121		if (bit < first)					\
 122			dist = 64 + bit - first;			\
 123		else							\
 124			dist = bit - first;				\
 125		ia64_rotl(nat & mask, dist);				\
 126	})
 127	unsigned long scratch_unat;
 128
 129	/*
 130	 * Registers that are stored consecutively in struct pt_regs
 131	 * can be handled in parallel.  If the register order in
 132	 * struct_pt_regs changes, this code MUST be updated.
 133	 */
 134	scratch_unat  = PUT_BITS( 1,  1, nat);
 135	scratch_unat |= PUT_BITS( 2,  3, nat);
 136	scratch_unat |= PUT_BITS(12, 13, nat);
 137	scratch_unat |= PUT_BITS(14, 14, nat);
 138	scratch_unat |= PUT_BITS(15, 15, nat);
 139	scratch_unat |= PUT_BITS( 8, 11, nat);
 140	scratch_unat |= PUT_BITS(16, 31, nat);
 141
 142	return scratch_unat;
 143
 144#	undef PUT_BITS
 145}
 146
 147#define IA64_MLX_TEMPLATE	0x2
 148#define IA64_MOVL_OPCODE	6
 149
 150void
 151ia64_increment_ip (struct pt_regs *regs)
 152{
 153	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
 154
 155	if (ri > 2) {
 156		ri = 0;
 157		regs->cr_iip += 16;
 158	} else if (ri == 2) {
 159		get_user(w0, (char __user *) regs->cr_iip + 0);
 160		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 161			/*
 162			 * rfi'ing to slot 2 of an MLX bundle causes
 163			 * an illegal operation fault.  We don't want
 164			 * that to happen...
 165			 */
 166			ri = 0;
 167			regs->cr_iip += 16;
 168		}
 169	}
 170	ia64_psr(regs)->ri = ri;
 171}
 172
 173void
 174ia64_decrement_ip (struct pt_regs *regs)
 175{
 176	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
 177
 178	if (ia64_psr(regs)->ri == 0) {
 179		regs->cr_iip -= 16;
 180		ri = 2;
 181		get_user(w0, (char __user *) regs->cr_iip + 0);
 182		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 183			/*
 184			 * rfi'ing to slot 2 of an MLX bundle causes
 185			 * an illegal operation fault.  We don't want
 186			 * that to happen...
 187			 */
 188			ri = 1;
 189		}
 190	}
 191	ia64_psr(regs)->ri = ri;
 192}
 193
 194/*
 195 * This routine is used to read an rnat bits that are stored on the
 196 * kernel backing store.  Since, in general, the alignment of the user
 197 * and kernel are different, this is not completely trivial.  In
 198 * essence, we need to construct the user RNAT based on up to two
 199 * kernel RNAT values and/or the RNAT value saved in the child's
 200 * pt_regs.
 201 *
 202 * user rbs
 203 *
 204 * +--------+ <-- lowest address
 205 * | slot62 |
 206 * +--------+
 207 * |  rnat  | 0x....1f8
 208 * +--------+
 209 * | slot00 | \
 210 * +--------+ |
 211 * | slot01 | > child_regs->ar_rnat
 212 * +--------+ |
 213 * | slot02 | /				kernel rbs
 214 * +--------+				+--------+
 215 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
 216 * +- - - - +				+--------+
 217 *					| slot62 |
 218 * +- - - - +				+--------+
 219 *					|  rnat	 |
 220 * +- - - - +				+--------+
 221 *   vrnat				| slot00 |
 222 * +- - - - +				+--------+
 223 *					=	 =
 224 *					+--------+
 225 *					| slot00 | \
 226 *					+--------+ |
 227 *					| slot01 | > child_stack->ar_rnat
 228 *					+--------+ |
 229 *					| slot02 | /
 230 *					+--------+
 231 *						  <--- child_stack->ar_bspstore
 232 *
 233 * The way to think of this code is as follows: bit 0 in the user rnat
 234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
 235 * value.  The kernel rnat value holding this bit is stored in
 236 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
 237 * form the upper bits of the user rnat value.
 238 *
 239 * Boundary cases:
 240 *
 241 * o when reading the rnat "below" the first rnat slot on the kernel
 242 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
 243 *   merged in from pt->ar_rnat.
 244 *
 245 * o when reading the rnat "above" the last rnat slot on the kernel
 246 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
 247 */
 248static unsigned long
 249get_rnat (struct task_struct *task, struct switch_stack *sw,
 250	  unsigned long *krbs, unsigned long *urnat_addr,
 251	  unsigned long *urbs_end)
 252{
 253	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
 254	unsigned long umask = 0, mask, m;
 255	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 256	long num_regs, nbits;
 257	struct pt_regs *pt;
 258
 259	pt = task_pt_regs(task);
 260	kbsp = (unsigned long *) sw->ar_bspstore;
 261	ubspstore = (unsigned long *) pt->ar_bspstore;
 262
 263	if (urbs_end < urnat_addr)
 264		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
 265	else
 266		nbits = 63;
 267	mask = MASK(nbits);
 268	/*
 269	 * First, figure out which bit number slot 0 in user-land maps
 270	 * to in the kernel rnat.  Do this by figuring out how many
 271	 * register slots we're beyond the user's backingstore and
 272	 * then computing the equivalent address in kernel space.
 273	 */
 274	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 275	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 276	shift = ia64_rse_slot_num(slot0_kaddr);
 277	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 278	rnat0_kaddr = rnat1_kaddr - 64;
 279
 280	if (ubspstore + 63 > urnat_addr) {
 281		/* some bits need to be merged in from pt->ar_rnat */
 282		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 283		urnat = (pt->ar_rnat & umask);
 284		mask &= ~umask;
 285		if (!mask)
 286			return urnat;
 287	}
 288
 289	m = mask << shift;
 290	if (rnat0_kaddr >= kbsp)
 291		rnat0 = sw->ar_rnat;
 292	else if (rnat0_kaddr > krbs)
 293		rnat0 = *rnat0_kaddr;
 294	urnat |= (rnat0 & m) >> shift;
 295
 296	m = mask >> (63 - shift);
 297	if (rnat1_kaddr >= kbsp)
 298		rnat1 = sw->ar_rnat;
 299	else if (rnat1_kaddr > krbs)
 300		rnat1 = *rnat1_kaddr;
 301	urnat |= (rnat1 & m) << (63 - shift);
 302	return urnat;
 303}
 304
 305/*
 306 * The reverse of get_rnat.
 307 */
 308static void
 309put_rnat (struct task_struct *task, struct switch_stack *sw,
 310	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
 311	  unsigned long *urbs_end)
 312{
 313	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
 314	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 315	long num_regs, nbits;
 316	struct pt_regs *pt;
 317	unsigned long cfm, *urbs_kargs;
 318
 319	pt = task_pt_regs(task);
 320	kbsp = (unsigned long *) sw->ar_bspstore;
 321	ubspstore = (unsigned long *) pt->ar_bspstore;
 322
 323	urbs_kargs = urbs_end;
 324	if (in_syscall(pt)) {
 325		/*
 326		 * If entered via syscall, don't allow user to set rnat bits
 327		 * for syscall args.
 328		 */
 329		cfm = pt->cr_ifs;
 330		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
 331	}
 332
 333	if (urbs_kargs >= urnat_addr)
 334		nbits = 63;
 335	else {
 336		if ((urnat_addr - 63) >= urbs_kargs)
 337			return;
 338		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
 339	}
 340	mask = MASK(nbits);
 341
 342	/*
 343	 * First, figure out which bit number slot 0 in user-land maps
 344	 * to in the kernel rnat.  Do this by figuring out how many
 345	 * register slots we're beyond the user's backingstore and
 346	 * then computing the equivalent address in kernel space.
 347	 */
 348	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 349	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 350	shift = ia64_rse_slot_num(slot0_kaddr);
 351	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 352	rnat0_kaddr = rnat1_kaddr - 64;
 353
 354	if (ubspstore + 63 > urnat_addr) {
 355		/* some bits need to be place in pt->ar_rnat: */
 356		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 357		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
 358		mask &= ~umask;
 359		if (!mask)
 360			return;
 361	}
 362	/*
 363	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
 364	 * rnat slot is ignored. so we don't have to clear it here.
 365	 */
 366	rnat0 = (urnat << shift);
 367	m = mask << shift;
 368	if (rnat0_kaddr >= kbsp)
 369		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
 370	else if (rnat0_kaddr > krbs)
 371		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
 372
 373	rnat1 = (urnat >> (63 - shift));
 374	m = mask >> (63 - shift);
 375	if (rnat1_kaddr >= kbsp)
 376		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
 377	else if (rnat1_kaddr > krbs)
 378		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
 379}
 380
 381static inline int
 382on_kernel_rbs (unsigned long addr, unsigned long bspstore,
 383	       unsigned long urbs_end)
 384{
 385	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
 386						      urbs_end);
 387	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
 388}
 389
 390/*
 391 * Read a word from the user-level backing store of task CHILD.  ADDR
 392 * is the user-level address to read the word from, VAL a pointer to
 393 * the return value, and USER_BSP gives the end of the user-level
