Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19		      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22		      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
  24			  struct extent_buffer *dst,
  25			  struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
 
  27			      struct extent_buffer *dst_buf,
  28			      struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30		    int level, int slot);
 
 
  31
  32static const struct btrfs_csums {
  33	u16		size;
  34	const char	name[10];
  35	const char	driver[12];
  36} btrfs_csums[] = {
  37	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  38	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  39	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  40	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  41				     .driver = "blake2b-256" },
  42};
  43
  44int btrfs_super_csum_size(const struct btrfs_super_block *s)
  45{
  46	u16 t = btrfs_super_csum_type(s);
  47	/*
  48	 * csum type is validated at mount time
  49	 */
  50	return btrfs_csums[t].size;
  51}
  52
  53const char *btrfs_super_csum_name(u16 csum_type)
 
 
 
 
  54{
  55	/* csum type is validated at mount time */
  56	return btrfs_csums[csum_type].name;
 
 
 
 
 
 
 
 
  57}
  58
  59/*
  60 * Return driver name if defined, otherwise the name that's also a valid driver
  61 * name
 
 
 
 
  62 */
  63const char *btrfs_super_csum_driver(u16 csum_type)
 
  64{
  65	/* csum type is validated at mount time */
  66	return btrfs_csums[csum_type].driver[0] ?
  67		btrfs_csums[csum_type].driver :
  68		btrfs_csums[csum_type].name;
  69}
  70
  71size_t __attribute_const__ btrfs_get_num_csums(void)
  72{
  73	return ARRAY_SIZE(btrfs_csums);
  74}
 
 
 
 
  75
  76struct btrfs_path *btrfs_alloc_path(void)
  77{
  78	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
 
 
 
 
 
 
 
 
  79}
  80
  81/* this also releases the path */
  82void btrfs_free_path(struct btrfs_path *p)
  83{
  84	if (!p)
  85		return;
  86	btrfs_release_path(p);
  87	kmem_cache_free(btrfs_path_cachep, p);
  88}
  89
  90/*
  91 * path release drops references on the extent buffers in the path
  92 * and it drops any locks held by this path
  93 *
  94 * It is safe to call this on paths that no locks or extent buffers held.
  95 */
  96noinline void btrfs_release_path(struct btrfs_path *p)
  97{
  98	int i;
  99
 100	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 101		p->slots[i] = 0;
 102		if (!p->nodes[i])
 103			continue;
 104		if (p->locks[i]) {
 105			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 106			p->locks[i] = 0;
 107		}
 108		free_extent_buffer(p->nodes[i]);
 109		p->nodes[i] = NULL;
 110	}
 111}
 112
 113/*
 114 * safely gets a reference on the root node of a tree.  A lock
 115 * is not taken, so a concurrent writer may put a different node
 116 * at the root of the tree.  See btrfs_lock_root_node for the
 117 * looping required.
 118 *
 119 * The extent buffer returned by this has a reference taken, so
 120 * it won't disappear.  It may stop being the root of the tree
 121 * at any time because there are no locks held.
 122 */
 123struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 124{
 125	struct extent_buffer *eb;
 126
 127	while (1) {
 128		rcu_read_lock();
 129		eb = rcu_dereference(root->node);
 130
 131		/*
 132		 * RCU really hurts here, we could free up the root node because
 133		 * it was COWed but we may not get the new root node yet so do
 134		 * the inc_not_zero dance and if it doesn't work then
 135		 * synchronize_rcu and try again.
 136		 */
 137		if (atomic_inc_not_zero(&eb->refs)) {
 138			rcu_read_unlock();
 139			break;
 140		}
 141		rcu_read_unlock();
 142		synchronize_rcu();
 143	}
 144	return eb;
 145}
 146
 147/*
 148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 149 * just get put onto a simple dirty list.  Transaction walks this list to make
 150 * sure they get properly updated on disk.
 151 */
 152static void add_root_to_dirty_list(struct btrfs_root *root)
 153{
 154	struct btrfs_fs_info *fs_info = root->fs_info;
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 157	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 158		return;
 159
 160	spin_lock(&fs_info->trans_lock);
 161	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 162		/* Want the extent tree to be the last on the list */
 163		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 164			list_move_tail(&root->dirty_list,
 165				       &fs_info->dirty_cowonly_roots);
 166		else
 167			list_move(&root->dirty_list,
 168				  &fs_info->dirty_cowonly_roots);
 169	}
 170	spin_unlock(&fs_info->trans_lock);
 171}
 172
 173/*
 174 * used by snapshot creation to make a copy of a root for a tree with
 175 * a given objectid.  The buffer with the new root node is returned in
 176 * cow_ret, and this func returns zero on success or a negative error code.
 177 */
 178int btrfs_copy_root(struct btrfs_trans_handle *trans,
 179		      struct btrfs_root *root,
 180		      struct extent_buffer *buf,
 181		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 182{
 183	struct btrfs_fs_info *fs_info = root->fs_info;
 184	struct extent_buffer *cow;
 185	int ret = 0;
 186	int level;
 187	struct btrfs_disk_key disk_key;
 188
 189	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 190		trans->transid != fs_info->running_transaction->transid);
 191	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 192		trans->transid != root->last_trans);
 193
 194	level = btrfs_header_level(buf);
 195	if (level == 0)
 196		btrfs_item_key(buf, &disk_key, 0);
 197	else
 198		btrfs_node_key(buf, &disk_key, 0);
 199
 200	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 201			&disk_key, level, buf->start, 0);
 202	if (IS_ERR(cow))
 203		return PTR_ERR(cow);
 204
 205	copy_extent_buffer_full(cow, buf);
 206	btrfs_set_header_bytenr(cow, cow->start);
 207	btrfs_set_header_generation(cow, trans->transid);
 208	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 209	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 210				     BTRFS_HEADER_FLAG_RELOC);
 211	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 212		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 213	else
 214		btrfs_set_header_owner(cow, new_root_objectid);
 215
 216	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 
 217
 218	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 219	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 220		ret = btrfs_inc_ref(trans, root, cow, 1);
 221	else
 222		ret = btrfs_inc_ref(trans, root, cow, 0);
 223
 224	if (ret)
 225		return ret;
 226
 227	btrfs_mark_buffer_dirty(cow);
 228	*cow_ret = cow;
 229	return 0;
 230}
 231
 232enum mod_log_op {
 233	MOD_LOG_KEY_REPLACE,
 234	MOD_LOG_KEY_ADD,
 235	MOD_LOG_KEY_REMOVE,
 236	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 237	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 238	MOD_LOG_MOVE_KEYS,
 239	MOD_LOG_ROOT_REPLACE,
 240};
 241
 
 
 
 
 
 242struct tree_mod_root {
 243	u64 logical;
 244	u8 level;
 245};
 246
 247struct tree_mod_elem {
 248	struct rb_node node;
 249	u64 logical;
 250	u64 seq;
 251	enum mod_log_op op;
 252
 253	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 254	int slot;
 255
 256	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 257	u64 generation;
 258
 259	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 260	struct btrfs_disk_key key;
 261	u64 blockptr;
 262
 263	/* this is used for op == MOD_LOG_MOVE_KEYS */
 264	struct {
 265		int dst_slot;
 266		int nr_items;
 267	} move;
 268
 269	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 270	struct tree_mod_root old_root;
 271};
 272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273/*
 274 * Pull a new tree mod seq number for our operation.
 275 */
 276static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 277{
 278	return atomic64_inc_return(&fs_info->tree_mod_seq);
 279}
 280
 281/*
 282 * This adds a new blocker to the tree mod log's blocker list if the @elem
 283 * passed does not already have a sequence number set. So when a caller expects
 284 * to record tree modifications, it should ensure to set elem->seq to zero
 285 * before calling btrfs_get_tree_mod_seq.
 286 * Returns a fresh, unused tree log modification sequence number, even if no new
 287 * blocker was added.
 288 */
 289u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 290			   struct seq_list *elem)
 291{
 292	write_lock(&fs_info->tree_mod_log_lock);
 
 293	if (!elem->seq) {
 294		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 295		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 296	}
 297	write_unlock(&fs_info->tree_mod_log_lock);
 
 298
 299	return elem->seq;
 300}
 301
 302void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 303			    struct seq_list *elem)
 304{
 305	struct rb_root *tm_root;
 306	struct rb_node *node;
 307	struct rb_node *next;
 
 308	struct tree_mod_elem *tm;
 309	u64 min_seq = (u64)-1;
 310	u64 seq_putting = elem->seq;
 311
 312	if (!seq_putting)
 313		return;
 314
 315	write_lock(&fs_info->tree_mod_log_lock);
 316	list_del(&elem->list);
 317	elem->seq = 0;
 318
 319	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 320		struct seq_list *first;
 321
 322		first = list_first_entry(&fs_info->tree_mod_seq_list,
 323					 struct seq_list, list);
 324		if (seq_putting > first->seq) {
 325			/*
 326			 * Blocker with lower sequence number exists, we
 327			 * cannot remove anything from the log.
 328			 */
 329			write_unlock(&fs_info->tree_mod_log_lock);
 330			return;
 331		}
 332		min_seq = first->seq;
 333	}
 
 334
 335	/*
 336	 * anything that's lower than the lowest existing (read: blocked)
 337	 * sequence number can be removed from the tree.
 338	 */
 
 339	tm_root = &fs_info->tree_mod_log;
 340	for (node = rb_first(tm_root); node; node = next) {
 341		next = rb_next(node);
 342		tm = rb_entry(node, struct tree_mod_elem, node);
 343		if (tm->seq >= min_seq)
 344			continue;
 345		rb_erase(node, tm_root);
 346		kfree(tm);
 347	}
 348	write_unlock(&fs_info->tree_mod_log_lock);
 349}
 350
 351/*
 352 * key order of the log:
 353 *       node/leaf start address -> sequence
 354 *
 355 * The 'start address' is the logical address of the *new* root node
 356 * for root replace operations, or the logical address of the affected
 357 * block for all other operations.
 
 
 358 */
 359static noinline int
 360__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 361{
 362	struct rb_root *tm_root;
 363	struct rb_node **new;
 364	struct rb_node *parent = NULL;
 365	struct tree_mod_elem *cur;
 366
 367	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 368
 369	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 370
 371	tm_root = &fs_info->tree_mod_log;
 372	new = &tm_root->rb_node;
 373	while (*new) {
 374		cur = rb_entry(*new, struct tree_mod_elem, node);
 375		parent = *new;
 376		if (cur->logical < tm->logical)
 377			new = &((*new)->rb_left);
 378		else if (cur->logical > tm->logical)
 379			new = &((*new)->rb_right);
 380		else if (cur->seq < tm->seq)
 381			new = &((*new)->rb_left);
 382		else if (cur->seq > tm->seq)
 383			new = &((*new)->rb_right);
 384		else
 385			return -EEXIST;
 386	}
 387
 388	rb_link_node(&tm->node, parent, new);
 389	rb_insert_color(&tm->node, tm_root);
 390	return 0;
 391}
 392
 393/*
 394 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 395 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 396 * this until all tree mod log insertions are recorded in the rb tree and then
 397 * write unlock fs_info::tree_mod_log_lock.
 398 */
 399static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 400				    struct extent_buffer *eb) {
 401	smp_mb();
 402	if (list_empty(&(fs_info)->tree_mod_seq_list))
 403		return 1;
 404	if (eb && btrfs_header_level(eb) == 0)
 405		return 1;
 406
 407	write_lock(&fs_info->tree_mod_log_lock);
 408	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 409		write_unlock(&fs_info->tree_mod_log_lock);
 410		return 1;
 411	}
 412
 413	return 0;
 414}
 415
 416/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 417static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 418				    struct extent_buffer *eb)
 419{
 420	smp_mb();
 421	if (list_empty(&(fs_info)->tree_mod_seq_list))
 422		return 0;
 423	if (eb && btrfs_header_level(eb) == 0)
 424		return 0;
 425
 426	return 1;
 427}
 428
 429static struct tree_mod_elem *
 430alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 431		    enum mod_log_op op, gfp_t flags)
 432{
 433	struct tree_mod_elem *tm;
 434
 435	tm = kzalloc(sizeof(*tm), flags);
 436	if (!tm)
 437		return NULL;
 438
 439	tm->logical = eb->start;
 440	if (op != MOD_LOG_KEY_ADD) {
 441		btrfs_node_key(eb, &tm->key, slot);
 442		tm->blockptr = btrfs_node_blockptr(eb, slot);
 443	}
 444	tm->op = op;
 445	tm->slot = slot;
 446	tm->generation = btrfs_node_ptr_generation(eb, slot);
 447	RB_CLEAR_NODE(&tm->node);
 448
 449	return tm;
 450}
 451
 452static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 453		enum mod_log_op op, gfp_t flags)
 
 
 454{
 455	struct tree_mod_elem *tm;
 456	int ret;
 457
 458	if (!tree_mod_need_log(eb->fs_info, eb))
 459		return 0;
 460
 461	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 462	if (!tm)
 463		return -ENOMEM;
 464
 465	if (tree_mod_dont_log(eb->fs_info, eb)) {
 466		kfree(tm);
 467		return 0;
 468	}
 469
 470	ret = __tree_mod_log_insert(eb->fs_info, tm);
 471	write_unlock(&eb->fs_info->tree_mod_log_lock);
 472	if (ret)
 473		kfree(tm);
 474
 475	return ret;
 476}
 477
 478static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 479		int dst_slot, int src_slot, int nr_items)
 
 
 480{
 481	struct tree_mod_elem *tm = NULL;
 482	struct tree_mod_elem **tm_list = NULL;
 483	int ret = 0;
 484	int i;
 485	int locked = 0;
 486
 487	if (!tree_mod_need_log(eb->fs_info, eb))
 488		return 0;
 489
 490	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 491	if (!tm_list)
 492		return -ENOMEM;
 493
 494	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 495	if (!tm) {
 496		ret = -ENOMEM;
 497		goto free_tms;
 498	}
 499
 500	tm->logical = eb->start;
 501	tm->slot = src_slot;
 502	tm->move.dst_slot = dst_slot;
 503	tm->move.nr_items = nr_items;
 504	tm->op = MOD_LOG_MOVE_KEYS;
 505
 506	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 507		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 508		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 509		if (!tm_list[i]) {
 510			ret = -ENOMEM;
 511			goto free_tms;
 512		}
 513	}
 514
 515	if (tree_mod_dont_log(eb->fs_info, eb))
 516		goto free_tms;
 517	locked = 1;
 518
 519	/*
 520	 * When we override something during the move, we log these removals.
 521	 * This can only happen when we move towards the beginning of the
 522	 * buffer, i.e. dst_slot < src_slot.
 523	 */
 524	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 525		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 526		if (ret)
 527			goto free_tms;
 528	}
 529
 530	ret = __tree_mod_log_insert(eb->fs_info, tm);
 531	if (ret)
 532		goto free_tms;
 533	write_unlock(&eb->fs_info->tree_mod_log_lock);
 534	kfree(tm_list);
 535
 536	return 0;
 537free_tms:
 538	for (i = 0; i < nr_items; i++) {
 539		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 540			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 541		kfree(tm_list[i]);
 542	}
 543	if (locked)
 544		write_unlock(&eb->fs_info->tree_mod_log_lock);
 545	kfree(tm_list);
 546	kfree(tm);
 547
 548	return ret;
 549}
 550
 551static inline int
 552__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 553		       struct tree_mod_elem **tm_list,
 554		       int nritems)
 555{
 556	int i, j;
 557	int ret;
 558
 559	for (i = nritems - 1; i >= 0; i--) {
 560		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 561		if (ret) {
 562			for (j = nritems - 1; j > i; j--)
 563				rb_erase(&tm_list[j]->node,
 564					 &fs_info->tree_mod_log);
 565			return ret;
 566		}
 567	}
 568
 569	return 0;
 570}
 571
 572static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 573			 struct extent_buffer *new_root, int log_removal)
 
 
 
 574{
 575	struct btrfs_fs_info *fs_info = old_root->fs_info;
 576	struct tree_mod_elem *tm = NULL;
 577	struct tree_mod_elem **tm_list = NULL;
 578	int nritems = 0;
 579	int ret = 0;
 580	int i;
 581
 582	if (!tree_mod_need_log(fs_info, NULL))
 583		return 0;
 584
 585	if (log_removal && btrfs_header_level(old_root) > 0) {
 586		nritems = btrfs_header_nritems(old_root);
 587		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 588				  GFP_NOFS);
 589		if (!tm_list) {
 590			ret = -ENOMEM;
 591			goto free_tms;
 592		}
 593		for (i = 0; i < nritems; i++) {
 594			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 595			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 596			if (!tm_list[i]) {
 597				ret = -ENOMEM;
 598				goto free_tms;
 599			}
 600		}
 601	}
 602
 603	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 604	if (!tm) {
 605		ret = -ENOMEM;
 606		goto free_tms;
 607	}
 608
 609	tm->logical = new_root->start;
 610	tm->old_root.logical = old_root->start;
 611	tm->old_root.level = btrfs_header_level(old_root);
 612	tm->generation = btrfs_header_generation(old_root);
 613	tm->op = MOD_LOG_ROOT_REPLACE;
 614
 615	if (tree_mod_dont_log(fs_info, NULL))
 616		goto free_tms;
 617
 618	if (tm_list)
 619		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 620	if (!ret)
 621		ret = __tree_mod_log_insert(fs_info, tm);
 622
 623	write_unlock(&fs_info->tree_mod_log_lock);
 624	if (ret)
 625		goto free_tms;
 626	kfree(tm_list);
 627
 628	return ret;
 629
 630free_tms:
 631	if (tm_list) {
 632		for (i = 0; i < nritems; i++)
 633			kfree(tm_list[i]);
 634		kfree(tm_list);
 635	}
 636	kfree(tm);
 637
 638	return ret;
 639}
 640
 641static struct tree_mod_elem *
 642__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 643		      int smallest)
 644{
 645	struct rb_root *tm_root;
 646	struct rb_node *node;
 647	struct tree_mod_elem *cur = NULL;
 648	struct tree_mod_elem *found = NULL;
 649
 650	read_lock(&fs_info->tree_mod_log_lock);
 651	tm_root = &fs_info->tree_mod_log;
 652	node = tm_root->rb_node;
 653	while (node) {
 654		cur = rb_entry(node, struct tree_mod_elem, node);
 655		if (cur->logical < start) {
 656			node = node->rb_left;
 657		} else if (cur->logical > start) {
 658			node = node->rb_right;
 659		} else if (cur->seq < min_seq) {
 660			node = node->rb_left;
 661		} else if (!smallest) {
 662			/* we want the node with the highest seq */
 663			if (found)
 664				BUG_ON(found->seq > cur->seq);
 665			found = cur;
 666			node = node->rb_left;
 667		} else if (cur->seq > min_seq) {
 668			/* we want the node with the smallest seq */
 669			if (found)
 670				BUG_ON(found->seq < cur->seq);
 671			found = cur;
 672			node = node->rb_right;
 673		} else {
 674			found = cur;
 675			break;
 676		}
 677	}
 678	read_unlock(&fs_info->tree_mod_log_lock);
 679
 680	return found;
 681}
 682
 683/*
 684 * this returns the element from the log with the smallest time sequence
 685 * value that's in the log (the oldest log item). any element with a time
 686 * sequence lower than min_seq will be ignored.
 687 */
 688static struct tree_mod_elem *
 689tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 690			   u64 min_seq)
 691{
 692	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 693}
 694
 695/*
 696 * this returns the element from the log with the largest time sequence
 697 * value that's in the log (the most recent log item). any element with
 698 * a time sequence lower than min_seq will be ignored.
 699 */
 700static struct tree_mod_elem *
 701tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 702{
 703	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 704}
 705
 706static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 
 707		     struct extent_buffer *src, unsigned long dst_offset,
 708		     unsigned long src_offset, int nr_items)
 709{
 710	struct btrfs_fs_info *fs_info = dst->fs_info;
 711	int ret = 0;
 712	struct tree_mod_elem **tm_list = NULL;
 713	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 714	int i;
 715	int locked = 0;
 716
 717	if (!tree_mod_need_log(fs_info, NULL))
 718		return 0;
 719
 720	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 721		return 0;
 722
 723	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 724			  GFP_NOFS);
 725	if (!tm_list)
 726		return -ENOMEM;
 727
 728	tm_list_add = tm_list;
 729	tm_list_rem = tm_list + nr_items;
 730	for (i = 0; i < nr_items; i++) {
 731		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 732		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 733		if (!tm_list_rem[i]) {
 734			ret = -ENOMEM;
 735			goto free_tms;
 736		}
 737
 738		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 739		    MOD_LOG_KEY_ADD, GFP_NOFS);
 740		if (!tm_list_add[i]) {
 741			ret = -ENOMEM;
 742			goto free_tms;
 743		}
 744	}
 745
 746	if (tree_mod_dont_log(fs_info, NULL))
 747		goto free_tms;
 748	locked = 1;
 749
 750	for (i = 0; i < nr_items; i++) {
 751		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 752		if (ret)
 753			goto free_tms;
 754		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 755		if (ret)
 756			goto free_tms;
 757	}
 758
 759	write_unlock(&fs_info->tree_mod_log_lock);
 760	kfree(tm_list);
 761
 762	return 0;
 763
 764free_tms:
 765	for (i = 0; i < nr_items * 2; i++) {
 766		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 767			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 768		kfree(tm_list[i]);
 769	}
 770	if (locked)
 771		write_unlock(&fs_info->tree_mod_log_lock);
 772	kfree(tm_list);
 773
 774	return ret;
 775}
 776
 777static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778{
 779	struct tree_mod_elem **tm_list = NULL;
 780	int nritems = 0;
 781	int i;
 782	int ret = 0;
 783
 784	if (btrfs_header_level(eb) == 0)
 785		return 0;
 786
 787	if (!tree_mod_need_log(eb->fs_info, NULL))
 788		return 0;
 789
 790	nritems = btrfs_header_nritems(eb);
 791	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 792	if (!tm_list)
 793		return -ENOMEM;
 794
 795	for (i = 0; i < nritems; i++) {
 796		tm_list[i] = alloc_tree_mod_elem(eb, i,
 797		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 798		if (!tm_list[i]) {
 799			ret = -ENOMEM;
 800			goto free_tms;
 801		}
 802	}
 803
 804	if (tree_mod_dont_log(eb->fs_info, eb))
 805		goto free_tms;
 806
 807	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 808	write_unlock(&eb->fs_info->tree_mod_log_lock);
 809	if (ret)
 810		goto free_tms;
 811	kfree(tm_list);
 812
 813	return 0;
 814
 815free_tms:
 816	for (i = 0; i < nritems; i++)
 817		kfree(tm_list[i]);
 818	kfree(tm_list);
 819
 820	return ret;
 821}
 822
 
 
 
 
 
 
 
 
 
 
 
 823/*
 824 * check if the tree block can be shared by multiple trees
 825 */
 826int btrfs_block_can_be_shared(struct btrfs_root *root,
 827			      struct extent_buffer *buf)
 828{
 829	/*
 830	 * Tree blocks not in shareable trees and tree roots are never shared.
 831	 * If a block was allocated after the last snapshot and the block was
 832	 * not allocated by tree relocation, we know the block is not shared.
 
 833	 */
 834	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 835	    buf != root->node && buf != root->commit_root &&
 836	    (btrfs_header_generation(buf) <=
 837	     btrfs_root_last_snapshot(&root->root_item) ||
 838	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 839		return 1;
 840
 
 
 
 
 841	return 0;
 842}
 843
 844static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 845				       struct btrfs_root *root,
 846				       struct extent_buffer *buf,
 847				       struct extent_buffer *cow,
 848				       int *last_ref)
 849{
 850	struct btrfs_fs_info *fs_info = root->fs_info;
 851	u64 refs;
 852	u64 owner;
 853	u64 flags;
 854	u64 new_flags = 0;
 855	int ret;
 856
 857	/*
 858	 * Backrefs update rules:
 859	 *
 860	 * Always use full backrefs for extent pointers in tree block
 861	 * allocated by tree relocation.
 862	 *
 863	 * If a shared tree block is no longer referenced by its owner
 864	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 865	 * use full backrefs for extent pointers in tree block.
 866	 *
 867	 * If a tree block is been relocating
 868	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 869	 * use full backrefs for extent pointers in tree block.
 870	 * The reason for this is some operations (such as drop tree)
 871	 * are only allowed for blocks use full backrefs.
 872	 */
 873
 874	if (btrfs_block_can_be_shared(root, buf)) {
 875		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 876					       btrfs_header_level(buf), 1,
 877					       &refs, &flags);
 878		if (ret)
 879			return ret;
 880		if (refs == 0) {
 881			ret = -EROFS;
 882			btrfs_handle_fs_error(fs_info, ret, NULL);
 883			return ret;
 884		}
 885	} else {
 886		refs = 1;
 887		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 888		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 889			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 890		else
 891			flags = 0;
 892	}
 893
 894	owner = btrfs_header_owner(buf);
 895	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 896	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 897
 898	if (refs > 1) {
 899		if ((owner == root->root_key.objectid ||
 900		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 901		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 902			ret = btrfs_inc_ref(trans, root, buf, 1);
 903			if (ret)
 904				return ret;
 905
 906			if (root->root_key.objectid ==
 907			    BTRFS_TREE_RELOC_OBJECTID) {
 908				ret = btrfs_dec_ref(trans, root, buf, 0);
 909				if (ret)
 910					return ret;
 911				ret = btrfs_inc_ref(trans, root, cow, 1);
 912				if (ret)
 913					return ret;
 914			}
 915			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 916		} else {
 917
 918			if (root->root_key.objectid ==
 919			    BTRFS_TREE_RELOC_OBJECTID)
 920				ret = btrfs_inc_ref(trans, root, cow, 1);
 921			else
 922				ret = btrfs_inc_ref(trans, root, cow, 0);
 923			if (ret)
 924				return ret;
 925		}
 926		if (new_flags != 0) {
 927			int level = btrfs_header_level(buf);
 928
 929			ret = btrfs_set_disk_extent_flags(trans, buf,
 
 
 930							  new_flags, level, 0);
 931			if (ret)
 932				return ret;
 933		}
 934	} else {
 935		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 936			if (root->root_key.objectid ==
 937			    BTRFS_TREE_RELOC_OBJECTID)
 938				ret = btrfs_inc_ref(trans, root, cow, 1);
 939			else
 940				ret = btrfs_inc_ref(trans, root, cow, 0);
 941			if (ret)
 942				return ret;
 943			ret = btrfs_dec_ref(trans, root, buf, 1);
 944			if (ret)
 945				return ret;
 946		}
 947		btrfs_clean_tree_block(buf);
 948		*last_ref = 1;
 949	}
 950	return 0;
 951}
 952
 953static struct extent_buffer *alloc_tree_block_no_bg_flush(
 954					  struct btrfs_trans_handle *trans,
 955					  struct btrfs_root *root,
 956					  u64 parent_start,
 957					  const struct btrfs_disk_key *disk_key,
 958					  int level,
 959					  u64 hint,
 960					  u64 empty_size)
 961{
 962	struct btrfs_fs_info *fs_info = root->fs_info;
 963	struct extent_buffer *ret;
 964
 965	/*
 966	 * If we are COWing a node/leaf from the extent, chunk, device or free
 967	 * space trees, make sure that we do not finish block group creation of
 968	 * pending block groups. We do this to avoid a deadlock.
 969	 * COWing can result in allocation of a new chunk, and flushing pending
 970	 * block groups (btrfs_create_pending_block_groups()) can be triggered
 971	 * when finishing allocation of a new chunk. Creation of a pending block
 972	 * group modifies the extent, chunk, device and free space trees,
 973	 * therefore we could deadlock with ourselves since we are holding a
 974	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
 975	 * try to COW later.
 976	 * For similar reasons, we also need to delay flushing pending block
 977	 * groups when splitting a leaf or node, from one of those trees, since
 978	 * we are holding a write lock on it and its parent or when inserting a
 979	 * new root node for one of those trees.
 980	 */
 981	if (root == fs_info->extent_root ||
 982	    root == fs_info->chunk_root ||
 983	    root == fs_info->dev_root ||
 984	    root == fs_info->free_space_root)
 985		trans->can_flush_pending_bgs = false;
 986
 987	ret = btrfs_alloc_tree_block(trans, root, parent_start,
 988				     root->root_key.objectid, disk_key, level,
 989				     hint, empty_size);
 990	trans->can_flush_pending_bgs = true;
 991
 992	return ret;
 993}
 994
 995/*
 996 * does the dirty work in cow of a single block.  The parent block (if
 997 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 998 * dirty and returned locked.  If you modify the block it needs to be marked
 999 * dirty again.
1000 *
1001 * search_start -- an allocation hint for the new block
1002 *
1003 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1004 * bytes the allocator should try to find free next to the block it returns.
1005 * This is just a hint and may be ignored by the allocator.
1006 */
1007static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1008			     struct btrfs_root *root,
1009			     struct extent_buffer *buf,
1010			     struct extent_buffer *parent, int parent_slot,
1011			     struct extent_buffer **cow_ret,
1012			     u64 search_start, u64 empty_size)
1013{
1014	struct btrfs_fs_info *fs_info = root->fs_info;
1015	struct btrfs_disk_key disk_key;
1016	struct extent_buffer *cow;
1017	int level, ret;
1018	int last_ref = 0;
1019	int unlock_orig = 0;
1020	u64 parent_start = 0;
1021
1022	if (*cow_ret == buf)
1023		unlock_orig = 1;
1024
1025	btrfs_assert_tree_locked(buf);
1026
1027	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1028		trans->transid != fs_info->running_transaction->transid);
1029	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1030		trans->transid != root->last_trans);
1031
1032	level = btrfs_header_level(buf);
1033
1034	if (level == 0)
1035		btrfs_item_key(buf, &disk_key, 0);
1036	else
1037		btrfs_node_key(buf, &disk_key, 0);
1038
1039	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1040		parent_start = parent->start;
 
 
 
 
 
1041
1042	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1043					   level, search_start, empty_size);
 
1044	if (IS_ERR(cow))
1045		return PTR_ERR(cow);
1046
1047	/* cow is set to blocking by btrfs_init_new_buffer */
1048
1049	copy_extent_buffer_full(cow, buf);
1050	btrfs_set_header_bytenr(cow, cow->start);
1051	btrfs_set_header_generation(cow, trans->transid);
1052	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1053	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1054				     BTRFS_HEADER_FLAG_RELOC);
1055	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1056		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1057	else
1058		btrfs_set_header_owner(cow, root->root_key.objectid);
1059
1060	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 
1061
1062	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1063	if (ret) {
1064		btrfs_abort_transaction(trans, ret);
1065		return ret;
1066	}
1067
1068	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1069		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1070		if (ret) {
1071			btrfs_abort_transaction(trans, ret);
1072			return ret;
1073		}
1074	}
1075
1076	if (buf == root->node) {
1077		WARN_ON(parent && parent != buf);
1078		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1079		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1080			parent_start = buf->start;
 
 
1081
1082		atomic_inc(&cow->refs);
1083		ret = tree_mod_log_insert_root(root->node, cow, 1);
1084		BUG_ON(ret < 0);
1085		rcu_assign_pointer(root->node, cow);
1086
1087		btrfs_free_tree_block(trans, root, buf, parent_start,
1088				      last_ref);
1089		free_extent_buffer(buf);
1090		add_root_to_dirty_list(root);
1091	} else {
 
 
 
 
 
1092		WARN_ON(trans->transid != btrfs_header_generation(parent));
1093		tree_mod_log_insert_key(parent, parent_slot,
1094					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1095		btrfs_set_node_blockptr(parent, parent_slot,
1096					cow->start);
1097		btrfs_set_node_ptr_generation(parent, parent_slot,
1098					      trans->transid);
1099		btrfs_mark_buffer_dirty(parent);
1100		if (last_ref) {
1101			ret = tree_mod_log_free_eb(buf);
1102			if (ret) {
1103				btrfs_abort_transaction(trans, ret);
1104				return ret;
1105			}
1106		}
1107		btrfs_free_tree_block(trans, root, buf, parent_start,
1108				      last_ref);
1109	}
1110	if (unlock_orig)
1111		btrfs_tree_unlock(buf);
1112	free_extent_buffer_stale(buf);
1113	btrfs_mark_buffer_dirty(cow);
1114	*cow_ret = cow;
1115	return 0;
1116}
1117
1118/*
1119 * returns the logical address of the oldest predecessor of the given root.
1120 * entries older than time_seq are ignored.
1121 */
1122static struct tree_mod_elem *__tree_mod_log_oldest_root(
1123		struct extent_buffer *eb_root, u64 time_seq)
 
1124{
1125	struct tree_mod_elem *tm;
1126	struct tree_mod_elem *found = NULL;
1127	u64 root_logical = eb_root->start;
1128	int looped = 0;
1129
1130	if (!time_seq)
1131		return NULL;
1132
1133	/*
1134	 * the very last operation that's logged for a root is the
1135	 * replacement operation (if it is replaced at all). this has
1136	 * the logical address of the *new* root, making it the very
1137	 * first operation that's logged for this root.
1138	 */
1139	while (1) {
1140		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1141						time_seq);
1142		if (!looped && !tm)
1143			return NULL;
1144		/*
1145		 * if there are no tree operation for the oldest root, we simply
1146		 * return it. this should only happen if that (old) root is at
1147		 * level 0.
1148		 */
1149		if (!tm)
1150			break;
1151
1152		/*
1153		 * if there's an operation that's not a root replacement, we
1154		 * found the oldest version of our root. normally, we'll find a
1155		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1156		 */
1157		if (tm->op != MOD_LOG_ROOT_REPLACE)
1158			break;
1159
1160		found = tm;
1161		root_logical = tm->old_root.logical;
1162		looped = 1;
1163	}
1164
1165	/* if there's no old root to return, return what we found instead */
1166	if (!found)
1167		found = tm;
1168
1169	return found;
1170}
1171
1172/*
1173 * tm is a pointer to the first operation to rewind within eb. then, all
1174 * previous operations will be rewound (until we reach something older than
1175 * time_seq).
1176 */
1177static void
1178__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1179		      u64 time_seq, struct tree_mod_elem *first_tm)
1180{
1181	u32 n;
1182	struct rb_node *next;
1183	struct tree_mod_elem *tm = first_tm;
1184	unsigned long o_dst;
1185	unsigned long o_src;
1186	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1187
1188	n = btrfs_header_nritems(eb);
1189	read_lock(&fs_info->tree_mod_log_lock);
1190	while (tm && tm->seq >= time_seq) {
1191		/*
1192		 * all the operations are recorded with the operator used for
1193		 * the modification. as we're going backwards, we do the
1194		 * opposite of each operation here.
1195		 */
1196		switch (tm->op) {
1197		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1198			BUG_ON(tm->slot < n);
1199			fallthrough;
1200		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1201		case MOD_LOG_KEY_REMOVE:
1202			btrfs_set_node_key(eb, &tm->key, tm->slot);
1203			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1204			btrfs_set_node_ptr_generation(eb, tm->slot,
1205						      tm->generation);
1206			n++;
1207			break;
1208		case MOD_LOG_KEY_REPLACE:
1209			BUG_ON(tm->slot >= n);
1210			btrfs_set_node_key(eb, &tm->key, tm->slot);
1211			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1212			btrfs_set_node_ptr_generation(eb, tm->slot,
1213						      tm->generation);
1214			break;
1215		case MOD_LOG_KEY_ADD:
1216			/* if a move operation is needed it's in the log */
1217			n--;
1218			break;
1219		case MOD_LOG_MOVE_KEYS:
1220			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1221			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1222			memmove_extent_buffer(eb, o_dst, o_src,
1223					      tm->move.nr_items * p_size);
1224			break;
1225		case MOD_LOG_ROOT_REPLACE:
1226			/*
1227			 * this operation is special. for roots, this must be
1228			 * handled explicitly before rewinding.
1229			 * for non-roots, this operation may exist if the node
1230			 * was a root: root A -> child B; then A gets empty and
1231			 * B is promoted to the new root. in the mod log, we'll
1232			 * have a root-replace operation for B, a tree block
1233			 * that is no root. we simply ignore that operation.
1234			 */
1235			break;
1236		}
1237		next = rb_next(&tm->node);
1238		if (!next)
1239			break;
1240		tm = rb_entry(next, struct tree_mod_elem, node);
1241		if (tm->logical != first_tm->logical)
1242			break;
1243	}
1244	read_unlock(&fs_info->tree_mod_log_lock);
1245	btrfs_set_header_nritems(eb, n);
1246}
1247
1248/*
1249 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1250 * is returned. If rewind operations happen, a fresh buffer is returned. The
1251 * returned buffer is always read-locked. If the returned buffer is not the
1252 * input buffer, the lock on the input buffer is released and the input buffer
1253 * is freed (its refcount is decremented).
1254 */
1255static struct extent_buffer *
1256tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1257		    struct extent_buffer *eb, u64 time_seq)
1258{
1259	struct extent_buffer *eb_rewin;
1260	struct tree_mod_elem *tm;
1261
1262	if (!time_seq)
1263		return eb;
1264
1265	if (btrfs_header_level(eb) == 0)
1266		return eb;
1267
1268	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1269	if (!tm)
1270		return eb;
1271
1272	btrfs_set_path_blocking(path);
1273	btrfs_set_lock_blocking_read(eb);
1274
1275	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1276		BUG_ON(tm->slot != 0);
1277		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1278		if (!eb_rewin) {
1279			btrfs_tree_read_unlock_blocking(eb);
1280			free_extent_buffer(eb);
1281			return NULL;
1282		}
1283		btrfs_set_header_bytenr(eb_rewin, eb->start);
1284		btrfs_set_header_backref_rev(eb_rewin,
1285					     btrfs_header_backref_rev(eb));
1286		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1287		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1288	} else {
1289		eb_rewin = btrfs_clone_extent_buffer(eb);
1290		if (!eb_rewin) {
1291			btrfs_tree_read_unlock_blocking(eb);
1292			free_extent_buffer(eb);
1293			return NULL;
1294		}
1295	}
1296
 
1297	btrfs_tree_read_unlock_blocking(eb);
1298	free_extent_buffer(eb);
1299
1300	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1301				       eb_rewin, btrfs_header_level(eb_rewin));
1302	btrfs_tree_read_lock(eb_rewin);
1303	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1304	WARN_ON(btrfs_header_nritems(eb_rewin) >
1305		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1306
1307	return eb_rewin;
1308}
1309
1310/*
1311 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1312 * value. If there are no changes, the current root->root_node is returned. If
1313 * anything changed in between, there's a fresh buffer allocated on which the
1314 * rewind operations are done. In any case, the returned buffer is read locked.
1315 * Returns NULL on error (with no locks held).
1316 */
1317static inline struct extent_buffer *
1318get_old_root(struct btrfs_root *root, u64 time_seq)
1319{
1320	struct btrfs_fs_info *fs_info = root->fs_info;
1321	struct tree_mod_elem *tm;
1322	struct extent_buffer *eb = NULL;
1323	struct extent_buffer *eb_root;
1324	u64 eb_root_owner = 0;
1325	struct extent_buffer *old;
1326	struct tree_mod_root *old_root = NULL;
1327	u64 old_generation = 0;
1328	u64 logical;
1329	int level;
1330
1331	eb_root = btrfs_read_lock_root_node(root);
1332	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1333	if (!tm)
1334		return eb_root;
1335
1336	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1337		old_root = &tm->old_root;
1338		old_generation = tm->generation;
1339		logical = old_root->logical;
1340		level = old_root->level;
1341	} else {
1342		logical = eb_root->start;
1343		level = btrfs_header_level(eb_root);
1344	}
1345
1346	tm = tree_mod_log_search(fs_info, logical, time_seq);
1347	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1348		btrfs_tree_read_unlock(eb_root);
1349		free_extent_buffer(eb_root);
1350		old = read_tree_block(fs_info, logical, 0, level, NULL);
1351		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1352			if (!IS_ERR(old))
1353				free_extent_buffer(old);
1354			btrfs_warn(fs_info,
1355				   "failed to read tree block %llu from get_old_root",
1356				   logical);
1357		} else {
1358			eb = btrfs_clone_extent_buffer(old);
1359			free_extent_buffer(old);
1360		}
1361	} else if (old_root) {
1362		eb_root_owner = btrfs_header_owner(eb_root);
1363		btrfs_tree_read_unlock(eb_root);
1364		free_extent_buffer(eb_root);
1365		eb = alloc_dummy_extent_buffer(fs_info, logical);
1366	} else {
1367		btrfs_set_lock_blocking_read(eb_root);
1368		eb = btrfs_clone_extent_buffer(eb_root);
1369		btrfs_tree_read_unlock_blocking(eb_root);
1370		free_extent_buffer(eb_root);
1371	}
1372
1373	if (!eb)
1374		return NULL;
 
