Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19		      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22		      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
 
  24			  struct extent_buffer *dst,
  25			  struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
 
  27			      struct extent_buffer *dst_buf,
  28			      struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30		    int level, int slot);
 
 
  31
  32static const struct btrfs_csums {
  33	u16		size;
  34	const char	name[10];
  35	const char	driver[12];
  36} btrfs_csums[] = {
  37	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  38	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  39	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  40	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  41				     .driver = "blake2b-256" },
  42};
  43
  44int btrfs_super_csum_size(const struct btrfs_super_block *s)
  45{
  46	u16 t = btrfs_super_csum_type(s);
  47	/*
  48	 * csum type is validated at mount time
  49	 */
  50	return btrfs_csums[t].size;
  51}
  52
  53const char *btrfs_super_csum_name(u16 csum_type)
 
 
 
 
  54{
  55	/* csum type is validated at mount time */
  56	return btrfs_csums[csum_type].name;
 
 
 
 
 
 
 
 
  57}
  58
  59/*
  60 * Return driver name if defined, otherwise the name that's also a valid driver
  61 * name
 
 
 
 
  62 */
  63const char *btrfs_super_csum_driver(u16 csum_type)
 
  64{
  65	/* csum type is validated at mount time */
  66	return btrfs_csums[csum_type].driver[0] ?
  67		btrfs_csums[csum_type].driver :
  68		btrfs_csums[csum_type].name;
  69}
  70
  71size_t __attribute_const__ btrfs_get_num_csums(void)
  72{
  73	return ARRAY_SIZE(btrfs_csums);
  74}
 
 
 
 
  75
  76struct btrfs_path *btrfs_alloc_path(void)
  77{
  78	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
 
 
 
 
 
 
 
 
  79}
  80
  81/* this also releases the path */
  82void btrfs_free_path(struct btrfs_path *p)
  83{
  84	if (!p)
  85		return;
  86	btrfs_release_path(p);
  87	kmem_cache_free(btrfs_path_cachep, p);
  88}
  89
  90/*
  91 * path release drops references on the extent buffers in the path
  92 * and it drops any locks held by this path
  93 *
  94 * It is safe to call this on paths that no locks or extent buffers held.
  95 */
  96noinline void btrfs_release_path(struct btrfs_path *p)
  97{
  98	int i;
  99
 100	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 101		p->slots[i] = 0;
 102		if (!p->nodes[i])
 103			continue;
 104		if (p->locks[i]) {
 105			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 106			p->locks[i] = 0;
 107		}
 108		free_extent_buffer(p->nodes[i]);
 109		p->nodes[i] = NULL;
 110	}
 111}
 112
 113/*
 114 * safely gets a reference on the root node of a tree.  A lock
 115 * is not taken, so a concurrent writer may put a different node
 116 * at the root of the tree.  See btrfs_lock_root_node for the
 117 * looping required.
 118 *
 119 * The extent buffer returned by this has a reference taken, so
 120 * it won't disappear.  It may stop being the root of the tree
 121 * at any time because there are no locks held.
 122 */
 123struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 124{
 125	struct extent_buffer *eb;
 126
 127	while (1) {
 128		rcu_read_lock();
 129		eb = rcu_dereference(root->node);
 130
 131		/*
 132		 * RCU really hurts here, we could free up the root node because
 133		 * it was COWed but we may not get the new root node yet so do
 134		 * the inc_not_zero dance and if it doesn't work then
 135		 * synchronize_rcu and try again.
 136		 */
 137		if (atomic_inc_not_zero(&eb->refs)) {
 138			rcu_read_unlock();
 139			break;
 140		}
 141		rcu_read_unlock();
 142		synchronize_rcu();
 143	}
 144	return eb;
 145}
 146
 147/*
 148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 149 * just get put onto a simple dirty list.  Transaction walks this list to make
 150 * sure they get properly updated on disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151 */
 152static void add_root_to_dirty_list(struct btrfs_root *root)
 153{
 154	struct btrfs_fs_info *fs_info = root->fs_info;
 155
 156	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 157	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 158		return;
 159
 160	spin_lock(&fs_info->trans_lock);
 161	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 162		/* Want the extent tree to be the last on the list */
 163		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 164			list_move_tail(&root->dirty_list,
 165				       &fs_info->dirty_cowonly_roots);
 166		else
 167			list_move(&root->dirty_list,
 168				  &fs_info->dirty_cowonly_roots);
 169	}
 170	spin_unlock(&fs_info->trans_lock);
 171}
 172
 173/*
 174 * used by snapshot creation to make a copy of a root for a tree with
 175 * a given objectid.  The buffer with the new root node is returned in
 176 * cow_ret, and this func returns zero on success or a negative error code.
 177 */
 178int btrfs_copy_root(struct btrfs_trans_handle *trans,
 179		      struct btrfs_root *root,
 180		      struct extent_buffer *buf,
 181		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 182{
 183	struct btrfs_fs_info *fs_info = root->fs_info;
 184	struct extent_buffer *cow;
 185	int ret = 0;
 186	int level;
 187	struct btrfs_disk_key disk_key;
 188
 189	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 190		trans->transid != fs_info->running_transaction->transid);
 191	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 192		trans->transid != root->last_trans);
 193
 194	level = btrfs_header_level(buf);
 195	if (level == 0)
 196		btrfs_item_key(buf, &disk_key, 0);
 197	else
 198		btrfs_node_key(buf, &disk_key, 0);
 199
 200	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 201			&disk_key, level, buf->start, 0);
 202	if (IS_ERR(cow))
 203		return PTR_ERR(cow);
 204
 205	copy_extent_buffer_full(cow, buf);
 206	btrfs_set_header_bytenr(cow, cow->start);
 207	btrfs_set_header_generation(cow, trans->transid);
 208	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 209	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 210				     BTRFS_HEADER_FLAG_RELOC);
 211	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 212		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 213	else
 214		btrfs_set_header_owner(cow, new_root_objectid);
 215
 216	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 217
 218	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 219	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 220		ret = btrfs_inc_ref(trans, root, cow, 1);
 221	else
 222		ret = btrfs_inc_ref(trans, root, cow, 0);
 223
 224	if (ret)
 225		return ret;
 226
 227	btrfs_mark_buffer_dirty(cow);
 228	*cow_ret = cow;
 229	return 0;
 230}
 231
 232enum mod_log_op {
 233	MOD_LOG_KEY_REPLACE,
 234	MOD_LOG_KEY_ADD,
 235	MOD_LOG_KEY_REMOVE,
 236	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 237	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 238	MOD_LOG_MOVE_KEYS,
 239	MOD_LOG_ROOT_REPLACE,
 240};
 241
 
 
 
 
 
 242struct tree_mod_root {
 243	u64 logical;
 244	u8 level;
 245};
 246
 247struct tree_mod_elem {
 248	struct rb_node node;
 249	u64 logical;
 250	u64 seq;
 251	enum mod_log_op op;
 252
 253	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 254	int slot;
 255
 256	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 257	u64 generation;
 258
 259	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 260	struct btrfs_disk_key key;
 261	u64 blockptr;
 262
 263	/* this is used for op == MOD_LOG_MOVE_KEYS */
 264	struct {
 265		int dst_slot;
 266		int nr_items;
 267	} move;
 268
 269	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 270	struct tree_mod_root old_root;
 271};
 272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273/*
 274 * Pull a new tree mod seq number for our operation.
 275 */
 276static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 277{
 278	return atomic64_inc_return(&fs_info->tree_mod_seq);
 279}
 280
 281/*
 282 * This adds a new blocker to the tree mod log's blocker list if the @elem
 283 * passed does not already have a sequence number set. So when a caller expects
 284 * to record tree modifications, it should ensure to set elem->seq to zero
 285 * before calling btrfs_get_tree_mod_seq.
 286 * Returns a fresh, unused tree log modification sequence number, even if no new
 287 * blocker was added.
 288 */
 289u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 290			   struct seq_list *elem)
 291{
 292	write_lock(&fs_info->tree_mod_log_lock);
 
 293	if (!elem->seq) {
 294		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 295		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 296	}
 297	write_unlock(&fs_info->tree_mod_log_lock);
 
 298
 299	return elem->seq;
 300}
 301
 302void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 303			    struct seq_list *elem)
 304{
 305	struct rb_root *tm_root;
 306	struct rb_node *node;
 307	struct rb_node *next;
 
 308	struct tree_mod_elem *tm;
 309	u64 min_seq = (u64)-1;
 310	u64 seq_putting = elem->seq;
 311
 312	if (!seq_putting)
 313		return;
 314
 315	write_lock(&fs_info->tree_mod_log_lock);
 316	list_del(&elem->list);
 317	elem->seq = 0;
 318
 319	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 320		struct seq_list *first;
 321
 322		first = list_first_entry(&fs_info->tree_mod_seq_list,
 323					 struct seq_list, list);
 324		if (seq_putting > first->seq) {
 325			/*
 326			 * Blocker with lower sequence number exists, we
 327			 * cannot remove anything from the log.
 328			 */
 329			write_unlock(&fs_info->tree_mod_log_lock);
 330			return;
 331		}
 332		min_seq = first->seq;
 333	}
 
 334
 335	/*
 336	 * anything that's lower than the lowest existing (read: blocked)
 337	 * sequence number can be removed from the tree.
 338	 */
 
 339	tm_root = &fs_info->tree_mod_log;
 340	for (node = rb_first(tm_root); node; node = next) {
 341		next = rb_next(node);
 342		tm = rb_entry(node, struct tree_mod_elem, node);
 343		if (tm->seq >= min_seq)
 344			continue;
 345		rb_erase(node, tm_root);
 346		kfree(tm);
 347	}
 348	write_unlock(&fs_info->tree_mod_log_lock);
 349}
 350
 351/*
 352 * key order of the log:
 353 *       node/leaf start address -> sequence
 354 *
 355 * The 'start address' is the logical address of the *new* root node
 356 * for root replace operations, or the logical address of the affected
 357 * block for all other operations.
 
 
 358 */
 359static noinline int
 360__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 361{
 362	struct rb_root *tm_root;
 363	struct rb_node **new;
 364	struct rb_node *parent = NULL;
 365	struct tree_mod_elem *cur;
 366
 367	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 368
 369	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 370
 371	tm_root = &fs_info->tree_mod_log;
 372	new = &tm_root->rb_node;
 373	while (*new) {
 374		cur = rb_entry(*new, struct tree_mod_elem, node);
 375		parent = *new;
 376		if (cur->logical < tm->logical)
 377			new = &((*new)->rb_left);
 378		else if (cur->logical > tm->logical)
 379			new = &((*new)->rb_right);
 380		else if (cur->seq < tm->seq)
 381			new = &((*new)->rb_left);
 382		else if (cur->seq > tm->seq)
 383			new = &((*new)->rb_right);
 384		else
 385			return -EEXIST;
 386	}
 387
 388	rb_link_node(&tm->node, parent, new);
 389	rb_insert_color(&tm->node, tm_root);
 390	return 0;
 391}
 392
 393/*
 394 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 395 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 396 * this until all tree mod log insertions are recorded in the rb tree and then
 397 * write unlock fs_info::tree_mod_log_lock.
 398 */
 399static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 400				    struct extent_buffer *eb) {
 401	smp_mb();
 402	if (list_empty(&(fs_info)->tree_mod_seq_list))
 403		return 1;
 404	if (eb && btrfs_header_level(eb) == 0)
 405		return 1;
 406
 407	write_lock(&fs_info->tree_mod_log_lock);
 408	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 409		write_unlock(&fs_info->tree_mod_log_lock);
 410		return 1;
 411	}
 412
 413	return 0;
 414}
 415
 416/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 417static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 418				    struct extent_buffer *eb)
 419{
 420	smp_mb();
 421	if (list_empty(&(fs_info)->tree_mod_seq_list))
 422		return 0;
 423	if (eb && btrfs_header_level(eb) == 0)
 424		return 0;
 425
 426	return 1;
 427}
 428
 429static struct tree_mod_elem *
 430alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 431		    enum mod_log_op op, gfp_t flags)
 432{
 433	struct tree_mod_elem *tm;
 434
 435	tm = kzalloc(sizeof(*tm), flags);
 436	if (!tm)
 437		return NULL;
 438
 439	tm->logical = eb->start;
 440	if (op != MOD_LOG_KEY_ADD) {
 441		btrfs_node_key(eb, &tm->key, slot);
 442		tm->blockptr = btrfs_node_blockptr(eb, slot);
 443	}
 444	tm->op = op;
 445	tm->slot = slot;
 446	tm->generation = btrfs_node_ptr_generation(eb, slot);
 447	RB_CLEAR_NODE(&tm->node);
 448
 449	return tm;
 450}
 451
 452static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 453		enum mod_log_op op, gfp_t flags)
 
 
 454{
 455	struct tree_mod_elem *tm;
 456	int ret;
 457
 458	if (!tree_mod_need_log(eb->fs_info, eb))
 459		return 0;
 460
 461	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 462	if (!tm)
 463		return -ENOMEM;
 464
 465	if (tree_mod_dont_log(eb->fs_info, eb)) {
 466		kfree(tm);
 467		return 0;
 468	}
 469
 470	ret = __tree_mod_log_insert(eb->fs_info, tm);
 471	write_unlock(&eb->fs_info->tree_mod_log_lock);
 472	if (ret)
 473		kfree(tm);
 474
 475	return ret;
 476}
 477
 478static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 479		int dst_slot, int src_slot, int nr_items)
 
 
 480{
 481	struct tree_mod_elem *tm = NULL;
 482	struct tree_mod_elem **tm_list = NULL;
 483	int ret = 0;
 484	int i;
 485	int locked = 0;
 486
 487	if (!tree_mod_need_log(eb->fs_info, eb))
 488		return 0;
 489
 490	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 491	if (!tm_list)
 492		return -ENOMEM;
 493
 494	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 495	if (!tm) {
 496		ret = -ENOMEM;
 497		goto free_tms;
 498	}
 499
 500	tm->logical = eb->start;
 501	tm->slot = src_slot;
 502	tm->move.dst_slot = dst_slot;
 503	tm->move.nr_items = nr_items;
 504	tm->op = MOD_LOG_MOVE_KEYS;
 505
 506	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 507		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 508		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 509		if (!tm_list[i]) {
 510			ret = -ENOMEM;
 511			goto free_tms;
 512		}
 513	}
 514
 515	if (tree_mod_dont_log(eb->fs_info, eb))
 516		goto free_tms;
 517	locked = 1;
 518
 519	/*
 520	 * When we override something during the move, we log these removals.
 521	 * This can only happen when we move towards the beginning of the
 522	 * buffer, i.e. dst_slot < src_slot.
 523	 */
 524	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 525		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 526		if (ret)
 527			goto free_tms;
 528	}
 529
 530	ret = __tree_mod_log_insert(eb->fs_info, tm);
 531	if (ret)
 532		goto free_tms;
 533	write_unlock(&eb->fs_info->tree_mod_log_lock);
 534	kfree(tm_list);
 535
 536	return 0;
 537free_tms:
 538	for (i = 0; i < nr_items; i++) {
 539		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 540			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 541		kfree(tm_list[i]);
 542	}
 543	if (locked)
 544		write_unlock(&eb->fs_info->tree_mod_log_lock);
 545	kfree(tm_list);
 546	kfree(tm);
 547
 548	return ret;
 549}
 550
 551static inline int
 552__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 553		       struct tree_mod_elem **tm_list,
 554		       int nritems)
 555{
 556	int i, j;
 557	int ret;
 558
 559	for (i = nritems - 1; i >= 0; i--) {
 560		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 561		if (ret) {
 562			for (j = nritems - 1; j > i; j--)
 563				rb_erase(&tm_list[j]->node,
 564					 &fs_info->tree_mod_log);
 565			return ret;
 566		}
 567	}
 568
 569	return 0;
 570}
 571
 572static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 573			 struct extent_buffer *new_root, int log_removal)
 
 
 
 574{
 575	struct btrfs_fs_info *fs_info = old_root->fs_info;
 576	struct tree_mod_elem *tm = NULL;
 577	struct tree_mod_elem **tm_list = NULL;
 578	int nritems = 0;
 579	int ret = 0;
 580	int i;
 581
 582	if (!tree_mod_need_log(fs_info, NULL))
 583		return 0;
 584
 585	if (log_removal && btrfs_header_level(old_root) > 0) {
 586		nritems = btrfs_header_nritems(old_root);
 587		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 588				  GFP_NOFS);
 589		if (!tm_list) {
 590			ret = -ENOMEM;
 591			goto free_tms;
 592		}
 593		for (i = 0; i < nritems; i++) {
 594			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 595			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 596			if (!tm_list[i]) {
 597				ret = -ENOMEM;
 598				goto free_tms;
 599			}
 600		}
 601	}
 602
 603	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 604	if (!tm) {
 605		ret = -ENOMEM;
 606		goto free_tms;
 607	}
 608
 609	tm->logical = new_root->start;
 610	tm->old_root.logical = old_root->start;
 611	tm->old_root.level = btrfs_header_level(old_root);
 612	tm->generation = btrfs_header_generation(old_root);
 613	tm->op = MOD_LOG_ROOT_REPLACE;
 614
 615	if (tree_mod_dont_log(fs_info, NULL))
 616		goto free_tms;
 617
 618	if (tm_list)
 619		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 620	if (!ret)
 621		ret = __tree_mod_log_insert(fs_info, tm);
 622
 623	write_unlock(&fs_info->tree_mod_log_lock);
 624	if (ret)
 625		goto free_tms;
 626	kfree(tm_list);
 627
 628	return ret;
 629
 630free_tms:
 631	if (tm_list) {
 632		for (i = 0; i < nritems; i++)
 633			kfree(tm_list[i]);
 634		kfree(tm_list);
 635	}
 636	kfree(tm);
 637
 638	return ret;
 639}
 640
 641static struct tree_mod_elem *
 642__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 643		      int smallest)
 644{
 645	struct rb_root *tm_root;
 646	struct rb_node *node;
 647	struct tree_mod_elem *cur = NULL;
 648	struct tree_mod_elem *found = NULL;
 649
 650	read_lock(&fs_info->tree_mod_log_lock);
 651	tm_root = &fs_info->tree_mod_log;
 652	node = tm_root->rb_node;
 653	while (node) {
 654		cur = rb_entry(node, struct tree_mod_elem, node);
 655		if (cur->logical < start) {
 656			node = node->rb_left;
 657		} else if (cur->logical > start) {
 658			node = node->rb_right;
 659		} else if (cur->seq < min_seq) {
 660			node = node->rb_left;
 661		} else if (!smallest) {
 662			/* we want the node with the highest seq */
 663			if (found)
 664				BUG_ON(found->seq > cur->seq);
 665			found = cur;
 666			node = node->rb_left;
 667		} else if (cur->seq > min_seq) {
 668			/* we want the node with the smallest seq */
 669			if (found)
 670				BUG_ON(found->seq < cur->seq);
 671			found = cur;
 672			node = node->rb_right;
 673		} else {
 674			found = cur;
 675			break;
 676		}
 677	}
 678	read_unlock(&fs_info->tree_mod_log_lock);
 679
 680	return found;
 681}
 682
 683/*
 684 * this returns the element from the log with the smallest time sequence
 685 * value that's in the log (the oldest log item). any element with a time
 686 * sequence lower than min_seq will be ignored.
 687 */
 688static struct tree_mod_elem *
 689tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 690			   u64 min_seq)
 691{
 692	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 693}
 694
 695/*
 696 * this returns the element from the log with the largest time sequence
 697 * value that's in the log (the most recent log item). any element with
 698 * a time sequence lower than min_seq will be ignored.
 699 */
 700static struct tree_mod_elem *
 701tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 702{
 703	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 704}
 705
 706static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 
 707		     struct extent_buffer *src, unsigned long dst_offset,
 708		     unsigned long src_offset, int nr_items)
 709{
 710	struct btrfs_fs_info *fs_info = dst->fs_info;
 711	int ret = 0;
 712	struct tree_mod_elem **tm_list = NULL;
 713	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 714	int i;
 715	int locked = 0;
 716
 717	if (!tree_mod_need_log(fs_info, NULL))
 718		return 0;
 719
 720	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 721		return 0;
 722
 723	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 724			  GFP_NOFS);
 725	if (!tm_list)
 726		return -ENOMEM;
 727
 728	tm_list_add = tm_list;
 729	tm_list_rem = tm_list + nr_items;
 730	for (i = 0; i < nr_items; i++) {
 731		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 732		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 733		if (!tm_list_rem[i]) {
 734			ret = -ENOMEM;
 735			goto free_tms;
 736		}
 737
 738		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 739		    MOD_LOG_KEY_ADD, GFP_NOFS);
 740		if (!tm_list_add[i]) {
 741			ret = -ENOMEM;
 742			goto free_tms;
 743		}
 744	}
 745
 746	if (tree_mod_dont_log(fs_info, NULL))
 747		goto free_tms;
 748	locked = 1;
 749
 750	for (i = 0; i < nr_items; i++) {
 751		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 752		if (ret)
 753			goto free_tms;
 754		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 755		if (ret)
 756			goto free_tms;
 757	}
 758
 759	write_unlock(&fs_info->tree_mod_log_lock);
 760	kfree(tm_list);
 761
 762	return 0;
 763
 764free_tms:
 765	for (i = 0; i < nr_items * 2; i++) {
 766		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 767			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 768		kfree(tm_list[i]);
 769	}
 770	if (locked)
 771		write_unlock(&fs_info->tree_mod_log_lock);
 772	kfree(tm_list);
 773
 774	return ret;
 775}
 776
 777static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778{
 779	struct tree_mod_elem **tm_list = NULL;
 780	int nritems = 0;
 781	int i;
 782	int ret = 0;
 783
 784	if (btrfs_header_level(eb) == 0)
 785		return 0;
 786
 787	if (!tree_mod_need_log(eb->fs_info, NULL))
 788		return 0;
 789
 790	nritems = btrfs_header_nritems(eb);
 791	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 792	if (!tm_list)
 793		return -ENOMEM;
 794
 795	for (i = 0; i < nritems; i++) {
 796		tm_list[i] = alloc_tree_mod_elem(eb, i,
 797		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 798		if (!tm_list[i]) {
 799			ret = -ENOMEM;
 800			goto free_tms;
 801		}
 802	}
 803
 804	if (tree_mod_dont_log(eb->fs_info, eb))
 805		goto free_tms;
 806
 807	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 808	write_unlock(&eb->fs_info->tree_mod_log_lock);
 809	if (ret)
 810		goto free_tms;
 811	kfree(tm_list);
 812
 813	return 0;
 814
 815free_tms:
 816	for (i = 0; i < nritems; i++)
 817		kfree(tm_list[i]);
 818	kfree(tm_list);
 819
 820	return ret;
 821}
 822
 
 
 
 
 
 
 
 
 
 
 
 823/*
 824 * check if the tree block can be shared by multiple trees
 825 */
 826int btrfs_block_can_be_shared(struct btrfs_root *root,
 827			      struct extent_buffer *buf)
 828{
 829	/*
 830	 * Tree blocks not in shareable trees and tree roots are never shared.
 831	 * If a block was allocated after the last snapshot and the block was
 832	 * not allocated by tree relocation, we know the block is not shared.
 
 833	 */
 834	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 835	    buf != root->node && buf != root->commit_root &&
 836	    (btrfs_header_generation(buf) <=
 837	     btrfs_root_last_snapshot(&root->root_item) ||
 838	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 839		return 1;
 840
 
 
 
 
 841	return 0;
 842}
 843
 844static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 845				       struct btrfs_root *root,
 846				       struct extent_buffer *buf,
 847				       struct extent_buffer *cow,
 848				       int *last_ref)
 849{
 850	struct btrfs_fs_info *fs_info = root->fs_info;
 851	u64 refs;
 852	u64 owner;
 853	u64 flags;
 854	u64 new_flags = 0;
 855	int ret;
 856
 857	/*
 858	 * Backrefs update rules:
 859	 *
 860	 * Always use full backrefs for extent pointers in tree block
 861	 * allocated by tree relocation.
 862	 *
 863	 * If a shared tree block is no longer referenced by its owner
 864	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 865	 * use full backrefs for extent pointers in tree block.
 866	 *
 867	 * If a tree block is been relocating
 868	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 869	 * use full backrefs for extent pointers in tree block.
 870	 * The reason for this is some operations (such as drop tree)
 871	 * are only allowed for blocks use full backrefs.
 872	 */
 873
 874	if (btrfs_block_can_be_shared(root, buf)) {
 875		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 876					       btrfs_header_level(buf), 1,
 877					       &refs, &flags);
 878		if (ret)
 879			return ret;
 880		if (refs == 0) {
 881			ret = -EROFS;
 882			btrfs_handle_fs_error(fs_info, ret, NULL);
 883			return ret;
 884		}
 885	} else {
 886		refs = 1;
 887		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 888		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 889			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 890		else
 891			flags = 0;
 892	}
 893
 894	owner = btrfs_header_owner(buf);
 895	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 896	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 897
 898	if (refs > 1) {
 899		if ((owner == root->root_key.objectid ||
 900		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 901		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 902			ret = btrfs_inc_ref(trans, root, buf, 1);
 903			if (ret)
 904				return ret;
 905
 906			if (root->root_key.objectid ==
 907			    BTRFS_TREE_RELOC_OBJECTID) {
 908				ret = btrfs_dec_ref(trans, root, buf, 0);
 909				if (ret)
 910					return ret;
 911				ret = btrfs_inc_ref(trans, root, cow, 1);
 912				if (ret)
 913					return ret;
 914			}
 915			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 916		} else {
 917
 918			if (root->root_key.objectid ==
 919			    BTRFS_TREE_RELOC_OBJECTID)
 920				ret = btrfs_inc_ref(trans, root, cow, 1);
 921			else
 922				ret = btrfs_inc_ref(trans, root, cow, 0);
 923			if (ret)
 924				return ret;
 925		}
 926		if (new_flags != 0) {
 927			int level = btrfs_header_level(buf);
 928
 929			ret = btrfs_set_disk_extent_flags(trans, buf,
 
 
 930							  new_flags, level, 0);
 931			if (ret)
 932				return ret;
 933		}
 934	} else {
 935		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 936			if (root->root_key.objectid ==
 937			    BTRFS_TREE_RELOC_OBJECTID)
 938				ret = btrfs_inc_ref(trans, root, cow, 1);
 939			else
 940				ret = btrfs_inc_ref(trans, root, cow, 0);
 941			if (ret)
 942				return ret;
 943			ret = btrfs_dec_ref(trans, root, buf, 1);
 944			if (ret)
 945				return ret;
 946		}
 947		btrfs_clean_tree_block(buf);
 948		*last_ref = 1;
 949	}
 950	return 0;
 951}
 952
 953static struct extent_buffer *alloc_tree_block_no_bg_flush(
 954					  struct btrfs_trans_handle *trans,
 955					  struct btrfs_root *root,
 956					  u64 parent_start,
 957					  const struct btrfs_disk_key *disk_key,
 958					  int level,
 959					  u64 hint,
 960					  u64 empty_size)
 961{
 962	struct btrfs_fs_info *fs_info = root->fs_info;
 963	struct extent_buffer *ret;
 964
 965	/*
 966	 * If we are COWing a node/leaf from the extent, chunk, device or free
 967	 * space trees, make sure that we do not finish block group creation of
 968	 * pending block groups. We do this to avoid a deadlock.
 969	 * COWing can result in allocation of a new chunk, and flushing pending
 970	 * block groups (btrfs_create_pending_block_groups()) can be triggered
 971	 * when finishing allocation of a new chunk. Creation of a pending block
 972	 * group modifies the extent, chunk, device and free space trees,
 973	 * therefore we could deadlock with ourselves since we are holding a
 974	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
 975	 * try to COW later.
 976	 * For similar reasons, we also need to delay flushing pending block
 977	 * groups when splitting a leaf or node, from one of those trees, since
 978	 * we are holding a write lock on it and its parent or when inserting a
 979	 * new root node for one of those trees.
 980	 */
 981	if (root == fs_info->extent_root ||
 982	    root == fs_info->chunk_root ||
 983	    root == fs_info->dev_root ||
 984	    root == fs_info->free_space_root)
 985		trans->can_flush_pending_bgs = false;
 986
 987	ret = btrfs_alloc_tree_block(trans, root, parent_start,
 988				     root->root_key.objectid, disk_key, level,
 989				     hint, empty_size);
 990	trans->can_flush_pending_bgs = true;
 991
 992	return ret;
 993}
 994
 995/*
 996 * does the dirty work in cow of a single block.  The parent block (if
 997 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 998 * dirty and returned locked.  If you modify the block it needs to be marked
 999 * dirty again.
1000 *
1001 * search_start -- an allocation hint for the new block
1002 *
1003 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1004 * bytes the allocator should try to find free next to the block it returns.
1005 * This is just a hint and may be ignored by the allocator.
1006 */
1007static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1008			     struct btrfs_root *root,
1009			     struct extent_buffer *buf,
1010			     struct extent_buffer *parent, int parent_slot,
1011			     struct extent_buffer **cow_ret,
1012			     u64 search_start, u64 empty_size)
1013{
1014	struct btrfs_fs_info *fs_info = root->fs_info;
1015	struct btrfs_disk_key disk_key;
1016	struct extent_buffer *cow;
1017	int level, ret;
1018	int last_ref = 0;
1019	int unlock_orig = 0;
1020	u64 parent_start = 0;
1021
1022	if (*cow_ret == buf)
1023		unlock_orig = 1;
1024
1025	btrfs_assert_tree_locked(buf);
1026
1027	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1028		trans->transid != fs_info->running_transaction->transid);
1029	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1030		trans->transid != root->last_trans);
1031
1032	level = btrfs_header_level(buf);
1033
1034	if (level == 0)
1035		btrfs_item_key(buf, &disk_key, 0);
1036	else
1037		btrfs_node_key(buf, &disk_key, 0);
1038
1039	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1040		parent_start = parent->start;
1041
1042	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1043					   level, search_start, empty_size);
 
1044	if (IS_ERR(cow))
1045		return PTR_ERR(cow);
1046
1047	/* cow is set to blocking by btrfs_init_new_buffer */
1048
1049	copy_extent_buffer_full(cow, buf);
1050	btrfs_set_header_bytenr(cow, cow->start);
1051	btrfs_set_header_generation(cow, trans->transid);
1052	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1053	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1054				     BTRFS_HEADER_FLAG_RELOC);
1055	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1056		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1057	else
1058		btrfs_set_header_owner(cow, root->root_key.objectid);
1059
1060	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1061
1062	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1063	if (ret) {
1064		btrfs_abort_transaction(trans, ret);
1065		return ret;
1066	}
1067
1068	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1069		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1070		if (ret) {
1071			btrfs_abort_transaction(trans, ret);
1072			return ret;
1073		}
1074	}
1075
1076	if (buf == root->node) {
1077		WARN_ON(parent && parent != buf);
1078		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1079		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1080			parent_start = buf->start;
1081
1082		atomic_inc(&cow->refs);
1083		ret = tree_mod_log_insert_root(root->node, cow, 1);
1084		BUG_ON(ret < 0);
1085		rcu_assign_pointer(root->node, cow);
1086
1087		btrfs_free_tree_block(trans, root, buf, parent_start,
1088				      last_ref);
1089		free_extent_buffer(buf);
1090		add_root_to_dirty_list(root);
1091	} else {
1092		WARN_ON(trans->transid != btrfs_header_generation(parent));
1093		tree_mod_log_insert_key(parent, parent_slot,
1094					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1095		btrfs_set_node_blockptr(parent, parent_slot,
1096					cow->start);
1097		btrfs_set_node_ptr_generation(parent, parent_slot,
1098					      trans->transid);
1099		btrfs_mark_buffer_dirty(parent);
1100		if (last_ref) {
1101			ret = tree_mod_log_free_eb(buf);
1102			if (ret) {
1103				btrfs_abort_transaction(trans, ret);
1104				return ret;
1105			}
1106		}
1107		btrfs_free_tree_block(trans, root, buf, parent_start,
1108				      last_ref);
1109	}
1110	if (unlock_orig)
1111		btrfs_tree_unlock(buf);
1112	free_extent_buffer_stale(buf);
1113	btrfs_mark_buffer_dirty(cow);
1114	*cow_ret = cow;
1115	return 0;
1116}
1117
1118/*
1119 * returns the logical address of the oldest predecessor of the given root.
1120 * entries older than time_seq are ignored.
1121 */
1122static struct tree_mod_elem *__tree_mod_log_oldest_root(
1123		struct extent_buffer *eb_root, u64 time_seq)
 