 394 * backing store (i.e., it's the address that would be in ar.bsp after
 395 * the user executed a "cover" instruction).
 396 *
 397 * This routine takes care of accessing the kernel register backing
 398 * store for those registers that got spilled there.  It also takes
 399 * care of calculating the appropriate RNaT collection words.
 400 */
 401long
 402ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
 403	   unsigned long user_rbs_end, unsigned long addr, long *val)
 404{
 405	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
 406	struct pt_regs *child_regs;
 407	size_t copied;
 408	long ret;
 409
 410	urbs_end = (long *) user_rbs_end;
 411	laddr = (unsigned long *) addr;
 412	child_regs = task_pt_regs(child);
 413	bspstore = (unsigned long *) child_regs->ar_bspstore;
 414	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 415	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 416			  (unsigned long) urbs_end))
 417	{
 418		/*
 419		 * Attempt to read the RBS in an area that's actually
 420		 * on the kernel RBS => read the corresponding bits in
 421		 * the kernel RBS.
 422		 */
 423		rnat_addr = ia64_rse_rnat_addr(laddr);
 424		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
 425
 426		if (laddr == rnat_addr) {
 427			/* return NaT collection word itself */
 428			*val = ret;
 429			return 0;
 430		}
 431
 432		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
 433			/*
 434			 * It is implementation dependent whether the
 435			 * data portion of a NaT value gets saved on a
 436			 * st8.spill or RSE spill (e.g., see EAS 2.6,
 437			 * 4.4.4.6 Register Spill and Fill).  To get
 438			 * consistent behavior across all possible
 439			 * IA-64 implementations, we return zero in
 440			 * this case.
 441			 */
 442			*val = 0;
 443			return 0;
 444		}
 445
 446		if (laddr < urbs_end) {
 447			/*
 448			 * The desired word is on the kernel RBS and
 449			 * is not a NaT.
 450			 */
 451			regnum = ia64_rse_num_regs(bspstore, laddr);
 452			*val = *ia64_rse_skip_regs(krbs, regnum);
 453			return 0;
 454		}
 455	}
 456	copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
 457	if (copied != sizeof(ret))
 458		return -EIO;
 459	*val = ret;
 460	return 0;
 461}
 462
 463long
 464ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
 465	   unsigned long user_rbs_end, unsigned long addr, long val)
 466{
 467	unsigned long *bspstore, *krbs, regnum, *laddr;
 468	unsigned long *urbs_end = (long *) user_rbs_end;
 469	struct pt_regs *child_regs;
 470
 471	laddr = (unsigned long *) addr;
 472	child_regs = task_pt_regs(child);
 473	bspstore = (unsigned long *) child_regs->ar_bspstore;
 474	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 475	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 476			  (unsigned long) urbs_end))
 477	{
 478		/*
 479		 * Attempt to write the RBS in an area that's actually
 480		 * on the kernel RBS => write the corresponding bits
 481		 * in the kernel RBS.
 482		 */
 483		if (ia64_rse_is_rnat_slot(laddr))
 484			put_rnat(child, child_stack, krbs, laddr, val,
 485				 urbs_end);
 486		else {
 487			if (laddr < urbs_end) {
 488				regnum = ia64_rse_num_regs(bspstore, laddr);
 489				*ia64_rse_skip_regs(krbs, regnum) = val;
 490			}
 491		}
 492	} else if (access_process_vm(child, addr, &val, sizeof(val),
 493				FOLL_FORCE | FOLL_WRITE)
 494		   != sizeof(val))
 495		return -EIO;
 496	return 0;
 497}
 498
 499/*
 500 * Calculate the address of the end of the user-level register backing
 501 * store.  This is the address that would have been stored in ar.bsp
 502 * if the user had executed a "cover" instruction right before
 503 * entering the kernel.  If CFMP is not NULL, it is used to return the
 504 * "current frame mask" that was active at the time the kernel was
 505 * entered.
 506 */
 507unsigned long
 508ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
 509		       unsigned long *cfmp)
 510{
 511	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
 512	long ndirty;
 513
 514	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 515	bspstore = (unsigned long *) pt->ar_bspstore;
 516	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
 517
 518	if (in_syscall(pt))
 519		ndirty += (cfm & 0x7f);
 520	else
 521		cfm &= ~(1UL << 63);	/* clear valid bit */
 522
 523	if (cfmp)
 524		*cfmp = cfm;
 525	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
 526}
 527
 528/*
 529 * Synchronize (i.e, write) the RSE backing store living in kernel
 530 * space to the VM of the CHILD task.  SW and PT are the pointers to
 531 * the switch_stack and pt_regs structures, respectively.
 532 * USER_RBS_END is the user-level address at which the backing store
 533 * ends.
 534 */
 535long
 536ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
 537		    unsigned long user_rbs_start, unsigned long user_rbs_end)
 538{
 539	unsigned long addr, val;
 540	long ret;
 541
 542	/* now copy word for word from kernel rbs to user rbs: */
 543	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 544		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
 545		if (ret < 0)
 546			return ret;
 547		if (access_process_vm(child, addr, &val, sizeof(val),
 548				FOLL_FORCE | FOLL_WRITE)
 549		    != sizeof(val))
 550			return -EIO;
 551	}
 552	return 0;
 553}
 554
 555static long
 556ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
 557		unsigned long user_rbs_start, unsigned long user_rbs_end)
 558{
 559	unsigned long addr, val;
 560	long ret;
 561
 562	/* now copy word for word from user rbs to kernel rbs: */
 563	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 564		if (access_process_vm(child, addr, &val, sizeof(val),
 565				FOLL_FORCE)
 566				!= sizeof(val))
 567			return -EIO;
 568
 569		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
 570		if (ret < 0)
 571			return ret;
 572	}
 573	return 0;
 574}
 575
 576typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
 577			    unsigned long, unsigned long);
 578
 579static void do_sync_rbs(struct unw_frame_info *info, void *arg)
 580{
 581	struct pt_regs *pt;
 582	unsigned long urbs_end;
 583	syncfunc_t fn = arg;
 584
 585	if (unw_unwind_to_user(info) < 0)
 586		return;
 587	pt = task_pt_regs(info->task);
 588	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
 589
 590	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
 591}
 592
 593/*
 594 * when a thread is stopped (ptraced), debugger might change thread's user
 595 * stack (change memory directly), and we must avoid the RSE stored in kernel
 596 * to override user stack (user space's RSE is newer than kernel's in the
 597 * case). To workaround the issue, we copy kernel RSE to user RSE before the
 598 * task is stopped, so user RSE has updated data.  we then copy user RSE to
 599 * kernel after the task is resummed from traced stop and kernel will use the
 600 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
 601 * synchronize user RSE to kernel.
 602 */
 603void ia64_ptrace_stop(void)
 604{
 605	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
 606		return;
 607	set_notify_resume(current);
 608	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
 609}
 610
 611/*
 612 * This is called to read back the register backing store.
 613 */
 614void ia64_sync_krbs(void)
 615{
 616	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
 617
 618	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
 619}
 620
 621/*
 622 * After PTRACE_ATTACH, a thread's register backing store area in user
 623 * space is assumed to contain correct data whenever the thread is
 624 * stopped.  arch_ptrace_stop takes care of this on tracing stops.
 625 * But if the child was already stopped for job control when we attach
 626 * to it, then it might not ever get into ptrace_stop by the time we
 627 * want to examine the user memory containing the RBS.
 628 */
 629void
 630ptrace_attach_sync_user_rbs (struct task_struct *child)
 631{
 632	int stopped = 0;
 633	struct unw_frame_info info;
 634
 635	/*
 636	 * If the child is in TASK_STOPPED, we need to change that to
 637	 * TASK_TRACED momentarily while we operate on it.  This ensures
 638	 * that the child won't be woken up and return to user mode while
 639	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
 640	 */
 641
 642	read_lock(&tasklist_lock);
 643	if (child->sighand) {
 644		spin_lock_irq(&child->sighand->siglock);
 645		if (child->state == TASK_STOPPED &&
 646		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
 647			set_notify_resume(child);
 648
 649			child->state = TASK_TRACED;
 650			stopped = 1;
 651		}
 652		spin_unlock_irq(&child->sighand->siglock);
 653	}
 654	read_unlock(&tasklist_lock);
 655
 656	if (!stopped)
 657		return;
 658
 659	unw_init_from_blocked_task(&info, child);
 660	do_sync_rbs(&info, ia64_sync_user_rbs);