 
1375	if (old_root) {
1376		btrfs_set_header_bytenr(eb, eb->start);
1377		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1378		btrfs_set_header_owner(eb, eb_root_owner);
1379		btrfs_set_header_level(eb, old_root->level);
1380		btrfs_set_header_generation(eb, old_generation);
1381	}
1382	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1383				       btrfs_header_level(eb));
1384	btrfs_tree_read_lock(eb);
1385	if (tm)
1386		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1387	else
1388		WARN_ON(btrfs_header_level(eb) != 0);
1389	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1390
1391	return eb;
1392}
1393
1394int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1395{
1396	struct tree_mod_elem *tm;
1397	int level;
1398	struct extent_buffer *eb_root = btrfs_root_node(root);
1399
1400	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1401	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1402		level = tm->old_root.level;
1403	} else {
1404		level = btrfs_header_level(eb_root);
1405	}
1406	free_extent_buffer(eb_root);
1407
1408	return level;
1409}
1410
1411static inline int should_cow_block(struct btrfs_trans_handle *trans,
1412				   struct btrfs_root *root,
1413				   struct extent_buffer *buf)
1414{
1415	if (btrfs_is_testing(root->fs_info))
1416		return 0;
1417
1418	/* Ensure we can see the FORCE_COW bit */
1419	smp_mb__before_atomic();
1420
1421	/*
1422	 * We do not need to cow a block if
1423	 * 1) this block is not created or changed in this transaction;
1424	 * 2) this block does not belong to TREE_RELOC tree;
1425	 * 3) the root is not forced COW.
1426	 *
1427	 * What is forced COW:
1428	 *    when we create snapshot during committing the transaction,
1429	 *    after we've finished copying src root, we must COW the shared
1430	 *    block to ensure the metadata consistency.
1431	 */
1432	if (btrfs_header_generation(buf) == trans->transid &&
1433	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1434	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1435	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1436	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1437		return 0;
1438	return 1;
1439}
1440
1441/*
1442 * cows a single block, see __btrfs_cow_block for the real work.
1443 * This version of it has extra checks so that a block isn't COWed more than
1444 * once per transaction, as long as it hasn't been written yet
1445 */
1446noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1447		    struct btrfs_root *root, struct extent_buffer *buf,
1448		    struct extent_buffer *parent, int parent_slot,
1449		    struct extent_buffer **cow_ret)
1450{
1451	struct btrfs_fs_info *fs_info = root->fs_info;
1452	u64 search_start;
1453	int ret;
1454
1455	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1456		btrfs_err(fs_info,
1457			"COW'ing blocks on a fs root that's being dropped");
1458
1459	if (trans->transaction != fs_info->running_transaction)
1460		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1461		       trans->transid,
1462		       fs_info->running_transaction->transid);
1463
1464	if (trans->transid != fs_info->generation)
1465		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1466		       trans->transid, fs_info->generation);
1467
1468	if (!should_cow_block(trans, root, buf)) {
1469		trans->dirty = true;
1470		*cow_ret = buf;
1471		return 0;
1472	}
1473
1474	search_start = buf->start & ~((u64)SZ_1G - 1);
1475
1476	if (parent)
1477		btrfs_set_lock_blocking_write(parent);
1478	btrfs_set_lock_blocking_write(buf);
1479
1480	/*
1481	 * Before CoWing this block for later modification, check if it's
1482	 * the subtree root and do the delayed subtree trace if needed.
1483	 *
1484	 * Also We don't care about the error, as it's handled internally.
1485	 */
1486	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1487	ret = __btrfs_cow_block(trans, root, buf, parent,
1488				 parent_slot, cow_ret, search_start, 0);
1489
1490	trace_btrfs_cow_block(root, buf, *cow_ret);
1491
1492	return ret;
1493}
1494
1495/*
1496 * helper function for defrag to decide if two blocks pointed to by a
1497 * node are actually close by
1498 */
1499static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1500{
1501	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1502		return 1;
1503	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1504		return 1;
1505	return 0;
1506}
1507
1508#ifdef __LITTLE_ENDIAN
1509
1510/*
1511 * Compare two keys, on little-endian the disk order is same as CPU order and
1512 * we can avoid the conversion.
1513 */
1514static int comp_keys(const struct btrfs_disk_key *disk_key,
1515		     const struct btrfs_key *k2)
1516{
1517	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1518
1519	return btrfs_comp_cpu_keys(k1, k2);
1520}
1521
1522#else
1523
1524/*
1525 * compare two keys in a memcmp fashion
1526 */
1527static int comp_keys(const struct btrfs_disk_key *disk,
1528		     const struct btrfs_key *k2)
1529{
1530	struct btrfs_key k1;
1531
1532	btrfs_disk_key_to_cpu(&k1, disk);
1533
1534	return btrfs_comp_cpu_keys(&k1, k2);
1535}
1536#endif
1537
1538/*
1539 * same as comp_keys only with two btrfs_key's
1540 */
1541int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1542{
1543	if (k1->objectid > k2->objectid)
1544		return 1;
1545	if (k1->objectid < k2->objectid)
1546		return -1;
1547	if (k1->type > k2->type)
1548		return 1;
1549	if (k1->type < k2->type)
1550		return -1;
1551	if (k1->offset > k2->offset)
1552		return 1;
1553	if (k1->offset < k2->offset)
1554		return -1;
1555	return 0;
1556}
1557
1558/*
1559 * this is used by the defrag code to go through all the
1560 * leaves pointed to by a node and reallocate them so that
1561 * disk order is close to key order
1562 */
1563int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1564		       struct btrfs_root *root, struct extent_buffer *parent,
1565		       int start_slot, u64 *last_ret,
1566		       struct btrfs_key *progress)
1567{
1568	struct btrfs_fs_info *fs_info = root->fs_info;
1569	struct extent_buffer *cur;
1570	u64 blocknr;
1571	u64 gen;
1572	u64 search_start = *last_ret;
1573	u64 last_block = 0;
1574	u64 other;
1575	u32 parent_nritems;
1576	int end_slot;
1577	int i;
1578	int err = 0;
1579	int parent_level;
1580	int uptodate;
1581	u32 blocksize;
1582	int progress_passed = 0;
1583	struct btrfs_disk_key disk_key;
1584
1585	parent_level = btrfs_header_level(parent);
1586
1587	WARN_ON(trans->transaction != fs_info->running_transaction);
1588	WARN_ON(trans->transid != fs_info->generation);
1589
1590	parent_nritems = btrfs_header_nritems(parent);
1591	blocksize = fs_info->nodesize;
1592	end_slot = parent_nritems - 1;
1593
1594	if (parent_nritems <= 1)
1595		return 0;
1596
1597	btrfs_set_lock_blocking_write(parent);
1598
1599	for (i = start_slot; i <= end_slot; i++) {
1600		struct btrfs_key first_key;
1601		int close = 1;
1602
1603		btrfs_node_key(parent, &disk_key, i);
1604		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1605			continue;
1606
1607		progress_passed = 1;
1608		blocknr = btrfs_node_blockptr(parent, i);
1609		gen = btrfs_node_ptr_generation(parent, i);
1610		btrfs_node_key_to_cpu(parent, &first_key, i);
1611		if (last_block == 0)
1612			last_block = blocknr;
1613
1614		if (i > 0) {
1615			other = btrfs_node_blockptr(parent, i - 1);
1616			close = close_blocks(blocknr, other, blocksize);
1617		}
1618		if (!close && i < end_slot) {
1619			other = btrfs_node_blockptr(parent, i + 1);
1620			close = close_blocks(blocknr, other, blocksize);
1621		}
1622		if (close) {
1623			last_block = blocknr;
1624			continue;
1625		}
1626
1627		cur = find_extent_buffer(fs_info, blocknr);
1628		if (cur)
1629			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1630		else
1631			uptodate = 0;
1632		if (!cur || !uptodate) {
1633			if (!cur) {
1634				cur = read_tree_block(fs_info, blocknr, gen,
1635						      parent_level - 1,
1636						      &first_key);
1637				if (IS_ERR(cur)) {
1638					return PTR_ERR(cur);
1639				} else if (!extent_buffer_uptodate(cur)) {
1640					free_extent_buffer(cur);
1641					return -EIO;
1642				}
1643			} else if (!uptodate) {
1644				err = btrfs_read_buffer(cur, gen,
1645						parent_level - 1,&first_key);
1646				if (err) {
1647					free_extent_buffer(cur);
1648					return err;
1649				}
1650			}
1651		}
1652		if (search_start == 0)
1653			search_start = last_block;
1654
1655		btrfs_tree_lock(cur);
1656		btrfs_set_lock_blocking_write(cur);
1657		err = __btrfs_cow_block(trans, root, cur, parent, i,
1658					&cur, search_start,
1659					min(16 * blocksize,
1660					    (end_slot - i) * blocksize));
1661		if (err) {
1662			btrfs_tree_unlock(cur);
1663			free_extent_buffer(cur);
1664			break;
1665		}
1666		search_start = cur->start;
1667		last_block = cur->start;
1668		*last_ret = search_start;
1669		btrfs_tree_unlock(cur);
1670		free_extent_buffer(cur);
1671	}
1672	return err;
1673}
1674
1675/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676 * search for key in the extent_buffer.  The items start at offset p,
1677 * and they are item_size apart.  There are 'max' items in p.
1678 *
1679 * the slot in the array is returned via slot, and it points to
1680 * the place where you would insert key if it is not found in
1681 * the array.
1682 *
1683 * slot may point to max if the key is bigger than all of the keys
1684 */
1685static noinline int generic_bin_search(struct extent_buffer *eb,
1686				       unsigned long p, int item_size,
1687				       const struct btrfs_key *key,
1688				       int max, int *slot)
1689{
1690	int low = 0;
1691	int high = max;
 
1692	int ret;
1693	const int key_size = sizeof(struct btrfs_disk_key);
1694
1695	if (low > high) {
1696		btrfs_err(eb->fs_info,
1697		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1698			  __func__, low, high, eb->start,
1699			  btrfs_header_owner(eb), btrfs_header_level(eb));
1700		return -EINVAL;
1701	}
1702
1703	while (low < high) {
1704		unsigned long oip;
1705		unsigned long offset;
1706		struct btrfs_disk_key *tmp;
1707		struct btrfs_disk_key unaligned;
1708		int mid;
1709
1710		mid = (low + high) / 2;
1711		offset = p + mid * item_size;
1712		oip = offset_in_page(offset);
1713
1714		if (oip + key_size <= PAGE_SIZE) {
1715			const unsigned long idx = offset >> PAGE_SHIFT;
1716			char *kaddr = page_address(eb->pages[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
1717
1718			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1719		} else {
1720			read_extent_buffer(eb, &unaligned, offset, key_size);
1721			tmp = &unaligned;
1722		}
1723
1724		ret = comp_keys(tmp, key);
1725
1726		if (ret < 0)
1727			low = mid + 1;
1728		else if (ret > 0)
1729			high = mid;
1730		else {
1731			*slot = mid;
1732			return 0;
1733		}
1734	}
1735	*slot = low;
1736	return 1;
1737}
1738
1739/*
1740 * simple bin_search frontend that does the right thing for
1741 * leaves vs nodes
1742 */
1743int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1744		     int *slot)
1745{
1746	if (btrfs_header_level(eb) == 0)
1747		return generic_bin_search(eb,
1748					  offsetof(struct btrfs_leaf, items),
1749					  sizeof(struct btrfs_item),
1750					  key, btrfs_header_nritems(eb),
1751					  slot);
1752	else
1753		return generic_bin_search(eb,
1754					  offsetof(struct btrfs_node, ptrs),
1755					  sizeof(struct btrfs_key_ptr),
1756					  key, btrfs_header_nritems(eb),
1757					  slot);
1758}
1759
 
 
 
 
 
 
1760static void root_add_used(struct btrfs_root *root, u32 size)
1761{
1762	spin_lock(&root->accounting_lock);
1763	btrfs_set_root_used(&root->root_item,
1764			    btrfs_root_used(&root->root_item) + size);
1765	spin_unlock(&root->accounting_lock);
1766}
1767
1768static void root_sub_used(struct btrfs_root *root, u32 size)
1769{
1770	spin_lock(&root->accounting_lock);
1771	btrfs_set_root_used(&root->root_item,
1772			    btrfs_root_used(&root->root_item) - size);
1773	spin_unlock(&root->accounting_lock);
1774}
1775
1776/* given a node and slot number, this reads the blocks it points to.  The
1777 * extent buffer is returned with a reference taken (but unlocked).
 
1778 */
1779struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1780					   int slot)
1781{
1782	int level = btrfs_header_level(parent);
1783	struct extent_buffer *eb;
1784	struct btrfs_key first_key;
1785
1786	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1787		return ERR_PTR(-ENOENT);
 
 
1788
1789	BUG_ON(level == 0);
1790
1791	btrfs_node_key_to_cpu(parent, &first_key, slot);
1792	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1793			     btrfs_node_ptr_generation(parent, slot),
1794			     level - 1, &first_key);
1795	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1796		free_extent_buffer(eb);
1797		eb = ERR_PTR(-EIO);
1798	}
1799
1800	return eb;
1801}
1802
1803/*
1804 * node level balancing, used to make sure nodes are in proper order for
1805 * item deletion.  We balance from the top down, so we have to make sure
1806 * that a deletion won't leave an node completely empty later on.
1807 */
1808static noinline int balance_level(struct btrfs_trans_handle *trans,
1809			 struct btrfs_root *root,
1810			 struct btrfs_path *path, int level)
1811{
1812	struct btrfs_fs_info *fs_info = root->fs_info;
1813	struct extent_buffer *right = NULL;
1814	struct extent_buffer *mid;
1815	struct extent_buffer *left = NULL;
1816	struct extent_buffer *parent = NULL;
1817	int ret = 0;
1818	int wret;
1819	int pslot;
1820	int orig_slot = path->slots[level];
1821	u64 orig_ptr;
1822
1823	ASSERT(level > 0);
 
1824
1825	mid = path->nodes[level];
1826
1827	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1831	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832
1833	if (level < BTRFS_MAX_LEVEL - 1) {
1834		parent = path->nodes[level + 1];
1835		pslot = path->slots[level + 1];
1836	}
1837
1838	/*
1839	 * deal with the case where there is only one pointer in the root
1840	 * by promoting the node below to a root
1841	 */
1842	if (!parent) {
1843		struct extent_buffer *child;
1844
1845		if (btrfs_header_nritems(mid) != 1)
1846			return 0;
1847
1848		/* promote the child to a root */
1849		child = btrfs_read_node_slot(mid, 0);
1850		if (IS_ERR(child)) {
1851			ret = PTR_ERR(child);
1852			btrfs_handle_fs_error(fs_info, ret, NULL);
1853			goto enospc;
1854		}
1855
1856		btrfs_tree_lock(child);
1857		btrfs_set_lock_blocking_write(child);
1858		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859		if (ret) {
1860			btrfs_tree_unlock(child);
1861			free_extent_buffer(child);
1862			goto enospc;
1863		}
1864
1865		ret = tree_mod_log_insert_root(root->node, child, 1);
1866		BUG_ON(ret < 0);
1867		rcu_assign_pointer(root->node, child);
1868
1869		add_root_to_dirty_list(root);
1870		btrfs_tree_unlock(child);
1871
1872		path->locks[level] = 0;
1873		path->nodes[level] = NULL;
1874		btrfs_clean_tree_block(mid);
1875		btrfs_tree_unlock(mid);
1876		/* once for the path */
1877		free_extent_buffer(mid);
1878
1879		root_sub_used(root, mid->len);
1880		btrfs_free_tree_block(trans, root, mid, 0, 1);
1881		/* once for the root ptr */
1882		free_extent_buffer_stale(mid);
1883		return 0;
1884	}
1885	if (btrfs_header_nritems(mid) >
1886	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887		return 0;
1888
1889	left = btrfs_read_node_slot(parent, pslot - 1);
1890	if (IS_ERR(left))
1891		left = NULL;
1892
1893	if (left) {
1894		btrfs_tree_lock(left);
1895		btrfs_set_lock_blocking_write(left);
1896		wret = btrfs_cow_block(trans, root, left,
1897				       parent, pslot - 1, &left);
1898		if (wret) {
1899			ret = wret;
1900			goto enospc;
1901		}
1902	}
1903
1904	right = btrfs_read_node_slot(parent, pslot + 1);
1905	if (IS_ERR(right))
1906		right = NULL;
1907
1908	if (right) {
1909		btrfs_tree_lock(right);
1910		btrfs_set_lock_blocking_write(right);
1911		wret = btrfs_cow_block(trans, root, right,
1912				       parent, pslot + 1, &right);
1913		if (wret) {
1914			ret = wret;
1915			goto enospc;
1916		}
1917	}
1918
1919	/* first, try to make some room in the middle buffer */
1920	if (left) {
1921		orig_slot += btrfs_header_nritems(left);
1922		wret = push_node_left(trans, left, mid, 1);
1923		if (wret < 0)
1924			ret = wret;
1925	}
1926
1927	/*
1928	 * then try to empty the right most buffer into the middle
1929	 */
1930	if (right) {
1931		wret = push_node_left(trans, mid, right, 1);
1932		if (wret < 0 && wret != -ENOSPC)
1933			ret = wret;
1934		if (btrfs_header_nritems(right) == 0) {
1935			btrfs_clean_tree_block(right);
1936			btrfs_tree_unlock(right);
1937			del_ptr(root, path, level + 1, pslot + 1);
1938			root_sub_used(root, right->len);
1939			btrfs_free_tree_block(trans, root, right, 0, 1);
1940			free_extent_buffer_stale(right);
1941			right = NULL;
1942		} else {
1943			struct btrfs_disk_key right_key;
1944			btrfs_node_key(right, &right_key, 0);
1945			ret = tree_mod_log_insert_key(parent, pslot + 1,
1946					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947			BUG_ON(ret < 0);
1948			btrfs_set_node_key(parent, &right_key, pslot + 1);
1949			btrfs_mark_buffer_dirty(parent);
1950		}
1951	}
1952	if (btrfs_header_nritems(mid) == 1) {
1953		/*
1954		 * we're not allowed to leave a node with one item in the
1955		 * tree during a delete.  A deletion from lower in the tree
1956		 * could try to delete the only pointer in this node.
1957		 * So, pull some keys from the left.
1958		 * There has to be a left pointer at this point because
1959		 * otherwise we would have pulled some pointers from the
1960		 * right
1961		 */
1962		if (!left) {
1963			ret = -EROFS;
1964			btrfs_handle_fs_error(fs_info, ret, NULL);
1965			goto enospc;
1966		}
1967		wret = balance_node_right(trans, mid, left);
1968		if (wret < 0) {
1969			ret = wret;
1970			goto enospc;
1971		}
1972		if (wret == 1) {
1973			wret = push_node_left(trans, left, mid, 1);
1974			if (wret < 0)
1975				ret = wret;
1976		}
1977		BUG_ON(wret == 1);
1978	}
1979	if (btrfs_header_nritems(mid) == 0) {
1980		btrfs_clean_tree_block(mid);
1981		btrfs_tree_unlock(mid);
1982		del_ptr(root, path, level + 1, pslot);
1983		root_sub_used(root, mid->len);
1984		btrfs_free_tree_block(trans, root, mid, 0, 1);
1985		free_extent_buffer_stale(mid);
1986		mid = NULL;
1987	} else {
1988		/* update the parent key to reflect our changes */
1989		struct btrfs_disk_key mid_key;
1990		btrfs_node_key(mid, &mid_key, 0);
1991		ret = tree_mod_log_insert_key(parent, pslot,
1992				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993		BUG_ON(ret < 0);
1994		btrfs_set_node_key(parent, &mid_key, pslot);
1995		btrfs_mark_buffer_dirty(parent);
1996	}
1997
1998	/* update the path */
1999	if (left) {
2000		if (btrfs_header_nritems(left) > orig_slot) {
2001			atomic_inc(&left->refs);
2002			/* left was locked after cow */
2003			path->nodes[level] = left;
2004			path->slots[level + 1] -= 1;
2005			path->slots[level] = orig_slot;
2006			if (mid) {
2007				btrfs_tree_unlock(mid);
2008				free_extent_buffer(mid);
2009			}
2010		} else {
2011			orig_slot -= btrfs_header_nritems(left);
2012			path->slots[level] = orig_slot;
2013		}
2014	}
2015	/* double check we haven't messed things up */
2016	if (orig_ptr !=
2017	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018		BUG();
2019enospc:
2020	if (right) {
2021		btrfs_tree_unlock(right);
2022		free_extent_buffer(right);
2023	}
2024	if (left) {
2025		if (path->nodes[level] != left)
2026			btrfs_tree_unlock(left);
2027		free_extent_buffer(left);
2028	}
2029	return ret;
2030}
2031
2032/* Node balancing for insertion.  Here we only split or push nodes around
2033 * when they are completely full.  This is also done top down, so we
2034 * have to be pessimistic.
2035 */
2036static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037					  struct btrfs_root *root,
2038					  struct btrfs_path *path, int level)
2039{
2040	struct btrfs_fs_info *fs_info = root->fs_info;
2041	struct extent_buffer *right = NULL;
2042	struct extent_buffer *mid;
2043	struct extent_buffer *left = NULL;
2044	struct extent_buffer *parent = NULL;
2045	int ret = 0;
2046	int wret;
2047	int pslot;
2048	int orig_slot = path->slots[level];
2049
2050	if (level == 0)
2051		return 1;
2052
2053	mid = path->nodes[level];
2054	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055
2056	if (level < BTRFS_MAX_LEVEL - 1) {
2057		parent = path->nodes[level + 1];
2058		pslot = path->slots[level + 1];
2059	}
2060
2061	if (!parent)
2062		return 1;
2063
2064	left = btrfs_read_node_slot(parent, pslot - 1);
2065	if (IS_ERR(left))
2066		left = NULL;
2067
2068	/* first, try to make some room in the middle buffer */
2069	if (left) {
2070		u32 left_nr;
2071
2072		btrfs_tree_lock(left);
2073		btrfs_set_lock_blocking_write(left);
2074
2075		left_nr = btrfs_header_nritems(left);
2076		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2077			wret = 1;
2078		} else {
2079			ret = btrfs_cow_block(trans, root, left, parent,
2080					      pslot - 1, &left);
2081			if (ret)
2082				wret = 1;
2083			else {
2084				wret = push_node_left(trans, left, mid, 0);
 
2085			}
2086		}
2087		if (wret < 0)
2088			ret = wret;
2089		if (wret == 0) {
2090			struct btrfs_disk_key disk_key;
2091			orig_slot += left_nr;
2092			btrfs_node_key(mid, &disk_key, 0);
2093			ret = tree_mod_log_insert_key(parent, pslot,
2094					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2095			BUG_ON(ret < 0);
2096			btrfs_set_node_key(parent, &disk_key, pslot);
2097			btrfs_mark_buffer_dirty(parent);
2098			if (btrfs_header_nritems(left) > orig_slot) {
2099				path->nodes[level] = left;
2100				path->slots[level + 1] -= 1;
2101				path->slots[level] = orig_slot;
2102				btrfs_tree_unlock(mid);
2103				free_extent_buffer(mid);
2104			} else {
2105				orig_slot -=
2106					btrfs_header_nritems(left);
2107				path->slots[level] = orig_slot;
2108				btrfs_tree_unlock(left);
2109				free_extent_buffer(left);
2110			}
2111			return 0;
2112		}
2113		btrfs_tree_unlock(left);
2114		free_extent_buffer(left);
2115	}
2116	right = btrfs_read_node_slot(parent, pslot + 1);
2117	if (IS_ERR(right))
2118		right = NULL;
2119
2120	/*
2121	 * then try to empty the right most buffer into the middle
2122	 */
2123	if (right) {
2124		u32 right_nr;
2125
2126		btrfs_tree_lock(right);
2127		btrfs_set_lock_blocking_write(right);
2128
2129		right_nr = btrfs_header_nritems(right);
2130		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2131			wret = 1;
2132		} else {
2133			ret = btrfs_cow_block(trans, root, right,
2134					      parent, pslot + 1,
2135					      &right);
2136			if (ret)
2137				wret = 1;
2138			else {
2139				wret = balance_node_right(trans, right, mid);
 
2140			}
2141		}
2142		if (wret < 0)
2143			ret = wret;
2144		if (wret == 0) {
2145			struct btrfs_disk_key disk_key;
2146
2147			btrfs_node_key(right, &disk_key, 0);
2148			ret = tree_mod_log_insert_key(parent, pslot + 1,
2149					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2150			BUG_ON(ret < 0);
2151			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2152			btrfs_mark_buffer_dirty(parent);
2153
2154			if (btrfs_header_nritems(mid) <= orig_slot) {
2155				path->nodes[level] = right;
2156				path->slots[level + 1] += 1;
2157				path->slots[level] = orig_slot -
2158					btrfs_header_nritems(mid);
2159				btrfs_tree_unlock(mid);
2160				free_extent_buffer(mid);
2161			} else {
2162				btrfs_tree_unlock(right);
2163				free_extent_buffer(right);
2164			}
2165			return 0;
2166		}
2167		btrfs_tree_unlock(right);
2168		free_extent_buffer(right);
2169	}
2170	return 1;
2171}
2172
2173/*
2174 * readahead one full node of leaves, finding things that are close
2175 * to the block in 'slot', and triggering ra on them.
2176 */
2177static void reada_for_search(struct btrfs_fs_info *fs_info,
2178			     struct btrfs_path *path,
2179			     int level, int slot, u64 objectid)
2180{
2181	struct extent_buffer *node;
2182	struct btrfs_disk_key disk_key;
2183	u32 nritems;
2184	u64 search;
2185	u64 target;
2186	u64 nread = 0;
 
2187	struct extent_buffer *eb;
2188	u32 nr;
2189	u32 blocksize;
2190	u32 nscan = 0;
2191
2192	if (level != 1)
2193		return;
2194
2195	if (!path->nodes[level])
2196		return;
2197
2198	node = path->nodes[level];
2199
2200	search = btrfs_node_blockptr(node, slot);
2201	blocksize = fs_info->nodesize;
2202	eb = find_extent_buffer(fs_info, search);
2203	if (eb) {
2204		free_extent_buffer(eb);
2205		return;
2206	}
2207
2208	target = search;
2209
2210	nritems = btrfs_header_nritems(node);
2211	nr = slot;
2212
2213	while (1) {
2214		if (path->reada == READA_BACK) {
2215			if (nr == 0)
2216				break;
2217			nr--;
2218		} else if (path->reada == READA_FORWARD) {
2219			nr++;
2220			if (nr >= nritems)
2221				break;
2222		}
2223		if (path->reada == READA_BACK && objectid) {
2224			btrfs_node_key(node, &disk_key, nr);
2225			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2226				break;
2227		}
2228		search = btrfs_node_blockptr(node, nr);
2229		if ((search <= target && target - search <= 65536) ||
2230		    (search > target && search - target <= 65536)) {
2231			readahead_tree_block(fs_info, search);
 
2232			nread += blocksize;
2233		}
2234		nscan++;
2235		if ((nread > 65536 || nscan > 32))
2236			break;
2237	}
2238}
2239
2240static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2241				       struct btrfs_path *path, int level)
2242{
2243	int slot;
2244	int nritems;
2245	struct extent_buffer *parent;
2246	struct extent_buffer *eb;
2247	u64 gen;
2248	u64 block1 = 0;
2249	u64 block2 = 0;
2250
2251	parent = path->nodes[level + 1];
2252	if (!parent)
2253		return;
2254
2255	nritems = btrfs_header_nritems(parent);
2256	slot = path->slots[level + 1];
2257
2258	if (slot > 0) {
2259		block1 = btrfs_node_blockptr(parent, slot - 1);
2260		gen = btrfs_node_ptr_generation(parent, slot - 1);
2261		eb = find_extent_buffer(fs_info, block1);
2262		/*
2263		 * if we get -eagain from btrfs_buffer_uptodate, we
2264		 * don't want to return eagain here.  That will loop
2265		 * forever
2266		 */
2267		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2268			block1 = 0;
2269		free_extent_buffer(eb);
2270	}
2271	if (slot + 1 < nritems) {
2272		block2 = btrfs_node_blockptr(parent, slot + 1);
2273		gen = btrfs_node_ptr_generation(parent, slot + 1);
2274		eb = find_extent_buffer(fs_info, block2);
2275		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2276			block2 = 0;
2277		free_extent_buffer(eb);
2278	}
2279
2280	if (block1)
2281		readahead_tree_block(fs_info, block1);
2282	if (block2)
2283		readahead_tree_block(fs_info, block2);
2284}
2285
2286
2287/*
2288 * when we walk down the tree, it is usually safe to unlock the higher layers
2289 * in the tree.  The exceptions are when our path goes through slot 0, because
2290 * operations on the tree might require changing key pointers higher up in the
2291 * tree.
2292 *
2293 * callers might also have set path->keep_locks, which tells this code to keep
2294 * the lock if the path points to the last slot in the block.  This is part of
2295 * walking through the tree, and selecting the next slot in the higher block.
2296 *
2297 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2298 * if lowest_unlock is 1, level 0 won't be unlocked
2299 */
2300static noinline void unlock_up(struct btrfs_path *path, int level,
2301			       int lowest_unlock, int min_write_lock_level,
2302			       int *write_lock_level)
2303{
2304	int i;
2305	int skip_level = level;
2306	int no_skips = 0;
2307	struct extent_buffer *t;
2308
2309	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2310		if (!path->nodes[i])
2311			break;
2312		if (!path->locks[i])
2313			break;
2314		if (!no_skips && path->slots[i] == 0) {
2315			skip_level = i + 1;
2316			continue;
2317		}
2318		if (!no_skips && path->keep_locks) {
2319			u32 nritems;
2320			t = path->nodes[i];
2321			nritems = btrfs_header_nritems(t);
2322			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2323				skip_level = i + 1;
2324				continue;
2325			}
2326		}
2327		if (skip_level < i && i >= lowest_unlock)
2328			no_skips = 1;
2329
2330		t = path->nodes[i];
2331		if (i >= lowest_unlock && i > skip_level) {
2332			btrfs_tree_unlock_rw(t, path->locks[i]);
2333			path->locks[i] = 0;
2334			if (write_lock_level &&
2335			    i > min_write_lock_level &&
2336			    i <= *write_lock_level) {
2337				*write_lock_level = i - 1;
2338			}
2339		}
2340	}
2341}
2342
2343/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344 * helper function for btrfs_search_slot.  The goal is to find a block
2345 * in cache without setting the path to blocking.  If we find the block
2346 * we return zero and the path is unchanged.
2347 *
2348 * If we can't find the block, we set the path blocking and do some
2349 * reada.  -EAGAIN is returned and the search must be repeated.
2350 */
2351static int
2352read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2353		      struct extent_buffer **eb_ret, int level, int slot,
2354		      const struct btrfs_key *key)
 
2355{
2356	struct btrfs_fs_info *fs_info = root->fs_info;
2357	u64 blocknr;
2358	u64 gen;
 
2359	struct extent_buffer *tmp;
2360	struct btrfs_key first_key;
2361	int ret;
2362	int parent_level;
2363
2364	blocknr = btrfs_node_blockptr(*eb_ret, slot);
2365	gen = btrfs_node_ptr_generation(*eb_ret, slot);
2366	parent_level = btrfs_header_level(*eb_ret);
2367	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2368
2369	tmp = find_extent_buffer(fs_info, blocknr);
2370	if (tmp) {
2371		/* first we do an atomic uptodate check */
2372		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2373			/*
2374			 * Do extra check for first_key, eb can be stale due to
2375			 * being cached, read from scrub, or have multiple
2376			 * parents (shared tree blocks).
2377			 */
2378			if (btrfs_verify_level_key(tmp,
2379					parent_level - 1, &first_key, gen)) {
2380				free_extent_buffer(tmp);
2381				return -EUCLEAN;
2382			}
2383			*eb_ret = tmp;
2384			return 0;
2385		}
2386
2387		/* the pages were up to date, but we failed
2388		 * the generation number check.  Do a full
2389		 * read for the generation number that is correct.
2390		 * We must do this without dropping locks so
2391		 * we can trust our generation number
2392		 */
2393		btrfs_set_path_blocking(p);
2394
2395		/* now we're allowed to do a blocking uptodate check */
2396		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2397		if (!ret) {
2398			*eb_ret = tmp;
2399			return 0;
2400		}
2401		free_extent_buffer(tmp);
2402		btrfs_release_path(p);
2403		return -EIO;
2404	}
2405
2406	/*
2407	 * reduce lock contention at high levels
2408	 * of the btree by dropping locks before
2409	 * we read.  Don't release the lock on the current
2410	 * level because we need to walk this node to figure
2411	 * out which blocks to read.
2412	 */
2413	btrfs_unlock_up_safe(p, level + 1);
2414	btrfs_set_path_blocking(p);
2415
 
2416	if (p->reada != READA_NONE)
2417		reada_for_search(fs_info, p, level, slot, key->objectid);
 
 
2418
2419	ret = -EAGAIN;
2420	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2421			      &first_key);
2422	if (!IS_ERR(tmp)) {
2423		/*
2424		 * If the read above didn't mark this buffer up to date,
2425		 * it will never end up being up to date.  Set ret to EIO now
2426		 * and give up so that our caller doesn't loop forever
2427		 * on our EAGAINs.
2428		 */
2429		if (!extent_buffer_uptodate(tmp))
2430			ret = -EIO;
2431		free_extent_buffer(tmp);
2432	} else {
2433		ret = PTR_ERR(tmp);
2434	}
2435
2436	btrfs_release_path(p);
2437	return ret;
2438}
2439
2440/*
2441 * helper function for btrfs_search_slot.  This does all of the checks
2442 * for node-level blocks and does any balancing required based on
2443 * the ins_len.
2444 *
2445 * If no extra work was required, zero is returned.  If we had to
2446 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2447 * start over
2448 */
2449static int
2450setup_nodes_for_search(struct btrfs_trans_handle *trans,
2451		       struct btrfs_root *root, struct btrfs_path *p,
2452		       struct extent_buffer *b, int level, int ins_len,
2453		       int *write_lock_level)
2454{
2455	struct btrfs_fs_info *fs_info = root->fs_info;
2456	int ret;
2457
2458	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2459	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2460		int sret;
2461
2462		if (*write_lock_level < level + 1) {
2463			*write_lock_level = level + 1;
2464			btrfs_release_path(p);
2465			goto again;
2466		}
2467
2468		btrfs_set_path_blocking(p);
2469		reada_for_balance(fs_info, p, level);
2470		sret = split_node(trans, root, p, level);
 
2471
2472		BUG_ON(sret > 0);
2473		if (sret) {
2474			ret = sret;
2475			goto done;
2476		}
2477		b = p->nodes[level];
2478	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2479		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2480		int sret;
2481
2482		if (*write_lock_level < level + 1) {
2483			*write_lock_level = level + 1;
2484			btrfs_release_path(p);
2485			goto again;
2486		}
2487
2488		btrfs_set_path_blocking(p);
2489		reada_for_balance(fs_info, p, level);
2490		sret = balance_level(trans, root, p, level);
 
2491
2492		if (sret) {
2493			ret = sret;
2494			goto done;
2495		}
2496		b = p->nodes[level];
2497		if (!b) {
2498			btrfs_release_path(p);
2499			goto again;
2500		}
2501		BUG_ON(btrfs_header_nritems(b) == 1);
2502	}
2503	return 0;
2504
2505again:
2506	ret = -EAGAIN;
2507done:
2508	return ret;
2509}
2510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2511int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2512		u64 iobjectid, u64 ioff, u8 key_type,
2513		struct btrfs_key *found_key)
2514{
2515	int ret;
2516	struct btrfs_key key;
2517	struct extent_buffer *eb;
2518
2519	ASSERT(path);
2520	ASSERT(found_key);
2521
2522	key.type = key_type;
2523	key.objectid = iobjectid;
2524	key.offset = ioff;
2525
2526	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2527	if (ret < 0)
2528		return ret;
2529
2530	eb = path->nodes[0];
2531	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2532		ret = btrfs_next_leaf(fs_root, path);
2533		if (ret)
2534			return ret;
2535		eb = path->nodes[0];
2536	}
2537
2538	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2539	if (found_key->type != key.type ||
2540			found_key->objectid != key.objectid)
2541		return 1;
2542
2543	return 0;
2544}
2545
2546static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2547							struct btrfs_path *p,
2548							int write_lock_level)
2549{
2550	struct btrfs_fs_info *fs_info = root->fs_info;
2551	struct extent_buffer *b;
2552	int root_lock;
2553	int level = 0;
2554
2555	/* We try very hard to do read locks on the root */
2556	root_lock = BTRFS_READ_LOCK;
2557
2558	if (p->search_commit_root) {
2559		/*
2560		 * The commit roots are read only so we always do read locks,
2561		 * and we always must hold the commit_root_sem when doing
2562		 * searches on them, the only exception is send where we don't
2563		 * want to block transaction commits for a long time, so
2564		 * we need to clone the commit root in order to avoid races
2565		 * with transaction commits that create a snapshot of one of
2566		 * the roots used by a send operation.
2567		 */
2568		if (p->need_commit_sem) {
2569			down_read(&fs_info->commit_root_sem);
2570			b = btrfs_clone_extent_buffer(root->commit_root);
2571			up_read(&fs_info->commit_root_sem);
2572			if (!b)
2573				return ERR_PTR(-ENOMEM);
2574
2575		} else {
2576			b = root->commit_root;
2577			atomic_inc(&b->refs);
2578		}
2579		level = btrfs_header_level(b);
2580		/*
2581		 * Ensure that all callers have set skip_locking when
2582		 * p->search_commit_root = 1.
2583		 */
2584		ASSERT(p->skip_locking == 1);
2585
2586		goto out;
2587	}
2588
2589	if (p->skip_locking) {
2590		b = btrfs_root_node(root);
2591		level = btrfs_header_level(b);
2592		goto out;
2593	}
2594
2595	/*
2596	 * If the level is set to maximum, we can skip trying to get the read
2597	 * lock.
2598	 */
2599	if (write_lock_level < BTRFS_MAX_LEVEL) {
2600		/*
2601		 * We don't know the level of the root node until we actually
2602		 * have it read locked
2603		 */
2604		b = btrfs_read_lock_root_node(root);
2605		level = btrfs_header_level(b);
2606		if (level > write_lock_level)
2607			goto out;
2608
2609		/* Whoops, must trade for write lock */
2610		btrfs_tree_read_unlock(b);
2611		free_extent_buffer(b);
2612	}
2613
2614	b = btrfs_lock_root_node(root);
2615	root_lock = BTRFS_WRITE_LOCK;
2616
2617	/* The level might have changed, check again */
2618	level = btrfs_header_level(b);
2619
2620out:
2621	p->nodes[level] = b;
2622	if (!p->skip_locking)
2623		p->locks[level] = root_lock;
2624	/*
2625	 * Callers are responsible for dropping b's references.
2626	 */
2627	return b;
2628}
2629
2630
2631/*
2632 * btrfs_search_slot - look for a key in a tree and perform necessary
2633 * modifications to preserve tree invariants.
2634 *
2635 * @trans:	Handle of transaction, used when modifying the tree
2636 * @p:		Holds all btree nodes along the search path
2637 * @root:	The root node of the tree
2638 * @key:	The key we are looking for
2639 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2640 *		deletions it's -1. 0 for plain searches
2641 * @cow:	boolean should CoW operations be performed. Must always be 1
2642 *		when modifying the tree.
2643 *
2644 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2645 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2646 *
2647 * If @key is found, 0 is returned and you can find the item in the leaf level
2648 * of the path (level 0)
2649 *
2650 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2651 * points to the slot where it should be inserted
2652 *
2653 * If an error is encountered while searching the tree a negative error number
2654 * is returned
2655 */
2656int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2657		      const struct btrfs_key *key, struct btrfs_path *p,
2658		      int ins_len, int cow)
2659{
2660	struct extent_buffer *b;
2661	int slot;
2662	int ret;
2663	int err;
2664	int level;
2665	int lowest_unlock = 1;
 
2666	/* everything at write_lock_level or lower must be write locked */
2667	int write_lock_level = 0;
2668	u8 lowest_level = 0;
2669	int min_write_lock_level;
2670	int prev_cmp;
2671
2672	lowest_level = p->lowest_level;
2673	WARN_ON(lowest_level && ins_len > 0);
2674	WARN_ON(p->nodes[0] != NULL);
2675	BUG_ON(!cow && ins_len);
2676
2677	if (ins_len < 0) {
2678		lowest_unlock = 2;
2679
2680		/* when we are removing items, we might have to go up to level
2681		 * two as we update tree pointers  Make sure we keep write
2682		 * for those levels as well
2683		 */
2684		write_lock_level = 2;
2685	} else if (ins_len > 0) {
2686		/*
2687		 * for inserting items, make sure we have a write lock on
2688		 * level 1 so we can update keys
2689		 */
2690		write_lock_level = 1;
2691	}
2692
2693	if (!cow)
2694		write_lock_level = -1;
2695
2696	if (cow && (p->keep_locks || p->lowest_level))
2697		write_lock_level = BTRFS_MAX_LEVEL;
2698
2699	min_write_lock_level = write_lock_level;
2700
2701again:
2702	prev_cmp = -1;
2703	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2704	if (IS_ERR(b)) {
2705		ret = PTR_ERR(b);
2706		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707	}
 
 
 
2708
2709	while (b) {
2710		int dec = 0;
2711
2712		level = btrfs_header_level(b);
2713
 
 
 
 
2714		if (cow) {
2715			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2716
2717			/*
2718			 * if we don't really need to cow this block
2719			 * then we don't want to set the path blocking,
2720			 * so we test it here
2721			 */
2722			if (!should_cow_block(trans, root, b)) {
2723				trans->dirty = true;
2724				goto cow_done;
2725			}
2726
2727			/*
2728			 * must have write locks on this node and the
2729			 * parent
2730			 */
2731			if (level > write_lock_level ||
2732			    (level + 1 > write_lock_level &&
2733			    level + 1 < BTRFS_MAX_LEVEL &&
2734			    p->nodes[level + 1])) {
2735				write_lock_level = level + 1;
2736				btrfs_release_path(p);
2737				goto again;
2738			}
2739
2740			btrfs_set_path_blocking(p);
2741			if (last_level)
2742				err = btrfs_cow_block(trans, root, b, NULL, 0,
2743						      &b);
2744			else
2745				err = btrfs_cow_block(trans, root, b,
2746						      p->nodes[level + 1],
2747						      p->slots[level + 1], &b);
2748			if (err) {
2749				ret = err;
2750				goto done;
2751			}
2752		}
2753cow_done:
2754		p->nodes[level] = b;
2755		/*
2756		 * Leave path with blocking locks to avoid massive
2757		 * lock context switch, this is made on purpose.
2758		 */
2759
2760		/*
2761		 * we have a lock on b and as long as we aren't changing
2762		 * the tree, there is no way to for the items in b to change.
2763		 * It is safe to drop the lock on our parent before we
2764		 * go through the expensive btree search on b.
2765		 *
2766		 * If we're inserting or deleting (ins_len != 0), then we might
2767		 * be changing slot zero, which may require changing the parent.
2768		 * So, we can't drop the lock until after we know which slot
2769		 * we're operating on.
2770		 */
2771		if (!ins_len && !p->keep_locks) {
2772			int u = level + 1;
2773
2774			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2775				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2776				p->locks[u] = 0;
2777			}
2778		}
2779
2780		/*
2781		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2782		 * we can safely assume the target key will always be in slot 0
2783		 * on lower levels due to the invariants BTRFS' btree provides,
2784		 * namely that a btrfs_key_ptr entry always points to the
2785		 * lowest key in the child node, thus we can skip searching
2786		 * lower levels
2787		 */
2788		if (prev_cmp == 0) {
2789			slot = 0;
2790			ret = 0;
2791		} else {
2792			ret = btrfs_bin_search(b, key, &slot);
2793			prev_cmp = ret;
2794			if (ret < 0)
2795				goto done;
2796		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797
2798		if (level == 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799			p->slots[level] = slot;
2800			if (ins_len > 0 &&
2801			    btrfs_leaf_free_space(b) < ins_len) {
2802				if (write_lock_level < 1) {
2803					write_lock_level = 1;
2804					btrfs_release_path(p);
2805					goto again;
2806				}
2807
2808				btrfs_set_path_blocking(p);
2809				err = split_leaf(trans, root, key,
2810						 p, ins_len, ret == 0);
 
2811
2812				BUG_ON(err > 0);
2813				if (err) {
2814					ret = err;
2815					goto done;
2816				}
2817			}
2818			if (!p->search_for_split)
2819				unlock_up(p, level, lowest_unlock,
2820					  min_write_lock_level, NULL);
2821			goto done;
2822		}
2823		if (ret && slot > 0) {
2824			dec = 1;
2825			slot--;
2826		}
2827		p->slots[level] = slot;
2828		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2829					     &write_lock_level);
2830		if (err == -EAGAIN)
2831			goto again;
2832		if (err) {
2833			ret = err;
2834			goto done;
2835		}
2836		b = p->nodes[level];
2837		slot = p->slots[level];
2838
2839		/*
2840		 * Slot 0 is special, if we change the key we have to update
2841		 * the parent pointer which means we must have a write lock on
2842		 * the parent
2843		 */
2844		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2845			write_lock_level = level + 1;
2846			btrfs_release_path(p);
2847			goto again;
2848		}
2849
2850		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2851			  &write_lock_level);
2852
2853		if (level == lowest_level) {
2854			if (dec)
2855				p->slots[level]++;
2856			goto done;
2857		}
2858
2859		err = read_block_for_search(root, p, &b, level, slot, key);
2860		if (err == -EAGAIN)
2861			goto again;
2862		if (err) {
2863			ret = err;
2864			goto done;
2865		}
2866
2867		if (!p->skip_locking) {
2868			level = btrfs_header_level(b);
2869			if (level <= write_lock_level) {
2870				if (!btrfs_try_tree_write_lock(b)) {
2871					btrfs_set_path_blocking(p);
2872					btrfs_tree_lock(b);
2873				}
2874				p->locks[level] = BTRFS_WRITE_LOCK;
2875			} else {
2876				if (!btrfs_tree_read_lock_atomic(b)) {
2877					btrfs_set_path_blocking(p);
2878					btrfs_tree_read_lock(b);
2879				}
2880				p->locks[level] = BTRFS_READ_LOCK;
2881			}
2882			p->nodes[level] = b;
2883		}
2884	}
2885	ret = 1;
2886done:
2887	/*
2888	 * we don't really know what they plan on doing with the path
2889	 * from here on, so for now just mark it as blocking
2890	 */
2891	if (!p->leave_spinning)
2892		btrfs_set_path_blocking(p);
2893	if (ret < 0 && !p->skip_release_on_error)
2894		btrfs_release_path(p);
2895	return ret;
2896}
2897
2898/*
2899 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2900 * current state of the tree together with the operations recorded in the tree
2901 * modification log to search for the key in a previous version of this tree, as
2902 * denoted by the time_seq parameter.
2903 *
2904 * Naturally, there is no support for insert, delete or cow operations.
2905 *
2906 * The resulting path and return value will be set up as if we called
2907 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2908 */
2909int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2910			  struct btrfs_path *p, u64 time_seq)
2911{
2912	struct btrfs_fs_info *fs_info = root->fs_info;
2913	struct extent_buffer *b;
2914	int slot;
2915	int ret;
2916	int err;
2917	int level;
2918	int lowest_unlock = 1;
2919	u8 lowest_level = 0;
 