1124{
1125	struct tree_mod_elem *tm;
1126	struct tree_mod_elem *found = NULL;
1127	u64 root_logical = eb_root->start;
1128	int looped = 0;
1129
1130	if (!time_seq)
1131		return NULL;
1132
1133	/*
1134	 * the very last operation that's logged for a root is the
1135	 * replacement operation (if it is replaced at all). this has
1136	 * the logical address of the *new* root, making it the very
1137	 * first operation that's logged for this root.
1138	 */
1139	while (1) {
1140		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1141						time_seq);
1142		if (!looped && !tm)
1143			return NULL;
1144		/*
1145		 * if there are no tree operation for the oldest root, we simply
1146		 * return it. this should only happen if that (old) root is at
1147		 * level 0.
1148		 */
1149		if (!tm)
1150			break;
1151
1152		/*
1153		 * if there's an operation that's not a root replacement, we
1154		 * found the oldest version of our root. normally, we'll find a
1155		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1156		 */
1157		if (tm->op != MOD_LOG_ROOT_REPLACE)
1158			break;
1159
1160		found = tm;
1161		root_logical = tm->old_root.logical;
1162		looped = 1;
1163	}
1164
1165	/* if there's no old root to return, return what we found instead */
1166	if (!found)
1167		found = tm;
1168
1169	return found;
1170}
1171
1172/*
1173 * tm is a pointer to the first operation to rewind within eb. then, all
1174 * previous operations will be rewound (until we reach something older than
1175 * time_seq).
1176 */
1177static void
1178__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1179		      u64 time_seq, struct tree_mod_elem *first_tm)
1180{
1181	u32 n;
1182	struct rb_node *next;
1183	struct tree_mod_elem *tm = first_tm;
1184	unsigned long o_dst;
1185	unsigned long o_src;
1186	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1187
1188	n = btrfs_header_nritems(eb);
1189	read_lock(&fs_info->tree_mod_log_lock);
1190	while (tm && tm->seq >= time_seq) {
1191		/*
1192		 * all the operations are recorded with the operator used for
1193		 * the modification. as we're going backwards, we do the
1194		 * opposite of each operation here.
1195		 */
1196		switch (tm->op) {
1197		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1198			BUG_ON(tm->slot < n);
1199			fallthrough;
1200		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1201		case MOD_LOG_KEY_REMOVE:
1202			btrfs_set_node_key(eb, &tm->key, tm->slot);
1203			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1204			btrfs_set_node_ptr_generation(eb, tm->slot,
1205						      tm->generation);
1206			n++;
1207			break;
1208		case MOD_LOG_KEY_REPLACE:
1209			BUG_ON(tm->slot >= n);
1210			btrfs_set_node_key(eb, &tm->key, tm->slot);
1211			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1212			btrfs_set_node_ptr_generation(eb, tm->slot,
1213						      tm->generation);
1214			break;
1215		case MOD_LOG_KEY_ADD:
1216			/* if a move operation is needed it's in the log */
1217			n--;
1218			break;
1219		case MOD_LOG_MOVE_KEYS:
1220			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1221			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1222			memmove_extent_buffer(eb, o_dst, o_src,
1223					      tm->move.nr_items * p_size);
1224			break;
1225		case MOD_LOG_ROOT_REPLACE:
1226			/*
1227			 * this operation is special. for roots, this must be
1228			 * handled explicitly before rewinding.
1229			 * for non-roots, this operation may exist if the node
1230			 * was a root: root A -> child B; then A gets empty and
1231			 * B is promoted to the new root. in the mod log, we'll
1232			 * have a root-replace operation for B, a tree block
1233			 * that is no root. we simply ignore that operation.
1234			 */
1235			break;
1236		}
1237		next = rb_next(&tm->node);
1238		if (!next)
1239			break;
1240		tm = rb_entry(next, struct tree_mod_elem, node);
1241		if (tm->logical != first_tm->logical)
1242			break;
1243	}
1244	read_unlock(&fs_info->tree_mod_log_lock);
1245	btrfs_set_header_nritems(eb, n);
1246}
1247
1248/*
1249 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1250 * is returned. If rewind operations happen, a fresh buffer is returned. The
1251 * returned buffer is always read-locked. If the returned buffer is not the
1252 * input buffer, the lock on the input buffer is released and the input buffer
1253 * is freed (its refcount is decremented).
1254 */
1255static struct extent_buffer *
1256tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1257		    struct extent_buffer *eb, u64 time_seq)
1258{
1259	struct extent_buffer *eb_rewin;
1260	struct tree_mod_elem *tm;
1261
1262	if (!time_seq)
1263		return eb;
1264
1265	if (btrfs_header_level(eb) == 0)
1266		return eb;
1267
1268	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1269	if (!tm)
1270		return eb;
1271
1272	btrfs_set_path_blocking(path);
1273	btrfs_set_lock_blocking_read(eb);
1274
1275	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1276		BUG_ON(tm->slot != 0);
1277		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1278		if (!eb_rewin) {
1279			btrfs_tree_read_unlock_blocking(eb);
1280			free_extent_buffer(eb);
1281			return NULL;
1282		}
1283		btrfs_set_header_bytenr(eb_rewin, eb->start);
1284		btrfs_set_header_backref_rev(eb_rewin,
1285					     btrfs_header_backref_rev(eb));
1286		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1287		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1288	} else {
1289		eb_rewin = btrfs_clone_extent_buffer(eb);
1290		if (!eb_rewin) {
1291			btrfs_tree_read_unlock_blocking(eb);
1292			free_extent_buffer(eb);
1293			return NULL;
1294		}
1295	}
1296
 
1297	btrfs_tree_read_unlock_blocking(eb);
1298	free_extent_buffer(eb);
1299
1300	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1301				       eb_rewin, btrfs_header_level(eb_rewin));
1302	btrfs_tree_read_lock(eb_rewin);
1303	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1304	WARN_ON(btrfs_header_nritems(eb_rewin) >
1305		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1306
1307	return eb_rewin;
1308}
1309
1310/*
1311 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1312 * value. If there are no changes, the current root->root_node is returned. If
1313 * anything changed in between, there's a fresh buffer allocated on which the
1314 * rewind operations are done. In any case, the returned buffer is read locked.
1315 * Returns NULL on error (with no locks held).
1316 */
1317static inline struct extent_buffer *
1318get_old_root(struct btrfs_root *root, u64 time_seq)
1319{
1320	struct btrfs_fs_info *fs_info = root->fs_info;
1321	struct tree_mod_elem *tm;
1322	struct extent_buffer *eb = NULL;
1323	struct extent_buffer *eb_root;
1324	u64 eb_root_owner = 0;
1325	struct extent_buffer *old;
1326	struct tree_mod_root *old_root = NULL;
1327	u64 old_generation = 0;
1328	u64 logical;
1329	int level;
1330
1331	eb_root = btrfs_read_lock_root_node(root);
1332	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1333	if (!tm)
1334		return eb_root;
1335
1336	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1337		old_root = &tm->old_root;
1338		old_generation = tm->generation;
1339		logical = old_root->logical;
1340		level = old_root->level;
1341	} else {
1342		logical = eb_root->start;
1343		level = btrfs_header_level(eb_root);
1344	}
1345
1346	tm = tree_mod_log_search(fs_info, logical, time_seq);
1347	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1348		btrfs_tree_read_unlock(eb_root);
1349		free_extent_buffer(eb_root);
1350		old = read_tree_block(fs_info, logical, 0, level, NULL);
1351		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1352			if (!IS_ERR(old))
1353				free_extent_buffer(old);
1354			btrfs_warn(fs_info,
1355				   "failed to read tree block %llu from get_old_root",
1356				   logical);
1357		} else {
1358			eb = btrfs_clone_extent_buffer(old);
1359			free_extent_buffer(old);
1360		}
1361	} else if (old_root) {
1362		eb_root_owner = btrfs_header_owner(eb_root);
1363		btrfs_tree_read_unlock(eb_root);
1364		free_extent_buffer(eb_root);
1365		eb = alloc_dummy_extent_buffer(fs_info, logical);
1366	} else {
1367		btrfs_set_lock_blocking_read(eb_root);
1368		eb = btrfs_clone_extent_buffer(eb_root);
1369		btrfs_tree_read_unlock_blocking(eb_root);
1370		free_extent_buffer(eb_root);
1371	}
1372
1373	if (!eb)
1374		return NULL;
 
 
1375	if (old_root) {
1376		btrfs_set_header_bytenr(eb, eb->start);
1377		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1378		btrfs_set_header_owner(eb, eb_root_owner);
1379		btrfs_set_header_level(eb, old_root->level);
1380		btrfs_set_header_generation(eb, old_generation);
1381	}
1382	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1383				       btrfs_header_level(eb));
1384	btrfs_tree_read_lock(eb);
1385	if (tm)
1386		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1387	else
1388		WARN_ON(btrfs_header_level(eb) != 0);
1389	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1390
1391	return eb;
1392}
1393
1394int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1395{
1396	struct tree_mod_elem *tm;
1397	int level;
1398	struct extent_buffer *eb_root = btrfs_root_node(root);
1399
1400	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1401	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1402		level = tm->old_root.level;
1403	} else {
1404		level = btrfs_header_level(eb_root);
1405	}
1406	free_extent_buffer(eb_root);
1407
1408	return level;
1409}
1410
1411static inline int should_cow_block(struct btrfs_trans_handle *trans,
1412				   struct btrfs_root *root,
1413				   struct extent_buffer *buf)
1414{
1415	if (btrfs_is_testing(root->fs_info))
1416		return 0;
1417
1418	/* Ensure we can see the FORCE_COW bit */
1419	smp_mb__before_atomic();
1420
1421	/*
1422	 * We do not need to cow a block if
1423	 * 1) this block is not created or changed in this transaction;
1424	 * 2) this block does not belong to TREE_RELOC tree;
1425	 * 3) the root is not forced COW.
1426	 *
1427	 * What is forced COW:
1428	 *    when we create snapshot during committing the transaction,
1429	 *    after we've finished copying src root, we must COW the shared
1430	 *    block to ensure the metadata consistency.
1431	 */
1432	if (btrfs_header_generation(buf) == trans->transid &&
1433	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1434	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1435	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1436	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1437		return 0;
1438	return 1;
1439}
1440
1441/*
1442 * cows a single block, see __btrfs_cow_block for the real work.
1443 * This version of it has extra checks so that a block isn't COWed more than
1444 * once per transaction, as long as it hasn't been written yet
1445 */
1446noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1447		    struct btrfs_root *root, struct extent_buffer *buf,
1448		    struct extent_buffer *parent, int parent_slot,
1449		    struct extent_buffer **cow_ret)
1450{
1451	struct btrfs_fs_info *fs_info = root->fs_info;
1452	u64 search_start;
1453	int ret;
1454
1455	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1456		btrfs_err(fs_info,
1457			"COW'ing blocks on a fs root that's being dropped");
1458
1459	if (trans->transaction != fs_info->running_transaction)
1460		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1461		       trans->transid,
1462		       fs_info->running_transaction->transid);
1463
1464	if (trans->transid != fs_info->generation)
1465		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1466		       trans->transid, fs_info->generation);
1467
1468	if (!should_cow_block(trans, root, buf)) {
1469		trans->dirty = true;
1470		*cow_ret = buf;
1471		return 0;
1472	}
1473
1474	search_start = buf->start & ~((u64)SZ_1G - 1);
1475
1476	if (parent)
1477		btrfs_set_lock_blocking_write(parent);
1478	btrfs_set_lock_blocking_write(buf);
1479
1480	/*
1481	 * Before CoWing this block for later modification, check if it's
1482	 * the subtree root and do the delayed subtree trace if needed.
1483	 *
1484	 * Also We don't care about the error, as it's handled internally.
1485	 */
1486	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1487	ret = __btrfs_cow_block(trans, root, buf, parent,
1488				 parent_slot, cow_ret, search_start, 0);
1489
1490	trace_btrfs_cow_block(root, buf, *cow_ret);
1491
1492	return ret;
1493}
1494
1495/*
1496 * helper function for defrag to decide if two blocks pointed to by a
1497 * node are actually close by
1498 */
1499static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1500{
1501	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1502		return 1;
1503	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1504		return 1;
1505	return 0;
1506}
1507
1508#ifdef __LITTLE_ENDIAN
1509
1510/*
1511 * Compare two keys, on little-endian the disk order is same as CPU order and
1512 * we can avoid the conversion.
1513 */
1514static int comp_keys(const struct btrfs_disk_key *disk_key,
1515		     const struct btrfs_key *k2)
1516{
1517	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1518
1519	return btrfs_comp_cpu_keys(k1, k2);
1520}
1521
1522#else
1523
1524/*
1525 * compare two keys in a memcmp fashion
1526 */
1527static int comp_keys(const struct btrfs_disk_key *disk,
1528		     const struct btrfs_key *k2)
1529{
1530	struct btrfs_key k1;
1531
1532	btrfs_disk_key_to_cpu(&k1, disk);
1533
1534	return btrfs_comp_cpu_keys(&k1, k2);
1535}
1536#endif
1537
1538/*
1539 * same as comp_keys only with two btrfs_key's
1540 */
1541int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1542{
1543	if (k1->objectid > k2->objectid)
1544		return 1;
1545	if (k1->objectid < k2->objectid)
1546		return -1;
1547	if (k1->type > k2->type)
1548		return 1;
1549	if (k1->type < k2->type)
1550		return -1;
1551	if (k1->offset > k2->offset)
1552		return 1;
1553	if (k1->offset < k2->offset)
1554		return -1;
1555	return 0;
1556}
1557
1558/*
1559 * this is used by the defrag code to go through all the
1560 * leaves pointed to by a node and reallocate them so that
1561 * disk order is close to key order
1562 */
1563int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1564		       struct btrfs_root *root, struct extent_buffer *parent,
1565		       int start_slot, u64 *last_ret,
1566		       struct btrfs_key *progress)
1567{
1568	struct btrfs_fs_info *fs_info = root->fs_info;
1569	struct extent_buffer *cur;
1570	u64 blocknr;
1571	u64 gen;
1572	u64 search_start = *last_ret;
1573	u64 last_block = 0;
1574	u64 other;
1575	u32 parent_nritems;
1576	int end_slot;
1577	int i;
1578	int err = 0;
1579	int parent_level;
1580	int uptodate;
1581	u32 blocksize;
1582	int progress_passed = 0;
1583	struct btrfs_disk_key disk_key;
1584
1585	parent_level = btrfs_header_level(parent);
1586
1587	WARN_ON(trans->transaction != fs_info->running_transaction);
1588	WARN_ON(trans->transid != fs_info->generation);
1589
1590	parent_nritems = btrfs_header_nritems(parent);
1591	blocksize = fs_info->nodesize;
1592	end_slot = parent_nritems - 1;
1593
1594	if (parent_nritems <= 1)
1595		return 0;
1596
1597	btrfs_set_lock_blocking_write(parent);
1598
1599	for (i = start_slot; i <= end_slot; i++) {
1600		struct btrfs_key first_key;
1601		int close = 1;
1602
1603		btrfs_node_key(parent, &disk_key, i);
1604		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1605			continue;
1606
1607		progress_passed = 1;
1608		blocknr = btrfs_node_blockptr(parent, i);
1609		gen = btrfs_node_ptr_generation(parent, i);
1610		btrfs_node_key_to_cpu(parent, &first_key, i);
1611		if (last_block == 0)
1612			last_block = blocknr;
1613
1614		if (i > 0) {
1615			other = btrfs_node_blockptr(parent, i - 1);
1616			close = close_blocks(blocknr, other, blocksize);
1617		}
1618		if (!close && i < end_slot) {
1619			other = btrfs_node_blockptr(parent, i + 1);
1620			close = close_blocks(blocknr, other, blocksize);
1621		}
1622		if (close) {
1623			last_block = blocknr;
1624			continue;
1625		}
1626
1627		cur = find_extent_buffer(fs_info, blocknr);
1628		if (cur)
1629			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1630		else
1631			uptodate = 0;
1632		if (!cur || !uptodate) {
1633			if (!cur) {
1634				cur = read_tree_block(fs_info, blocknr, gen,
1635						      parent_level - 1,
1636						      &first_key);
1637				if (IS_ERR(cur)) {
1638					return PTR_ERR(cur);
1639				} else if (!extent_buffer_uptodate(cur)) {
1640					free_extent_buffer(cur);
1641					return -EIO;
1642				}
1643			} else if (!uptodate) {
1644				err = btrfs_read_buffer(cur, gen,
1645						parent_level - 1,&first_key);
1646				if (err) {
1647					free_extent_buffer(cur);
1648					return err;
1649				}
1650			}
1651		}
1652		if (search_start == 0)
1653			search_start = last_block;
1654
1655		btrfs_tree_lock(cur);
1656		btrfs_set_lock_blocking_write(cur);
1657		err = __btrfs_cow_block(trans, root, cur, parent, i,
1658					&cur, search_start,
1659					min(16 * blocksize,
1660					    (end_slot - i) * blocksize));
1661		if (err) {
1662			btrfs_tree_unlock(cur);
1663			free_extent_buffer(cur);
1664			break;
1665		}
1666		search_start = cur->start;
1667		last_block = cur->start;
1668		*last_ret = search_start;
1669		btrfs_tree_unlock(cur);
1670		free_extent_buffer(cur);
1671	}
1672	return err;
1673}
1674
1675/*
1676 * search for key in the extent_buffer.  The items start at offset p,
1677 * and they are item_size apart.  There are 'max' items in p.
1678 *
1679 * the slot in the array is returned via slot, and it points to
1680 * the place where you would insert key if it is not found in
1681 * the array.
1682 *
1683 * slot may point to max if the key is bigger than all of the keys
1684 */
1685static noinline int generic_bin_search(struct extent_buffer *eb,
1686				       unsigned long p, int item_size,
1687				       const struct btrfs_key *key,
1688				       int max, int *slot)
1689{
1690	int low = 0;
1691	int high = max;
 
1692	int ret;
1693	const int key_size = sizeof(struct btrfs_disk_key);
 
 
 
 
 
 
1694
1695	if (low > high) {
1696		btrfs_err(eb->fs_info,
1697		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1698			  __func__, low, high, eb->start,
1699			  btrfs_header_owner(eb), btrfs_header_level(eb));
1700		return -EINVAL;
1701	}
1702
1703	while (low < high) {
1704		unsigned long oip;
1705		unsigned long offset;
1706		struct btrfs_disk_key *tmp;
1707		struct btrfs_disk_key unaligned;
1708		int mid;
1709
1710		mid = (low + high) / 2;
1711		offset = p + mid * item_size;
1712		oip = offset_in_page(offset);
1713
1714		if (oip + key_size <= PAGE_SIZE) {
1715			const unsigned long idx = offset >> PAGE_SHIFT;
1716			char *kaddr = page_address(eb->pages[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717
1718			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1719		} else {
1720			read_extent_buffer(eb, &unaligned, offset, key_size);
1721			tmp = &unaligned;
1722		}
1723
1724		ret = comp_keys(tmp, key);
1725
1726		if (ret < 0)
1727			low = mid + 1;
1728		else if (ret > 0)
1729			high = mid;
1730		else {
1731			*slot = mid;
1732			return 0;
1733		}
1734	}
1735	*slot = low;
1736	return 1;
1737}
1738
1739/*
1740 * simple bin_search frontend that does the right thing for
1741 * leaves vs nodes
1742 */
1743int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1744		     int *slot)
1745{
1746	if (btrfs_header_level(eb) == 0)
1747		return generic_bin_search(eb,
1748					  offsetof(struct btrfs_leaf, items),
1749					  sizeof(struct btrfs_item),
1750					  key, btrfs_header_nritems(eb),
1751					  slot);
1752	else
1753		return generic_bin_search(eb,
1754					  offsetof(struct btrfs_node, ptrs),
1755					  sizeof(struct btrfs_key_ptr),
1756					  key, btrfs_header_nritems(eb),
1757					  slot);
1758}
1759
 
 
 
 
 
 
1760static void root_add_used(struct btrfs_root *root, u32 size)
1761{
1762	spin_lock(&root->accounting_lock);
1763	btrfs_set_root_used(&root->root_item,
1764			    btrfs_root_used(&root->root_item) + size);
1765	spin_unlock(&root->accounting_lock);
1766}
1767
1768static void root_sub_used(struct btrfs_root *root, u32 size)
1769{
1770	spin_lock(&root->accounting_lock);
1771	btrfs_set_root_used(&root->root_item,
1772			    btrfs_root_used(&root->root_item) - size);
1773	spin_unlock(&root->accounting_lock);
1774}
1775
1776/* given a node and slot number, this reads the blocks it points to.  The
1777 * extent buffer is returned with a reference taken (but unlocked).
1778 */
1779struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1780					   int slot)
 
1781{
1782	int level = btrfs_header_level(parent);
1783	struct extent_buffer *eb;
1784	struct btrfs_key first_key;
1785
1786	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1787		return ERR_PTR(-ENOENT);
1788
1789	BUG_ON(level == 0);
1790
1791	btrfs_node_key_to_cpu(parent, &first_key, slot);
1792	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1793			     btrfs_node_ptr_generation(parent, slot),
1794			     level - 1, &first_key);
1795	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1796		free_extent_buffer(eb);
1797		eb = ERR_PTR(-EIO);
1798	}
1799
1800	return eb;
1801}
1802
1803/*
1804 * node level balancing, used to make sure nodes are in proper order for
1805 * item deletion.  We balance from the top down, so we have to make sure
1806 * that a deletion won't leave an node completely empty later on.
1807 */
1808static noinline int balance_level(struct btrfs_trans_handle *trans,
1809			 struct btrfs_root *root,
1810			 struct btrfs_path *path, int level)
1811{
1812	struct btrfs_fs_info *fs_info = root->fs_info;
1813	struct extent_buffer *right = NULL;
1814	struct extent_buffer *mid;
1815	struct extent_buffer *left = NULL;
1816	struct extent_buffer *parent = NULL;
1817	int ret = 0;
1818	int wret;
1819	int pslot;
1820	int orig_slot = path->slots[level];
1821	u64 orig_ptr;
1822
1823	ASSERT(level > 0);
 
1824
1825	mid = path->nodes[level];
1826
1827	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1831	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832
1833	if (level < BTRFS_MAX_LEVEL - 1) {
1834		parent = path->nodes[level + 1];
1835		pslot = path->slots[level + 1];
1836	}
1837
1838	/*
1839	 * deal with the case where there is only one pointer in the root
1840	 * by promoting the node below to a root
1841	 */
1842	if (!parent) {
1843		struct extent_buffer *child;
1844
1845		if (btrfs_header_nritems(mid) != 1)
1846			return 0;
1847
1848		/* promote the child to a root */
1849		child = btrfs_read_node_slot(mid, 0);
1850		if (IS_ERR(child)) {
1851			ret = PTR_ERR(child);
1852			btrfs_handle_fs_error(fs_info, ret, NULL);
1853			goto enospc;
1854		}
1855
1856		btrfs_tree_lock(child);
1857		btrfs_set_lock_blocking_write(child);
1858		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859		if (ret) {
1860			btrfs_tree_unlock(child);
1861			free_extent_buffer(child);
1862			goto enospc;
1863		}
1864
1865		ret = tree_mod_log_insert_root(root->node, child, 1);
1866		BUG_ON(ret < 0);
1867		rcu_assign_pointer(root->node, child);
1868
1869		add_root_to_dirty_list(root);
1870		btrfs_tree_unlock(child);
1871
1872		path->locks[level] = 0;
1873		path->nodes[level] = NULL;
1874		btrfs_clean_tree_block(mid);
1875		btrfs_tree_unlock(mid);
1876		/* once for the path */
1877		free_extent_buffer(mid);
1878
1879		root_sub_used(root, mid->len);
1880		btrfs_free_tree_block(trans, root, mid, 0, 1);
1881		/* once for the root ptr */
1882		free_extent_buffer_stale(mid);
1883		return 0;
1884	}
1885	if (btrfs_header_nritems(mid) >
1886	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887		return 0;
1888
1889	left = btrfs_read_node_slot(parent, pslot - 1);
1890	if (IS_ERR(left))
1891		left = NULL;
1892
1893	if (left) {
1894		btrfs_tree_lock(left);
1895		btrfs_set_lock_blocking_write(left);
1896		wret = btrfs_cow_block(trans, root, left,
1897				       parent, pslot - 1, &left);
1898		if (wret) {
1899			ret = wret;
1900			goto enospc;
1901		}
1902	}
1903
1904	right = btrfs_read_node_slot(parent, pslot + 1);
1905	if (IS_ERR(right))
1906		right = NULL;
1907
1908	if (right) {
1909		btrfs_tree_lock(right);
1910		btrfs_set_lock_blocking_write(right);
1911		wret = btrfs_cow_block(trans, root, right,
1912				       parent, pslot + 1, &right);
1913		if (wret) {
1914			ret = wret;
1915			goto enospc;
1916		}
1917	}
1918
1919	/* first, try to make some room in the middle buffer */
1920	if (left) {
1921		orig_slot += btrfs_header_nritems(left);
1922		wret = push_node_left(trans, left, mid, 1);
1923		if (wret < 0)
1924			ret = wret;
1925	}
1926
1927	/*
1928	 * then try to empty the right most buffer into the middle
1929	 */
1930	if (right) {
1931		wret = push_node_left(trans, mid, right, 1);
1932		if (wret < 0 && wret != -ENOSPC)
1933			ret = wret;
1934		if (btrfs_header_nritems(right) == 0) {
1935			btrfs_clean_tree_block(right);
1936			btrfs_tree_unlock(right);
1937			del_ptr(root, path, level + 1, pslot + 1);
1938			root_sub_used(root, right->len);
1939			btrfs_free_tree_block(trans, root, right, 0, 1);
1940			free_extent_buffer_stale(right);
1941			right = NULL;
1942		} else {
1943			struct btrfs_disk_key right_key;
1944			btrfs_node_key(right, &right_key, 0);
1945			ret = tree_mod_log_insert_key(parent, pslot + 1,
1946					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947			BUG_ON(ret < 0);
1948			btrfs_set_node_key(parent, &right_key, pslot + 1);
1949			btrfs_mark_buffer_dirty(parent);
1950		}
1951	}
1952	if (btrfs_header_nritems(mid) == 1) {
1953		/*
1954		 * we're not allowed to leave a node with one item in the
1955		 * tree during a delete.  A deletion from lower in the tree
1956		 * could try to delete the only pointer in this node.
1957		 * So, pull some keys from the left.
1958		 * There has to be a left pointer at this point because
1959		 * otherwise we would have pulled some pointers from the
1960		 * right
1961		 */
1962		if (!left) {
1963			ret = -EROFS;
1964			btrfs_handle_fs_error(fs_info, ret, NULL);
1965			goto enospc;
1966		}
1967		wret = balance_node_right(trans, mid, left);
1968		if (wret < 0) {
1969			ret = wret;
1970			goto enospc;
1971		}
1972		if (wret == 1) {
1973			wret = push_node_left(trans, left, mid, 1);
1974			if (wret < 0)
1975				ret = wret;
1976		}
1977		BUG_ON(wret == 1);
1978	}
1979	if (btrfs_header_nritems(mid) == 0) {
1980		btrfs_clean_tree_block(mid);
1981		btrfs_tree_unlock(mid);
1982		del_ptr(root, path, level + 1, pslot);
1983		root_sub_used(root, mid->len);
1984		btrfs_free_tree_block(trans, root, mid, 0, 1);
1985		free_extent_buffer_stale(mid);
1986		mid = NULL;
1987	} else {
1988		/* update the parent key to reflect our changes */
1989		struct btrfs_disk_key mid_key;
1990		btrfs_node_key(mid, &mid_key, 0);
1991		ret = tree_mod_log_insert_key(parent, pslot,
1992				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993		BUG_ON(ret < 0);
1994		btrfs_set_node_key(parent, &mid_key, pslot);
1995		btrfs_mark_buffer_dirty(parent);
1996	}
1997
1998	/* update the path */
1999	if (left) {
2000		if (btrfs_header_nritems(left) > orig_slot) {
2001			atomic_inc(&left->refs);
2002			/* left was locked after cow */
2003			path->nodes[level] = left;
2004			path->slots[level + 1] -= 1;
2005			path->slots[level] = orig_slot;
2006			if (mid) {
2007				btrfs_tree_unlock(mid);
2008				free_extent_buffer(mid);
2009			}
2010		} else {
2011			orig_slot -= btrfs_header_nritems(left);
2012			path->slots[level] = orig_slot;
2013		}
2014	}
2015	/* double check we haven't messed things up */
2016	if (orig_ptr !=
2017	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018		BUG();
2019enospc:
2020	if (right) {
2021		btrfs_tree_unlock(right);
2022		free_extent_buffer(right);
2023	}
2024	if (left) {
2025		if (path->nodes[level] != left)
2026			btrfs_tree_unlock(left);
2027		free_extent_buffer(left);
2028	}
2029	return ret;
2030}
2031
2032/* Node balancing for insertion.  Here we only split or push nodes around
2033 * when they are completely full.  This is also done top down, so we
2034 * have to be pessimistic.
2035 */
2036static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037					  struct btrfs_root *root,
2038					  struct btrfs_path *path, int level)
2039{
2040	struct btrfs_fs_info *fs_info = root->fs_info;
2041	struct extent_buffer *right = NULL;
2042	struct extent_buffer *mid;
2043	struct extent_buffer *left = NULL;
2044	struct extent_buffer *parent = NULL;
2045	int ret = 0;
2046	int wret;
2047	int pslot;
2048	int orig_slot = path->slots[level];
2049
2050	if (level == 0)
2051		return 1;
2052
2053	mid = path->nodes[level];
2054	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055
2056	if (level < BTRFS_MAX_LEVEL - 1) {
2057		parent = path->nodes[level + 1];
2058		pslot = path->slots[level + 1];
2059	}
2060
2061	if (!parent)
2062		return 1;
2063
2064	left = btrfs_read_node_slot(parent, pslot - 1);
2065	if (IS_ERR(left))
2066		left = NULL;
2067
2068	/* first, try to make some room in the middle buffer */
2069	if (left) {
2070		u32 left_nr;
2071
2072		btrfs_tree_lock(left);
2073		btrfs_set_lock_blocking_write(left);
2074
2075		left_nr = btrfs_header_nritems(left);
2076		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2077			wret = 1;
2078		} else {
2079			ret = btrfs_cow_block(trans, root, left, parent,
2080					      pslot - 1, &left);
2081			if (ret)
2082				wret = 1;
2083			else {
2084				wret = push_node_left(trans, left, mid, 0);
 
2085			}
2086		}
2087		if (wret < 0)
2088			ret = wret;
2089		if (wret == 0) {
2090			struct btrfs_disk_key disk_key;
2091			orig_slot += left_nr;
2092			btrfs_node_key(mid, &disk_key, 0);
2093			ret = tree_mod_log_insert_key(parent, pslot,
2094					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2095			BUG_ON(ret < 0);
2096			btrfs_set_node_key(parent, &disk_key, pslot);
2097			btrfs_mark_buffer_dirty(parent);
2098			if (btrfs_header_nritems(left) > orig_slot) {
2099				path->nodes[level] = left;
2100				path->slots[level + 1] -= 1;
2101				path->slots[level] = orig_slot;
2102				btrfs_tree_unlock(mid);
2103				free_extent_buffer(mid);
2104			} else {
2105				orig_slot -=
2106					btrfs_header_nritems(left);
2107				path->slots[level] = orig_slot;
2108				btrfs_tree_unlock(left);
2109				free_extent_buffer(left);
2110			}
2111			return 0;
2112		}
2113		btrfs_tree_unlock(left);
2114		free_extent_buffer(left);
2115	}
2116	right = btrfs_read_node_slot(parent, pslot + 1);
2117	if (IS_ERR(right))
2118		right = NULL;
2119
2120	/*
2121	 * then try to empty the right most buffer into the middle
2122	 */
2123	if (right) {
2124		u32 right_nr;
2125
2126		btrfs_tree_lock(right);
2127		btrfs_set_lock_blocking_write(right);
2128
2129		right_nr = btrfs_header_nritems(right);
2130		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2131			wret = 1;
2132		} else {
2133			ret = btrfs_cow_block(trans, root, right,
2134					      parent, pslot + 1,
2135					      &right);
2136			if (ret)
2137				wret = 1;
2138			else {
2139				wret = balance_node_right(trans, right, mid);
 
2140			}
2141		}
2142		if (wret < 0)
2143			ret = wret;
2144		if (wret == 0) {
2145			struct btrfs_disk_key disk_key;
2146
2147			btrfs_node_key(right, &disk_key, 0);
2148			ret = tree_mod_log_insert_key(parent, pslot + 1,
2149					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2150			BUG_ON(ret < 0);
2151			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2152			btrfs_mark_buffer_dirty(parent);
2153
2154			if (btrfs_header_nritems(mid) <= orig_slot) {
2155				path->nodes[level] = right;
2156				path->slots[level + 1] += 1;
2157				path->slots[level] = orig_slot -
2158					btrfs_header_nritems(mid);
2159				btrfs_tree_unlock(mid);
2160				free_extent_buffer(mid);
2161			} else {
2162				btrfs_tree_unlock(right);
2163				free_extent_buffer(right);
2164			}
2165			return 0;
2166		}
2167		btrfs_tree_unlock(right);
2168		free_extent_buffer(right);
2169	}
2170	return 1;
2171}
2172
2173/*
2174 * readahead one full node of leaves, finding things that are close
2175 * to the block in 'slot', and triggering ra on them.
2176 */
2177static void reada_for_search(struct btrfs_fs_info *fs_info,
2178			     struct btrfs_path *path,
2179			     int level, int slot, u64 objectid)
2180{
2181	struct extent_buffer *node;
2182	struct btrfs_disk_key disk_key;
2183	u32 nritems;
2184	u64 search;
2185	u64 target;
2186	u64 nread = 0;
2187	struct extent_buffer *eb;
2188	u32 nr;
2189	u32 blocksize;
2190	u32 nscan = 0;
2191
2192	if (level != 1)
2193		return;
2194
2195	if (!path->nodes[level])
2196		return;
2197
2198	node = path->nodes[level];
2199
2200	search = btrfs_node_blockptr(node, slot);
2201	blocksize = fs_info->nodesize;
2202	eb = find_extent_buffer(fs_info, search);
2203	if (eb) {
2204		free_extent_buffer(eb);
2205		return;
2206	}
2207
2208	target = search;
2209
2210	nritems = btrfs_header_nritems(node);
2211	nr = slot;
2212
2213	while (1) {
2214		if (path->reada == READA_BACK) {
2215			if (nr == 0)
2216				break;
2217			nr--;
2218		} else if (path->reada == READA_FORWARD) {
2219			nr++;
2220			if (nr >= nritems)
2221				break;
2222		}
2223		if (path->reada == READA_BACK && objectid) {
2224			btrfs_node_key(node, &disk_key, nr);
2225			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2226				break;
2227		}
2228		search = btrfs_node_blockptr(node, nr);
2229		if ((search <= target && target - search <= 65536) ||
2230		    (search > target && search - target <= 65536)) {
2231			readahead_tree_block(fs_info, search);
2232			nread += blocksize;
2233		}
2234		nscan++;
2235		if ((nread > 65536 || nscan > 32))
2236			break;
2237	}
2238}
2239
2240static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2241				       struct btrfs_path *path, int level)
2242{
2243	int slot;
2244	int nritems;
2245	struct extent_buffer *parent;
2246	struct extent_buffer *eb;
2247	u64 gen;
2248	u64 block1 = 0;
2249	u64 block2 = 0;
2250
2251	parent = path->nodes[level + 1];
2252	if (!parent)
2253		return;
2254
2255	nritems = btrfs_header_nritems(parent);
2256	slot = path->slots[level + 1];
2257
2258	if (slot > 0) {
2259		block1 = btrfs_node_blockptr(parent, slot - 1);
2260		gen = btrfs_node_ptr_generation(parent, slot - 1);
2261		eb = find_extent_buffer(fs_info, block1);
2262		/*
2263		 * if we get -eagain from btrfs_buffer_uptodate, we
2264		 * don't want to return eagain here.  That will loop
2265		 * forever
2266		 */
2267		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2268			block1 = 0;
2269		free_extent_buffer(eb);
2270	}
2271	if (slot + 1 < nritems) {
2272		block2 = btrfs_node_blockptr(parent, slot + 1);
2273		gen = btrfs_node_ptr_generation(parent, slot + 1);
2274		eb = find_extent_buffer(fs_info, block2);
2275		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2276			block2 = 0;
2277		free_extent_buffer(eb);
2278	}
2279
2280	if (block1)
2281		readahead_tree_block(fs_info, block1);
2282	if (block2)
2283		readahead_tree_block(fs_info, block2);
2284}
2285
2286
2287/*
2288 * when we walk down the tree, it is usually safe to unlock the higher layers
2289 * in the tree.  The exceptions are when our path goes through slot 0, because
2290 * operations on the tree might require changing key pointers higher up in the
2291 * tree.
2292 *
2293 * callers might also have set path->keep_locks, which tells this code to keep
2294 * the lock if the path points to the last slot in the block.  This is part of
2295 * walking through the tree, and selecting the next slot in the higher block.
2296 *
2297 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2298 * if lowest_unlock is 1, level 0 won't be unlocked
2299 */
2300static noinline void unlock_up(struct btrfs_path *path, int level,
2301			       int lowest_unlock, int min_write_lock_level,
2302			       int *write_lock_level)
2303{
2304	int i;
2305	int skip_level = level;
2306	int no_skips = 0;
2307	struct extent_buffer *t;
2308
2309	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2310		if (!path->nodes[i])
2311			break;
2312		if (!path->locks[i])
2313			break;
2314		if (!no_skips && path->slots[i] == 0) {
2315			skip_level = i + 1;
2316			continue;
2317		}
2318		if (!no_skips && path->keep_locks) {
2319			u32 nritems;
2320			t = path->nodes[i];
2321			nritems = btrfs_header_nritems(t);
2322			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2323				skip_level = i + 1;
2324				continue;
2325			}
2326		}
2327		if (skip_level < i && i >= lowest_unlock)
2328			no_skips = 1;
2329
2330		t = path->nodes[i];
2331		if (i >= lowest_unlock && i > skip_level) {
2332			btrfs_tree_unlock_rw(t, path->locks[i]);
2333			path->locks[i] = 0;
2334			if (write_lock_level &&
2335			    i > min_write_lock_level &&
2336			    i <= *write_lock_level) {
2337				*write_lock_level = i - 1;
2338			}
2339		}
2340	}
2341}
2342
2343/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344 * helper function for btrfs_search_slot.  The goal is to find a block
2345 * in cache without setting the path to blocking.  If we find the block
2346 * we return zero and the path is unchanged.
2347 *
2348 * If we can't find the block, we set the path blocking and do some
2349 * reada.  -EAGAIN is returned and the search must be repeated.
2350 */
2351static int
2352read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2353		      struct extent_buffer **eb_ret, int level, int slot,
2354		      const struct btrfs_key *key)
 
