Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "transaction.h"
 10#include "disk-io.h"
 11#include "print-tree.h"
 12#include "qgroup.h"
 13#include "space-info.h"
 14
 15/*
 16 * Read a root item from the tree. In case we detect a root item smaller then
 17 * sizeof(root_item), we know it's an old version of the root structure and
 18 * initialize all new fields to zero. The same happens if we detect mismatching
 19 * generation numbers as then we know the root was once mounted with an older
 20 * kernel that was not aware of the root item structure change.
 21 */
 22static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 23				struct btrfs_root_item *item)
 24{
 25	u32 len;
 
 26	int need_reset = 0;
 27
 28	len = btrfs_item_size_nr(eb, slot);
 29	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 30			   min_t(u32, len, sizeof(*item)));
 31	if (len < sizeof(*item))
 32		need_reset = 1;
 33	if (!need_reset && btrfs_root_generation(item)
 34		!= btrfs_root_generation_v2(item)) {
 35		if (btrfs_root_generation_v2(item) != 0) {
 36			btrfs_warn(eb->fs_info,
 37					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 
 
 
 
 
 38		}
 39		need_reset = 1;
 40	}
 41	if (need_reset) {
 42		memset(&item->generation_v2, 0,
 43			sizeof(*item) - offsetof(struct btrfs_root_item,
 44					generation_v2));
 45
 46		generate_random_guid(item->uuid);
 
 47	}
 48}
 49
 50/*
 51 * btrfs_find_root - lookup the root by the key.
 52 * root: the root of the root tree
 53 * search_key: the key to search
 54 * path: the path we search
 55 * root_item: the root item of the tree we look for
 56 * root_key: the root key of the tree we look for
 57 *
 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 59 * of the search key, just lookup the root with the highest offset for a
 60 * given objectid.
 61 *
 62 * If we find something return 0, otherwise > 0, < 0 on error.
 63 */
 64int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 65		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 66		    struct btrfs_key *root_key)
 67{
 68	struct btrfs_key found_key;
 69	struct extent_buffer *l;
 70	int ret;
 71	int slot;
 72
 73	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 74	if (ret < 0)
 75		return ret;
 76
 77	if (search_key->offset != -1ULL) {	/* the search key is exact */
 78		if (ret > 0)
 79			goto out;
 80	} else {
 81		BUG_ON(ret == 0);		/* Logical error */
 82		if (path->slots[0] == 0)
 83			goto out;
 84		path->slots[0]--;
 85		ret = 0;
 86	}
 87
 88	l = path->nodes[0];
 89	slot = path->slots[0];
 90
 91	btrfs_item_key_to_cpu(l, &found_key, slot);
 92	if (found_key.objectid != search_key->objectid ||
 93	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 94		ret = 1;
 95		goto out;
 96	}
 97
 98	if (root_item)
 99		btrfs_read_root_item(l, slot, root_item);
100	if (root_key)
101		memcpy(root_key, &found_key, sizeof(found_key));
102out:
103	btrfs_release_path(path);
104	return ret;
105}
106
107void btrfs_set_root_node(struct btrfs_root_item *item,
108			 struct extent_buffer *node)
109{
110	btrfs_set_root_bytenr(item, node->start);
111	btrfs_set_root_level(item, btrfs_header_level(node));
112	btrfs_set_root_generation(item, btrfs_header_generation(node));
113}
114
115/*
116 * copy the data in 'item' into the btree
117 */
118int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
119		      *root, struct btrfs_key *key, struct btrfs_root_item
120		      *item)
121{
122	struct btrfs_fs_info *fs_info = root->fs_info;
123	struct btrfs_path *path;
124	struct extent_buffer *l;
125	int ret;
126	int slot;
127	unsigned long ptr;
128	u32 old_len;
129
130	path = btrfs_alloc_path();
131	if (!path)
132		return -ENOMEM;
133
134	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
135	if (ret < 0)
 
136		goto out;
 