2920
2921	lowest_level = p->lowest_level;
2922	WARN_ON(p->nodes[0] != NULL);
2923
2924	if (p->search_commit_root) {
2925		BUG_ON(time_seq);
2926		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2927	}
2928
2929again:
2930	b = get_old_root(root, time_seq);
2931	if (!b) {
2932		ret = -EIO;
2933		goto done;
2934	}
2935	level = btrfs_header_level(b);
2936	p->locks[level] = BTRFS_READ_LOCK;
2937
2938	while (b) {
2939		int dec = 0;
2940
2941		level = btrfs_header_level(b);
2942		p->nodes[level] = b;
 
2943
2944		/*
2945		 * we have a lock on b and as long as we aren't changing
2946		 * the tree, there is no way to for the items in b to change.
2947		 * It is safe to drop the lock on our parent before we
2948		 * go through the expensive btree search on b.
2949		 */
2950		btrfs_unlock_up_safe(p, level + 1);
2951
2952		ret = btrfs_bin_search(b, key, &slot);
2953		if (ret < 0)
2954			goto done;
 
 
 
2955
2956		if (level == 0) {
 
 
 
 
 
2957			p->slots[level] = slot;
2958			unlock_up(p, level, lowest_unlock, 0, NULL);
2959			goto done;
2960		}
2961
2962		if (ret && slot > 0) {
2963			dec = 1;
2964			slot--;
2965		}
2966		p->slots[level] = slot;
2967		unlock_up(p, level, lowest_unlock, 0, NULL);
2968
2969		if (level == lowest_level) {
2970			if (dec)
2971				p->slots[level]++;
2972			goto done;
2973		}
2974
2975		err = read_block_for_search(root, p, &b, level, slot, key);
2976		if (err == -EAGAIN)
2977			goto again;
2978		if (err) {
2979			ret = err;
2980			goto done;
2981		}
 
2982
2983		level = btrfs_header_level(b);
2984		if (!btrfs_tree_read_lock_atomic(b)) {
2985			btrfs_set_path_blocking(p);
2986			btrfs_tree_read_lock(b);
2987		}
2988		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2989		if (!b) {
2990			ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
2991			goto done;
2992		}
2993		p->locks[level] = BTRFS_READ_LOCK;
2994		p->nodes[level] = b;
2995	}
2996	ret = 1;
2997done:
2998	if (!p->leave_spinning)
2999		btrfs_set_path_blocking(p);
3000	if (ret < 0)
3001		btrfs_release_path(p);
3002
3003	return ret;
3004}
3005
3006/*
3007 * helper to use instead of search slot if no exact match is needed but
3008 * instead the next or previous item should be returned.
3009 * When find_higher is true, the next higher item is returned, the next lower
3010 * otherwise.
3011 * When return_any and find_higher are both true, and no higher item is found,
3012 * return the next lower instead.
3013 * When return_any is true and find_higher is false, and no lower item is found,
3014 * return the next higher instead.
3015 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3016 * < 0 on error
3017 */
3018int btrfs_search_slot_for_read(struct btrfs_root *root,
3019			       const struct btrfs_key *key,
3020			       struct btrfs_path *p, int find_higher,
3021			       int return_any)
3022{
3023	int ret;
3024	struct extent_buffer *leaf;
3025
3026again:
3027	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3028	if (ret <= 0)
3029		return ret;
3030	/*
3031	 * a return value of 1 means the path is at the position where the
3032	 * item should be inserted. Normally this is the next bigger item,
3033	 * but in case the previous item is the last in a leaf, path points
3034	 * to the first free slot in the previous leaf, i.e. at an invalid
3035	 * item.
3036	 */
3037	leaf = p->nodes[0];
3038
3039	if (find_higher) {
3040		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3041			ret = btrfs_next_leaf(root, p);
3042			if (ret <= 0)
3043				return ret;
3044			if (!return_any)
3045				return 1;
3046			/*
3047			 * no higher item found, return the next
3048			 * lower instead
3049			 */
3050			return_any = 0;
3051			find_higher = 0;
3052			btrfs_release_path(p);
3053			goto again;
3054		}
3055	} else {
3056		if (p->slots[0] == 0) {
3057			ret = btrfs_prev_leaf(root, p);
3058			if (ret < 0)
3059				return ret;
3060			if (!ret) {
3061				leaf = p->nodes[0];
3062				if (p->slots[0] == btrfs_header_nritems(leaf))
3063					p->slots[0]--;
3064				return 0;
3065			}
3066			if (!return_any)
3067				return 1;
3068			/*
3069			 * no lower item found, return the next
3070			 * higher instead
3071			 */
3072			return_any = 0;
3073			find_higher = 1;
3074			btrfs_release_path(p);
3075			goto again;
3076		} else {
3077			--p->slots[0];
3078		}
3079	}
3080	return 0;
3081}
3082
3083/*
3084 * adjust the pointers going up the tree, starting at level
3085 * making sure the right key of each node is points to 'key'.
3086 * This is used after shifting pointers to the left, so it stops
3087 * fixing up pointers when a given leaf/node is not in slot 0 of the
3088 * higher levels
3089 *
3090 */
3091static void fixup_low_keys(struct btrfs_path *path,
 
3092			   struct btrfs_disk_key *key, int level)
3093{
3094	int i;
3095	struct extent_buffer *t;
3096	int ret;
3097
3098	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3099		int tslot = path->slots[i];
3100
3101		if (!path->nodes[i])
3102			break;
3103		t = path->nodes[i];
3104		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3105				GFP_ATOMIC);
3106		BUG_ON(ret < 0);
3107		btrfs_set_node_key(t, key, tslot);
3108		btrfs_mark_buffer_dirty(path->nodes[i]);
3109		if (tslot != 0)
3110			break;
3111	}
3112}
3113
3114/*
3115 * update item key.
3116 *
3117 * This function isn't completely safe. It's the caller's responsibility
3118 * that the new key won't break the order
3119 */
3120void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3121			     struct btrfs_path *path,
3122			     const struct btrfs_key *new_key)
3123{
3124	struct btrfs_disk_key disk_key;
3125	struct extent_buffer *eb;
3126	int slot;
3127
3128	eb = path->nodes[0];
3129	slot = path->slots[0];
3130	if (slot > 0) {
3131		btrfs_item_key(eb, &disk_key, slot - 1);
3132		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3133			btrfs_crit(fs_info,
3134		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3135				   slot, btrfs_disk_key_objectid(&disk_key),
3136				   btrfs_disk_key_type(&disk_key),
3137				   btrfs_disk_key_offset(&disk_key),
3138				   new_key->objectid, new_key->type,
3139				   new_key->offset);
3140			btrfs_print_leaf(eb);
3141			BUG();
3142		}
3143	}
3144	if (slot < btrfs_header_nritems(eb) - 1) {
3145		btrfs_item_key(eb, &disk_key, slot + 1);
3146		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3147			btrfs_crit(fs_info,
3148		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3149				   slot, btrfs_disk_key_objectid(&disk_key),
3150				   btrfs_disk_key_type(&disk_key),
3151				   btrfs_disk_key_offset(&disk_key),
3152				   new_key->objectid, new_key->type,
3153				   new_key->offset);
3154			btrfs_print_leaf(eb);
3155			BUG();
3156		}
3157	}
3158
3159	btrfs_cpu_key_to_disk(&disk_key, new_key);
3160	btrfs_set_item_key(eb, &disk_key, slot);
3161	btrfs_mark_buffer_dirty(eb);
3162	if (slot == 0)
3163		fixup_low_keys(path, &disk_key, 1);
3164}
3165
3166/*
3167 * try to push data from one node into the next node left in the
3168 * tree.
3169 *
3170 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3171 * error, and > 0 if there was no room in the left hand block.
3172 */
3173static int push_node_left(struct btrfs_trans_handle *trans,
3174			  struct extent_buffer *dst,
3175			  struct extent_buffer *src, int empty)
3176{
3177	struct btrfs_fs_info *fs_info = trans->fs_info;
3178	int push_items = 0;
3179	int src_nritems;
3180	int dst_nritems;
3181	int ret = 0;
3182
3183	src_nritems = btrfs_header_nritems(src);
3184	dst_nritems = btrfs_header_nritems(dst);
3185	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3186	WARN_ON(btrfs_header_generation(src) != trans->transid);
3187	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3188
3189	if (!empty && src_nritems <= 8)
3190		return 1;
3191
3192	if (push_items <= 0)
3193		return 1;
3194
3195	if (empty) {
3196		push_items = min(src_nritems, push_items);
3197		if (push_items < src_nritems) {
3198			/* leave at least 8 pointers in the node if
3199			 * we aren't going to empty it
3200			 */
3201			if (src_nritems - push_items < 8) {
3202				if (push_items <= 8)
3203					return 1;
3204				push_items -= 8;
3205			}
3206		}
3207	} else
3208		push_items = min(src_nritems - 8, push_items);
3209
3210	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
 
3211	if (ret) {
3212		btrfs_abort_transaction(trans, ret);
3213		return ret;
3214	}
3215	copy_extent_buffer(dst, src,
3216			   btrfs_node_key_ptr_offset(dst_nritems),
3217			   btrfs_node_key_ptr_offset(0),
3218			   push_items * sizeof(struct btrfs_key_ptr));
3219
3220	if (push_items < src_nritems) {
3221		/*
3222		 * Don't call tree_mod_log_insert_move here, key removal was
3223		 * already fully logged by tree_mod_log_eb_copy above.
3224		 */
3225		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3226				      btrfs_node_key_ptr_offset(push_items),
3227				      (src_nritems - push_items) *
3228				      sizeof(struct btrfs_key_ptr));
3229	}
3230	btrfs_set_header_nritems(src, src_nritems - push_items);
3231	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3232	btrfs_mark_buffer_dirty(src);
3233	btrfs_mark_buffer_dirty(dst);
3234
3235	return ret;
3236}
3237
3238/*
3239 * try to push data from one node into the next node right in the
3240 * tree.
3241 *
3242 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3243 * error, and > 0 if there was no room in the right hand block.
3244 *
3245 * this will  only push up to 1/2 the contents of the left node over
3246 */
3247static int balance_node_right(struct btrfs_trans_handle *trans,
 
3248			      struct extent_buffer *dst,
3249			      struct extent_buffer *src)
3250{
3251	struct btrfs_fs_info *fs_info = trans->fs_info;
3252	int push_items = 0;
3253	int max_push;
3254	int src_nritems;
3255	int dst_nritems;
3256	int ret = 0;
3257
3258	WARN_ON(btrfs_header_generation(src) != trans->transid);
3259	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3260
3261	src_nritems = btrfs_header_nritems(src);
3262	dst_nritems = btrfs_header_nritems(dst);
3263	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3264	if (push_items <= 0)
3265		return 1;
3266
3267	if (src_nritems < 4)
3268		return 1;
3269
3270	max_push = src_nritems / 2 + 1;
3271	/* don't try to empty the node */
3272	if (max_push >= src_nritems)
3273		return 1;
3274
3275	if (max_push < push_items)
3276		push_items = max_push;
3277
3278	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3279	BUG_ON(ret < 0);
3280	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3281				      btrfs_node_key_ptr_offset(0),
3282				      (dst_nritems) *
3283				      sizeof(struct btrfs_key_ptr));
3284
3285	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3286				   push_items);
3287	if (ret) {
3288		btrfs_abort_transaction(trans, ret);
3289		return ret;
3290	}
3291	copy_extent_buffer(dst, src,
3292			   btrfs_node_key_ptr_offset(0),
3293			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3294			   push_items * sizeof(struct btrfs_key_ptr));
3295
3296	btrfs_set_header_nritems(src, src_nritems - push_items);
3297	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3298
3299	btrfs_mark_buffer_dirty(src);
3300	btrfs_mark_buffer_dirty(dst);
3301
3302	return ret;
3303}
3304
3305/*
3306 * helper function to insert a new root level in the tree.
3307 * A new node is allocated, and a single item is inserted to
3308 * point to the existing root
3309 *
3310 * returns zero on success or < 0 on failure.
3311 */
3312static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3313			   struct btrfs_root *root,
3314			   struct btrfs_path *path, int level)
3315{
3316	struct btrfs_fs_info *fs_info = root->fs_info;
3317	u64 lower_gen;
3318	struct extent_buffer *lower;
3319	struct extent_buffer *c;
3320	struct extent_buffer *old;
3321	struct btrfs_disk_key lower_key;
3322	int ret;
3323
3324	BUG_ON(path->nodes[level]);
3325	BUG_ON(path->nodes[level-1] != root->node);
3326
3327	lower = path->nodes[level-1];
3328	if (level == 1)
3329		btrfs_item_key(lower, &lower_key, 0);
3330	else
3331		btrfs_node_key(lower, &lower_key, 0);
3332
3333	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3334					 root->node->start, 0);
3335	if (IS_ERR(c))
3336		return PTR_ERR(c);
3337
3338	root_add_used(root, fs_info->nodesize);
3339
 
3340	btrfs_set_header_nritems(c, 1);
 
 
 
 
 
 
 
 
 
 
 
 
3341	btrfs_set_node_key(c, &lower_key, 0);
3342	btrfs_set_node_blockptr(c, 0, lower->start);
3343	lower_gen = btrfs_header_generation(lower);
3344	WARN_ON(lower_gen != trans->transid);
3345
3346	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3347
3348	btrfs_mark_buffer_dirty(c);
3349
3350	old = root->node;
3351	ret = tree_mod_log_insert_root(root->node, c, 0);
3352	BUG_ON(ret < 0);
3353	rcu_assign_pointer(root->node, c);
3354
3355	/* the super has an extra ref to root->node */
3356	free_extent_buffer(old);
3357
3358	add_root_to_dirty_list(root);
3359	atomic_inc(&c->refs);
3360	path->nodes[level] = c;
3361	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3362	path->slots[level] = 0;
3363	return 0;
3364}
3365
3366/*
3367 * worker function to insert a single pointer in a node.
3368 * the node should have enough room for the pointer already
3369 *
3370 * slot and level indicate where you want the key to go, and
3371 * blocknr is the block the key points to.
3372 */
3373static void insert_ptr(struct btrfs_trans_handle *trans,
3374		       struct btrfs_path *path,
3375		       struct btrfs_disk_key *key, u64 bytenr,
3376		       int slot, int level)
3377{
3378	struct extent_buffer *lower;
3379	int nritems;
3380	int ret;
3381
3382	BUG_ON(!path->nodes[level]);
3383	btrfs_assert_tree_locked(path->nodes[level]);
3384	lower = path->nodes[level];
3385	nritems = btrfs_header_nritems(lower);
3386	BUG_ON(slot > nritems);
3387	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3388	if (slot != nritems) {
3389		if (level) {
3390			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3391					nritems - slot);
3392			BUG_ON(ret < 0);
3393		}
3394		memmove_extent_buffer(lower,
3395			      btrfs_node_key_ptr_offset(slot + 1),
3396			      btrfs_node_key_ptr_offset(slot),
3397			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3398	}
3399	if (level) {
3400		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3401				GFP_NOFS);
3402		BUG_ON(ret < 0);
3403	}
3404	btrfs_set_node_key(lower, key, slot);
3405	btrfs_set_node_blockptr(lower, slot, bytenr);
3406	WARN_ON(trans->transid == 0);
3407	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3408	btrfs_set_header_nritems(lower, nritems + 1);
3409	btrfs_mark_buffer_dirty(lower);
3410}
3411
3412/*
3413 * split the node at the specified level in path in two.
3414 * The path is corrected to point to the appropriate node after the split
3415 *
3416 * Before splitting this tries to make some room in the node by pushing
3417 * left and right, if either one works, it returns right away.
3418 *
3419 * returns 0 on success and < 0 on failure
3420 */
3421static noinline int split_node(struct btrfs_trans_handle *trans,
3422			       struct btrfs_root *root,
3423			       struct btrfs_path *path, int level)
3424{
3425	struct btrfs_fs_info *fs_info = root->fs_info;
3426	struct extent_buffer *c;
3427	struct extent_buffer *split;
3428	struct btrfs_disk_key disk_key;
3429	int mid;
3430	int ret;
3431	u32 c_nritems;
3432
3433	c = path->nodes[level];
3434	WARN_ON(btrfs_header_generation(c) != trans->transid);
3435	if (c == root->node) {
3436		/*
3437		 * trying to split the root, lets make a new one
3438		 *
3439		 * tree mod log: We don't log_removal old root in
3440		 * insert_new_root, because that root buffer will be kept as a
3441		 * normal node. We are going to log removal of half of the
3442		 * elements below with tree_mod_log_eb_copy. We're holding a
3443		 * tree lock on the buffer, which is why we cannot race with
3444		 * other tree_mod_log users.
3445		 */
3446		ret = insert_new_root(trans, root, path, level + 1);
3447		if (ret)
3448			return ret;
3449	} else {
3450		ret = push_nodes_for_insert(trans, root, path, level);
3451		c = path->nodes[level];
3452		if (!ret && btrfs_header_nritems(c) <
3453		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3454			return 0;
3455		if (ret < 0)
3456			return ret;
3457	}
3458
3459	c_nritems = btrfs_header_nritems(c);
3460	mid = (c_nritems + 1) / 2;
3461	btrfs_node_key(c, &disk_key, mid);
3462
3463	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3464					     c->start, 0);
3465	if (IS_ERR(split))
3466		return PTR_ERR(split);
3467
3468	root_add_used(root, fs_info->nodesize);
3469	ASSERT(btrfs_header_level(c) == level);
 
 
 
 
 
 
 
 
 
 
 
3470
3471	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
 
3472	if (ret) {
3473		btrfs_abort_transaction(trans, ret);
3474		return ret;
3475	}
3476	copy_extent_buffer(split, c,
3477			   btrfs_node_key_ptr_offset(0),
3478			   btrfs_node_key_ptr_offset(mid),
3479			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3480	btrfs_set_header_nritems(split, c_nritems - mid);
3481	btrfs_set_header_nritems(c, mid);
3482	ret = 0;
3483
3484	btrfs_mark_buffer_dirty(c);
3485	btrfs_mark_buffer_dirty(split);
3486
3487	insert_ptr(trans, path, &disk_key, split->start,
3488		   path->slots[level + 1] + 1, level + 1);
3489
3490	if (path->slots[level] >= mid) {
3491		path->slots[level] -= mid;
3492		btrfs_tree_unlock(c);
3493		free_extent_buffer(c);
3494		path->nodes[level] = split;
3495		path->slots[level + 1] += 1;
3496	} else {
3497		btrfs_tree_unlock(split);
3498		free_extent_buffer(split);
3499	}
3500	return ret;
3501}
3502
3503/*
3504 * how many bytes are required to store the items in a leaf.  start
3505 * and nr indicate which items in the leaf to check.  This totals up the
3506 * space used both by the item structs and the item data
3507 */
3508static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3509{
3510	struct btrfs_item *start_item;
3511	struct btrfs_item *end_item;
 
3512	int data_len;
3513	int nritems = btrfs_header_nritems(l);
3514	int end = min(nritems, start + nr) - 1;
3515
3516	if (!nr)
3517		return 0;
 
3518	start_item = btrfs_item_nr(start);
3519	end_item = btrfs_item_nr(end);
3520	data_len = btrfs_item_offset(l, start_item) +
3521		   btrfs_item_size(l, start_item);
3522	data_len = data_len - btrfs_item_offset(l, end_item);
3523	data_len += sizeof(struct btrfs_item) * nr;
3524	WARN_ON(data_len < 0);
3525	return data_len;
3526}
3527
3528/*
3529 * The space between the end of the leaf items and
3530 * the start of the leaf data.  IOW, how much room
3531 * the leaf has left for both items and data
3532 */
3533noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
 
3534{
3535	struct btrfs_fs_info *fs_info = leaf->fs_info;
3536	int nritems = btrfs_header_nritems(leaf);
3537	int ret;
3538
3539	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3540	if (ret < 0) {
3541		btrfs_crit(fs_info,
3542			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3543			   ret,
3544			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3545			   leaf_space_used(leaf, 0, nritems), nritems);
3546	}
3547	return ret;
3548}
3549
3550/*
3551 * min slot controls the lowest index we're willing to push to the
3552 * right.  We'll push up to and including min_slot, but no lower
3553 */
3554static noinline int __push_leaf_right(struct btrfs_path *path,
 
 
3555				      int data_size, int empty,
3556				      struct extent_buffer *right,
3557				      int free_space, u32 left_nritems,
3558				      u32 min_slot)
3559{
3560	struct btrfs_fs_info *fs_info = right->fs_info;
3561	struct extent_buffer *left = path->nodes[0];
3562	struct extent_buffer *upper = path->nodes[1];
3563	struct btrfs_map_token token;
3564	struct btrfs_disk_key disk_key;
3565	int slot;
3566	u32 i;
3567	int push_space = 0;
3568	int push_items = 0;
3569	struct btrfs_item *item;
3570	u32 nr;
3571	u32 right_nritems;
3572	u32 data_end;
3573	u32 this_item_size;
3574
 
 
3575	if (empty)
3576		nr = 0;
3577	else
3578		nr = max_t(u32, 1, min_slot);
3579
3580	if (path->slots[0] >= left_nritems)
3581		push_space += data_size;
3582
3583	slot = path->slots[1];
3584	i = left_nritems - 1;
3585	while (i >= nr) {
3586		item = btrfs_item_nr(i);
3587
3588		if (!empty && push_items > 0) {
3589			if (path->slots[0] > i)
3590				break;
3591			if (path->slots[0] == i) {
3592				int space = btrfs_leaf_free_space(left);
3593
3594				if (space + push_space * 2 > free_space)
3595					break;
3596			}
3597		}
3598
3599		if (path->slots[0] == i)
3600			push_space += data_size;
3601
3602		this_item_size = btrfs_item_size(left, item);
3603		if (this_item_size + sizeof(*item) + push_space > free_space)
3604			break;
3605
3606		push_items++;
3607		push_space += this_item_size + sizeof(*item);
3608		if (i == 0)
3609			break;
3610		i--;
3611	}
3612
3613	if (push_items == 0)
3614		goto out_unlock;
3615
3616	WARN_ON(!empty && push_items == left_nritems);
3617
3618	/* push left to right */
3619	right_nritems = btrfs_header_nritems(right);
3620
3621	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3622	push_space -= leaf_data_end(left);
3623
3624	/* make room in the right data area */
3625	data_end = leaf_data_end(right);
3626	memmove_extent_buffer(right,
3627			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3628			      BTRFS_LEAF_DATA_OFFSET + data_end,
3629			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3630
3631	/* copy from the left data area */
3632	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3633		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3634		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3635		     push_space);
3636
3637	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3638			      btrfs_item_nr_offset(0),
3639			      right_nritems * sizeof(struct btrfs_item));
3640
3641	/* copy the items from left to right */
3642	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3643		   btrfs_item_nr_offset(left_nritems - push_items),
3644		   push_items * sizeof(struct btrfs_item));
3645
3646	/* update the item pointers */
3647	btrfs_init_map_token(&token, right);
3648	right_nritems += push_items;
3649	btrfs_set_header_nritems(right, right_nritems);
3650	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3651	for (i = 0; i < right_nritems; i++) {
3652		item = btrfs_item_nr(i);
3653		push_space -= btrfs_token_item_size(&token, item);
3654		btrfs_set_token_item_offset(&token, item, push_space);
3655	}
3656
3657	left_nritems -= push_items;
3658	btrfs_set_header_nritems(left, left_nritems);
3659
3660	if (left_nritems)
3661		btrfs_mark_buffer_dirty(left);
3662	else
3663		btrfs_clean_tree_block(left);
3664
3665	btrfs_mark_buffer_dirty(right);
3666
3667	btrfs_item_key(right, &disk_key, 0);
3668	btrfs_set_node_key(upper, &disk_key, slot + 1);
3669	btrfs_mark_buffer_dirty(upper);
3670
3671	/* then fixup the leaf pointer in the path */
3672	if (path->slots[0] >= left_nritems) {
3673		path->slots[0] -= left_nritems;
3674		if (btrfs_header_nritems(path->nodes[0]) == 0)
3675			btrfs_clean_tree_block(path->nodes[0]);
3676		btrfs_tree_unlock(path->nodes[0]);
3677		free_extent_buffer(path->nodes[0]);
3678		path->nodes[0] = right;
3679		path->slots[1] += 1;
3680	} else {
3681		btrfs_tree_unlock(right);
3682		free_extent_buffer(right);
3683	}
3684	return 0;
3685
3686out_unlock:
3687	btrfs_tree_unlock(right);
3688	free_extent_buffer(right);
3689	return 1;
3690}
3691
3692/*
3693 * push some data in the path leaf to the right, trying to free up at
3694 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3695 *
3696 * returns 1 if the push failed because the other node didn't have enough
3697 * room, 0 if everything worked out and < 0 if there were major errors.
3698 *
3699 * this will push starting from min_slot to the end of the leaf.  It won't
3700 * push any slot lower than min_slot
3701 */
3702static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3703			   *root, struct btrfs_path *path,
3704			   int min_data_size, int data_size,
3705			   int empty, u32 min_slot)
3706{
3707	struct extent_buffer *left = path->nodes[0];
3708	struct extent_buffer *right;
3709	struct extent_buffer *upper;
3710	int slot;
3711	int free_space;
3712	u32 left_nritems;
3713	int ret;
3714
3715	if (!path->nodes[1])
3716		return 1;
3717
3718	slot = path->slots[1];
3719	upper = path->nodes[1];
3720	if (slot >= btrfs_header_nritems(upper) - 1)
3721		return 1;
3722
3723	btrfs_assert_tree_locked(path->nodes[1]);
3724
3725	right = btrfs_read_node_slot(upper, slot + 1);
3726	/*
3727	 * slot + 1 is not valid or we fail to read the right node,
3728	 * no big deal, just return.
3729	 */
3730	if (IS_ERR(right))
3731		return 1;
3732
3733	btrfs_tree_lock(right);
3734	btrfs_set_lock_blocking_write(right);
3735
3736	free_space = btrfs_leaf_free_space(right);
3737	if (free_space < data_size)
3738		goto out_unlock;
3739
3740	/* cow and double check */
3741	ret = btrfs_cow_block(trans, root, right, upper,
3742			      slot + 1, &right);
3743	if (ret)
3744		goto out_unlock;
3745
3746	free_space = btrfs_leaf_free_space(right);
3747	if (free_space < data_size)
3748		goto out_unlock;
3749
3750	left_nritems = btrfs_header_nritems(left);
3751	if (left_nritems == 0)
3752		goto out_unlock;
3753
3754	if (path->slots[0] == left_nritems && !empty) {
3755		/* Key greater than all keys in the leaf, right neighbor has
3756		 * enough room for it and we're not emptying our leaf to delete
3757		 * it, therefore use right neighbor to insert the new item and
3758		 * no need to touch/dirty our left leaf. */
3759		btrfs_tree_unlock(left);
3760		free_extent_buffer(left);
3761		path->nodes[0] = right;
3762		path->slots[0] = 0;
3763		path->slots[1]++;
3764		return 0;
3765	}
3766
3767	return __push_leaf_right(path, min_data_size, empty,
3768				right, free_space, left_nritems, min_slot);
3769out_unlock:
3770	btrfs_tree_unlock(right);
3771	free_extent_buffer(right);
3772	return 1;
3773}
3774
3775/*
3776 * push some data in the path leaf to the left, trying to free up at
3777 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3778 *
3779 * max_slot can put a limit on how far into the leaf we'll push items.  The
3780 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3781 * items
3782 */
3783static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
 
3784				     int empty, struct extent_buffer *left,
3785				     int free_space, u32 right_nritems,
3786				     u32 max_slot)
3787{
3788	struct btrfs_fs_info *fs_info = left->fs_info;
3789	struct btrfs_disk_key disk_key;
3790	struct extent_buffer *right = path->nodes[0];
3791	int i;
3792	int push_space = 0;
3793	int push_items = 0;
3794	struct btrfs_item *item;
3795	u32 old_left_nritems;
3796	u32 nr;
3797	int ret = 0;
3798	u32 this_item_size;
3799	u32 old_left_item_size;
3800	struct btrfs_map_token token;
3801
 
 
3802	if (empty)
3803		nr = min(right_nritems, max_slot);
3804	else
3805		nr = min(right_nritems - 1, max_slot);
3806
3807	for (i = 0; i < nr; i++) {
3808		item = btrfs_item_nr(i);
3809
3810		if (!empty && push_items > 0) {
3811			if (path->slots[0] < i)
3812				break;
3813			if (path->slots[0] == i) {
3814				int space = btrfs_leaf_free_space(right);
3815
3816				if (space + push_space * 2 > free_space)
3817					break;
3818			}
3819		}
3820
3821		if (path->slots[0] == i)
3822			push_space += data_size;
3823
3824		this_item_size = btrfs_item_size(right, item);
3825		if (this_item_size + sizeof(*item) + push_space > free_space)
3826			break;
3827
3828		push_items++;
3829		push_space += this_item_size + sizeof(*item);
3830	}
3831
3832	if (push_items == 0) {
3833		ret = 1;
3834		goto out;
3835	}
3836	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3837
3838	/* push data from right to left */
3839	copy_extent_buffer(left, right,
3840			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3841			   btrfs_item_nr_offset(0),
3842			   push_items * sizeof(struct btrfs_item));
3843
3844	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3845		     btrfs_item_offset_nr(right, push_items - 1);
3846
3847	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3848		     leaf_data_end(left) - push_space,
3849		     BTRFS_LEAF_DATA_OFFSET +
3850		     btrfs_item_offset_nr(right, push_items - 1),
3851		     push_space);
3852	old_left_nritems = btrfs_header_nritems(left);
3853	BUG_ON(old_left_nritems <= 0);
3854
3855	btrfs_init_map_token(&token, left);
3856	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3857	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3858		u32 ioff;
3859
3860		item = btrfs_item_nr(i);
3861
3862		ioff = btrfs_token_item_offset(&token, item);
3863		btrfs_set_token_item_offset(&token, item,
3864		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
 
3865	}
3866	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3867
3868	/* fixup right node */
3869	if (push_items > right_nritems)
3870		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3871		       right_nritems);
3872
3873	if (push_items < right_nritems) {
3874		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3875						  leaf_data_end(right);
3876		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3877				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3878				      BTRFS_LEAF_DATA_OFFSET +
3879				      leaf_data_end(right), push_space);
3880
3881		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3882			      btrfs_item_nr_offset(push_items),
3883			     (btrfs_header_nritems(right) - push_items) *
3884			     sizeof(struct btrfs_item));
3885	}
3886
3887	btrfs_init_map_token(&token, right);
3888	right_nritems -= push_items;
3889	btrfs_set_header_nritems(right, right_nritems);
3890	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3891	for (i = 0; i < right_nritems; i++) {
3892		item = btrfs_item_nr(i);
3893
3894		push_space = push_space - btrfs_token_item_size(&token, item);
3895		btrfs_set_token_item_offset(&token, item, push_space);
 
3896	}
3897
3898	btrfs_mark_buffer_dirty(left);
3899	if (right_nritems)
3900		btrfs_mark_buffer_dirty(right);
3901	else
3902		btrfs_clean_tree_block(right);
3903
3904	btrfs_item_key(right, &disk_key, 0);
3905	fixup_low_keys(path, &disk_key, 1);
3906
3907	/* then fixup the leaf pointer in the path */
3908	if (path->slots[0] < push_items) {
3909		path->slots[0] += old_left_nritems;
3910		btrfs_tree_unlock(path->nodes[0]);
3911		free_extent_buffer(path->nodes[0]);
3912		path->nodes[0] = left;
3913		path->slots[1] -= 1;
3914	} else {
3915		btrfs_tree_unlock(left);
3916		free_extent_buffer(left);
3917		path->slots[0] -= push_items;
3918	}
3919	BUG_ON(path->slots[0] < 0);
3920	return ret;
3921out:
3922	btrfs_tree_unlock(left);
3923	free_extent_buffer(left);
3924	return ret;
3925}
3926
3927/*
3928 * push some data in the path leaf to the left, trying to free up at
3929 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3930 *
3931 * max_slot can put a limit on how far into the leaf we'll push items.  The
3932 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3933 * items
3934 */
3935static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3936			  *root, struct btrfs_path *path, int min_data_size,
3937			  int data_size, int empty, u32 max_slot)
3938{
3939	struct extent_buffer *right = path->nodes[0];
3940	struct extent_buffer *left;
3941	int slot;
3942	int free_space;
3943	u32 right_nritems;
3944	int ret = 0;
3945
3946	slot = path->slots[1];
3947	if (slot == 0)
3948		return 1;
3949	if (!path->nodes[1])
3950		return 1;
3951
3952	right_nritems = btrfs_header_nritems(right);
3953	if (right_nritems == 0)
3954		return 1;
3955
3956	btrfs_assert_tree_locked(path->nodes[1]);
3957
3958	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3959	/*
3960	 * slot - 1 is not valid or we fail to read the left node,
3961	 * no big deal, just return.
3962	 */
3963	if (IS_ERR(left))
3964		return 1;
3965
3966	btrfs_tree_lock(left);
3967	btrfs_set_lock_blocking_write(left);
3968
3969	free_space = btrfs_leaf_free_space(left);
3970	if (free_space < data_size) {
3971		ret = 1;
3972		goto out;
3973	}
3974
3975	/* cow and double check */
3976	ret = btrfs_cow_block(trans, root, left,
3977			      path->nodes[1], slot - 1, &left);
3978	if (ret) {
3979		/* we hit -ENOSPC, but it isn't fatal here */
3980		if (ret == -ENOSPC)
3981			ret = 1;
3982		goto out;
3983	}
3984
3985	free_space = btrfs_leaf_free_space(left);
3986	if (free_space < data_size) {
3987		ret = 1;
3988		goto out;
3989	}
3990
3991	return __push_leaf_left(path, min_data_size,
3992			       empty, left, free_space, right_nritems,
3993			       max_slot);
3994out:
3995	btrfs_tree_unlock(left);
3996	free_extent_buffer(left);
3997	return ret;
3998}
3999
4000/*
4001 * split the path's leaf in two, making sure there is at least data_size
4002 * available for the resulting leaf level of the path.
4003 */
4004static noinline void copy_for_split(struct btrfs_trans_handle *trans,
 
4005				    struct btrfs_path *path,
4006				    struct extent_buffer *l,
4007				    struct extent_buffer *right,
4008				    int slot, int mid, int nritems)
4009{
4010	struct btrfs_fs_info *fs_info = trans->fs_info;
4011	int data_copy_size;
4012	int rt_data_off;
4013	int i;
4014	struct btrfs_disk_key disk_key;
4015	struct btrfs_map_token token;
4016
 
 
4017	nritems = nritems - mid;
4018	btrfs_set_header_nritems(right, nritems);
4019	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4020
4021	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4022			   btrfs_item_nr_offset(mid),
4023			   nritems * sizeof(struct btrfs_item));
4024
4025	copy_extent_buffer(right, l,
4026		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4027		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4028		     leaf_data_end(l), data_copy_size);
4029
4030	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
 
4031
4032	btrfs_init_map_token(&token, right);
4033	for (i = 0; i < nritems; i++) {
4034		struct btrfs_item *item = btrfs_item_nr(i);
4035		u32 ioff;
4036
4037		ioff = btrfs_token_item_offset(&token, item);
4038		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
 
4039	}
4040
4041	btrfs_set_header_nritems(l, mid);
4042	btrfs_item_key(right, &disk_key, 0);
4043	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
4044
4045	btrfs_mark_buffer_dirty(right);
4046	btrfs_mark_buffer_dirty(l);
4047	BUG_ON(path->slots[0] != slot);
4048
4049	if (mid <= slot) {
4050		btrfs_tree_unlock(path->nodes[0]);
4051		free_extent_buffer(path->nodes[0]);
4052		path->nodes[0] = right;
4053		path->slots[0] -= mid;
4054		path->slots[1] += 1;
4055	} else {
4056		btrfs_tree_unlock(right);
4057		free_extent_buffer(right);
4058	}
4059
4060	BUG_ON(path->slots[0] < 0);
4061}
4062
4063/*
4064 * double splits happen when we need to insert a big item in the middle
4065 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4066 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4067 *          A                 B                 C
4068 *
4069 * We avoid this by trying to push the items on either side of our target
4070 * into the adjacent leaves.  If all goes well we can avoid the double split
4071 * completely.
4072 */
4073static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4074					  struct btrfs_root *root,
4075					  struct btrfs_path *path,
4076					  int data_size)
4077{
4078	int ret;
4079	int progress = 0;
4080	int slot;
4081	u32 nritems;
4082	int space_needed = data_size;
4083
4084	slot = path->slots[0];
4085	if (slot < btrfs_header_nritems(path->nodes[0]))
4086		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4087
4088	/*
4089	 * try to push all the items after our slot into the
4090	 * right leaf
4091	 */
4092	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4093	if (ret < 0)
4094		return ret;
4095
4096	if (ret == 0)
4097		progress++;
4098
4099	nritems = btrfs_header_nritems(path->nodes[0]);
4100	/*
4101	 * our goal is to get our slot at the start or end of a leaf.  If
4102	 * we've done so we're done
4103	 */
4104	if (path->slots[0] == 0 || path->slots[0] == nritems)
4105		return 0;
4106
4107	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4108		return 0;
4109
4110	/* try to push all the items before our slot into the next leaf */
4111	slot = path->slots[0];
4112	space_needed = data_size;
4113	if (slot > 0)
4114		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4115	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4116	if (ret < 0)
4117		return ret;
4118
4119	if (ret == 0)
4120		progress++;
4121
4122	if (progress)
4123		return 0;
4124	return 1;
4125}
4126
4127/*
4128 * split the path's leaf in two, making sure there is at least data_size
4129 * available for the resulting leaf level of the path.
4130 *
4131 * returns 0 if all went well and < 0 on failure.
4132 */
4133static noinline int split_leaf(struct btrfs_trans_handle *trans,
4134			       struct btrfs_root *root,
4135			       const struct btrfs_key *ins_key,
4136			       struct btrfs_path *path, int data_size,
4137			       int extend)
4138{
4139	struct btrfs_disk_key disk_key;
4140	struct extent_buffer *l;
4141	u32 nritems;
4142	int mid;
4143	int slot;
4144	struct extent_buffer *right;
4145	struct btrfs_fs_info *fs_info = root->fs_info;
4146	int ret = 0;
4147	int wret;
4148	int split;
4149	int num_doubles = 0;
4150	int tried_avoid_double = 0;
4151
4152	l = path->nodes[0];
4153	slot = path->slots[0];
4154	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4155	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4156		return -EOVERFLOW;
4157
4158	/* first try to make some room by pushing left and right */
4159	if (data_size && path->nodes[1]) {
4160		int space_needed = data_size;
4161
4162		if (slot < btrfs_header_nritems(l))
4163			space_needed -= btrfs_leaf_free_space(l);
4164
4165		wret = push_leaf_right(trans, root, path, space_needed,
4166				       space_needed, 0, 0);
4167		if (wret < 0)
4168			return wret;
4169		if (wret) {
4170			space_needed = data_size;
4171			if (slot > 0)
4172				space_needed -= btrfs_leaf_free_space(l);
4173			wret = push_leaf_left(trans, root, path, space_needed,
4174					      space_needed, 0, (u32)-1);
4175			if (wret < 0)
4176				return wret;
4177		}
4178		l = path->nodes[0];
4179
4180		/* did the pushes work? */
4181		if (btrfs_leaf_free_space(l) >= data_size)
4182			return 0;
4183	}
4184
4185	if (!path->nodes[1]) {
4186		ret = insert_new_root(trans, root, path, 1);
4187		if (ret)
4188			return ret;
4189	}
4190again:
4191	split = 1;
4192	l = path->nodes[0];
4193	slot = path->slots[0];
4194	nritems = btrfs_header_nritems(l);
4195	mid = (nritems + 1) / 2;
4196
4197	if (mid <= slot) {
4198		if (nritems == 1 ||
4199		    leaf_space_used(l, mid, nritems - mid) + data_size >
4200			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4201			if (slot >= nritems) {
4202				split = 0;
4203			} else {
4204				mid = slot;
4205				if (mid != nritems &&
4206				    leaf_space_used(l, mid, nritems - mid) +
4207				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4208					if (data_size && !tried_avoid_double)
4209						goto push_for_double;
4210					split = 2;
4211				}
4212			}
4213		}
4214	} else {
4215		if (leaf_space_used(l, 0, mid) + data_size >
4216			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4217			if (!extend && data_size && slot == 0) {
4218				split = 0;
4219			} else if ((extend || !data_size) && slot == 0) {
4220				mid = 1;
4221			} else {
4222				mid = slot;
4223				if (mid != nritems &&
4224				    leaf_space_used(l, mid, nritems - mid) +
4225				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4226					if (data_size && !tried_avoid_double)
4227						goto push_for_double;
4228					split = 2;
4229				}
4230			}
4231		}
4232	}
4233
4234	if (split == 0)
4235		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4236	else
4237		btrfs_item_key(l, &disk_key, mid);
4238
4239	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4240					     l->start, 0);
4241	if (IS_ERR(right))
4242		return PTR_ERR(right);
4243
4244	root_add_used(root, fs_info->nodesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
4245
4246	if (split == 0) {
4247		if (mid <= slot) {
4248			btrfs_set_header_nritems(right, 0);
4249			insert_ptr(trans, path, &disk_key,
4250				   right->start, path->slots[1] + 1, 1);
4251			btrfs_tree_unlock(path->nodes[0]);
4252			free_extent_buffer(path->nodes[0]);
4253			path->nodes[0] = right;
4254			path->slots[0] = 0;
4255			path->slots[1] += 1;
4256		} else {
4257			btrfs_set_header_nritems(right, 0);
4258			insert_ptr(trans, path, &disk_key,
4259				   right->start, path->slots[1], 1);
4260			btrfs_tree_unlock(path->nodes[0]);
4261			free_extent_buffer(path->nodes[0]);
4262			path->nodes[0] = right;
4263			path->slots[0] = 0;
4264			if (path->slots[1] == 0)
4265				fixup_low_keys(path, &disk_key, 1);
4266		}
4267		/*
4268		 * We create a new leaf 'right' for the required ins_len and
4269		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4270		 * the content of ins_len to 'right'.
4271		 */
4272		return ret;
4273	}
4274
4275	copy_for_split(trans, path, l, right, slot, mid, nritems);
4276
4277	if (split == 2) {
4278		BUG_ON(num_doubles != 0);
4279		num_doubles++;
4280		goto again;
4281	}
4282
4283	return 0;
4284
4285push_for_double:
4286	push_for_double_split(trans, root, path, data_size);
4287	tried_avoid_double = 1;
4288	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4289		return 0;
4290	goto again;
4291}
4292
4293static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4294					 struct btrfs_root *root,
4295					 struct btrfs_path *path, int ins_len)
4296{
4297	struct btrfs_key key;
4298	struct extent_buffer *leaf;
4299	struct btrfs_file_extent_item *fi;
4300	u64 extent_len = 0;
4301	u32 item_size;
4302	int ret;
4303
4304	leaf = path->nodes[0];
4305	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4306
4307	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4308	       key.type != BTRFS_EXTENT_CSUM_KEY);
4309
4310	if (btrfs_leaf_free_space(leaf) >= ins_len)
4311		return 0;
4312
4313	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4314	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4315		fi = btrfs_item_ptr(leaf, path->slots[0],
4316				    struct btrfs_file_extent_item);
4317		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4318	}
4319	btrfs_release_path(path);
4320
4321	path->keep_locks = 1;
4322	path->search_for_split = 1;
4323	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4324	path->search_for_split = 0;
4325	if (ret > 0)
4326		ret = -EAGAIN;
4327	if (ret < 0)
4328		goto err;
4329
4330	ret = -EAGAIN;
4331	leaf = path->nodes[0];
4332	/* if our item isn't there, return now */
4333	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4334		goto err;
4335
4336	/* the leaf has  changed, it now has room.  return now */
4337	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4338		goto err;
4339
4340	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4341		fi = btrfs_item_ptr(leaf, path->slots[0],
4342				    struct btrfs_file_extent_item);
4343		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4344			goto err;
4345	}
4346
4347	btrfs_set_path_blocking(path);
4348	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4349	if (ret)
4350		goto err;
4351
4352	path->keep_locks = 0;
4353	btrfs_unlock_up_safe(path, 1);
4354	return 0;
4355err:
4356	path->keep_locks = 0;
4357	return ret;
4358}
4359
4360static noinline int split_item(struct btrfs_path *path,
4361			       const struct btrfs_key *new_key,
 