2355{
2356	struct btrfs_fs_info *fs_info = root->fs_info;
2357	u64 blocknr;
2358	u64 gen;
 
2359	struct extent_buffer *tmp;
2360	struct btrfs_key first_key;
2361	int ret;
2362	int parent_level;
2363
2364	blocknr = btrfs_node_blockptr(*eb_ret, slot);
2365	gen = btrfs_node_ptr_generation(*eb_ret, slot);
2366	parent_level = btrfs_header_level(*eb_ret);
2367	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2368
2369	tmp = find_extent_buffer(fs_info, blocknr);
2370	if (tmp) {
2371		/* first we do an atomic uptodate check */
2372		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2373			/*
2374			 * Do extra check for first_key, eb can be stale due to
2375			 * being cached, read from scrub, or have multiple
2376			 * parents (shared tree blocks).
2377			 */
2378			if (btrfs_verify_level_key(tmp,
2379					parent_level - 1, &first_key, gen)) {
2380				free_extent_buffer(tmp);
2381				return -EUCLEAN;
2382			}
2383			*eb_ret = tmp;
2384			return 0;
2385		}
2386
2387		/* the pages were up to date, but we failed
2388		 * the generation number check.  Do a full
2389		 * read for the generation number that is correct.
2390		 * We must do this without dropping locks so
2391		 * we can trust our generation number
2392		 */
2393		btrfs_set_path_blocking(p);
2394
2395		/* now we're allowed to do a blocking uptodate check */
2396		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2397		if (!ret) {
2398			*eb_ret = tmp;
2399			return 0;
2400		}
2401		free_extent_buffer(tmp);
2402		btrfs_release_path(p);
2403		return -EIO;
2404	}
2405
2406	/*
2407	 * reduce lock contention at high levels
2408	 * of the btree by dropping locks before
2409	 * we read.  Don't release the lock on the current
2410	 * level because we need to walk this node to figure
2411	 * out which blocks to read.
2412	 */
2413	btrfs_unlock_up_safe(p, level + 1);
2414	btrfs_set_path_blocking(p);
2415
 
2416	if (p->reada != READA_NONE)
2417		reada_for_search(fs_info, p, level, slot, key->objectid);
2418
 
 
2419	ret = -EAGAIN;
2420	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2421			      &first_key);
2422	if (!IS_ERR(tmp)) {
2423		/*
2424		 * If the read above didn't mark this buffer up to date,
2425		 * it will never end up being up to date.  Set ret to EIO now
2426		 * and give up so that our caller doesn't loop forever
2427		 * on our EAGAINs.
2428		 */
2429		if (!extent_buffer_uptodate(tmp))
2430			ret = -EIO;
2431		free_extent_buffer(tmp);
2432	} else {
2433		ret = PTR_ERR(tmp);
2434	}
2435
2436	btrfs_release_path(p);
2437	return ret;
2438}
2439
2440/*
2441 * helper function for btrfs_search_slot.  This does all of the checks
2442 * for node-level blocks and does any balancing required based on
2443 * the ins_len.
2444 *
2445 * If no extra work was required, zero is returned.  If we had to
2446 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2447 * start over
2448 */
2449static int
2450setup_nodes_for_search(struct btrfs_trans_handle *trans,
2451		       struct btrfs_root *root, struct btrfs_path *p,
2452		       struct extent_buffer *b, int level, int ins_len,
2453		       int *write_lock_level)
2454{
2455	struct btrfs_fs_info *fs_info = root->fs_info;
2456	int ret;
2457
2458	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2459	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2460		int sret;
2461
2462		if (*write_lock_level < level + 1) {
2463			*write_lock_level = level + 1;
2464			btrfs_release_path(p);
2465			goto again;
2466		}
2467
2468		btrfs_set_path_blocking(p);
2469		reada_for_balance(fs_info, p, level);
2470		sret = split_node(trans, root, p, level);
 
2471
2472		BUG_ON(sret > 0);
2473		if (sret) {
2474			ret = sret;
2475			goto done;
2476		}
2477		b = p->nodes[level];
2478	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2479		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2480		int sret;
2481
2482		if (*write_lock_level < level + 1) {
2483			*write_lock_level = level + 1;
2484			btrfs_release_path(p);
2485			goto again;
2486		}
2487
2488		btrfs_set_path_blocking(p);
2489		reada_for_balance(fs_info, p, level);
2490		sret = balance_level(trans, root, p, level);
 
2491
2492		if (sret) {
2493			ret = sret;
2494			goto done;
2495		}
2496		b = p->nodes[level];
2497		if (!b) {
2498			btrfs_release_path(p);
2499			goto again;
2500		}
2501		BUG_ON(btrfs_header_nritems(b) == 1);
2502	}
2503	return 0;
2504
2505again:
2506	ret = -EAGAIN;
2507done:
2508	return ret;
2509}
2510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2511int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2512		u64 iobjectid, u64 ioff, u8 key_type,
2513		struct btrfs_key *found_key)
2514{
2515	int ret;
2516	struct btrfs_key key;
2517	struct extent_buffer *eb;
2518
2519	ASSERT(path);
2520	ASSERT(found_key);
2521
2522	key.type = key_type;
2523	key.objectid = iobjectid;
2524	key.offset = ioff;
2525
2526	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2527	if (ret < 0)
2528		return ret;
2529
2530	eb = path->nodes[0];
2531	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2532		ret = btrfs_next_leaf(fs_root, path);
2533		if (ret)
2534			return ret;
2535		eb = path->nodes[0];
2536	}
2537
2538	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2539	if (found_key->type != key.type ||
2540			found_key->objectid != key.objectid)
2541		return 1;
2542
2543	return 0;
2544}
2545
2546static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2547							struct btrfs_path *p,
2548							int write_lock_level)
2549{
2550	struct btrfs_fs_info *fs_info = root->fs_info;
2551	struct extent_buffer *b;
2552	int root_lock;
2553	int level = 0;
2554
2555	/* We try very hard to do read locks on the root */
2556	root_lock = BTRFS_READ_LOCK;
2557
2558	if (p->search_commit_root) {
2559		/*
2560		 * The commit roots are read only so we always do read locks,
2561		 * and we always must hold the commit_root_sem when doing
2562		 * searches on them, the only exception is send where we don't
2563		 * want to block transaction commits for a long time, so
2564		 * we need to clone the commit root in order to avoid races
2565		 * with transaction commits that create a snapshot of one of
2566		 * the roots used by a send operation.
2567		 */
2568		if (p->need_commit_sem) {
2569			down_read(&fs_info->commit_root_sem);
2570			b = btrfs_clone_extent_buffer(root->commit_root);
2571			up_read(&fs_info->commit_root_sem);
2572			if (!b)
2573				return ERR_PTR(-ENOMEM);
2574
2575		} else {
2576			b = root->commit_root;
2577			atomic_inc(&b->refs);
2578		}
2579		level = btrfs_header_level(b);
2580		/*
2581		 * Ensure that all callers have set skip_locking when
2582		 * p->search_commit_root = 1.
2583		 */
2584		ASSERT(p->skip_locking == 1);
2585
2586		goto out;
2587	}
2588
2589	if (p->skip_locking) {
2590		b = btrfs_root_node(root);
2591		level = btrfs_header_level(b);
2592		goto out;
2593	}
2594
2595	/*
2596	 * If the level is set to maximum, we can skip trying to get the read
2597	 * lock.
2598	 */
2599	if (write_lock_level < BTRFS_MAX_LEVEL) {
2600		/*
2601		 * We don't know the level of the root node until we actually
2602		 * have it read locked
2603		 */
2604		b = btrfs_read_lock_root_node(root);
2605		level = btrfs_header_level(b);
2606		if (level > write_lock_level)
2607			goto out;
2608
2609		/* Whoops, must trade for write lock */
2610		btrfs_tree_read_unlock(b);
2611		free_extent_buffer(b);
2612	}
2613
2614	b = btrfs_lock_root_node(root);
2615	root_lock = BTRFS_WRITE_LOCK;
2616
2617	/* The level might have changed, check again */
2618	level = btrfs_header_level(b);
2619
2620out:
2621	p->nodes[level] = b;
2622	if (!p->skip_locking)
2623		p->locks[level] = root_lock;
2624	/*
2625	 * Callers are responsible for dropping b's references.
2626	 */
2627	return b;
2628}
2629
2630
2631/*
2632 * btrfs_search_slot - look for a key in a tree and perform necessary
2633 * modifications to preserve tree invariants.
2634 *
2635 * @trans:	Handle of transaction, used when modifying the tree
2636 * @p:		Holds all btree nodes along the search path
2637 * @root:	The root node of the tree
2638 * @key:	The key we are looking for
2639 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2640 *		deletions it's -1. 0 for plain searches
2641 * @cow:	boolean should CoW operations be performed. Must always be 1
2642 *		when modifying the tree.
2643 *
2644 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2645 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2646 *
2647 * If @key is found, 0 is returned and you can find the item in the leaf level
2648 * of the path (level 0)
2649 *
2650 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2651 * points to the slot where it should be inserted
2652 *
2653 * If an error is encountered while searching the tree a negative error number
2654 * is returned
2655 */
2656int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2657		      const struct btrfs_key *key, struct btrfs_path *p,
2658		      int ins_len, int cow)
2659{
 
2660	struct extent_buffer *b;
2661	int slot;
2662	int ret;
2663	int err;
2664	int level;
2665	int lowest_unlock = 1;
 
2666	/* everything at write_lock_level or lower must be write locked */
2667	int write_lock_level = 0;
2668	u8 lowest_level = 0;
2669	int min_write_lock_level;
2670	int prev_cmp;
2671
2672	lowest_level = p->lowest_level;
2673	WARN_ON(lowest_level && ins_len > 0);
2674	WARN_ON(p->nodes[0] != NULL);
2675	BUG_ON(!cow && ins_len);
2676
2677	if (ins_len < 0) {
2678		lowest_unlock = 2;
2679
2680		/* when we are removing items, we might have to go up to level
2681		 * two as we update tree pointers  Make sure we keep write
2682		 * for those levels as well
2683		 */
2684		write_lock_level = 2;
2685	} else if (ins_len > 0) {
2686		/*
2687		 * for inserting items, make sure we have a write lock on
2688		 * level 1 so we can update keys
2689		 */
2690		write_lock_level = 1;
2691	}
2692
2693	if (!cow)
2694		write_lock_level = -1;
2695
2696	if (cow && (p->keep_locks || p->lowest_level))
2697		write_lock_level = BTRFS_MAX_LEVEL;
2698
2699	min_write_lock_level = write_lock_level;
2700
2701again:
2702	prev_cmp = -1;
2703	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2704	if (IS_ERR(b)) {
2705		ret = PTR_ERR(b);
2706		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707	}
 
 
 
2708
2709	while (b) {
2710		int dec = 0;
2711
2712		level = btrfs_header_level(b);
2713
 
 
 
 
2714		if (cow) {
2715			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2716
2717			/*
2718			 * if we don't really need to cow this block
2719			 * then we don't want to set the path blocking,
2720			 * so we test it here
2721			 */
2722			if (!should_cow_block(trans, root, b)) {
2723				trans->dirty = true;
2724				goto cow_done;
2725			}
2726
2727			/*
2728			 * must have write locks on this node and the
2729			 * parent
2730			 */
2731			if (level > write_lock_level ||
2732			    (level + 1 > write_lock_level &&
2733			    level + 1 < BTRFS_MAX_LEVEL &&
2734			    p->nodes[level + 1])) {
2735				write_lock_level = level + 1;
2736				btrfs_release_path(p);
2737				goto again;
2738			}
2739
2740			btrfs_set_path_blocking(p);
2741			if (last_level)
2742				err = btrfs_cow_block(trans, root, b, NULL, 0,
2743						      &b);
2744			else
2745				err = btrfs_cow_block(trans, root, b,
2746						      p->nodes[level + 1],
2747						      p->slots[level + 1], &b);
2748			if (err) {
2749				ret = err;
2750				goto done;
2751			}
2752		}
2753cow_done:
2754		p->nodes[level] = b;
2755		/*
2756		 * Leave path with blocking locks to avoid massive
2757		 * lock context switch, this is made on purpose.
2758		 */
2759
2760		/*
2761		 * we have a lock on b and as long as we aren't changing
2762		 * the tree, there is no way to for the items in b to change.
2763		 * It is safe to drop the lock on our parent before we
2764		 * go through the expensive btree search on b.
2765		 *
2766		 * If we're inserting or deleting (ins_len != 0), then we might
2767		 * be changing slot zero, which may require changing the parent.
2768		 * So, we can't drop the lock until after we know which slot
2769		 * we're operating on.
2770		 */
2771		if (!ins_len && !p->keep_locks) {
2772			int u = level + 1;
2773
2774			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2775				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2776				p->locks[u] = 0;
2777			}
2778		}
2779
2780		/*
2781		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2782		 * we can safely assume the target key will always be in slot 0
2783		 * on lower levels due to the invariants BTRFS' btree provides,
2784		 * namely that a btrfs_key_ptr entry always points to the
2785		 * lowest key in the child node, thus we can skip searching
2786		 * lower levels
2787		 */
2788		if (prev_cmp == 0) {
2789			slot = 0;
2790			ret = 0;
2791		} else {
2792			ret = btrfs_bin_search(b, key, &slot);
2793			prev_cmp = ret;
2794			if (ret < 0)
 
 
2795				goto done;
2796		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797
2798		if (level == 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799			p->slots[level] = slot;
2800			if (ins_len > 0 &&
2801			    btrfs_leaf_free_space(b) < ins_len) {
2802				if (write_lock_level < 1) {
2803					write_lock_level = 1;
2804					btrfs_release_path(p);
2805					goto again;
2806				}
2807
2808				btrfs_set_path_blocking(p);
2809				err = split_leaf(trans, root, key,
2810						 p, ins_len, ret == 0);
 
2811
2812				BUG_ON(err > 0);
2813				if (err) {
2814					ret = err;
2815					goto done;
2816				}
2817			}
2818			if (!p->search_for_split)
2819				unlock_up(p, level, lowest_unlock,
2820					  min_write_lock_level, NULL);
2821			goto done;
2822		}
2823		if (ret && slot > 0) {
2824			dec = 1;
2825			slot--;
2826		}
2827		p->slots[level] = slot;
2828		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2829					     &write_lock_level);
2830		if (err == -EAGAIN)
2831			goto again;
2832		if (err) {
2833			ret = err;
2834			goto done;
2835		}
2836		b = p->nodes[level];
2837		slot = p->slots[level];
2838
2839		/*
2840		 * Slot 0 is special, if we change the key we have to update
2841		 * the parent pointer which means we must have a write lock on
2842		 * the parent
2843		 */
2844		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2845			write_lock_level = level + 1;
2846			btrfs_release_path(p);
2847			goto again;
2848		}
2849
2850		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2851			  &write_lock_level);
2852
2853		if (level == lowest_level) {
2854			if (dec)
2855				p->slots[level]++;
2856			goto done;
2857		}
2858
2859		err = read_block_for_search(root, p, &b, level, slot, key);
2860		if (err == -EAGAIN)
2861			goto again;
2862		if (err) {
2863			ret = err;
2864			goto done;
2865		}
2866
2867		if (!p->skip_locking) {
2868			level = btrfs_header_level(b);
2869			if (level <= write_lock_level) {
2870				if (!btrfs_try_tree_write_lock(b)) {
2871					btrfs_set_path_blocking(p);
2872					btrfs_tree_lock(b);
2873				}
2874				p->locks[level] = BTRFS_WRITE_LOCK;
2875			} else {
2876				if (!btrfs_tree_read_lock_atomic(b)) {
2877					btrfs_set_path_blocking(p);
2878					btrfs_tree_read_lock(b);
2879				}
2880				p->locks[level] = BTRFS_READ_LOCK;
2881			}
2882			p->nodes[level] = b;
2883		}
2884	}
2885	ret = 1;
2886done:
2887	/*
2888	 * we don't really know what they plan on doing with the path
2889	 * from here on, so for now just mark it as blocking
2890	 */
2891	if (!p->leave_spinning)
2892		btrfs_set_path_blocking(p);
2893	if (ret < 0 && !p->skip_release_on_error)
2894		btrfs_release_path(p);
2895	return ret;
2896}
2897
2898/*
2899 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2900 * current state of the tree together with the operations recorded in the tree
2901 * modification log to search for the key in a previous version of this tree, as
2902 * denoted by the time_seq parameter.
2903 *
2904 * Naturally, there is no support for insert, delete or cow operations.
2905 *
2906 * The resulting path and return value will be set up as if we called
2907 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2908 */
2909int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2910			  struct btrfs_path *p, u64 time_seq)
2911{
2912	struct btrfs_fs_info *fs_info = root->fs_info;
2913	struct extent_buffer *b;
2914	int slot;
2915	int ret;
2916	int err;
2917	int level;
2918	int lowest_unlock = 1;
2919	u8 lowest_level = 0;
 
2920
2921	lowest_level = p->lowest_level;
2922	WARN_ON(p->nodes[0] != NULL);
2923
2924	if (p->search_commit_root) {
2925		BUG_ON(time_seq);
2926		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2927	}
2928
2929again:
2930	b = get_old_root(root, time_seq);
2931	if (!b) {
2932		ret = -EIO;
2933		goto done;
2934	}
2935	level = btrfs_header_level(b);
2936	p->locks[level] = BTRFS_READ_LOCK;
2937
2938	while (b) {
2939		int dec = 0;
2940
2941		level = btrfs_header_level(b);
2942		p->nodes[level] = b;
 
2943
2944		/*
2945		 * we have a lock on b and as long as we aren't changing
2946		 * the tree, there is no way to for the items in b to change.
2947		 * It is safe to drop the lock on our parent before we
2948		 * go through the expensive btree search on b.
2949		 */
2950		btrfs_unlock_up_safe(p, level + 1);
2951
2952		ret = btrfs_bin_search(b, key, &slot);
2953		if (ret < 0)
2954			goto done;
 
 
 
2955
2956		if (level == 0) {
 
 
 
 
 
2957			p->slots[level] = slot;
2958			unlock_up(p, level, lowest_unlock, 0, NULL);
2959			goto done;
2960		}
2961
2962		if (ret && slot > 0) {
2963			dec = 1;
2964			slot--;
2965		}
2966		p->slots[level] = slot;
2967		unlock_up(p, level, lowest_unlock, 0, NULL);
2968
2969		if (level == lowest_level) {
2970			if (dec)
2971				p->slots[level]++;
2972			goto done;
2973		}
2974
2975		err = read_block_for_search(root, p, &b, level, slot, key);
2976		if (err == -EAGAIN)
2977			goto again;
2978		if (err) {
2979			ret = err;
2980			goto done;
2981		}
 
2982
2983		level = btrfs_header_level(b);
2984		if (!btrfs_tree_read_lock_atomic(b)) {
2985			btrfs_set_path_blocking(p);
2986			btrfs_tree_read_lock(b);
2987		}
2988		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2989		if (!b) {
2990			ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
2991			goto done;
2992		}
2993		p->locks[level] = BTRFS_READ_LOCK;
2994		p->nodes[level] = b;
2995	}
2996	ret = 1;
2997done:
2998	if (!p->leave_spinning)
2999		btrfs_set_path_blocking(p);
3000	if (ret < 0)
3001		btrfs_release_path(p);
3002
3003	return ret;
3004}
3005
3006/*
3007 * helper to use instead of search slot if no exact match is needed but
3008 * instead the next or previous item should be returned.
3009 * When find_higher is true, the next higher item is returned, the next lower
3010 * otherwise.
3011 * When return_any and find_higher are both true, and no higher item is found,
3012 * return the next lower instead.
3013 * When return_any is true and find_higher is false, and no lower item is found,
3014 * return the next higher instead.
3015 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3016 * < 0 on error
3017 */
3018int btrfs_search_slot_for_read(struct btrfs_root *root,
3019			       const struct btrfs_key *key,
3020			       struct btrfs_path *p, int find_higher,
3021			       int return_any)
3022{
3023	int ret;
3024	struct extent_buffer *leaf;
3025
3026again:
3027	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3028	if (ret <= 0)
3029		return ret;
3030	/*
3031	 * a return value of 1 means the path is at the position where the
3032	 * item should be inserted. Normally this is the next bigger item,
3033	 * but in case the previous item is the last in a leaf, path points
3034	 * to the first free slot in the previous leaf, i.e. at an invalid
3035	 * item.
3036	 */
3037	leaf = p->nodes[0];
3038
3039	if (find_higher) {
3040		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3041			ret = btrfs_next_leaf(root, p);
3042			if (ret <= 0)
3043				return ret;
3044			if (!return_any)
3045				return 1;
3046			/*
3047			 * no higher item found, return the next
3048			 * lower instead
3049			 */
3050			return_any = 0;
3051			find_higher = 0;
3052			btrfs_release_path(p);
3053			goto again;
3054		}
3055	} else {
3056		if (p->slots[0] == 0) {
3057			ret = btrfs_prev_leaf(root, p);
3058			if (ret < 0)
3059				return ret;
3060			if (!ret) {
3061				leaf = p->nodes[0];
3062				if (p->slots[0] == btrfs_header_nritems(leaf))
3063					p->slots[0]--;
3064				return 0;
3065			}
3066			if (!return_any)
3067				return 1;
3068			/*
3069			 * no lower item found, return the next
3070			 * higher instead
3071			 */
3072			return_any = 0;
3073			find_higher = 1;
3074			btrfs_release_path(p);
3075			goto again;
3076		} else {
3077			--p->slots[0];
3078		}
3079	}
3080	return 0;
3081}
3082
3083/*
3084 * adjust the pointers going up the tree, starting at level
3085 * making sure the right key of each node is points to 'key'.
3086 * This is used after shifting pointers to the left, so it stops
3087 * fixing up pointers when a given leaf/node is not in slot 0 of the
3088 * higher levels
3089 *
3090 */
3091static void fixup_low_keys(struct btrfs_path *path,
 
3092			   struct btrfs_disk_key *key, int level)
3093{
3094	int i;
3095	struct extent_buffer *t;
3096	int ret;
3097
3098	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3099		int tslot = path->slots[i];
3100
3101		if (!path->nodes[i])
3102			break;
3103		t = path->nodes[i];
3104		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3105				GFP_ATOMIC);
3106		BUG_ON(ret < 0);
3107		btrfs_set_node_key(t, key, tslot);
3108		btrfs_mark_buffer_dirty(path->nodes[i]);
3109		if (tslot != 0)
3110			break;
3111	}
3112}
3113
3114/*
3115 * update item key.
3116 *
3117 * This function isn't completely safe. It's the caller's responsibility
3118 * that the new key won't break the order
3119 */
3120void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3121			     struct btrfs_path *path,
3122			     const struct btrfs_key *new_key)
3123{
3124	struct btrfs_disk_key disk_key;
3125	struct extent_buffer *eb;
3126	int slot;
3127
3128	eb = path->nodes[0];
3129	slot = path->slots[0];
3130	if (slot > 0) {
3131		btrfs_item_key(eb, &disk_key, slot - 1);
3132		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3133			btrfs_crit(fs_info,
3134		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3135				   slot, btrfs_disk_key_objectid(&disk_key),
3136				   btrfs_disk_key_type(&disk_key),
3137				   btrfs_disk_key_offset(&disk_key),
3138				   new_key->objectid, new_key->type,
3139				   new_key->offset);
3140			btrfs_print_leaf(eb);
3141			BUG();
3142		}
3143	}
3144	if (slot < btrfs_header_nritems(eb) - 1) {
3145		btrfs_item_key(eb, &disk_key, slot + 1);
3146		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3147			btrfs_crit(fs_info,
3148		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3149				   slot, btrfs_disk_key_objectid(&disk_key),
3150				   btrfs_disk_key_type(&disk_key),
3151				   btrfs_disk_key_offset(&disk_key),
3152				   new_key->objectid, new_key->type,
3153				   new_key->offset);
3154			btrfs_print_leaf(eb);
3155			BUG();
3156		}
3157	}
3158
3159	btrfs_cpu_key_to_disk(&disk_key, new_key);
3160	btrfs_set_item_key(eb, &disk_key, slot);
3161	btrfs_mark_buffer_dirty(eb);
3162	if (slot == 0)
3163		fixup_low_keys(path, &disk_key, 1);
3164}
3165
3166/*
3167 * try to push data from one node into the next node left in the
3168 * tree.
3169 *
3170 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3171 * error, and > 0 if there was no room in the left hand block.
3172 */
3173static int push_node_left(struct btrfs_trans_handle *trans,
 
3174			  struct extent_buffer *dst,
3175			  struct extent_buffer *src, int empty)
3176{
3177	struct btrfs_fs_info *fs_info = trans->fs_info;
3178	int push_items = 0;
3179	int src_nritems;
3180	int dst_nritems;
3181	int ret = 0;
3182
3183	src_nritems = btrfs_header_nritems(src);
3184	dst_nritems = btrfs_header_nritems(dst);
3185	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3186	WARN_ON(btrfs_header_generation(src) != trans->transid);
3187	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3188
3189	if (!empty && src_nritems <= 8)
3190		return 1;
3191
3192	if (push_items <= 0)
3193		return 1;
3194
3195	if (empty) {
3196		push_items = min(src_nritems, push_items);
3197		if (push_items < src_nritems) {
3198			/* leave at least 8 pointers in the node if
3199			 * we aren't going to empty it
3200			 */
3201			if (src_nritems - push_items < 8) {
3202				if (push_items <= 8)
3203					return 1;
3204				push_items -= 8;
3205			}
3206		}
3207	} else
3208		push_items = min(src_nritems - 8, push_items);
3209
3210	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
 
3211	if (ret) {
3212		btrfs_abort_transaction(trans, ret);
3213		return ret;
3214	}
3215	copy_extent_buffer(dst, src,
3216			   btrfs_node_key_ptr_offset(dst_nritems),
3217			   btrfs_node_key_ptr_offset(0),
3218			   push_items * sizeof(struct btrfs_key_ptr));
3219
3220	if (push_items < src_nritems) {
3221		/*
3222		 * Don't call tree_mod_log_insert_move here, key removal was
3223		 * already fully logged by tree_mod_log_eb_copy above.
3224		 */
3225		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3226				      btrfs_node_key_ptr_offset(push_items),
3227				      (src_nritems - push_items) *
3228				      sizeof(struct btrfs_key_ptr));
3229	}
3230	btrfs_set_header_nritems(src, src_nritems - push_items);
3231	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3232	btrfs_mark_buffer_dirty(src);
3233	btrfs_mark_buffer_dirty(dst);
3234
3235	return ret;
3236}
3237
3238/*
3239 * try to push data from one node into the next node right in the
3240 * tree.
3241 *
3242 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3243 * error, and > 0 if there was no room in the right hand block.
3244 *
3245 * this will  only push up to 1/2 the contents of the left node over
3246 */
3247static int balance_node_right(struct btrfs_trans_handle *trans,
 
3248			      struct extent_buffer *dst,
3249			      struct extent_buffer *src)
3250{
3251	struct btrfs_fs_info *fs_info = trans->fs_info;
3252	int push_items = 0;
3253	int max_push;
3254	int src_nritems;
3255	int dst_nritems;
3256	int ret = 0;
3257
3258	WARN_ON(btrfs_header_generation(src) != trans->transid);
3259	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3260
3261	src_nritems = btrfs_header_nritems(src);
3262	dst_nritems = btrfs_header_nritems(dst);
3263	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3264	if (push_items <= 0)
3265		return 1;
3266
3267	if (src_nritems < 4)
3268		return 1;
3269
3270	max_push = src_nritems / 2 + 1;
3271	/* don't try to empty the node */
3272	if (max_push >= src_nritems)
3273		return 1;
3274
3275	if (max_push < push_items)
3276		push_items = max_push;
3277
3278	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3279	BUG_ON(ret < 0);
3280	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3281				      btrfs_node_key_ptr_offset(0),
3282				      (dst_nritems) *
3283				      sizeof(struct btrfs_key_ptr));
3284
3285	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3286				   push_items);
3287	if (ret) {
3288		btrfs_abort_transaction(trans, ret);
3289		return ret;
3290	}
3291	copy_extent_buffer(dst, src,
3292			   btrfs_node_key_ptr_offset(0),
3293			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3294			   push_items * sizeof(struct btrfs_key_ptr));
3295
3296	btrfs_set_header_nritems(src, src_nritems - push_items);
3297	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3298
3299	btrfs_mark_buffer_dirty(src);
3300	btrfs_mark_buffer_dirty(dst);
3301
3302	return ret;
3303}
3304
3305/*
3306 * helper function to insert a new root level in the tree.
3307 * A new node is allocated, and a single item is inserted to
3308 * point to the existing root
3309 *
3310 * returns zero on success or < 0 on failure.
3311 */
3312static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3313			   struct btrfs_root *root,
3314			   struct btrfs_path *path, int level)
3315{
3316	struct btrfs_fs_info *fs_info = root->fs_info;
3317	u64 lower_gen;
3318	struct extent_buffer *lower;
3319	struct extent_buffer *c;
3320	struct extent_buffer *old;
3321	struct btrfs_disk_key lower_key;
3322	int ret;
3323
3324	BUG_ON(path->nodes[level]);
3325	BUG_ON(path->nodes[level-1] != root->node);
3326
3327	lower = path->nodes[level-1];
3328	if (level == 1)
3329		btrfs_item_key(lower, &lower_key, 0);
3330	else
3331		btrfs_node_key(lower, &lower_key, 0);
3332
3333	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3334					 root->node->start, 0);
3335	if (IS_ERR(c))
3336		return PTR_ERR(c);
3337
3338	root_add_used(root, fs_info->nodesize);
3339
 
3340	btrfs_set_header_nritems(c, 1);
 
 
 
 
 
 
 
 
 
3341	btrfs_set_node_key(c, &lower_key, 0);
3342	btrfs_set_node_blockptr(c, 0, lower->start);
3343	lower_gen = btrfs_header_generation(lower);
3344	WARN_ON(lower_gen != trans->transid);
3345
3346	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3347
3348	btrfs_mark_buffer_dirty(c);
3349
3350	old = root->node;
3351	ret = tree_mod_log_insert_root(root->node, c, 0);
3352	BUG_ON(ret < 0);
3353	rcu_assign_pointer(root->node, c);
3354
3355	/* the super has an extra ref to root->node */
3356	free_extent_buffer(old);
3357
3358	add_root_to_dirty_list(root);
3359	atomic_inc(&c->refs);
3360	path->nodes[level] = c;
3361	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3362	path->slots[level] = 0;
3363	return 0;
3364}
3365
3366/*
3367 * worker function to insert a single pointer in a node.
3368 * the node should have enough room for the pointer already
3369 *
3370 * slot and level indicate where you want the key to go, and
3371 * blocknr is the block the key points to.
3372 */
3373static void insert_ptr(struct btrfs_trans_handle *trans,
3374		       struct btrfs_path *path,
3375		       struct btrfs_disk_key *key, u64 bytenr,
3376		       int slot, int level)
3377{
3378	struct extent_buffer *lower;
3379	int nritems;
3380	int ret;
3381
3382	BUG_ON(!path->nodes[level]);
3383	btrfs_assert_tree_locked(path->nodes[level]);
3384	lower = path->nodes[level];
3385	nritems = btrfs_header_nritems(lower);
3386	BUG_ON(slot > nritems);
3387	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3388	if (slot != nritems) {
3389		if (level) {
3390			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3391					nritems - slot);
3392			BUG_ON(ret < 0);
3393		}
3394		memmove_extent_buffer(lower,
3395			      btrfs_node_key_ptr_offset(slot + 1),
3396			      btrfs_node_key_ptr_offset(slot),
3397			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3398	}
3399	if (level) {
3400		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3401				GFP_NOFS);
3402		BUG_ON(ret < 0);
3403	}
3404	btrfs_set_node_key(lower, key, slot);
3405	btrfs_set_node_blockptr(lower, slot, bytenr);
3406	WARN_ON(trans->transid == 0);
3407	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3408	btrfs_set_header_nritems(lower, nritems + 1);
3409	btrfs_mark_buffer_dirty(lower);
3410}
3411
3412/*
3413 * split the node at the specified level in path in two.
3414 * The path is corrected to point to the appropriate node after the split
3415 *
3416 * Before splitting this tries to make some room in the node by pushing
3417 * left and right, if either one works, it returns right away.
3418 *
3419 * returns 0 on success and < 0 on failure
3420 */
3421static noinline int split_node(struct btrfs_trans_handle *trans,
3422			       struct btrfs_root *root,
3423			       struct btrfs_path *path, int level)
3424{
3425	struct btrfs_fs_info *fs_info = root->fs_info;
3426	struct extent_buffer *c;
3427	struct extent_buffer *split;
3428	struct btrfs_disk_key disk_key;
3429	int mid;
3430	int ret;
3431	u32 c_nritems;
3432
3433	c = path->nodes[level];
3434	WARN_ON(btrfs_header_generation(c) != trans->transid);
3435	if (c == root->node) {
3436		/*
3437		 * trying to split the root, lets make a new one
3438		 *
3439		 * tree mod log: We don't log_removal old root in
3440		 * insert_new_root, because that root buffer will be kept as a
3441		 * normal node. We are going to log removal of half of the
3442		 * elements below with tree_mod_log_eb_copy. We're holding a
3443		 * tree lock on the buffer, which is why we cannot race with
3444		 * other tree_mod_log users.
3445		 */
3446		ret = insert_new_root(trans, root, path, level + 1);
3447		if (ret)
3448			return ret;
3449	} else {
3450		ret = push_nodes_for_insert(trans, root, path, level);
3451		c = path->nodes[level];
3452		if (!ret && btrfs_header_nritems(c) <
3453		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3454			return 0;
3455		if (ret < 0)
3456			return ret;
3457	}
3458
3459	c_nritems = btrfs_header_nritems(c);
3460	mid = (c_nritems + 1) / 2;
3461	btrfs_node_key(c, &disk_key, mid);
3462
3463	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3464					     c->start, 0);
3465	if (IS_ERR(split))
3466		return PTR_ERR(split);
3467
3468	root_add_used(root, fs_info->nodesize);
3469	ASSERT(btrfs_header_level(c) == level);
3470
3471	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
 