137
138	if (ret > 0) {
139		btrfs_crit(fs_info,
140			"unable to find root key (%llu %u %llu) in tree %llu",
141			key->objectid, key->type, key->offset,
142			root->root_key.objectid);
143		ret = -EUCLEAN;
144		btrfs_abort_transaction(trans, ret);
145		goto out;
146	}
147
148	l = path->nodes[0];
149	slot = path->slots[0];
150	ptr = btrfs_item_ptr_offset(l, slot);
151	old_len = btrfs_item_size_nr(l, slot);
152
153	/*
154	 * If this is the first time we update the root item which originated
155	 * from an older kernel, we need to enlarge the item size to make room
156	 * for the added fields.
157	 */
158	if (old_len < sizeof(*item)) {
159		btrfs_release_path(path);
160		ret = btrfs_search_slot(trans, root, key, path,
161				-1, 1);
162		if (ret < 0) {
163			btrfs_abort_transaction(trans, ret);
164			goto out;
165		}
166
167		ret = btrfs_del_item(trans, root, path);
168		if (ret < 0) {
169			btrfs_abort_transaction(trans, ret);
170			goto out;
171		}
172		btrfs_release_path(path);
173		ret = btrfs_insert_empty_item(trans, root, path,
174				key, sizeof(*item));
175		if (ret < 0) {
176			btrfs_abort_transaction(trans, ret);
177			goto out;
178		}
179		l = path->nodes[0];
180		slot = path->slots[0];
181		ptr = btrfs_item_ptr_offset(l, slot);
182	}
183
184	/*
185	 * Update generation_v2 so at the next mount we know the new root
186	 * fields are valid.
187	 */
188	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
189
190	write_extent_buffer(l, item, ptr, sizeof(*item));
191	btrfs_mark_buffer_dirty(path->nodes[0]);
192out:
193	btrfs_free_path(path);
194	return ret;
195}
196
197int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
198		      const struct btrfs_key *key, struct btrfs_root_item *item)
199{
200	/*
201	 * Make sure generation v1 and v2 match. See update_root for details.
202	 */
203	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
204	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
205}
206
207int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
208{
209	struct btrfs_root *tree_root = fs_info->tree_root;
210	struct extent_buffer *leaf;
211	struct btrfs_path *path;
212	struct btrfs_key key;
 
213	struct btrfs_root *root;
214	int err = 0;
215	int ret;
 
 
 
 
216
217	path = btrfs_alloc_path();
218	if (!path)
219		return -ENOMEM;
220
221	key.objectid = BTRFS_ORPHAN_OBJECTID;
222	key.type = BTRFS_ORPHAN_ITEM_KEY;
223	key.offset = 0;
224
225	while (1) {
226		u64 root_objectid;
227
 
228		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
229		if (ret < 0) {
230			err = ret;
231			break;
232		}
233
234		leaf = path->nodes[0];
235		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
236			ret = btrfs_next_leaf(tree_root, path);
237			if (ret < 0)
238				err = ret;
239			if (ret != 0)
240				break;
241			leaf = path->nodes[0];
242		}
243
244		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
245		btrfs_release_path(path);
246
247		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
248		    key.type != BTRFS_ORPHAN_ITEM_KEY)
249			break;
250
251		root_objectid = key.offset;
252		key.offset++;
253
254		root = btrfs_get_fs_root(fs_info, root_objectid, false);
255		err = PTR_ERR_OR_ZERO(root);
256		if (err && err != -ENOENT) {
257			break;
258		} else if (err == -ENOENT) {
259			struct btrfs_trans_handle *trans;
260
261			btrfs_release_path(path);
262
263			trans = btrfs_join_transaction(tree_root);
264			if (IS_ERR(trans)) {
265				err = PTR_ERR(trans);
266				btrfs_handle_fs_error(fs_info, err,
267					    "Failed to start trans to delete orphan item");
 
268				break;
269			}
270			err = btrfs_del_orphan_item(trans, tree_root,
271						    root_objectid);
272			btrfs_end_transaction(trans);
273			if (err) {
274				btrfs_handle_fs_error(fs_info, err,
275					    "Failed to delete root orphan item");
 