 661
 662	/*
 663	 * Now move the child back into TASK_STOPPED if it should be in a
 664	 * job control stop, so that SIGCONT can be used to wake it up.
 665	 */
 666	read_lock(&tasklist_lock);
 667	if (child->sighand) {
 668		spin_lock_irq(&child->sighand->siglock);
 669		if (child->state == TASK_TRACED &&
 670		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
 671			child->state = TASK_STOPPED;
 672		}
 673		spin_unlock_irq(&child->sighand->siglock);
 674	}
 675	read_unlock(&tasklist_lock);
 676}
 677
 678/*
 679 * Write f32-f127 back to task->thread.fph if it has been modified.
 680 */
 681inline void
 682ia64_flush_fph (struct task_struct *task)
 683{
 684	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 685
 686	/*
 687	 * Prevent migrating this task while
 688	 * we're fiddling with the FPU state
 689	 */
 690	preempt_disable();
 691	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
 692		psr->mfh = 0;
 693		task->thread.flags |= IA64_THREAD_FPH_VALID;
 694		ia64_save_fpu(&task->thread.fph[0]);
 695	}
 696	preempt_enable();
 697}
 698
 699/*
 700 * Sync the fph state of the task so that it can be manipulated
 701 * through thread.fph.  If necessary, f32-f127 are written back to
 702 * thread.fph or, if the fph state hasn't been used before, thread.fph
 703 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 704 * ensure that the task picks up the state from thread.fph when it
 705 * executes again.
 706 */
 707void
 708ia64_sync_fph (struct task_struct *task)
 709{
 710	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 711
 712	ia64_flush_fph(task);
 713	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
 714		task->thread.flags |= IA64_THREAD_FPH_VALID;
 715		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
 716	}
 717	ia64_drop_fpu(task);
 718	psr->dfh = 1;
 719}
 720
 721/*
 722 * Change the machine-state of CHILD such that it will return via the normal
 723 * kernel exit-path, rather than the syscall-exit path.
 724 */
 725static void
 726convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
 727			unsigned long cfm)
 728{
 729	struct unw_frame_info info, prev_info;
 730	unsigned long ip, sp, pr;
 731
 732	unw_init_from_blocked_task(&info, child);
 733	while (1) {
 734		prev_info = info;
 735		if (unw_unwind(&info) < 0)
 736			return;
 737
 738		unw_get_sp(&info, &sp);
 739		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
 740		    < IA64_PT_REGS_SIZE) {
 741			dprintk("ptrace.%s: ran off the top of the kernel "
 742				"stack\n", __func__);
 743			return;
 744		}
 745		if (unw_get_pr (&prev_info, &pr) < 0) {
 746			unw_get_rp(&prev_info, &ip);
 747			dprintk("ptrace.%s: failed to read "
 748				"predicate register (ip=0x%lx)\n",
 749				__func__, ip);
 750			return;
 751		}
 752		if (unw_is_intr_frame(&info)
 753		    && (pr & (1UL << PRED_USER_STACK)))
 754			break;
 755	}
 756
 757	/*
 758	 * Note: at the time of this call, the target task is blocked
 759	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
 760	 * (aka, "pLvSys") we redirect execution from
 761	 * .work_pending_syscall_end to .work_processed_kernel.
 762	 */
 763	unw_get_pr(&prev_info, &pr);
 764	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
 765	pr |=  (1UL << PRED_NON_SYSCALL);
 766	unw_set_pr(&prev_info, pr);
 767
 768	pt->cr_ifs = (1UL << 63) | cfm;
 769	/*
 770	 * Clear the memory that is NOT written on syscall-entry to
 771	 * ensure we do not leak kernel-state to user when execution
 772	 * resumes.
 773	 */
 774	pt->r2 = 0;
 775	pt->r3 = 0;
 776	pt->r14 = 0;
 777	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
 778	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
 779	pt->b7 = 0;
 780	pt->ar_ccv = 0;
 781	pt->ar_csd = 0;
 782	pt->ar_ssd = 0;
 783}
 784
 785static int
 786access_nat_bits (struct task_struct *child, struct pt_regs *pt,
 787		 struct unw_frame_info *info,
 788		 unsigned long *data, int write_access)
 789{
 790	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
 791	char nat = 0;
 792
 793	if (write_access) {
 794		nat_bits = *data;
 795		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
 796		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
 797			dprintk("ptrace: failed to set ar.unat\n");
 798			return -1;
 799		}
 800		for (regnum = 4; regnum <= 7; ++regnum) {
 801			unw_get_gr(info, regnum, &dummy, &nat);
 802			unw_set_gr(info, regnum, dummy,
 803				   (nat_bits >> regnum) & 1);
 804		}
 805	} else {
 806		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
 807			dprintk("ptrace: failed to read ar.unat\n");
 808			return -1;
 809		}
 810		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
 811		for (regnum = 4; regnum <= 7; ++regnum) {
 812			unw_get_gr(info, regnum, &dummy, &nat);
 813			nat_bits |= (nat != 0) << regnum;
 814		}
 815		*data = nat_bits;
 816	}
 817	return 0;
 818}
 819
 820static int
 821access_uarea (struct task_struct *child, unsigned long addr,
 822	      unsigned long *data, int write_access);
 823
 824static long
 825ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 826{
 827	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
 828	struct unw_frame_info info;
 829	struct ia64_fpreg fpval;
 830	struct switch_stack *sw;
 831	struct pt_regs *pt;
 832	long ret, retval = 0;
 833	char nat = 0;
 834	int i;
 835
 836	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
 837		return -EIO;
 838
 839	pt = task_pt_regs(child);
 840	sw = (struct switch_stack *) (child->thread.ksp + 16);
 841	unw_init_from_blocked_task(&info, child);
 842	if (unw_unwind_to_user(&info) < 0) {
 843		return -EIO;
 844	}
 845
 846	if (((unsigned long) ppr & 0x7) != 0) {
 847		dprintk("ptrace:unaligned register address %p\n", ppr);
 848		return -EIO;
 849	}
 850
 851	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
 852	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
 853	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
 854	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
 855	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
 856	    || access_uarea(child, PT_CFM, &cfm, 0)
 857	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
 858		return -EIO;
 859
 860	/* control regs */
 861
 862	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
 863	retval |= __put_user(psr, &ppr->cr_ipsr);
 864
 865	/* app regs */
 866
 867	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
 868	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
 869	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
 870	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
 871	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
 872	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
 873
 874	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
 875	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
 876	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
 877	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
 878	retval |= __put_user(cfm, &ppr->cfm);
 879
 880	/* gr1-gr3 */
 881
 882	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
 883	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
 884
 885	/* gr4-gr7 */
 886
 887	for (i = 4; i < 8; i++) {
 888		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
 889			return -EIO;
 890		retval |= __put_user(val, &ppr->gr[i]);
 891	}
 892
 893	/* gr8-gr11 */
 894
 895	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
 896
 897	/* gr12-gr15 */
 898
 899	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
 900	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
 901	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
 902
 903	/* gr16-gr31 */
 904
 905	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
 906
 907	/* b0 */
 908
 909	retval |= __put_user(pt->b0, &ppr->br[0]);
 910
 911	/* b1-b5 */
 912
 913	for (i = 1; i < 6; i++) {
 914		if (unw_access_br(&info, i, &val, 0) < 0)
 915			return -EIO;
 916		__put_user(val, &ppr->br[i]);
 917	}
 918
 919	/* b6-b7 */
 920
 921	retval |= __put_user(pt->b6, &ppr->br[6]);
 922	retval |= __put_user(pt->b7, &ppr->br[7]);
 923
 924	/* fr2-fr5 */
 925
 926	for (i = 2; i < 6; i++) {
 927		if (unw_get_fr(&info, i, &fpval) < 0)
 928			return -EIO;
 929		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 930	}
 931
 932	/* fr6-fr11 */
 933
 934	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
 935				 sizeof(struct ia64_fpreg) * 6);
 936
 937	/* fp scratch regs(12-15) */
 938
 939	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
 940				 sizeof(struct ia64_fpreg) * 4);
 941
 942	/* fr16-fr31 */
 943
 944	for (i = 16; i < 32; i++) {
 945		if (unw_get_fr(&info, i, &fpval) < 0)
 946			return -EIO;
 947		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 948	}
 949
 950	/* fph */
 951
 952	ia64_flush_fph(child);