 
4362			       unsigned long split_offset)
4363{
4364	struct extent_buffer *leaf;
4365	struct btrfs_item *item;
4366	struct btrfs_item *new_item;
4367	int slot;
4368	char *buf;
4369	u32 nritems;
4370	u32 item_size;
4371	u32 orig_offset;
4372	struct btrfs_disk_key disk_key;
4373
4374	leaf = path->nodes[0];
4375	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4376
4377	btrfs_set_path_blocking(path);
4378
4379	item = btrfs_item_nr(path->slots[0]);
4380	orig_offset = btrfs_item_offset(leaf, item);
4381	item_size = btrfs_item_size(leaf, item);
4382
4383	buf = kmalloc(item_size, GFP_NOFS);
4384	if (!buf)
4385		return -ENOMEM;
4386
4387	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4388			    path->slots[0]), item_size);
4389
4390	slot = path->slots[0] + 1;
4391	nritems = btrfs_header_nritems(leaf);
4392	if (slot != nritems) {
4393		/* shift the items */
4394		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4395				btrfs_item_nr_offset(slot),
4396				(nritems - slot) * sizeof(struct btrfs_item));
4397	}
4398
4399	btrfs_cpu_key_to_disk(&disk_key, new_key);
4400	btrfs_set_item_key(leaf, &disk_key, slot);
4401
4402	new_item = btrfs_item_nr(slot);
4403
4404	btrfs_set_item_offset(leaf, new_item, orig_offset);
4405	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4406
4407	btrfs_set_item_offset(leaf, item,
4408			      orig_offset + item_size - split_offset);
4409	btrfs_set_item_size(leaf, item, split_offset);
4410
4411	btrfs_set_header_nritems(leaf, nritems + 1);
4412
4413	/* write the data for the start of the original item */
4414	write_extent_buffer(leaf, buf,
4415			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4416			    split_offset);
4417
4418	/* write the data for the new item */
4419	write_extent_buffer(leaf, buf + split_offset,
4420			    btrfs_item_ptr_offset(leaf, slot),
4421			    item_size - split_offset);
4422	btrfs_mark_buffer_dirty(leaf);
4423
4424	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4425	kfree(buf);
4426	return 0;
4427}
4428
4429/*
4430 * This function splits a single item into two items,
4431 * giving 'new_key' to the new item and splitting the
4432 * old one at split_offset (from the start of the item).
4433 *
4434 * The path may be released by this operation.  After
4435 * the split, the path is pointing to the old item.  The
4436 * new item is going to be in the same node as the old one.
4437 *
4438 * Note, the item being split must be smaller enough to live alone on
4439 * a tree block with room for one extra struct btrfs_item
4440 *
4441 * This allows us to split the item in place, keeping a lock on the
4442 * leaf the entire time.
4443 */
4444int btrfs_split_item(struct btrfs_trans_handle *trans,
4445		     struct btrfs_root *root,
4446		     struct btrfs_path *path,
4447		     const struct btrfs_key *new_key,
4448		     unsigned long split_offset)
4449{
4450	int ret;
4451	ret = setup_leaf_for_split(trans, root, path,
4452				   sizeof(struct btrfs_item));
4453	if (ret)
4454		return ret;
4455
4456	ret = split_item(path, new_key, split_offset);
4457	return ret;
4458}
4459
4460/*
4461 * This function duplicate a item, giving 'new_key' to the new item.
4462 * It guarantees both items live in the same tree leaf and the new item
4463 * is contiguous with the original item.
4464 *
4465 * This allows us to split file extent in place, keeping a lock on the
4466 * leaf the entire time.
4467 */
4468int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4469			 struct btrfs_root *root,
4470			 struct btrfs_path *path,
4471			 const struct btrfs_key *new_key)
4472{
4473	struct extent_buffer *leaf;
4474	int ret;
4475	u32 item_size;
4476
4477	leaf = path->nodes[0];
4478	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4479	ret = setup_leaf_for_split(trans, root, path,
4480				   item_size + sizeof(struct btrfs_item));
4481	if (ret)
4482		return ret;
4483
4484	path->slots[0]++;
4485	setup_items_for_insert(root, path, new_key, &item_size,
4486			       item_size, item_size +
4487			       sizeof(struct btrfs_item), 1);
4488	leaf = path->nodes[0];
4489	memcpy_extent_buffer(leaf,
4490			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4491			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4492			     item_size);
4493	return 0;
4494}
4495
4496/*
4497 * make the item pointed to by the path smaller.  new_size indicates
4498 * how small to make it, and from_end tells us if we just chop bytes
4499 * off the end of the item or if we shift the item to chop bytes off
4500 * the front.
4501 */
4502void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
4503{
4504	int slot;
4505	struct extent_buffer *leaf;
4506	struct btrfs_item *item;
4507	u32 nritems;
4508	unsigned int data_end;
4509	unsigned int old_data_start;
4510	unsigned int old_size;
4511	unsigned int size_diff;
4512	int i;
4513	struct btrfs_map_token token;
4514
 
 
4515	leaf = path->nodes[0];
4516	slot = path->slots[0];
4517
4518	old_size = btrfs_item_size_nr(leaf, slot);
4519	if (old_size == new_size)
4520		return;
4521
4522	nritems = btrfs_header_nritems(leaf);
4523	data_end = leaf_data_end(leaf);
4524
4525	old_data_start = btrfs_item_offset_nr(leaf, slot);
4526
4527	size_diff = old_size - new_size;
4528
4529	BUG_ON(slot < 0);
4530	BUG_ON(slot >= nritems);
4531
4532	/*
4533	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4534	 */
4535	/* first correct the data pointers */
4536	btrfs_init_map_token(&token, leaf);
4537	for (i = slot; i < nritems; i++) {
4538		u32 ioff;
4539		item = btrfs_item_nr(i);
4540
4541		ioff = btrfs_token_item_offset(&token, item);
4542		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
 
4543	}
4544
4545	/* shift the data */
4546	if (from_end) {
4547		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4548			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4549			      data_end, old_data_start + new_size - data_end);
4550	} else {
4551		struct btrfs_disk_key disk_key;
4552		u64 offset;
4553
4554		btrfs_item_key(leaf, &disk_key, slot);
4555
4556		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4557			unsigned long ptr;
4558			struct btrfs_file_extent_item *fi;
4559
4560			fi = btrfs_item_ptr(leaf, slot,
4561					    struct btrfs_file_extent_item);
4562			fi = (struct btrfs_file_extent_item *)(
4563			     (unsigned long)fi - size_diff);
4564
4565			if (btrfs_file_extent_type(leaf, fi) ==
4566			    BTRFS_FILE_EXTENT_INLINE) {
4567				ptr = btrfs_item_ptr_offset(leaf, slot);
4568				memmove_extent_buffer(leaf, ptr,
4569				      (unsigned long)fi,
4570				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4571			}
4572		}
4573
4574		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4575			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4576			      data_end, old_data_start - data_end);
4577
4578		offset = btrfs_disk_key_offset(&disk_key);
4579		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4580		btrfs_set_item_key(leaf, &disk_key, slot);
4581		if (slot == 0)
4582			fixup_low_keys(path, &disk_key, 1);
4583	}
4584
4585	item = btrfs_item_nr(slot);
4586	btrfs_set_item_size(leaf, item, new_size);
4587	btrfs_mark_buffer_dirty(leaf);
4588
4589	if (btrfs_leaf_free_space(leaf) < 0) {
4590		btrfs_print_leaf(leaf);
4591		BUG();
4592	}
4593}
4594
4595/*
4596 * make the item pointed to by the path bigger, data_size is the added size.
4597 */
4598void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
4599{
4600	int slot;
4601	struct extent_buffer *leaf;
4602	struct btrfs_item *item;
4603	u32 nritems;
4604	unsigned int data_end;
4605	unsigned int old_data;
4606	unsigned int old_size;
4607	int i;
4608	struct btrfs_map_token token;
4609
 
 
4610	leaf = path->nodes[0];
4611
4612	nritems = btrfs_header_nritems(leaf);
4613	data_end = leaf_data_end(leaf);
4614
4615	if (btrfs_leaf_free_space(leaf) < data_size) {
4616		btrfs_print_leaf(leaf);
4617		BUG();
4618	}
4619	slot = path->slots[0];
4620	old_data = btrfs_item_end_nr(leaf, slot);
4621
4622	BUG_ON(slot < 0);
4623	if (slot >= nritems) {
4624		btrfs_print_leaf(leaf);
4625		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4626			   slot, nritems);
4627		BUG();
4628	}
4629
4630	/*
4631	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4632	 */
4633	/* first correct the data pointers */
4634	btrfs_init_map_token(&token, leaf);
4635	for (i = slot; i < nritems; i++) {
4636		u32 ioff;
4637		item = btrfs_item_nr(i);
4638
4639		ioff = btrfs_token_item_offset(&token, item);
4640		btrfs_set_token_item_offset(&token, item, ioff - data_size);
 
4641	}
4642
4643	/* shift the data */
4644	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4645		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4646		      data_end, old_data - data_end);
4647
4648	data_end = old_data;
4649	old_size = btrfs_item_size_nr(leaf, slot);
4650	item = btrfs_item_nr(slot);
4651	btrfs_set_item_size(leaf, item, old_size + data_size);
4652	btrfs_mark_buffer_dirty(leaf);
4653
4654	if (btrfs_leaf_free_space(leaf) < 0) {
4655		btrfs_print_leaf(leaf);
4656		BUG();
4657	}
4658}
4659
4660/*
4661 * this is a helper for btrfs_insert_empty_items, the main goal here is
4662 * to save stack depth by doing the bulk of the work in a function
4663 * that doesn't call btrfs_search_slot
4664 */
4665void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4666			    const struct btrfs_key *cpu_key, u32 *data_size,
4667			    u32 total_data, u32 total_size, int nr)
4668{
4669	struct btrfs_fs_info *fs_info = root->fs_info;
4670	struct btrfs_item *item;
4671	int i;
4672	u32 nritems;
4673	unsigned int data_end;
4674	struct btrfs_disk_key disk_key;
4675	struct extent_buffer *leaf;
4676	int slot;
4677	struct btrfs_map_token token;
4678
4679	if (path->slots[0] == 0) {
4680		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4681		fixup_low_keys(path, &disk_key, 1);
4682	}
4683	btrfs_unlock_up_safe(path, 1);
4684
 
 
4685	leaf = path->nodes[0];
4686	slot = path->slots[0];
4687
4688	nritems = btrfs_header_nritems(leaf);
4689	data_end = leaf_data_end(leaf);
4690
4691	if (btrfs_leaf_free_space(leaf) < total_size) {
4692		btrfs_print_leaf(leaf);
4693		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4694			   total_size, btrfs_leaf_free_space(leaf));
4695		BUG();
4696	}
4697
4698	btrfs_init_map_token(&token, leaf);
4699	if (slot != nritems) {
4700		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4701
4702		if (old_data < data_end) {
4703			btrfs_print_leaf(leaf);
4704			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4705				   slot, old_data, data_end);
4706			BUG();
4707		}
4708		/*
4709		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4710		 */
4711		/* first correct the data pointers */
4712		for (i = slot; i < nritems; i++) {
4713			u32 ioff;
4714
4715			item = btrfs_item_nr(i);
4716			ioff = btrfs_token_item_offset(&token, item);
4717			btrfs_set_token_item_offset(&token, item,
4718						    ioff - total_data);
4719		}
4720		/* shift the items */
4721		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4722			      btrfs_item_nr_offset(slot),
4723			      (nritems - slot) * sizeof(struct btrfs_item));
4724
4725		/* shift the data */
4726		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4727			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4728			      data_end, old_data - data_end);
4729		data_end = old_data;
4730	}
4731
4732	/* setup the item for the new data */
4733	for (i = 0; i < nr; i++) {
4734		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4735		btrfs_set_item_key(leaf, &disk_key, slot + i);
4736		item = btrfs_item_nr(slot + i);
4737		btrfs_set_token_item_offset(&token, item, data_end - data_size[i]);
 
4738		data_end -= data_size[i];
4739		btrfs_set_token_item_size(&token, item, data_size[i]);
4740	}
4741
4742	btrfs_set_header_nritems(leaf, nritems + nr);
4743	btrfs_mark_buffer_dirty(leaf);
4744
4745	if (btrfs_leaf_free_space(leaf) < 0) {
4746		btrfs_print_leaf(leaf);
4747		BUG();
4748	}
4749}
4750
4751/*
4752 * Given a key and some data, insert items into the tree.
4753 * This does all the path init required, making room in the tree if needed.
4754 */
4755int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4756			    struct btrfs_root *root,
4757			    struct btrfs_path *path,
4758			    const struct btrfs_key *cpu_key, u32 *data_size,
4759			    int nr)
4760{
4761	int ret = 0;
4762	int slot;
4763	int i;
4764	u32 total_size = 0;
4765	u32 total_data = 0;
4766
4767	for (i = 0; i < nr; i++)
4768		total_data += data_size[i];
4769
4770	total_size = total_data + (nr * sizeof(struct btrfs_item));
4771	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4772	if (ret == 0)
4773		return -EEXIST;
4774	if (ret < 0)
4775		return ret;
4776
4777	slot = path->slots[0];
4778	BUG_ON(slot < 0);
4779
4780	setup_items_for_insert(root, path, cpu_key, data_size,
4781			       total_data, total_size, nr);
4782	return 0;
4783}
4784
4785/*
4786 * Given a key and some data, insert an item into the tree.
4787 * This does all the path init required, making room in the tree if needed.
4788 */
4789int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4790		      const struct btrfs_key *cpu_key, void *data,
4791		      u32 data_size)
4792{
4793	int ret = 0;
4794	struct btrfs_path *path;
4795	struct extent_buffer *leaf;
4796	unsigned long ptr;
4797
4798	path = btrfs_alloc_path();
4799	if (!path)
4800		return -ENOMEM;
4801	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4802	if (!ret) {
4803		leaf = path->nodes[0];
4804		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4805		write_extent_buffer(leaf, data, ptr, data_size);
4806		btrfs_mark_buffer_dirty(leaf);
4807	}
4808	btrfs_free_path(path);
4809	return ret;
4810}
4811
4812/*
4813 * delete the pointer from a given node.
4814 *
4815 * the tree should have been previously balanced so the deletion does not
4816 * empty a node.
4817 */
4818static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4819		    int level, int slot)
4820{
4821	struct extent_buffer *parent = path->nodes[level];
4822	u32 nritems;
4823	int ret;
4824
4825	nritems = btrfs_header_nritems(parent);
4826	if (slot != nritems - 1) {
4827		if (level) {
4828			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4829					nritems - slot - 1);
4830			BUG_ON(ret < 0);
4831		}
4832		memmove_extent_buffer(parent,
4833			      btrfs_node_key_ptr_offset(slot),
4834			      btrfs_node_key_ptr_offset(slot + 1),
4835			      sizeof(struct btrfs_key_ptr) *
4836			      (nritems - slot - 1));
4837	} else if (level) {
4838		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4839				GFP_NOFS);
4840		BUG_ON(ret < 0);
4841	}
4842
4843	nritems--;
4844	btrfs_set_header_nritems(parent, nritems);
4845	if (nritems == 0 && parent == root->node) {
4846		BUG_ON(btrfs_header_level(root->node) != 1);
4847		/* just turn the root into a leaf and break */
4848		btrfs_set_header_level(root->node, 0);
4849	} else if (slot == 0) {
4850		struct btrfs_disk_key disk_key;
4851
4852		btrfs_node_key(parent, &disk_key, 0);
4853		fixup_low_keys(path, &disk_key, level + 1);
4854	}
4855	btrfs_mark_buffer_dirty(parent);
4856}
4857
4858/*
4859 * a helper function to delete the leaf pointed to by path->slots[1] and
4860 * path->nodes[1].
4861 *
4862 * This deletes the pointer in path->nodes[1] and frees the leaf
4863 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4864 *
4865 * The path must have already been setup for deleting the leaf, including
4866 * all the proper balancing.  path->nodes[1] must be locked.
4867 */
4868static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4869				    struct btrfs_root *root,
4870				    struct btrfs_path *path,
4871				    struct extent_buffer *leaf)
4872{
4873	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4874	del_ptr(root, path, 1, path->slots[1]);
4875
4876	/*
4877	 * btrfs_free_extent is expensive, we want to make sure we
4878	 * aren't holding any locks when we call it
4879	 */
4880	btrfs_unlock_up_safe(path, 0);
4881
4882	root_sub_used(root, leaf->len);
4883
4884	atomic_inc(&leaf->refs);
4885	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4886	free_extent_buffer_stale(leaf);
4887}
4888/*
4889 * delete the item at the leaf level in path.  If that empties
4890 * the leaf, remove it from the tree
4891 */
4892int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4893		    struct btrfs_path *path, int slot, int nr)
4894{
4895	struct btrfs_fs_info *fs_info = root->fs_info;
4896	struct extent_buffer *leaf;
4897	struct btrfs_item *item;
4898	u32 last_off;
4899	u32 dsize = 0;
4900	int ret = 0;
4901	int wret;
4902	int i;
4903	u32 nritems;
 
 
 
4904
4905	leaf = path->nodes[0];
4906	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4907
4908	for (i = 0; i < nr; i++)
4909		dsize += btrfs_item_size_nr(leaf, slot + i);
4910
4911	nritems = btrfs_header_nritems(leaf);
4912
4913	if (slot + nr != nritems) {
4914		int data_end = leaf_data_end(leaf);
4915		struct btrfs_map_token token;
4916
4917		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4918			      data_end + dsize,
4919			      BTRFS_LEAF_DATA_OFFSET + data_end,
4920			      last_off - data_end);
4921
4922		btrfs_init_map_token(&token, leaf);
4923		for (i = slot + nr; i < nritems; i++) {
4924			u32 ioff;
4925
4926			item = btrfs_item_nr(i);
4927			ioff = btrfs_token_item_offset(&token, item);
4928			btrfs_set_token_item_offset(&token, item, ioff + dsize);
 
4929		}
4930
4931		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4932			      btrfs_item_nr_offset(slot + nr),
4933			      sizeof(struct btrfs_item) *
4934			      (nritems - slot - nr));
4935	}
4936	btrfs_set_header_nritems(leaf, nritems - nr);
4937	nritems -= nr;
4938
4939	/* delete the leaf if we've emptied it */
4940	if (nritems == 0) {
4941		if (leaf == root->node) {
4942			btrfs_set_header_level(leaf, 0);
4943		} else {
4944			btrfs_set_path_blocking(path);
4945			btrfs_clean_tree_block(leaf);
4946			btrfs_del_leaf(trans, root, path, leaf);
4947		}
4948	} else {
4949		int used = leaf_space_used(leaf, 0, nritems);
4950		if (slot == 0) {
4951			struct btrfs_disk_key disk_key;
4952
4953			btrfs_item_key(leaf, &disk_key, 0);
4954			fixup_low_keys(path, &disk_key, 1);
4955		}
4956
4957		/* delete the leaf if it is mostly empty */
4958		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4959			/* push_leaf_left fixes the path.
4960			 * make sure the path still points to our leaf
4961			 * for possible call to del_ptr below
4962			 */
4963			slot = path->slots[1];
4964			atomic_inc(&leaf->refs);
4965
4966			btrfs_set_path_blocking(path);
4967			wret = push_leaf_left(trans, root, path, 1, 1,
4968					      1, (u32)-1);
4969			if (wret < 0 && wret != -ENOSPC)
4970				ret = wret;
4971
4972			if (path->nodes[0] == leaf &&
4973			    btrfs_header_nritems(leaf)) {
4974				wret = push_leaf_right(trans, root, path, 1,
4975						       1, 1, 0);
4976				if (wret < 0 && wret != -ENOSPC)
4977					ret = wret;
4978			}
4979
4980			if (btrfs_header_nritems(leaf) == 0) {
4981				path->slots[1] = slot;
4982				btrfs_del_leaf(trans, root, path, leaf);
4983				free_extent_buffer(leaf);
4984				ret = 0;
4985			} else {
4986				/* if we're still in the path, make sure
4987				 * we're dirty.  Otherwise, one of the
4988				 * push_leaf functions must have already
4989				 * dirtied this buffer
4990				 */
4991				if (path->nodes[0] == leaf)
4992					btrfs_mark_buffer_dirty(leaf);
4993				free_extent_buffer(leaf);
4994			}
4995		} else {
4996			btrfs_mark_buffer_dirty(leaf);
4997		}
4998	}
4999	return ret;
5000}
5001
5002/*
5003 * search the tree again to find a leaf with lesser keys
5004 * returns 0 if it found something or 1 if there are no lesser leaves.
5005 * returns < 0 on io errors.
5006 *
5007 * This may release the path, and so you may lose any locks held at the
5008 * time you call it.
5009 */
5010int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5011{
5012	struct btrfs_key key;
5013	struct btrfs_disk_key found_key;
5014	int ret;
5015
5016	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5017
5018	if (key.offset > 0) {
5019		key.offset--;
5020	} else if (key.type > 0) {
5021		key.type--;
5022		key.offset = (u64)-1;
5023	} else if (key.objectid > 0) {
5024		key.objectid--;
5025		key.type = (u8)-1;
5026		key.offset = (u64)-1;
5027	} else {
5028		return 1;
5029	}
5030
5031	btrfs_release_path(path);
5032	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5033	if (ret < 0)
5034		return ret;
5035	btrfs_item_key(path->nodes[0], &found_key, 0);
5036	ret = comp_keys(&found_key, &key);
5037	/*
5038	 * We might have had an item with the previous key in the tree right
5039	 * before we released our path. And after we released our path, that
5040	 * item might have been pushed to the first slot (0) of the leaf we
5041	 * were holding due to a tree balance. Alternatively, an item with the
5042	 * previous key can exist as the only element of a leaf (big fat item).
5043	 * Therefore account for these 2 cases, so that our callers (like
5044	 * btrfs_previous_item) don't miss an existing item with a key matching
5045	 * the previous key we computed above.
5046	 */
5047	if (ret <= 0)
5048		return 0;
5049	return 1;
5050}
5051
5052/*
5053 * A helper function to walk down the tree starting at min_key, and looking
5054 * for nodes or leaves that are have a minimum transaction id.
5055 * This is used by the btree defrag code, and tree logging
5056 *
5057 * This does not cow, but it does stuff the starting key it finds back
5058 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5059 * key and get a writable path.
5060 *
 
 
 
5061 * This honors path->lowest_level to prevent descent past a given level
5062 * of the tree.
5063 *
5064 * min_trans indicates the oldest transaction that you are interested
5065 * in walking through.  Any nodes or leaves older than min_trans are
5066 * skipped over (without reading them).
5067 *
5068 * returns zero if something useful was found, < 0 on error and 1 if there
5069 * was nothing in the tree that matched the search criteria.
5070 */
5071int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5072			 struct btrfs_path *path,
5073			 u64 min_trans)
5074{
5075	struct extent_buffer *cur;
5076	struct btrfs_key found_key;
5077	int slot;
5078	int sret;
5079	u32 nritems;
5080	int level;
5081	int ret = 1;
5082	int keep_locks = path->keep_locks;
5083
5084	path->keep_locks = 1;
5085again:
5086	cur = btrfs_read_lock_root_node(root);
5087	level = btrfs_header_level(cur);
5088	WARN_ON(path->nodes[level]);
5089	path->nodes[level] = cur;
5090	path->locks[level] = BTRFS_READ_LOCK;
5091
5092	if (btrfs_header_generation(cur) < min_trans) {
5093		ret = 1;
5094		goto out;
5095	}
5096	while (1) {
5097		nritems = btrfs_header_nritems(cur);
5098		level = btrfs_header_level(cur);
5099		sret = btrfs_bin_search(cur, min_key, &slot);
5100		if (sret < 0) {
5101			ret = sret;
5102			goto out;
5103		}
5104
5105		/* at the lowest level, we're done, setup the path and exit */
5106		if (level == path->lowest_level) {
5107			if (slot >= nritems)
5108				goto find_next_key;
5109			ret = 0;
5110			path->slots[level] = slot;
5111			btrfs_item_key_to_cpu(cur, &found_key, slot);
5112			goto out;
5113		}
5114		if (sret && slot > 0)
5115			slot--;
5116		/*
5117		 * check this node pointer against the min_trans parameters.
5118		 * If it is too old, old, skip to the next one.
5119		 */
5120		while (slot < nritems) {
5121			u64 gen;
5122
5123			gen = btrfs_node_ptr_generation(cur, slot);
5124			if (gen < min_trans) {
5125				slot++;
5126				continue;
5127			}
5128			break;
5129		}
5130find_next_key:
5131		/*
5132		 * we didn't find a candidate key in this node, walk forward
5133		 * and find another one
5134		 */
5135		if (slot >= nritems) {
5136			path->slots[level] = slot;
5137			btrfs_set_path_blocking(path);
5138			sret = btrfs_find_next_key(root, path, min_key, level,
5139						  min_trans);
5140			if (sret == 0) {
5141				btrfs_release_path(path);
5142				goto again;
5143			} else {
5144				goto out;
5145			}
5146		}
5147		/* save our key for returning back */
5148		btrfs_node_key_to_cpu(cur, &found_key, slot);
5149		path->slots[level] = slot;
5150		if (level == path->lowest_level) {
5151			ret = 0;
5152			goto out;
5153		}
5154		btrfs_set_path_blocking(path);
5155		cur = btrfs_read_node_slot(cur, slot);
5156		if (IS_ERR(cur)) {
5157			ret = PTR_ERR(cur);
5158			goto out;
5159		}
5160
5161		btrfs_tree_read_lock(cur);
5162
5163		path->locks[level - 1] = BTRFS_READ_LOCK;
5164		path->nodes[level - 1] = cur;
5165		unlock_up(path, level, 1, 0, NULL);
 
5166	}
5167out:
5168	path->keep_locks = keep_locks;
5169	if (ret == 0) {
5170		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5171		btrfs_set_path_blocking(path);
5172		memcpy(min_key, &found_key, sizeof(found_key));
5173	}
5174	return ret;
5175}
5176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5177/*
5178 * this is similar to btrfs_next_leaf, but does not try to preserve
5179 * and fixup the path.  It looks for and returns the next key in the
5180 * tree based on the current path and the min_trans parameters.
5181 *
5182 * 0 is returned if another key is found, < 0 if there are any errors
5183 * and 1 is returned if there are no higher keys in the tree
5184 *
5185 * path->keep_locks should be set to 1 on the search made before
5186 * calling this function.
5187 */
5188int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5189			struct btrfs_key *key, int level, u64 min_trans)
5190{
5191	int slot;
5192	struct extent_buffer *c;
5193
5194	WARN_ON(!path->keep_locks && !path->skip_locking);
5195	while (level < BTRFS_MAX_LEVEL) {
5196		if (!path->nodes[level])
5197			return 1;
5198
5199		slot = path->slots[level] + 1;
5200		c = path->nodes[level];
5201next:
5202		if (slot >= btrfs_header_nritems(c)) {
5203			int ret;
5204			int orig_lowest;
5205			struct btrfs_key cur_key;
5206			if (level + 1 >= BTRFS_MAX_LEVEL ||
5207			    !path->nodes[level + 1])
5208				return 1;
5209
5210			if (path->locks[level + 1] || path->skip_locking) {
5211				level++;
5212				continue;
5213			}
5214
5215			slot = btrfs_header_nritems(c) - 1;
5216			if (level == 0)
5217				btrfs_item_key_to_cpu(c, &cur_key, slot);
5218			else
5219				btrfs_node_key_to_cpu(c, &cur_key, slot);
5220
5221			orig_lowest = path->lowest_level;
5222			btrfs_release_path(path);
5223			path->lowest_level = level;
5224			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5225						0, 0);
5226			path->lowest_level = orig_lowest;
5227			if (ret < 0)
5228				return ret;
5229
5230			c = path->nodes[level];
5231			slot = path->slots[level];
5232			if (ret == 0)
5233				slot++;
5234			goto next;
5235		}
5236
5237		if (level == 0)
5238			btrfs_item_key_to_cpu(c, key, slot);
5239		else {
5240			u64 gen = btrfs_node_ptr_generation(c, slot);
5241
5242			if (gen < min_trans) {
5243				slot++;
5244				goto next;
5245			}
5246			btrfs_node_key_to_cpu(c, key, slot);
5247		}
5248		return 0;
5249	}
5250	return 1;
5251}
5252
5253/*
5254 * search the tree again to find a leaf with greater keys
5255 * returns 0 if it found something or 1 if there are no greater leaves.
5256 * returns < 0 on io errors.
5257 */
5258int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5259{
5260	return btrfs_next_old_leaf(root, path, 0);
5261}
5262
5263int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5264			u64 time_seq)
5265{
5266	int slot;
5267	int level;
5268	struct extent_buffer *c;
5269	struct extent_buffer *next;
5270	struct btrfs_key key;
5271	u32 nritems;
5272	int ret;
5273	int old_spinning = path->leave_spinning;
5274	int next_rw_lock = 0;
5275
5276	nritems = btrfs_header_nritems(path->nodes[0]);
5277	if (nritems == 0)
5278		return 1;
5279
5280	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5281again:
5282	level = 1;
5283	next = NULL;
5284	next_rw_lock = 0;
5285	btrfs_release_path(path);
5286
5287	path->keep_locks = 1;
5288	path->leave_spinning = 1;
5289
5290	if (time_seq)
5291		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5292	else
5293		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5294	path->keep_locks = 0;
5295
5296	if (ret < 0)
5297		return ret;
5298
5299	nritems = btrfs_header_nritems(path->nodes[0]);
5300	/*
5301	 * by releasing the path above we dropped all our locks.  A balance
5302	 * could have added more items next to the key that used to be
5303	 * at the very end of the block.  So, check again here and
5304	 * advance the path if there are now more items available.
5305	 */
5306	if (nritems > 0 && path->slots[0] < nritems - 1) {
5307		if (ret == 0)
5308			path->slots[0]++;
5309		ret = 0;
5310		goto done;
5311	}
5312	/*
5313	 * So the above check misses one case:
5314	 * - after releasing the path above, someone has removed the item that
5315	 *   used to be at the very end of the block, and balance between leafs
5316	 *   gets another one with bigger key.offset to replace it.
5317	 *
5318	 * This one should be returned as well, or we can get leaf corruption
5319	 * later(esp. in __btrfs_drop_extents()).
5320	 *
5321	 * And a bit more explanation about this check,
5322	 * with ret > 0, the key isn't found, the path points to the slot
5323	 * where it should be inserted, so the path->slots[0] item must be the
5324	 * bigger one.
5325	 */
5326	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5327		ret = 0;
5328		goto done;
5329	}
5330
5331	while (level < BTRFS_MAX_LEVEL) {
5332		if (!path->nodes[level]) {
5333			ret = 1;
5334			goto done;
5335		}
5336
5337		slot = path->slots[level] + 1;
5338		c = path->nodes[level];
5339		if (slot >= btrfs_header_nritems(c)) {
5340			level++;
5341			if (level == BTRFS_MAX_LEVEL) {
5342				ret = 1;
5343				goto done;
5344			}
5345			continue;
5346		}
5347
5348		if (next) {
5349			btrfs_tree_unlock_rw(next, next_rw_lock);
5350			free_extent_buffer(next);
5351		}
5352
5353		next = c;
5354		next_rw_lock = path->locks[level];
5355		ret = read_block_for_search(root, path, &next, level,
5356					    slot, &key);
5357		if (ret == -EAGAIN)
5358			goto again;
5359
5360		if (ret < 0) {
5361			btrfs_release_path(path);
5362			goto done;
5363		}
5364
5365		if (!path->skip_locking) {
5366			ret = btrfs_try_tree_read_lock(next);
5367			if (!ret && time_seq) {
5368				/*
5369				 * If we don't get the lock, we may be racing
5370				 * with push_leaf_left, holding that lock while
5371				 * itself waiting for the leaf we've currently
5372				 * locked. To solve this situation, we give up
5373				 * on our lock and cycle.
5374				 */
5375				free_extent_buffer(next);
5376				btrfs_release_path(path);
5377				cond_resched();
5378				goto again;
5379			}
5380			if (!ret) {
5381				btrfs_set_path_blocking(path);
5382				btrfs_tree_read_lock(next);
 
 
5383			}
5384			next_rw_lock = BTRFS_READ_LOCK;
5385		}
5386		break;
5387	}
5388	path->slots[level] = slot;
5389	while (1) {
5390		level--;
5391		c = path->nodes[level];
5392		if (path->locks[level])
5393			btrfs_tree_unlock_rw(c, path->locks[level]);
5394
5395		free_extent_buffer(c);
5396		path->nodes[level] = next;
5397		path->slots[level] = 0;
5398		if (!path->skip_locking)
5399			path->locks[level] = next_rw_lock;
5400		if (!level)
5401			break;
5402
5403		ret = read_block_for_search(root, path, &next, level,
5404					    0, &key);
5405		if (ret == -EAGAIN)
5406			goto again;
5407
5408		if (ret < 0) {
5409			btrfs_release_path(path);
5410			goto done;
5411		}
5412
5413		if (!path->skip_locking) {
5414			ret = btrfs_try_tree_read_lock(next);
5415			if (!ret) {
5416				btrfs_set_path_blocking(path);
5417				btrfs_tree_read_lock(next);
 
 
5418			}
5419			next_rw_lock = BTRFS_READ_LOCK;
5420		}
5421	}
5422	ret = 0;
5423done:
5424	unlock_up(path, 0, 1, 0, NULL);
5425	path->leave_spinning = old_spinning;
5426	if (!old_spinning)
5427		btrfs_set_path_blocking(path);
5428
5429	return ret;
5430}
5431
5432/*
5433 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5434 * searching until it gets past min_objectid or finds an item of 'type'
5435 *
5436 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5437 */
5438int btrfs_previous_item(struct btrfs_root *root,
5439			struct btrfs_path *path, u64 min_objectid,
5440			int type)
5441{
5442	struct btrfs_key found_key;
5443	struct extent_buffer *leaf;
5444	u32 nritems;
5445	int ret;
5446
5447	while (1) {
5448		if (path->slots[0] == 0) {
5449			btrfs_set_path_blocking(path);
5450			ret = btrfs_prev_leaf(root, path);
5451			if (ret != 0)
5452				return ret;
5453		} else {
5454			path->slots[0]--;
5455		}
5456		leaf = path->nodes[0];
5457		nritems = btrfs_header_nritems(leaf);
5458		if (nritems == 0)
5459			return 1;
5460		if (path->slots[0] == nritems)
5461			path->slots[0]--;
5462
5463		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5464		if (found_key.objectid < min_objectid)
5465			break;
5466		if (found_key.type == type)
5467			return 0;
5468		if (found_key.objectid == min_objectid &&
5469		    found_key.type < type)
5470			break;
5471	}
5472	return 1;
5473}
5474
5475/*
5476 * search in extent tree to find a previous Metadata/Data extent item with
5477 * min objecitd.
5478 *
5479 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5480 */
5481int btrfs_previous_extent_item(struct btrfs_root *root,
5482			struct btrfs_path *path, u64 min_objectid)
5483{
5484	struct btrfs_key found_key;
5485	struct extent_buffer *leaf;
5486	u32 nritems;
5487	int ret;
5488
5489	while (1) {
5490		if (path->slots[0] == 0) {
5491			btrfs_set_path_blocking(path);
5492			ret = btrfs_prev_leaf(root, path);
5493			if (ret != 0)
5494				return ret;
5495		} else {
5496			path->slots[0]--;
5497		}
5498		leaf = path->nodes[0];
5499		nritems = btrfs_header_nritems(leaf);
5500		if (nritems == 0)
5501			return 1;
5502		if (path->slots[0] == nritems)
5503			path->slots[0]--;
5504
5505		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5506		if (found_key.objectid < min_objectid)
5507			break;
5508		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5509		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5510			return 0;
5511		if (found_key.objectid == min_objectid &&
5512		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5513			break;
5514	}
5515	return 1;
5516}
v4.6
 
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include <linux/vmalloc.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "print-tree.h"
  27#include "locking.h"
 
 
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  32		      *root, struct btrfs_key *ins_key,
  33		      struct btrfs_path *path, int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct btrfs_root *root, struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
  38			      struct btrfs_root *root,
  39			      struct extent_buffer *dst_buf,
  40			      struct extent_buffer *src_buf);
  41static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  42		    int level, int slot);
  43static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  44				 struct extent_buffer *eb);
  45
  46struct btrfs_path *btrfs_alloc_path(void)
 
 
 
 
 
 
 
 
 
 
 
 
  47{
  48	struct btrfs_path *path;
  49	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  50	return path;
 
 
  51}
  52
  53/*
  54 * set all locked nodes in the path to blocking locks.  This should
  55 * be done before scheduling
  56 */
  57noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  58{
  59	int i;
  60	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  61		if (!p->nodes[i] || !p->locks[i])
  62			continue;
  63		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  64		if (p->locks[i] == BTRFS_READ_LOCK)
  65			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  66		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  67			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  68	}
  69}
  70
  71/*
  72 * reset all the locked nodes in the patch to spinning locks.
  73 *
  74 * held is used to keep lockdep happy, when lockdep is enabled
  75 * we set held to a blocking lock before we go around and
  76 * retake all the spinlocks in the path.  You can safely use NULL
  77 * for held
  78 */
  79noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  80					struct extent_buffer *held, int held_rw)
  81{
  82	int i;
 
 
 
 
  83
  84	if (held) {
  85		btrfs_set_lock_blocking_rw(held, held_rw);
  86		if (held_rw == BTRFS_WRITE_LOCK)
  87			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  88		else if (held_rw == BTRFS_READ_LOCK)
  89			held_rw = BTRFS_READ_LOCK_BLOCKING;
  90	}
  91	btrfs_set_path_blocking(p);
  92
  93	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  94		if (p->nodes[i] && p->locks[i]) {
  95			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  96			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  97				p->locks[i] = BTRFS_WRITE_LOCK;
  98			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  99				p->locks[i] = BTRFS_READ_LOCK;
 100		}
 101	}
 102
 103	if (held)
 104		btrfs_clear_lock_blocking_rw(held, held_rw);
 105}
 106
 107/* this also releases the path */
 108void btrfs_free_path(struct btrfs_path *p)
 109{
 110	if (!p)
 111		return;
 112	btrfs_release_path(p);
 113	kmem_cache_free(btrfs_path_cachep, p);
 114}
 115
 116/*
 117 * path release drops references on the extent buffers in the path
 118 * and it drops any locks held by this path
 119 *
 120 * It is safe to call this on paths that no locks or extent buffers held.
 121 */
 122noinline void btrfs_release_path(struct btrfs_path *p)
 123{
 124	int i;
 125
 126	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 127		p->slots[i] = 0;
 128		if (!p->nodes[i])
 129			continue;
 130		if (p->locks[i]) {
 131			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 132			p->locks[i] = 0;
 133		}
 134		free_extent_buffer(p->nodes[i]);
 135		p->nodes[i] = NULL;
 136	}
 137}
 138
 139/*
 140 * safely gets a reference on the root node of a tree.  A lock
 141 * is not taken, so a concurrent writer may put a different node
 142 * at the root of the tree.  See btrfs_lock_root_node for the
 143 * looping required.
 144 *
 145 * The extent buffer returned by this has a reference taken, so
 146 * it won't disappear.  It may stop being the root of the tree
 147 * at any time because there are no locks held.
 148 */
 149struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 150{
 151	struct extent_buffer *eb;
 152
 153	while (1) {
 154		rcu_read_lock();
 155		eb = rcu_dereference(root->node);
 156
 157		/*
 158		 * RCU really hurts here, we could free up the root node because
 159		 * it was cow'ed but we may not get the new root node yet so do
 160		 * the inc_not_zero dance and if it doesn't work then
 161		 * synchronize_rcu and try again.
 162		 */
 163		if (atomic_inc_not_zero(&eb->refs)) {
 164			rcu_read_unlock();
 165			break;
 166		}
 167		rcu_read_unlock();
 168		synchronize_rcu();
 169	}
 170	return eb;
 171}
 172
 173/* loop around taking references on and locking the root node of the
 174 * tree until you end up with a lock on the root.  A locked buffer
 175 * is returned, with a reference held.
 