276				break;
277			}
278			continue;
279		}
280
281		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
282		if (btrfs_root_refs(&root->root_item) == 0) {
283			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
284			btrfs_add_dead_root(root);
285		}
286		btrfs_put_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287	}
288
289	btrfs_free_path(path);
290	return err;
291}
292
293/* drop the root item for 'key' from the tree root */
294int btrfs_del_root(struct btrfs_trans_handle *trans,
295		   const struct btrfs_key *key)
296{
297	struct btrfs_root *root = trans->fs_info->tree_root;
298	struct btrfs_path *path;
299	int ret;
300
301	path = btrfs_alloc_path();
302	if (!path)
303		return -ENOMEM;
304	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
305	if (ret < 0)
306		goto out;
307
308	BUG_ON(ret != 0);
309
310	ret = btrfs_del_item(trans, root, path);
311out:
312	btrfs_free_path(path);
313	return ret;
314}
315
316int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
317		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
318		       int name_len)
 
319
320{
321	struct btrfs_root *tree_root = trans->fs_info->tree_root;
322	struct btrfs_path *path;
323	struct btrfs_root_ref *ref;
324	struct extent_buffer *leaf;
325	struct btrfs_key key;
326	unsigned long ptr;
327	int err = 0;
328	int ret;
329
330	path = btrfs_alloc_path();
331	if (!path)
332		return -ENOMEM;
333
334	key.objectid = root_id;
335	key.type = BTRFS_ROOT_BACKREF_KEY;
336	key.offset = ref_id;
337again:
338	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
339	BUG_ON(ret < 0);
340	if (ret == 0) {
341		leaf = path->nodes[0];
342		ref = btrfs_item_ptr(leaf, path->slots[0],
343				     struct btrfs_root_ref);
 
 
 
344		ptr = (unsigned long)(ref + 1);
345		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
346		    (btrfs_root_ref_name_len(leaf, ref) != name_len) ||
347		    memcmp_extent_buffer(leaf, name, ptr, name_len)) {
348			err = -ENOENT;
349			goto out;
350		}
351		*sequence = btrfs_root_ref_sequence(leaf, ref);
352
353		ret = btrfs_del_item(trans, tree_root, path);
354		if (ret) {
355			err = ret;
356			goto out;
357		}
358	} else
359		err = -ENOENT;
360
361	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
362		btrfs_release_path(path);
363		key.objectid = ref_id;
364		key.type = BTRFS_ROOT_REF_KEY;
365		key.offset = root_id;
366		goto again;
367	}
368
369out:
370	btrfs_free_path(path);
371	return err;
372}
373
374/*
375 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
376 * or BTRFS_ROOT_BACKREF_KEY.
377 *
378 * The dirid, sequence, name and name_len refer to the directory entry
379 * that is referencing the root.
380 *
381 * For a forward ref, the root_id is the id of the tree referencing
382 * the root and ref_id is the id of the subvol  or snapshot.
383 *
384 * For a back ref the root_id is the id of the subvol or snapshot and
385 * ref_id is the id of the tree referencing it.
386 *
387 * Will return 0, -ENOMEM, or anything from the CoW path
388 */
389int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
390		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
391		       int name_len)
 