 953	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
 954				 sizeof(ppr->fr[32]) * 96);
 955
 956	/*  preds */
 957
 958	retval |= __put_user(pt->pr, &ppr->pr);
 959
 960	/* nat bits */
 961
 962	retval |= __put_user(nat_bits, &ppr->nat);
 963
 964	ret = retval ? -EIO : 0;
 965	return ret;
 966}
 967
 968static long
 969ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 970{
 971	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
 972	struct unw_frame_info info;
 973	struct switch_stack *sw;
 974	struct ia64_fpreg fpval;
 975	struct pt_regs *pt;
 976	long ret, retval = 0;
 977	int i;
 978
 979	memset(&fpval, 0, sizeof(fpval));
 980
 981	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
 982		return -EIO;
 983
 984	pt = task_pt_regs(child);
 985	sw = (struct switch_stack *) (child->thread.ksp + 16);
 986	unw_init_from_blocked_task(&info, child);
 987	if (unw_unwind_to_user(&info) < 0) {
 988		return -EIO;
 989	}
 990
 991	if (((unsigned long) ppr & 0x7) != 0) {
 992		dprintk("ptrace:unaligned register address %p\n", ppr);
 993		return -EIO;
 994	}
 995
 996	/* control regs */
 997
 998	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
 999	retval |= __get_user(psr, &ppr->cr_ipsr);
1000
1001	/* app regs */
1002
1003	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1004	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1005	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1006	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1007	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1008	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1009
1010	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1011	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1012	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1013	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1014	retval |= __get_user(cfm, &ppr->cfm);
1015
1016	/* gr1-gr3 */
1017
1018	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1019	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1020
1021	/* gr4-gr7 */
1022
1023	for (i = 4; i < 8; i++) {
1024		retval |= __get_user(val, &ppr->gr[i]);
1025		/* NaT bit will be set via PT_NAT_BITS: */
1026		if (unw_set_gr(&info, i, val, 0) < 0)
1027			return -EIO;
1028	}
1029
1030	/* gr8-gr11 */
1031
1032	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1033
1034	/* gr12-gr15 */
1035
1036	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1037	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1038	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1039
1040	/* gr16-gr31 */
1041
1042	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1043
1044	/* b0 */
1045
1046	retval |= __get_user(pt->b0, &ppr->br[0]);
1047
1048	/* b1-b5 */
1049
1050	for (i = 1; i < 6; i++) {
1051		retval |= __get_user(val, &ppr->br[i]);
1052		unw_set_br(&info, i, val);
1053	}
1054
1055	/* b6-b7 */
1056
1057	retval |= __get_user(pt->b6, &ppr->br[6]);
1058	retval |= __get_user(pt->b7, &ppr->br[7]);
1059
1060	/* fr2-fr5 */
1061
1062	for (i = 2; i < 6; i++) {
1063		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1064		if (unw_set_fr(&info, i, fpval) < 0)
1065			return -EIO;
1066	}
1067
1068	/* fr6-fr11 */
1069
1070	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1071				   sizeof(ppr->fr[6]) * 6);
1072
1073	/* fp scratch regs(12-15) */
1074
1075	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1076				   sizeof(ppr->fr[12]) * 4);
1077
1078	/* fr16-fr31 */
1079
1080	for (i = 16; i < 32; i++) {
1081		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1082					   sizeof(fpval));
1083		if (unw_set_fr(&info, i, fpval) < 0)
1084			return -EIO;
1085	}
1086
1087	/* fph */
1088
1089	ia64_sync_fph(child);
1090	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1091				   sizeof(ppr->fr[32]) * 96);
1092
1093	/* preds */
1094
1095	retval |= __get_user(pt->pr, &ppr->pr);
1096
1097	/* nat bits */
1098
1099	retval |= __get_user(nat_bits, &ppr->nat);
1100
1101	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1102	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1103	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1104	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1105	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1106	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1107	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1108	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1109
1110	ret = retval ? -EIO : 0;
1111	return ret;
1112}
1113
1114void
1115user_enable_single_step (struct task_struct *child)
1116{
1117	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1118
1119	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1120	child_psr->ss = 1;
1121}
1122
1123void
1124user_enable_block_step (struct task_struct *child)
1125{
1126	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1127
1128	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1129	child_psr->tb = 1;
1130}
1131
1132void
1133user_disable_single_step (struct task_struct *child)
1134{
1135	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1136
1137	/* make sure the single step/taken-branch trap bits are not set: */
1138	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1139	child_psr->ss = 0;
1140	child_psr->tb = 0;
1141}
1142
1143/*
1144 * Called by kernel/ptrace.c when detaching..
1145 *
1146 * Make sure the single step bit is not set.
1147 */
1148void
1149ptrace_disable (struct task_struct *child)
1150{
1151	user_disable_single_step(child);
1152}
1153
1154long
1155arch_ptrace (struct task_struct *child, long request,
1156	     unsigned long addr, unsigned long data)
1157{
1158	switch (request) {
1159	case PTRACE_PEEKTEXT:
1160	case PTRACE_PEEKDATA:
1161		/* read word at location addr */
1162		if (ptrace_access_vm(child, addr, &data, sizeof(data),
1163				FOLL_FORCE)
1164		    != sizeof(data))
1165			return -EIO;
1166		/* ensure return value is not mistaken for error code */
1167		force_successful_syscall_return();
1168		return data;
1169
1170	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1171	 * by the generic ptrace_request().
1172	 */
1173
1174	case PTRACE_PEEKUSR:
1175		/* read the word at addr in the USER area */
1176		if (access_uarea(child, addr, &data, 0) < 0)
1177			return -EIO;
1178		/* ensure return value is not mistaken for error code */
1179		force_successful_syscall_return();
1180		return data;
1181
1182	case PTRACE_POKEUSR:
1183		/* write the word at addr in the USER area */
1184		if (access_uarea(child, addr, &data, 1) < 0)
1185			return -EIO;
1186		return 0;
1187
1188	case PTRACE_OLD_GETSIGINFO:
1189		/* for backwards-compatibility */
1190		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1191
1192	case PTRACE_OLD_SETSIGINFO:
1193		/* for backwards-compatibility */
1194		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1195
1196	case PTRACE_GETREGS:
1197		return ptrace_getregs(child,
1198				      (struct pt_all_user_regs __user *) data);
1199
1200	case PTRACE_SETREGS:
1201		return ptrace_setregs(child,
1202				      (struct pt_all_user_regs __user *) data);
1203
1204	default:
1205		return ptrace_request(child, request, addr, data);
1206	}
1207}
1208
1209
1210/* "asmlinkage" so the input arguments are preserved... */
1211
1212asmlinkage long
1213syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1214		     long arg4, long arg5, long arg6, long arg7,
1215		     struct pt_regs regs)
1216{
1217	if (test_thread_flag(TIF_SYSCALL_TRACE))
1218		if (tracehook_report_syscall_entry(&regs))
1219			return -ENOSYS;
1220
1221	/* copy user rbs to kernel rbs */
1222	if (test_thread_flag(TIF_RESTORE_RSE))
1223		ia64_sync_krbs();
1224
1225
1226	audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1227
1228	return 0;
1229}
1230
1231/* "asmlinkage" so the input arguments are preserved... */
1232
1233asmlinkage void
1234syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1235		     long arg4, long arg5, long arg6, long arg7,
1236		     struct pt_regs regs)
1237{
1238	int step;
1239
1240	audit_syscall_exit(&regs);
1241
1242	step = test_thread_flag(TIF_SINGLESTEP);
1243	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1244		tracehook_report_syscall_exit(&regs, step);
1245
1246	/* copy user rbs to kernel rbs */
1247	if (test_thread_flag(TIF_RESTORE_RSE))
1248		ia64_sync_krbs();
1249}
1250
1251/* Utrace implementation starts here */
1252struct regset_get {
1253	void *kbuf;
1254	void __user *ubuf;
1255};
1256
1257struct regset_set {
1258	const void *kbuf;
1259	const void __user *ubuf;
1260};
1261
1262struct regset_getset {
1263	struct task_struct *target;
1264	const struct user_regset *regset;
1265	union {
1266		struct regset_get get;
1267		struct regset_set set;
1268	} u;
1269	unsigned int pos;
1270	unsigned int count;
1271	int ret;
1272};
1273
 