 176 */
 177struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 178{
 179	struct extent_buffer *eb;
 180
 181	while (1) {
 182		eb = btrfs_root_node(root);
 183		btrfs_tree_lock(eb);
 184		if (eb == root->node)
 185			break;
 186		btrfs_tree_unlock(eb);
 187		free_extent_buffer(eb);
 188	}
 189	return eb;
 190}
 191
 192/* loop around taking references on and locking the root node of the
 193 * tree until you end up with a lock on the root.  A locked buffer
 194 * is returned, with a reference held.
 195 */
 196static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 197{
 198	struct extent_buffer *eb;
 199
 200	while (1) {
 201		eb = btrfs_root_node(root);
 202		btrfs_tree_read_lock(eb);
 203		if (eb == root->node)
 204			break;
 205		btrfs_tree_read_unlock(eb);
 206		free_extent_buffer(eb);
 207	}
 208	return eb;
 209}
 210
 211/* cowonly root (everything not a reference counted cow subvolume), just get
 212 * put onto a simple dirty list.  transaction.c walks this to make sure they
 213 * get properly updated on disk.
 214 */
 215static void add_root_to_dirty_list(struct btrfs_root *root)
 216{
 217	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 218	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 219		return;
 220
 221	spin_lock(&root->fs_info->trans_lock);
 222	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 223		/* Want the extent tree to be the last on the list */
 224		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 225			list_move_tail(&root->dirty_list,
 226				       &root->fs_info->dirty_cowonly_roots);
 227		else
 228			list_move(&root->dirty_list,
 229				  &root->fs_info->dirty_cowonly_roots);
 230	}
 231	spin_unlock(&root->fs_info->trans_lock);
 232}
 233
 234/*
 235 * used by snapshot creation to make a copy of a root for a tree with
 236 * a given objectid.  The buffer with the new root node is returned in
 237 * cow_ret, and this func returns zero on success or a negative error code.
 238 */
 239int btrfs_copy_root(struct btrfs_trans_handle *trans,
 240		      struct btrfs_root *root,
 241		      struct extent_buffer *buf,
 242		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 243{
 
 244	struct extent_buffer *cow;
 245	int ret = 0;
 246	int level;
 247	struct btrfs_disk_key disk_key;
 248
 249	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 250		trans->transid != root->fs_info->running_transaction->transid);
 251	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 252		trans->transid != root->last_trans);
 253
 254	level = btrfs_header_level(buf);
 255	if (level == 0)
 256		btrfs_item_key(buf, &disk_key, 0);
 257	else
 258		btrfs_node_key(buf, &disk_key, 0);
 259
 260	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 261			&disk_key, level, buf->start, 0);
 262	if (IS_ERR(cow))
 263		return PTR_ERR(cow);
 264
 265	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 266	btrfs_set_header_bytenr(cow, cow->start);
 267	btrfs_set_header_generation(cow, trans->transid);
 268	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 269	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 270				     BTRFS_HEADER_FLAG_RELOC);
 271	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 272		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 273	else
 274		btrfs_set_header_owner(cow, new_root_objectid);
 275
 276	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
 277			    BTRFS_FSID_SIZE);
 278
 279	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 280	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 281		ret = btrfs_inc_ref(trans, root, cow, 1);
 282	else
 283		ret = btrfs_inc_ref(trans, root, cow, 0);
 284
 285	if (ret)
 286		return ret;
 287
 288	btrfs_mark_buffer_dirty(cow);
 289	*cow_ret = cow;
 290	return 0;
 291}
 292
 293enum mod_log_op {
 294	MOD_LOG_KEY_REPLACE,
 295	MOD_LOG_KEY_ADD,
 296	MOD_LOG_KEY_REMOVE,
 297	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 298	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 299	MOD_LOG_MOVE_KEYS,
 300	MOD_LOG_ROOT_REPLACE,
 301};
 302
 303struct tree_mod_move {
 304	int dst_slot;
 305	int nr_items;
 306};
 307
 308struct tree_mod_root {
 309	u64 logical;
 310	u8 level;
 311};
 312
 313struct tree_mod_elem {
 314	struct rb_node node;
 315	u64 logical;
 316	u64 seq;
 317	enum mod_log_op op;
 318
 319	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 320	int slot;
 321
 322	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 323	u64 generation;
 324
 325	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 326	struct btrfs_disk_key key;
 327	u64 blockptr;
 328
 329	/* this is used for op == MOD_LOG_MOVE_KEYS */
 330	struct tree_mod_move move;
 
 
 
 331
 332	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 333	struct tree_mod_root old_root;
 334};
 335
 336static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 337{
 338	read_lock(&fs_info->tree_mod_log_lock);
 339}
 340
 341static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 342{
 343	read_unlock(&fs_info->tree_mod_log_lock);
 344}
 345
 346static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 347{
 348	write_lock(&fs_info->tree_mod_log_lock);
 349}
 350
 351static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 352{
 353	write_unlock(&fs_info->tree_mod_log_lock);
 354}
 355
 356/*
 357 * Pull a new tree mod seq number for our operation.
 358 */
 359static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 360{
 361	return atomic64_inc_return(&fs_info->tree_mod_seq);
 362}
 363
 364/*
 365 * This adds a new blocker to the tree mod log's blocker list if the @elem
 366 * passed does not already have a sequence number set. So when a caller expects
 367 * to record tree modifications, it should ensure to set elem->seq to zero
 368 * before calling btrfs_get_tree_mod_seq.
 369 * Returns a fresh, unused tree log modification sequence number, even if no new
 370 * blocker was added.
 371 */
 372u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 373			   struct seq_list *elem)
 374{
 375	tree_mod_log_write_lock(fs_info);
 376	spin_lock(&fs_info->tree_mod_seq_lock);
 377	if (!elem->seq) {
 378		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 379		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 380	}
 381	spin_unlock(&fs_info->tree_mod_seq_lock);
 382	tree_mod_log_write_unlock(fs_info);
 383
 384	return elem->seq;
 385}
 386
 387void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 388			    struct seq_list *elem)
 389{
 390	struct rb_root *tm_root;
 391	struct rb_node *node;
 392	struct rb_node *next;
 393	struct seq_list *cur_elem;
 394	struct tree_mod_elem *tm;
 395	u64 min_seq = (u64)-1;
 396	u64 seq_putting = elem->seq;
 397
 398	if (!seq_putting)
 399		return;
 400
 401	spin_lock(&fs_info->tree_mod_seq_lock);
 402	list_del(&elem->list);
 403	elem->seq = 0;
 404
 405	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 406		if (cur_elem->seq < min_seq) {
 407			if (seq_putting > cur_elem->seq) {
 408				/*
 409				 * blocker with lower sequence number exists, we
 410				 * cannot remove anything from the log
 411				 */
 412				spin_unlock(&fs_info->tree_mod_seq_lock);
 413				return;
 414			}
 415			min_seq = cur_elem->seq;
 
 416		}
 
 417	}
 418	spin_unlock(&fs_info->tree_mod_seq_lock);
 419
 420	/*
 421	 * anything that's lower than the lowest existing (read: blocked)
 422	 * sequence number can be removed from the tree.
 423	 */
 424	tree_mod_log_write_lock(fs_info);
 425	tm_root = &fs_info->tree_mod_log;
 426	for (node = rb_first(tm_root); node; node = next) {
 427		next = rb_next(node);
 428		tm = container_of(node, struct tree_mod_elem, node);
 429		if (tm->seq > min_seq)
 430			continue;
 431		rb_erase(node, tm_root);
 432		kfree(tm);
 433	}
 434	tree_mod_log_write_unlock(fs_info);
 435}
 436
 437/*
 438 * key order of the log:
 439 *       node/leaf start address -> sequence
 440 *
 441 * The 'start address' is the logical address of the *new* root node
 442 * for root replace operations, or the logical address of the affected
 443 * block for all other operations.
 444 *
 445 * Note: must be called with write lock (tree_mod_log_write_lock).
 446 */
 447static noinline int
 448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 449{
 450	struct rb_root *tm_root;
 451	struct rb_node **new;
 452	struct rb_node *parent = NULL;
 453	struct tree_mod_elem *cur;
 454
 455	BUG_ON(!tm);
 456
 457	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 458
 459	tm_root = &fs_info->tree_mod_log;
 460	new = &tm_root->rb_node;
 461	while (*new) {
 462		cur = container_of(*new, struct tree_mod_elem, node);
 463		parent = *new;
 464		if (cur->logical < tm->logical)
 465			new = &((*new)->rb_left);
 466		else if (cur->logical > tm->logical)
 467			new = &((*new)->rb_right);
 468		else if (cur->seq < tm->seq)
 469			new = &((*new)->rb_left);
 470		else if (cur->seq > tm->seq)
 471			new = &((*new)->rb_right);
 472		else
 473			return -EEXIST;
 474	}
 475
 476	rb_link_node(&tm->node, parent, new);
 477	rb_insert_color(&tm->node, tm_root);
 478	return 0;
 479}
 480
 481/*
 482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 484 * this until all tree mod log insertions are recorded in the rb tree and then
 485 * call tree_mod_log_write_unlock() to release.
 486 */
 487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 488				    struct extent_buffer *eb) {
 489	smp_mb();
 490	if (list_empty(&(fs_info)->tree_mod_seq_list))
 491		return 1;
 492	if (eb && btrfs_header_level(eb) == 0)
 493		return 1;
 494
 495	tree_mod_log_write_lock(fs_info);
 496	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 497		tree_mod_log_write_unlock(fs_info);
 498		return 1;
 499	}
 500
 501	return 0;
 502}
 503
 504/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 505static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 506				    struct extent_buffer *eb)
 507{
 508	smp_mb();
 509	if (list_empty(&(fs_info)->tree_mod_seq_list))
 510		return 0;
 511	if (eb && btrfs_header_level(eb) == 0)
 512		return 0;
 513
 514	return 1;
 515}
 516
 517static struct tree_mod_elem *
 518alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 519		    enum mod_log_op op, gfp_t flags)
 520{
 521	struct tree_mod_elem *tm;
 522
 523	tm = kzalloc(sizeof(*tm), flags);
 524	if (!tm)
 525		return NULL;
 526
 527	tm->logical = eb->start;
 528	if (op != MOD_LOG_KEY_ADD) {
 529		btrfs_node_key(eb, &tm->key, slot);
 530		tm->blockptr = btrfs_node_blockptr(eb, slot);
 531	}
 532	tm->op = op;
 533	tm->slot = slot;
 534	tm->generation = btrfs_node_ptr_generation(eb, slot);
 535	RB_CLEAR_NODE(&tm->node);
 536
 537	return tm;
 538}
 539
 540static noinline int
 541tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 542			struct extent_buffer *eb, int slot,
 543			enum mod_log_op op, gfp_t flags)
 544{
 545	struct tree_mod_elem *tm;
 546	int ret;
 547
 548	if (!tree_mod_need_log(fs_info, eb))
 549		return 0;
 550
 551	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 552	if (!tm)
 553		return -ENOMEM;
 554
 555	if (tree_mod_dont_log(fs_info, eb)) {
 556		kfree(tm);
 557		return 0;
 558	}
 559
 560	ret = __tree_mod_log_insert(fs_info, tm);
 561	tree_mod_log_write_unlock(fs_info);
 562	if (ret)
 563		kfree(tm);
 564
 565	return ret;
 566}
 567
 568static noinline int
 569tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 570			 struct extent_buffer *eb, int dst_slot, int src_slot,
 571			 int nr_items, gfp_t flags)
 572{
 573	struct tree_mod_elem *tm = NULL;
 574	struct tree_mod_elem **tm_list = NULL;
 575	int ret = 0;
 576	int i;
 577	int locked = 0;
 578
 579	if (!tree_mod_need_log(fs_info, eb))
 580		return 0;
 581
 582	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
 583	if (!tm_list)
 584		return -ENOMEM;
 585
 586	tm = kzalloc(sizeof(*tm), flags);
 587	if (!tm) {
 588		ret = -ENOMEM;
 589		goto free_tms;
 590	}
 591
 592	tm->logical = eb->start;
 593	tm->slot = src_slot;
 594	tm->move.dst_slot = dst_slot;
 595	tm->move.nr_items = nr_items;
 596	tm->op = MOD_LOG_MOVE_KEYS;
 597
 598	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 599		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 600		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 601		if (!tm_list[i]) {
 602			ret = -ENOMEM;
 603			goto free_tms;
 604		}
 605	}
 606
 607	if (tree_mod_dont_log(fs_info, eb))
 608		goto free_tms;
 609	locked = 1;
 610
 611	/*
 612	 * When we override something during the move, we log these removals.
 613	 * This can only happen when we move towards the beginning of the
 614	 * buffer, i.e. dst_slot < src_slot.
 615	 */
 616	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 617		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 618		if (ret)
 619			goto free_tms;
 620	}
 621
 622	ret = __tree_mod_log_insert(fs_info, tm);
 623	if (ret)
 624		goto free_tms;
 625	tree_mod_log_write_unlock(fs_info);
 626	kfree(tm_list);
 627
 628	return 0;
 629free_tms:
 630	for (i = 0; i < nr_items; i++) {
 631		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 632			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 633		kfree(tm_list[i]);
 634	}
 635	if (locked)
 636		tree_mod_log_write_unlock(fs_info);
 637	kfree(tm_list);
 638	kfree(tm);
 639
 640	return ret;
 641}
 642
 643static inline int
 644__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 645		       struct tree_mod_elem **tm_list,
 646		       int nritems)
 647{
 648	int i, j;
 649	int ret;
 650
 651	for (i = nritems - 1; i >= 0; i--) {
 652		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 653		if (ret) {
 654			for (j = nritems - 1; j > i; j--)
 655				rb_erase(&tm_list[j]->node,
 656					 &fs_info->tree_mod_log);
 657			return ret;
 658		}
 659	}
 660
 661	return 0;
 662}
 663
 664static noinline int
 665tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 666			 struct extent_buffer *old_root,
 667			 struct extent_buffer *new_root, gfp_t flags,
 668			 int log_removal)
 669{
 
 670	struct tree_mod_elem *tm = NULL;
 671	struct tree_mod_elem **tm_list = NULL;
 672	int nritems = 0;
 673	int ret = 0;
 674	int i;
 675
 676	if (!tree_mod_need_log(fs_info, NULL))
 677		return 0;
 678
 679	if (log_removal && btrfs_header_level(old_root) > 0) {
 680		nritems = btrfs_header_nritems(old_root);
 681		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 682				  flags);
 683		if (!tm_list) {
 684			ret = -ENOMEM;
 685			goto free_tms;
 686		}
 687		for (i = 0; i < nritems; i++) {
 688			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 689			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 690			if (!tm_list[i]) {
 691				ret = -ENOMEM;
 692				goto free_tms;
 693			}
 694		}
 695	}
 696
 697	tm = kzalloc(sizeof(*tm), flags);
 698	if (!tm) {
 699		ret = -ENOMEM;
 700		goto free_tms;
 701	}
 702
 703	tm->logical = new_root->start;
 704	tm->old_root.logical = old_root->start;
 705	tm->old_root.level = btrfs_header_level(old_root);
 706	tm->generation = btrfs_header_generation(old_root);
 707	tm->op = MOD_LOG_ROOT_REPLACE;
 708
 709	if (tree_mod_dont_log(fs_info, NULL))
 710		goto free_tms;
 711
 712	if (tm_list)
 713		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 714	if (!ret)
 715		ret = __tree_mod_log_insert(fs_info, tm);
 716
 717	tree_mod_log_write_unlock(fs_info);
 718	if (ret)
 719		goto free_tms;
 720	kfree(tm_list);
 721
 722	return ret;
 723
 724free_tms:
 725	if (tm_list) {
 726		for (i = 0; i < nritems; i++)
 727			kfree(tm_list[i]);
 728		kfree(tm_list);
 729	}
 730	kfree(tm);
 731
 732	return ret;
 733}
 734
 735static struct tree_mod_elem *
 736__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 737		      int smallest)
 738{
 739	struct rb_root *tm_root;
 740	struct rb_node *node;
 741	struct tree_mod_elem *cur = NULL;
 742	struct tree_mod_elem *found = NULL;
 743
 744	tree_mod_log_read_lock(fs_info);
 745	tm_root = &fs_info->tree_mod_log;
 746	node = tm_root->rb_node;
 747	while (node) {
 748		cur = container_of(node, struct tree_mod_elem, node);
 749		if (cur->logical < start) {
 750			node = node->rb_left;
 751		} else if (cur->logical > start) {
 752			node = node->rb_right;
 753		} else if (cur->seq < min_seq) {
 754			node = node->rb_left;
 755		} else if (!smallest) {
 756			/* we want the node with the highest seq */
 757			if (found)
 758				BUG_ON(found->seq > cur->seq);
 759			found = cur;
 760			node = node->rb_left;
 761		} else if (cur->seq > min_seq) {
 762			/* we want the node with the smallest seq */
 763			if (found)
 764				BUG_ON(found->seq < cur->seq);
 765			found = cur;
 766			node = node->rb_right;
 767		} else {
 768			found = cur;
 769			break;
 770		}
 771	}
 772	tree_mod_log_read_unlock(fs_info);
 773
 774	return found;
 775}
 776
 777/*
 778 * this returns the element from the log with the smallest time sequence
 779 * value that's in the log (the oldest log item). any element with a time
 780 * sequence lower than min_seq will be ignored.
 781 */
 782static struct tree_mod_elem *
 783tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 784			   u64 min_seq)
 785{
 786	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 787}
 788
 789/*
 790 * this returns the element from the log with the largest time sequence
 791 * value that's in the log (the most recent log item). any element with
 792 * a time sequence lower than min_seq will be ignored.
 793 */
 794static struct tree_mod_elem *
 795tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 796{
 797	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 798}
 799
 800static noinline int
 801tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 802		     struct extent_buffer *src, unsigned long dst_offset,
 803		     unsigned long src_offset, int nr_items)
 804{
 
 805	int ret = 0;
 806	struct tree_mod_elem **tm_list = NULL;
 807	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 808	int i;
 809	int locked = 0;
 810
 811	if (!tree_mod_need_log(fs_info, NULL))
 812		return 0;
 813
 814	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 815		return 0;
 816
 817	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 818			  GFP_NOFS);
 819	if (!tm_list)
 820		return -ENOMEM;
 821
 822	tm_list_add = tm_list;
 823	tm_list_rem = tm_list + nr_items;
 824	for (i = 0; i < nr_items; i++) {
 825		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 826		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 827		if (!tm_list_rem[i]) {
 828			ret = -ENOMEM;
 829			goto free_tms;
 830		}
 831
 832		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 833		    MOD_LOG_KEY_ADD, GFP_NOFS);
 834		if (!tm_list_add[i]) {
 835			ret = -ENOMEM;
 836			goto free_tms;
 837		}
 838	}
 839
 840	if (tree_mod_dont_log(fs_info, NULL))
 841		goto free_tms;
 842	locked = 1;
 843
 844	for (i = 0; i < nr_items; i++) {
 845		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 846		if (ret)
 847			goto free_tms;
 848		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 849		if (ret)
 850			goto free_tms;
 851	}
 852
 853	tree_mod_log_write_unlock(fs_info);
 854	kfree(tm_list);
 855
 856	return 0;
 857
 858free_tms:
 859	for (i = 0; i < nr_items * 2; i++) {
 860		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 861			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 862		kfree(tm_list[i]);
 863	}
 864	if (locked)
 865		tree_mod_log_write_unlock(fs_info);
 866	kfree(tm_list);
 867
 868	return ret;
 869}
 870
 871static inline void
 872tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 873		     int dst_offset, int src_offset, int nr_items)
 874{
 875	int ret;
 876	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 877				       nr_items, GFP_NOFS);
 878	BUG_ON(ret < 0);
 879}
 880
 881static noinline void
 882tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 883			  struct extent_buffer *eb, int slot, int atomic)
 884{
 885	int ret;
 886
 887	ret = tree_mod_log_insert_key(fs_info, eb, slot,
 888					MOD_LOG_KEY_REPLACE,
 889					atomic ? GFP_ATOMIC : GFP_NOFS);
 890	BUG_ON(ret < 0);
 891}
 892
 893static noinline int
 894tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 895{
 896	struct tree_mod_elem **tm_list = NULL;
 897	int nritems = 0;
 898	int i;
 899	int ret = 0;
 900
 901	if (btrfs_header_level(eb) == 0)
 902		return 0;
 903
 904	if (!tree_mod_need_log(fs_info, NULL))
 905		return 0;
 906
 907	nritems = btrfs_header_nritems(eb);
 908	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 909	if (!tm_list)
 910		return -ENOMEM;
 911
 912	for (i = 0; i < nritems; i++) {
 913		tm_list[i] = alloc_tree_mod_elem(eb, i,
 914		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 915		if (!tm_list[i]) {
 916			ret = -ENOMEM;
 917			goto free_tms;
 918		}
 919	}
 920
 921	if (tree_mod_dont_log(fs_info, eb))
 922		goto free_tms;
 923
 924	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 925	tree_mod_log_write_unlock(fs_info);
 926	if (ret)
 927		goto free_tms;
 928	kfree(tm_list);
 929
 930	return 0;
 931
 932free_tms:
 933	for (i = 0; i < nritems; i++)
 934		kfree(tm_list[i]);
 935	kfree(tm_list);
 936
 937	return ret;
 938}
 939
 940static noinline void
 941tree_mod_log_set_root_pointer(struct btrfs_root *root,
 942			      struct extent_buffer *new_root_node,
 943			      int log_removal)
 944{
 945	int ret;
 946	ret = tree_mod_log_insert_root(root->fs_info, root->node,
 947				       new_root_node, GFP_NOFS, log_removal);
 948	BUG_ON(ret < 0);
 949}
 950
 951/*
 952 * check if the tree block can be shared by multiple trees
 953 */
 954int btrfs_block_can_be_shared(struct btrfs_root *root,
 955			      struct extent_buffer *buf)
 956{
 957	/*
 958	 * Tree blocks not in refernece counted trees and tree roots
 959	 * are never shared. If a block was allocated after the last
 960	 * snapshot and the block was not allocated by tree relocation,
 961	 * we know the block is not shared.
 962	 */
 963	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 964	    buf != root->node && buf != root->commit_root &&
 965	    (btrfs_header_generation(buf) <=
 966	     btrfs_root_last_snapshot(&root->root_item) ||
 967	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 968		return 1;
 969#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 970	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 971	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 972		return 1;
 973#endif
 974	return 0;
 975}
 976
 977static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 978				       struct btrfs_root *root,
 979				       struct extent_buffer *buf,
 980				       struct extent_buffer *cow,
 981				       int *last_ref)
 982{
 
 983	u64 refs;
 984	u64 owner;
 985	u64 flags;
 986	u64 new_flags = 0;
 987	int ret;
 988
 989	/*
 990	 * Backrefs update rules:
 991	 *
 992	 * Always use full backrefs for extent pointers in tree block
 993	 * allocated by tree relocation.
 994	 *
 995	 * If a shared tree block is no longer referenced by its owner
 996	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 997	 * use full backrefs for extent pointers in tree block.
 998	 *
 999	 * If a tree block is been relocating
1000	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001	 * use full backrefs for extent pointers in tree block.
1002	 * The reason for this is some operations (such as drop tree)
1003	 * are only allowed for blocks use full backrefs.
1004	 */
1005
1006	if (btrfs_block_can_be_shared(root, buf)) {
1007		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008					       btrfs_header_level(buf), 1,
1009					       &refs, &flags);
1010		if (ret)
1011			return ret;
1012		if (refs == 0) {
1013			ret = -EROFS;
1014			btrfs_std_error(root->fs_info, ret, NULL);
1015			return ret;
1016		}
1017	} else {
1018		refs = 1;
1019		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022		else
1023			flags = 0;
1024	}
1025
1026	owner = btrfs_header_owner(buf);
1027	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030	if (refs > 1) {
1031		if ((owner == root->root_key.objectid ||
1032		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034			ret = btrfs_inc_ref(trans, root, buf, 1);
1035			BUG_ON(ret); /* -ENOMEM */
 
1036
1037			if (root->root_key.objectid ==
1038			    BTRFS_TREE_RELOC_OBJECTID) {
1039				ret = btrfs_dec_ref(trans, root, buf, 0);
1040				BUG_ON(ret); /* -ENOMEM */
 
1041				ret = btrfs_inc_ref(trans, root, cow, 1);
1042				BUG_ON(ret); /* -ENOMEM */
 
1043			}
1044			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045		} else {
1046
1047			if (root->root_key.objectid ==
1048			    BTRFS_TREE_RELOC_OBJECTID)
1049				ret = btrfs_inc_ref(trans, root, cow, 1);
1050			else
1051				ret = btrfs_inc_ref(trans, root, cow, 0);
1052			BUG_ON(ret); /* -ENOMEM */
 
1053		}
1054		if (new_flags != 0) {
1055			int level = btrfs_header_level(buf);
1056
1057			ret = btrfs_set_disk_extent_flags(trans, root,
1058							  buf->start,
1059							  buf->len,
1060							  new_flags, level, 0);
1061			if (ret)
1062				return ret;
1063		}
1064	} else {
1065		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066			if (root->root_key.objectid ==
1067			    BTRFS_TREE_RELOC_OBJECTID)
1068				ret = btrfs_inc_ref(trans, root, cow, 1);
1069			else
1070				ret = btrfs_inc_ref(trans, root, cow, 0);
1071			BUG_ON(ret); /* -ENOMEM */
 
1072			ret = btrfs_dec_ref(trans, root, buf, 1);
1073			BUG_ON(ret); /* -ENOMEM */
 
1074		}
1075		clean_tree_block(trans, root->fs_info, buf);
1076		*last_ref = 1;
1077	}
1078	return 0;
1079}
1080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081/*
1082 * does the dirty work in cow of a single block.  The parent block (if
1083 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084 * dirty and returned locked.  If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094			     struct btrfs_root *root,
1095			     struct extent_buffer *buf,
1096			     struct extent_buffer *parent, int parent_slot,
1097			     struct extent_buffer **cow_ret,
1098			     u64 search_start, u64 empty_size)
1099{
 
1100	struct btrfs_disk_key disk_key;
1101	struct extent_buffer *cow;
1102	int level, ret;
1103	int last_ref = 0;
1104	int unlock_orig = 0;
1105	u64 parent_start;
1106
1107	if (*cow_ret == buf)
1108		unlock_orig = 1;
1109
1110	btrfs_assert_tree_locked(buf);
1111
1112	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113		trans->transid != root->fs_info->running_transaction->transid);
1114	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115		trans->transid != root->last_trans);
1116
1117	level = btrfs_header_level(buf);
1118
1119	if (level == 0)
1120		btrfs_item_key(buf, &disk_key, 0);
1121	else
1122		btrfs_node_key(buf, &disk_key, 0);
1123
1124	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125		if (parent)
1126			parent_start = parent->start;
1127		else
1128			parent_start = 0;
1129	} else
1130		parent_start = 0;
1131
1132	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133			root->root_key.objectid, &disk_key, level,
1134			search_start, empty_size);
1135	if (IS_ERR(cow))
1136		return PTR_ERR(cow);
1137
1138	/* cow is set to blocking by btrfs_init_new_buffer */
1139
1140	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141	btrfs_set_header_bytenr(cow, cow->start);
1142	btrfs_set_header_generation(cow, trans->transid);
1143	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145				     BTRFS_HEADER_FLAG_RELOC);
1146	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148	else
1149		btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152			    BTRFS_FSID_SIZE);
1153
1154	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155	if (ret) {
1156		btrfs_abort_transaction(trans, root, ret);
1157		return ret;
1158	}
1159
1160	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162		if (ret) {
1163			btrfs_abort_transaction(trans, root, ret);
1164			return ret;
1165		}
1166	}
1167
1168	if (buf == root->node) {
1169		WARN_ON(parent && parent != buf);
1170		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172			parent_start = buf->start;
1173		else
1174			parent_start = 0;
1175
1176		extent_buffer_get(cow);
1177		tree_mod_log_set_root_pointer(root, cow, 1);
 
1178		rcu_assign_pointer(root->node, cow);
1179
1180		btrfs_free_tree_block(trans, root, buf, parent_start,
1181				      last_ref);
1182		free_extent_buffer(buf);
1183		add_root_to_dirty_list(root);
1184	} else {
1185		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186			parent_start = parent->start;
1187		else
1188			parent_start = 0;
1189
1190		WARN_ON(trans->transid != btrfs_header_generation(parent));
1191		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193		btrfs_set_node_blockptr(parent, parent_slot,
1194					cow->start);
1195		btrfs_set_node_ptr_generation(parent, parent_slot,
1196					      trans->transid);
1197		btrfs_mark_buffer_dirty(parent);
1198		if (last_ref) {
1199			ret = tree_mod_log_free_eb(root->fs_info, buf);
1200			if (ret) {
1201				btrfs_abort_transaction(trans, root, ret);
1202				return ret;
1203			}
1204		}
1205		btrfs_free_tree_block(trans, root, buf, parent_start,
1206				      last_ref);
1207	}
1208	if (unlock_orig)
1209		btrfs_tree_unlock(buf);
1210	free_extent_buffer_stale(buf);
1211	btrfs_mark_buffer_dirty(cow);
1212	*cow_ret = cow;
1213	return 0;
1214}
1215
1216/*
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1219 */
1220static struct tree_mod_elem *
1221__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222			   struct extent_buffer *eb_root, u64 time_seq)
1223{
1224	struct tree_mod_elem *tm;
1225	struct tree_mod_elem *found = NULL;
1226	u64 root_logical = eb_root->start;
1227	int looped = 0;
1228
1229	if (!time_seq)
1230		return NULL;
1231
1232	/*
1233	 * the very last operation that's logged for a root is the
1234	 * replacement operation (if it is replaced at all). this has
1235	 * the logical address of the *new* root, making it the very
1236	 * first operation that's logged for this root.
1237	 */
1238	while (1) {
1239		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240						time_seq);
1241		if (!looped && !tm)
1242			return NULL;
1243		/*
1244		 * if there are no tree operation for the oldest root, we simply
1245		 * return it. this should only happen if that (old) root is at
1246		 * level 0.
1247		 */
1248		if (!tm)
1249			break;
1250
1251		/*
1252		 * if there's an operation that's not a root replacement, we
1253		 * found the oldest version of our root. normally, we'll find a
1254		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255		 */
1256		if (tm->op != MOD_LOG_ROOT_REPLACE)
1257			break;
1258
1259		found = tm;
1260		root_logical = tm->old_root.logical;
1261		looped = 1;
1262	}
1263
1264	/* if there's no old root to return, return what we found instead */
1265	if (!found)
1266		found = tm;
1267
1268	return found;
1269}
1270
1271/*
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewinded (until we reach something older than
1274 * time_seq).
1275 */
1276static void
1277__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278		      u64 time_seq, struct tree_mod_elem *first_tm)
1279{
1280	u32 n;
1281	struct rb_node *next;
1282	struct tree_mod_elem *tm = first_tm;
1283	unsigned long o_dst;
1284	unsigned long o_src;
1285	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287	n = btrfs_header_nritems(eb);
1288	tree_mod_log_read_lock(fs_info);
1289	while (tm && tm->seq >= time_seq) {
1290		/*
1291		 * all the operations are recorded with the operator used for
1292		 * the modification. as we're going backwards, we do the
1293		 * opposite of each operation here.
1294		 */
1295		switch (tm->op) {
1296		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297			BUG_ON(tm->slot < n);
1298			/* Fallthrough */
1299		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300		case MOD_LOG_KEY_REMOVE:
1301			btrfs_set_node_key(eb, &tm->key, tm->slot);
1302			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303			btrfs_set_node_ptr_generation(eb, tm->slot,
1304						      tm->generation);
1305			n++;
1306			break;
1307		case MOD_LOG_KEY_REPLACE:
1308			BUG_ON(tm->slot >= n);
1309			btrfs_set_node_key(eb, &tm->key, tm->slot);
1310			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311			btrfs_set_node_ptr_generation(eb, tm->slot,
1312						      tm->generation);
1313			break;
1314		case MOD_LOG_KEY_ADD:
1315			/* if a move operation is needed it's in the log */
1316			n--;
1317			break;
1318		case MOD_LOG_MOVE_KEYS:
1319			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321			memmove_extent_buffer(eb, o_dst, o_src,
1322					      tm->move.nr_items * p_size);
1323			break;
1324		case MOD_LOG_ROOT_REPLACE:
1325			/*
1326			 * this operation is special. for roots, this must be
1327			 * handled explicitly before rewinding.
1328			 * for non-roots, this operation may exist if the node
1329			 * was a root: root A -> child B; then A gets empty and
1330			 * B is promoted to the new root. in the mod log, we'll
1331			 * have a root-replace operation for B, a tree block
1332			 * that is no root. we simply ignore that operation.
1333			 */
1334			break;
1335		}
1336		next = rb_next(&tm->node);
1337		if (!next)
1338			break;
1339		tm = container_of(next, struct tree_mod_elem, node);
1340		if (tm->logical != first_tm->logical)
1341			break;
1342	}
1343	tree_mod_log_read_unlock(fs_info);
1344	btrfs_set_header_nritems(eb, n);
1345}
1346
1347/*
1348 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1353 */
1354static struct extent_buffer *
1355tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356		    struct extent_buffer *eb, u64 time_seq)
1357{
1358	struct extent_buffer *eb_rewin;
1359	struct tree_mod_elem *tm;
1360
1361	if (!time_seq)
1362		return eb;
1363
1364	if (btrfs_header_level(eb) == 0)
1365		return eb;
1366
1367	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368	if (!tm)
1369		return eb;
1370
1371	btrfs_set_path_blocking(path);
1372	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375		BUG_ON(tm->slot != 0);
1376		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1377		if (!eb_rewin) {
1378			btrfs_tree_read_unlock_blocking(eb);
1379			free_extent_buffer(eb);
1380			return NULL;
1381		}
1382		btrfs_set_header_bytenr(eb_rewin, eb->start);
1383		btrfs_set_header_backref_rev(eb_rewin,
1384					     btrfs_header_backref_rev(eb));
1385		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1386		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1387	} else {
1388		eb_rewin = btrfs_clone_extent_buffer(eb);
1389		if (!eb_rewin) {
1390			btrfs_tree_read_unlock_blocking(eb);
1391			free_extent_buffer(eb);
1392			return NULL;
1393		}
1394	}
1395
1396	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1397	btrfs_tree_read_unlock_blocking(eb);
1398	free_extent_buffer(eb);
1399
1400	extent_buffer_get(eb_rewin);
 
1401	btrfs_tree_read_lock(eb_rewin);
1402	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1403	WARN_ON(btrfs_header_nritems(eb_rewin) >
1404		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1405
1406	return eb_rewin;
1407}
1408
1409/*
1410 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1411 * value. If there are no changes, the current root->root_node is returned. If
1412 * anything changed in between, there's a fresh buffer allocated on which the
1413 * rewind operations are done. In any case, the returned buffer is read locked.
1414 * Returns NULL on error (with no locks held).
1415 */
1416static inline struct extent_buffer *
1417get_old_root(struct btrfs_root *root, u64 time_seq)
1418{
 
1419	struct tree_mod_elem *tm;
1420	struct extent_buffer *eb = NULL;
1421	struct extent_buffer *eb_root;
 
1422	struct extent_buffer *old;
1423	struct tree_mod_root *old_root = NULL;
1424	u64 old_generation = 0;
1425	u64 logical;
 
1426
1427	eb_root = btrfs_read_lock_root_node(root);
1428	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1429	if (!tm)
1430		return eb_root;
1431
1432	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1433		old_root = &tm->old_root;
1434		old_generation = tm->generation;
1435		logical = old_root->logical;
 
1436	} else {
1437		logical = eb_root->start;
 
1438	}
1439
1440	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1441	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1442		btrfs_tree_read_unlock(eb_root);
1443		free_extent_buffer(eb_root);
1444		old = read_tree_block(root, logical, 0);
1445		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1446			if (!IS_ERR(old))
1447				free_extent_buffer(old);
1448			btrfs_warn(root->fs_info,
1449				"failed to read tree block %llu from get_old_root", logical);
 
1450		} else {
1451			eb = btrfs_clone_extent_buffer(old);
1452			free_extent_buffer(old);
1453		}
1454	} else if (old_root) {
 
1455		btrfs_tree_read_unlock(eb_root);
1456		free_extent_buffer(eb_root);
1457		eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1458	} else {
1459		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1460		eb = btrfs_clone_extent_buffer(eb_root);
1461		btrfs_tree_read_unlock_blocking(eb_root);
1462		free_extent_buffer(eb_root);
1463	}
1464
1465	if (!eb)
1466		return NULL;
1467	extent_buffer_get(eb);
1468	btrfs_tree_read_lock(eb);
1469	if (old_root) {
1470		btrfs_set_header_bytenr(eb, eb->start);
1471		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1472		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1473		btrfs_set_header_level(eb, old_root->level);
1474		btrfs_set_header_generation(eb, old_generation);
1475	}
 
 
 
1476	if (tm)
1477		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1478	else
1479		WARN_ON(btrfs_header_level(eb) != 0);
1480	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1481
1482	return eb;
1483}
1484
1485int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1486{
1487	struct tree_mod_elem *tm;
1488	int level;
1489	struct extent_buffer *eb_root = btrfs_root_node(root);
1490
1491	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1492	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1493		level = tm->old_root.level;
1494	} else {
1495		level = btrfs_header_level(eb_root);
1496	}
1497	free_extent_buffer(eb_root);
1498
1499	return level;
1500}
1501
1502static inline int should_cow_block(struct btrfs_trans_handle *trans,
1503				   struct btrfs_root *root,
1504				   struct extent_buffer *buf)
1505{
1506	if (btrfs_test_is_dummy_root(root))
1507		return 0;
1508
1509	/* ensure we can see the force_cow */
1510	smp_rmb();
1511
1512	/*
1513	 * We do not need to cow a block if
1514	 * 1) this block is not created or changed in this transaction;
1515	 * 2) this block does not belong to TREE_RELOC tree;
1516	 * 3) the root is not forced COW.
1517	 *
1518	 * What is forced COW:
1519	 *    when we create snapshot during commiting the transaction,
1520	 *    after we've finished coping src root, we must COW the shared
1521	 *    block to ensure the metadata consistency.
1522	 */
1523	if (btrfs_header_generation(buf) == trans->transid &&
1524	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1525	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1526	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1527	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1528		return 0;
1529	return 1;
1530}
1531
1532/*
1533 * cows a single block, see __btrfs_cow_block for the real work.
1534 * This version of it has extra checks so that a block isn't cow'd more than
1535 * once per transaction, as long as it hasn't been written yet
1536 */
1537noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1538		    struct btrfs_root *root, struct extent_buffer *buf,
1539		    struct extent_buffer *parent, int parent_slot,
1540		    struct extent_buffer **cow_ret)
1541{
 
1542	u64 search_start;
1543	int ret;
1544
1545	if (trans->transaction != root->fs_info->running_transaction)
 
 
 
 
1546		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1547		       trans->transid,
1548		       root->fs_info->running_transaction->transid);
1549
1550	if (trans->transid != root->fs_info->generation)
1551		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1552		       trans->transid, root->fs_info->generation);
1553
1554	if (!should_cow_block(trans, root, buf)) {
 
1555		*cow_ret = buf;
1556		return 0;
1557	}
1558
1559	search_start = buf->start & ~((u64)SZ_1G - 1);
1560
1561	if (parent)
1562		btrfs_set_lock_blocking(parent);
1563	btrfs_set_lock_blocking(buf);
1564
 
 
 
 
 
 
 
1565	ret = __btrfs_cow_block(trans, root, buf, parent,
1566				 parent_slot, cow_ret, search_start, 0);
1567
1568	trace_btrfs_cow_block(root, buf, *cow_ret);
1569
1570	return ret;
1571}
1572
1573/*
1574 * helper function for defrag to decide if two blocks pointed to by a
1575 * node are actually close by
1576 */
1577static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1578{
1579	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1580		return 1;
1581	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1582		return 1;
1583	return 0;
1584}
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586/*
1587 * compare two keys in a memcmp fashion
1588 */
1589static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
 
1590{
1591	struct btrfs_key k1;
1592
1593	btrfs_disk_key_to_cpu(&k1, disk);
1594
1595	return btrfs_comp_cpu_keys(&k1, k2);
1596}
 
1597
1598/*
1599 * same as comp_keys only with two btrfs_key's
1600 */
1601int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1602{
1603	if (k1->objectid > k2->objectid)
1604		return 1;
1605	if (k1->objectid < k2->objectid)
1606		return -1;
1607	if (k1->type > k2->type)
1608		return 1;
1609	if (k1->type < k2->type)
1610		return -1;
1611	if (k1->offset > k2->offset)
1612		return 1;
1613	if (k1->offset < k2->offset)
1614		return -1;
1615	return 0;
1616}
1617
1618/*
1619 * this is used by the defrag code to go through all the
1620 * leaves pointed to by a node and reallocate them so that
1621 * disk order is close to key order
1622 */
1623int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1624		       struct btrfs_root *root, struct extent_buffer *parent,
1625		       int start_slot, u64 *last_ret,
1626		       struct btrfs_key *progress)
1627{
 
1628	struct extent_buffer *cur;
1629	u64 blocknr;
1630	u64 gen;
1631	u64 search_start = *last_ret;
1632	u64 last_block = 0;
1633	u64 other;
1634	u32 parent_nritems;
1635	int end_slot;
1636	int i;
1637	int err = 0;
1638	int parent_level;
1639	int uptodate;
1640	u32 blocksize;
1641	int progress_passed = 0;
1642	struct btrfs_disk_key disk_key;
1643
1644	parent_level = btrfs_header_level(parent);
1645
1646	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1647	WARN_ON(trans->transid != root->fs_info->generation);
1648
1649	parent_nritems = btrfs_header_nritems(parent);
1650	blocksize = root->nodesize;
1651	end_slot = parent_nritems - 1;
1652
1653	if (parent_nritems <= 1)
1654		return 0;
1655
1656	btrfs_set_lock_blocking(parent);
1657
1658	for (i = start_slot; i <= end_slot; i++) {
 
1659		int close = 1;
1660
1661		btrfs_node_key(parent, &disk_key, i);
1662		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663			continue;
1664
1665		progress_passed = 1;
1666		blocknr = btrfs_node_blockptr(parent, i);
1667		gen = btrfs_node_ptr_generation(parent, i);
 
1668		if (last_block == 0)
1669			last_block = blocknr;
1670
1671		if (i > 0) {
1672			other = btrfs_node_blockptr(parent, i - 1);
1673			close = close_blocks(blocknr, other, blocksize);
1674		}
1675		if (!close && i < end_slot) {
1676			other = btrfs_node_blockptr(parent, i + 1);
1677			close = close_blocks(blocknr, other, blocksize);
1678		}
1679		if (close) {
1680			last_block = blocknr;
1681			continue;
1682		}
1683
1684		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1685		if (cur)
1686			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1687		else
1688			uptodate = 0;
1689		if (!cur || !uptodate) {
1690			if (!cur) {
1691				cur = read_tree_block(root, blocknr, gen);
 
 
1692				if (IS_ERR(cur)) {
1693					return PTR_ERR(cur);
1694				} else if (!extent_buffer_uptodate(cur)) {
1695					free_extent_buffer(cur);
1696					return -EIO;
1697				}
1698			} else if (!uptodate) {
1699				err = btrfs_read_buffer(cur, gen);
 
1700				if (err) {
1701					free_extent_buffer(cur);
1702					return err;
1703				}
1704			}
1705		}
1706		if (search_start == 0)
1707			search_start = last_block;
1708
1709		btrfs_tree_lock(cur);
1710		btrfs_set_lock_blocking(cur);
1711		err = __btrfs_cow_block(trans, root, cur, parent, i,
1712					&cur, search_start,
1713					min(16 * blocksize,
1714					    (end_slot - i) * blocksize));
1715		if (err) {
1716			btrfs_tree_unlock(cur);
1717			free_extent_buffer(cur);
1718			break;
1719		}
1720		search_start = cur->start;
1721		last_block = cur->start;
1722		*last_ret = search_start;
1723		btrfs_tree_unlock(cur);
1724		free_extent_buffer(cur);
1725	}
1726	return err;
1727}
1728
1729/*
1730 * The leaf data grows from end-to-front in the node.
1731 * this returns the address of the start of the last item,
1732 * which is the stop of the leaf data stack
1733 */
1734static inline unsigned int leaf_data_end(struct btrfs_root *root,
1735					 struct extent_buffer *leaf)
1736{
1737	u32 nr = btrfs_header_nritems(leaf);
1738	if (nr == 0)
1739		return BTRFS_LEAF_DATA_SIZE(root);
1740	return btrfs_item_offset_nr(leaf, nr - 1);
1741}
1742
1743
1744/*
1745 * search for key in the extent_buffer.  The items start at offset p,
1746 * and they are item_size apart.  There are 'max' items in p.
1747 *
1748 * the slot in the array is returned via slot, and it points to
1749 * the place where you would insert key if it is not found in
1750 * the array.
1751 *
1752 * slot may point to max if the key is bigger than all of the keys
1753 */
1754static noinline int generic_bin_search(struct extent_buffer *eb,
1755				       unsigned long p,
1756				       int item_size, struct btrfs_key *key,
1757				       int max, int *slot)
1758{
1759	int low = 0;
1760	int high = max;
1761	int mid;
1762	int ret;
1763	struct btrfs_disk_key *tmp = NULL;
1764	struct btrfs_disk_key unaligned;
1765	unsigned long offset;
1766	char *kaddr = NULL;
1767	unsigned long map_start = 0;
1768	unsigned long map_len = 0;
1769	int err;
 