 
 
 
 
 
 
 
 
3472	if (ret) {
3473		btrfs_abort_transaction(trans, ret);
3474		return ret;
3475	}
3476	copy_extent_buffer(split, c,
3477			   btrfs_node_key_ptr_offset(0),
3478			   btrfs_node_key_ptr_offset(mid),
3479			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3480	btrfs_set_header_nritems(split, c_nritems - mid);
3481	btrfs_set_header_nritems(c, mid);
3482	ret = 0;
3483
3484	btrfs_mark_buffer_dirty(c);
3485	btrfs_mark_buffer_dirty(split);
3486
3487	insert_ptr(trans, path, &disk_key, split->start,
3488		   path->slots[level + 1] + 1, level + 1);
3489
3490	if (path->slots[level] >= mid) {
3491		path->slots[level] -= mid;
3492		btrfs_tree_unlock(c);
3493		free_extent_buffer(c);
3494		path->nodes[level] = split;
3495		path->slots[level + 1] += 1;
3496	} else {
3497		btrfs_tree_unlock(split);
3498		free_extent_buffer(split);
3499	}
3500	return ret;
3501}
3502
3503/*
3504 * how many bytes are required to store the items in a leaf.  start
3505 * and nr indicate which items in the leaf to check.  This totals up the
3506 * space used both by the item structs and the item data
3507 */
3508static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3509{
3510	struct btrfs_item *start_item;
3511	struct btrfs_item *end_item;
 
3512	int data_len;
3513	int nritems = btrfs_header_nritems(l);
3514	int end = min(nritems, start + nr) - 1;
3515
3516	if (!nr)
3517		return 0;
 
3518	start_item = btrfs_item_nr(start);
3519	end_item = btrfs_item_nr(end);
3520	data_len = btrfs_item_offset(l, start_item) +
3521		   btrfs_item_size(l, start_item);
3522	data_len = data_len - btrfs_item_offset(l, end_item);
3523	data_len += sizeof(struct btrfs_item) * nr;
3524	WARN_ON(data_len < 0);
3525	return data_len;
3526}
3527
3528/*
3529 * The space between the end of the leaf items and
3530 * the start of the leaf data.  IOW, how much room
3531 * the leaf has left for both items and data
3532 */
3533noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
 
3534{
3535	struct btrfs_fs_info *fs_info = leaf->fs_info;
3536	int nritems = btrfs_header_nritems(leaf);
3537	int ret;
3538
3539	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3540	if (ret < 0) {
3541		btrfs_crit(fs_info,
3542			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3543			   ret,
3544			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3545			   leaf_space_used(leaf, 0, nritems), nritems);
3546	}
3547	return ret;
3548}
3549
3550/*
3551 * min slot controls the lowest index we're willing to push to the
3552 * right.  We'll push up to and including min_slot, but no lower
3553 */
3554static noinline int __push_leaf_right(struct btrfs_path *path,
 
 
3555				      int data_size, int empty,
3556				      struct extent_buffer *right,
3557				      int free_space, u32 left_nritems,
3558				      u32 min_slot)
3559{
3560	struct btrfs_fs_info *fs_info = right->fs_info;
3561	struct extent_buffer *left = path->nodes[0];
3562	struct extent_buffer *upper = path->nodes[1];
3563	struct btrfs_map_token token;
3564	struct btrfs_disk_key disk_key;
3565	int slot;
3566	u32 i;
3567	int push_space = 0;
3568	int push_items = 0;
3569	struct btrfs_item *item;
3570	u32 nr;
3571	u32 right_nritems;
3572	u32 data_end;
3573	u32 this_item_size;
3574
 
 
3575	if (empty)
3576		nr = 0;
3577	else
3578		nr = max_t(u32, 1, min_slot);
3579
3580	if (path->slots[0] >= left_nritems)
3581		push_space += data_size;
3582
3583	slot = path->slots[1];
3584	i = left_nritems - 1;
3585	while (i >= nr) {
3586		item = btrfs_item_nr(i);
3587
3588		if (!empty && push_items > 0) {
3589			if (path->slots[0] > i)
3590				break;
3591			if (path->slots[0] == i) {
3592				int space = btrfs_leaf_free_space(left);
3593
3594				if (space + push_space * 2 > free_space)
3595					break;
3596			}
3597		}
3598
3599		if (path->slots[0] == i)
3600			push_space += data_size;
3601
3602		this_item_size = btrfs_item_size(left, item);
3603		if (this_item_size + sizeof(*item) + push_space > free_space)
3604			break;
3605
3606		push_items++;
3607		push_space += this_item_size + sizeof(*item);
3608		if (i == 0)
3609			break;
3610		i--;
3611	}
3612
3613	if (push_items == 0)
3614		goto out_unlock;
3615
3616	WARN_ON(!empty && push_items == left_nritems);
3617
3618	/* push left to right */
3619	right_nritems = btrfs_header_nritems(right);
3620
3621	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3622	push_space -= leaf_data_end(left);
3623
3624	/* make room in the right data area */
3625	data_end = leaf_data_end(right);
3626	memmove_extent_buffer(right,
3627			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3628			      BTRFS_LEAF_DATA_OFFSET + data_end,
3629			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3630
3631	/* copy from the left data area */
3632	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3633		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3634		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3635		     push_space);
3636
3637	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3638			      btrfs_item_nr_offset(0),
3639			      right_nritems * sizeof(struct btrfs_item));
3640
3641	/* copy the items from left to right */
3642	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3643		   btrfs_item_nr_offset(left_nritems - push_items),
3644		   push_items * sizeof(struct btrfs_item));
3645
3646	/* update the item pointers */
3647	btrfs_init_map_token(&token, right);
3648	right_nritems += push_items;
3649	btrfs_set_header_nritems(right, right_nritems);
3650	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3651	for (i = 0; i < right_nritems; i++) {
3652		item = btrfs_item_nr(i);
3653		push_space -= btrfs_token_item_size(&token, item);
3654		btrfs_set_token_item_offset(&token, item, push_space);
3655	}
3656
3657	left_nritems -= push_items;
3658	btrfs_set_header_nritems(left, left_nritems);
3659
3660	if (left_nritems)
3661		btrfs_mark_buffer_dirty(left);
3662	else
3663		btrfs_clean_tree_block(left);
3664
3665	btrfs_mark_buffer_dirty(right);
3666
3667	btrfs_item_key(right, &disk_key, 0);
3668	btrfs_set_node_key(upper, &disk_key, slot + 1);
3669	btrfs_mark_buffer_dirty(upper);
3670
3671	/* then fixup the leaf pointer in the path */
3672	if (path->slots[0] >= left_nritems) {
3673		path->slots[0] -= left_nritems;
3674		if (btrfs_header_nritems(path->nodes[0]) == 0)
3675			btrfs_clean_tree_block(path->nodes[0]);
3676		btrfs_tree_unlock(path->nodes[0]);
3677		free_extent_buffer(path->nodes[0]);
3678		path->nodes[0] = right;
3679		path->slots[1] += 1;
3680	} else {
3681		btrfs_tree_unlock(right);
3682		free_extent_buffer(right);
3683	}
3684	return 0;
3685
3686out_unlock:
3687	btrfs_tree_unlock(right);
3688	free_extent_buffer(right);
3689	return 1;
3690}
3691
3692/*
3693 * push some data in the path leaf to the right, trying to free up at
3694 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3695 *
3696 * returns 1 if the push failed because the other node didn't have enough
3697 * room, 0 if everything worked out and < 0 if there were major errors.
3698 *
3699 * this will push starting from min_slot to the end of the leaf.  It won't
3700 * push any slot lower than min_slot
3701 */
3702static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3703			   *root, struct btrfs_path *path,
3704			   int min_data_size, int data_size,
3705			   int empty, u32 min_slot)
3706{
 
3707	struct extent_buffer *left = path->nodes[0];
3708	struct extent_buffer *right;
3709	struct extent_buffer *upper;
3710	int slot;
3711	int free_space;
3712	u32 left_nritems;
3713	int ret;
3714
3715	if (!path->nodes[1])
3716		return 1;
3717
3718	slot = path->slots[1];
3719	upper = path->nodes[1];
3720	if (slot >= btrfs_header_nritems(upper) - 1)
3721		return 1;
3722
3723	btrfs_assert_tree_locked(path->nodes[1]);
3724
3725	right = btrfs_read_node_slot(upper, slot + 1);
3726	/*
3727	 * slot + 1 is not valid or we fail to read the right node,
3728	 * no big deal, just return.
3729	 */
3730	if (IS_ERR(right))
3731		return 1;
3732
3733	btrfs_tree_lock(right);
3734	btrfs_set_lock_blocking_write(right);
3735
3736	free_space = btrfs_leaf_free_space(right);
3737	if (free_space < data_size)
3738		goto out_unlock;
3739
3740	/* cow and double check */
3741	ret = btrfs_cow_block(trans, root, right, upper,
3742			      slot + 1, &right);
3743	if (ret)
3744		goto out_unlock;
3745
3746	free_space = btrfs_leaf_free_space(right);
3747	if (free_space < data_size)
3748		goto out_unlock;
3749
3750	left_nritems = btrfs_header_nritems(left);
3751	if (left_nritems == 0)
3752		goto out_unlock;
3753
3754	if (path->slots[0] == left_nritems && !empty) {
3755		/* Key greater than all keys in the leaf, right neighbor has
3756		 * enough room for it and we're not emptying our leaf to delete
3757		 * it, therefore use right neighbor to insert the new item and
3758		 * no need to touch/dirty our left leaf. */
3759		btrfs_tree_unlock(left);
3760		free_extent_buffer(left);
3761		path->nodes[0] = right;
3762		path->slots[0] = 0;
3763		path->slots[1]++;
3764		return 0;
3765	}
3766
3767	return __push_leaf_right(path, min_data_size, empty,
3768				right, free_space, left_nritems, min_slot);
3769out_unlock:
3770	btrfs_tree_unlock(right);
3771	free_extent_buffer(right);
3772	return 1;
3773}
3774
3775/*
3776 * push some data in the path leaf to the left, trying to free up at
3777 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3778 *
3779 * max_slot can put a limit on how far into the leaf we'll push items.  The
3780 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3781 * items
3782 */
3783static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
 
3784				     int empty, struct extent_buffer *left,
3785				     int free_space, u32 right_nritems,
3786				     u32 max_slot)
3787{
3788	struct btrfs_fs_info *fs_info = left->fs_info;
3789	struct btrfs_disk_key disk_key;
3790	struct extent_buffer *right = path->nodes[0];
3791	int i;
3792	int push_space = 0;
3793	int push_items = 0;
3794	struct btrfs_item *item;
3795	u32 old_left_nritems;
3796	u32 nr;
3797	int ret = 0;
3798	u32 this_item_size;
3799	u32 old_left_item_size;
3800	struct btrfs_map_token token;
3801
 
 
3802	if (empty)
3803		nr = min(right_nritems, max_slot);
3804	else
3805		nr = min(right_nritems - 1, max_slot);
3806
3807	for (i = 0; i < nr; i++) {
3808		item = btrfs_item_nr(i);
3809
3810		if (!empty && push_items > 0) {
3811			if (path->slots[0] < i)
3812				break;
3813			if (path->slots[0] == i) {
3814				int space = btrfs_leaf_free_space(right);
3815
3816				if (space + push_space * 2 > free_space)
3817					break;
3818			}
3819		}
3820
3821		if (path->slots[0] == i)
3822			push_space += data_size;
3823
3824		this_item_size = btrfs_item_size(right, item);
3825		if (this_item_size + sizeof(*item) + push_space > free_space)
3826			break;
3827
3828		push_items++;
3829		push_space += this_item_size + sizeof(*item);
3830	}
3831
3832	if (push_items == 0) {
3833		ret = 1;
3834		goto out;
3835	}
3836	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3837
3838	/* push data from right to left */
3839	copy_extent_buffer(left, right,
3840			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3841			   btrfs_item_nr_offset(0),
3842			   push_items * sizeof(struct btrfs_item));
3843
3844	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3845		     btrfs_item_offset_nr(right, push_items - 1);
3846
3847	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3848		     leaf_data_end(left) - push_space,
3849		     BTRFS_LEAF_DATA_OFFSET +
3850		     btrfs_item_offset_nr(right, push_items - 1),
3851		     push_space);
3852	old_left_nritems = btrfs_header_nritems(left);
3853	BUG_ON(old_left_nritems <= 0);
3854
3855	btrfs_init_map_token(&token, left);
3856	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3857	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3858		u32 ioff;
3859
3860		item = btrfs_item_nr(i);
3861
3862		ioff = btrfs_token_item_offset(&token, item);
3863		btrfs_set_token_item_offset(&token, item,
3864		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
 
3865	}
3866	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3867
3868	/* fixup right node */
3869	if (push_items > right_nritems)
3870		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3871		       right_nritems);
3872
3873	if (push_items < right_nritems) {
3874		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3875						  leaf_data_end(right);
3876		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3877				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3878				      BTRFS_LEAF_DATA_OFFSET +
3879				      leaf_data_end(right), push_space);
3880
3881		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3882			      btrfs_item_nr_offset(push_items),
3883			     (btrfs_header_nritems(right) - push_items) *
3884			     sizeof(struct btrfs_item));
3885	}
3886
3887	btrfs_init_map_token(&token, right);
3888	right_nritems -= push_items;
3889	btrfs_set_header_nritems(right, right_nritems);
3890	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3891	for (i = 0; i < right_nritems; i++) {
3892		item = btrfs_item_nr(i);
3893
3894		push_space = push_space - btrfs_token_item_size(&token, item);
3895		btrfs_set_token_item_offset(&token, item, push_space);
 
3896	}
3897
3898	btrfs_mark_buffer_dirty(left);
3899	if (right_nritems)
3900		btrfs_mark_buffer_dirty(right);
3901	else
3902		btrfs_clean_tree_block(right);
3903
3904	btrfs_item_key(right, &disk_key, 0);
3905	fixup_low_keys(path, &disk_key, 1);
3906
3907	/* then fixup the leaf pointer in the path */
3908	if (path->slots[0] < push_items) {
3909		path->slots[0] += old_left_nritems;
3910		btrfs_tree_unlock(path->nodes[0]);
3911		free_extent_buffer(path->nodes[0]);
3912		path->nodes[0] = left;
3913		path->slots[1] -= 1;
3914	} else {
3915		btrfs_tree_unlock(left);
3916		free_extent_buffer(left);
3917		path->slots[0] -= push_items;
3918	}
3919	BUG_ON(path->slots[0] < 0);
3920	return ret;
3921out:
3922	btrfs_tree_unlock(left);
3923	free_extent_buffer(left);
3924	return ret;
3925}
3926
3927/*
3928 * push some data in the path leaf to the left, trying to free up at
3929 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3930 *
3931 * max_slot can put a limit on how far into the leaf we'll push items.  The
3932 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3933 * items
3934 */
3935static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3936			  *root, struct btrfs_path *path, int min_data_size,
3937			  int data_size, int empty, u32 max_slot)
3938{
 
3939	struct extent_buffer *right = path->nodes[0];
3940	struct extent_buffer *left;
3941	int slot;
3942	int free_space;
3943	u32 right_nritems;
3944	int ret = 0;
3945
3946	slot = path->slots[1];
3947	if (slot == 0)
3948		return 1;
3949	if (!path->nodes[1])
3950		return 1;
3951
3952	right_nritems = btrfs_header_nritems(right);
3953	if (right_nritems == 0)
3954		return 1;
3955
3956	btrfs_assert_tree_locked(path->nodes[1]);
3957
3958	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3959	/*
3960	 * slot - 1 is not valid or we fail to read the left node,
3961	 * no big deal, just return.
3962	 */
3963	if (IS_ERR(left))
3964		return 1;
3965
3966	btrfs_tree_lock(left);
3967	btrfs_set_lock_blocking_write(left);
3968
3969	free_space = btrfs_leaf_free_space(left);
3970	if (free_space < data_size) {
3971		ret = 1;
3972		goto out;
3973	}
3974
3975	/* cow and double check */
3976	ret = btrfs_cow_block(trans, root, left,
3977			      path->nodes[1], slot - 1, &left);
3978	if (ret) {
3979		/* we hit -ENOSPC, but it isn't fatal here */
3980		if (ret == -ENOSPC)
3981			ret = 1;
3982		goto out;
3983	}
3984
3985	free_space = btrfs_leaf_free_space(left);
3986	if (free_space < data_size) {
3987		ret = 1;
3988		goto out;
3989	}
3990
3991	return __push_leaf_left(path, min_data_size,
3992			       empty, left, free_space, right_nritems,
3993			       max_slot);
3994out:
3995	btrfs_tree_unlock(left);
3996	free_extent_buffer(left);
3997	return ret;
3998}
3999
4000/*
4001 * split the path's leaf in two, making sure there is at least data_size
4002 * available for the resulting leaf level of the path.
4003 */
4004static noinline void copy_for_split(struct btrfs_trans_handle *trans,
 
4005				    struct btrfs_path *path,
4006				    struct extent_buffer *l,
4007				    struct extent_buffer *right,
4008				    int slot, int mid, int nritems)
4009{
4010	struct btrfs_fs_info *fs_info = trans->fs_info;
4011	int data_copy_size;
4012	int rt_data_off;
4013	int i;
4014	struct btrfs_disk_key disk_key;
4015	struct btrfs_map_token token;
4016
 
 
4017	nritems = nritems - mid;
4018	btrfs_set_header_nritems(right, nritems);
4019	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4020
4021	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4022			   btrfs_item_nr_offset(mid),
4023			   nritems * sizeof(struct btrfs_item));
4024
4025	copy_extent_buffer(right, l,
4026		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4027		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4028		     leaf_data_end(l), data_copy_size);
4029
4030	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4031
4032	btrfs_init_map_token(&token, right);
4033	for (i = 0; i < nritems; i++) {
4034		struct btrfs_item *item = btrfs_item_nr(i);
4035		u32 ioff;
4036
4037		ioff = btrfs_token_item_offset(&token, item);
4038		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
 
4039	}
4040
4041	btrfs_set_header_nritems(l, mid);
4042	btrfs_item_key(right, &disk_key, 0);
4043	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
4044
4045	btrfs_mark_buffer_dirty(right);
4046	btrfs_mark_buffer_dirty(l);
4047	BUG_ON(path->slots[0] != slot);
4048
4049	if (mid <= slot) {
4050		btrfs_tree_unlock(path->nodes[0]);
4051		free_extent_buffer(path->nodes[0]);
4052		path->nodes[0] = right;
4053		path->slots[0] -= mid;
4054		path->slots[1] += 1;
4055	} else {
4056		btrfs_tree_unlock(right);
4057		free_extent_buffer(right);
4058	}
4059
4060	BUG_ON(path->slots[0] < 0);
4061}
4062
4063/*
4064 * double splits happen when we need to insert a big item in the middle
4065 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4066 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4067 *          A                 B                 C
4068 *
4069 * We avoid this by trying to push the items on either side of our target
4070 * into the adjacent leaves.  If all goes well we can avoid the double split
4071 * completely.
4072 */
4073static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4074					  struct btrfs_root *root,
4075					  struct btrfs_path *path,
4076					  int data_size)
4077{
 
4078	int ret;
4079	int progress = 0;
4080	int slot;
4081	u32 nritems;
4082	int space_needed = data_size;
4083
4084	slot = path->slots[0];
4085	if (slot < btrfs_header_nritems(path->nodes[0]))
4086		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4087
4088	/*
4089	 * try to push all the items after our slot into the
4090	 * right leaf
4091	 */
4092	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4093	if (ret < 0)
4094		return ret;
4095
4096	if (ret == 0)
4097		progress++;
4098
4099	nritems = btrfs_header_nritems(path->nodes[0]);
4100	/*
4101	 * our goal is to get our slot at the start or end of a leaf.  If
4102	 * we've done so we're done
4103	 */
4104	if (path->slots[0] == 0 || path->slots[0] == nritems)
4105		return 0;
4106
4107	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4108		return 0;
4109
4110	/* try to push all the items before our slot into the next leaf */
4111	slot = path->slots[0];
4112	space_needed = data_size;
4113	if (slot > 0)
4114		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4115	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4116	if (ret < 0)
4117		return ret;
4118
4119	if (ret == 0)
4120		progress++;
4121
4122	if (progress)
4123		return 0;
4124	return 1;
4125}
4126
4127/*
4128 * split the path's leaf in two, making sure there is at least data_size
4129 * available for the resulting leaf level of the path.
4130 *
4131 * returns 0 if all went well and < 0 on failure.
4132 */
4133static noinline int split_leaf(struct btrfs_trans_handle *trans,
4134			       struct btrfs_root *root,
4135			       const struct btrfs_key *ins_key,
4136			       struct btrfs_path *path, int data_size,
4137			       int extend)
4138{
4139	struct btrfs_disk_key disk_key;
4140	struct extent_buffer *l;
4141	u32 nritems;
4142	int mid;
4143	int slot;
4144	struct extent_buffer *right;
4145	struct btrfs_fs_info *fs_info = root->fs_info;
4146	int ret = 0;
4147	int wret;
4148	int split;
4149	int num_doubles = 0;
4150	int tried_avoid_double = 0;
4151
4152	l = path->nodes[0];
4153	slot = path->slots[0];
4154	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4155	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4156		return -EOVERFLOW;
4157
4158	/* first try to make some room by pushing left and right */
4159	if (data_size && path->nodes[1]) {
4160		int space_needed = data_size;
4161
4162		if (slot < btrfs_header_nritems(l))
4163			space_needed -= btrfs_leaf_free_space(l);
4164
4165		wret = push_leaf_right(trans, root, path, space_needed,
4166				       space_needed, 0, 0);
4167		if (wret < 0)
4168			return wret;
4169		if (wret) {
4170			space_needed = data_size;
4171			if (slot > 0)
4172				space_needed -= btrfs_leaf_free_space(l);
4173			wret = push_leaf_left(trans, root, path, space_needed,
4174					      space_needed, 0, (u32)-1);
4175			if (wret < 0)
4176				return wret;
4177		}
4178		l = path->nodes[0];
4179
4180		/* did the pushes work? */
4181		if (btrfs_leaf_free_space(l) >= data_size)
4182			return 0;
4183	}
4184
4185	if (!path->nodes[1]) {
4186		ret = insert_new_root(trans, root, path, 1);
4187		if (ret)
4188			return ret;
4189	}
4190again:
4191	split = 1;
4192	l = path->nodes[0];
4193	slot = path->slots[0];
4194	nritems = btrfs_header_nritems(l);
4195	mid = (nritems + 1) / 2;
4196
4197	if (mid <= slot) {
4198		if (nritems == 1 ||
4199		    leaf_space_used(l, mid, nritems - mid) + data_size >
4200			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4201			if (slot >= nritems) {
4202				split = 0;
4203			} else {
4204				mid = slot;
4205				if (mid != nritems &&
4206				    leaf_space_used(l, mid, nritems - mid) +
4207				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4208					if (data_size && !tried_avoid_double)
4209						goto push_for_double;
4210					split = 2;
4211				}
4212			}
4213		}
4214	} else {
4215		if (leaf_space_used(l, 0, mid) + data_size >
4216			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4217			if (!extend && data_size && slot == 0) {
4218				split = 0;
4219			} else if ((extend || !data_size) && slot == 0) {
4220				mid = 1;
4221			} else {
4222				mid = slot;
4223				if (mid != nritems &&
4224				    leaf_space_used(l, mid, nritems - mid) +
4225				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4226					if (data_size && !tried_avoid_double)
4227						goto push_for_double;
4228					split = 2;
4229				}
4230			}
4231		}
4232	}
4233
4234	if (split == 0)
4235		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4236	else
4237		btrfs_item_key(l, &disk_key, mid);
4238
4239	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4240					     l->start, 0);
4241	if (IS_ERR(right))
4242		return PTR_ERR(right);
4243
4244	root_add_used(root, fs_info->nodesize);
4245
 
 
 
 
 
 
 
 
 
4246	if (split == 0) {
4247		if (mid <= slot) {
4248			btrfs_set_header_nritems(right, 0);
4249			insert_ptr(trans, path, &disk_key,
4250				   right->start, path->slots[1] + 1, 1);
4251			btrfs_tree_unlock(path->nodes[0]);
4252			free_extent_buffer(path->nodes[0]);
4253			path->nodes[0] = right;
4254			path->slots[0] = 0;
4255			path->slots[1] += 1;
4256		} else {
4257			btrfs_set_header_nritems(right, 0);
4258			insert_ptr(trans, path, &disk_key,
4259				   right->start, path->slots[1], 1);
4260			btrfs_tree_unlock(path->nodes[0]);
4261			free_extent_buffer(path->nodes[0]);
4262			path->nodes[0] = right;
4263			path->slots[0] = 0;
4264			if (path->slots[1] == 0)
4265				fixup_low_keys(path, &disk_key, 1);
4266		}
4267		/*
4268		 * We create a new leaf 'right' for the required ins_len and
4269		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4270		 * the content of ins_len to 'right'.
4271		 */
4272		return ret;
4273	}
4274
4275	copy_for_split(trans, path, l, right, slot, mid, nritems);
4276
4277	if (split == 2) {
4278		BUG_ON(num_doubles != 0);
4279		num_doubles++;
4280		goto again;
4281	}
4282
4283	return 0;
4284
4285push_for_double:
4286	push_for_double_split(trans, root, path, data_size);
4287	tried_avoid_double = 1;
4288	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4289		return 0;
4290	goto again;
4291}
4292
4293static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4294					 struct btrfs_root *root,
4295					 struct btrfs_path *path, int ins_len)
4296{
 
4297	struct btrfs_key key;
4298	struct extent_buffer *leaf;
4299	struct btrfs_file_extent_item *fi;
4300	u64 extent_len = 0;
4301	u32 item_size;
4302	int ret;
4303
4304	leaf = path->nodes[0];
4305	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4306
4307	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4308	       key.type != BTRFS_EXTENT_CSUM_KEY);
4309
4310	if (btrfs_leaf_free_space(leaf) >= ins_len)
4311		return 0;
4312
4313	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4314	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4315		fi = btrfs_item_ptr(leaf, path->slots[0],
4316				    struct btrfs_file_extent_item);
4317		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4318	}
4319	btrfs_release_path(path);
4320
4321	path->keep_locks = 1;
4322	path->search_for_split = 1;
4323	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4324	path->search_for_split = 0;
4325	if (ret > 0)
4326		ret = -EAGAIN;
4327	if (ret < 0)
4328		goto err;
4329
4330	ret = -EAGAIN;
4331	leaf = path->nodes[0];
4332	/* if our item isn't there, return now */
4333	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4334		goto err;
4335
4336	/* the leaf has  changed, it now has room.  return now */
4337	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4338		goto err;
4339
4340	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4341		fi = btrfs_item_ptr(leaf, path->slots[0],
4342				    struct btrfs_file_extent_item);
4343		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4344			goto err;
4345	}
4346
4347	btrfs_set_path_blocking(path);
4348	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4349	if (ret)
4350		goto err;
4351
4352	path->keep_locks = 0;
4353	btrfs_unlock_up_safe(path, 1);
4354	return 0;
4355err:
4356	path->keep_locks = 0;
4357	return ret;
4358}
4359
4360static noinline int split_item(struct btrfs_path *path,
4361			       const struct btrfs_key *new_key,
 
 
4362			       unsigned long split_offset)
4363{
4364	struct extent_buffer *leaf;
4365	struct btrfs_item *item;
4366	struct btrfs_item *new_item;
4367	int slot;
4368	char *buf;
4369	u32 nritems;
4370	u32 item_size;
4371	u32 orig_offset;
4372	struct btrfs_disk_key disk_key;
4373
4374	leaf = path->nodes[0];
4375	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4376
4377	btrfs_set_path_blocking(path);
4378
4379	item = btrfs_item_nr(path->slots[0]);
4380	orig_offset = btrfs_item_offset(leaf, item);
4381	item_size = btrfs_item_size(leaf, item);
4382
4383	buf = kmalloc(item_size, GFP_NOFS);
4384	if (!buf)
4385		return -ENOMEM;
4386
4387	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4388			    path->slots[0]), item_size);
4389
4390	slot = path->slots[0] + 1;
4391	nritems = btrfs_header_nritems(leaf);
4392	if (slot != nritems) {
4393		/* shift the items */
4394		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4395				btrfs_item_nr_offset(slot),
4396				(nritems - slot) * sizeof(struct btrfs_item));
4397	}
4398
4399	btrfs_cpu_key_to_disk(&disk_key, new_key);
4400	btrfs_set_item_key(leaf, &disk_key, slot);
4401
4402	new_item = btrfs_item_nr(slot);
4403
4404	btrfs_set_item_offset(leaf, new_item, orig_offset);
4405	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4406
4407	btrfs_set_item_offset(leaf, item,
4408			      orig_offset + item_size - split_offset);
4409	btrfs_set_item_size(leaf, item, split_offset);
4410
4411	btrfs_set_header_nritems(leaf, nritems + 1);
4412
4413	/* write the data for the start of the original item */
4414	write_extent_buffer(leaf, buf,
4415			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4416			    split_offset);
4417
4418	/* write the data for the new item */
4419	write_extent_buffer(leaf, buf + split_offset,
4420			    btrfs_item_ptr_offset(leaf, slot),
4421			    item_size - split_offset);
4422	btrfs_mark_buffer_dirty(leaf);
4423
4424	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4425	kfree(buf);
4426	return 0;
4427}
4428
4429/*
4430 * This function splits a single item into two items,
4431 * giving 'new_key' to the new item and splitting the
4432 * old one at split_offset (from the start of the item).
4433 *
4434 * The path may be released by this operation.  After
4435 * the split, the path is pointing to the old item.  The
4436 * new item is going to be in the same node as the old one.
4437 *
4438 * Note, the item being split must be smaller enough to live alone on
4439 * a tree block with room for one extra struct btrfs_item
4440 *
4441 * This allows us to split the item in place, keeping a lock on the
4442 * leaf the entire time.
4443 */
4444int btrfs_split_item(struct btrfs_trans_handle *trans,
4445		     struct btrfs_root *root,
4446		     struct btrfs_path *path,
4447		     const struct btrfs_key *new_key,
4448		     unsigned long split_offset)
4449{
4450	int ret;
4451	ret = setup_leaf_for_split(trans, root, path,
4452				   sizeof(struct btrfs_item));
4453	if (ret)
4454		return ret;
4455
4456	ret = split_item(path, new_key, split_offset);
4457	return ret;
4458}
4459
4460/*
4461 * This function duplicate a item, giving 'new_key' to the new item.
4462 * It guarantees both items live in the same tree leaf and the new item
4463 * is contiguous with the original item.
4464 *
4465 * This allows us to split file extent in place, keeping a lock on the
4466 * leaf the entire time.
4467 */
4468int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4469			 struct btrfs_root *root,
4470			 struct btrfs_path *path,
4471			 const struct btrfs_key *new_key)
4472{
4473	struct extent_buffer *leaf;
4474	int ret;
4475	u32 item_size;
4476
4477	leaf = path->nodes[0];
4478	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4479	ret = setup_leaf_for_split(trans, root, path,
4480				   item_size + sizeof(struct btrfs_item));
4481	if (ret)
4482		return ret;
4483
4484	path->slots[0]++;
4485	setup_items_for_insert(root, path, new_key, &item_size,
4486			       item_size, item_size +
4487			       sizeof(struct btrfs_item), 1);
4488	leaf = path->nodes[0];
4489	memcpy_extent_buffer(leaf,
4490			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4491			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4492			     item_size);
4493	return 0;
4494}
4495
4496/*
4497 * make the item pointed to by the path smaller.  new_size indicates
4498 * how small to make it, and from_end tells us if we just chop bytes
4499 * off the end of the item or if we shift the item to chop bytes off
4500 * the front.
4501 */
4502void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
4503{
4504	int slot;
4505	struct extent_buffer *leaf;
4506	struct btrfs_item *item;
4507	u32 nritems;
4508	unsigned int data_end;
4509	unsigned int old_data_start;
4510	unsigned int old_size;
4511	unsigned int size_diff;
4512	int i;
4513	struct btrfs_map_token token;
4514
 