392{
393	struct btrfs_root *tree_root = trans->fs_info->tree_root;
394	struct btrfs_key key;
395	int ret;
396	struct btrfs_path *path;
397	struct btrfs_root_ref *ref;
398	struct extent_buffer *leaf;
399	unsigned long ptr;
400
401	path = btrfs_alloc_path();
402	if (!path)
403		return -ENOMEM;
404
405	key.objectid = root_id;
406	key.type = BTRFS_ROOT_BACKREF_KEY;
407	key.offset = ref_id;
408again:
409	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
410				      sizeof(*ref) + name_len);
411	if (ret) {
412		btrfs_abort_transaction(trans, ret);
413		btrfs_free_path(path);
414		return ret;
415	}
416
417	leaf = path->nodes[0];
418	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
419	btrfs_set_root_ref_dirid(leaf, ref, dirid);
420	btrfs_set_root_ref_sequence(leaf, ref, sequence);
421	btrfs_set_root_ref_name_len(leaf, ref, name_len);
422	ptr = (unsigned long)(ref + 1);
423	write_extent_buffer(leaf, name, ptr, name_len);
424	btrfs_mark_buffer_dirty(leaf);
425
426	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
427		btrfs_release_path(path);
428		key.objectid = ref_id;
429		key.type = BTRFS_ROOT_REF_KEY;
430		key.offset = root_id;
431		goto again;
432	}
433
434	btrfs_free_path(path);
435	return 0;
436}
437
438/*
439 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
440 * for subvolumes. To work around this problem, we steal a bit from
441 * root_item->inode_item->flags, and use it to indicate if those fields
442 * have been properly initialized.
443 */
444void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
445{
446	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
447
448	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
449		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
450		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
451		btrfs_set_root_flags(root_item, 0);
452		btrfs_set_root_limit(root_item, 0);
453	}
454}
455
456void btrfs_update_root_times(struct btrfs_trans_handle *trans,
457			     struct btrfs_root *root)
458{
459	struct btrfs_root_item *item = &root->root_item;
460	struct timespec64 ct;
461
462	ktime_get_real_ts64(&ct);
463	spin_lock(&root->root_item_lock);
464	btrfs_set_root_ctransid(item, trans->transid);
465	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
466	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
467	spin_unlock(&root->root_item_lock);
468}
469
470/*
471 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
472 * root: the root of the parent directory
473 * rsv: block reservation
474 * items: the number of items that we need do reservation
475 * use_global_rsv: allow fallback to the global block reservation
476 *
477 * This function is used to reserve the space for snapshot/subvolume
478 * creation and deletion. Those operations are different with the
479 * common file/directory operations, they change two fs/file trees
480 * and root tree, the number of items that the qgroup reserves is
481 * different with the free space reservation. So we can not use
482 * the space reservation mechanism in start_transaction().
483 */
484int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
485				     struct btrfs_block_rsv *rsv, int items,
486				     bool use_global_rsv)
487{
488	u64 qgroup_num_bytes = 0;
489	u64 num_bytes;
490	int ret;
491	struct btrfs_fs_info *fs_info = root->fs_info;
492	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
493
494	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
495		/* One for parent inode, two for dir entries */
496		qgroup_num_bytes = 3 * fs_info->nodesize;
497		ret = btrfs_qgroup_reserve_meta_prealloc(root,
498				qgroup_num_bytes, true);
499		if (ret)
500			return ret;
501	}
502
503	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
504	rsv->space_info = btrfs_find_space_info(fs_info,
505					    BTRFS_BLOCK_GROUP_METADATA);
506	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
507				  BTRFS_RESERVE_FLUSH_ALL);
508
509	if (ret == -ENOSPC && use_global_rsv)
510		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
511
512	if (ret && qgroup_num_bytes)
513		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
514
515	return ret;
516}
517
518void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
519				      struct btrfs_block_rsv *rsv)
520{
521	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
522}
v4.6
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/err.h>
 20#include <linux/uuid.h>
 21#include "ctree.h"
 22#include "transaction.h"
 23#include "disk-io.h"
 24#include "print-tree.h"
 