 
1770
1771	while (low < high) {
 
 
 
 
 
 
1772		mid = (low + high) / 2;
1773		offset = p + mid * item_size;
 
1774
1775		if (!kaddr || offset < map_start ||
1776		    (offset + sizeof(struct btrfs_disk_key)) >
1777		    map_start + map_len) {
1778
1779			err = map_private_extent_buffer(eb, offset,
1780						sizeof(struct btrfs_disk_key),
1781						&kaddr, &map_start, &map_len);
1782
1783			if (!err) {
1784				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785							map_start);
1786			} else {
1787				read_extent_buffer(eb, &unaligned,
1788						   offset, sizeof(unaligned));
1789				tmp = &unaligned;
1790			}
1791
 
1792		} else {
1793			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1794							map_start);
1795		}
 
1796		ret = comp_keys(tmp, key);
1797
1798		if (ret < 0)
1799			low = mid + 1;
1800		else if (ret > 0)
1801			high = mid;
1802		else {
1803			*slot = mid;
1804			return 0;
1805		}
1806	}
1807	*slot = low;
1808	return 1;
1809}
1810
1811/*
1812 * simple bin_search frontend that does the right thing for
1813 * leaves vs nodes
1814 */
1815static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1816		      int level, int *slot)
1817{
1818	if (level == 0)
1819		return generic_bin_search(eb,
1820					  offsetof(struct btrfs_leaf, items),
1821					  sizeof(struct btrfs_item),
1822					  key, btrfs_header_nritems(eb),
1823					  slot);
1824	else
1825		return generic_bin_search(eb,
1826					  offsetof(struct btrfs_node, ptrs),
1827					  sizeof(struct btrfs_key_ptr),
1828					  key, btrfs_header_nritems(eb),
1829					  slot);
1830}
1831
1832int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1833		     int level, int *slot)
1834{
1835	return bin_search(eb, key, level, slot);
1836}
1837
1838static void root_add_used(struct btrfs_root *root, u32 size)
1839{
1840	spin_lock(&root->accounting_lock);
1841	btrfs_set_root_used(&root->root_item,
1842			    btrfs_root_used(&root->root_item) + size);
1843	spin_unlock(&root->accounting_lock);
1844}
1845
1846static void root_sub_used(struct btrfs_root *root, u32 size)
1847{
1848	spin_lock(&root->accounting_lock);
1849	btrfs_set_root_used(&root->root_item,
1850			    btrfs_root_used(&root->root_item) - size);
1851	spin_unlock(&root->accounting_lock);
1852}
1853
1854/* given a node and slot number, this reads the blocks it points to.  The
1855 * extent buffer is returned with a reference taken (but unlocked).
1856 * NULL is returned on error.
1857 */
1858static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1859				   struct extent_buffer *parent, int slot)
1860{
1861	int level = btrfs_header_level(parent);
1862	struct extent_buffer *eb;
 
1863
1864	if (slot < 0)
1865		return NULL;
1866	if (slot >= btrfs_header_nritems(parent))
1867		return NULL;
1868
1869	BUG_ON(level == 0);
1870
1871	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1872			     btrfs_node_ptr_generation(parent, slot));
1873	if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1874		if (!IS_ERR(eb))
1875			free_extent_buffer(eb);
1876		eb = NULL;
 
1877	}
1878
1879	return eb;
1880}
1881
1882/*
1883 * node level balancing, used to make sure nodes are in proper order for
1884 * item deletion.  We balance from the top down, so we have to make sure
1885 * that a deletion won't leave an node completely empty later on.
1886 */
1887static noinline int balance_level(struct btrfs_trans_handle *trans,
1888			 struct btrfs_root *root,
1889			 struct btrfs_path *path, int level)
1890{
 
1891	struct extent_buffer *right = NULL;
1892	struct extent_buffer *mid;
1893	struct extent_buffer *left = NULL;
1894	struct extent_buffer *parent = NULL;
1895	int ret = 0;
1896	int wret;
1897	int pslot;
1898	int orig_slot = path->slots[level];
1899	u64 orig_ptr;
1900
1901	if (level == 0)
1902		return 0;
1903
1904	mid = path->nodes[level];
1905
1906	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1907		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1908	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1909
1910	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1911
1912	if (level < BTRFS_MAX_LEVEL - 1) {
1913		parent = path->nodes[level + 1];
1914		pslot = path->slots[level + 1];
1915	}
1916
1917	/*
1918	 * deal with the case where there is only one pointer in the root
1919	 * by promoting the node below to a root
1920	 */
1921	if (!parent) {
1922		struct extent_buffer *child;
1923
1924		if (btrfs_header_nritems(mid) != 1)
1925			return 0;
1926
1927		/* promote the child to a root */
1928		child = read_node_slot(root, mid, 0);
1929		if (!child) {
1930			ret = -EROFS;
1931			btrfs_std_error(root->fs_info, ret, NULL);
1932			goto enospc;
1933		}
1934
1935		btrfs_tree_lock(child);
1936		btrfs_set_lock_blocking(child);
1937		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1938		if (ret) {
1939			btrfs_tree_unlock(child);
1940			free_extent_buffer(child);
1941			goto enospc;
1942		}
1943
1944		tree_mod_log_set_root_pointer(root, child, 1);
 
1945		rcu_assign_pointer(root->node, child);
1946
1947		add_root_to_dirty_list(root);
1948		btrfs_tree_unlock(child);
1949
1950		path->locks[level] = 0;
1951		path->nodes[level] = NULL;
1952		clean_tree_block(trans, root->fs_info, mid);
1953		btrfs_tree_unlock(mid);
1954		/* once for the path */
1955		free_extent_buffer(mid);
1956
1957		root_sub_used(root, mid->len);
1958		btrfs_free_tree_block(trans, root, mid, 0, 1);
1959		/* once for the root ptr */
1960		free_extent_buffer_stale(mid);
1961		return 0;
1962	}
1963	if (btrfs_header_nritems(mid) >
1964	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1965		return 0;
1966
1967	left = read_node_slot(root, parent, pslot - 1);
 
 
 
1968	if (left) {
1969		btrfs_tree_lock(left);
1970		btrfs_set_lock_blocking(left);
1971		wret = btrfs_cow_block(trans, root, left,
1972				       parent, pslot - 1, &left);
1973		if (wret) {
1974			ret = wret;
1975			goto enospc;
1976		}
1977	}
1978	right = read_node_slot(root, parent, pslot + 1);
 
 
 
 
1979	if (right) {
1980		btrfs_tree_lock(right);
1981		btrfs_set_lock_blocking(right);
1982		wret = btrfs_cow_block(trans, root, right,
1983				       parent, pslot + 1, &right);
1984		if (wret) {
1985			ret = wret;
1986			goto enospc;
1987		}
1988	}
1989
1990	/* first, try to make some room in the middle buffer */
1991	if (left) {
1992		orig_slot += btrfs_header_nritems(left);
1993		wret = push_node_left(trans, root, left, mid, 1);
1994		if (wret < 0)
1995			ret = wret;
1996	}
1997
1998	/*
1999	 * then try to empty the right most buffer into the middle
2000	 */
2001	if (right) {
2002		wret = push_node_left(trans, root, mid, right, 1);
2003		if (wret < 0 && wret != -ENOSPC)
2004			ret = wret;
2005		if (btrfs_header_nritems(right) == 0) {
2006			clean_tree_block(trans, root->fs_info, right);
2007			btrfs_tree_unlock(right);
2008			del_ptr(root, path, level + 1, pslot + 1);
2009			root_sub_used(root, right->len);
2010			btrfs_free_tree_block(trans, root, right, 0, 1);
2011			free_extent_buffer_stale(right);
2012			right = NULL;
2013		} else {
2014			struct btrfs_disk_key right_key;
2015			btrfs_node_key(right, &right_key, 0);
2016			tree_mod_log_set_node_key(root->fs_info, parent,
2017						  pslot + 1, 0);
 
2018			btrfs_set_node_key(parent, &right_key, pslot + 1);
2019			btrfs_mark_buffer_dirty(parent);
2020		}
2021	}
2022	if (btrfs_header_nritems(mid) == 1) {
2023		/*
2024		 * we're not allowed to leave a node with one item in the
2025		 * tree during a delete.  A deletion from lower in the tree
2026		 * could try to delete the only pointer in this node.
2027		 * So, pull some keys from the left.
2028		 * There has to be a left pointer at this point because
2029		 * otherwise we would have pulled some pointers from the
2030		 * right
2031		 */
2032		if (!left) {
2033			ret = -EROFS;
2034			btrfs_std_error(root->fs_info, ret, NULL);
2035			goto enospc;
2036		}
2037		wret = balance_node_right(trans, root, mid, left);
2038		if (wret < 0) {
2039			ret = wret;
2040			goto enospc;
2041		}
2042		if (wret == 1) {
2043			wret = push_node_left(trans, root, left, mid, 1);
2044			if (wret < 0)
2045				ret = wret;
2046		}
2047		BUG_ON(wret == 1);
2048	}
2049	if (btrfs_header_nritems(mid) == 0) {
2050		clean_tree_block(trans, root->fs_info, mid);
2051		btrfs_tree_unlock(mid);
2052		del_ptr(root, path, level + 1, pslot);
2053		root_sub_used(root, mid->len);
2054		btrfs_free_tree_block(trans, root, mid, 0, 1);
2055		free_extent_buffer_stale(mid);
2056		mid = NULL;
2057	} else {
2058		/* update the parent key to reflect our changes */
2059		struct btrfs_disk_key mid_key;
2060		btrfs_node_key(mid, &mid_key, 0);
2061		tree_mod_log_set_node_key(root->fs_info, parent,
2062					  pslot, 0);
 
2063		btrfs_set_node_key(parent, &mid_key, pslot);
2064		btrfs_mark_buffer_dirty(parent);
2065	}
2066
2067	/* update the path */
2068	if (left) {
2069		if (btrfs_header_nritems(left) > orig_slot) {
2070			extent_buffer_get(left);
2071			/* left was locked after cow */
2072			path->nodes[level] = left;
2073			path->slots[level + 1] -= 1;
2074			path->slots[level] = orig_slot;
2075			if (mid) {
2076				btrfs_tree_unlock(mid);
2077				free_extent_buffer(mid);
2078			}
2079		} else {
2080			orig_slot -= btrfs_header_nritems(left);
2081			path->slots[level] = orig_slot;
2082		}
2083	}
2084	/* double check we haven't messed things up */
2085	if (orig_ptr !=
2086	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2087		BUG();
2088enospc:
2089	if (right) {
2090		btrfs_tree_unlock(right);
2091		free_extent_buffer(right);
2092	}
2093	if (left) {
2094		if (path->nodes[level] != left)
2095			btrfs_tree_unlock(left);
2096		free_extent_buffer(left);
2097	}
2098	return ret;
2099}
2100
2101/* Node balancing for insertion.  Here we only split or push nodes around
2102 * when they are completely full.  This is also done top down, so we
2103 * have to be pessimistic.
2104 */
2105static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2106					  struct btrfs_root *root,
2107					  struct btrfs_path *path, int level)
2108{
 
2109	struct extent_buffer *right = NULL;
2110	struct extent_buffer *mid;
2111	struct extent_buffer *left = NULL;
2112	struct extent_buffer *parent = NULL;
2113	int ret = 0;
2114	int wret;
2115	int pslot;
2116	int orig_slot = path->slots[level];
2117
2118	if (level == 0)
2119		return 1;
2120
2121	mid = path->nodes[level];
2122	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2123
2124	if (level < BTRFS_MAX_LEVEL - 1) {
2125		parent = path->nodes[level + 1];
2126		pslot = path->slots[level + 1];
2127	}
2128
2129	if (!parent)
2130		return 1;
2131
2132	left = read_node_slot(root, parent, pslot - 1);
 
 
2133
2134	/* first, try to make some room in the middle buffer */
2135	if (left) {
2136		u32 left_nr;
2137
2138		btrfs_tree_lock(left);
2139		btrfs_set_lock_blocking(left);
2140
2141		left_nr = btrfs_header_nritems(left);
2142		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2143			wret = 1;
2144		} else {
2145			ret = btrfs_cow_block(trans, root, left, parent,
2146					      pslot - 1, &left);
2147			if (ret)
2148				wret = 1;
2149			else {
2150				wret = push_node_left(trans, root,
2151						      left, mid, 0);
2152			}
2153		}
2154		if (wret < 0)
2155			ret = wret;
2156		if (wret == 0) {
2157			struct btrfs_disk_key disk_key;
2158			orig_slot += left_nr;
2159			btrfs_node_key(mid, &disk_key, 0);
2160			tree_mod_log_set_node_key(root->fs_info, parent,
2161						  pslot, 0);
 
2162			btrfs_set_node_key(parent, &disk_key, pslot);
2163			btrfs_mark_buffer_dirty(parent);
2164			if (btrfs_header_nritems(left) > orig_slot) {
2165				path->nodes[level] = left;
2166				path->slots[level + 1] -= 1;
2167				path->slots[level] = orig_slot;
2168				btrfs_tree_unlock(mid);
2169				free_extent_buffer(mid);
2170			} else {
2171				orig_slot -=
2172					btrfs_header_nritems(left);
2173				path->slots[level] = orig_slot;
2174				btrfs_tree_unlock(left);
2175				free_extent_buffer(left);
2176			}
2177			return 0;
2178		}
2179		btrfs_tree_unlock(left);
2180		free_extent_buffer(left);
2181	}
2182	right = read_node_slot(root, parent, pslot + 1);
 
 
2183
2184	/*
2185	 * then try to empty the right most buffer into the middle
2186	 */
2187	if (right) {
2188		u32 right_nr;
2189
2190		btrfs_tree_lock(right);
2191		btrfs_set_lock_blocking(right);
2192
2193		right_nr = btrfs_header_nritems(right);
2194		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2195			wret = 1;
2196		} else {
2197			ret = btrfs_cow_block(trans, root, right,
2198					      parent, pslot + 1,
2199					      &right);
2200			if (ret)
2201				wret = 1;
2202			else {
2203				wret = balance_node_right(trans, root,
2204							  right, mid);
2205			}
2206		}
2207		if (wret < 0)
2208			ret = wret;
2209		if (wret == 0) {
2210			struct btrfs_disk_key disk_key;
2211
2212			btrfs_node_key(right, &disk_key, 0);
2213			tree_mod_log_set_node_key(root->fs_info, parent,
2214						  pslot + 1, 0);
 
2215			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2216			btrfs_mark_buffer_dirty(parent);
2217
2218			if (btrfs_header_nritems(mid) <= orig_slot) {
2219				path->nodes[level] = right;
2220				path->slots[level + 1] += 1;
2221				path->slots[level] = orig_slot -
2222					btrfs_header_nritems(mid);
2223				btrfs_tree_unlock(mid);
2224				free_extent_buffer(mid);
2225			} else {
2226				btrfs_tree_unlock(right);
2227				free_extent_buffer(right);
2228			}
2229			return 0;
2230		}
2231		btrfs_tree_unlock(right);
2232		free_extent_buffer(right);
2233	}
2234	return 1;
2235}
2236
2237/*
2238 * readahead one full node of leaves, finding things that are close
2239 * to the block in 'slot', and triggering ra on them.
2240 */
2241static void reada_for_search(struct btrfs_root *root,
2242			     struct btrfs_path *path,
2243			     int level, int slot, u64 objectid)
2244{
2245	struct extent_buffer *node;
2246	struct btrfs_disk_key disk_key;
2247	u32 nritems;
2248	u64 search;
2249	u64 target;
2250	u64 nread = 0;
2251	u64 gen;
2252	struct extent_buffer *eb;
2253	u32 nr;
2254	u32 blocksize;
2255	u32 nscan = 0;
2256
2257	if (level != 1)
2258		return;
2259
2260	if (!path->nodes[level])
2261		return;
2262
2263	node = path->nodes[level];
2264
2265	search = btrfs_node_blockptr(node, slot);
2266	blocksize = root->nodesize;
2267	eb = btrfs_find_tree_block(root->fs_info, search);
2268	if (eb) {
2269		free_extent_buffer(eb);
2270		return;
2271	}
2272
2273	target = search;
2274
2275	nritems = btrfs_header_nritems(node);
2276	nr = slot;
2277
2278	while (1) {
2279		if (path->reada == READA_BACK) {
2280			if (nr == 0)
2281				break;
2282			nr--;
2283		} else if (path->reada == READA_FORWARD) {
2284			nr++;
2285			if (nr >= nritems)
2286				break;
2287		}
2288		if (path->reada == READA_BACK && objectid) {
2289			btrfs_node_key(node, &disk_key, nr);
2290			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2291				break;
2292		}
2293		search = btrfs_node_blockptr(node, nr);
2294		if ((search <= target && target - search <= 65536) ||
2295		    (search > target && search - target <= 65536)) {
2296			gen = btrfs_node_ptr_generation(node, nr);
2297			readahead_tree_block(root, search);
2298			nread += blocksize;
2299		}
2300		nscan++;
2301		if ((nread > 65536 || nscan > 32))
2302			break;
2303	}
2304}
2305
2306static noinline void reada_for_balance(struct btrfs_root *root,
2307				       struct btrfs_path *path, int level)
2308{
2309	int slot;
2310	int nritems;
2311	struct extent_buffer *parent;
2312	struct extent_buffer *eb;
2313	u64 gen;
2314	u64 block1 = 0;
2315	u64 block2 = 0;
2316
2317	parent = path->nodes[level + 1];
2318	if (!parent)
2319		return;
2320
2321	nritems = btrfs_header_nritems(parent);
2322	slot = path->slots[level + 1];
2323
2324	if (slot > 0) {
2325		block1 = btrfs_node_blockptr(parent, slot - 1);
2326		gen = btrfs_node_ptr_generation(parent, slot - 1);
2327		eb = btrfs_find_tree_block(root->fs_info, block1);
2328		/*
2329		 * if we get -eagain from btrfs_buffer_uptodate, we
2330		 * don't want to return eagain here.  That will loop
2331		 * forever
2332		 */
2333		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2334			block1 = 0;
2335		free_extent_buffer(eb);
2336	}
2337	if (slot + 1 < nritems) {
2338		block2 = btrfs_node_blockptr(parent, slot + 1);
2339		gen = btrfs_node_ptr_generation(parent, slot + 1);
2340		eb = btrfs_find_tree_block(root->fs_info, block2);
2341		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2342			block2 = 0;
2343		free_extent_buffer(eb);
2344	}
2345
2346	if (block1)
2347		readahead_tree_block(root, block1);
2348	if (block2)
2349		readahead_tree_block(root, block2);
2350}
2351
2352
2353/*
2354 * when we walk down the tree, it is usually safe to unlock the higher layers
2355 * in the tree.  The exceptions are when our path goes through slot 0, because
2356 * operations on the tree might require changing key pointers higher up in the
2357 * tree.
2358 *
2359 * callers might also have set path->keep_locks, which tells this code to keep
2360 * the lock if the path points to the last slot in the block.  This is part of
2361 * walking through the tree, and selecting the next slot in the higher block.
2362 *
2363 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2364 * if lowest_unlock is 1, level 0 won't be unlocked
2365 */
2366static noinline void unlock_up(struct btrfs_path *path, int level,
2367			       int lowest_unlock, int min_write_lock_level,
2368			       int *write_lock_level)
2369{
2370	int i;
2371	int skip_level = level;
2372	int no_skips = 0;
2373	struct extent_buffer *t;
2374
2375	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2376		if (!path->nodes[i])
2377			break;
2378		if (!path->locks[i])
2379			break;
2380		if (!no_skips && path->slots[i] == 0) {
2381			skip_level = i + 1;
2382			continue;
2383		}
2384		if (!no_skips && path->keep_locks) {
2385			u32 nritems;
2386			t = path->nodes[i];
2387			nritems = btrfs_header_nritems(t);
2388			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2389				skip_level = i + 1;
2390				continue;
2391			}
2392		}
2393		if (skip_level < i && i >= lowest_unlock)
2394			no_skips = 1;
2395
2396		t = path->nodes[i];
2397		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2398			btrfs_tree_unlock_rw(t, path->locks[i]);
2399			path->locks[i] = 0;
2400			if (write_lock_level &&
2401			    i > min_write_lock_level &&
2402			    i <= *write_lock_level) {
2403				*write_lock_level = i - 1;
2404			}
2405		}
2406	}
2407}
2408
2409/*
2410 * This releases any locks held in the path starting at level and
2411 * going all the way up to the root.
2412 *
2413 * btrfs_search_slot will keep the lock held on higher nodes in a few
2414 * corner cases, such as COW of the block at slot zero in the node.  This
2415 * ignores those rules, and it should only be called when there are no
2416 * more updates to be done higher up in the tree.
2417 */
2418noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2419{
2420	int i;
2421
2422	if (path->keep_locks)
2423		return;
2424
2425	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2426		if (!path->nodes[i])
2427			continue;
2428		if (!path->locks[i])
2429			continue;
2430		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2431		path->locks[i] = 0;
2432	}
2433}
2434
2435/*
2436 * helper function for btrfs_search_slot.  The goal is to find a block
2437 * in cache without setting the path to blocking.  If we find the block
2438 * we return zero and the path is unchanged.
2439 *
2440 * If we can't find the block, we set the path blocking and do some
2441 * reada.  -EAGAIN is returned and the search must be repeated.
2442 */
2443static int
2444read_block_for_search(struct btrfs_trans_handle *trans,
2445		       struct btrfs_root *root, struct btrfs_path *p,
2446		       struct extent_buffer **eb_ret, int level, int slot,
2447		       struct btrfs_key *key, u64 time_seq)
2448{
 
2449	u64 blocknr;
2450	u64 gen;
2451	struct extent_buffer *b = *eb_ret;
2452	struct extent_buffer *tmp;
 
2453	int ret;
 
2454
2455	blocknr = btrfs_node_blockptr(b, slot);
2456	gen = btrfs_node_ptr_generation(b, slot);
 
 
2457
2458	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2459	if (tmp) {
2460		/* first we do an atomic uptodate check */
2461		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
 
 
 
 
 
 
 
 
 
 
2462			*eb_ret = tmp;
2463			return 0;
2464		}
2465
2466		/* the pages were up to date, but we failed
2467		 * the generation number check.  Do a full
2468		 * read for the generation number that is correct.
2469		 * We must do this without dropping locks so
2470		 * we can trust our generation number
2471		 */
2472		btrfs_set_path_blocking(p);
2473
2474		/* now we're allowed to do a blocking uptodate check */
2475		ret = btrfs_read_buffer(tmp, gen);
2476		if (!ret) {
2477			*eb_ret = tmp;
2478			return 0;
2479		}
2480		free_extent_buffer(tmp);
2481		btrfs_release_path(p);
2482		return -EIO;
2483	}
2484
2485	/*
2486	 * reduce lock contention at high levels
2487	 * of the btree by dropping locks before
2488	 * we read.  Don't release the lock on the current
2489	 * level because we need to walk this node to figure
2490	 * out which blocks to read.
2491	 */
2492	btrfs_unlock_up_safe(p, level + 1);
2493	btrfs_set_path_blocking(p);
2494
2495	free_extent_buffer(tmp);
2496	if (p->reada != READA_NONE)
2497		reada_for_search(root, p, level, slot, key->objectid);
2498
2499	btrfs_release_path(p);
2500
2501	ret = -EAGAIN;
2502	tmp = read_tree_block(root, blocknr, 0);
 
2503	if (!IS_ERR(tmp)) {
2504		/*
2505		 * If the read above didn't mark this buffer up to date,
2506		 * it will never end up being up to date.  Set ret to EIO now
2507		 * and give up so that our caller doesn't loop forever
2508		 * on our EAGAINs.
2509		 */
2510		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2511			ret = -EIO;
2512		free_extent_buffer(tmp);
 
 
2513	}
 
 
2514	return ret;
2515}
2516
2517/*
2518 * helper function for btrfs_search_slot.  This does all of the checks
2519 * for node-level blocks and does any balancing required based on
2520 * the ins_len.
2521 *
2522 * If no extra work was required, zero is returned.  If we had to
2523 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2524 * start over
2525 */
2526static int
2527setup_nodes_for_search(struct btrfs_trans_handle *trans,
2528		       struct btrfs_root *root, struct btrfs_path *p,
2529		       struct extent_buffer *b, int level, int ins_len,
2530		       int *write_lock_level)
2531{
 
2532	int ret;
 
2533	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2534	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2535		int sret;
2536
2537		if (*write_lock_level < level + 1) {
2538			*write_lock_level = level + 1;
2539			btrfs_release_path(p);
2540			goto again;
2541		}
2542
2543		btrfs_set_path_blocking(p);
2544		reada_for_balance(root, p, level);
2545		sret = split_node(trans, root, p, level);
2546		btrfs_clear_path_blocking(p, NULL, 0);
2547
2548		BUG_ON(sret > 0);
2549		if (sret) {
2550			ret = sret;
2551			goto done;
2552		}
2553		b = p->nodes[level];
2554	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2555		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2556		int sret;
2557
2558		if (*write_lock_level < level + 1) {
2559			*write_lock_level = level + 1;
2560			btrfs_release_path(p);
2561			goto again;
2562		}
2563
2564		btrfs_set_path_blocking(p);
2565		reada_for_balance(root, p, level);
2566		sret = balance_level(trans, root, p, level);
2567		btrfs_clear_path_blocking(p, NULL, 0);
2568
2569		if (sret) {
2570			ret = sret;
2571			goto done;
2572		}
2573		b = p->nodes[level];
2574		if (!b) {
2575			btrfs_release_path(p);
2576			goto again;
2577		}
2578		BUG_ON(btrfs_header_nritems(b) == 1);
2579	}
2580	return 0;
2581
2582again:
2583	ret = -EAGAIN;
2584done:
2585	return ret;
2586}
2587
2588static void key_search_validate(struct extent_buffer *b,
2589				struct btrfs_key *key,
2590				int level)
2591{
2592#ifdef CONFIG_BTRFS_ASSERT
2593	struct btrfs_disk_key disk_key;
2594
2595	btrfs_cpu_key_to_disk(&disk_key, key);
2596
2597	if (level == 0)
2598		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2599		    offsetof(struct btrfs_leaf, items[0].key),
2600		    sizeof(disk_key)));
2601	else
2602		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2603		    offsetof(struct btrfs_node, ptrs[0].key),
2604		    sizeof(disk_key)));
2605#endif
2606}
2607
2608static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2609		      int level, int *prev_cmp, int *slot)
2610{
2611	if (*prev_cmp != 0) {
2612		*prev_cmp = bin_search(b, key, level, slot);
2613		return *prev_cmp;
2614	}
2615
2616	key_search_validate(b, key, level);
2617	*slot = 0;
2618
2619	return 0;
2620}
2621
2622int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2623		u64 iobjectid, u64 ioff, u8 key_type,
2624		struct btrfs_key *found_key)
2625{
2626	int ret;
2627	struct btrfs_key key;
2628	struct extent_buffer *eb;
2629
2630	ASSERT(path);
2631	ASSERT(found_key);
2632
2633	key.type = key_type;
2634	key.objectid = iobjectid;
2635	key.offset = ioff;
2636
2637	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2638	if (ret < 0)
2639		return ret;
2640
2641	eb = path->nodes[0];
2642	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2643		ret = btrfs_next_leaf(fs_root, path);
2644		if (ret)
2645			return ret;
2646		eb = path->nodes[0];
2647	}
2648
2649	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2650	if (found_key->type != key.type ||
2651			found_key->objectid != key.objectid)
2652		return 1;
2653
2654	return 0;
2655}
2656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2657/*
2658 * look for key in the tree.  path is filled in with nodes along the way
2659 * if key is found, we return zero and you can find the item in the leaf
2660 * level of the path (level 0)
2661 *
2662 * If the key isn't found, the path points to the slot where it should
2663 * be inserted, and 1 is returned.  If there are other errors during the
2664 * search a negative error number is returned.
2665 *
2666 * if ins_len > 0, nodes and leaves will be split as we walk down the
2667 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2668 * possible)
2669 */
2670int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2671		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2672		      ins_len, int cow)
 
 
 
 
 
 
 
 
 
 
 
 
2673{
2674	struct extent_buffer *b;
2675	int slot;
2676	int ret;
2677	int err;
2678	int level;
2679	int lowest_unlock = 1;
2680	int root_lock;
2681	/* everything at write_lock_level or lower must be write locked */
2682	int write_lock_level = 0;
2683	u8 lowest_level = 0;
2684	int min_write_lock_level;
2685	int prev_cmp;
2686
2687	lowest_level = p->lowest_level;
2688	WARN_ON(lowest_level && ins_len > 0);
2689	WARN_ON(p->nodes[0] != NULL);
2690	BUG_ON(!cow && ins_len);
2691
2692	if (ins_len < 0) {
2693		lowest_unlock = 2;
2694
2695		/* when we are removing items, we might have to go up to level
2696		 * two as we update tree pointers  Make sure we keep write
2697		 * for those levels as well
2698		 */
2699		write_lock_level = 2;
2700	} else if (ins_len > 0) {
2701		/*
2702		 * for inserting items, make sure we have a write lock on
2703		 * level 1 so we can update keys
2704		 */
2705		write_lock_level = 1;
2706	}
2707
2708	if (!cow)
2709		write_lock_level = -1;
2710
2711	if (cow && (p->keep_locks || p->lowest_level))
2712		write_lock_level = BTRFS_MAX_LEVEL;
2713
2714	min_write_lock_level = write_lock_level;
2715
2716again:
2717	prev_cmp = -1;
2718	/*
2719	 * we try very hard to do read locks on the root
2720	 */
2721	root_lock = BTRFS_READ_LOCK;
2722	level = 0;
2723	if (p->search_commit_root) {
2724		/*
2725		 * the commit roots are read only
2726		 * so we always do read locks
2727		 */
2728		if (p->need_commit_sem)
2729			down_read(&root->fs_info->commit_root_sem);
2730		b = root->commit_root;
2731		extent_buffer_get(b);
2732		level = btrfs_header_level(b);
2733		if (p->need_commit_sem)
2734			up_read(&root->fs_info->commit_root_sem);
2735		if (!p->skip_locking)
2736			btrfs_tree_read_lock(b);
2737	} else {
2738		if (p->skip_locking) {
2739			b = btrfs_root_node(root);
2740			level = btrfs_header_level(b);
2741		} else {
2742			/* we don't know the level of the root node
2743			 * until we actually have it read locked
2744			 */
2745			b = btrfs_read_lock_root_node(root);
2746			level = btrfs_header_level(b);
2747			if (level <= write_lock_level) {
2748				/* whoops, must trade for write lock */
2749				btrfs_tree_read_unlock(b);
2750				free_extent_buffer(b);
2751				b = btrfs_lock_root_node(root);
2752				root_lock = BTRFS_WRITE_LOCK;
2753
2754				/* the level might have changed, check again */
2755				level = btrfs_header_level(b);
2756			}
2757		}
2758	}
2759	p->nodes[level] = b;
2760	if (!p->skip_locking)
2761		p->locks[level] = root_lock;
2762
2763	while (b) {
 
 
2764		level = btrfs_header_level(b);
2765
2766		/*
2767		 * setup the path here so we can release it under lock
2768		 * contention with the cow code
2769		 */
2770		if (cow) {
 
 
2771			/*
2772			 * if we don't really need to cow this block
2773			 * then we don't want to set the path blocking,
2774			 * so we test it here
2775			 */
2776			if (!should_cow_block(trans, root, b))
 
2777				goto cow_done;
 
2778
2779			/*
2780			 * must have write locks on this node and the
2781			 * parent
2782			 */
2783			if (level > write_lock_level ||
2784			    (level + 1 > write_lock_level &&
2785			    level + 1 < BTRFS_MAX_LEVEL &&
2786			    p->nodes[level + 1])) {
2787				write_lock_level = level + 1;
2788				btrfs_release_path(p);
2789				goto again;
2790			}
2791
2792			btrfs_set_path_blocking(p);
2793			err = btrfs_cow_block(trans, root, b,
2794					      p->nodes[level + 1],
2795					      p->slots[level + 1], &b);
 
 
 
 
2796			if (err) {
2797				ret = err;
2798				goto done;
2799			}
2800		}
2801cow_done:
2802		p->nodes[level] = b;
2803		btrfs_clear_path_blocking(p, NULL, 0);
 
 
 
2804
2805		/*
2806		 * we have a lock on b and as long as we aren't changing
2807		 * the tree, there is no way to for the items in b to change.
2808		 * It is safe to drop the lock on our parent before we
2809		 * go through the expensive btree search on b.
2810		 *
2811		 * If we're inserting or deleting (ins_len != 0), then we might
2812		 * be changing slot zero, which may require changing the parent.
2813		 * So, we can't drop the lock until after we know which slot
2814		 * we're operating on.
2815		 */
2816		if (!ins_len && !p->keep_locks) {
2817			int u = level + 1;
2818
2819			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2820				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2821				p->locks[u] = 0;
2822			}
2823		}
2824
2825		ret = key_search(b, key, level, &prev_cmp, &slot);
2826
2827		if (level != 0) {
2828			int dec = 0;
2829			if (ret && slot > 0) {
2830				dec = 1;
2831				slot -= 1;
2832			}
2833			p->slots[level] = slot;
2834			err = setup_nodes_for_search(trans, root, p, b, level,
2835					     ins_len, &write_lock_level);
2836			if (err == -EAGAIN)
2837				goto again;
2838			if (err) {
2839				ret = err;
2840				goto done;
2841			}
2842			b = p->nodes[level];
2843			slot = p->slots[level];
2844
2845			/*
2846			 * slot 0 is special, if we change the key
2847			 * we have to update the parent pointer
2848			 * which means we must have a write lock
2849			 * on the parent
2850			 */
2851			if (slot == 0 && ins_len &&
2852			    write_lock_level < level + 1) {
2853				write_lock_level = level + 1;
2854				btrfs_release_path(p);
2855				goto again;
2856			}
2857
2858			unlock_up(p, level, lowest_unlock,
2859				  min_write_lock_level, &write_lock_level);
2860
2861			if (level == lowest_level) {
2862				if (dec)
2863					p->slots[level]++;
2864				goto done;
2865			}
2866
2867			err = read_block_for_search(trans, root, p,
2868						    &b, level, slot, key, 0);
2869			if (err == -EAGAIN)
2870				goto again;
2871			if (err) {
2872				ret = err;
2873				goto done;
2874			}
2875
2876			if (!p->skip_locking) {
2877				level = btrfs_header_level(b);
2878				if (level <= write_lock_level) {
2879					err = btrfs_try_tree_write_lock(b);
2880					if (!err) {
2881						btrfs_set_path_blocking(p);
2882						btrfs_tree_lock(b);
2883						btrfs_clear_path_blocking(p, b,
2884								  BTRFS_WRITE_LOCK);
2885					}
2886					p->locks[level] = BTRFS_WRITE_LOCK;
2887				} else {
2888					err = btrfs_tree_read_lock_atomic(b);
2889					if (!err) {
2890						btrfs_set_path_blocking(p);
2891						btrfs_tree_read_lock(b);
2892						btrfs_clear_path_blocking(p, b,
2893								  BTRFS_READ_LOCK);
2894					}
2895					p->locks[level] = BTRFS_READ_LOCK;
2896				}
2897				p->nodes[level] = b;
2898			}
2899		} else {
2900			p->slots[level] = slot;
2901			if (ins_len > 0 &&
2902			    btrfs_leaf_free_space(root, b) < ins_len) {
2903				if (write_lock_level < 1) {
2904					write_lock_level = 1;
2905					btrfs_release_path(p);
2906					goto again;
2907				}
2908
2909				btrfs_set_path_blocking(p);
2910				err = split_leaf(trans, root, key,
2911						 p, ins_len, ret == 0);
2912				btrfs_clear_path_blocking(p, NULL, 0);
2913
2914				BUG_ON(err > 0);
2915				if (err) {
2916					ret = err;
2917					goto done;
2918				}
2919			}
2920			if (!p->search_for_split)
2921				unlock_up(p, level, lowest_unlock,
2922					  min_write_lock_level, &write_lock_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
2923			goto done;
2924		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925	}
2926	ret = 1;
2927done:
2928	/*
2929	 * we don't really know what they plan on doing with the path
2930	 * from here on, so for now just mark it as blocking
2931	 */
2932	if (!p->leave_spinning)
2933		btrfs_set_path_blocking(p);
2934	if (ret < 0 && !p->skip_release_on_error)
2935		btrfs_release_path(p);
2936	return ret;
2937}
2938
2939/*
2940 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2941 * current state of the tree together with the operations recorded in the tree
2942 * modification log to search for the key in a previous version of this tree, as
2943 * denoted by the time_seq parameter.
2944 *
2945 * Naturally, there is no support for insert, delete or cow operations.
2946 *
2947 * The resulting path and return value will be set up as if we called
2948 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2949 */
2950int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2951			  struct btrfs_path *p, u64 time_seq)
2952{
 
2953	struct extent_buffer *b;
2954	int slot;
2955	int ret;
2956	int err;
2957	int level;
2958	int lowest_unlock = 1;
2959	u8 lowest_level = 0;
2960	int prev_cmp = -1;
2961
2962	lowest_level = p->lowest_level;
2963	WARN_ON(p->nodes[0] != NULL);
2964
2965	if (p->search_commit_root) {
2966		BUG_ON(time_seq);
2967		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2968	}
2969
2970again:
2971	b = get_old_root(root, time_seq);
 
 
 
 
2972	level = btrfs_header_level(b);
2973	p->locks[level] = BTRFS_READ_LOCK;
2974
2975	while (b) {
 
 
2976		level = btrfs_header_level(b);
2977		p->nodes[level] = b;
2978		btrfs_clear_path_blocking(p, NULL, 0);
2979
2980		/*
2981		 * we have a lock on b and as long as we aren't changing
2982		 * the tree, there is no way to for the items in b to change.
2983		 * It is safe to drop the lock on our parent before we
2984		 * go through the expensive btree search on b.
2985		 */
2986		btrfs_unlock_up_safe(p, level + 1);
2987
2988		/*
2989		 * Since we can unwind eb's we want to do a real search every
2990		 * time.
2991		 */
2992		prev_cmp = -1;
2993		ret = key_search(b, key, level, &prev_cmp, &slot);
2994
2995		if (level != 0) {
2996			int dec = 0;
2997			if (ret && slot > 0) {
2998				dec = 1;
2999				slot -= 1;
3000			}
3001			p->slots[level] = slot;
3002			unlock_up(p, level, lowest_unlock, 0, NULL);
 
 
3003
3004			if (level == lowest_level) {
3005				if (dec)
3006					p->slots[level]++;
3007				goto done;
3008			}
 
 
 
 
 
 
 
3009
3010			err = read_block_for_search(NULL, root, p, &b, level,
3011						    slot, key, time_seq);
3012			if (err == -EAGAIN)
3013				goto again;
3014			if (err) {
3015				ret = err;
3016				goto done;
3017			}
3018
3019			level = btrfs_header_level(b);
3020			err = btrfs_tree_read_lock_atomic(b);
3021			if (!err) {
3022				btrfs_set_path_blocking(p);
3023				btrfs_tree_read_lock(b);
3024				btrfs_clear_path_blocking(p, b,
3025							  BTRFS_READ_LOCK);
3026			}
3027			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3028			if (!b) {
3029				ret = -ENOMEM;
3030				goto done;
3031			}
3032			p->locks[level] = BTRFS_READ_LOCK;
3033			p->nodes[level] = b;
3034		} else {
3035			p->slots[level] = slot;
3036			unlock_up(p, level, lowest_unlock, 0, NULL);
3037			goto done;
3038		}
 
 
3039	}
3040	ret = 1;
3041done:
3042	if (!p->leave_spinning)
3043		btrfs_set_path_blocking(p);
3044	if (ret < 0)
3045		btrfs_release_path(p);
3046
3047	return ret;
3048}
3049
3050/*
3051 * helper to use instead of search slot if no exact match is needed but
3052 * instead the next or previous item should be returned.
3053 * When find_higher is true, the next higher item is returned, the next lower
3054 * otherwise.
3055 * When return_any and find_higher are both true, and no higher item is found,
3056 * return the next lower instead.
3057 * When return_any is true and find_higher is false, and no lower item is found,
3058 * return the next higher instead.
3059 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3060 * < 0 on error
3061 */
3062int btrfs_search_slot_for_read(struct btrfs_root *root,
3063			       struct btrfs_key *key, struct btrfs_path *p,
3064			       int find_higher, int return_any)
 
3065{
3066	int ret;
3067	struct extent_buffer *leaf;
3068
3069again:
3070	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3071	if (ret <= 0)
3072		return ret;
3073	/*
3074	 * a return value of 1 means the path is at the position where the
3075	 * item should be inserted. Normally this is the next bigger item,
3076	 * but in case the previous item is the last in a leaf, path points
3077	 * to the first free slot in the previous leaf, i.e. at an invalid
3078	 * item.
3079	 */
3080	leaf = p->nodes[0];
3081
3082	if (find_higher) {
3083		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3084			ret = btrfs_next_leaf(root, p);
3085			if (ret <= 0)
3086				return ret;
3087			if (!return_any)
3088				return 1;
3089			/*
3090			 * no higher item found, return the next
3091			 * lower instead
3092			 */
3093			return_any = 0;
3094			find_higher = 0;
3095			btrfs_release_path(p);
3096			goto again;
3097		}
3098	} else {
3099		if (p->slots[0] == 0) {
3100			ret = btrfs_prev_leaf(root, p);
3101			if (ret < 0)
3102				return ret;
3103			if (!ret) {
3104				leaf = p->nodes[0];
3105				if (p->slots[0] == btrfs_header_nritems(leaf))
3106					p->slots[0]--;
3107				return 0;
3108			}
3109			if (!return_any)
3110				return 1;
3111			/*
3112			 * no lower item found, return the next
3113			 * higher instead
3114			 */
3115			return_any = 0;
3116			find_higher = 1;
3117			btrfs_release_path(p);
3118			goto again;
3119		} else {
3120			--p->slots[0];
3121		}
3122	}
3123	return 0;
3124}
3125
3126/*
3127 * adjust the pointers going up the tree, starting at level
3128 * making sure the right key of each node is points to 'key'.
3129 * This is used after shifting pointers to the left, so it stops
3130 * fixing up pointers when a given leaf/node is not in slot 0 of the
3131 * higher levels
3132 *
3133 */
3134static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3135			   struct btrfs_path *path,
3136			   struct btrfs_disk_key *key, int level)
3137{
3138	int i;
3139	struct extent_buffer *t;
 