 
 
 
 
 
 
 
 
 
 
1274static int
1275access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1276		unsigned long addr, unsigned long *data, int write_access)
1277{
1278	struct pt_regs *pt;
1279	unsigned long *ptr = NULL;
1280	int ret;
1281	char nat = 0;
1282
1283	pt = task_pt_regs(target);
1284	switch (addr) {
1285	case ELF_GR_OFFSET(1):
1286		ptr = &pt->r1;
1287		break;
1288	case ELF_GR_OFFSET(2):
1289	case ELF_GR_OFFSET(3):
1290		ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1291		break;
1292	case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1293		if (write_access) {
1294			/* read NaT bit first: */
1295			unsigned long dummy;
1296
1297			ret = unw_get_gr(info, addr/8, &dummy, &nat);
1298			if (ret < 0)
1299				return ret;
1300		}
1301		return unw_access_gr(info, addr/8, data, &nat, write_access);
1302	case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1303		ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1304		break;
1305	case ELF_GR_OFFSET(12):
1306	case ELF_GR_OFFSET(13):
1307		ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1308		break;
1309	case ELF_GR_OFFSET(14):
1310		ptr = &pt->r14;
1311		break;
1312	case ELF_GR_OFFSET(15):
1313		ptr = &pt->r15;
1314	}
1315	if (write_access)
1316		*ptr = *data;
1317	else
1318		*data = *ptr;
1319	return 0;
1320}
1321
1322static int
1323access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1324		unsigned long addr, unsigned long *data, int write_access)
1325{
1326	struct pt_regs *pt;
1327	unsigned long *ptr = NULL;
1328
1329	pt = task_pt_regs(target);
1330	switch (addr) {
1331	case ELF_BR_OFFSET(0):
1332		ptr = &pt->b0;
1333		break;
1334	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1335		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1336				     data, write_access);
1337	case ELF_BR_OFFSET(6):
1338		ptr = &pt->b6;
1339		break;
1340	case ELF_BR_OFFSET(7):
1341		ptr = &pt->b7;
1342	}
1343	if (write_access)
1344		*ptr = *data;
1345	else
1346		*data = *ptr;
1347	return 0;
1348}
1349
1350static int
1351access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1352		unsigned long addr, unsigned long *data, int write_access)
1353{
1354	struct pt_regs *pt;
1355	unsigned long cfm, urbs_end;
1356	unsigned long *ptr = NULL;
1357
1358	pt = task_pt_regs(target);
1359	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1360		switch (addr) {
1361		case ELF_AR_RSC_OFFSET:
1362			/* force PL3 */
1363			if (write_access)
1364				pt->ar_rsc = *data | (3 << 2);
1365			else
1366				*data = pt->ar_rsc;
1367			return 0;
1368		case ELF_AR_BSP_OFFSET:
1369			/*
1370			 * By convention, we use PT_AR_BSP to refer to
1371			 * the end of the user-level backing store.
1372			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1373			 * to get the real value of ar.bsp at the time
1374			 * the kernel was entered.
1375			 *
1376			 * Furthermore, when changing the contents of
1377			 * PT_AR_BSP (or PT_CFM) while the task is
1378			 * blocked in a system call, convert the state
1379			 * so that the non-system-call exit
1380			 * path is used.  This ensures that the proper
1381			 * state will be picked up when resuming
1382			 * execution.  However, it *also* means that
1383			 * once we write PT_AR_BSP/PT_CFM, it won't be
1384			 * possible to modify the syscall arguments of
1385			 * the pending system call any longer.  This
1386			 * shouldn't be an issue because modifying
1387			 * PT_AR_BSP/PT_CFM generally implies that
1388			 * we're either abandoning the pending system
1389			 * call or that we defer it's re-execution
1390			 * (e.g., due to GDB doing an inferior
1391			 * function call).
1392			 */
1393			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1394			if (write_access) {
1395				if (*data != urbs_end) {
1396					if (in_syscall(pt))
1397						convert_to_non_syscall(target,
1398								       pt,
1399								       cfm);
1400					/*
1401					 * Simulate user-level write
1402					 * of ar.bsp:
1403					 */
1404					pt->loadrs = 0;
1405					pt->ar_bspstore = *data;
1406				}
1407			} else
1408				*data = urbs_end;
1409			return 0;
1410		case ELF_AR_BSPSTORE_OFFSET:
1411			ptr = &pt->ar_bspstore;
1412			break;
1413		case ELF_AR_RNAT_OFFSET:
1414			ptr = &pt->ar_rnat;
1415			break;
1416		case ELF_AR_CCV_OFFSET:
1417			ptr = &pt->ar_ccv;
1418			break;
1419		case ELF_AR_UNAT_OFFSET:
1420			ptr = &pt->ar_unat;
1421			break;
1422		case ELF_AR_FPSR_OFFSET:
1423			ptr = &pt->ar_fpsr;
1424			break;
1425		case ELF_AR_PFS_OFFSET:
1426			ptr = &pt->ar_pfs;
1427			break;
1428		case ELF_AR_LC_OFFSET:
1429			return unw_access_ar(info, UNW_AR_LC, data,
1430					     write_access);
1431		case ELF_AR_EC_OFFSET:
1432			return unw_access_ar(info, UNW_AR_EC, data,
1433					     write_access);
1434		case ELF_AR_CSD_OFFSET:
1435			ptr = &pt->ar_csd;
1436			break;
1437		case ELF_AR_SSD_OFFSET:
1438			ptr = &pt->ar_ssd;
1439		}
1440	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1441		switch (addr) {
1442		case ELF_CR_IIP_OFFSET:
1443			ptr = &pt->cr_iip;
1444			break;
1445		case ELF_CFM_OFFSET:
1446			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1447			if (write_access) {
1448				if (((cfm ^ *data) & PFM_MASK) != 0) {
1449					if (in_syscall(pt))
1450						convert_to_non_syscall(target,
1451								       pt,
1452								       cfm);
1453					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1454						      | (*data & PFM_MASK));
1455				}
1456			} else
1457				*data = cfm;
1458			return 0;
1459		case ELF_CR_IPSR_OFFSET:
1460			if (write_access) {
1461				unsigned long tmp = *data;
1462				/* psr.ri==3 is a reserved value: SDM 2:25 */
1463				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1464					tmp &= ~IA64_PSR_RI;
1465				pt->cr_ipsr = ((tmp & IPSR_MASK)
1466					       | (pt->cr_ipsr & ~IPSR_MASK));
1467			} else
1468				*data = (pt->cr_ipsr & IPSR_MASK);
1469			return 0;
1470		}
1471	} else if (addr == ELF_NAT_OFFSET)
1472		return access_nat_bits(target, pt, info,
1473				       data, write_access);
1474	else if (addr == ELF_PR_OFFSET)
1475		ptr = &pt->pr;
1476	else
1477		return -1;
1478
1479	if (write_access)
1480		*ptr = *data;
1481	else
1482		*data = *ptr;
1483
1484	return 0;
1485}
1486
1487static int
1488access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1489		unsigned long addr, unsigned long *data, int write_access)
1490{
1491	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1492		return access_elf_gpreg(target, info, addr, data, write_access);
1493	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1494		return access_elf_breg(target, info, addr, data, write_access);
1495	else
1496		return access_elf_areg(target, info, addr, data, write_access);
1497}
1498
 