 
 25
 26/*
 27 * Read a root item from the tree. In case we detect a root item smaller then
 28 * sizeof(root_item), we know it's an old version of the root structure and
 29 * initialize all new fields to zero. The same happens if we detect mismatching
 30 * generation numbers as then we know the root was once mounted with an older
 31 * kernel that was not aware of the root item structure change.
 32 */
 33static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 34				struct btrfs_root_item *item)
 35{
 36	uuid_le uuid;
 37	int len;
 38	int need_reset = 0;
 39
 40	len = btrfs_item_size_nr(eb, slot);
 41	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 42			min_t(int, len, (int)sizeof(*item)));
 43	if (len < sizeof(*item))
 44		need_reset = 1;
 45	if (!need_reset && btrfs_root_generation(item)
 46		!= btrfs_root_generation_v2(item)) {
 47		if (btrfs_root_generation_v2(item) != 0) {
 48			btrfs_warn(eb->fs_info,
 49					"mismatching "
 50					"generation and generation_v2 "
 51					"found in root item. This root "
 52					"was probably mounted with an "
 53					"older kernel. Resetting all "
 54					"new fields.");
 55		}
 56		need_reset = 1;
 57	}
 58	if (need_reset) {
 59		memset(&item->generation_v2, 0,
 60			sizeof(*item) - offsetof(struct btrfs_root_item,
 61					generation_v2));
 62
 63		uuid_le_gen(&uuid);
 64		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
 65	}
 66}
 67
 68/*
 69 * btrfs_find_root - lookup the root by the key.
 70 * root: the root of the root tree
 71 * search_key: the key to search
 72 * path: the path we search
 73 * root_item: the root item of the tree we look for
 74 * root_key: the reak key of the tree we look for
 75 *
 76 * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset
 77 * of the search key, just lookup the root with the highest offset for a
 78 * given objectid.
 79 *
 80 * If we find something return 0, otherwise > 0, < 0 on error.
 81 */
 82int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
 83		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 84		    struct btrfs_key *root_key)
 85{
 86	struct btrfs_key found_key;
 87	struct extent_buffer *l;
 88	int ret;
 89	int slot;
 90
 91	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 92	if (ret < 0)
 93		return ret;
 94
 95	if (search_key->offset != -1ULL) {	/* the search key is exact */
 96		if (ret > 0)
 97			goto out;
 98	} else {
 99		BUG_ON(ret == 0);		/* Logical error */
100		if (path->slots[0] == 0)
101			goto out;
102		path->slots[0]--;
103		ret = 0;
104	}
105
106	l = path->nodes[0];
107	slot = path->slots[0];
108
109	btrfs_item_key_to_cpu(l, &found_key, slot);
110	if (found_key.objectid != search_key->objectid ||
111	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
112		ret = 1;
113		goto out;
114	}
115
116	if (root_item)
117		btrfs_read_root_item(l, slot, root_item);
118	if (root_key)
119		memcpy(root_key, &found_key, sizeof(found_key));
120out:
121	btrfs_release_path(path);
122	return ret;
123}
124
125void btrfs_set_root_node(struct btrfs_root_item *item,
126			 struct extent_buffer *node)
127{
128	btrfs_set_root_bytenr(item, node->start);
129	btrfs_set_root_level(item, btrfs_header_level(node));
130	btrfs_set_root_generation(item, btrfs_header_generation(node));
131}
132
133/*
134 * copy the data in 'item' into the btree
135 */
136int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
137		      *root, struct btrfs_key *key, struct btrfs_root_item
138		      *item)
139{
 
140	struct btrfs_path *path;
141	struct extent_buffer *l;
142	int ret;
143	int slot;
144	unsigned long ptr;
145	u32 old_len;
146
147	path = btrfs_alloc_path();
148	if (!path)
149		return -ENOMEM;
150
151	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
152	if (ret < 0) {
153		btrfs_abort_transaction(trans, root, ret);
154		goto out;
155	}
156
157	if (ret != 0) {
158		btrfs_print_leaf(root, path->nodes[0]);
159		btrfs_crit(root->fs_info, "unable to update root key %llu %u %llu",
160		       key->objectid, key->type, key->offset);
161		BUG_ON(1);
 
 
 
162	}
163
164	l = path->nodes[0];
165	slot = path->slots[0];
166	ptr = btrfs_item_ptr_offset(l, slot);
167	old_len = btrfs_item_size_nr(l, slot);
168
169	/*
170	 * If this is the first time we update the root item which originated
171	 * from an older kernel, we need to enlarge the item size to make room
172	 * for the added fields.
173	 */
174	if (old_len < sizeof(*item)) {
175		btrfs_release_path(path);
176		ret = btrfs_search_slot(trans, root, key, path,
177				-1, 1);
178		if (ret < 0) {
179			btrfs_abort_transaction(trans, root, ret);
180			goto out;
181		}
182
183		ret = btrfs_del_item(trans, root, path);
184		if (ret < 0) {
185			btrfs_abort_transaction(trans, root, ret);
186			goto out;
187		}
188		btrfs_release_path(path);
189		ret = btrfs_insert_empty_item(trans, root, path,
190				key, sizeof(*item));
191		if (ret < 0) {
192			btrfs_abort_transaction(trans, root, ret);
193			goto out;
194		}
195		l = path->nodes[0];
196		slot = path->slots[0];
197		ptr = btrfs_item_ptr_offset(l, slot);
198	}
199
200	/*
201	 * Update generation_v2 so at the next mount we know the new root
202	 * fields are valid.
203	 */
204	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
205
206	write_extent_buffer(l, item, ptr, sizeof(*item));
207	btrfs_mark_buffer_dirty(path->nodes[0]);
208out:
209	btrfs_free_path(path);
210	return ret;
211}
212
213int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
214		      struct btrfs_key *key, struct btrfs_root_item *item)
215{
216	/*
217	 * Make sure generation v1 and v2 match. See update_root for details.
218	 */
219	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
220	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
221}
222
223int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
224{
 