3140
3141	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3142		int tslot = path->slots[i];
 
3143		if (!path->nodes[i])
3144			break;
3145		t = path->nodes[i];
3146		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
 
 
3147		btrfs_set_node_key(t, key, tslot);
3148		btrfs_mark_buffer_dirty(path->nodes[i]);
3149		if (tslot != 0)
3150			break;
3151	}
3152}
3153
3154/*
3155 * update item key.
3156 *
3157 * This function isn't completely safe. It's the caller's responsibility
3158 * that the new key won't break the order
3159 */
3160void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3161			     struct btrfs_path *path,
3162			     struct btrfs_key *new_key)
3163{
3164	struct btrfs_disk_key disk_key;
3165	struct extent_buffer *eb;
3166	int slot;
3167
3168	eb = path->nodes[0];
3169	slot = path->slots[0];
3170	if (slot > 0) {
3171		btrfs_item_key(eb, &disk_key, slot - 1);
3172		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
 
 
 
 
 
 
 
 
 
3173	}
3174	if (slot < btrfs_header_nritems(eb) - 1) {
3175		btrfs_item_key(eb, &disk_key, slot + 1);
3176		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
 
 
 
 
 
 
 
 
 
3177	}
3178
3179	btrfs_cpu_key_to_disk(&disk_key, new_key);
3180	btrfs_set_item_key(eb, &disk_key, slot);
3181	btrfs_mark_buffer_dirty(eb);
3182	if (slot == 0)
3183		fixup_low_keys(fs_info, path, &disk_key, 1);
3184}
3185
3186/*
3187 * try to push data from one node into the next node left in the
3188 * tree.
3189 *
3190 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3191 * error, and > 0 if there was no room in the left hand block.
3192 */
3193static int push_node_left(struct btrfs_trans_handle *trans,
3194			  struct btrfs_root *root, struct extent_buffer *dst,
3195			  struct extent_buffer *src, int empty)
3196{
 
3197	int push_items = 0;
3198	int src_nritems;
3199	int dst_nritems;
3200	int ret = 0;
3201
3202	src_nritems = btrfs_header_nritems(src);
3203	dst_nritems = btrfs_header_nritems(dst);
3204	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3205	WARN_ON(btrfs_header_generation(src) != trans->transid);
3206	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3207
3208	if (!empty && src_nritems <= 8)
3209		return 1;
3210
3211	if (push_items <= 0)
3212		return 1;
3213
3214	if (empty) {
3215		push_items = min(src_nritems, push_items);
3216		if (push_items < src_nritems) {
3217			/* leave at least 8 pointers in the node if
3218			 * we aren't going to empty it
3219			 */
3220			if (src_nritems - push_items < 8) {
3221				if (push_items <= 8)
3222					return 1;
3223				push_items -= 8;
3224			}
3225		}
3226	} else
3227		push_items = min(src_nritems - 8, push_items);
3228
3229	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3230				   push_items);
3231	if (ret) {
3232		btrfs_abort_transaction(trans, root, ret);
3233		return ret;
3234	}
3235	copy_extent_buffer(dst, src,
3236			   btrfs_node_key_ptr_offset(dst_nritems),
3237			   btrfs_node_key_ptr_offset(0),
3238			   push_items * sizeof(struct btrfs_key_ptr));
3239
3240	if (push_items < src_nritems) {
3241		/*
3242		 * don't call tree_mod_log_eb_move here, key removal was already
3243		 * fully logged by tree_mod_log_eb_copy above.
3244		 */
3245		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3246				      btrfs_node_key_ptr_offset(push_items),
3247				      (src_nritems - push_items) *
3248				      sizeof(struct btrfs_key_ptr));
3249	}
3250	btrfs_set_header_nritems(src, src_nritems - push_items);
3251	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3252	btrfs_mark_buffer_dirty(src);
3253	btrfs_mark_buffer_dirty(dst);
3254
3255	return ret;
3256}
3257
3258/*
3259 * try to push data from one node into the next node right in the
3260 * tree.
3261 *
3262 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3263 * error, and > 0 if there was no room in the right hand block.
3264 *
3265 * this will  only push up to 1/2 the contents of the left node over
3266 */
3267static int balance_node_right(struct btrfs_trans_handle *trans,
3268			      struct btrfs_root *root,
3269			      struct extent_buffer *dst,
3270			      struct extent_buffer *src)
3271{
 
3272	int push_items = 0;
3273	int max_push;
3274	int src_nritems;
3275	int dst_nritems;
3276	int ret = 0;
3277
3278	WARN_ON(btrfs_header_generation(src) != trans->transid);
3279	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3280
3281	src_nritems = btrfs_header_nritems(src);
3282	dst_nritems = btrfs_header_nritems(dst);
3283	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3284	if (push_items <= 0)
3285		return 1;
3286
3287	if (src_nritems < 4)
3288		return 1;
3289
3290	max_push = src_nritems / 2 + 1;
3291	/* don't try to empty the node */
3292	if (max_push >= src_nritems)
3293		return 1;
3294
3295	if (max_push < push_items)
3296		push_items = max_push;
3297
3298	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
 
3299	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3300				      btrfs_node_key_ptr_offset(0),
3301				      (dst_nritems) *
3302				      sizeof(struct btrfs_key_ptr));
3303
3304	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3305				   src_nritems - push_items, push_items);
3306	if (ret) {
3307		btrfs_abort_transaction(trans, root, ret);
3308		return ret;
3309	}
3310	copy_extent_buffer(dst, src,
3311			   btrfs_node_key_ptr_offset(0),
3312			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3313			   push_items * sizeof(struct btrfs_key_ptr));
3314
3315	btrfs_set_header_nritems(src, src_nritems - push_items);
3316	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3317
3318	btrfs_mark_buffer_dirty(src);
3319	btrfs_mark_buffer_dirty(dst);
3320
3321	return ret;
3322}
3323
3324/*
3325 * helper function to insert a new root level in the tree.
3326 * A new node is allocated, and a single item is inserted to
3327 * point to the existing root
3328 *
3329 * returns zero on success or < 0 on failure.
3330 */
3331static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3332			   struct btrfs_root *root,
3333			   struct btrfs_path *path, int level)
3334{
 
3335	u64 lower_gen;
3336	struct extent_buffer *lower;
3337	struct extent_buffer *c;
3338	struct extent_buffer *old;
3339	struct btrfs_disk_key lower_key;
 
3340
3341	BUG_ON(path->nodes[level]);
3342	BUG_ON(path->nodes[level-1] != root->node);
3343
3344	lower = path->nodes[level-1];
3345	if (level == 1)
3346		btrfs_item_key(lower, &lower_key, 0);
3347	else
3348		btrfs_node_key(lower, &lower_key, 0);
3349
3350	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3351				   &lower_key, level, root->node->start, 0);
3352	if (IS_ERR(c))
3353		return PTR_ERR(c);
3354
3355	root_add_used(root, root->nodesize);
3356
3357	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3358	btrfs_set_header_nritems(c, 1);
3359	btrfs_set_header_level(c, level);
3360	btrfs_set_header_bytenr(c, c->start);
3361	btrfs_set_header_generation(c, trans->transid);
3362	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3363	btrfs_set_header_owner(c, root->root_key.objectid);
3364
3365	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3366			    BTRFS_FSID_SIZE);
3367
3368	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3369			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3370
3371	btrfs_set_node_key(c, &lower_key, 0);
3372	btrfs_set_node_blockptr(c, 0, lower->start);
3373	lower_gen = btrfs_header_generation(lower);
3374	WARN_ON(lower_gen != trans->transid);
3375
3376	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3377
3378	btrfs_mark_buffer_dirty(c);
3379
3380	old = root->node;
3381	tree_mod_log_set_root_pointer(root, c, 0);
 
3382	rcu_assign_pointer(root->node, c);
3383
3384	/* the super has an extra ref to root->node */
3385	free_extent_buffer(old);
3386
3387	add_root_to_dirty_list(root);
3388	extent_buffer_get(c);
3389	path->nodes[level] = c;
3390	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3391	path->slots[level] = 0;
3392	return 0;
3393}
3394
3395/*
3396 * worker function to insert a single pointer in a node.
3397 * the node should have enough room for the pointer already
3398 *
3399 * slot and level indicate where you want the key to go, and
3400 * blocknr is the block the key points to.
3401 */
3402static void insert_ptr(struct btrfs_trans_handle *trans,
3403		       struct btrfs_root *root, struct btrfs_path *path,
3404		       struct btrfs_disk_key *key, u64 bytenr,
3405		       int slot, int level)
3406{
3407	struct extent_buffer *lower;
3408	int nritems;
3409	int ret;
3410
3411	BUG_ON(!path->nodes[level]);
3412	btrfs_assert_tree_locked(path->nodes[level]);
3413	lower = path->nodes[level];
3414	nritems = btrfs_header_nritems(lower);
3415	BUG_ON(slot > nritems);
3416	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3417	if (slot != nritems) {
3418		if (level)
3419			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3420					     slot, nritems - slot);
 
 
3421		memmove_extent_buffer(lower,
3422			      btrfs_node_key_ptr_offset(slot + 1),
3423			      btrfs_node_key_ptr_offset(slot),
3424			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3425	}
3426	if (level) {
3427		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3428					      MOD_LOG_KEY_ADD, GFP_NOFS);
3429		BUG_ON(ret < 0);
3430	}
3431	btrfs_set_node_key(lower, key, slot);
3432	btrfs_set_node_blockptr(lower, slot, bytenr);
3433	WARN_ON(trans->transid == 0);
3434	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3435	btrfs_set_header_nritems(lower, nritems + 1);
3436	btrfs_mark_buffer_dirty(lower);
3437}
3438
3439/*
3440 * split the node at the specified level in path in two.
3441 * The path is corrected to point to the appropriate node after the split
3442 *
3443 * Before splitting this tries to make some room in the node by pushing
3444 * left and right, if either one works, it returns right away.
3445 *
3446 * returns 0 on success and < 0 on failure
3447 */
3448static noinline int split_node(struct btrfs_trans_handle *trans,
3449			       struct btrfs_root *root,
3450			       struct btrfs_path *path, int level)
3451{
 
3452	struct extent_buffer *c;
3453	struct extent_buffer *split;
3454	struct btrfs_disk_key disk_key;
3455	int mid;
3456	int ret;
3457	u32 c_nritems;
3458
3459	c = path->nodes[level];
3460	WARN_ON(btrfs_header_generation(c) != trans->transid);
3461	if (c == root->node) {
3462		/*
3463		 * trying to split the root, lets make a new one
3464		 *
3465		 * tree mod log: We don't log_removal old root in
3466		 * insert_new_root, because that root buffer will be kept as a
3467		 * normal node. We are going to log removal of half of the
3468		 * elements below with tree_mod_log_eb_copy. We're holding a
3469		 * tree lock on the buffer, which is why we cannot race with
3470		 * other tree_mod_log users.
3471		 */
3472		ret = insert_new_root(trans, root, path, level + 1);
3473		if (ret)
3474			return ret;
3475	} else {
3476		ret = push_nodes_for_insert(trans, root, path, level);
3477		c = path->nodes[level];
3478		if (!ret && btrfs_header_nritems(c) <
3479		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3480			return 0;
3481		if (ret < 0)
3482			return ret;
3483	}
3484
3485	c_nritems = btrfs_header_nritems(c);
3486	mid = (c_nritems + 1) / 2;
3487	btrfs_node_key(c, &disk_key, mid);
3488
3489	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3490			&disk_key, level, c->start, 0);
3491	if (IS_ERR(split))
3492		return PTR_ERR(split);
3493
3494	root_add_used(root, root->nodesize);
3495
3496	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3497	btrfs_set_header_level(split, btrfs_header_level(c));
3498	btrfs_set_header_bytenr(split, split->start);
3499	btrfs_set_header_generation(split, trans->transid);
3500	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3501	btrfs_set_header_owner(split, root->root_key.objectid);
3502	write_extent_buffer(split, root->fs_info->fsid,
3503			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3504	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3505			    btrfs_header_chunk_tree_uuid(split),
3506			    BTRFS_UUID_SIZE);
3507
3508	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3509				   mid, c_nritems - mid);
3510	if (ret) {
3511		btrfs_abort_transaction(trans, root, ret);
3512		return ret;
3513	}
3514	copy_extent_buffer(split, c,
3515			   btrfs_node_key_ptr_offset(0),
3516			   btrfs_node_key_ptr_offset(mid),
3517			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3518	btrfs_set_header_nritems(split, c_nritems - mid);
3519	btrfs_set_header_nritems(c, mid);
3520	ret = 0;
3521
3522	btrfs_mark_buffer_dirty(c);
3523	btrfs_mark_buffer_dirty(split);
3524
3525	insert_ptr(trans, root, path, &disk_key, split->start,
3526		   path->slots[level + 1] + 1, level + 1);
3527
3528	if (path->slots[level] >= mid) {
3529		path->slots[level] -= mid;
3530		btrfs_tree_unlock(c);
3531		free_extent_buffer(c);
3532		path->nodes[level] = split;
3533		path->slots[level + 1] += 1;
3534	} else {
3535		btrfs_tree_unlock(split);
3536		free_extent_buffer(split);
3537	}
3538	return ret;
3539}
3540
3541/*
3542 * how many bytes are required to store the items in a leaf.  start
3543 * and nr indicate which items in the leaf to check.  This totals up the
3544 * space used both by the item structs and the item data
3545 */
3546static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3547{
3548	struct btrfs_item *start_item;
3549	struct btrfs_item *end_item;
3550	struct btrfs_map_token token;
3551	int data_len;
3552	int nritems = btrfs_header_nritems(l);
3553	int end = min(nritems, start + nr) - 1;
3554
3555	if (!nr)
3556		return 0;
3557	btrfs_init_map_token(&token);
3558	start_item = btrfs_item_nr(start);
3559	end_item = btrfs_item_nr(end);
3560	data_len = btrfs_token_item_offset(l, start_item, &token) +
3561		btrfs_token_item_size(l, start_item, &token);
3562	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3563	data_len += sizeof(struct btrfs_item) * nr;
3564	WARN_ON(data_len < 0);
3565	return data_len;
3566}
3567
3568/*
3569 * The space between the end of the leaf items and
3570 * the start of the leaf data.  IOW, how much room
3571 * the leaf has left for both items and data
3572 */
3573noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3574				   struct extent_buffer *leaf)
3575{
 
3576	int nritems = btrfs_header_nritems(leaf);
3577	int ret;
3578	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
 
3579	if (ret < 0) {
3580		btrfs_crit(root->fs_info,
3581			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3582		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3583		       leaf_space_used(leaf, 0, nritems), nritems);
 
3584	}
3585	return ret;
3586}
3587
3588/*
3589 * min slot controls the lowest index we're willing to push to the
3590 * right.  We'll push up to and including min_slot, but no lower
3591 */
3592static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3593				      struct btrfs_root *root,
3594				      struct btrfs_path *path,
3595				      int data_size, int empty,
3596				      struct extent_buffer *right,
3597				      int free_space, u32 left_nritems,
3598				      u32 min_slot)
3599{
 
3600	struct extent_buffer *left = path->nodes[0];
3601	struct extent_buffer *upper = path->nodes[1];
3602	struct btrfs_map_token token;
3603	struct btrfs_disk_key disk_key;
3604	int slot;
3605	u32 i;
3606	int push_space = 0;
3607	int push_items = 0;
3608	struct btrfs_item *item;
3609	u32 nr;
3610	u32 right_nritems;
3611	u32 data_end;
3612	u32 this_item_size;
3613
3614	btrfs_init_map_token(&token);
3615
3616	if (empty)
3617		nr = 0;
3618	else
3619		nr = max_t(u32, 1, min_slot);
3620
3621	if (path->slots[0] >= left_nritems)
3622		push_space += data_size;
3623
3624	slot = path->slots[1];
3625	i = left_nritems - 1;
3626	while (i >= nr) {
3627		item = btrfs_item_nr(i);
3628
3629		if (!empty && push_items > 0) {
3630			if (path->slots[0] > i)
3631				break;
3632			if (path->slots[0] == i) {
3633				int space = btrfs_leaf_free_space(root, left);
 
3634				if (space + push_space * 2 > free_space)
3635					break;
3636			}
3637		}
3638
3639		if (path->slots[0] == i)
3640			push_space += data_size;
3641
3642		this_item_size = btrfs_item_size(left, item);
3643		if (this_item_size + sizeof(*item) + push_space > free_space)
3644			break;
3645
3646		push_items++;
3647		push_space += this_item_size + sizeof(*item);
3648		if (i == 0)
3649			break;
3650		i--;
3651	}
3652
3653	if (push_items == 0)
3654		goto out_unlock;
3655
3656	WARN_ON(!empty && push_items == left_nritems);
3657
3658	/* push left to right */
3659	right_nritems = btrfs_header_nritems(right);
3660
3661	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3662	push_space -= leaf_data_end(root, left);
3663
3664	/* make room in the right data area */
3665	data_end = leaf_data_end(root, right);
3666	memmove_extent_buffer(right,
3667			      btrfs_leaf_data(right) + data_end - push_space,
3668			      btrfs_leaf_data(right) + data_end,
3669			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3670
3671	/* copy from the left data area */
3672	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3673		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3674		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3675		     push_space);
3676
3677	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3678			      btrfs_item_nr_offset(0),
3679			      right_nritems * sizeof(struct btrfs_item));
3680
3681	/* copy the items from left to right */
3682	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3683		   btrfs_item_nr_offset(left_nritems - push_items),
3684		   push_items * sizeof(struct btrfs_item));
3685
3686	/* update the item pointers */
 
3687	right_nritems += push_items;
3688	btrfs_set_header_nritems(right, right_nritems);
3689	push_space = BTRFS_LEAF_DATA_SIZE(root);
3690	for (i = 0; i < right_nritems; i++) {
3691		item = btrfs_item_nr(i);
3692		push_space -= btrfs_token_item_size(right, item, &token);
3693		btrfs_set_token_item_offset(right, item, push_space, &token);
3694	}
3695
3696	left_nritems -= push_items;
3697	btrfs_set_header_nritems(left, left_nritems);
3698
3699	if (left_nritems)
3700		btrfs_mark_buffer_dirty(left);
3701	else
3702		clean_tree_block(trans, root->fs_info, left);
3703
3704	btrfs_mark_buffer_dirty(right);
3705
3706	btrfs_item_key(right, &disk_key, 0);
3707	btrfs_set_node_key(upper, &disk_key, slot + 1);
3708	btrfs_mark_buffer_dirty(upper);
3709
3710	/* then fixup the leaf pointer in the path */
3711	if (path->slots[0] >= left_nritems) {
3712		path->slots[0] -= left_nritems;
3713		if (btrfs_header_nritems(path->nodes[0]) == 0)
3714			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3715		btrfs_tree_unlock(path->nodes[0]);
3716		free_extent_buffer(path->nodes[0]);
3717		path->nodes[0] = right;
3718		path->slots[1] += 1;
3719	} else {
3720		btrfs_tree_unlock(right);
3721		free_extent_buffer(right);
3722	}
3723	return 0;
3724
3725out_unlock:
3726	btrfs_tree_unlock(right);
3727	free_extent_buffer(right);
3728	return 1;
3729}
3730
3731/*
3732 * push some data in the path leaf to the right, trying to free up at
3733 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3734 *
3735 * returns 1 if the push failed because the other node didn't have enough
3736 * room, 0 if everything worked out and < 0 if there were major errors.
3737 *
3738 * this will push starting from min_slot to the end of the leaf.  It won't
3739 * push any slot lower than min_slot
3740 */
3741static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3742			   *root, struct btrfs_path *path,
3743			   int min_data_size, int data_size,
3744			   int empty, u32 min_slot)
3745{
3746	struct extent_buffer *left = path->nodes[0];
3747	struct extent_buffer *right;
3748	struct extent_buffer *upper;
3749	int slot;
3750	int free_space;
3751	u32 left_nritems;
3752	int ret;
3753
3754	if (!path->nodes[1])
3755		return 1;
3756
3757	slot = path->slots[1];
3758	upper = path->nodes[1];
3759	if (slot >= btrfs_header_nritems(upper) - 1)
3760		return 1;
3761
3762	btrfs_assert_tree_locked(path->nodes[1]);
3763
3764	right = read_node_slot(root, upper, slot + 1);
3765	if (right == NULL)
 
 
 
 
3766		return 1;
3767
3768	btrfs_tree_lock(right);
3769	btrfs_set_lock_blocking(right);
3770
3771	free_space = btrfs_leaf_free_space(root, right);
3772	if (free_space < data_size)
3773		goto out_unlock;
3774
3775	/* cow and double check */
3776	ret = btrfs_cow_block(trans, root, right, upper,
3777			      slot + 1, &right);
3778	if (ret)
3779		goto out_unlock;
3780
3781	free_space = btrfs_leaf_free_space(root, right);
3782	if (free_space < data_size)
3783		goto out_unlock;
3784
3785	left_nritems = btrfs_header_nritems(left);
3786	if (left_nritems == 0)
3787		goto out_unlock;
3788
3789	if (path->slots[0] == left_nritems && !empty) {
3790		/* Key greater than all keys in the leaf, right neighbor has
3791		 * enough room for it and we're not emptying our leaf to delete
3792		 * it, therefore use right neighbor to insert the new item and
3793		 * no need to touch/dirty our left leaft. */
3794		btrfs_tree_unlock(left);
3795		free_extent_buffer(left);
3796		path->nodes[0] = right;
3797		path->slots[0] = 0;
3798		path->slots[1]++;
3799		return 0;
3800	}
3801
3802	return __push_leaf_right(trans, root, path, min_data_size, empty,
3803				right, free_space, left_nritems, min_slot);
3804out_unlock:
3805	btrfs_tree_unlock(right);
3806	free_extent_buffer(right);
3807	return 1;
3808}
3809
3810/*
3811 * push some data in the path leaf to the left, trying to free up at
3812 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3813 *
3814 * max_slot can put a limit on how far into the leaf we'll push items.  The
3815 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3816 * items
3817 */
3818static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3819				     struct btrfs_root *root,
3820				     struct btrfs_path *path, int data_size,
3821				     int empty, struct extent_buffer *left,
3822				     int free_space, u32 right_nritems,
3823				     u32 max_slot)
3824{
 
3825	struct btrfs_disk_key disk_key;
3826	struct extent_buffer *right = path->nodes[0];
3827	int i;
3828	int push_space = 0;
3829	int push_items = 0;
3830	struct btrfs_item *item;
3831	u32 old_left_nritems;
3832	u32 nr;
3833	int ret = 0;
3834	u32 this_item_size;
3835	u32 old_left_item_size;
3836	struct btrfs_map_token token;
3837
3838	btrfs_init_map_token(&token);
3839
3840	if (empty)
3841		nr = min(right_nritems, max_slot);
3842	else
3843		nr = min(right_nritems - 1, max_slot);
3844
3845	for (i = 0; i < nr; i++) {
3846		item = btrfs_item_nr(i);
3847
3848		if (!empty && push_items > 0) {
3849			if (path->slots[0] < i)
3850				break;
3851			if (path->slots[0] == i) {
3852				int space = btrfs_leaf_free_space(root, right);
 
3853				if (space + push_space * 2 > free_space)
3854					break;
3855			}
3856		}
3857
3858		if (path->slots[0] == i)
3859			push_space += data_size;
3860
3861		this_item_size = btrfs_item_size(right, item);
3862		if (this_item_size + sizeof(*item) + push_space > free_space)
3863			break;
3864
3865		push_items++;
3866		push_space += this_item_size + sizeof(*item);
3867	}
3868
3869	if (push_items == 0) {
3870		ret = 1;
3871		goto out;
3872	}
3873	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3874
3875	/* push data from right to left */
3876	copy_extent_buffer(left, right,
3877			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3878			   btrfs_item_nr_offset(0),
3879			   push_items * sizeof(struct btrfs_item));
3880
3881	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3882		     btrfs_item_offset_nr(right, push_items - 1);
3883
3884	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3885		     leaf_data_end(root, left) - push_space,
3886		     btrfs_leaf_data(right) +
3887		     btrfs_item_offset_nr(right, push_items - 1),
3888		     push_space);
3889	old_left_nritems = btrfs_header_nritems(left);
3890	BUG_ON(old_left_nritems <= 0);
3891
 
3892	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3893	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3894		u32 ioff;
3895
3896		item = btrfs_item_nr(i);
3897
3898		ioff = btrfs_token_item_offset(left, item, &token);
3899		btrfs_set_token_item_offset(left, item,
3900		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3901		      &token);
3902	}
3903	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3904
3905	/* fixup right node */
3906	if (push_items > right_nritems)
3907		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3908		       right_nritems);
3909
3910	if (push_items < right_nritems) {
3911		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3912						  leaf_data_end(root, right);
3913		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3914				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3915				      btrfs_leaf_data(right) +
3916				      leaf_data_end(root, right), push_space);
3917
3918		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3919			      btrfs_item_nr_offset(push_items),
3920			     (btrfs_header_nritems(right) - push_items) *
3921			     sizeof(struct btrfs_item));
3922	}
 
 
3923	right_nritems -= push_items;
3924	btrfs_set_header_nritems(right, right_nritems);
3925	push_space = BTRFS_LEAF_DATA_SIZE(root);
3926	for (i = 0; i < right_nritems; i++) {
3927		item = btrfs_item_nr(i);
3928
3929		push_space = push_space - btrfs_token_item_size(right,
3930								item, &token);
3931		btrfs_set_token_item_offset(right, item, push_space, &token);
3932	}
3933
3934	btrfs_mark_buffer_dirty(left);
3935	if (right_nritems)
3936		btrfs_mark_buffer_dirty(right);
3937	else
3938		clean_tree_block(trans, root->fs_info, right);
3939
3940	btrfs_item_key(right, &disk_key, 0);
3941	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3942
3943	/* then fixup the leaf pointer in the path */
3944	if (path->slots[0] < push_items) {
3945		path->slots[0] += old_left_nritems;
3946		btrfs_tree_unlock(path->nodes[0]);
3947		free_extent_buffer(path->nodes[0]);
3948		path->nodes[0] = left;
3949		path->slots[1] -= 1;
3950	} else {
3951		btrfs_tree_unlock(left);
3952		free_extent_buffer(left);
3953		path->slots[0] -= push_items;
3954	}
3955	BUG_ON(path->slots[0] < 0);
3956	return ret;
3957out:
3958	btrfs_tree_unlock(left);
3959	free_extent_buffer(left);
3960	return ret;
3961}
3962
3963/*
3964 * push some data in the path leaf to the left, trying to free up at
3965 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3966 *
3967 * max_slot can put a limit on how far into the leaf we'll push items.  The
3968 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3969 * items
3970 */
3971static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3972			  *root, struct btrfs_path *path, int min_data_size,
3973			  int data_size, int empty, u32 max_slot)
3974{
3975	struct extent_buffer *right = path->nodes[0];
3976	struct extent_buffer *left;
3977	int slot;
3978	int free_space;
3979	u32 right_nritems;
3980	int ret = 0;
3981
3982	slot = path->slots[1];
3983	if (slot == 0)
3984		return 1;
3985	if (!path->nodes[1])
3986		return 1;
3987
3988	right_nritems = btrfs_header_nritems(right);
3989	if (right_nritems == 0)
3990		return 1;
3991
3992	btrfs_assert_tree_locked(path->nodes[1]);
3993
3994	left = read_node_slot(root, path->nodes[1], slot - 1);
3995	if (left == NULL)
 
 
 
 
3996		return 1;
3997
3998	btrfs_tree_lock(left);
3999	btrfs_set_lock_blocking(left);
4000
4001	free_space = btrfs_leaf_free_space(root, left);
4002	if (free_space < data_size) {
4003		ret = 1;
4004		goto out;
4005	}
4006
4007	/* cow and double check */
4008	ret = btrfs_cow_block(trans, root, left,
4009			      path->nodes[1], slot - 1, &left);
4010	if (ret) {
4011		/* we hit -ENOSPC, but it isn't fatal here */
4012		if (ret == -ENOSPC)
4013			ret = 1;
4014		goto out;
4015	}
4016
4017	free_space = btrfs_leaf_free_space(root, left);
4018	if (free_space < data_size) {
4019		ret = 1;
4020		goto out;
4021	}
4022
4023	return __push_leaf_left(trans, root, path, min_data_size,
4024			       empty, left, free_space, right_nritems,
4025			       max_slot);
4026out:
4027	btrfs_tree_unlock(left);
4028	free_extent_buffer(left);
4029	return ret;
4030}
4031
4032/*
4033 * split the path's leaf in two, making sure there is at least data_size
4034 * available for the resulting leaf level of the path.
4035 */
4036static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4037				    struct btrfs_root *root,
4038				    struct btrfs_path *path,
4039				    struct extent_buffer *l,
4040				    struct extent_buffer *right,
4041				    int slot, int mid, int nritems)
4042{
 
4043	int data_copy_size;
4044	int rt_data_off;
4045	int i;
4046	struct btrfs_disk_key disk_key;
4047	struct btrfs_map_token token;
4048
4049	btrfs_init_map_token(&token);
4050
4051	nritems = nritems - mid;
4052	btrfs_set_header_nritems(right, nritems);
4053	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4054
4055	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4056			   btrfs_item_nr_offset(mid),
4057			   nritems * sizeof(struct btrfs_item));
4058
4059	copy_extent_buffer(right, l,
4060		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4061		     data_copy_size, btrfs_leaf_data(l) +
4062		     leaf_data_end(root, l), data_copy_size);
4063
4064	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4065		      btrfs_item_end_nr(l, mid);
4066
 
4067	for (i = 0; i < nritems; i++) {
4068		struct btrfs_item *item = btrfs_item_nr(i);
4069		u32 ioff;
4070
4071		ioff = btrfs_token_item_offset(right, item, &token);
4072		btrfs_set_token_item_offset(right, item,
4073					    ioff + rt_data_off, &token);
4074	}
4075
4076	btrfs_set_header_nritems(l, mid);
4077	btrfs_item_key(right, &disk_key, 0);
4078	insert_ptr(trans, root, path, &disk_key, right->start,
4079		   path->slots[1] + 1, 1);
4080
4081	btrfs_mark_buffer_dirty(right);
4082	btrfs_mark_buffer_dirty(l);
4083	BUG_ON(path->slots[0] != slot);
4084
4085	if (mid <= slot) {
4086		btrfs_tree_unlock(path->nodes[0]);
4087		free_extent_buffer(path->nodes[0]);
4088		path->nodes[0] = right;
4089		path->slots[0] -= mid;
4090		path->slots[1] += 1;
4091	} else {
4092		btrfs_tree_unlock(right);
4093		free_extent_buffer(right);
4094	}
4095
4096	BUG_ON(path->slots[0] < 0);
4097}
4098
4099/*
4100 * double splits happen when we need to insert a big item in the middle
4101 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4102 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4103 *          A                 B                 C
4104 *
4105 * We avoid this by trying to push the items on either side of our target
4106 * into the adjacent leaves.  If all goes well we can avoid the double split
4107 * completely.
4108 */
4109static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4110					  struct btrfs_root *root,
4111					  struct btrfs_path *path,
4112					  int data_size)
4113{
4114	int ret;
4115	int progress = 0;
4116	int slot;
4117	u32 nritems;
4118	int space_needed = data_size;
4119
4120	slot = path->slots[0];
4121	if (slot < btrfs_header_nritems(path->nodes[0]))
4122		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4123
4124	/*
4125	 * try to push all the items after our slot into the
4126	 * right leaf
4127	 */
4128	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4129	if (ret < 0)
4130		return ret;
4131
4132	if (ret == 0)
4133		progress++;
4134
4135	nritems = btrfs_header_nritems(path->nodes[0]);
4136	/*
4137	 * our goal is to get our slot at the start or end of a leaf.  If
4138	 * we've done so we're done
4139	 */
4140	if (path->slots[0] == 0 || path->slots[0] == nritems)
4141		return 0;
4142
4143	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4144		return 0;
4145
4146	/* try to push all the items before our slot into the next leaf */
4147	slot = path->slots[0];
 
 
 
4148	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4149	if (ret < 0)
4150		return ret;
4151
4152	if (ret == 0)
4153		progress++;
4154
4155	if (progress)
4156		return 0;
4157	return 1;
4158}
4159
4160/*
4161 * split the path's leaf in two, making sure there is at least data_size
4162 * available for the resulting leaf level of the path.
4163 *
4164 * returns 0 if all went well and < 0 on failure.
4165 */
4166static noinline int split_leaf(struct btrfs_trans_handle *trans,
4167			       struct btrfs_root *root,
4168			       struct btrfs_key *ins_key,
4169			       struct btrfs_path *path, int data_size,
4170			       int extend)
4171{
4172	struct btrfs_disk_key disk_key;
4173	struct extent_buffer *l;
4174	u32 nritems;
4175	int mid;
4176	int slot;
4177	struct extent_buffer *right;
4178	struct btrfs_fs_info *fs_info = root->fs_info;
4179	int ret = 0;
4180	int wret;
4181	int split;
4182	int num_doubles = 0;
4183	int tried_avoid_double = 0;
4184
4185	l = path->nodes[0];
4186	slot = path->slots[0];
4187	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4188	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4189		return -EOVERFLOW;
4190
4191	/* first try to make some room by pushing left and right */
4192	if (data_size && path->nodes[1]) {
4193		int space_needed = data_size;
4194
4195		if (slot < btrfs_header_nritems(l))
4196			space_needed -= btrfs_leaf_free_space(root, l);
4197
4198		wret = push_leaf_right(trans, root, path, space_needed,
4199				       space_needed, 0, 0);
4200		if (wret < 0)
4201			return wret;
4202		if (wret) {
 
 
 
4203			wret = push_leaf_left(trans, root, path, space_needed,
4204					      space_needed, 0, (u32)-1);
4205			if (wret < 0)
4206				return wret;
4207		}
4208		l = path->nodes[0];
4209
4210		/* did the pushes work? */
4211		if (btrfs_leaf_free_space(root, l) >= data_size)
4212			return 0;
4213	}
4214
4215	if (!path->nodes[1]) {
4216		ret = insert_new_root(trans, root, path, 1);
4217		if (ret)
4218			return ret;
4219	}
4220again:
4221	split = 1;
4222	l = path->nodes[0];
4223	slot = path->slots[0];
4224	nritems = btrfs_header_nritems(l);
4225	mid = (nritems + 1) / 2;
4226
4227	if (mid <= slot) {
4228		if (nritems == 1 ||
4229		    leaf_space_used(l, mid, nritems - mid) + data_size >
4230			BTRFS_LEAF_DATA_SIZE(root)) {
4231			if (slot >= nritems) {
4232				split = 0;
4233			} else {
4234				mid = slot;
4235				if (mid != nritems &&
4236				    leaf_space_used(l, mid, nritems - mid) +
4237				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4238					if (data_size && !tried_avoid_double)
4239						goto push_for_double;
4240					split = 2;
4241				}
4242			}
4243		}
4244	} else {
4245		if (leaf_space_used(l, 0, mid) + data_size >
4246			BTRFS_LEAF_DATA_SIZE(root)) {
4247			if (!extend && data_size && slot == 0) {
4248				split = 0;
4249			} else if ((extend || !data_size) && slot == 0) {
4250				mid = 1;
4251			} else {
4252				mid = slot;
4253				if (mid != nritems &&
4254				    leaf_space_used(l, mid, nritems - mid) +
4255				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4256					if (data_size && !tried_avoid_double)
4257						goto push_for_double;
4258					split = 2;
4259				}
4260			}
4261		}
4262	}
4263
4264	if (split == 0)
4265		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4266	else
4267		btrfs_item_key(l, &disk_key, mid);
4268
4269	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4270			&disk_key, 0, l->start, 0);
4271	if (IS_ERR(right))
4272		return PTR_ERR(right);
4273
4274	root_add_used(root, root->nodesize);
4275
4276	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4277	btrfs_set_header_bytenr(right, right->start);
4278	btrfs_set_header_generation(right, trans->transid);
4279	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4280	btrfs_set_header_owner(right, root->root_key.objectid);
4281	btrfs_set_header_level(right, 0);
4282	write_extent_buffer(right, fs_info->fsid,
4283			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4284
4285	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4286			    btrfs_header_chunk_tree_uuid(right),
4287			    BTRFS_UUID_SIZE);
4288
4289	if (split == 0) {
4290		if (mid <= slot) {
4291			btrfs_set_header_nritems(right, 0);
4292			insert_ptr(trans, root, path, &disk_key, right->start,
4293				   path->slots[1] + 1, 1);
4294			btrfs_tree_unlock(path->nodes[0]);
4295			free_extent_buffer(path->nodes[0]);
4296			path->nodes[0] = right;
4297			path->slots[0] = 0;
4298			path->slots[1] += 1;
4299		} else {
4300			btrfs_set_header_nritems(right, 0);
4301			insert_ptr(trans, root, path, &disk_key, right->start,
4302					  path->slots[1], 1);
4303			btrfs_tree_unlock(path->nodes[0]);
4304			free_extent_buffer(path->nodes[0]);
4305			path->nodes[0] = right;
4306			path->slots[0] = 0;
4307			if (path->slots[1] == 0)
4308				fixup_low_keys(fs_info, path, &disk_key, 1);
4309		}
4310		btrfs_mark_buffer_dirty(right);
 
 
 
 
4311		return ret;
4312	}
4313
4314	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4315
4316	if (split == 2) {
4317		BUG_ON(num_doubles != 0);
4318		num_doubles++;
4319		goto again;
4320	}
4321
4322	return 0;
4323
4324push_for_double:
4325	push_for_double_split(trans, root, path, data_size);
4326	tried_avoid_double = 1;
4327	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4328		return 0;
4329	goto again;
4330}
4331
4332static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4333					 struct btrfs_root *root,
4334					 struct btrfs_path *path, int ins_len)
4335{
4336	struct btrfs_key key;
4337	struct extent_buffer *leaf;
4338	struct btrfs_file_extent_item *fi;
4339	u64 extent_len = 0;
4340	u32 item_size;
4341	int ret;
4342
4343	leaf = path->nodes[0];
4344	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4345
4346	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4347	       key.type != BTRFS_EXTENT_CSUM_KEY);
4348
4349	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4350		return 0;
4351
4352	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4353	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4354		fi = btrfs_item_ptr(leaf, path->slots[0],
4355				    struct btrfs_file_extent_item);
4356		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4357	}
4358	btrfs_release_path(path);
4359
4360	path->keep_locks = 1;
4361	path->search_for_split = 1;
4362	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4363	path->search_for_split = 0;
4364	if (ret > 0)
4365		ret = -EAGAIN;
4366	if (ret < 0)
4367		goto err;
4368
4369	ret = -EAGAIN;
4370	leaf = path->nodes[0];
4371	/* if our item isn't there, return now */
4372	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4373		goto err;
4374
4375	/* the leaf has  changed, it now has room.  return now */
4376	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4377		goto err;
4378
4379	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4380		fi = btrfs_item_ptr(leaf, path->slots[0],
4381				    struct btrfs_file_extent_item);
4382		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4383			goto err;
4384	}
4385
4386	btrfs_set_path_blocking(path);
4387	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4388	if (ret)
4389		goto err;
4390
4391	path->keep_locks = 0;
4392	btrfs_unlock_up_safe(path, 1);
4393	return 0;
4394err:
4395	path->keep_locks = 0;
4396	return ret;
4397}
4398
4399static noinline int split_item(struct btrfs_trans_handle *trans,
4400			       struct btrfs_root *root,
4401			       struct btrfs_path *path,
4402			       struct btrfs_key *new_key,
4403			       unsigned long split_offset)
4404{
4405	struct extent_buffer *leaf;
4406	struct btrfs_item *item;
4407	struct btrfs_item *new_item;
4408	int slot;
4409	char *buf;
4410	u32 nritems;
4411	u32 item_size;
4412	u32 orig_offset;
4413	struct btrfs_disk_key disk_key;
4414
4415	leaf = path->nodes[0];
4416	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4417
4418	btrfs_set_path_blocking(path);
4419
4420	item = btrfs_item_nr(path->slots[0]);
4421	orig_offset = btrfs_item_offset(leaf, item);
4422	item_size = btrfs_item_size(leaf, item);
4423
4424	buf = kmalloc(item_size, GFP_NOFS);
4425	if (!buf)
4426		return -ENOMEM;
4427
4428	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4429			    path->slots[0]), item_size);
4430
4431	slot = path->slots[0] + 1;
4432	nritems = btrfs_header_nritems(leaf);
4433	if (slot != nritems) {
4434		/* shift the items */
4435		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4436				btrfs_item_nr_offset(slot),
4437				(nritems - slot) * sizeof(struct btrfs_item));
4438	}
4439
4440	btrfs_cpu_key_to_disk(&disk_key, new_key);
4441	btrfs_set_item_key(leaf, &disk_key, slot);
4442
4443	new_item = btrfs_item_nr(slot);
4444
4445	btrfs_set_item_offset(leaf, new_item, orig_offset);
4446	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4447
4448	btrfs_set_item_offset(leaf, item,
4449			      orig_offset + item_size - split_offset);
4450	btrfs_set_item_size(leaf, item, split_offset);
4451
4452	btrfs_set_header_nritems(leaf, nritems + 1);
4453
4454	/* write the data for the start of the original item */
4455	write_extent_buffer(leaf, buf,
4456			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4457			    split_offset);
4458
4459	/* write the data for the new item */
4460	write_extent_buffer(leaf, buf + split_offset,
4461			    btrfs_item_ptr_offset(leaf, slot),
4462			    item_size - split_offset);
4463	btrfs_mark_buffer_dirty(leaf);
4464
4465	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4466	kfree(buf);
4467	return 0;
4468}
4469
4470/*
4471 * This function splits a single item into two items,
4472 * giving 'new_key' to the new item and splitting the
4473 * old one at split_offset (from the start of the item).
4474 *
4475 * The path may be released by this operation.  After
4476 * the split, the path is pointing to the old item.  The
4477 * new item is going to be in the same node as the old one.
4478 *
4479 * Note, the item being split must be smaller enough to live alone on
4480 * a tree block with room for one extra struct btrfs_item
4481 *
4482 * This allows us to split the item in place, keeping a lock on the
4483 * leaf the entire time.
4484 */
4485int btrfs_split_item(struct btrfs_trans_handle *trans,
4486		     struct btrfs_root *root,
4487		     struct btrfs_path *path,
4488		     struct btrfs_key *new_key,
4489		     unsigned long split_offset)
4490{
4491	int ret;
4492	ret = setup_leaf_for_split(trans, root, path,
4493				   sizeof(struct btrfs_item));
4494	if (ret)
4495		return ret;
4496
4497	ret = split_item(trans, root, path, new_key, split_offset);
4498	return ret;
4499}
4500
4501/*
4502 * This function duplicate a item, giving 'new_key' to the new item.
4503 * It guarantees both items live in the same tree leaf and the new item
4504 * is contiguous with the original item.
4505 *
4506 * This allows us to split file extent in place, keeping a lock on the
4507 * leaf the entire time.
4508 */
4509int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4510			 struct btrfs_root *root,
4511			 struct btrfs_path *path,
4512			 struct btrfs_key *new_key)
4513{
4514	struct extent_buffer *leaf;
4515	int ret;
4516	u32 item_size;
4517
4518	leaf = path->nodes[0];
4519	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4520	ret = setup_leaf_for_split(trans, root, path,
4521				   item_size + sizeof(struct btrfs_item));
4522	if (ret)
4523		return ret;
4524
4525	path->slots[0]++;
4526	setup_items_for_insert(root, path, new_key, &item_size,
4527			       item_size, item_size +
4528			       sizeof(struct btrfs_item), 1);
4529	leaf = path->nodes[0];
4530	memcpy_extent_buffer(leaf,
4531			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4532			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4533			     item_size);
4534	return 0;
4535}
4536
4537/*
4538 * make the item pointed to by the path smaller.  new_size indicates
4539 * how small to make it, and from_end tells us if we just chop bytes
4540 * off the end of the item or if we shift the item to chop bytes off
4541 * the front.
4542 */
4543void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4544			 u32 new_size, int from_end)
4545{
4546	int slot;
4547	struct extent_buffer *leaf;
4548	struct btrfs_item *item;
4549	u32 nritems;
4550	unsigned int data_end;
4551	unsigned int old_data_start;
4552	unsigned int old_size;
4553	unsigned int size_diff;
4554	int i;
4555	struct btrfs_map_token token;
4556
4557	btrfs_init_map_token(&token);
4558
4559	leaf = path->nodes[0];
4560	slot = path->slots[0];
4561
4562	old_size = btrfs_item_size_nr(leaf, slot);
4563	if (old_size == new_size)
4564		return;
4565
4566	nritems = btrfs_header_nritems(leaf);
4567	data_end = leaf_data_end(root, leaf);
4568
4569	old_data_start = btrfs_item_offset_nr(leaf, slot);
4570
4571	size_diff = old_size - new_size;
4572
4573	BUG_ON(slot < 0);
4574	BUG_ON(slot >= nritems);
4575
4576	/*
4577	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4578	 */
4579	/* first correct the data pointers */
 