 
 
 
 
1499void do_gpregs_get(struct unw_frame_info *info, void *arg)
1500{
1501	struct pt_regs *pt;
1502	struct regset_getset *dst = arg;
1503	elf_greg_t tmp[16];
1504	unsigned int i, index, min_copy;
1505
1506	if (unw_unwind_to_user(info) < 0)
1507		return;
1508
1509	/*
1510	 * coredump format:
1511	 *      r0-r31
1512	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1513	 *      predicate registers (p0-p63)
1514	 *      b0-b7
1515	 *      ip cfm user-mask
1516	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
1517	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1518	 */
1519
1520
1521	/* Skip r0 */
1522	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1523		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1524						      &dst->u.get.kbuf,
1525						      &dst->u.get.ubuf,
1526						      0, ELF_GR_OFFSET(1));
1527		if (dst->ret || dst->count == 0)
1528			return;
1529	}
1530
1531	/* gr1 - gr15 */
1532	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1533		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1534		min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1535			 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1536		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1537				index++)
1538			if (access_elf_reg(dst->target, info, i,
1539						&tmp[index], 0) < 0) {
1540				dst->ret = -EIO;
1541				return;
1542			}
1543		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1544				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1545				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1546		if (dst->ret || dst->count == 0)
1547			return;
1548	}
1549
1550	/* r16-r31 */
1551	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1552		pt = task_pt_regs(dst->target);
1553		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1554				&dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1555				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1556		if (dst->ret || dst->count == 0)
1557			return;
1558	}
1559
1560	/* nat, pr, b0 - b7 */
1561	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1562		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1563		min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1564			 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1565		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1566				index++)
1567			if (access_elf_reg(dst->target, info, i,
1568						&tmp[index], 0) < 0) {
1569				dst->ret = -EIO;
1570				return;
1571			}
1572		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1573				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1574				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1575		if (dst->ret || dst->count == 0)
1576			return;
1577	}
1578
1579	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1580	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1581	 */
1582	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1583		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1584		min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1585			 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1586		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1587				index++)
1588			if (access_elf_reg(dst->target, info, i,
1589						&tmp[index], 0) < 0) {
1590				dst->ret = -EIO;
1591				return;
1592			}
1593		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1594				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1595				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1596	}
1597}
1598
1599void do_gpregs_set(struct unw_frame_info *info, void *arg)
1600{
1601	struct pt_regs *pt;
1602	struct regset_getset *dst = arg;
1603	elf_greg_t tmp[16];
1604	unsigned int i, index;
1605
1606	if (unw_unwind_to_user(info) < 0)
1607		return;
1608
 
 
1609	/* Skip r0 */
1610	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1611		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1612						       &dst->u.set.kbuf,
1613						       &dst->u.set.ubuf,
1614						       0, ELF_GR_OFFSET(1));
1615		if (dst->ret || dst->count == 0)
1616			return;
1617	}
1618
1619	/* gr1-gr15 */
1620	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1621		i = dst->pos;
1622		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1623		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1624				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1625				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1626		if (dst->ret)
1627			return;
1628		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1629			if (access_elf_reg(dst->target, info, i,
1630						&tmp[index], 1) < 0) {
1631				dst->ret = -EIO;
1632				return;
1633			}
1634		if (dst->count == 0)
1635			return;
1636	}
1637
1638	/* gr16-gr31 */
1639	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1640		pt = task_pt_regs(dst->target);
1641		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1642				&dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1643				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1644		if (dst->ret || dst->count == 0)
1645			return;
1646	}
1647
1648	/* nat, pr, b0 - b7 */
1649	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1650		i = dst->pos;
1651		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1652		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1653				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1654				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1655		if (dst->ret)
1656			return;
1657		for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1658			if (access_elf_reg(dst->target, info, i,
1659						&tmp[index], 1) < 0) {
1660				dst->ret = -EIO;
1661				return;
1662			}
1663		if (dst->count == 0)
1664			return;
1665	}
1666
1667	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1668	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1669	 */
1670	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1671		i = dst->pos;
1672		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
 
 
 
1673		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1674				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1675				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1676		if (dst->ret)
1677			return;
1678		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1679			if (access_elf_reg(dst->target, info, i,
1680						&tmp[index], 1) < 0) {
 
1681				dst->ret = -EIO;
1682				return;
1683			}
1684	}
1685}
1686
1687#define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
1688
1689void do_fpregs_get(struct unw_frame_info *info, void *arg)
1690{
1691	struct regset_getset *dst = arg;
1692	struct task_struct *task = dst->target;
1693	elf_fpreg_t tmp[30];
1694	int index, min_copy, i;
 