 
4515	leaf = path->nodes[0];
4516	slot = path->slots[0];
4517
4518	old_size = btrfs_item_size_nr(leaf, slot);
4519	if (old_size == new_size)
4520		return;
4521
4522	nritems = btrfs_header_nritems(leaf);
4523	data_end = leaf_data_end(leaf);
4524
4525	old_data_start = btrfs_item_offset_nr(leaf, slot);
4526
4527	size_diff = old_size - new_size;
4528
4529	BUG_ON(slot < 0);
4530	BUG_ON(slot >= nritems);
4531
4532	/*
4533	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4534	 */
4535	/* first correct the data pointers */
4536	btrfs_init_map_token(&token, leaf);
4537	for (i = slot; i < nritems; i++) {
4538		u32 ioff;
4539		item = btrfs_item_nr(i);
4540
4541		ioff = btrfs_token_item_offset(&token, item);
4542		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
 
4543	}
4544
4545	/* shift the data */
4546	if (from_end) {
4547		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4548			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4549			      data_end, old_data_start + new_size - data_end);
4550	} else {
4551		struct btrfs_disk_key disk_key;
4552		u64 offset;
4553
4554		btrfs_item_key(leaf, &disk_key, slot);
4555
4556		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4557			unsigned long ptr;
4558			struct btrfs_file_extent_item *fi;
4559
4560			fi = btrfs_item_ptr(leaf, slot,
4561					    struct btrfs_file_extent_item);
4562			fi = (struct btrfs_file_extent_item *)(
4563			     (unsigned long)fi - size_diff);
4564
4565			if (btrfs_file_extent_type(leaf, fi) ==
4566			    BTRFS_FILE_EXTENT_INLINE) {
4567				ptr = btrfs_item_ptr_offset(leaf, slot);
4568				memmove_extent_buffer(leaf, ptr,
4569				      (unsigned long)fi,
4570				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4571			}
4572		}
4573
4574		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4575			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4576			      data_end, old_data_start - data_end);
4577
4578		offset = btrfs_disk_key_offset(&disk_key);
4579		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4580		btrfs_set_item_key(leaf, &disk_key, slot);
4581		if (slot == 0)
4582			fixup_low_keys(path, &disk_key, 1);
4583	}
4584
4585	item = btrfs_item_nr(slot);
4586	btrfs_set_item_size(leaf, item, new_size);
4587	btrfs_mark_buffer_dirty(leaf);
4588
4589	if (btrfs_leaf_free_space(leaf) < 0) {
4590		btrfs_print_leaf(leaf);
4591		BUG();
4592	}
4593}
4594
4595/*
4596 * make the item pointed to by the path bigger, data_size is the added size.
4597 */
4598void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
4599{
4600	int slot;
4601	struct extent_buffer *leaf;
4602	struct btrfs_item *item;
4603	u32 nritems;
4604	unsigned int data_end;
4605	unsigned int old_data;
4606	unsigned int old_size;
4607	int i;
4608	struct btrfs_map_token token;
4609
 
 
4610	leaf = path->nodes[0];
4611
4612	nritems = btrfs_header_nritems(leaf);
4613	data_end = leaf_data_end(leaf);
4614
4615	if (btrfs_leaf_free_space(leaf) < data_size) {
4616		btrfs_print_leaf(leaf);
4617		BUG();
4618	}
4619	slot = path->slots[0];
4620	old_data = btrfs_item_end_nr(leaf, slot);
4621
4622	BUG_ON(slot < 0);
4623	if (slot >= nritems) {
4624		btrfs_print_leaf(leaf);
4625		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4626			   slot, nritems);
4627		BUG();
4628	}
4629
4630	/*
4631	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4632	 */
4633	/* first correct the data pointers */
4634	btrfs_init_map_token(&token, leaf);
4635	for (i = slot; i < nritems; i++) {
4636		u32 ioff;
4637		item = btrfs_item_nr(i);
4638
4639		ioff = btrfs_token_item_offset(&token, item);
4640		btrfs_set_token_item_offset(&token, item, ioff - data_size);
 
4641	}
4642
4643	/* shift the data */
4644	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4645		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4646		      data_end, old_data - data_end);
4647
4648	data_end = old_data;
4649	old_size = btrfs_item_size_nr(leaf, slot);
4650	item = btrfs_item_nr(slot);
4651	btrfs_set_item_size(leaf, item, old_size + data_size);
4652	btrfs_mark_buffer_dirty(leaf);
4653
4654	if (btrfs_leaf_free_space(leaf) < 0) {
4655		btrfs_print_leaf(leaf);
4656		BUG();
4657	}
4658}
4659
4660/*
4661 * this is a helper for btrfs_insert_empty_items, the main goal here is
4662 * to save stack depth by doing the bulk of the work in a function
4663 * that doesn't call btrfs_search_slot
4664 */
4665void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4666			    const struct btrfs_key *cpu_key, u32 *data_size,
4667			    u32 total_data, u32 total_size, int nr)
4668{
4669	struct btrfs_fs_info *fs_info = root->fs_info;
4670	struct btrfs_item *item;
4671	int i;
4672	u32 nritems;
4673	unsigned int data_end;
4674	struct btrfs_disk_key disk_key;
4675	struct extent_buffer *leaf;
4676	int slot;
4677	struct btrfs_map_token token;
4678
4679	if (path->slots[0] == 0) {
4680		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4681		fixup_low_keys(path, &disk_key, 1);
4682	}
4683	btrfs_unlock_up_safe(path, 1);
4684
 
 
4685	leaf = path->nodes[0];
4686	slot = path->slots[0];
4687
4688	nritems = btrfs_header_nritems(leaf);
4689	data_end = leaf_data_end(leaf);
4690
4691	if (btrfs_leaf_free_space(leaf) < total_size) {
4692		btrfs_print_leaf(leaf);
4693		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4694			   total_size, btrfs_leaf_free_space(leaf));
4695		BUG();
4696	}
4697
4698	btrfs_init_map_token(&token, leaf);
4699	if (slot != nritems) {
4700		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4701
4702		if (old_data < data_end) {
4703			btrfs_print_leaf(leaf);
4704			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4705				   slot, old_data, data_end);
4706			BUG();
4707		}
4708		/*
4709		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4710		 */
4711		/* first correct the data pointers */
4712		for (i = slot; i < nritems; i++) {
4713			u32 ioff;
4714
4715			item = btrfs_item_nr(i);
4716			ioff = btrfs_token_item_offset(&token, item);
4717			btrfs_set_token_item_offset(&token, item,
4718						    ioff - total_data);
4719		}
4720		/* shift the items */
4721		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4722			      btrfs_item_nr_offset(slot),
4723			      (nritems - slot) * sizeof(struct btrfs_item));
4724
4725		/* shift the data */
4726		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4727			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4728			      data_end, old_data - data_end);
4729		data_end = old_data;
4730	}
4731
4732	/* setup the item for the new data */
4733	for (i = 0; i < nr; i++) {
4734		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4735		btrfs_set_item_key(leaf, &disk_key, slot + i);
4736		item = btrfs_item_nr(slot + i);
4737		btrfs_set_token_item_offset(&token, item, data_end - data_size[i]);
 
4738		data_end -= data_size[i];
4739		btrfs_set_token_item_size(&token, item, data_size[i]);
4740	}
4741
4742	btrfs_set_header_nritems(leaf, nritems + nr);
4743	btrfs_mark_buffer_dirty(leaf);
4744
4745	if (btrfs_leaf_free_space(leaf) < 0) {
4746		btrfs_print_leaf(leaf);
4747		BUG();
4748	}
4749}
4750
4751/*
4752 * Given a key and some data, insert items into the tree.
4753 * This does all the path init required, making room in the tree if needed.
4754 */
4755int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4756			    struct btrfs_root *root,
4757			    struct btrfs_path *path,
4758			    const struct btrfs_key *cpu_key, u32 *data_size,
4759			    int nr)
4760{
4761	int ret = 0;
4762	int slot;
4763	int i;
4764	u32 total_size = 0;
4765	u32 total_data = 0;
4766
4767	for (i = 0; i < nr; i++)
4768		total_data += data_size[i];
4769
4770	total_size = total_data + (nr * sizeof(struct btrfs_item));
4771	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4772	if (ret == 0)
4773		return -EEXIST;
4774	if (ret < 0)
4775		return ret;
4776
4777	slot = path->slots[0];
4778	BUG_ON(slot < 0);
4779
4780	setup_items_for_insert(root, path, cpu_key, data_size,
4781			       total_data, total_size, nr);
4782	return 0;
4783}
4784
4785/*
4786 * Given a key and some data, insert an item into the tree.
4787 * This does all the path init required, making room in the tree if needed.
4788 */
4789int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4790		      const struct btrfs_key *cpu_key, void *data,
4791		      u32 data_size)
4792{
4793	int ret = 0;
4794	struct btrfs_path *path;
4795	struct extent_buffer *leaf;
4796	unsigned long ptr;
4797
4798	path = btrfs_alloc_path();
4799	if (!path)
4800		return -ENOMEM;
4801	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4802	if (!ret) {
4803		leaf = path->nodes[0];
4804		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4805		write_extent_buffer(leaf, data, ptr, data_size);
4806		btrfs_mark_buffer_dirty(leaf);
4807	}
4808	btrfs_free_path(path);
4809	return ret;
4810}
4811
4812/*
4813 * delete the pointer from a given node.
4814 *
4815 * the tree should have been previously balanced so the deletion does not
4816 * empty a node.
4817 */
4818static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4819		    int level, int slot)
4820{
 
4821	struct extent_buffer *parent = path->nodes[level];
4822	u32 nritems;
4823	int ret;
4824
4825	nritems = btrfs_header_nritems(parent);
4826	if (slot != nritems - 1) {
4827		if (level) {
4828			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4829					nritems - slot - 1);
4830			BUG_ON(ret < 0);
4831		}
4832		memmove_extent_buffer(parent,
4833			      btrfs_node_key_ptr_offset(slot),
4834			      btrfs_node_key_ptr_offset(slot + 1),
4835			      sizeof(struct btrfs_key_ptr) *
4836			      (nritems - slot - 1));
4837	} else if (level) {
4838		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4839				GFP_NOFS);
4840		BUG_ON(ret < 0);
4841	}
4842
4843	nritems--;
4844	btrfs_set_header_nritems(parent, nritems);
4845	if (nritems == 0 && parent == root->node) {
4846		BUG_ON(btrfs_header_level(root->node) != 1);
4847		/* just turn the root into a leaf and break */
4848		btrfs_set_header_level(root->node, 0);
4849	} else if (slot == 0) {
4850		struct btrfs_disk_key disk_key;
4851
4852		btrfs_node_key(parent, &disk_key, 0);
4853		fixup_low_keys(path, &disk_key, level + 1);
4854	}
4855	btrfs_mark_buffer_dirty(parent);
4856}
4857
4858/*
4859 * a helper function to delete the leaf pointed to by path->slots[1] and
4860 * path->nodes[1].
4861 *
4862 * This deletes the pointer in path->nodes[1] and frees the leaf
4863 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4864 *
4865 * The path must have already been setup for deleting the leaf, including
4866 * all the proper balancing.  path->nodes[1] must be locked.
4867 */
4868static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4869				    struct btrfs_root *root,
4870				    struct btrfs_path *path,
4871				    struct extent_buffer *leaf)
4872{
4873	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4874	del_ptr(root, path, 1, path->slots[1]);
4875
4876	/*
4877	 * btrfs_free_extent is expensive, we want to make sure we
4878	 * aren't holding any locks when we call it
4879	 */
4880	btrfs_unlock_up_safe(path, 0);
4881
4882	root_sub_used(root, leaf->len);
4883
4884	atomic_inc(&leaf->refs);
4885	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4886	free_extent_buffer_stale(leaf);
4887}
4888/*
4889 * delete the item at the leaf level in path.  If that empties
4890 * the leaf, remove it from the tree
4891 */
4892int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4893		    struct btrfs_path *path, int slot, int nr)
4894{
4895	struct btrfs_fs_info *fs_info = root->fs_info;
4896	struct extent_buffer *leaf;
4897	struct btrfs_item *item;
4898	u32 last_off;
4899	u32 dsize = 0;
4900	int ret = 0;
4901	int wret;
4902	int i;
4903	u32 nritems;
 
 
 
4904
4905	leaf = path->nodes[0];
4906	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4907
4908	for (i = 0; i < nr; i++)
4909		dsize += btrfs_item_size_nr(leaf, slot + i);
4910
4911	nritems = btrfs_header_nritems(leaf);
4912
4913	if (slot + nr != nritems) {
4914		int data_end = leaf_data_end(leaf);
4915		struct btrfs_map_token token;
4916
4917		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4918			      data_end + dsize,
4919			      BTRFS_LEAF_DATA_OFFSET + data_end,
4920			      last_off - data_end);
4921
4922		btrfs_init_map_token(&token, leaf);
4923		for (i = slot + nr; i < nritems; i++) {
4924			u32 ioff;
4925
4926			item = btrfs_item_nr(i);
4927			ioff = btrfs_token_item_offset(&token, item);
4928			btrfs_set_token_item_offset(&token, item, ioff + dsize);
 
4929		}
4930
4931		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4932			      btrfs_item_nr_offset(slot + nr),
4933			      sizeof(struct btrfs_item) *
4934			      (nritems - slot - nr));
4935	}
4936	btrfs_set_header_nritems(leaf, nritems - nr);
4937	nritems -= nr;
4938
4939	/* delete the leaf if we've emptied it */
4940	if (nritems == 0) {
4941		if (leaf == root->node) {
4942			btrfs_set_header_level(leaf, 0);
4943		} else {
4944			btrfs_set_path_blocking(path);
4945			btrfs_clean_tree_block(leaf);
4946			btrfs_del_leaf(trans, root, path, leaf);
4947		}
4948	} else {
4949		int used = leaf_space_used(leaf, 0, nritems);
4950		if (slot == 0) {
4951			struct btrfs_disk_key disk_key;
4952
4953			btrfs_item_key(leaf, &disk_key, 0);
4954			fixup_low_keys(path, &disk_key, 1);
4955		}
4956
4957		/* delete the leaf if it is mostly empty */
4958		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4959			/* push_leaf_left fixes the path.
4960			 * make sure the path still points to our leaf
4961			 * for possible call to del_ptr below
4962			 */
4963			slot = path->slots[1];
4964			atomic_inc(&leaf->refs);
4965
4966			btrfs_set_path_blocking(path);
4967			wret = push_leaf_left(trans, root, path, 1, 1,
4968					      1, (u32)-1);
4969			if (wret < 0 && wret != -ENOSPC)
4970				ret = wret;
4971
4972			if (path->nodes[0] == leaf &&
4973			    btrfs_header_nritems(leaf)) {
4974				wret = push_leaf_right(trans, root, path, 1,
4975						       1, 1, 0);
4976				if (wret < 0 && wret != -ENOSPC)
4977					ret = wret;
4978			}
4979
4980			if (btrfs_header_nritems(leaf) == 0) {
4981				path->slots[1] = slot;
4982				btrfs_del_leaf(trans, root, path, leaf);
4983				free_extent_buffer(leaf);
4984				ret = 0;
4985			} else {
4986				/* if we're still in the path, make sure
4987				 * we're dirty.  Otherwise, one of the
4988				 * push_leaf functions must have already
4989				 * dirtied this buffer
4990				 */
4991				if (path->nodes[0] == leaf)
4992					btrfs_mark_buffer_dirty(leaf);
4993				free_extent_buffer(leaf);
4994			}
4995		} else {
4996			btrfs_mark_buffer_dirty(leaf);
4997		}
4998	}
4999	return ret;
5000}
5001
5002/*
5003 * search the tree again to find a leaf with lesser keys
5004 * returns 0 if it found something or 1 if there are no lesser leaves.
5005 * returns < 0 on io errors.
5006 *
5007 * This may release the path, and so you may lose any locks held at the
5008 * time you call it.
5009 */
5010int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5011{
5012	struct btrfs_key key;
5013	struct btrfs_disk_key found_key;
5014	int ret;
5015
5016	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5017
5018	if (key.offset > 0) {
5019		key.offset--;
5020	} else if (key.type > 0) {
5021		key.type--;
5022		key.offset = (u64)-1;
5023	} else if (key.objectid > 0) {
5024		key.objectid--;
5025		key.type = (u8)-1;
5026		key.offset = (u64)-1;
5027	} else {
5028		return 1;
5029	}
5030
5031	btrfs_release_path(path);
5032	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5033	if (ret < 0)
5034		return ret;
5035	btrfs_item_key(path->nodes[0], &found_key, 0);
5036	ret = comp_keys(&found_key, &key);
5037	/*
5038	 * We might have had an item with the previous key in the tree right
5039	 * before we released our path. And after we released our path, that
5040	 * item might have been pushed to the first slot (0) of the leaf we
5041	 * were holding due to a tree balance. Alternatively, an item with the
5042	 * previous key can exist as the only element of a leaf (big fat item).
5043	 * Therefore account for these 2 cases, so that our callers (like
5044	 * btrfs_previous_item) don't miss an existing item with a key matching
5045	 * the previous key we computed above.
5046	 */
5047	if (ret <= 0)
5048		return 0;
5049	return 1;
5050}
5051
5052/*
5053 * A helper function to walk down the tree starting at min_key, and looking
5054 * for nodes or leaves that are have a minimum transaction id.
5055 * This is used by the btree defrag code, and tree logging
5056 *
5057 * This does not cow, but it does stuff the starting key it finds back
5058 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5059 * key and get a writable path.
5060 *
 
 
 
5061 * This honors path->lowest_level to prevent descent past a given level
5062 * of the tree.
5063 *
5064 * min_trans indicates the oldest transaction that you are interested
5065 * in walking through.  Any nodes or leaves older than min_trans are
5066 * skipped over (without reading them).
5067 *
5068 * returns zero if something useful was found, < 0 on error and 1 if there
5069 * was nothing in the tree that matched the search criteria.
5070 */
5071int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5072			 struct btrfs_path *path,
5073			 u64 min_trans)
5074{
 
5075	struct extent_buffer *cur;
5076	struct btrfs_key found_key;
5077	int slot;
5078	int sret;
5079	u32 nritems;
5080	int level;
5081	int ret = 1;
5082	int keep_locks = path->keep_locks;
5083
5084	path->keep_locks = 1;
5085again:
5086	cur = btrfs_read_lock_root_node(root);
5087	level = btrfs_header_level(cur);
5088	WARN_ON(path->nodes[level]);
5089	path->nodes[level] = cur;
5090	path->locks[level] = BTRFS_READ_LOCK;
5091
5092	if (btrfs_header_generation(cur) < min_trans) {
5093		ret = 1;
5094		goto out;
5095	}
5096	while (1) {
5097		nritems = btrfs_header_nritems(cur);
5098		level = btrfs_header_level(cur);
5099		sret = btrfs_bin_search(cur, min_key, &slot);
5100		if (sret < 0) {
5101			ret = sret;
5102			goto out;
5103		}
5104
5105		/* at the lowest level, we're done, setup the path and exit */
5106		if (level == path->lowest_level) {
5107			if (slot >= nritems)
5108				goto find_next_key;
5109			ret = 0;
5110			path->slots[level] = slot;
5111			btrfs_item_key_to_cpu(cur, &found_key, slot);
5112			goto out;
5113		}
5114		if (sret && slot > 0)
5115			slot--;
5116		/*
5117		 * check this node pointer against the min_trans parameters.
5118		 * If it is too old, old, skip to the next one.
5119		 */
5120		while (slot < nritems) {
5121			u64 gen;
5122
5123			gen = btrfs_node_ptr_generation(cur, slot);
5124			if (gen < min_trans) {
5125				slot++;
5126				continue;
5127			}
5128			break;
5129		}
5130find_next_key:
5131		/*
5132		 * we didn't find a candidate key in this node, walk forward
5133		 * and find another one
5134		 */
5135		if (slot >= nritems) {
5136			path->slots[level] = slot;
5137			btrfs_set_path_blocking(path);
5138			sret = btrfs_find_next_key(root, path, min_key, level,
5139						  min_trans);
5140			if (sret == 0) {
5141				btrfs_release_path(path);
5142				goto again;
5143			} else {
5144				goto out;
5145			}
5146		}
5147		/* save our key for returning back */
5148		btrfs_node_key_to_cpu(cur, &found_key, slot);
5149		path->slots[level] = slot;
5150		if (level == path->lowest_level) {
5151			ret = 0;
5152			goto out;
5153		}
5154		btrfs_set_path_blocking(path);
5155		cur = btrfs_read_node_slot(cur, slot);
5156		if (IS_ERR(cur)) {
5157			ret = PTR_ERR(cur);
5158			goto out;
5159		}
5160
5161		btrfs_tree_read_lock(cur);
5162
5163		path->locks[level - 1] = BTRFS_READ_LOCK;
5164		path->nodes[level - 1] = cur;
5165		unlock_up(path, level, 1, 0, NULL);
 
5166	}
5167out:
5168	path->keep_locks = keep_locks;
5169	if (ret == 0) {
5170		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5171		btrfs_set_path_blocking(path);
5172		memcpy(min_key, &found_key, sizeof(found_key));
5173	}
5174	return ret;
5175}
5176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5177/*
5178 * this is similar to btrfs_next_leaf, but does not try to preserve
5179 * and fixup the path.  It looks for and returns the next key in the
5180 * tree based on the current path and the min_trans parameters.
5181 *
5182 * 0 is returned if another key is found, < 0 if there are any errors
5183 * and 1 is returned if there are no higher keys in the tree
5184 *
5185 * path->keep_locks should be set to 1 on the search made before
5186 * calling this function.
5187 */
5188int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5189			struct btrfs_key *key, int level, u64 min_trans)
5190{
5191	int slot;
5192	struct extent_buffer *c;
5193
5194	WARN_ON(!path->keep_locks && !path->skip_locking);
5195	while (level < BTRFS_MAX_LEVEL) {
5196		if (!path->nodes[level])
5197			return 1;
5198
5199		slot = path->slots[level] + 1;
5200		c = path->nodes[level];
5201next:
5202		if (slot >= btrfs_header_nritems(c)) {
5203			int ret;
5204			int orig_lowest;
5205			struct btrfs_key cur_key;
5206			if (level + 1 >= BTRFS_MAX_LEVEL ||
5207			    !path->nodes[level + 1])
5208				return 1;
5209
5210			if (path->locks[level + 1] || path->skip_locking) {
5211				level++;
5212				continue;
5213			}
5214
5215			slot = btrfs_header_nritems(c) - 1;
5216			if (level == 0)
5217				btrfs_item_key_to_cpu(c, &cur_key, slot);
5218			else
5219				btrfs_node_key_to_cpu(c, &cur_key, slot);
5220
5221			orig_lowest = path->lowest_level;
5222			btrfs_release_path(path);
5223			path->lowest_level = level;
5224			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5225						0, 0);
5226			path->lowest_level = orig_lowest;
5227			if (ret < 0)
5228				return ret;
5229
5230			c = path->nodes[level];
5231			slot = path->slots[level];
5232			if (ret == 0)
5233				slot++;
5234			goto next;
5235		}
5236
5237		if (level == 0)
5238			btrfs_item_key_to_cpu(c, key, slot);
5239		else {
5240			u64 gen = btrfs_node_ptr_generation(c, slot);
5241
5242			if (gen < min_trans) {
5243				slot++;
5244				goto next;
5245			}
5246			btrfs_node_key_to_cpu(c, key, slot);
5247		}
5248		return 0;
5249	}
5250	return 1;
5251}
5252
5253/*
5254 * search the tree again to find a leaf with greater keys
5255 * returns 0 if it found something or 1 if there are no greater leaves.
5256 * returns < 0 on io errors.
5257 */
5258int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5259{
5260	return btrfs_next_old_leaf(root, path, 0);
5261}
5262
5263int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5264			u64 time_seq)
5265{
5266	int slot;
5267	int level;
5268	struct extent_buffer *c;
5269	struct extent_buffer *next;
5270	struct btrfs_key key;
5271	u32 nritems;
5272	int ret;
5273	int old_spinning = path->leave_spinning;
5274	int next_rw_lock = 0;
5275
5276	nritems = btrfs_header_nritems(path->nodes[0]);
5277	if (nritems == 0)
5278		return 1;
5279
5280	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5281again:
5282	level = 1;
5283	next = NULL;
5284	next_rw_lock = 0;
5285	btrfs_release_path(path);
5286
5287	path->keep_locks = 1;
5288	path->leave_spinning = 1;
5289
5290	if (time_seq)
5291		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5292	else
5293		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5294	path->keep_locks = 0;
5295
5296	if (ret < 0)
5297		return ret;
5298
5299	nritems = btrfs_header_nritems(path->nodes[0]);
5300	/*
5301	 * by releasing the path above we dropped all our locks.  A balance
5302	 * could have added more items next to the key that used to be
5303	 * at the very end of the block.  So, check again here and
5304	 * advance the path if there are now more items available.
5305	 */
5306	if (nritems > 0 && path->slots[0] < nritems - 1) {
5307		if (ret == 0)
5308			path->slots[0]++;
5309		ret = 0;
5310		goto done;
5311	}
5312	/*
5313	 * So the above check misses one case:
5314	 * - after releasing the path above, someone has removed the item that
5315	 *   used to be at the very end of the block, and balance between leafs
5316	 *   gets another one with bigger key.offset to replace it.
5317	 *
5318	 * This one should be returned as well, or we can get leaf corruption
5319	 * later(esp. in __btrfs_drop_extents()).
5320	 *
5321	 * And a bit more explanation about this check,
5322	 * with ret > 0, the key isn't found, the path points to the slot
5323	 * where it should be inserted, so the path->slots[0] item must be the
5324	 * bigger one.
5325	 */
5326	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5327		ret = 0;
5328		goto done;
5329	}
5330
5331	while (level < BTRFS_MAX_LEVEL) {
5332		if (!path->nodes[level]) {
5333			ret = 1;
5334			goto done;
5335		}
5336
5337		slot = path->slots[level] + 1;
5338		c = path->nodes[level];
5339		if (slot >= btrfs_header_nritems(c)) {
5340			level++;
5341			if (level == BTRFS_MAX_LEVEL) {
5342				ret = 1;
5343				goto done;
5344			}
5345			continue;
5346		}
5347
5348		if (next) {
5349			btrfs_tree_unlock_rw(next, next_rw_lock);
5350			free_extent_buffer(next);
5351		}
5352
5353		next = c;
5354		next_rw_lock = path->locks[level];
5355		ret = read_block_for_search(root, path, &next, level,
5356					    slot, &key);
5357		if (ret == -EAGAIN)
5358			goto again;
5359
5360		if (ret < 0) {
5361			btrfs_release_path(path);
5362			goto done;
5363		}
5364
5365		if (!path->skip_locking) {
5366			ret = btrfs_try_tree_read_lock(next);
5367			if (!ret && time_seq) {
5368				/*
5369				 * If we don't get the lock, we may be racing
5370				 * with push_leaf_left, holding that lock while
5371				 * itself waiting for the leaf we've currently
5372				 * locked. To solve this situation, we give up
5373				 * on our lock and cycle.
5374				 */
5375				free_extent_buffer(next);
5376				btrfs_release_path(path);
5377				cond_resched();
5378				goto again;
5379			}
5380			if (!ret) {
5381				btrfs_set_path_blocking(path);
5382				btrfs_tree_read_lock(next);
 
 
5383			}
5384			next_rw_lock = BTRFS_READ_LOCK;
5385		}
5386		break;
5387	}
5388	path->slots[level] = slot;
5389	while (1) {
5390		level--;
5391		c = path->nodes[level];
5392		if (path->locks[level])
5393			btrfs_tree_unlock_rw(c, path->locks[level]);
5394
5395		free_extent_buffer(c);
5396		path->nodes[level] = next;
5397		path->slots[level] = 0;
5398		if (!path->skip_locking)
5399			path->locks[level] = next_rw_lock;
5400		if (!level)
5401			break;
5402
5403		ret = read_block_for_search(root, path, &next, level,
5404					    0, &key);
5405		if (ret == -EAGAIN)
5406			goto again;
5407
5408		if (ret < 0) {
5409			btrfs_release_path(path);
5410			goto done;
5411		}
5412
5413		if (!path->skip_locking) {
5414			ret = btrfs_try_tree_read_lock(next);
5415			if (!ret) {
5416				btrfs_set_path_blocking(path);
5417				btrfs_tree_read_lock(next);
 
 
5418			}
5419			next_rw_lock = BTRFS_READ_LOCK;
5420		}
5421	}
5422	ret = 0;
5423done:
5424	unlock_up(path, 0, 1, 0, NULL);
5425	path->leave_spinning = old_spinning;
5426	if (!old_spinning)
5427		btrfs_set_path_blocking(path);
5428
5429	return ret;
5430}
5431
5432/*
5433 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5434 * searching until it gets past min_objectid or finds an item of 'type'
5435 *
5436 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5437 */
5438int btrfs_previous_item(struct btrfs_root *root,
5439			struct btrfs_path *path, u64 min_objectid,
5440			int type)
5441{
5442	struct btrfs_key found_key;
5443	struct extent_buffer *leaf;
5444	u32 nritems;
5445	int ret;
5446
5447	while (1) {
5448		if (path->slots[0] == 0) {
5449			btrfs_set_path_blocking(path);
5450			ret = btrfs_prev_leaf(root, path);
5451			if (ret != 0)
5452				return ret;
5453		} else {
5454			path->slots[0]--;
5455		}
5456		leaf = path->nodes[0];
5457		nritems = btrfs_header_nritems(leaf);
5458		if (nritems == 0)
5459			return 1;
5460		if (path->slots[0] == nritems)
5461			path->slots[0]--;
5462
5463		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5464		if (found_key.objectid < min_objectid)
5465			break;
5466		if (found_key.type == type)
5467			return 0;
5468		if (found_key.objectid == min_objectid &&
5469		    found_key.type < type)
5470			break;
5471	}
5472	return 1;
5473}
5474
5475/*
5476 * search in extent tree to find a previous Metadata/Data extent item with
5477 * min objecitd.
5478 *
5479 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5480 */
5481int btrfs_previous_extent_item(struct btrfs_root *root,
5482			struct btrfs_path *path, u64 min_objectid)
5483{
5484	struct btrfs_key found_key;
5485	struct extent_buffer *leaf;
5486	u32 nritems;
5487	int ret;
5488
5489	while (1) {
5490		if (path->slots[0] == 0) {
5491			btrfs_set_path_blocking(path);
5492			ret = btrfs_prev_leaf(root, path);
5493			if (ret != 0)
5494				return ret;
5495		} else {
5496			path->slots[0]--;
5497		}
5498		leaf = path->nodes[0];
5499		nritems = btrfs_header_nritems(leaf);
5500		if (nritems == 0)
5501			return 1;
5502		if (path->slots[0] == nritems)
5503			path->slots[0]--;
5504
5505		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5506		if (found_key.objectid < min_objectid)
5507			break;
5508		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5509		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5510			return 0;
5511		if (found_key.objectid == min_objectid &&
5512		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5513			break;
5514	}
5515	return 1;
5516}
v4.10.11
 
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include <linux/vmalloc.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "print-tree.h"
  27#include "locking.h"
 
 
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  32		      *root, struct btrfs_key *ins_key,
  33		      struct btrfs_path *path, int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct btrfs_fs_info *fs_info,
  36			  struct extent_buffer *dst,
  37			  struct extent_buffer *src, int empty);
  38static int balance_node_right(struct btrfs_trans_handle *trans,
  39			      struct btrfs_fs_info *fs_info,
  40			      struct extent_buffer *dst_buf,
  41			      struct extent_buffer *src_buf);
  42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  43		    int level, int slot);
  44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  45				 struct extent_buffer *eb);
  46
  47struct btrfs_path *btrfs_alloc_path(void)
 
 
 
 
 
 
 
 
 
 
 
 
  48{
  49	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
 
 
 
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  57{
  58	int i;
  59	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60		if (!p->nodes[i] || !p->locks[i])
  61			continue;
  62		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63		if (p->locks[i] == BTRFS_READ_LOCK)
  64			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  66			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67	}
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79					struct extent_buffer *held, int held_rw)
  80{
  81	int i;
 
 
 