4580	for (i = slot; i < nritems; i++) {
4581		u32 ioff;
4582		item = btrfs_item_nr(i);
4583
4584		ioff = btrfs_token_item_offset(leaf, item, &token);
4585		btrfs_set_token_item_offset(leaf, item,
4586					    ioff + size_diff, &token);
4587	}
4588
4589	/* shift the data */
4590	if (from_end) {
4591		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4592			      data_end + size_diff, btrfs_leaf_data(leaf) +
4593			      data_end, old_data_start + new_size - data_end);
4594	} else {
4595		struct btrfs_disk_key disk_key;
4596		u64 offset;
4597
4598		btrfs_item_key(leaf, &disk_key, slot);
4599
4600		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4601			unsigned long ptr;
4602			struct btrfs_file_extent_item *fi;
4603
4604			fi = btrfs_item_ptr(leaf, slot,
4605					    struct btrfs_file_extent_item);
4606			fi = (struct btrfs_file_extent_item *)(
4607			     (unsigned long)fi - size_diff);
4608
4609			if (btrfs_file_extent_type(leaf, fi) ==
4610			    BTRFS_FILE_EXTENT_INLINE) {
4611				ptr = btrfs_item_ptr_offset(leaf, slot);
4612				memmove_extent_buffer(leaf, ptr,
4613				      (unsigned long)fi,
4614				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4615			}
4616		}
4617
4618		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4619			      data_end + size_diff, btrfs_leaf_data(leaf) +
4620			      data_end, old_data_start - data_end);
4621
4622		offset = btrfs_disk_key_offset(&disk_key);
4623		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4624		btrfs_set_item_key(leaf, &disk_key, slot);
4625		if (slot == 0)
4626			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4627	}
4628
4629	item = btrfs_item_nr(slot);
4630	btrfs_set_item_size(leaf, item, new_size);
4631	btrfs_mark_buffer_dirty(leaf);
4632
4633	if (btrfs_leaf_free_space(root, leaf) < 0) {
4634		btrfs_print_leaf(root, leaf);
4635		BUG();
4636	}
4637}
4638
4639/*
4640 * make the item pointed to by the path bigger, data_size is the added size.
4641 */
4642void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4643		       u32 data_size)
4644{
4645	int slot;
4646	struct extent_buffer *leaf;
4647	struct btrfs_item *item;
4648	u32 nritems;
4649	unsigned int data_end;
4650	unsigned int old_data;
4651	unsigned int old_size;
4652	int i;
4653	struct btrfs_map_token token;
4654
4655	btrfs_init_map_token(&token);
4656
4657	leaf = path->nodes[0];
4658
4659	nritems = btrfs_header_nritems(leaf);
4660	data_end = leaf_data_end(root, leaf);
4661
4662	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4663		btrfs_print_leaf(root, leaf);
4664		BUG();
4665	}
4666	slot = path->slots[0];
4667	old_data = btrfs_item_end_nr(leaf, slot);
4668
4669	BUG_ON(slot < 0);
4670	if (slot >= nritems) {
4671		btrfs_print_leaf(root, leaf);
4672		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4673		       slot, nritems);
4674		BUG_ON(1);
4675	}
4676
4677	/*
4678	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4679	 */
4680	/* first correct the data pointers */
 
4681	for (i = slot; i < nritems; i++) {
4682		u32 ioff;
4683		item = btrfs_item_nr(i);
4684
4685		ioff = btrfs_token_item_offset(leaf, item, &token);
4686		btrfs_set_token_item_offset(leaf, item,
4687					    ioff - data_size, &token);
4688	}
4689
4690	/* shift the data */
4691	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4692		      data_end - data_size, btrfs_leaf_data(leaf) +
4693		      data_end, old_data - data_end);
4694
4695	data_end = old_data;
4696	old_size = btrfs_item_size_nr(leaf, slot);
4697	item = btrfs_item_nr(slot);
4698	btrfs_set_item_size(leaf, item, old_size + data_size);
4699	btrfs_mark_buffer_dirty(leaf);
4700
4701	if (btrfs_leaf_free_space(root, leaf) < 0) {
4702		btrfs_print_leaf(root, leaf);
4703		BUG();
4704	}
4705}
4706
4707/*
4708 * this is a helper for btrfs_insert_empty_items, the main goal here is
4709 * to save stack depth by doing the bulk of the work in a function
4710 * that doesn't call btrfs_search_slot
4711 */
4712void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4713			    struct btrfs_key *cpu_key, u32 *data_size,
4714			    u32 total_data, u32 total_size, int nr)
4715{
 
4716	struct btrfs_item *item;
4717	int i;
4718	u32 nritems;
4719	unsigned int data_end;
4720	struct btrfs_disk_key disk_key;
4721	struct extent_buffer *leaf;
4722	int slot;
4723	struct btrfs_map_token token;
4724
4725	if (path->slots[0] == 0) {
4726		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4727		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4728	}
4729	btrfs_unlock_up_safe(path, 1);
4730
4731	btrfs_init_map_token(&token);
4732
4733	leaf = path->nodes[0];
4734	slot = path->slots[0];
4735
4736	nritems = btrfs_header_nritems(leaf);
4737	data_end = leaf_data_end(root, leaf);
4738
4739	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4740		btrfs_print_leaf(root, leaf);
4741		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4742		       total_size, btrfs_leaf_free_space(root, leaf));
4743		BUG();
4744	}
4745
 
4746	if (slot != nritems) {
4747		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4748
4749		if (old_data < data_end) {
4750			btrfs_print_leaf(root, leaf);
4751			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4752			       slot, old_data, data_end);
4753			BUG_ON(1);
4754		}
4755		/*
4756		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4757		 */
4758		/* first correct the data pointers */
4759		for (i = slot; i < nritems; i++) {
4760			u32 ioff;
4761
4762			item = btrfs_item_nr( i);
4763			ioff = btrfs_token_item_offset(leaf, item, &token);
4764			btrfs_set_token_item_offset(leaf, item,
4765						    ioff - total_data, &token);
4766		}
4767		/* shift the items */
4768		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4769			      btrfs_item_nr_offset(slot),
4770			      (nritems - slot) * sizeof(struct btrfs_item));
4771
4772		/* shift the data */
4773		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4774			      data_end - total_data, btrfs_leaf_data(leaf) +
4775			      data_end, old_data - data_end);
4776		data_end = old_data;
4777	}
4778
4779	/* setup the item for the new data */
4780	for (i = 0; i < nr; i++) {
4781		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4782		btrfs_set_item_key(leaf, &disk_key, slot + i);
4783		item = btrfs_item_nr(slot + i);
4784		btrfs_set_token_item_offset(leaf, item,
4785					    data_end - data_size[i], &token);
4786		data_end -= data_size[i];
4787		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4788	}
4789
4790	btrfs_set_header_nritems(leaf, nritems + nr);
4791	btrfs_mark_buffer_dirty(leaf);
4792
4793	if (btrfs_leaf_free_space(root, leaf) < 0) {
4794		btrfs_print_leaf(root, leaf);
4795		BUG();
4796	}
4797}
4798
4799/*
4800 * Given a key and some data, insert items into the tree.
4801 * This does all the path init required, making room in the tree if needed.
4802 */
4803int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4804			    struct btrfs_root *root,
4805			    struct btrfs_path *path,
4806			    struct btrfs_key *cpu_key, u32 *data_size,
4807			    int nr)
4808{
4809	int ret = 0;
4810	int slot;
4811	int i;
4812	u32 total_size = 0;
4813	u32 total_data = 0;
4814
4815	for (i = 0; i < nr; i++)
4816		total_data += data_size[i];
4817
4818	total_size = total_data + (nr * sizeof(struct btrfs_item));
4819	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4820	if (ret == 0)
4821		return -EEXIST;
4822	if (ret < 0)
4823		return ret;
4824
4825	slot = path->slots[0];
4826	BUG_ON(slot < 0);
4827
4828	setup_items_for_insert(root, path, cpu_key, data_size,
4829			       total_data, total_size, nr);
4830	return 0;
4831}
4832
4833/*
4834 * Given a key and some data, insert an item into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4836 */
4837int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4838		      *root, struct btrfs_key *cpu_key, void *data, u32
4839		      data_size)
4840{
4841	int ret = 0;
4842	struct btrfs_path *path;
4843	struct extent_buffer *leaf;
4844	unsigned long ptr;
4845
4846	path = btrfs_alloc_path();
4847	if (!path)
4848		return -ENOMEM;
4849	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4850	if (!ret) {
4851		leaf = path->nodes[0];
4852		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4853		write_extent_buffer(leaf, data, ptr, data_size);
4854		btrfs_mark_buffer_dirty(leaf);
4855	}
4856	btrfs_free_path(path);
4857	return ret;
4858}
4859
4860/*
4861 * delete the pointer from a given node.
4862 *
4863 * the tree should have been previously balanced so the deletion does not
4864 * empty a node.
4865 */
4866static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4867		    int level, int slot)
4868{
4869	struct extent_buffer *parent = path->nodes[level];
4870	u32 nritems;
4871	int ret;
4872
4873	nritems = btrfs_header_nritems(parent);
4874	if (slot != nritems - 1) {
4875		if (level)
4876			tree_mod_log_eb_move(root->fs_info, parent, slot,
4877					     slot + 1, nritems - slot - 1);
 
 
4878		memmove_extent_buffer(parent,
4879			      btrfs_node_key_ptr_offset(slot),
4880			      btrfs_node_key_ptr_offset(slot + 1),
4881			      sizeof(struct btrfs_key_ptr) *
4882			      (nritems - slot - 1));
4883	} else if (level) {
4884		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4885					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4886		BUG_ON(ret < 0);
4887	}
4888
4889	nritems--;
4890	btrfs_set_header_nritems(parent, nritems);
4891	if (nritems == 0 && parent == root->node) {
4892		BUG_ON(btrfs_header_level(root->node) != 1);
4893		/* just turn the root into a leaf and break */
4894		btrfs_set_header_level(root->node, 0);
4895	} else if (slot == 0) {
4896		struct btrfs_disk_key disk_key;
4897
4898		btrfs_node_key(parent, &disk_key, 0);
4899		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4900	}
4901	btrfs_mark_buffer_dirty(parent);
4902}
4903
4904/*
4905 * a helper function to delete the leaf pointed to by path->slots[1] and
4906 * path->nodes[1].
4907 *
4908 * This deletes the pointer in path->nodes[1] and frees the leaf
4909 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4910 *
4911 * The path must have already been setup for deleting the leaf, including
4912 * all the proper balancing.  path->nodes[1] must be locked.
4913 */
4914static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4915				    struct btrfs_root *root,
4916				    struct btrfs_path *path,
4917				    struct extent_buffer *leaf)
4918{
4919	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4920	del_ptr(root, path, 1, path->slots[1]);
4921
4922	/*
4923	 * btrfs_free_extent is expensive, we want to make sure we
4924	 * aren't holding any locks when we call it
4925	 */
4926	btrfs_unlock_up_safe(path, 0);
4927
4928	root_sub_used(root, leaf->len);
4929
4930	extent_buffer_get(leaf);
4931	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4932	free_extent_buffer_stale(leaf);
4933}
4934/*
4935 * delete the item at the leaf level in path.  If that empties
4936 * the leaf, remove it from the tree
4937 */
4938int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4939		    struct btrfs_path *path, int slot, int nr)
4940{
 
4941	struct extent_buffer *leaf;
4942	struct btrfs_item *item;
4943	u32 last_off;
4944	u32 dsize = 0;
4945	int ret = 0;
4946	int wret;
4947	int i;
4948	u32 nritems;
4949	struct btrfs_map_token token;
4950
4951	btrfs_init_map_token(&token);
4952
4953	leaf = path->nodes[0];
4954	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4955
4956	for (i = 0; i < nr; i++)
4957		dsize += btrfs_item_size_nr(leaf, slot + i);
4958
4959	nritems = btrfs_header_nritems(leaf);
4960
4961	if (slot + nr != nritems) {
4962		int data_end = leaf_data_end(root, leaf);
 
4963
4964		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4965			      data_end + dsize,
4966			      btrfs_leaf_data(leaf) + data_end,
4967			      last_off - data_end);
4968
 
4969		for (i = slot + nr; i < nritems; i++) {
4970			u32 ioff;
4971
4972			item = btrfs_item_nr(i);
4973			ioff = btrfs_token_item_offset(leaf, item, &token);
4974			btrfs_set_token_item_offset(leaf, item,
4975						    ioff + dsize, &token);
4976		}
4977
4978		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4979			      btrfs_item_nr_offset(slot + nr),
4980			      sizeof(struct btrfs_item) *
4981			      (nritems - slot - nr));
4982	}
4983	btrfs_set_header_nritems(leaf, nritems - nr);
4984	nritems -= nr;
4985
4986	/* delete the leaf if we've emptied it */
4987	if (nritems == 0) {
4988		if (leaf == root->node) {
4989			btrfs_set_header_level(leaf, 0);
4990		} else {
4991			btrfs_set_path_blocking(path);
4992			clean_tree_block(trans, root->fs_info, leaf);
4993			btrfs_del_leaf(trans, root, path, leaf);
4994		}
4995	} else {
4996		int used = leaf_space_used(leaf, 0, nritems);
4997		if (slot == 0) {
4998			struct btrfs_disk_key disk_key;
4999
5000			btrfs_item_key(leaf, &disk_key, 0);
5001			fixup_low_keys(root->fs_info, path, &disk_key, 1);
5002		}
5003
5004		/* delete the leaf if it is mostly empty */
5005		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5006			/* push_leaf_left fixes the path.
5007			 * make sure the path still points to our leaf
5008			 * for possible call to del_ptr below
5009			 */
5010			slot = path->slots[1];
5011			extent_buffer_get(leaf);
5012
5013			btrfs_set_path_blocking(path);
5014			wret = push_leaf_left(trans, root, path, 1, 1,
5015					      1, (u32)-1);
5016			if (wret < 0 && wret != -ENOSPC)
5017				ret = wret;
5018
5019			if (path->nodes[0] == leaf &&
5020			    btrfs_header_nritems(leaf)) {
5021				wret = push_leaf_right(trans, root, path, 1,
5022						       1, 1, 0);
5023				if (wret < 0 && wret != -ENOSPC)
5024					ret = wret;
5025			}
5026
5027			if (btrfs_header_nritems(leaf) == 0) {
5028				path->slots[1] = slot;
5029				btrfs_del_leaf(trans, root, path, leaf);
5030				free_extent_buffer(leaf);
5031				ret = 0;
5032			} else {
5033				/* if we're still in the path, make sure
5034				 * we're dirty.  Otherwise, one of the
5035				 * push_leaf functions must have already
5036				 * dirtied this buffer
5037				 */
5038				if (path->nodes[0] == leaf)
5039					btrfs_mark_buffer_dirty(leaf);
5040				free_extent_buffer(leaf);
5041			}
5042		} else {
5043			btrfs_mark_buffer_dirty(leaf);
5044		}
5045	}
5046	return ret;
5047}
5048
5049/*
5050 * search the tree again to find a leaf with lesser keys
5051 * returns 0 if it found something or 1 if there are no lesser leaves.
5052 * returns < 0 on io errors.
5053 *
5054 * This may release the path, and so you may lose any locks held at the
5055 * time you call it.
5056 */
5057int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5058{
5059	struct btrfs_key key;
5060	struct btrfs_disk_key found_key;
5061	int ret;
5062
5063	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5064
5065	if (key.offset > 0) {
5066		key.offset--;
5067	} else if (key.type > 0) {
5068		key.type--;
5069		key.offset = (u64)-1;
5070	} else if (key.objectid > 0) {
5071		key.objectid--;
5072		key.type = (u8)-1;
5073		key.offset = (u64)-1;
5074	} else {
5075		return 1;
5076	}
5077
5078	btrfs_release_path(path);
5079	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5080	if (ret < 0)
5081		return ret;
5082	btrfs_item_key(path->nodes[0], &found_key, 0);
5083	ret = comp_keys(&found_key, &key);
5084	/*
5085	 * We might have had an item with the previous key in the tree right
5086	 * before we released our path. And after we released our path, that
5087	 * item might have been pushed to the first slot (0) of the leaf we
5088	 * were holding due to a tree balance. Alternatively, an item with the
5089	 * previous key can exist as the only element of a leaf (big fat item).
5090	 * Therefore account for these 2 cases, so that our callers (like
5091	 * btrfs_previous_item) don't miss an existing item with a key matching
5092	 * the previous key we computed above.
5093	 */
5094	if (ret <= 0)
5095		return 0;
5096	return 1;
5097}
5098
5099/*
5100 * A helper function to walk down the tree starting at min_key, and looking
5101 * for nodes or leaves that are have a minimum transaction id.
5102 * This is used by the btree defrag code, and tree logging
5103 *
5104 * This does not cow, but it does stuff the starting key it finds back
5105 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5106 * key and get a writable path.
5107 *
5108 * This does lock as it descends, and path->keep_locks should be set
5109 * to 1 by the caller.
5110 *
5111 * This honors path->lowest_level to prevent descent past a given level
5112 * of the tree.
5113 *
5114 * min_trans indicates the oldest transaction that you are interested
5115 * in walking through.  Any nodes or leaves older than min_trans are
5116 * skipped over (without reading them).
5117 *
5118 * returns zero if something useful was found, < 0 on error and 1 if there
5119 * was nothing in the tree that matched the search criteria.
5120 */
5121int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5122			 struct btrfs_path *path,
5123			 u64 min_trans)
5124{
5125	struct extent_buffer *cur;
5126	struct btrfs_key found_key;
5127	int slot;
5128	int sret;
5129	u32 nritems;
5130	int level;
5131	int ret = 1;
5132	int keep_locks = path->keep_locks;
5133
5134	path->keep_locks = 1;
5135again:
5136	cur = btrfs_read_lock_root_node(root);
5137	level = btrfs_header_level(cur);
5138	WARN_ON(path->nodes[level]);
5139	path->nodes[level] = cur;
5140	path->locks[level] = BTRFS_READ_LOCK;
5141
5142	if (btrfs_header_generation(cur) < min_trans) {
5143		ret = 1;
5144		goto out;
5145	}
5146	while (1) {
5147		nritems = btrfs_header_nritems(cur);
5148		level = btrfs_header_level(cur);
5149		sret = bin_search(cur, min_key, level, &slot);
 
 
 
 
5150
5151		/* at the lowest level, we're done, setup the path and exit */
5152		if (level == path->lowest_level) {
5153			if (slot >= nritems)
5154				goto find_next_key;
5155			ret = 0;
5156			path->slots[level] = slot;
5157			btrfs_item_key_to_cpu(cur, &found_key, slot);
5158			goto out;
5159		}
5160		if (sret && slot > 0)
5161			slot--;
5162		/*
5163		 * check this node pointer against the min_trans parameters.
5164		 * If it is too old, old, skip to the next one.
5165		 */
5166		while (slot < nritems) {
5167			u64 gen;
5168
5169			gen = btrfs_node_ptr_generation(cur, slot);
5170			if (gen < min_trans) {
5171				slot++;
5172				continue;
5173			}
5174			break;
5175		}
5176find_next_key:
5177		/*
5178		 * we didn't find a candidate key in this node, walk forward
5179		 * and find another one
5180		 */
5181		if (slot >= nritems) {
5182			path->slots[level] = slot;
5183			btrfs_set_path_blocking(path);
5184			sret = btrfs_find_next_key(root, path, min_key, level,
5185						  min_trans);
5186			if (sret == 0) {
5187				btrfs_release_path(path);
5188				goto again;
5189			} else {
5190				goto out;
5191			}
5192		}
5193		/* save our key for returning back */
5194		btrfs_node_key_to_cpu(cur, &found_key, slot);
5195		path->slots[level] = slot;
5196		if (level == path->lowest_level) {
5197			ret = 0;
5198			goto out;
5199		}
5200		btrfs_set_path_blocking(path);
5201		cur = read_node_slot(root, cur, slot);
5202		BUG_ON(!cur); /* -ENOMEM */
 
 
 
5203
5204		btrfs_tree_read_lock(cur);
5205
5206		path->locks[level - 1] = BTRFS_READ_LOCK;
5207		path->nodes[level - 1] = cur;
5208		unlock_up(path, level, 1, 0, NULL);
5209		btrfs_clear_path_blocking(path, NULL, 0);
5210	}
5211out:
5212	path->keep_locks = keep_locks;
5213	if (ret == 0) {
5214		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5215		btrfs_set_path_blocking(path);
5216		memcpy(min_key, &found_key, sizeof(found_key));
5217	}
5218	return ret;
5219}
5220
5221static void tree_move_down(struct btrfs_root *root,
5222			   struct btrfs_path *path,
5223			   int *level, int root_level)
5224{
5225	BUG_ON(*level == 0);
5226	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5227					path->slots[*level]);
5228	path->slots[*level - 1] = 0;
5229	(*level)--;
5230}
5231
5232static int tree_move_next_or_upnext(struct btrfs_root *root,
5233				    struct btrfs_path *path,
5234				    int *level, int root_level)
5235{
5236	int ret = 0;
5237	int nritems;
5238	nritems = btrfs_header_nritems(path->nodes[*level]);
5239
5240	path->slots[*level]++;
5241
5242	while (path->slots[*level] >= nritems) {
5243		if (*level == root_level)
5244			return -1;
5245
5246		/* move upnext */
5247		path->slots[*level] = 0;
5248		free_extent_buffer(path->nodes[*level]);
5249		path->nodes[*level] = NULL;
5250		(*level)++;
5251		path->slots[*level]++;
5252
5253		nritems = btrfs_header_nritems(path->nodes[*level]);
5254		ret = 1;
5255	}
5256	return ret;
5257}
5258
5259/*
5260 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5261 * or down.
5262 */
5263static int tree_advance(struct btrfs_root *root,
5264			struct btrfs_path *path,
5265			int *level, int root_level,
5266			int allow_down,
5267			struct btrfs_key *key)
5268{
5269	int ret;
5270
5271	if (*level == 0 || !allow_down) {
5272		ret = tree_move_next_or_upnext(root, path, level, root_level);
5273	} else {
5274		tree_move_down(root, path, level, root_level);
5275		ret = 0;
5276	}
5277	if (ret >= 0) {
5278		if (*level == 0)
5279			btrfs_item_key_to_cpu(path->nodes[*level], key,
5280					path->slots[*level]);
5281		else
5282			btrfs_node_key_to_cpu(path->nodes[*level], key,
5283					path->slots[*level]);
5284	}
5285	return ret;
5286}
5287
5288static int tree_compare_item(struct btrfs_root *left_root,
5289			     struct btrfs_path *left_path,
5290			     struct btrfs_path *right_path,
5291			     char *tmp_buf)
5292{
5293	int cmp;
5294	int len1, len2;
5295	unsigned long off1, off2;
5296
5297	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5298	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5299	if (len1 != len2)
5300		return 1;
5301
5302	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5303	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5304				right_path->slots[0]);
5305
5306	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5307
5308	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5309	if (cmp)
5310		return 1;
5311	return 0;
5312}
5313
5314#define ADVANCE 1
5315#define ADVANCE_ONLY_NEXT -1
5316
5317/*
5318 * This function compares two trees and calls the provided callback for
5319 * every changed/new/deleted item it finds.
5320 * If shared tree blocks are encountered, whole subtrees are skipped, making
5321 * the compare pretty fast on snapshotted subvolumes.
5322 *
5323 * This currently works on commit roots only. As commit roots are read only,
5324 * we don't do any locking. The commit roots are protected with transactions.
5325 * Transactions are ended and rejoined when a commit is tried in between.
5326 *
5327 * This function checks for modifications done to the trees while comparing.
5328 * If it detects a change, it aborts immediately.
5329 */
5330int btrfs_compare_trees(struct btrfs_root *left_root,
5331			struct btrfs_root *right_root,
5332			btrfs_changed_cb_t changed_cb, void *ctx)
5333{
5334	int ret;
5335	int cmp;
5336	struct btrfs_path *left_path = NULL;
5337	struct btrfs_path *right_path = NULL;
5338	struct btrfs_key left_key;
5339	struct btrfs_key right_key;
5340	char *tmp_buf = NULL;
5341	int left_root_level;
5342	int right_root_level;
5343	int left_level;
5344	int right_level;
5345	int left_end_reached;
5346	int right_end_reached;
5347	int advance_left;
5348	int advance_right;
5349	u64 left_blockptr;
5350	u64 right_blockptr;
5351	u64 left_gen;
5352	u64 right_gen;
5353
5354	left_path = btrfs_alloc_path();
5355	if (!left_path) {
5356		ret = -ENOMEM;
5357		goto out;
5358	}
5359	right_path = btrfs_alloc_path();
5360	if (!right_path) {
5361		ret = -ENOMEM;
5362		goto out;
5363	}
5364
5365	tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5366	if (!tmp_buf) {
5367		tmp_buf = vmalloc(left_root->nodesize);
5368		if (!tmp_buf) {
5369			ret = -ENOMEM;
5370			goto out;
5371		}
5372	}
5373
5374	left_path->search_commit_root = 1;
5375	left_path->skip_locking = 1;
5376	right_path->search_commit_root = 1;
5377	right_path->skip_locking = 1;
5378
5379	/*
5380	 * Strategy: Go to the first items of both trees. Then do
5381	 *
5382	 * If both trees are at level 0
5383	 *   Compare keys of current items
5384	 *     If left < right treat left item as new, advance left tree
5385	 *       and repeat
5386	 *     If left > right treat right item as deleted, advance right tree
5387	 *       and repeat
5388	 *     If left == right do deep compare of items, treat as changed if
5389	 *       needed, advance both trees and repeat
5390	 * If both trees are at the same level but not at level 0
5391	 *   Compare keys of current nodes/leafs
5392	 *     If left < right advance left tree and repeat
5393	 *     If left > right advance right tree and repeat
5394	 *     If left == right compare blockptrs of the next nodes/leafs
5395	 *       If they match advance both trees but stay at the same level
5396	 *         and repeat
5397	 *       If they don't match advance both trees while allowing to go
5398	 *         deeper and repeat
5399	 * If tree levels are different
5400	 *   Advance the tree that needs it and repeat
5401	 *
5402	 * Advancing a tree means:
5403	 *   If we are at level 0, try to go to the next slot. If that's not
5404	 *   possible, go one level up and repeat. Stop when we found a level
5405	 *   where we could go to the next slot. We may at this point be on a
5406	 *   node or a leaf.
5407	 *
5408	 *   If we are not at level 0 and not on shared tree blocks, go one
5409	 *   level deeper.
5410	 *
5411	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5412	 *   the right if possible or go up and right.
5413	 */
5414
5415	down_read(&left_root->fs_info->commit_root_sem);
5416	left_level = btrfs_header_level(left_root->commit_root);
5417	left_root_level = left_level;
5418	left_path->nodes[left_level] = left_root->commit_root;
5419	extent_buffer_get(left_path->nodes[left_level]);
5420
5421	right_level = btrfs_header_level(right_root->commit_root);
5422	right_root_level = right_level;
5423	right_path->nodes[right_level] = right_root->commit_root;
5424	extent_buffer_get(right_path->nodes[right_level]);
5425	up_read(&left_root->fs_info->commit_root_sem);
5426
5427	if (left_level == 0)
5428		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5429				&left_key, left_path->slots[left_level]);
5430	else
5431		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5432				&left_key, left_path->slots[left_level]);
5433	if (right_level == 0)
5434		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5435				&right_key, right_path->slots[right_level]);
5436	else
5437		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5438				&right_key, right_path->slots[right_level]);
5439
5440	left_end_reached = right_end_reached = 0;
5441	advance_left = advance_right = 0;
5442
5443	while (1) {
5444		if (advance_left && !left_end_reached) {
5445			ret = tree_advance(left_root, left_path, &left_level,
5446					left_root_level,
5447					advance_left != ADVANCE_ONLY_NEXT,
5448					&left_key);
5449			if (ret < 0)
5450				left_end_reached = ADVANCE;
5451			advance_left = 0;
5452		}
5453		if (advance_right && !right_end_reached) {
5454			ret = tree_advance(right_root, right_path, &right_level,
5455					right_root_level,
5456					advance_right != ADVANCE_ONLY_NEXT,
5457					&right_key);
5458			if (ret < 0)
5459				right_end_reached = ADVANCE;
5460			advance_right = 0;
5461		}
5462
5463		if (left_end_reached && right_end_reached) {
5464			ret = 0;
5465			goto out;
5466		} else if (left_end_reached) {
5467			if (right_level == 0) {
5468				ret = changed_cb(left_root, right_root,
5469						left_path, right_path,
5470						&right_key,
5471						BTRFS_COMPARE_TREE_DELETED,
5472						ctx);
5473				if (ret < 0)
5474					goto out;
5475			}
5476			advance_right = ADVANCE;
5477			continue;
5478		} else if (right_end_reached) {
5479			if (left_level == 0) {
5480				ret = changed_cb(left_root, right_root,
5481						left_path, right_path,
5482						&left_key,
5483						BTRFS_COMPARE_TREE_NEW,
5484						ctx);
5485				if (ret < 0)
5486					goto out;
5487			}
5488			advance_left = ADVANCE;
5489			continue;
5490		}
5491
5492		if (left_level == 0 && right_level == 0) {
5493			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5494			if (cmp < 0) {
5495				ret = changed_cb(left_root, right_root,
5496						left_path, right_path,
5497						&left_key,
5498						BTRFS_COMPARE_TREE_NEW,
5499						ctx);
5500				if (ret < 0)
5501					goto out;
5502				advance_left = ADVANCE;
5503			} else if (cmp > 0) {
5504				ret = changed_cb(left_root, right_root,
5505						left_path, right_path,
5506						&right_key,
5507						BTRFS_COMPARE_TREE_DELETED,
5508						ctx);
5509				if (ret < 0)
5510					goto out;
5511				advance_right = ADVANCE;
5512			} else {
5513				enum btrfs_compare_tree_result result;
5514
5515				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5516				ret = tree_compare_item(left_root, left_path,
5517						right_path, tmp_buf);
5518				if (ret)
5519					result = BTRFS_COMPARE_TREE_CHANGED;
5520				else
5521					result = BTRFS_COMPARE_TREE_SAME;
5522				ret = changed_cb(left_root, right_root,
5523						 left_path, right_path,
5524						 &left_key, result, ctx);
5525				if (ret < 0)
5526					goto out;
5527				advance_left = ADVANCE;
5528				advance_right = ADVANCE;
5529			}
5530		} else if (left_level == right_level) {
5531			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5532			if (cmp < 0) {
5533				advance_left = ADVANCE;
5534			} else if (cmp > 0) {
5535				advance_right = ADVANCE;
5536			} else {
5537				left_blockptr = btrfs_node_blockptr(
5538						left_path->nodes[left_level],
5539						left_path->slots[left_level]);
5540				right_blockptr = btrfs_node_blockptr(
5541						right_path->nodes[right_level],
5542						right_path->slots[right_level]);
5543				left_gen = btrfs_node_ptr_generation(
5544						left_path->nodes[left_level],
5545						left_path->slots[left_level]);
5546				right_gen = btrfs_node_ptr_generation(
5547						right_path->nodes[right_level],
5548						right_path->slots[right_level]);
5549				if (left_blockptr == right_blockptr &&
5550				    left_gen == right_gen) {
5551					/*
5552					 * As we're on a shared block, don't
5553					 * allow to go deeper.
5554					 */
5555					advance_left = ADVANCE_ONLY_NEXT;
5556					advance_right = ADVANCE_ONLY_NEXT;
5557				} else {
5558					advance_left = ADVANCE;
5559					advance_right = ADVANCE;
5560				}
5561			}
5562		} else if (left_level < right_level) {
5563			advance_right = ADVANCE;
5564		} else {
5565			advance_left = ADVANCE;
5566		}
5567	}
5568
5569out:
5570	btrfs_free_path(left_path);
5571	btrfs_free_path(right_path);
5572	kvfree(tmp_buf);
5573	return ret;
5574}
5575
5576/*
5577 * this is similar to btrfs_next_leaf, but does not try to preserve
5578 * and fixup the path.  It looks for and returns the next key in the
5579 * tree based on the current path and the min_trans parameters.
5580 *
5581 * 0 is returned if another key is found, < 0 if there are any errors
5582 * and 1 is returned if there are no higher keys in the tree
5583 *
5584 * path->keep_locks should be set to 1 on the search made before
5585 * calling this function.
5586 */
5587int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5588			struct btrfs_key *key, int level, u64 min_trans)
5589{
5590	int slot;
5591	struct extent_buffer *c;
5592
5593	WARN_ON(!path->keep_locks);
5594	while (level < BTRFS_MAX_LEVEL) {
5595		if (!path->nodes[level])
5596			return 1;
5597
5598		slot = path->slots[level] + 1;
5599		c = path->nodes[level];
5600next:
5601		if (slot >= btrfs_header_nritems(c)) {
5602			int ret;
5603			int orig_lowest;
5604			struct btrfs_key cur_key;
5605			if (level + 1 >= BTRFS_MAX_LEVEL ||
5606			    !path->nodes[level + 1])
5607				return 1;
5608
5609			if (path->locks[level + 1]) {
5610				level++;
5611				continue;
5612			}
5613
5614			slot = btrfs_header_nritems(c) - 1;
5615			if (level == 0)
5616				btrfs_item_key_to_cpu(c, &cur_key, slot);
5617			else
5618				btrfs_node_key_to_cpu(c, &cur_key, slot);
5619
5620			orig_lowest = path->lowest_level;
5621			btrfs_release_path(path);
5622			path->lowest_level = level;
5623			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5624						0, 0);
5625			path->lowest_level = orig_lowest;
5626			if (ret < 0)
5627				return ret;
5628
5629			c = path->nodes[level];
5630			slot = path->slots[level];
5631			if (ret == 0)
5632				slot++;
5633			goto next;
5634		}
5635
5636		if (level == 0)
5637			btrfs_item_key_to_cpu(c, key, slot);
5638		else {
5639			u64 gen = btrfs_node_ptr_generation(c, slot);
5640
5641			if (gen < min_trans) {
5642				slot++;
5643				goto next;
5644			}
5645			btrfs_node_key_to_cpu(c, key, slot);
5646		}
5647		return 0;
5648	}
5649	return 1;
5650}
5651
5652/*
5653 * search the tree again to find a leaf with greater keys
5654 * returns 0 if it found something or 1 if there are no greater leaves.
5655 * returns < 0 on io errors.
5656 */
5657int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5658{
5659	return btrfs_next_old_leaf(root, path, 0);
5660}
5661
5662int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5663			u64 time_seq)
5664{
5665	int slot;
5666	int level;
5667	struct extent_buffer *c;
5668	struct extent_buffer *next;
5669	struct btrfs_key key;
5670	u32 nritems;
5671	int ret;
5672	int old_spinning = path->leave_spinning;
5673	int next_rw_lock = 0;
5674
5675	nritems = btrfs_header_nritems(path->nodes[0]);
5676	if (nritems == 0)
5677		return 1;
5678
5679	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5680again:
5681	level = 1;
5682	next = NULL;
5683	next_rw_lock = 0;
5684	btrfs_release_path(path);
5685
5686	path->keep_locks = 1;
5687	path->leave_spinning = 1;
5688
5689	if (time_seq)
5690		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5691	else
5692		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5693	path->keep_locks = 0;
5694
5695	if (ret < 0)
5696		return ret;
5697
5698	nritems = btrfs_header_nritems(path->nodes[0]);
5699	/*
5700	 * by releasing the path above we dropped all our locks.  A balance
5701	 * could have added more items next to the key that used to be
5702	 * at the very end of the block.  So, check again here and
5703	 * advance the path if there are now more items available.
5704	 */
5705	if (nritems > 0 && path->slots[0] < nritems - 1) {
5706		if (ret == 0)
5707			path->slots[0]++;
5708		ret = 0;
5709		goto done;
5710	}
5711	/*
5712	 * So the above check misses one case:
5713	 * - after releasing the path above, someone has removed the item that
5714	 *   used to be at the very end of the block, and balance between leafs
5715	 *   gets another one with bigger key.offset to replace it.
5716	 *
5717	 * This one should be returned as well, or we can get leaf corruption
5718	 * later(esp. in __btrfs_drop_extents()).
5719	 *
5720	 * And a bit more explanation about this check,
5721	 * with ret > 0, the key isn't found, the path points to the slot
5722	 * where it should be inserted, so the path->slots[0] item must be the
5723	 * bigger one.
5724	 */
5725	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5726		ret = 0;
5727		goto done;
5728	}
5729
5730	while (level < BTRFS_MAX_LEVEL) {
5731		if (!path->nodes[level]) {
5732			ret = 1;
5733			goto done;
5734		}
5735
5736		slot = path->slots[level] + 1;
5737		c = path->nodes[level];
5738		if (slot >= btrfs_header_nritems(c)) {
5739			level++;
5740			if (level == BTRFS_MAX_LEVEL) {
5741				ret = 1;
5742				goto done;
5743			}
5744			continue;
5745		}
5746
5747		if (next) {
5748			btrfs_tree_unlock_rw(next, next_rw_lock);
5749			free_extent_buffer(next);
5750		}
5751
5752		next = c;
5753		next_rw_lock = path->locks[level];
5754		ret = read_block_for_search(NULL, root, path, &next, level,
5755					    slot, &key, 0);
5756		if (ret == -EAGAIN)
5757			goto again;
5758
5759		if (ret < 0) {
5760			btrfs_release_path(path);
5761			goto done;
5762		}
5763
5764		if (!path->skip_locking) {
5765			ret = btrfs_try_tree_read_lock(next);
5766			if (!ret && time_seq) {
5767				/*
5768				 * If we don't get the lock, we may be racing
5769				 * with push_leaf_left, holding that lock while
5770				 * itself waiting for the leaf we've currently
5771				 * locked. To solve this situation, we give up
5772				 * on our lock and cycle.
5773				 */
5774				free_extent_buffer(next);
5775				btrfs_release_path(path);
5776				cond_resched();
5777				goto again;
5778			}
5779			if (!ret) {
5780				btrfs_set_path_blocking(path);
5781				btrfs_tree_read_lock(next);
5782				btrfs_clear_path_blocking(path, next,
5783							  BTRFS_READ_LOCK);
5784			}
5785			next_rw_lock = BTRFS_READ_LOCK;
5786		}
5787		break;
5788	}
5789	path->slots[level] = slot;
5790	while (1) {
5791		level--;
5792		c = path->nodes[level];
5793		if (path->locks[level])
5794			btrfs_tree_unlock_rw(c, path->locks[level]);
5795
5796		free_extent_buffer(c);
5797		path->nodes[level] = next;
5798		path->slots[level] = 0;
5799		if (!path->skip_locking)
5800			path->locks[level] = next_rw_lock;
5801		if (!level)
5802			break;
5803
5804		ret = read_block_for_search(NULL, root, path, &next, level,
5805					    0, &key, 0);
5806		if (ret == -EAGAIN)
5807			goto again;
5808
5809		if (ret < 0) {
5810			btrfs_release_path(path);
5811			goto done;
5812		}
5813
5814		if (!path->skip_locking) {
5815			ret = btrfs_try_tree_read_lock(next);
5816			if (!ret) {
5817				btrfs_set_path_blocking(path);
5818				btrfs_tree_read_lock(next);
5819				btrfs_clear_path_blocking(path, next,
5820							  BTRFS_READ_LOCK);
5821			}
5822			next_rw_lock = BTRFS_READ_LOCK;
5823		}
5824	}
5825	ret = 0;
5826done:
5827	unlock_up(path, 0, 1, 0, NULL);
5828	path->leave_spinning = old_spinning;
5829	if (!old_spinning)
5830		btrfs_set_path_blocking(path);
5831
5832	return ret;
5833}
5834
5835/*
5836 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5837 * searching until it gets past min_objectid or finds an item of 'type'
5838 *
5839 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5840 */
5841int btrfs_previous_item(struct btrfs_root *root,
5842			struct btrfs_path *path, u64 min_objectid,
5843			int type)
5844{
5845	struct btrfs_key found_key;
5846	struct extent_buffer *leaf;
5847	u32 nritems;
5848	int ret;
5849
5850	while (1) {
5851		if (path->slots[0] == 0) {
5852			btrfs_set_path_blocking(path);
5853			ret = btrfs_prev_leaf(root, path);
5854			if (ret != 0)
5855				return ret;
5856		} else {
5857			path->slots[0]--;
5858		}
5859		leaf = path->nodes[0];
5860		nritems = btrfs_header_nritems(leaf);
5861		if (nritems == 0)
5862			return 1;
5863		if (path->slots[0] == nritems)
5864			path->slots[0]--;
5865
5866		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5867		if (found_key.objectid < min_objectid)
5868			break;
5869		if (found_key.type == type)
5870			return 0;
5871		if (found_key.objectid == min_objectid &&
5872		    found_key.type < type)
5873			break;
5874	}
5875	return 1;
5876}
5877
5878/*
5879 * search in extent tree to find a previous Metadata/Data extent item with
5880 * min objecitd.
5881 *
5882 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5883 */
5884int btrfs_previous_extent_item(struct btrfs_root *root,
5885			struct btrfs_path *path, u64 min_objectid)
5886{
5887	struct btrfs_key found_key;
5888	struct extent_buffer *leaf;
5889	u32 nritems;
5890	int ret;
5891
5892	while (1) {
5893		if (path->slots[0] == 0) {
5894			btrfs_set_path_blocking(path);
5895			ret = btrfs_prev_leaf(root, path);
5896			if (ret != 0)
5897				return ret;
5898		} else {
5899			path->slots[0]--;
5900		}
5901		leaf = path->nodes[0];
5902		nritems = btrfs_header_nritems(leaf);
5903		if (nritems == 0)
5904			return 1;
5905		if (path->slots[0] == nritems)
5906			path->slots[0]--;
5907
5908		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5909		if (found_key.objectid < min_objectid)
5910			break;
5911		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5912		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5913			return 0;
5914		if (found_key.objectid == min_objectid &&
5915		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5916			break;
5917	}
5918	return 1;
5919}