1695
1696	if (unw_unwind_to_user(info) < 0)
1697		return;
1698
1699	/* Skip pos 0 and 1 */
1700	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1701		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1702						      &dst->u.get.kbuf,
1703						      &dst->u.get.ubuf,
1704						      0, ELF_FP_OFFSET(2));
1705		if (dst->count == 0 || dst->ret)
1706			return;
1707	}
1708
1709	/* fr2-fr31 */
1710	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1711		index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1712
1713		min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1714				dst->pos + dst->count);
1715		for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1716				index++)
1717			if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1718					 &tmp[index])) {
1719				dst->ret = -EIO;
1720				return;
1721			}
1722		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1723				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1724				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1725		if (dst->count == 0 || dst->ret)
1726			return;
 
 
1727	}
1728
1729	/* fph */
1730	if (dst->count > 0) {
1731		ia64_flush_fph(dst->target);
1732		if (task->thread.flags & IA64_THREAD_FPH_VALID)
1733			dst->ret = user_regset_copyout(
1734				&dst->pos, &dst->count,
1735				&dst->u.get.kbuf, &dst->u.get.ubuf,
1736				&dst->target->thread.fph,
1737				ELF_FP_OFFSET(32), -1);
1738		else
1739			/* Zero fill instead.  */
1740			dst->ret = user_regset_copyout_zero(
1741				&dst->pos, &dst->count,
1742				&dst->u.get.kbuf, &dst->u.get.ubuf,
1743				ELF_FP_OFFSET(32), -1);
1744	}
1745}
1746
1747void do_fpregs_set(struct unw_frame_info *info, void *arg)
1748{
1749	struct regset_getset *dst = arg;
1750	elf_fpreg_t fpreg, tmp[30];
1751	int index, start, end;
1752
1753	if (unw_unwind_to_user(info) < 0)
1754		return;
1755
1756	/* Skip pos 0 and 1 */
1757	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1758		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1759						       &dst->u.set.kbuf,
1760						       &dst->u.set.ubuf,
1761						       0, ELF_FP_OFFSET(2));
1762		if (dst->count == 0 || dst->ret)
1763			return;
1764	}
1765
1766	/* fr2-fr31 */
1767	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1768		start = dst->pos;
1769		end = min(((unsigned int)ELF_FP_OFFSET(32)),
1770			 dst->pos + dst->count);
1771		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1772				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1773				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1774		if (dst->ret)
1775			return;
1776
1777		if (start & 0xF) { /* only write high part */
1778			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1779					 &fpreg)) {
1780				dst->ret = -EIO;
1781				return;
1782			}
1783			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1784				= fpreg.u.bits[0];
1785			start &= ~0xFUL;
1786		}
1787		if (end & 0xF) { /* only write low part */
1788			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1789					&fpreg)) {
1790				dst->ret = -EIO;
1791				return;
1792			}
1793			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1794				= fpreg.u.bits[1];
1795			end = (end + 0xF) & ~0xFUL;
1796		}
1797
1798		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
1799			index = start / sizeof(elf_fpreg_t);
1800			if (unw_set_fr(info, index, tmp[index - 2])) {
1801				dst->ret = -EIO;
1802				return;
1803			}
1804		}
1805		if (dst->ret || dst->count == 0)
1806			return;
1807	}
1808
1809	/* fph */
1810	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1811		ia64_sync_fph(dst->target);
1812		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1813						&dst->u.set.kbuf,
1814						&dst->u.set.ubuf,
1815						&dst->target->thread.fph,
1816						ELF_FP_OFFSET(32), -1);
1817	}
1818}
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820static int
1821do_regset_call(void (*call)(struct unw_frame_info *, void *),
1822	       struct task_struct *target,
1823	       const struct user_regset *regset,
1824	       unsigned int pos, unsigned int count,
1825	       const void *kbuf, const void __user *ubuf)
1826{
1827	struct regset_getset info = { .target = target, .regset = regset,
1828				 .pos = pos, .count = count,
1829				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1830				 .ret = 0 };
1831
1832	if (target == current)
1833		unw_init_running(call, &info);
1834	else {
1835		struct unw_frame_info ufi;
1836		memset(&ufi, 0, sizeof(ufi));
1837		unw_init_from_blocked_task(&ufi, target);
1838		(*call)(&ufi, &info);
1839	}
1840
1841	return info.ret;
1842}
1843
1844static int
1845gpregs_get(struct task_struct *target,
1846	   const struct user_regset *regset,
1847	   unsigned int pos, unsigned int count,
1848	   void *kbuf, void __user *ubuf)
1849{
1850	return do_regset_call(do_gpregs_get, target, regset, pos, count,
1851		kbuf, ubuf);
 
1852}
1853
1854static int gpregs_set(struct task_struct *target,
1855		const struct user_regset *regset,
1856		unsigned int pos, unsigned int count,
1857		const void *kbuf, const void __user *ubuf)
1858{
1859	return do_regset_call(do_gpregs_set, target, regset, pos, count,
1860		kbuf, ubuf);
1861}
1862
1863static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1864{
1865	do_sync_rbs(info, ia64_sync_user_rbs);
1866}
1867
1868/*
1869 * This is called to write back the register backing store.
1870 * ptrace does this before it stops, so that a tracer reading the user
1871 * memory after the thread stops will get the current register data.
1872 */
1873static int
1874gpregs_writeback(struct task_struct *target,
1875		 const struct user_regset *regset,
1876		 int now)
1877{
1878	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1879		return 0;
1880	set_notify_resume(target);
1881	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1882		NULL, NULL);
1883}
1884
1885static int
1886fpregs_active(struct task_struct *target, const struct user_regset *regset)
1887{
1888	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1889}
1890
1891static int fpregs_get(struct task_struct *target,
1892		const struct user_regset *regset,
1893		unsigned int pos, unsigned int count,
1894		void *kbuf, void __user *ubuf)
1895{
1896	return do_regset_call(do_fpregs_get, target, regset, pos, count,
1897		kbuf, ubuf);
 