 
  82
  83	if (held) {
  84		btrfs_set_lock_blocking_rw(held, held_rw);
  85		if (held_rw == BTRFS_WRITE_LOCK)
  86			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  87		else if (held_rw == BTRFS_READ_LOCK)
  88			held_rw = BTRFS_READ_LOCK_BLOCKING;
  89	}
  90	btrfs_set_path_blocking(p);
  91
  92	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  93		if (p->nodes[i] && p->locks[i]) {
  94			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  95			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  96				p->locks[i] = BTRFS_WRITE_LOCK;
  97			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  98				p->locks[i] = BTRFS_READ_LOCK;
  99		}
 100	}
 101
 102	if (held)
 103		btrfs_clear_lock_blocking_rw(held, held_rw);
 104}
 105
 106/* this also releases the path */
 107void btrfs_free_path(struct btrfs_path *p)
 108{
 109	if (!p)
 110		return;
 111	btrfs_release_path(p);
 112	kmem_cache_free(btrfs_path_cachep, p);
 113}
 114
 115/*
 116 * path release drops references on the extent buffers in the path
 117 * and it drops any locks held by this path
 118 *
 119 * It is safe to call this on paths that no locks or extent buffers held.
 120 */
 121noinline void btrfs_release_path(struct btrfs_path *p)
 122{
 123	int i;
 124
 125	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 126		p->slots[i] = 0;
 127		if (!p->nodes[i])
 128			continue;
 129		if (p->locks[i]) {
 130			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 131			p->locks[i] = 0;
 132		}
 133		free_extent_buffer(p->nodes[i]);
 134		p->nodes[i] = NULL;
 135	}
 136}
 137
 138/*
 139 * safely gets a reference on the root node of a tree.  A lock
 140 * is not taken, so a concurrent writer may put a different node
 141 * at the root of the tree.  See btrfs_lock_root_node for the
 142 * looping required.
 143 *
 144 * The extent buffer returned by this has a reference taken, so
 145 * it won't disappear.  It may stop being the root of the tree
 146 * at any time because there are no locks held.
 147 */
 148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 149{
 150	struct extent_buffer *eb;
 151
 152	while (1) {
 153		rcu_read_lock();
 154		eb = rcu_dereference(root->node);
 155
 156		/*
 157		 * RCU really hurts here, we could free up the root node because
 158		 * it was COWed but we may not get the new root node yet so do
 159		 * the inc_not_zero dance and if it doesn't work then
 160		 * synchronize_rcu and try again.
 161		 */
 162		if (atomic_inc_not_zero(&eb->refs)) {
 163			rcu_read_unlock();
 164			break;
 165		}
 166		rcu_read_unlock();
 167		synchronize_rcu();
 168	}
 169	return eb;
 170}
 171
 172/* loop around taking references on and locking the root node of the
 173 * tree until you end up with a lock on the root.  A locked buffer
 174 * is returned, with a reference held.
 175 */
 176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 177{
 178	struct extent_buffer *eb;
 179
 180	while (1) {
 181		eb = btrfs_root_node(root);
 182		btrfs_tree_lock(eb);
 183		if (eb == root->node)
 184			break;
 185		btrfs_tree_unlock(eb);
 186		free_extent_buffer(eb);
 187	}
 188	return eb;
 189}
 190
 191/* loop around taking references on and locking the root node of the
 192 * tree until you end up with a lock on the root.  A locked buffer
 193 * is returned, with a reference held.
 194 */
 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 196{
 197	struct extent_buffer *eb;
 198
 199	while (1) {
 200		eb = btrfs_root_node(root);
 201		btrfs_tree_read_lock(eb);
 202		if (eb == root->node)
 203			break;
 204		btrfs_tree_read_unlock(eb);
 205		free_extent_buffer(eb);
 206	}
 207	return eb;
 208}
 209
 210/* cowonly root (everything not a reference counted cow subvolume), just get
 211 * put onto a simple dirty list.  transaction.c walks this to make sure they
 212 * get properly updated on disk.
 213 */
 214static void add_root_to_dirty_list(struct btrfs_root *root)
 215{
 216	struct btrfs_fs_info *fs_info = root->fs_info;
 217
 218	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 219	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 220		return;
 221
 222	spin_lock(&fs_info->trans_lock);
 223	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 224		/* Want the extent tree to be the last on the list */
 225		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 226			list_move_tail(&root->dirty_list,
 227				       &fs_info->dirty_cowonly_roots);
 228		else
 229			list_move(&root->dirty_list,
 230				  &fs_info->dirty_cowonly_roots);
 231	}
 232	spin_unlock(&fs_info->trans_lock);
 233}
 234
 235/*
 236 * used by snapshot creation to make a copy of a root for a tree with
 237 * a given objectid.  The buffer with the new root node is returned in
 238 * cow_ret, and this func returns zero on success or a negative error code.
 239 */
 240int btrfs_copy_root(struct btrfs_trans_handle *trans,
 241		      struct btrfs_root *root,
 242		      struct extent_buffer *buf,
 243		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 244{
 245	struct btrfs_fs_info *fs_info = root->fs_info;
 246	struct extent_buffer *cow;
 247	int ret = 0;
 248	int level;
 249	struct btrfs_disk_key disk_key;
 250
 251	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 252		trans->transid != fs_info->running_transaction->transid);
 253	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 254		trans->transid != root->last_trans);
 255
 256	level = btrfs_header_level(buf);
 257	if (level == 0)
 258		btrfs_item_key(buf, &disk_key, 0);
 259	else
 260		btrfs_node_key(buf, &disk_key, 0);
 261
 262	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 263			&disk_key, level, buf->start, 0);
 264	if (IS_ERR(cow))
 265		return PTR_ERR(cow);
 266
 267	copy_extent_buffer_full(cow, buf);
 268	btrfs_set_header_bytenr(cow, cow->start);
 269	btrfs_set_header_generation(cow, trans->transid);
 270	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 271	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 272				     BTRFS_HEADER_FLAG_RELOC);
 273	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 274		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 275	else
 276		btrfs_set_header_owner(cow, new_root_objectid);
 277
 278	write_extent_buffer_fsid(cow, fs_info->fsid);
 279
 280	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 281	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 282		ret = btrfs_inc_ref(trans, root, cow, 1);
 283	else
 284		ret = btrfs_inc_ref(trans, root, cow, 0);
 285
 286	if (ret)
 287		return ret;
 288
 289	btrfs_mark_buffer_dirty(cow);
 290	*cow_ret = cow;
 291	return 0;
 292}
 293
 294enum mod_log_op {
 295	MOD_LOG_KEY_REPLACE,
 296	MOD_LOG_KEY_ADD,
 297	MOD_LOG_KEY_REMOVE,
 298	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 299	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 300	MOD_LOG_MOVE_KEYS,
 301	MOD_LOG_ROOT_REPLACE,
 302};
 303
 304struct tree_mod_move {
 305	int dst_slot;
 306	int nr_items;
 307};
 308
 309struct tree_mod_root {
 310	u64 logical;
 311	u8 level;
 312};
 313
 314struct tree_mod_elem {
 315	struct rb_node node;
 316	u64 logical;
 317	u64 seq;
 318	enum mod_log_op op;
 319
 320	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 321	int slot;
 322
 323	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 324	u64 generation;
 325
 326	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 327	struct btrfs_disk_key key;
 328	u64 blockptr;
 329
 330	/* this is used for op == MOD_LOG_MOVE_KEYS */
 331	struct tree_mod_move move;
 
 
 
 332
 333	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 334	struct tree_mod_root old_root;
 335};
 336
 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 338{
 339	read_lock(&fs_info->tree_mod_log_lock);
 340}
 341
 342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 343{
 344	read_unlock(&fs_info->tree_mod_log_lock);
 345}
 346
 347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 348{
 349	write_lock(&fs_info->tree_mod_log_lock);
 350}
 351
 352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 353{
 354	write_unlock(&fs_info->tree_mod_log_lock);
 355}
 356
 357/*
 358 * Pull a new tree mod seq number for our operation.
 359 */
 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 361{
 362	return atomic64_inc_return(&fs_info->tree_mod_seq);
 363}
 364
 365/*
 366 * This adds a new blocker to the tree mod log's blocker list if the @elem
 367 * passed does not already have a sequence number set. So when a caller expects
 368 * to record tree modifications, it should ensure to set elem->seq to zero
 369 * before calling btrfs_get_tree_mod_seq.
 370 * Returns a fresh, unused tree log modification sequence number, even if no new
 371 * blocker was added.
 372 */
 373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 374			   struct seq_list *elem)
 375{
 376	tree_mod_log_write_lock(fs_info);
 377	spin_lock(&fs_info->tree_mod_seq_lock);
 378	if (!elem->seq) {
 379		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 380		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 381	}
 382	spin_unlock(&fs_info->tree_mod_seq_lock);
 383	tree_mod_log_write_unlock(fs_info);
 384
 385	return elem->seq;
 386}
 387
 388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 389			    struct seq_list *elem)
 390{
 391	struct rb_root *tm_root;
 392	struct rb_node *node;
 393	struct rb_node *next;
 394	struct seq_list *cur_elem;
 395	struct tree_mod_elem *tm;
 396	u64 min_seq = (u64)-1;
 397	u64 seq_putting = elem->seq;
 398
 399	if (!seq_putting)
 400		return;
 401
 402	spin_lock(&fs_info->tree_mod_seq_lock);
 403	list_del(&elem->list);
 404	elem->seq = 0;
 405
 406	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 407		if (cur_elem->seq < min_seq) {
 408			if (seq_putting > cur_elem->seq) {
 409				/*
 410				 * blocker with lower sequence number exists, we
 411				 * cannot remove anything from the log
 412				 */
 413				spin_unlock(&fs_info->tree_mod_seq_lock);
 414				return;
 415			}
 416			min_seq = cur_elem->seq;
 
 417		}
 
 418	}
 419	spin_unlock(&fs_info->tree_mod_seq_lock);
 420
 421	/*
 422	 * anything that's lower than the lowest existing (read: blocked)
 423	 * sequence number can be removed from the tree.
 424	 */
 425	tree_mod_log_write_lock(fs_info);
 426	tm_root = &fs_info->tree_mod_log;
 427	for (node = rb_first(tm_root); node; node = next) {
 428		next = rb_next(node);
 429		tm = container_of(node, struct tree_mod_elem, node);
 430		if (tm->seq > min_seq)
 431			continue;
 432		rb_erase(node, tm_root);
 433		kfree(tm);
 434	}
 435	tree_mod_log_write_unlock(fs_info);
 436}
 437
 438/*
 439 * key order of the log:
 440 *       node/leaf start address -> sequence
 441 *
 442 * The 'start address' is the logical address of the *new* root node
 443 * for root replace operations, or the logical address of the affected
 444 * block for all other operations.
 445 *
 446 * Note: must be called with write lock (tree_mod_log_write_lock).
 447 */
 448static noinline int
 449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 450{
 451	struct rb_root *tm_root;
 452	struct rb_node **new;
 453	struct rb_node *parent = NULL;
 454	struct tree_mod_elem *cur;
 455
 456	BUG_ON(!tm);
 457
 458	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 459
 460	tm_root = &fs_info->tree_mod_log;
 461	new = &tm_root->rb_node;
 462	while (*new) {
 463		cur = container_of(*new, struct tree_mod_elem, node);
 464		parent = *new;
 465		if (cur->logical < tm->logical)
 466			new = &((*new)->rb_left);
 467		else if (cur->logical > tm->logical)
 468			new = &((*new)->rb_right);
 469		else if (cur->seq < tm->seq)
 470			new = &((*new)->rb_left);
 471		else if (cur->seq > tm->seq)
 472			new = &((*new)->rb_right);
 473		else
 474			return -EEXIST;
 475	}
 476
 477	rb_link_node(&tm->node, parent, new);
 478	rb_insert_color(&tm->node, tm_root);
 479	return 0;
 480}
 481
 482/*
 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 485 * this until all tree mod log insertions are recorded in the rb tree and then
 486 * call tree_mod_log_write_unlock() to release.
 487 */
 488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 489				    struct extent_buffer *eb) {
 490	smp_mb();
 491	if (list_empty(&(fs_info)->tree_mod_seq_list))
 492		return 1;
 493	if (eb && btrfs_header_level(eb) == 0)
 494		return 1;
 495
 496	tree_mod_log_write_lock(fs_info);
 497	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 498		tree_mod_log_write_unlock(fs_info);
 499		return 1;
 500	}
 501
 502	return 0;
 503}
 504
 505/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 506static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 507				    struct extent_buffer *eb)
 508{
 509	smp_mb();
 510	if (list_empty(&(fs_info)->tree_mod_seq_list))
 511		return 0;
 512	if (eb && btrfs_header_level(eb) == 0)
 513		return 0;
 514
 515	return 1;
 516}
 517
 518static struct tree_mod_elem *
 519alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 520		    enum mod_log_op op, gfp_t flags)
 521{
 522	struct tree_mod_elem *tm;
 523
 524	tm = kzalloc(sizeof(*tm), flags);
 525	if (!tm)
 526		return NULL;
 527
 528	tm->logical = eb->start;
 529	if (op != MOD_LOG_KEY_ADD) {
 530		btrfs_node_key(eb, &tm->key, slot);
 531		tm->blockptr = btrfs_node_blockptr(eb, slot);
 532	}
 533	tm->op = op;
 534	tm->slot = slot;
 535	tm->generation = btrfs_node_ptr_generation(eb, slot);
 536	RB_CLEAR_NODE(&tm->node);
 537
 538	return tm;
 539}
 540
 541static noinline int
 542tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 543			struct extent_buffer *eb, int slot,
 544			enum mod_log_op op, gfp_t flags)
 545{
 546	struct tree_mod_elem *tm;
 547	int ret;
 548
 549	if (!tree_mod_need_log(fs_info, eb))
 550		return 0;
 551
 552	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 553	if (!tm)
 554		return -ENOMEM;
 555
 556	if (tree_mod_dont_log(fs_info, eb)) {
 557		kfree(tm);
 558		return 0;
 559	}
 560
 561	ret = __tree_mod_log_insert(fs_info, tm);
 562	tree_mod_log_write_unlock(fs_info);
 563	if (ret)
 564		kfree(tm);
 565
 566	return ret;
 567}
 568
 569static noinline int
 570tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 571			 struct extent_buffer *eb, int dst_slot, int src_slot,
 572			 int nr_items, gfp_t flags)
 573{
 574	struct tree_mod_elem *tm = NULL;
 575	struct tree_mod_elem **tm_list = NULL;
 576	int ret = 0;
 577	int i;
 578	int locked = 0;
 579
 580	if (!tree_mod_need_log(fs_info, eb))
 581		return 0;
 582
 583	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
 584	if (!tm_list)
 585		return -ENOMEM;
 586
 587	tm = kzalloc(sizeof(*tm), flags);
 588	if (!tm) {
 589		ret = -ENOMEM;
 590		goto free_tms;
 591	}
 592
 593	tm->logical = eb->start;
 594	tm->slot = src_slot;
 595	tm->move.dst_slot = dst_slot;
 596	tm->move.nr_items = nr_items;
 597	tm->op = MOD_LOG_MOVE_KEYS;
 598
 599	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 600		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 601		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 602		if (!tm_list[i]) {
 603			ret = -ENOMEM;
 604			goto free_tms;
 605		}
 606	}
 607
 608	if (tree_mod_dont_log(fs_info, eb))
 609		goto free_tms;
 610	locked = 1;
 611
 612	/*
 613	 * When we override something during the move, we log these removals.
 614	 * This can only happen when we move towards the beginning of the
 615	 * buffer, i.e. dst_slot < src_slot.
 616	 */
 617	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 618		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 619		if (ret)
 620			goto free_tms;
 621	}
 622
 623	ret = __tree_mod_log_insert(fs_info, tm);
 624	if (ret)
 625		goto free_tms;
 626	tree_mod_log_write_unlock(fs_info);
 627	kfree(tm_list);
 628
 629	return 0;
 630free_tms:
 631	for (i = 0; i < nr_items; i++) {
 632		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 633			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 634		kfree(tm_list[i]);
 635	}
 636	if (locked)
 637		tree_mod_log_write_unlock(fs_info);
 638	kfree(tm_list);
 639	kfree(tm);
 640
 641	return ret;
 642}
 643
 644static inline int
 645__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 646		       struct tree_mod_elem **tm_list,
 647		       int nritems)
 648{
 649	int i, j;
 650	int ret;
 651
 652	for (i = nritems - 1; i >= 0; i--) {
 653		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 654		if (ret) {
 655			for (j = nritems - 1; j > i; j--)
 656				rb_erase(&tm_list[j]->node,
 657					 &fs_info->tree_mod_log);
 658			return ret;
 659		}
 660	}
 661
 662	return 0;
 663}
 664
 665static noinline int
 666tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 667			 struct extent_buffer *old_root,
 668			 struct extent_buffer *new_root, gfp_t flags,
 669			 int log_removal)
 670{
 
 671	struct tree_mod_elem *tm = NULL;
 672	struct tree_mod_elem **tm_list = NULL;
 673	int nritems = 0;
 674	int ret = 0;
 675	int i;
 676
 677	if (!tree_mod_need_log(fs_info, NULL))
 678		return 0;
 679
 680	if (log_removal && btrfs_header_level(old_root) > 0) {
 681		nritems = btrfs_header_nritems(old_root);
 682		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 683				  flags);
 684		if (!tm_list) {
 685			ret = -ENOMEM;
 686			goto free_tms;
 687		}
 688		for (i = 0; i < nritems; i++) {
 689			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 690			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 691			if (!tm_list[i]) {
 692				ret = -ENOMEM;
 693				goto free_tms;
 694			}
 695		}
 696	}
 697
 698	tm = kzalloc(sizeof(*tm), flags);
 699	if (!tm) {
 700		ret = -ENOMEM;
 701		goto free_tms;
 702	}
 703
 704	tm->logical = new_root->start;
 705	tm->old_root.logical = old_root->start;
 706	tm->old_root.level = btrfs_header_level(old_root);
 707	tm->generation = btrfs_header_generation(old_root);
 708	tm->op = MOD_LOG_ROOT_REPLACE;
 709
 710	if (tree_mod_dont_log(fs_info, NULL))
 711		goto free_tms;
 712
 713	if (tm_list)
 714		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 715	if (!ret)
 716		ret = __tree_mod_log_insert(fs_info, tm);
 717
 718	tree_mod_log_write_unlock(fs_info);
 719	if (ret)
 720		goto free_tms;
 721	kfree(tm_list);
 722
 723	return ret;
 724
 725free_tms:
 726	if (tm_list) {
 727		for (i = 0; i < nritems; i++)
 728			kfree(tm_list[i]);
 729		kfree(tm_list);
 730	}
 731	kfree(tm);
 732
 733	return ret;
 734}
 735
 736static struct tree_mod_elem *
 737__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 738		      int smallest)
 739{
 740	struct rb_root *tm_root;
 741	struct rb_node *node;
 742	struct tree_mod_elem *cur = NULL;
 743	struct tree_mod_elem *found = NULL;
 744
 745	tree_mod_log_read_lock(fs_info);
 746	tm_root = &fs_info->tree_mod_log;
 747	node = tm_root->rb_node;
 748	while (node) {
 749		cur = container_of(node, struct tree_mod_elem, node);
 750		if (cur->logical < start) {
 751			node = node->rb_left;
 752		} else if (cur->logical > start) {
 753			node = node->rb_right;
 754		} else if (cur->seq < min_seq) {
 755			node = node->rb_left;
 756		} else if (!smallest) {
 757			/* we want the node with the highest seq */
 758			if (found)
 759				BUG_ON(found->seq > cur->seq);
 760			found = cur;
 761			node = node->rb_left;
 762		} else if (cur->seq > min_seq) {
 763			/* we want the node with the smallest seq */
 764			if (found)
 765				BUG_ON(found->seq < cur->seq);
 766			found = cur;
 767			node = node->rb_right;
 768		} else {
 769			found = cur;
 770			break;
 771		}
 772	}
 773	tree_mod_log_read_unlock(fs_info);
 774
 775	return found;
 776}
 777
 778/*
 779 * this returns the element from the log with the smallest time sequence
 780 * value that's in the log (the oldest log item). any element with a time
 781 * sequence lower than min_seq will be ignored.
 782 */
 783static struct tree_mod_elem *
 784tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 785			   u64 min_seq)
 786{
 787	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 788}
 789
 790/*
 791 * this returns the element from the log with the largest time sequence
 792 * value that's in the log (the most recent log item). any element with
 793 * a time sequence lower than min_seq will be ignored.
 794 */
 795static struct tree_mod_elem *
 796tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 797{
 798	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 799}
 800
 801static noinline int
 802tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 803		     struct extent_buffer *src, unsigned long dst_offset,
 804		     unsigned long src_offset, int nr_items)
 805{
 
 806	int ret = 0;
 807	struct tree_mod_elem **tm_list = NULL;
 808	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 809	int i;
 810	int locked = 0;
 811
 812	if (!tree_mod_need_log(fs_info, NULL))
 813		return 0;
 814
 815	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 816		return 0;
 817
 818	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 819			  GFP_NOFS);
 820	if (!tm_list)
 821		return -ENOMEM;
 822
 823	tm_list_add = tm_list;
 824	tm_list_rem = tm_list + nr_items;
 825	for (i = 0; i < nr_items; i++) {
 826		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 827		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 828		if (!tm_list_rem[i]) {
 829			ret = -ENOMEM;
 830			goto free_tms;
 831		}
 832
 833		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 834		    MOD_LOG_KEY_ADD, GFP_NOFS);
 835		if (!tm_list_add[i]) {
 836			ret = -ENOMEM;
 837			goto free_tms;
 838		}
 839	}
 840
 841	if (tree_mod_dont_log(fs_info, NULL))
 842		goto free_tms;
 843	locked = 1;
 844
 845	for (i = 0; i < nr_items; i++) {
 846		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 847		if (ret)
 848			goto free_tms;
 849		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 850		if (ret)
 851			goto free_tms;
 852	}
 853
 854	tree_mod_log_write_unlock(fs_info);
 855	kfree(tm_list);
 856
 857	return 0;
 858
 859free_tms:
 860	for (i = 0; i < nr_items * 2; i++) {
 861		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 862			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 863		kfree(tm_list[i]);
 864	}
 865	if (locked)
 866		tree_mod_log_write_unlock(fs_info);
 867	kfree(tm_list);
 868
 869	return ret;
 870}
 871
 872static inline void
 873tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 874		     int dst_offset, int src_offset, int nr_items)
 875{
 876	int ret;
 877	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 878				       nr_items, GFP_NOFS);
 879	BUG_ON(ret < 0);
 880}
 881
 882static noinline void
 883tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 884			  struct extent_buffer *eb, int slot, int atomic)
 885{
 886	int ret;
 887
 888	ret = tree_mod_log_insert_key(fs_info, eb, slot,
 889					MOD_LOG_KEY_REPLACE,
 890					atomic ? GFP_ATOMIC : GFP_NOFS);
 891	BUG_ON(ret < 0);
 892}
 893
 894static noinline int
 895tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 896{
 897	struct tree_mod_elem **tm_list = NULL;
 898	int nritems = 0;
 899	int i;
 900	int ret = 0;
 901
 902	if (btrfs_header_level(eb) == 0)
 903		return 0;
 904
 905	if (!tree_mod_need_log(fs_info, NULL))
 906		return 0;
 907
 908	nritems = btrfs_header_nritems(eb);
 909	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 910	if (!tm_list)
 911		return -ENOMEM;
 912
 913	for (i = 0; i < nritems; i++) {
 914		tm_list[i] = alloc_tree_mod_elem(eb, i,
 915		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 916		if (!tm_list[i]) {
 917			ret = -ENOMEM;
 918			goto free_tms;
 919		}
 920	}
 921
 922	if (tree_mod_dont_log(fs_info, eb))
 923		goto free_tms;
 924
 925	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 926	tree_mod_log_write_unlock(fs_info);
 927	if (ret)
 928		goto free_tms;
 929	kfree(tm_list);
 930
 931	return 0;
 932
 933free_tms:
 934	for (i = 0; i < nritems; i++)
 935		kfree(tm_list[i]);
 936	kfree(tm_list);
 937
 938	return ret;
 939}
 940
 941static noinline void
 942tree_mod_log_set_root_pointer(struct btrfs_root *root,
 943			      struct extent_buffer *new_root_node,
 944			      int log_removal)
 945{
 946	int ret;
 947	ret = tree_mod_log_insert_root(root->fs_info, root->node,
 948				       new_root_node, GFP_NOFS, log_removal);
 949	BUG_ON(ret < 0);
 950}
 951
 952/*
 953 * check if the tree block can be shared by multiple trees
 954 */
 955int btrfs_block_can_be_shared(struct btrfs_root *root,
 956			      struct extent_buffer *buf)
 957{
 958	/*
 959	 * Tree blocks not in reference counted trees and tree roots
 960	 * are never shared. If a block was allocated after the last
 961	 * snapshot and the block was not allocated by tree relocation,
 962	 * we know the block is not shared.
 963	 */
 964	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 965	    buf != root->node && buf != root->commit_root &&
 966	    (btrfs_header_generation(buf) <=
 967	     btrfs_root_last_snapshot(&root->root_item) ||
 968	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 969		return 1;
 970#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 971	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 972	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 973		return 1;
 974#endif
 975	return 0;
 976}
 977
 978static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 979				       struct btrfs_root *root,
 980				       struct extent_buffer *buf,
 981				       struct extent_buffer *cow,
 982				       int *last_ref)
 983{
 984	struct btrfs_fs_info *fs_info = root->fs_info;
 985	u64 refs;
 986	u64 owner;
 987	u64 flags;
 988	u64 new_flags = 0;
 989	int ret;
 990
 991	/*
 992	 * Backrefs update rules:
 993	 *
 994	 * Always use full backrefs for extent pointers in tree block
 995	 * allocated by tree relocation.
 996	 *
 997	 * If a shared tree block is no longer referenced by its owner
 998	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 999	 * use full backrefs for extent pointers in tree block.
1000	 *
1001	 * If a tree block is been relocating
1002	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1003	 * use full backrefs for extent pointers in tree block.
1004	 * The reason for this is some operations (such as drop tree)
1005	 * are only allowed for blocks use full backrefs.
1006	 */
1007
1008	if (btrfs_block_can_be_shared(root, buf)) {
1009		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1010					       btrfs_header_level(buf), 1,
1011					       &refs, &flags);
1012		if (ret)
1013			return ret;
1014		if (refs == 0) {
1015			ret = -EROFS;
1016			btrfs_handle_fs_error(fs_info, ret, NULL);
1017			return ret;
1018		}
1019	} else {
1020		refs = 1;
1021		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024		else
1025			flags = 0;
1026	}
1027
1028	owner = btrfs_header_owner(buf);
1029	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1030	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031
1032	if (refs > 1) {
1033		if ((owner == root->root_key.objectid ||
1034		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1035		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1036			ret = btrfs_inc_ref(trans, root, buf, 1);
1037			BUG_ON(ret); /* -ENOMEM */
 
1038
1039			if (root->root_key.objectid ==
1040			    BTRFS_TREE_RELOC_OBJECTID) {
1041				ret = btrfs_dec_ref(trans, root, buf, 0);
1042				BUG_ON(ret); /* -ENOMEM */
 
1043				ret = btrfs_inc_ref(trans, root, cow, 1);
1044				BUG_ON(ret); /* -ENOMEM */
 
1045			}
1046			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047		} else {
1048
1049			if (root->root_key.objectid ==
1050			    BTRFS_TREE_RELOC_OBJECTID)
1051				ret = btrfs_inc_ref(trans, root, cow, 1);
1052			else
1053				ret = btrfs_inc_ref(trans, root, cow, 0);
1054			BUG_ON(ret); /* -ENOMEM */
 
1055		}
1056		if (new_flags != 0) {
1057			int level = btrfs_header_level(buf);
1058
1059			ret = btrfs_set_disk_extent_flags(trans, fs_info,
1060							  buf->start,
1061							  buf->len,
1062							  new_flags, level, 0);
1063			if (ret)
1064				return ret;
1065		}
1066	} else {
1067		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1068			if (root->root_key.objectid ==
1069			    BTRFS_TREE_RELOC_OBJECTID)
1070				ret = btrfs_inc_ref(trans, root, cow, 1);
1071			else
1072				ret = btrfs_inc_ref(trans, root, cow, 0);
1073			BUG_ON(ret); /* -ENOMEM */
 
1074			ret = btrfs_dec_ref(trans, root, buf, 1);
1075			BUG_ON(ret); /* -ENOMEM */
 
1076		}
1077		clean_tree_block(trans, fs_info, buf);
1078		*last_ref = 1;
1079	}
1080	return 0;
1081}
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083/*
1084 * does the dirty work in cow of a single block.  The parent block (if
1085 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1086 * dirty and returned locked.  If you modify the block it needs to be marked
1087 * dirty again.
1088 *
1089 * search_start -- an allocation hint for the new block
1090 *
1091 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1092 * bytes the allocator should try to find free next to the block it returns.
1093 * This is just a hint and may be ignored by the allocator.
1094 */
1095static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1096			     struct btrfs_root *root,
1097			     struct extent_buffer *buf,
1098			     struct extent_buffer *parent, int parent_slot,
1099			     struct extent_buffer **cow_ret,
1100			     u64 search_start, u64 empty_size)
1101{
1102	struct btrfs_fs_info *fs_info = root->fs_info;
1103	struct btrfs_disk_key disk_key;
1104	struct extent_buffer *cow;
1105	int level, ret;
1106	int last_ref = 0;
1107	int unlock_orig = 0;
1108	u64 parent_start = 0;
1109
1110	if (*cow_ret == buf)
1111		unlock_orig = 1;
1112
1113	btrfs_assert_tree_locked(buf);
1114
1115	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116		trans->transid != fs_info->running_transaction->transid);
1117	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118		trans->transid != root->last_trans);
1119
1120	level = btrfs_header_level(buf);
1121
1122	if (level == 0)
1123		btrfs_item_key(buf, &disk_key, 0);
1124	else
1125		btrfs_node_key(buf, &disk_key, 0);
1126
1127	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128		parent_start = parent->start;
1129
1130	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131			root->root_key.objectid, &disk_key, level,
1132			search_start, empty_size);
1133	if (IS_ERR(cow))
1134		return PTR_ERR(cow);
1135
1136	/* cow is set to blocking by btrfs_init_new_buffer */
1137
1138	copy_extent_buffer_full(cow, buf);
1139	btrfs_set_header_bytenr(cow, cow->start);
1140	btrfs_set_header_generation(cow, trans->transid);
1141	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143				     BTRFS_HEADER_FLAG_RELOC);
1144	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146	else
1147		btrfs_set_header_owner(cow, root->root_key.objectid);
1148
1149	write_extent_buffer_fsid(cow, fs_info->fsid);
1150
1151	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1152	if (ret) {
1153		btrfs_abort_transaction(trans, ret);
1154		return ret;
1155	}
1156
1157	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1158		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1159		if (ret) {
1160			btrfs_abort_transaction(trans, ret);
1161			return ret;
1162		}
1163	}
1164
1165	if (buf == root->node) {
1166		WARN_ON(parent && parent != buf);
1167		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169			parent_start = buf->start;
1170
1171		extent_buffer_get(cow);
1172		tree_mod_log_set_root_pointer(root, cow, 1);
 
1173		rcu_assign_pointer(root->node, cow);
1174
1175		btrfs_free_tree_block(trans, root, buf, parent_start,
1176				      last_ref);
1177		free_extent_buffer(buf);
1178		add_root_to_dirty_list(root);
1179	} else {
1180		WARN_ON(trans->transid != btrfs_header_generation(parent));
1181		tree_mod_log_insert_key(fs_info, parent, parent_slot,
1182					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1183		btrfs_set_node_blockptr(parent, parent_slot,
1184					cow->start);
1185		btrfs_set_node_ptr_generation(parent, parent_slot,
1186					      trans->transid);
1187		btrfs_mark_buffer_dirty(parent);
1188		if (last_ref) {
1189			ret = tree_mod_log_free_eb(fs_info, buf);
1190			if (ret) {
1191				btrfs_abort_transaction(trans, ret);
1192				return ret;
1193			}
1194		}
1195		btrfs_free_tree_block(trans, root, buf, parent_start,
1196				      last_ref);
1197	}
1198	if (unlock_orig)
1199		btrfs_tree_unlock(buf);
1200	free_extent_buffer_stale(buf);
1201	btrfs_mark_buffer_dirty(cow);
1202	*cow_ret = cow;
1203	return 0;
1204}
1205
1206/*
1207 * returns the logical address of the oldest predecessor of the given root.
1208 * entries older than time_seq are ignored.
1209 */
1210static struct tree_mod_elem *
1211__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1212			   struct extent_buffer *eb_root, u64 time_seq)
1213{
1214	struct tree_mod_elem *tm;
1215	struct tree_mod_elem *found = NULL;
1216	u64 root_logical = eb_root->start;
1217	int looped = 0;
1218
1219	if (!time_seq)
1220		return NULL;
1221
1222	/*
1223	 * the very last operation that's logged for a root is the
1224	 * replacement operation (if it is replaced at all). this has
1225	 * the logical address of the *new* root, making it the very
1226	 * first operation that's logged for this root.
1227	 */
1228	while (1) {
1229		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230						time_seq);
1231		if (!looped && !tm)
1232			return NULL;
1233		/*
1234		 * if there are no tree operation for the oldest root, we simply
1235		 * return it. this should only happen if that (old) root is at
1236		 * level 0.
1237		 */
1238		if (!tm)
1239			break;
1240
1241		/*
1242		 * if there's an operation that's not a root replacement, we
1243		 * found the oldest version of our root. normally, we'll find a
1244		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245		 */
1246		if (tm->op != MOD_LOG_ROOT_REPLACE)
1247			break;
1248
1249		found = tm;
1250		root_logical = tm->old_root.logical;
1251		looped = 1;
1252	}
1253
1254	/* if there's no old root to return, return what we found instead */
1255	if (!found)
1256		found = tm;
1257
1258	return found;
1259}
1260
1261/*
1262 * tm is a pointer to the first operation to rewind within eb. then, all
1263 * previous operations will be rewound (until we reach something older than
1264 * time_seq).
1265 */
1266static void
1267__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268		      u64 time_seq, struct tree_mod_elem *first_tm)
1269{
1270	u32 n;
1271	struct rb_node *next;
1272	struct tree_mod_elem *tm = first_tm;
1273	unsigned long o_dst;
1274	unsigned long o_src;
1275	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276
1277	n = btrfs_header_nritems(eb);
1278	tree_mod_log_read_lock(fs_info);
1279	while (tm && tm->seq >= time_seq) {
1280		/*
1281		 * all the operations are recorded with the operator used for
1282		 * the modification. as we're going backwards, we do the
1283		 * opposite of each operation here.
1284		 */
1285		switch (tm->op) {
1286		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287			BUG_ON(tm->slot < n);
1288			/* Fallthrough */
1289		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1290		case MOD_LOG_KEY_REMOVE:
1291			btrfs_set_node_key(eb, &tm->key, tm->slot);
1292			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293			btrfs_set_node_ptr_generation(eb, tm->slot,
1294						      tm->generation);
1295			n++;
1296			break;
1297		case MOD_LOG_KEY_REPLACE:
1298			BUG_ON(tm->slot >= n);
1299			btrfs_set_node_key(eb, &tm->key, tm->slot);
1300			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301			btrfs_set_node_ptr_generation(eb, tm->slot,
1302						      tm->generation);
1303			break;
1304		case MOD_LOG_KEY_ADD:
1305			/* if a move operation is needed it's in the log */
1306			n--;
1307			break;
1308		case MOD_LOG_MOVE_KEYS:
1309			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311			memmove_extent_buffer(eb, o_dst, o_src,
1312					      tm->move.nr_items * p_size);
1313			break;
1314		case MOD_LOG_ROOT_REPLACE:
1315			/*
1316			 * this operation is special. for roots, this must be
1317			 * handled explicitly before rewinding.
1318			 * for non-roots, this operation may exist if the node
1319			 * was a root: root A -> child B; then A gets empty and
1320			 * B is promoted to the new root. in the mod log, we'll
1321			 * have a root-replace operation for B, a tree block
1322			 * that is no root. we simply ignore that operation.
1323			 */
1324			break;
1325		}
1326		next = rb_next(&tm->node);
1327		if (!next)
1328			break;
1329		tm = container_of(next, struct tree_mod_elem, node);
1330		if (tm->logical != first_tm->logical)
1331			break;
1332	}
1333	tree_mod_log_read_unlock(fs_info);
1334	btrfs_set_header_nritems(eb, n);
1335}
1336
1337/*
1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1340 * returned buffer is always read-locked. If the returned buffer is not the
1341 * input buffer, the lock on the input buffer is released and the input buffer
1342 * is freed (its refcount is decremented).
1343 */
1344static struct extent_buffer *
1345tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346		    struct extent_buffer *eb, u64 time_seq)
1347{
1348	struct extent_buffer *eb_rewin;
1349	struct tree_mod_elem *tm;
1350
1351	if (!time_seq)
1352		return eb;
1353
1354	if (btrfs_header_level(eb) == 0)
1355		return eb;
1356
1357	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358	if (!tm)
1359		return eb;
1360
1361	btrfs_set_path_blocking(path);
1362	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363
1364	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365		BUG_ON(tm->slot != 0);
1366		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1367		if (!eb_rewin) {
1368			btrfs_tree_read_unlock_blocking(eb);
1369			free_extent_buffer(eb);
1370			return NULL;
1371		}
1372		btrfs_set_header_bytenr(eb_rewin, eb->start);
1373		btrfs_set_header_backref_rev(eb_rewin,
1374					     btrfs_header_backref_rev(eb));
1375		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1376		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1377	} else {
1378		eb_rewin = btrfs_clone_extent_buffer(eb);
1379		if (!eb_rewin) {
1380			btrfs_tree_read_unlock_blocking(eb);
1381			free_extent_buffer(eb);
1382			return NULL;
1383		}
1384	}
1385
1386	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387	btrfs_tree_read_unlock_blocking(eb);
1388	free_extent_buffer(eb);
1389
1390	extent_buffer_get(eb_rewin);
 