225	struct extent_buffer *leaf;
226	struct btrfs_path *path;
227	struct btrfs_key key;
228	struct btrfs_key root_key;
229	struct btrfs_root *root;
230	int err = 0;
231	int ret;
232	bool can_recover = true;
233
234	if (tree_root->fs_info->sb->s_flags & MS_RDONLY)
235		can_recover = false;
236
237	path = btrfs_alloc_path();
238	if (!path)
239		return -ENOMEM;
240
241	key.objectid = BTRFS_ORPHAN_OBJECTID;
242	key.type = BTRFS_ORPHAN_ITEM_KEY;
243	key.offset = 0;
244
245	root_key.type = BTRFS_ROOT_ITEM_KEY;
246	root_key.offset = (u64)-1;
247
248	while (1) {
249		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
250		if (ret < 0) {
251			err = ret;
252			break;
253		}
254
255		leaf = path->nodes[0];
256		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
257			ret = btrfs_next_leaf(tree_root, path);
258			if (ret < 0)
259				err = ret;
260			if (ret != 0)
261				break;
262			leaf = path->nodes[0];
263		}
264
265		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
266		btrfs_release_path(path);
267
268		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
269		    key.type != BTRFS_ORPHAN_ITEM_KEY)
270			break;
271
272		root_key.objectid = key.offset;
273		key.offset++;
274
275		root = btrfs_read_fs_root(tree_root, &root_key);
276		err = PTR_ERR_OR_ZERO(root);
277		if (err && err != -ENOENT) {
278			break;
279		} else if (err == -ENOENT) {
280			struct btrfs_trans_handle *trans;
281
282			btrfs_release_path(path);
283
284			trans = btrfs_join_transaction(tree_root);
285			if (IS_ERR(trans)) {
286				err = PTR_ERR(trans);
287				btrfs_std_error(tree_root->fs_info, err,
288					    "Failed to start trans to delete "
289					    "orphan item");
290				break;
291			}
292			err = btrfs_del_orphan_item(trans, tree_root,
293						    root_key.objectid);
294			btrfs_end_transaction(trans, tree_root);
295			if (err) {
296				btrfs_std_error(tree_root->fs_info, err,
297					    "Failed to delete root orphan "
298					    "item");
299				break;
300			}
301			continue;
302		}
303
304		err = btrfs_init_fs_root(root);
305		if (err) {
306			btrfs_free_fs_root(root);
307			break;
308		}
309
310		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
311
312		err = btrfs_insert_fs_root(root->fs_info, root);
313		/*
314		 * The root might have been inserted already, as before we look
315		 * for orphan roots, log replay might have happened, which
316		 * triggers a transaction commit and qgroup accounting, which
317		 * in turn reads and inserts fs roots while doing backref
318		 * walking.
319		 */
320		if (err == -EEXIST)
321			err = 0;
322		if (err) {
323			btrfs_free_fs_root(root);
324			break;
325		}
326
327		if (btrfs_root_refs(&root->root_item) == 0)
328			btrfs_add_dead_root(root);
329	}
330
331	btrfs_free_path(path);
332	return err;
333}
334
335/* drop the root item for 'key' from 'root' */
336int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
337		   struct btrfs_key *key)
338{
 
339	struct btrfs_path *path;
340	int ret;
341
342	path = btrfs_alloc_path();
343	if (!path)
344		return -ENOMEM;
345	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
346	if (ret < 0)
347		goto out;
348
349	BUG_ON(ret != 0);
350
351	ret = btrfs_del_item(trans, root, path);
352out:
353	btrfs_free_path(path);
354	return ret;
355}
356
357int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
358		       struct btrfs_root *tree_root,
359		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
360		       const char *name, int name_len)
361
362{
 