1898}
1899
1900static int fpregs_set(struct task_struct *target,
1901		const struct user_regset *regset,
1902		unsigned int pos, unsigned int count,
1903		const void *kbuf, const void __user *ubuf)
1904{
1905	return do_regset_call(do_fpregs_set, target, regset, pos, count,
1906		kbuf, ubuf);
1907}
1908
1909static int
1910access_uarea(struct task_struct *child, unsigned long addr,
1911	      unsigned long *data, int write_access)
1912{
1913	unsigned int pos = -1; /* an invalid value */
1914	int ret;
1915	unsigned long *ptr, regnum;
1916
1917	if ((addr & 0x7) != 0) {
1918		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1919		return -1;
1920	}
1921	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1922		(addr >= PT_R7 + 8 && addr < PT_B1) ||
1923		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1924		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1925		dprintk("ptrace: rejecting access to register "
1926					"address 0x%lx\n", addr);
1927		return -1;
1928	}
1929
1930	switch (addr) {
1931	case PT_F32 ... (PT_F127 + 15):
1932		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1933		break;
1934	case PT_F2 ... (PT_F5 + 15):
1935		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1936		break;
1937	case PT_F10 ... (PT_F31 + 15):
1938		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1939		break;
1940	case PT_F6 ... (PT_F9 + 15):
1941		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1942		break;
1943	}
1944
1945	if (pos != -1) {
1946		if (write_access)
1947			ret = fpregs_set(child, NULL, pos,
1948				sizeof(unsigned long), data, NULL);
1949		else
1950			ret = fpregs_get(child, NULL, pos,
1951				sizeof(unsigned long), data, NULL);
1952		if (ret != 0)
1953			return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954		return 0;
1955	}
1956
1957	switch (addr) {
1958	case PT_NAT_BITS:
1959		pos = ELF_NAT_OFFSET;
1960		break;
1961	case PT_R4 ... PT_R7:
1962		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1963		break;
1964	case PT_B1 ... PT_B5:
1965		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1966		break;
1967	case PT_AR_EC:
1968		pos = ELF_AR_EC_OFFSET;
1969		break;
1970	case PT_AR_LC:
1971		pos = ELF_AR_LC_OFFSET;
1972		break;
1973	case PT_CR_IPSR:
1974		pos = ELF_CR_IPSR_OFFSET;
1975		break;
1976	case PT_CR_IIP:
1977		pos = ELF_CR_IIP_OFFSET;
1978		break;
1979	case PT_CFM:
1980		pos = ELF_CFM_OFFSET;
1981		break;
1982	case PT_AR_UNAT:
1983		pos = ELF_AR_UNAT_OFFSET;
1984		break;
1985	case PT_AR_PFS:
1986		pos = ELF_AR_PFS_OFFSET;
1987		break;
1988	case PT_AR_RSC:
1989		pos = ELF_AR_RSC_OFFSET;
1990		break;
1991	case PT_AR_RNAT:
1992		pos = ELF_AR_RNAT_OFFSET;
1993		break;
1994	case PT_AR_BSPSTORE:
1995		pos = ELF_AR_BSPSTORE_OFFSET;
1996		break;
1997	case PT_PR:
1998		pos = ELF_PR_OFFSET;
1999		break;
2000	case PT_B6:
2001		pos = ELF_BR_OFFSET(6);
2002		break;
2003	case PT_AR_BSP:
2004		pos = ELF_AR_BSP_OFFSET;
2005		break;
2006	case PT_R1 ... PT_R3:
2007		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2008		break;
2009	case PT_R12 ... PT_R15:
2010		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2011		break;
2012	case PT_R8 ... PT_R11:
2013		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2014		break;
2015	case PT_R16 ... PT_R31:
2016		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2017		break;
2018	case PT_AR_CCV:
2019		pos = ELF_AR_CCV_OFFSET;
2020		break;
2021	case PT_AR_FPSR:
2022		pos = ELF_AR_FPSR_OFFSET;
2023		break;
2024	case PT_B0:
2025		pos = ELF_BR_OFFSET(0);
2026		break;
2027	case PT_B7:
2028		pos = ELF_BR_OFFSET(7);
2029		break;
2030	case PT_AR_CSD:
2031		pos = ELF_AR_CSD_OFFSET;
2032		break;
2033	case PT_AR_SSD:
2034		pos = ELF_AR_SSD_OFFSET;
2035		break;
2036	}
2037
2038	if (pos != -1) {
2039		if (write_access)
2040			ret = gpregs_set(child, NULL, pos,
2041				sizeof(unsigned long), data, NULL);
2042		else
2043			ret = gpregs_get(child, NULL, pos,
2044				sizeof(unsigned long), data, NULL);
2045		if (ret != 0)
2046			return -1;
2047		return 0;
2048	}
2049
2050	/* access debug registers */
2051	if (addr >= PT_IBR) {
2052		regnum = (addr - PT_IBR) >> 3;
2053		ptr = &child->thread.ibr[0];
2054	} else {
2055		regnum = (addr - PT_DBR) >> 3;
2056		ptr = &child->thread.dbr[0];
2057	}
2058
2059	if (regnum >= 8) {
2060		dprintk("ptrace: rejecting access to register "
2061				"address 0x%lx\n", addr);
2062		return -1;
2063	}
2064#ifdef CONFIG_PERFMON
2065	/*
2066	 * Check if debug registers are used by perfmon. This
2067	 * test must be done once we know that we can do the
2068	 * operation, i.e. the arguments are all valid, but
2069	 * before we start modifying the state.
2070	 *
2071	 * Perfmon needs to keep a count of how many processes
2072	 * are trying to modify the debug registers for system
2073	 * wide monitoring sessions.
2074	 *
2075	 * We also include read access here, because they may
2076	 * cause the PMU-installed debug register state
2077	 * (dbr[], ibr[]) to be reset. The two arrays are also
2078	 * used by perfmon, but we do not use
2079	 * IA64_THREAD_DBG_VALID. The registers are restored
2080	 * by the PMU context switch code.
2081	 */
2082	if (pfm_use_debug_registers(child))
2083		return -1;
2084#endif
2085
2086	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2087		child->thread.flags |= IA64_THREAD_DBG_VALID;
2088		memset(child->thread.dbr, 0,
2089				sizeof(child->thread.dbr));
2090		memset(child->thread.ibr, 0,
2091				sizeof(child->thread.ibr));
2092	}
2093
2094	ptr += regnum;
2095
2096	if ((regnum & 1) && write_access) {
2097		/* don't let the user set kernel-level breakpoints: */
2098		*ptr = *data & ~(7UL << 56);
2099		return 0;
2100	}
2101	if (write_access)
2102		*ptr = *data;
2103	else
2104		*data = *ptr;
2105	return 0;
2106}
2107
2108static const struct user_regset native_regsets[] = {
2109	{
2110		.core_note_type = NT_PRSTATUS,
2111		.n = ELF_NGREG,
2112		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2113		.get = gpregs_get, .set = gpregs_set,
2114		.writeback = gpregs_writeback
2115	},
2116	{
2117		.core_note_type = NT_PRFPREG,
2118		.n = ELF_NFPREG,
2119		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2120		.get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2121	},
2122};
2123
2124static const struct user_regset_view user_ia64_view = {
2125	.name = "ia64",
2126	.e_machine = EM_IA_64,
2127	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2128};
2129
2130const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2131{
2132	return &user_ia64_view;
2133}
2134
2135struct syscall_get_set_args {
2136	unsigned int i;
2137	unsigned int n;
2138	unsigned long *args;
2139	struct pt_regs *regs;
2140	int rw;
2141};
2142
2143static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2144{
2145	struct syscall_get_set_args *args = data;
2146	struct pt_regs *pt = args->regs;
2147	unsigned long *krbs, cfm, ndirty;
2148	int i, count;
2149
2150	if (unw_unwind_to_user(info) < 0)
2151		return;
2152
2153	cfm = pt->cr_ifs;
2154	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2155	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2156
2157	count = 0;
2158	if (in_syscall(pt))
2159		count = min_t(int, args->n, cfm & 0x7f);
2160
2161	for (i = 0; i < count; i++) {
2162		if (args->rw)
2163			*ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2164				args->args[i];
2165		else
2166			args->args[i] = *ia64_rse_skip_regs(krbs,
2167				ndirty + i + args->i);
2168	}
2169
2170	if (!args->rw) {
2171		while (i < args->n) {
2172			args->args[i] = 0;
2173			i++;
2174		}
2175	}
2176}
2177
2178void ia64_syscall_get_set_arguments(struct task_struct *task,
2179	struct pt_regs *regs, unsigned int i, unsigned int n,
2180	unsigned long *args, int rw)
2181{
2182	struct syscall_get_set_args data = {
2183		.i = i,
2184		.n = n,
2185		.args = args,
2186		.regs = regs,
2187		.rw = rw,
2188	};
2189
2190	if (task == current)
2191		unw_init_running(syscall_get_set_args_cb, &data);
2192	else {
2193		struct unw_frame_info ufi;
2194		memset(&ufi, 0, sizeof(ufi));
2195		unw_init_from_blocked_task(&ufi, task);
2196		syscall_get_set_args_cb(&ufi, &data);
2197	}
2198}