1391	btrfs_tree_read_lock(eb_rewin);
1392	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1393	WARN_ON(btrfs_header_nritems(eb_rewin) >
1394		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1395
1396	return eb_rewin;
1397}
1398
1399/*
1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401 * value. If there are no changes, the current root->root_node is returned. If
1402 * anything changed in between, there's a fresh buffer allocated on which the
1403 * rewind operations are done. In any case, the returned buffer is read locked.
1404 * Returns NULL on error (with no locks held).
1405 */
1406static inline struct extent_buffer *
1407get_old_root(struct btrfs_root *root, u64 time_seq)
1408{
1409	struct btrfs_fs_info *fs_info = root->fs_info;
1410	struct tree_mod_elem *tm;
1411	struct extent_buffer *eb = NULL;
1412	struct extent_buffer *eb_root;
 
1413	struct extent_buffer *old;
1414	struct tree_mod_root *old_root = NULL;
1415	u64 old_generation = 0;
1416	u64 logical;
 
1417
1418	eb_root = btrfs_read_lock_root_node(root);
1419	tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1420	if (!tm)
1421		return eb_root;
1422
1423	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424		old_root = &tm->old_root;
1425		old_generation = tm->generation;
1426		logical = old_root->logical;
 
1427	} else {
1428		logical = eb_root->start;
 
1429	}
1430
1431	tm = tree_mod_log_search(fs_info, logical, time_seq);
1432	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1433		btrfs_tree_read_unlock(eb_root);
1434		free_extent_buffer(eb_root);
1435		old = read_tree_block(fs_info, logical, 0);
1436		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437			if (!IS_ERR(old))
1438				free_extent_buffer(old);
1439			btrfs_warn(fs_info,
1440				   "failed to read tree block %llu from get_old_root",
1441				   logical);
1442		} else {
1443			eb = btrfs_clone_extent_buffer(old);
1444			free_extent_buffer(old);
1445		}
1446	} else if (old_root) {
 
1447		btrfs_tree_read_unlock(eb_root);
1448		free_extent_buffer(eb_root);
1449		eb = alloc_dummy_extent_buffer(fs_info, logical);
1450	} else {
1451		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1452		eb = btrfs_clone_extent_buffer(eb_root);
1453		btrfs_tree_read_unlock_blocking(eb_root);
1454		free_extent_buffer(eb_root);
1455	}
1456
1457	if (!eb)
1458		return NULL;
1459	extent_buffer_get(eb);
1460	btrfs_tree_read_lock(eb);
1461	if (old_root) {
1462		btrfs_set_header_bytenr(eb, eb->start);
1463		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1464		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1465		btrfs_set_header_level(eb, old_root->level);
1466		btrfs_set_header_generation(eb, old_generation);
1467	}
 
 
 
1468	if (tm)
1469		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1470	else
1471		WARN_ON(btrfs_header_level(eb) != 0);
1472	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1473
1474	return eb;
1475}
1476
1477int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478{
1479	struct tree_mod_elem *tm;
1480	int level;
1481	struct extent_buffer *eb_root = btrfs_root_node(root);
1482
1483	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1484	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485		level = tm->old_root.level;
1486	} else {
1487		level = btrfs_header_level(eb_root);
1488	}
1489	free_extent_buffer(eb_root);
1490
1491	return level;
1492}
1493
1494static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495				   struct btrfs_root *root,
1496				   struct extent_buffer *buf)
1497{
1498	if (btrfs_is_testing(root->fs_info))
1499		return 0;
1500
1501	/* ensure we can see the force_cow */
1502	smp_rmb();
1503
1504	/*
1505	 * We do not need to cow a block if
1506	 * 1) this block is not created or changed in this transaction;
1507	 * 2) this block does not belong to TREE_RELOC tree;
1508	 * 3) the root is not forced COW.
1509	 *
1510	 * What is forced COW:
1511	 *    when we create snapshot during committing the transaction,
1512	 *    after we've finished coping src root, we must COW the shared
1513	 *    block to ensure the metadata consistency.
1514	 */
1515	if (btrfs_header_generation(buf) == trans->transid &&
1516	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1518	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1519	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1520		return 0;
1521	return 1;
1522}
1523
1524/*
1525 * cows a single block, see __btrfs_cow_block for the real work.
1526 * This version of it has extra checks so that a block isn't COWed more than
1527 * once per transaction, as long as it hasn't been written yet
1528 */
1529noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1530		    struct btrfs_root *root, struct extent_buffer *buf,
1531		    struct extent_buffer *parent, int parent_slot,
1532		    struct extent_buffer **cow_ret)
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	u64 search_start;
1536	int ret;
1537
 
 
 
 
1538	if (trans->transaction != fs_info->running_transaction)
1539		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540		       trans->transid,
1541		       fs_info->running_transaction->transid);
1542
1543	if (trans->transid != fs_info->generation)
1544		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545		       trans->transid, fs_info->generation);
1546
1547	if (!should_cow_block(trans, root, buf)) {
1548		trans->dirty = true;
1549		*cow_ret = buf;
1550		return 0;
1551	}
1552
1553	search_start = buf->start & ~((u64)SZ_1G - 1);
1554
1555	if (parent)
1556		btrfs_set_lock_blocking(parent);
1557	btrfs_set_lock_blocking(buf);
1558
 
 
 
 
 
 
 
1559	ret = __btrfs_cow_block(trans, root, buf, parent,
1560				 parent_slot, cow_ret, search_start, 0);
1561
1562	trace_btrfs_cow_block(root, buf, *cow_ret);
1563
1564	return ret;
1565}
1566
1567/*
1568 * helper function for defrag to decide if two blocks pointed to by a
1569 * node are actually close by
1570 */
1571static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1572{
1573	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1574		return 1;
1575	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1576		return 1;
1577	return 0;
1578}
1579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580/*
1581 * compare two keys in a memcmp fashion
1582 */
1583static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
 
1584{
1585	struct btrfs_key k1;
1586
1587	btrfs_disk_key_to_cpu(&k1, disk);
1588
1589	return btrfs_comp_cpu_keys(&k1, k2);
1590}
 
1591
1592/*
1593 * same as comp_keys only with two btrfs_key's
1594 */
1595int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1596{
1597	if (k1->objectid > k2->objectid)
1598		return 1;
1599	if (k1->objectid < k2->objectid)
1600		return -1;
1601	if (k1->type > k2->type)
1602		return 1;
1603	if (k1->type < k2->type)
1604		return -1;
1605	if (k1->offset > k2->offset)
1606		return 1;
1607	if (k1->offset < k2->offset)
1608		return -1;
1609	return 0;
1610}
1611
1612/*
1613 * this is used by the defrag code to go through all the
1614 * leaves pointed to by a node and reallocate them so that
1615 * disk order is close to key order
1616 */
1617int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1618		       struct btrfs_root *root, struct extent_buffer *parent,
1619		       int start_slot, u64 *last_ret,
1620		       struct btrfs_key *progress)
1621{
1622	struct btrfs_fs_info *fs_info = root->fs_info;
1623	struct extent_buffer *cur;
1624	u64 blocknr;
1625	u64 gen;
1626	u64 search_start = *last_ret;
1627	u64 last_block = 0;
1628	u64 other;
1629	u32 parent_nritems;
1630	int end_slot;
1631	int i;
1632	int err = 0;
1633	int parent_level;
1634	int uptodate;
1635	u32 blocksize;
1636	int progress_passed = 0;
1637	struct btrfs_disk_key disk_key;
1638
1639	parent_level = btrfs_header_level(parent);
1640
1641	WARN_ON(trans->transaction != fs_info->running_transaction);
1642	WARN_ON(trans->transid != fs_info->generation);
1643
1644	parent_nritems = btrfs_header_nritems(parent);
1645	blocksize = fs_info->nodesize;
1646	end_slot = parent_nritems - 1;
1647
1648	if (parent_nritems <= 1)
1649		return 0;
1650
1651	btrfs_set_lock_blocking(parent);
1652
1653	for (i = start_slot; i <= end_slot; i++) {
 
1654		int close = 1;
1655
1656		btrfs_node_key(parent, &disk_key, i);
1657		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1658			continue;
1659
1660		progress_passed = 1;
1661		blocknr = btrfs_node_blockptr(parent, i);
1662		gen = btrfs_node_ptr_generation(parent, i);
 
1663		if (last_block == 0)
1664			last_block = blocknr;
1665
1666		if (i > 0) {
1667			other = btrfs_node_blockptr(parent, i - 1);
1668			close = close_blocks(blocknr, other, blocksize);
1669		}
1670		if (!close && i < end_slot) {
1671			other = btrfs_node_blockptr(parent, i + 1);
1672			close = close_blocks(blocknr, other, blocksize);
1673		}
1674		if (close) {
1675			last_block = blocknr;
1676			continue;
1677		}
1678
1679		cur = find_extent_buffer(fs_info, blocknr);
1680		if (cur)
1681			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1682		else
1683			uptodate = 0;
1684		if (!cur || !uptodate) {
1685			if (!cur) {
1686				cur = read_tree_block(fs_info, blocknr, gen);
 
 
1687				if (IS_ERR(cur)) {
1688					return PTR_ERR(cur);
1689				} else if (!extent_buffer_uptodate(cur)) {
1690					free_extent_buffer(cur);
1691					return -EIO;
1692				}
1693			} else if (!uptodate) {
1694				err = btrfs_read_buffer(cur, gen);
 
1695				if (err) {
1696					free_extent_buffer(cur);
1697					return err;
1698				}
1699			}
1700		}
1701		if (search_start == 0)
1702			search_start = last_block;
1703
1704		btrfs_tree_lock(cur);
1705		btrfs_set_lock_blocking(cur);
1706		err = __btrfs_cow_block(trans, root, cur, parent, i,
1707					&cur, search_start,
1708					min(16 * blocksize,
1709					    (end_slot - i) * blocksize));
1710		if (err) {
1711			btrfs_tree_unlock(cur);
1712			free_extent_buffer(cur);
1713			break;
1714		}
1715		search_start = cur->start;
1716		last_block = cur->start;
1717		*last_ret = search_start;
1718		btrfs_tree_unlock(cur);
1719		free_extent_buffer(cur);
1720	}
1721	return err;
1722}
1723
1724/*
1725 * search for key in the extent_buffer.  The items start at offset p,
1726 * and they are item_size apart.  There are 'max' items in p.
1727 *
1728 * the slot in the array is returned via slot, and it points to
1729 * the place where you would insert key if it is not found in
1730 * the array.
1731 *
1732 * slot may point to max if the key is bigger than all of the keys
1733 */
1734static noinline int generic_bin_search(struct extent_buffer *eb,
1735				       unsigned long p,
1736				       int item_size, struct btrfs_key *key,
1737				       int max, int *slot)
1738{
1739	int low = 0;
1740	int high = max;
1741	int mid;
1742	int ret;
1743	struct btrfs_disk_key *tmp = NULL;
1744	struct btrfs_disk_key unaligned;
1745	unsigned long offset;
1746	char *kaddr = NULL;
1747	unsigned long map_start = 0;
1748	unsigned long map_len = 0;
1749	int err;
1750
1751	if (low > high) {
1752		btrfs_err(eb->fs_info,
1753		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1754			  __func__, low, high, eb->start,
1755			  btrfs_header_owner(eb), btrfs_header_level(eb));
1756		return -EINVAL;
1757	}
1758
1759	while (low < high) {
 
 
 
 
 
 
1760		mid = (low + high) / 2;
1761		offset = p + mid * item_size;
 
1762
1763		if (!kaddr || offset < map_start ||
1764		    (offset + sizeof(struct btrfs_disk_key)) >
1765		    map_start + map_len) {
1766
1767			err = map_private_extent_buffer(eb, offset,
1768						sizeof(struct btrfs_disk_key),
1769						&kaddr, &map_start, &map_len);
1770
1771			if (!err) {
1772				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1773							map_start);
1774			} else if (err == 1) {
1775				read_extent_buffer(eb, &unaligned,
1776						   offset, sizeof(unaligned));
1777				tmp = &unaligned;
1778			} else {
1779				return err;
1780			}
1781
 
1782		} else {
1783			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1784							map_start);
1785		}
 
1786		ret = comp_keys(tmp, key);
1787
1788		if (ret < 0)
1789			low = mid + 1;
1790		else if (ret > 0)
1791			high = mid;
1792		else {
1793			*slot = mid;
1794			return 0;
1795		}
1796	}
1797	*slot = low;
1798	return 1;
1799}
1800
1801/*
1802 * simple bin_search frontend that does the right thing for
1803 * leaves vs nodes
1804 */
1805static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1806		      int level, int *slot)
1807{
1808	if (level == 0)
1809		return generic_bin_search(eb,
1810					  offsetof(struct btrfs_leaf, items),
1811					  sizeof(struct btrfs_item),
1812					  key, btrfs_header_nritems(eb),
1813					  slot);
1814	else
1815		return generic_bin_search(eb,
1816					  offsetof(struct btrfs_node, ptrs),
1817					  sizeof(struct btrfs_key_ptr),
1818					  key, btrfs_header_nritems(eb),
1819					  slot);
1820}
1821
1822int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1823		     int level, int *slot)
1824{
1825	return bin_search(eb, key, level, slot);
1826}
1827
1828static void root_add_used(struct btrfs_root *root, u32 size)
1829{
1830	spin_lock(&root->accounting_lock);
1831	btrfs_set_root_used(&root->root_item,
1832			    btrfs_root_used(&root->root_item) + size);
1833	spin_unlock(&root->accounting_lock);
1834}
1835
1836static void root_sub_used(struct btrfs_root *root, u32 size)
1837{
1838	spin_lock(&root->accounting_lock);
1839	btrfs_set_root_used(&root->root_item,
1840			    btrfs_root_used(&root->root_item) - size);
1841	spin_unlock(&root->accounting_lock);
1842}
1843
1844/* given a node and slot number, this reads the blocks it points to.  The
1845 * extent buffer is returned with a reference taken (but unlocked).
1846 */
1847static noinline struct extent_buffer *
1848read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1849	       int slot)
1850{
1851	int level = btrfs_header_level(parent);
1852	struct extent_buffer *eb;
 
1853
1854	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1855		return ERR_PTR(-ENOENT);
1856
1857	BUG_ON(level == 0);
1858
1859	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1860			     btrfs_node_ptr_generation(parent, slot));
 
 
1861	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1862		free_extent_buffer(eb);
1863		eb = ERR_PTR(-EIO);
1864	}
1865
1866	return eb;
1867}
1868
1869/*
1870 * node level balancing, used to make sure nodes are in proper order for
1871 * item deletion.  We balance from the top down, so we have to make sure
1872 * that a deletion won't leave an node completely empty later on.
1873 */
1874static noinline int balance_level(struct btrfs_trans_handle *trans,
1875			 struct btrfs_root *root,
1876			 struct btrfs_path *path, int level)
1877{
1878	struct btrfs_fs_info *fs_info = root->fs_info;
1879	struct extent_buffer *right = NULL;
1880	struct extent_buffer *mid;
1881	struct extent_buffer *left = NULL;
1882	struct extent_buffer *parent = NULL;
1883	int ret = 0;
1884	int wret;
1885	int pslot;
1886	int orig_slot = path->slots[level];
1887	u64 orig_ptr;
1888
1889	if (level == 0)
1890		return 0;
1891
1892	mid = path->nodes[level];
1893
1894	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1895		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1896	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1897
1898	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1899
1900	if (level < BTRFS_MAX_LEVEL - 1) {
1901		parent = path->nodes[level + 1];
1902		pslot = path->slots[level + 1];
1903	}
1904
1905	/*
1906	 * deal with the case where there is only one pointer in the root
1907	 * by promoting the node below to a root
1908	 */
1909	if (!parent) {
1910		struct extent_buffer *child;
1911
1912		if (btrfs_header_nritems(mid) != 1)
1913			return 0;
1914
1915		/* promote the child to a root */
1916		child = read_node_slot(fs_info, mid, 0);
1917		if (IS_ERR(child)) {
1918			ret = PTR_ERR(child);
1919			btrfs_handle_fs_error(fs_info, ret, NULL);
1920			goto enospc;
1921		}
1922
1923		btrfs_tree_lock(child);
1924		btrfs_set_lock_blocking(child);
1925		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1926		if (ret) {
1927			btrfs_tree_unlock(child);
1928			free_extent_buffer(child);
1929			goto enospc;
1930		}
1931
1932		tree_mod_log_set_root_pointer(root, child, 1);
 
1933		rcu_assign_pointer(root->node, child);
1934
1935		add_root_to_dirty_list(root);
1936		btrfs_tree_unlock(child);
1937
1938		path->locks[level] = 0;
1939		path->nodes[level] = NULL;
1940		clean_tree_block(trans, fs_info, mid);
1941		btrfs_tree_unlock(mid);
1942		/* once for the path */
1943		free_extent_buffer(mid);
1944
1945		root_sub_used(root, mid->len);
1946		btrfs_free_tree_block(trans, root, mid, 0, 1);
1947		/* once for the root ptr */
1948		free_extent_buffer_stale(mid);
1949		return 0;
1950	}
1951	if (btrfs_header_nritems(mid) >
1952	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1953		return 0;
1954
1955	left = read_node_slot(fs_info, parent, pslot - 1);
1956	if (IS_ERR(left))
1957		left = NULL;
1958
1959	if (left) {
1960		btrfs_tree_lock(left);
1961		btrfs_set_lock_blocking(left);
1962		wret = btrfs_cow_block(trans, root, left,
1963				       parent, pslot - 1, &left);
1964		if (wret) {
1965			ret = wret;
1966			goto enospc;
1967		}
1968	}
1969
1970	right = read_node_slot(fs_info, parent, pslot + 1);
1971	if (IS_ERR(right))
1972		right = NULL;
1973
1974	if (right) {
1975		btrfs_tree_lock(right);
1976		btrfs_set_lock_blocking(right);
1977		wret = btrfs_cow_block(trans, root, right,
1978				       parent, pslot + 1, &right);
1979		if (wret) {
1980			ret = wret;
1981			goto enospc;
1982		}
1983	}
1984
1985	/* first, try to make some room in the middle buffer */
1986	if (left) {
1987		orig_slot += btrfs_header_nritems(left);
1988		wret = push_node_left(trans, fs_info, left, mid, 1);
1989		if (wret < 0)
1990			ret = wret;
1991	}
1992
1993	/*
1994	 * then try to empty the right most buffer into the middle
1995	 */
1996	if (right) {
1997		wret = push_node_left(trans, fs_info, mid, right, 1);
1998		if (wret < 0 && wret != -ENOSPC)
1999			ret = wret;
2000		if (btrfs_header_nritems(right) == 0) {
2001			clean_tree_block(trans, fs_info, right);
2002			btrfs_tree_unlock(right);
2003			del_ptr(root, path, level + 1, pslot + 1);
2004			root_sub_used(root, right->len);
2005			btrfs_free_tree_block(trans, root, right, 0, 1);
2006			free_extent_buffer_stale(right);
2007			right = NULL;
2008		} else {
2009			struct btrfs_disk_key right_key;
2010			btrfs_node_key(right, &right_key, 0);
2011			tree_mod_log_set_node_key(fs_info, parent,
2012						  pslot + 1, 0);
 
2013			btrfs_set_node_key(parent, &right_key, pslot + 1);
2014			btrfs_mark_buffer_dirty(parent);
2015		}
2016	}
2017	if (btrfs_header_nritems(mid) == 1) {
2018		/*
2019		 * we're not allowed to leave a node with one item in the
2020		 * tree during a delete.  A deletion from lower in the tree
2021		 * could try to delete the only pointer in this node.
2022		 * So, pull some keys from the left.
2023		 * There has to be a left pointer at this point because
2024		 * otherwise we would have pulled some pointers from the
2025		 * right
2026		 */
2027		if (!left) {
2028			ret = -EROFS;
2029			btrfs_handle_fs_error(fs_info, ret, NULL);
2030			goto enospc;
2031		}
2032		wret = balance_node_right(trans, fs_info, mid, left);
2033		if (wret < 0) {
2034			ret = wret;
2035			goto enospc;
2036		}
2037		if (wret == 1) {
2038			wret = push_node_left(trans, fs_info, left, mid, 1);
2039			if (wret < 0)
2040				ret = wret;
2041		}
2042		BUG_ON(wret == 1);
2043	}
2044	if (btrfs_header_nritems(mid) == 0) {
2045		clean_tree_block(trans, fs_info, mid);
2046		btrfs_tree_unlock(mid);
2047		del_ptr(root, path, level + 1, pslot);
2048		root_sub_used(root, mid->len);
2049		btrfs_free_tree_block(trans, root, mid, 0, 1);
2050		free_extent_buffer_stale(mid);
2051		mid = NULL;
2052	} else {
2053		/* update the parent key to reflect our changes */
2054		struct btrfs_disk_key mid_key;
2055		btrfs_node_key(mid, &mid_key, 0);
2056		tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
 
 
2057		btrfs_set_node_key(parent, &mid_key, pslot);
2058		btrfs_mark_buffer_dirty(parent);
2059	}
2060
2061	/* update the path */
2062	if (left) {
2063		if (btrfs_header_nritems(left) > orig_slot) {
2064			extent_buffer_get(left);
2065			/* left was locked after cow */
2066			path->nodes[level] = left;
2067			path->slots[level + 1] -= 1;
2068			path->slots[level] = orig_slot;
2069			if (mid) {
2070				btrfs_tree_unlock(mid);
2071				free_extent_buffer(mid);
2072			}
2073		} else {
2074			orig_slot -= btrfs_header_nritems(left);
2075			path->slots[level] = orig_slot;
2076		}
2077	}
2078	/* double check we haven't messed things up */
2079	if (orig_ptr !=
2080	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2081		BUG();
2082enospc:
2083	if (right) {
2084		btrfs_tree_unlock(right);
2085		free_extent_buffer(right);
2086	}
2087	if (left) {
2088		if (path->nodes[level] != left)
2089			btrfs_tree_unlock(left);
2090		free_extent_buffer(left);
2091	}
2092	return ret;
2093}
2094
2095/* Node balancing for insertion.  Here we only split or push nodes around
2096 * when they are completely full.  This is also done top down, so we
2097 * have to be pessimistic.
2098 */
2099static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2100					  struct btrfs_root *root,
2101					  struct btrfs_path *path, int level)
2102{
2103	struct btrfs_fs_info *fs_info = root->fs_info;
2104	struct extent_buffer *right = NULL;
2105	struct extent_buffer *mid;
2106	struct extent_buffer *left = NULL;
2107	struct extent_buffer *parent = NULL;
2108	int ret = 0;
2109	int wret;
2110	int pslot;
2111	int orig_slot = path->slots[level];
2112
2113	if (level == 0)
2114		return 1;
2115
2116	mid = path->nodes[level];
2117	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2118
2119	if (level < BTRFS_MAX_LEVEL - 1) {
2120		parent = path->nodes[level + 1];
2121		pslot = path->slots[level + 1];
2122	}
2123
2124	if (!parent)
2125		return 1;
2126
2127	left = read_node_slot(fs_info, parent, pslot - 1);
2128	if (IS_ERR(left))
2129		left = NULL;
2130
2131	/* first, try to make some room in the middle buffer */
2132	if (left) {
2133		u32 left_nr;
2134
2135		btrfs_tree_lock(left);
2136		btrfs_set_lock_blocking(left);
2137
2138		left_nr = btrfs_header_nritems(left);
2139		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2140			wret = 1;
2141		} else {
2142			ret = btrfs_cow_block(trans, root, left, parent,
2143					      pslot - 1, &left);
2144			if (ret)
2145				wret = 1;
2146			else {
2147				wret = push_node_left(trans, fs_info,
2148						      left, mid, 0);
2149			}
2150		}
2151		if (wret < 0)
2152			ret = wret;
2153		if (wret == 0) {
2154			struct btrfs_disk_key disk_key;
2155			orig_slot += left_nr;
2156			btrfs_node_key(mid, &disk_key, 0);
2157			tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
 
 
2158			btrfs_set_node_key(parent, &disk_key, pslot);
2159			btrfs_mark_buffer_dirty(parent);
2160			if (btrfs_header_nritems(left) > orig_slot) {
2161				path->nodes[level] = left;
2162				path->slots[level + 1] -= 1;
2163				path->slots[level] = orig_slot;
2164				btrfs_tree_unlock(mid);
2165				free_extent_buffer(mid);
2166			} else {
2167				orig_slot -=
2168					btrfs_header_nritems(left);
2169				path->slots[level] = orig_slot;
2170				btrfs_tree_unlock(left);
2171				free_extent_buffer(left);
2172			}
2173			return 0;
2174		}
2175		btrfs_tree_unlock(left);
2176		free_extent_buffer(left);
2177	}
2178	right = read_node_slot(fs_info, parent, pslot + 1);
2179	if (IS_ERR(right))
2180		right = NULL;
2181
2182	/*
2183	 * then try to empty the right most buffer into the middle
2184	 */
2185	if (right) {
2186		u32 right_nr;
2187
2188		btrfs_tree_lock(right);
2189		btrfs_set_lock_blocking(right);
2190
2191		right_nr = btrfs_header_nritems(right);
2192		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2193			wret = 1;
2194		} else {
2195			ret = btrfs_cow_block(trans, root, right,
2196					      parent, pslot + 1,
2197					      &right);
2198			if (ret)
2199				wret = 1;
2200			else {
2201				wret = balance_node_right(trans, fs_info,
2202							  right, mid);
2203			}
2204		}
2205		if (wret < 0)
2206			ret = wret;
2207		if (wret == 0) {
2208			struct btrfs_disk_key disk_key;
2209
2210			btrfs_node_key(right, &disk_key, 0);
2211			tree_mod_log_set_node_key(fs_info, parent,
2212						  pslot + 1, 0);
 
2213			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2214			btrfs_mark_buffer_dirty(parent);
2215
2216			if (btrfs_header_nritems(mid) <= orig_slot) {
2217				path->nodes[level] = right;
2218				path->slots[level + 1] += 1;
2219				path->slots[level] = orig_slot -
2220					btrfs_header_nritems(mid);
2221				btrfs_tree_unlock(mid);
2222				free_extent_buffer(mid);
2223			} else {
2224				btrfs_tree_unlock(right);
2225				free_extent_buffer(right);
2226			}
2227			return 0;
2228		}
2229		btrfs_tree_unlock(right);
2230		free_extent_buffer(right);
2231	}
2232	return 1;
2233}
2234
2235/*
2236 * readahead one full node of leaves, finding things that are close
2237 * to the block in 'slot', and triggering ra on them.
2238 */
2239static void reada_for_search(struct btrfs_fs_info *fs_info,
2240			     struct btrfs_path *path,
2241			     int level, int slot, u64 objectid)
2242{
2243	struct extent_buffer *node;
2244	struct btrfs_disk_key disk_key;
2245	u32 nritems;
2246	u64 search;
2247	u64 target;
2248	u64 nread = 0;
2249	struct extent_buffer *eb;
2250	u32 nr;
2251	u32 blocksize;
2252	u32 nscan = 0;
2253
2254	if (level != 1)
2255		return;
2256
2257	if (!path->nodes[level])
2258		return;
2259
2260	node = path->nodes[level];
2261
2262	search = btrfs_node_blockptr(node, slot);
2263	blocksize = fs_info->nodesize;
2264	eb = find_extent_buffer(fs_info, search);
2265	if (eb) {
2266		free_extent_buffer(eb);
2267		return;
2268	}
2269
2270	target = search;
2271
2272	nritems = btrfs_header_nritems(node);
2273	nr = slot;
2274
2275	while (1) {
2276		if (path->reada == READA_BACK) {
2277			if (nr == 0)
2278				break;
2279			nr--;
2280		} else if (path->reada == READA_FORWARD) {
2281			nr++;
2282			if (nr >= nritems)
2283				break;
2284		}
2285		if (path->reada == READA_BACK && objectid) {
2286			btrfs_node_key(node, &disk_key, nr);
2287			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2288				break;
2289		}
2290		search = btrfs_node_blockptr(node, nr);
2291		if ((search <= target && target - search <= 65536) ||
2292		    (search > target && search - target <= 65536)) {
2293			readahead_tree_block(fs_info, search);
2294			nread += blocksize;
2295		}
2296		nscan++;
2297		if ((nread > 65536 || nscan > 32))
2298			break;
2299	}
2300}
2301
2302static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2303				       struct btrfs_path *path, int level)
2304{
2305	int slot;
2306	int nritems;
2307	struct extent_buffer *parent;
2308	struct extent_buffer *eb;
2309	u64 gen;
2310	u64 block1 = 0;
2311	u64 block2 = 0;
2312
2313	parent = path->nodes[level + 1];
2314	if (!parent)
2315		return;
2316
2317	nritems = btrfs_header_nritems(parent);
2318	slot = path->slots[level + 1];
2319
2320	if (slot > 0) {
2321		block1 = btrfs_node_blockptr(parent, slot - 1);
2322		gen = btrfs_node_ptr_generation(parent, slot - 1);
2323		eb = find_extent_buffer(fs_info, block1);
2324		/*
2325		 * if we get -eagain from btrfs_buffer_uptodate, we
2326		 * don't want to return eagain here.  That will loop
2327		 * forever
2328		 */
2329		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2330			block1 = 0;
2331		free_extent_buffer(eb);
2332	}
2333	if (slot + 1 < nritems) {
2334		block2 = btrfs_node_blockptr(parent, slot + 1);
2335		gen = btrfs_node_ptr_generation(parent, slot + 1);
2336		eb = find_extent_buffer(fs_info, block2);
2337		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2338			block2 = 0;
2339		free_extent_buffer(eb);
2340	}
2341
2342	if (block1)
2343		readahead_tree_block(fs_info, block1);
2344	if (block2)
2345		readahead_tree_block(fs_info, block2);
2346}
2347
2348
2349/*
2350 * when we walk down the tree, it is usually safe to unlock the higher layers
2351 * in the tree.  The exceptions are when our path goes through slot 0, because
2352 * operations on the tree might require changing key pointers higher up in the
2353 * tree.
2354 *
2355 * callers might also have set path->keep_locks, which tells this code to keep
2356 * the lock if the path points to the last slot in the block.  This is part of
2357 * walking through the tree, and selecting the next slot in the higher block.
2358 *
2359 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2360 * if lowest_unlock is 1, level 0 won't be unlocked
2361 */
2362static noinline void unlock_up(struct btrfs_path *path, int level,
2363			       int lowest_unlock, int min_write_lock_level,
2364			       int *write_lock_level)
2365{
2366	int i;
2367	int skip_level = level;
2368	int no_skips = 0;
2369	struct extent_buffer *t;
2370
2371	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2372		if (!path->nodes[i])
2373			break;
2374		if (!path->locks[i])
2375			break;
2376		if (!no_skips && path->slots[i] == 0) {
2377			skip_level = i + 1;
2378			continue;
2379		}
2380		if (!no_skips && path->keep_locks) {
2381			u32 nritems;
2382			t = path->nodes[i];
2383			nritems = btrfs_header_nritems(t);
2384			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2385				skip_level = i + 1;
2386				continue;
2387			}
2388		}
2389		if (skip_level < i && i >= lowest_unlock)
2390			no_skips = 1;
2391
2392		t = path->nodes[i];
2393		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2394			btrfs_tree_unlock_rw(t, path->locks[i]);
2395			path->locks[i] = 0;
2396			if (write_lock_level &&
2397			    i > min_write_lock_level &&
2398			    i <= *write_lock_level) {
2399				*write_lock_level = i - 1;
2400			}
2401		}
2402	}
2403}
2404
2405/*
2406 * This releases any locks held in the path starting at level and
2407 * going all the way up to the root.
2408 *
2409 * btrfs_search_slot will keep the lock held on higher nodes in a few
2410 * corner cases, such as COW of the block at slot zero in the node.  This
2411 * ignores those rules, and it should only be called when there are no
2412 * more updates to be done higher up in the tree.
2413 */
2414noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2415{
2416	int i;
2417
2418	if (path->keep_locks)
2419		return;
2420
2421	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2422		if (!path->nodes[i])
2423			continue;
2424		if (!path->locks[i])
2425			continue;
2426		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2427		path->locks[i] = 0;
2428	}
2429}
2430
2431/*
2432 * helper function for btrfs_search_slot.  The goal is to find a block
2433 * in cache without setting the path to blocking.  If we find the block
2434 * we return zero and the path is unchanged.
2435 *
2436 * If we can't find the block, we set the path blocking and do some
2437 * reada.  -EAGAIN is returned and the search must be repeated.
2438 */
2439static int
2440read_block_for_search(struct btrfs_trans_handle *trans,
2441		       struct btrfs_root *root, struct btrfs_path *p,
2442		       struct extent_buffer **eb_ret, int level, int slot,
2443		       struct btrfs_key *key, u64 time_seq)
2444{
2445	struct btrfs_fs_info *fs_info = root->fs_info;
2446	u64 blocknr;
2447	u64 gen;
2448	struct extent_buffer *b = *eb_ret;
2449	struct extent_buffer *tmp;
 
2450	int ret;
 
2451
2452	blocknr = btrfs_node_blockptr(b, slot);
2453	gen = btrfs_node_ptr_generation(b, slot);
 
 
2454
2455	tmp = find_extent_buffer(fs_info, blocknr);
2456	if (tmp) {
2457		/* first we do an atomic uptodate check */
2458		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
 