363	struct btrfs_path *path;
364	struct btrfs_root_ref *ref;
365	struct extent_buffer *leaf;
366	struct btrfs_key key;
367	unsigned long ptr;
368	int err = 0;
369	int ret;
370
371	path = btrfs_alloc_path();
372	if (!path)
373		return -ENOMEM;
374
375	key.objectid = root_id;
376	key.type = BTRFS_ROOT_BACKREF_KEY;
377	key.offset = ref_id;
378again:
379	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
380	BUG_ON(ret < 0);
381	if (ret == 0) {
382		leaf = path->nodes[0];
383		ref = btrfs_item_ptr(leaf, path->slots[0],
384				     struct btrfs_root_ref);
385
386		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
387		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
388		ptr = (unsigned long)(ref + 1);
389		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
 
 
 
 
 
390		*sequence = btrfs_root_ref_sequence(leaf, ref);
391
392		ret = btrfs_del_item(trans, tree_root, path);
393		if (ret) {
394			err = ret;
395			goto out;
396		}
397	} else
398		err = -ENOENT;
399
400	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
401		btrfs_release_path(path);
402		key.objectid = ref_id;
403		key.type = BTRFS_ROOT_REF_KEY;
404		key.offset = root_id;
405		goto again;
406	}
407
408out:
409	btrfs_free_path(path);
410	return err;
411}
412
413/*
414 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
415 * or BTRFS_ROOT_BACKREF_KEY.
416 *
417 * The dirid, sequence, name and name_len refer to the directory entry
418 * that is referencing the root.
419 *
420 * For a forward ref, the root_id is the id of the tree referencing
421 * the root and ref_id is the id of the subvol  or snapshot.
422 *
423 * For a back ref the root_id is the id of the subvol or snapshot and
424 * ref_id is the id of the tree referencing it.
425 *
426 * Will return 0, -ENOMEM, or anything from the CoW path
427 */
428int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
429		       struct btrfs_root *tree_root,
430		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
431		       const char *name, int name_len)
432{
 
433	struct btrfs_key key;
434	int ret;
435	struct btrfs_path *path;
436	struct btrfs_root_ref *ref;
437	struct extent_buffer *leaf;
438	unsigned long ptr;
439
440	path = btrfs_alloc_path();
441	if (!path)
442		return -ENOMEM;
443
444	key.objectid = root_id;
445	key.type = BTRFS_ROOT_BACKREF_KEY;
446	key.offset = ref_id;
447again:
448	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
449				      sizeof(*ref) + name_len);
450	if (ret) {
451		btrfs_abort_transaction(trans, tree_root, ret);
452		btrfs_free_path(path);
453		return ret;
454	}
455
456	leaf = path->nodes[0];
457	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
458	btrfs_set_root_ref_dirid(leaf, ref, dirid);
459	btrfs_set_root_ref_sequence(leaf, ref, sequence);
460	btrfs_set_root_ref_name_len(leaf, ref, name_len);
461	ptr = (unsigned long)(ref + 1);
462	write_extent_buffer(leaf, name, ptr, name_len);
463	btrfs_mark_buffer_dirty(leaf);
464
465	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
466		btrfs_release_path(path);
467		key.objectid = ref_id;
468		key.type = BTRFS_ROOT_REF_KEY;
469		key.offset = root_id;
470		goto again;
471	}
472
473	btrfs_free_path(path);
474	return 0;
475}
476
477/*
478 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
479 * for subvolumes. To work around this problem, we steal a bit from
480 * root_item->inode_item->flags, and use it to indicate if those fields
481 * have been properly initialized.
482 */
483void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
484{
485	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
486
487	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
488		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
489		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
490		btrfs_set_root_flags(root_item, 0);
491		btrfs_set_root_limit(root_item, 0);
492	}
493}
494
495void btrfs_update_root_times(struct btrfs_trans_handle *trans,
496			     struct btrfs_root *root)
497{
498	struct btrfs_root_item *item = &root->root_item;
499	struct timespec ct = current_fs_time(root->fs_info->sb);
500
 
501	spin_lock(&root->root_item_lock);
502	btrfs_set_root_ctransid(item, trans->transid);
503	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
504	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
505	spin_unlock(&root->root_item_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506}