 
 
 
 
 
 
 
 
 
2459			*eb_ret = tmp;
2460			return 0;
2461		}
2462
2463		/* the pages were up to date, but we failed
2464		 * the generation number check.  Do a full
2465		 * read for the generation number that is correct.
2466		 * We must do this without dropping locks so
2467		 * we can trust our generation number
2468		 */
2469		btrfs_set_path_blocking(p);
2470
2471		/* now we're allowed to do a blocking uptodate check */
2472		ret = btrfs_read_buffer(tmp, gen);
2473		if (!ret) {
2474			*eb_ret = tmp;
2475			return 0;
2476		}
2477		free_extent_buffer(tmp);
2478		btrfs_release_path(p);
2479		return -EIO;
2480	}
2481
2482	/*
2483	 * reduce lock contention at high levels
2484	 * of the btree by dropping locks before
2485	 * we read.  Don't release the lock on the current
2486	 * level because we need to walk this node to figure
2487	 * out which blocks to read.
2488	 */
2489	btrfs_unlock_up_safe(p, level + 1);
2490	btrfs_set_path_blocking(p);
2491
2492	free_extent_buffer(tmp);
2493	if (p->reada != READA_NONE)
2494		reada_for_search(fs_info, p, level, slot, key->objectid);
2495
2496	btrfs_release_path(p);
2497
2498	ret = -EAGAIN;
2499	tmp = read_tree_block(fs_info, blocknr, 0);
 
2500	if (!IS_ERR(tmp)) {
2501		/*
2502		 * If the read above didn't mark this buffer up to date,
2503		 * it will never end up being up to date.  Set ret to EIO now
2504		 * and give up so that our caller doesn't loop forever
2505		 * on our EAGAINs.
2506		 */
2507		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2508			ret = -EIO;
2509		free_extent_buffer(tmp);
2510	} else {
2511		ret = PTR_ERR(tmp);
2512	}
 
 
2513	return ret;
2514}
2515
2516/*
2517 * helper function for btrfs_search_slot.  This does all of the checks
2518 * for node-level blocks and does any balancing required based on
2519 * the ins_len.
2520 *
2521 * If no extra work was required, zero is returned.  If we had to
2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523 * start over
2524 */
2525static int
2526setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527		       struct btrfs_root *root, struct btrfs_path *p,
2528		       struct extent_buffer *b, int level, int ins_len,
2529		       int *write_lock_level)
2530{
2531	struct btrfs_fs_info *fs_info = root->fs_info;
2532	int ret;
2533
2534	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2536		int sret;
2537
2538		if (*write_lock_level < level + 1) {
2539			*write_lock_level = level + 1;
2540			btrfs_release_path(p);
2541			goto again;
2542		}
2543
2544		btrfs_set_path_blocking(p);
2545		reada_for_balance(fs_info, p, level);
2546		sret = split_node(trans, root, p, level);
2547		btrfs_clear_path_blocking(p, NULL, 0);
2548
2549		BUG_ON(sret > 0);
2550		if (sret) {
2551			ret = sret;
2552			goto done;
2553		}
2554		b = p->nodes[level];
2555	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2556		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2557		int sret;
2558
2559		if (*write_lock_level < level + 1) {
2560			*write_lock_level = level + 1;
2561			btrfs_release_path(p);
2562			goto again;
2563		}
2564
2565		btrfs_set_path_blocking(p);
2566		reada_for_balance(fs_info, p, level);
2567		sret = balance_level(trans, root, p, level);
2568		btrfs_clear_path_blocking(p, NULL, 0);
2569
2570		if (sret) {
2571			ret = sret;
2572			goto done;
2573		}
2574		b = p->nodes[level];
2575		if (!b) {
2576			btrfs_release_path(p);
2577			goto again;
2578		}
2579		BUG_ON(btrfs_header_nritems(b) == 1);
2580	}
2581	return 0;
2582
2583again:
2584	ret = -EAGAIN;
2585done:
2586	return ret;
2587}
2588
2589static void key_search_validate(struct extent_buffer *b,
2590				struct btrfs_key *key,
2591				int level)
2592{
2593#ifdef CONFIG_BTRFS_ASSERT
2594	struct btrfs_disk_key disk_key;
2595
2596	btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598	if (level == 0)
2599		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600		    offsetof(struct btrfs_leaf, items[0].key),
2601		    sizeof(disk_key)));
2602	else
2603		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604		    offsetof(struct btrfs_node, ptrs[0].key),
2605		    sizeof(disk_key)));
2606#endif
2607}
2608
2609static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2610		      int level, int *prev_cmp, int *slot)
2611{
2612	if (*prev_cmp != 0) {
2613		*prev_cmp = bin_search(b, key, level, slot);
2614		return *prev_cmp;
2615	}
2616
2617	key_search_validate(b, key, level);
2618	*slot = 0;
2619
2620	return 0;
2621}
2622
2623int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2624		u64 iobjectid, u64 ioff, u8 key_type,
2625		struct btrfs_key *found_key)
2626{
2627	int ret;
2628	struct btrfs_key key;
2629	struct extent_buffer *eb;
2630
2631	ASSERT(path);
2632	ASSERT(found_key);
2633
2634	key.type = key_type;
2635	key.objectid = iobjectid;
2636	key.offset = ioff;
2637
2638	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2639	if (ret < 0)
2640		return ret;
2641
2642	eb = path->nodes[0];
2643	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644		ret = btrfs_next_leaf(fs_root, path);
2645		if (ret)
2646			return ret;
2647		eb = path->nodes[0];
2648	}
2649
2650	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651	if (found_key->type != key.type ||
2652			found_key->objectid != key.objectid)
2653		return 1;
2654
2655	return 0;
2656}
2657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658/*
2659 * look for key in the tree.  path is filled in with nodes along the way
2660 * if key is found, we return zero and you can find the item in the leaf
2661 * level of the path (level 0)
2662 *
2663 * If the key isn't found, the path points to the slot where it should
2664 * be inserted, and 1 is returned.  If there are other errors during the
2665 * search a negative error number is returned.
2666 *
2667 * if ins_len > 0, nodes and leaves will be split as we walk down the
2668 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2669 * possible)
2670 */
2671int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2672		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2673		      ins_len, int cow)
 
 
 
 
 
 
 
 
 
 
 
 
2674{
2675	struct btrfs_fs_info *fs_info = root->fs_info;
2676	struct extent_buffer *b;
2677	int slot;
2678	int ret;
2679	int err;
2680	int level;
2681	int lowest_unlock = 1;
2682	int root_lock;
2683	/* everything at write_lock_level or lower must be write locked */
2684	int write_lock_level = 0;
2685	u8 lowest_level = 0;
2686	int min_write_lock_level;
2687	int prev_cmp;
2688
2689	lowest_level = p->lowest_level;
2690	WARN_ON(lowest_level && ins_len > 0);
2691	WARN_ON(p->nodes[0] != NULL);
2692	BUG_ON(!cow && ins_len);
2693
2694	if (ins_len < 0) {
2695		lowest_unlock = 2;
2696
2697		/* when we are removing items, we might have to go up to level
2698		 * two as we update tree pointers  Make sure we keep write
2699		 * for those levels as well
2700		 */
2701		write_lock_level = 2;
2702	} else if (ins_len > 0) {
2703		/*
2704		 * for inserting items, make sure we have a write lock on
2705		 * level 1 so we can update keys
2706		 */
2707		write_lock_level = 1;
2708	}
2709
2710	if (!cow)
2711		write_lock_level = -1;
2712
2713	if (cow && (p->keep_locks || p->lowest_level))
2714		write_lock_level = BTRFS_MAX_LEVEL;
2715
2716	min_write_lock_level = write_lock_level;
2717
2718again:
2719	prev_cmp = -1;
2720	/*
2721	 * we try very hard to do read locks on the root
2722	 */
2723	root_lock = BTRFS_READ_LOCK;
2724	level = 0;
2725	if (p->search_commit_root) {
2726		/*
2727		 * the commit roots are read only
2728		 * so we always do read locks
2729		 */
2730		if (p->need_commit_sem)
2731			down_read(&fs_info->commit_root_sem);
2732		b = root->commit_root;
2733		extent_buffer_get(b);
2734		level = btrfs_header_level(b);
2735		if (p->need_commit_sem)
2736			up_read(&fs_info->commit_root_sem);
2737		if (!p->skip_locking)
2738			btrfs_tree_read_lock(b);
2739	} else {
2740		if (p->skip_locking) {
2741			b = btrfs_root_node(root);
2742			level = btrfs_header_level(b);
2743		} else {
2744			/* we don't know the level of the root node
2745			 * until we actually have it read locked
2746			 */
2747			b = btrfs_read_lock_root_node(root);
2748			level = btrfs_header_level(b);
2749			if (level <= write_lock_level) {
2750				/* whoops, must trade for write lock */
2751				btrfs_tree_read_unlock(b);
2752				free_extent_buffer(b);
2753				b = btrfs_lock_root_node(root);
2754				root_lock = BTRFS_WRITE_LOCK;
2755
2756				/* the level might have changed, check again */
2757				level = btrfs_header_level(b);
2758			}
2759		}
2760	}
2761	p->nodes[level] = b;
2762	if (!p->skip_locking)
2763		p->locks[level] = root_lock;
2764
2765	while (b) {
 
 
2766		level = btrfs_header_level(b);
2767
2768		/*
2769		 * setup the path here so we can release it under lock
2770		 * contention with the cow code
2771		 */
2772		if (cow) {
 
 
2773			/*
2774			 * if we don't really need to cow this block
2775			 * then we don't want to set the path blocking,
2776			 * so we test it here
2777			 */
2778			if (!should_cow_block(trans, root, b)) {
2779				trans->dirty = true;
2780				goto cow_done;
2781			}
2782
2783			/*
2784			 * must have write locks on this node and the
2785			 * parent
2786			 */
2787			if (level > write_lock_level ||
2788			    (level + 1 > write_lock_level &&
2789			    level + 1 < BTRFS_MAX_LEVEL &&
2790			    p->nodes[level + 1])) {
2791				write_lock_level = level + 1;
2792				btrfs_release_path(p);
2793				goto again;
2794			}
2795
2796			btrfs_set_path_blocking(p);
2797			err = btrfs_cow_block(trans, root, b,
2798					      p->nodes[level + 1],
2799					      p->slots[level + 1], &b);
 
 
 
 
2800			if (err) {
2801				ret = err;
2802				goto done;
2803			}
2804		}
2805cow_done:
2806		p->nodes[level] = b;
2807		btrfs_clear_path_blocking(p, NULL, 0);
 
 
 
2808
2809		/*
2810		 * we have a lock on b and as long as we aren't changing
2811		 * the tree, there is no way to for the items in b to change.
2812		 * It is safe to drop the lock on our parent before we
2813		 * go through the expensive btree search on b.
2814		 *
2815		 * If we're inserting or deleting (ins_len != 0), then we might
2816		 * be changing slot zero, which may require changing the parent.
2817		 * So, we can't drop the lock until after we know which slot
2818		 * we're operating on.
2819		 */
2820		if (!ins_len && !p->keep_locks) {
2821			int u = level + 1;
2822
2823			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825				p->locks[u] = 0;
2826			}
2827		}
2828
2829		ret = key_search(b, key, level, &prev_cmp, &slot);
2830		if (ret < 0)
2831			goto done;
2832
2833		if (level != 0) {
2834			int dec = 0;
2835			if (ret && slot > 0) {
2836				dec = 1;
2837				slot -= 1;
2838			}
2839			p->slots[level] = slot;
2840			err = setup_nodes_for_search(trans, root, p, b, level,
2841					     ins_len, &write_lock_level);
2842			if (err == -EAGAIN)
2843				goto again;
2844			if (err) {
2845				ret = err;
2846				goto done;
2847			}
2848			b = p->nodes[level];
2849			slot = p->slots[level];
2850
2851			/*
2852			 * slot 0 is special, if we change the key
2853			 * we have to update the parent pointer
2854			 * which means we must have a write lock
2855			 * on the parent
2856			 */
2857			if (slot == 0 && ins_len &&
2858			    write_lock_level < level + 1) {
2859				write_lock_level = level + 1;
2860				btrfs_release_path(p);
2861				goto again;
2862			}
2863
2864			unlock_up(p, level, lowest_unlock,
2865				  min_write_lock_level, &write_lock_level);
2866
2867			if (level == lowest_level) {
2868				if (dec)
2869					p->slots[level]++;
2870				goto done;
2871			}
2872
2873			err = read_block_for_search(trans, root, p,
2874						    &b, level, slot, key, 0);
2875			if (err == -EAGAIN)
2876				goto again;
2877			if (err) {
2878				ret = err;
2879				goto done;
2880			}
2881
2882			if (!p->skip_locking) {
2883				level = btrfs_header_level(b);
2884				if (level <= write_lock_level) {
2885					err = btrfs_try_tree_write_lock(b);
2886					if (!err) {
2887						btrfs_set_path_blocking(p);
2888						btrfs_tree_lock(b);
2889						btrfs_clear_path_blocking(p, b,
2890								  BTRFS_WRITE_LOCK);
2891					}
2892					p->locks[level] = BTRFS_WRITE_LOCK;
2893				} else {
2894					err = btrfs_tree_read_lock_atomic(b);
2895					if (!err) {
2896						btrfs_set_path_blocking(p);
2897						btrfs_tree_read_lock(b);
2898						btrfs_clear_path_blocking(p, b,
2899								  BTRFS_READ_LOCK);
2900					}
2901					p->locks[level] = BTRFS_READ_LOCK;
2902				}
2903				p->nodes[level] = b;
2904			}
2905		} else {
2906			p->slots[level] = slot;
2907			if (ins_len > 0 &&
2908			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2909				if (write_lock_level < 1) {
2910					write_lock_level = 1;
2911					btrfs_release_path(p);
2912					goto again;
2913				}
2914
2915				btrfs_set_path_blocking(p);
2916				err = split_leaf(trans, root, key,
2917						 p, ins_len, ret == 0);
2918				btrfs_clear_path_blocking(p, NULL, 0);
2919
2920				BUG_ON(err > 0);
2921				if (err) {
2922					ret = err;
2923					goto done;
2924				}
2925			}
2926			if (!p->search_for_split)
2927				unlock_up(p, level, lowest_unlock,
2928					  min_write_lock_level, &write_lock_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2929			goto done;
2930		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931	}
2932	ret = 1;
2933done:
2934	/*
2935	 * we don't really know what they plan on doing with the path
2936	 * from here on, so for now just mark it as blocking
2937	 */
2938	if (!p->leave_spinning)
2939		btrfs_set_path_blocking(p);
2940	if (ret < 0 && !p->skip_release_on_error)
2941		btrfs_release_path(p);
2942	return ret;
2943}
2944
2945/*
2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947 * current state of the tree together with the operations recorded in the tree
2948 * modification log to search for the key in a previous version of this tree, as
2949 * denoted by the time_seq parameter.
2950 *
2951 * Naturally, there is no support for insert, delete or cow operations.
2952 *
2953 * The resulting path and return value will be set up as if we called
2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955 */
2956int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2957			  struct btrfs_path *p, u64 time_seq)
2958{
2959	struct btrfs_fs_info *fs_info = root->fs_info;
2960	struct extent_buffer *b;
2961	int slot;
2962	int ret;
2963	int err;
2964	int level;
2965	int lowest_unlock = 1;
2966	u8 lowest_level = 0;
2967	int prev_cmp = -1;
2968
2969	lowest_level = p->lowest_level;
2970	WARN_ON(p->nodes[0] != NULL);
2971
2972	if (p->search_commit_root) {
2973		BUG_ON(time_seq);
2974		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975	}
2976
2977again:
2978	b = get_old_root(root, time_seq);
 
 
 
 
2979	level = btrfs_header_level(b);
2980	p->locks[level] = BTRFS_READ_LOCK;
2981
2982	while (b) {
 
 
2983		level = btrfs_header_level(b);
2984		p->nodes[level] = b;
2985		btrfs_clear_path_blocking(p, NULL, 0);
2986
2987		/*
2988		 * we have a lock on b and as long as we aren't changing
2989		 * the tree, there is no way to for the items in b to change.
2990		 * It is safe to drop the lock on our parent before we
2991		 * go through the expensive btree search on b.
2992		 */
2993		btrfs_unlock_up_safe(p, level + 1);
2994
2995		/*
2996		 * Since we can unwind ebs we want to do a real search every
2997		 * time.
2998		 */
2999		prev_cmp = -1;
3000		ret = key_search(b, key, level, &prev_cmp, &slot);
3001
3002		if (level != 0) {
3003			int dec = 0;
3004			if (ret && slot > 0) {
3005				dec = 1;
3006				slot -= 1;
3007			}
3008			p->slots[level] = slot;
3009			unlock_up(p, level, lowest_unlock, 0, NULL);
 
 
 
 
 
 
 
 
 
3010
3011			if (level == lowest_level) {
3012				if (dec)
3013					p->slots[level]++;
3014				goto done;
3015			}
3016
3017			err = read_block_for_search(NULL, root, p, &b, level,
3018						    slot, key, time_seq);
3019			if (err == -EAGAIN)
3020				goto again;
3021			if (err) {
3022				ret = err;
3023				goto done;
3024			}
3025
3026			level = btrfs_header_level(b);
3027			err = btrfs_tree_read_lock_atomic(b);
3028			if (!err) {
3029				btrfs_set_path_blocking(p);
3030				btrfs_tree_read_lock(b);
3031				btrfs_clear_path_blocking(p, b,
3032							  BTRFS_READ_LOCK);
3033			}
3034			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3035			if (!b) {
3036				ret = -ENOMEM;
3037				goto done;
3038			}
3039			p->locks[level] = BTRFS_READ_LOCK;
3040			p->nodes[level] = b;
3041		} else {
3042			p->slots[level] = slot;
3043			unlock_up(p, level, lowest_unlock, 0, NULL);
3044			goto done;
3045		}
 
 
3046	}
3047	ret = 1;
3048done:
3049	if (!p->leave_spinning)
3050		btrfs_set_path_blocking(p);
3051	if (ret < 0)
3052		btrfs_release_path(p);
3053
3054	return ret;
3055}
3056
3057/*
3058 * helper to use instead of search slot if no exact match is needed but
3059 * instead the next or previous item should be returned.
3060 * When find_higher is true, the next higher item is returned, the next lower
3061 * otherwise.
3062 * When return_any and find_higher are both true, and no higher item is found,
3063 * return the next lower instead.
3064 * When return_any is true and find_higher is false, and no lower item is found,
3065 * return the next higher instead.
3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067 * < 0 on error
3068 */
3069int btrfs_search_slot_for_read(struct btrfs_root *root,
3070			       struct btrfs_key *key, struct btrfs_path *p,
3071			       int find_higher, int return_any)
 
3072{
3073	int ret;
3074	struct extent_buffer *leaf;
3075
3076again:
3077	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3078	if (ret <= 0)
3079		return ret;
3080	/*
3081	 * a return value of 1 means the path is at the position where the
3082	 * item should be inserted. Normally this is the next bigger item,
3083	 * but in case the previous item is the last in a leaf, path points
3084	 * to the first free slot in the previous leaf, i.e. at an invalid
3085	 * item.
3086	 */
3087	leaf = p->nodes[0];
3088
3089	if (find_higher) {
3090		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3091			ret = btrfs_next_leaf(root, p);
3092			if (ret <= 0)
3093				return ret;
3094			if (!return_any)
3095				return 1;
3096			/*
3097			 * no higher item found, return the next
3098			 * lower instead
3099			 */
3100			return_any = 0;
3101			find_higher = 0;
3102			btrfs_release_path(p);
3103			goto again;
3104		}
3105	} else {
3106		if (p->slots[0] == 0) {
3107			ret = btrfs_prev_leaf(root, p);
3108			if (ret < 0)
3109				return ret;
3110			if (!ret) {
3111				leaf = p->nodes[0];
3112				if (p->slots[0] == btrfs_header_nritems(leaf))
3113					p->slots[0]--;
3114				return 0;
3115			}
3116			if (!return_any)
3117				return 1;
3118			/*
3119			 * no lower item found, return the next
3120			 * higher instead
3121			 */
3122			return_any = 0;
3123			find_higher = 1;
3124			btrfs_release_path(p);
3125			goto again;
3126		} else {
3127			--p->slots[0];
3128		}
3129	}
3130	return 0;
3131}
3132
3133/*
3134 * adjust the pointers going up the tree, starting at level
3135 * making sure the right key of each node is points to 'key'.
3136 * This is used after shifting pointers to the left, so it stops
3137 * fixing up pointers when a given leaf/node is not in slot 0 of the
3138 * higher levels
3139 *
3140 */
3141static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3142			   struct btrfs_path *path,
3143			   struct btrfs_disk_key *key, int level)
3144{
3145	int i;
3146	struct extent_buffer *t;
 
3147
3148	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3149		int tslot = path->slots[i];
 
3150		if (!path->nodes[i])
3151			break;
3152		t = path->nodes[i];
3153		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
 
 
3154		btrfs_set_node_key(t, key, tslot);
3155		btrfs_mark_buffer_dirty(path->nodes[i]);
3156		if (tslot != 0)
3157			break;
3158	}
3159}
3160
3161/*
3162 * update item key.
3163 *
3164 * This function isn't completely safe. It's the caller's responsibility
3165 * that the new key won't break the order
3166 */
3167void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3168			     struct btrfs_path *path,
3169			     struct btrfs_key *new_key)
3170{
3171	struct btrfs_disk_key disk_key;
3172	struct extent_buffer *eb;
3173	int slot;
3174
3175	eb = path->nodes[0];
3176	slot = path->slots[0];
3177	if (slot > 0) {
3178		btrfs_item_key(eb, &disk_key, slot - 1);
3179		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
 
 
 
 
 
 
 
 
 
3180	}
3181	if (slot < btrfs_header_nritems(eb) - 1) {
3182		btrfs_item_key(eb, &disk_key, slot + 1);
3183		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
 
 
 
 
 
 
 
 
 
3184	}
3185
3186	btrfs_cpu_key_to_disk(&disk_key, new_key);
3187	btrfs_set_item_key(eb, &disk_key, slot);
3188	btrfs_mark_buffer_dirty(eb);
3189	if (slot == 0)
3190		fixup_low_keys(fs_info, path, &disk_key, 1);
3191}
3192
3193/*
3194 * try to push data from one node into the next node left in the
3195 * tree.
3196 *
3197 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3198 * error, and > 0 if there was no room in the left hand block.
3199 */
3200static int push_node_left(struct btrfs_trans_handle *trans,
3201			  struct btrfs_fs_info *fs_info,
3202			  struct extent_buffer *dst,
3203			  struct extent_buffer *src, int empty)
3204{
 
3205	int push_items = 0;
3206	int src_nritems;
3207	int dst_nritems;
3208	int ret = 0;
3209
3210	src_nritems = btrfs_header_nritems(src);
3211	dst_nritems = btrfs_header_nritems(dst);
3212	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3213	WARN_ON(btrfs_header_generation(src) != trans->transid);
3214	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3215
3216	if (!empty && src_nritems <= 8)
3217		return 1;
3218
3219	if (push_items <= 0)
3220		return 1;
3221
3222	if (empty) {
3223		push_items = min(src_nritems, push_items);
3224		if (push_items < src_nritems) {
3225			/* leave at least 8 pointers in the node if
3226			 * we aren't going to empty it
3227			 */
3228			if (src_nritems - push_items < 8) {
3229				if (push_items <= 8)
3230					return 1;
3231				push_items -= 8;
3232			}
3233		}
3234	} else
3235		push_items = min(src_nritems - 8, push_items);
3236
3237	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3238				   push_items);
3239	if (ret) {
3240		btrfs_abort_transaction(trans, ret);
3241		return ret;
3242	}
3243	copy_extent_buffer(dst, src,
3244			   btrfs_node_key_ptr_offset(dst_nritems),
3245			   btrfs_node_key_ptr_offset(0),
3246			   push_items * sizeof(struct btrfs_key_ptr));
3247
3248	if (push_items < src_nritems) {
3249		/*
3250		 * don't call tree_mod_log_eb_move here, key removal was already
3251		 * fully logged by tree_mod_log_eb_copy above.
3252		 */
3253		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3254				      btrfs_node_key_ptr_offset(push_items),
3255				      (src_nritems - push_items) *
3256				      sizeof(struct btrfs_key_ptr));
3257	}
3258	btrfs_set_header_nritems(src, src_nritems - push_items);
3259	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3260	btrfs_mark_buffer_dirty(src);
3261	btrfs_mark_buffer_dirty(dst);
3262
3263	return ret;
3264}
3265
3266/*
3267 * try to push data from one node into the next node right in the
3268 * tree.
3269 *
3270 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3271 * error, and > 0 if there was no room in the right hand block.
3272 *
3273 * this will  only push up to 1/2 the contents of the left node over
3274 */
3275static int balance_node_right(struct btrfs_trans_handle *trans,
3276			      struct btrfs_fs_info *fs_info,
3277			      struct extent_buffer *dst,
3278			      struct extent_buffer *src)
3279{
 
3280	int push_items = 0;
3281	int max_push;
3282	int src_nritems;
3283	int dst_nritems;
3284	int ret = 0;
3285
3286	WARN_ON(btrfs_header_generation(src) != trans->transid);
3287	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3288
3289	src_nritems = btrfs_header_nritems(src);
3290	dst_nritems = btrfs_header_nritems(dst);
3291	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3292	if (push_items <= 0)
3293		return 1;
3294
3295	if (src_nritems < 4)
3296		return 1;
3297
3298	max_push = src_nritems / 2 + 1;
3299	/* don't try to empty the node */
3300	if (max_push >= src_nritems)
3301		return 1;
3302
3303	if (max_push < push_items)
3304		push_items = max_push;
3305
3306	tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
 
3307	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3308				      btrfs_node_key_ptr_offset(0),
3309				      (dst_nritems) *
3310				      sizeof(struct btrfs_key_ptr));
3311
3312	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3313				   src_nritems - push_items, push_items);
3314	if (ret) {
3315		btrfs_abort_transaction(trans, ret);
3316		return ret;
3317	}
3318	copy_extent_buffer(dst, src,
3319			   btrfs_node_key_ptr_offset(0),
3320			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3321			   push_items * sizeof(struct btrfs_key_ptr));
3322
3323	btrfs_set_header_nritems(src, src_nritems - push_items);
3324	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3325
3326	btrfs_mark_buffer_dirty(src);
3327	btrfs_mark_buffer_dirty(dst);
3328
3329	return ret;
3330}
3331
3332/*
3333 * helper function to insert a new root level in the tree.
3334 * A new node is allocated, and a single item is inserted to
3335 * point to the existing root
3336 *
3337 * returns zero on success or < 0 on failure.
3338 */
3339static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3340			   struct btrfs_root *root,
3341			   struct btrfs_path *path, int level)
3342{
3343	struct btrfs_fs_info *fs_info = root->fs_info;
3344	u64 lower_gen;
3345	struct extent_buffer *lower;
3346	struct extent_buffer *c;
3347	struct extent_buffer *old;
3348	struct btrfs_disk_key lower_key;
 
3349
3350	BUG_ON(path->nodes[level]);
3351	BUG_ON(path->nodes[level-1] != root->node);
3352
3353	lower = path->nodes[level-1];
3354	if (level == 1)
3355		btrfs_item_key(lower, &lower_key, 0);
3356	else
3357		btrfs_node_key(lower, &lower_key, 0);
3358
3359	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3360				   &lower_key, level, root->node->start, 0);
3361	if (IS_ERR(c))
3362		return PTR_ERR(c);
3363
3364	root_add_used(root, fs_info->nodesize);
3365
3366	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3367	btrfs_set_header_nritems(c, 1);
3368	btrfs_set_header_level(c, level);
3369	btrfs_set_header_bytenr(c, c->start);
3370	btrfs_set_header_generation(c, trans->transid);
3371	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3372	btrfs_set_header_owner(c, root->root_key.objectid);
3373
3374	write_extent_buffer_fsid(c, fs_info->fsid);
3375	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3376
3377	btrfs_set_node_key(c, &lower_key, 0);
3378	btrfs_set_node_blockptr(c, 0, lower->start);
3379	lower_gen = btrfs_header_generation(lower);
3380	WARN_ON(lower_gen != trans->transid);
3381
3382	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383
3384	btrfs_mark_buffer_dirty(c);
3385
3386	old = root->node;
3387	tree_mod_log_set_root_pointer(root, c, 0);
 
3388	rcu_assign_pointer(root->node, c);
3389
3390	/* the super has an extra ref to root->node */
3391	free_extent_buffer(old);
3392
3393	add_root_to_dirty_list(root);
3394	extent_buffer_get(c);
3395	path->nodes[level] = c;
3396	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3397	path->slots[level] = 0;
3398	return 0;
3399}
3400
3401/*
3402 * worker function to insert a single pointer in a node.
3403 * the node should have enough room for the pointer already
3404 *
3405 * slot and level indicate where you want the key to go, and
3406 * blocknr is the block the key points to.
3407 */
3408static void insert_ptr(struct btrfs_trans_handle *trans,
3409		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3410		       struct btrfs_disk_key *key, u64 bytenr,
3411		       int slot, int level)
3412{
3413	struct extent_buffer *lower;
3414	int nritems;
3415	int ret;
3416
3417	BUG_ON(!path->nodes[level]);
3418	btrfs_assert_tree_locked(path->nodes[level]);
3419	lower = path->nodes[level];
3420	nritems = btrfs_header_nritems(lower);
3421	BUG_ON(slot > nritems);
3422	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3423	if (slot != nritems) {
3424		if (level)
3425			tree_mod_log_eb_move(fs_info, lower, slot + 1,
3426					     slot, nritems - slot);
 
 
3427		memmove_extent_buffer(lower,
3428			      btrfs_node_key_ptr_offset(slot + 1),
3429			      btrfs_node_key_ptr_offset(slot),
3430			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3431	}
3432	if (level) {
3433		ret = tree_mod_log_insert_key(fs_info, lower, slot,
3434					      MOD_LOG_KEY_ADD, GFP_NOFS);
3435		BUG_ON(ret < 0);
3436	}
3437	btrfs_set_node_key(lower, key, slot);
3438	btrfs_set_node_blockptr(lower, slot, bytenr);
3439	WARN_ON(trans->transid == 0);
3440	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441	btrfs_set_header_nritems(lower, nritems + 1);
3442	btrfs_mark_buffer_dirty(lower);
3443}
3444
3445/*
3446 * split the node at the specified level in path in two.
3447 * The path is corrected to point to the appropriate node after the split
3448 *
3449 * Before splitting this tries to make some room in the node by pushing
3450 * left and right, if either one works, it returns right away.
3451 *
3452 * returns 0 on success and < 0 on failure
3453 */
3454static noinline int split_node(struct btrfs_trans_handle *trans,
3455			       struct btrfs_root *root,
3456			       struct btrfs_path *path, int level)
3457{
3458	struct btrfs_fs_info *fs_info = root->fs_info;
3459	struct extent_buffer *c;
3460	struct extent_buffer *split;
3461	struct btrfs_disk_key disk_key;
3462	int mid;
3463	int ret;
3464	u32 c_nritems;
3465
3466	c = path->nodes[level];
3467	WARN_ON(btrfs_header_generation(c) != trans->transid);
3468	if (c == root->node) {
3469		/*
3470		 * trying to split the root, lets make a new one
3471		 *
3472		 * tree mod log: We don't log_removal old root in
3473		 * insert_new_root, because that root buffer will be kept as a
3474		 * normal node. We are going to log removal of half of the
3475		 * elements below with tree_mod_log_eb_copy. We're holding a
3476		 * tree lock on the buffer, which is why we cannot race with
3477		 * other tree_mod_log users.
3478		 */
3479		ret = insert_new_root(trans, root, path, level + 1);
3480		if (ret)
3481			return ret;
3482	} else {
3483		ret = push_nodes_for_insert(trans, root, path, level);
3484		c = path->nodes[level];
3485		if (!ret && btrfs_header_nritems(c) <
3486		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3487			return 0;
3488		if (ret < 0)
3489			return ret;
3490	}
3491
3492	c_nritems = btrfs_header_nritems(c);
3493	mid = (c_nritems + 1) / 2;
3494	btrfs_node_key(c, &disk_key, mid);
3495
3496	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3497			&disk_key, level, c->start, 0);
3498	if (IS_ERR(split))
3499		return PTR_ERR(split);
3500
3501	root_add_used(root, fs_info->nodesize);
 
3502
3503	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3504	btrfs_set_header_level(split, btrfs_header_level(c));
3505	btrfs_set_header_bytenr(split, split->start);
3506	btrfs_set_header_generation(split, trans->transid);
3507	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3508	btrfs_set_header_owner(split, root->root_key.objectid);
3509	write_extent_buffer_fsid(split, fs_info->fsid);
3510	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3511
3512	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3513	if (ret) {
3514		btrfs_abort_transaction(trans, ret);
3515		return ret;
3516	}
3517	copy_extent_buffer(split, c,
3518			   btrfs_node_key_ptr_offset(0),
3519			   btrfs_node_key_ptr_offset(mid),
3520			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3521	btrfs_set_header_nritems(split, c_nritems - mid);
3522	btrfs_set_header_nritems(c, mid);
3523	ret = 0;
3524
3525	btrfs_mark_buffer_dirty(c);
3526	btrfs_mark_buffer_dirty(split);
3527
3528	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3529		   path->slots[level + 1] + 1, level + 1);
3530
3531	if (path->slots[level] >= mid) {
3532		path->slots[level] -= mid;
3533		btrfs_tree_unlock(c);
3534		free_extent_buffer(c);
3535		path->nodes[level] = split;
3536		path->slots[level + 1] += 1;
3537	} else {
3538		btrfs_tree_unlock(split);
3539		free_extent_buffer(split);
3540	}
3541	return ret;
3542}
3543
3544/*
3545 * how many bytes are required to store the items in a leaf.  start
3546 * and nr indicate which items in the leaf to check.  This totals up the
3547 * space used both by the item structs and the item data
3548 */
3549static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3550{
3551	struct btrfs_item *start_item;
3552	struct btrfs_item *end_item;
3553	struct btrfs_map_token token;
3554	int data_len;
3555	int nritems = btrfs_header_nritems(l);
3556	int end = min(nritems, start + nr) - 1;
3557
3558	if (!nr)
3559		return 0;
3560	btrfs_init_map_token(&token);
3561	start_item = btrfs_item_nr(start);
3562	end_item = btrfs_item_nr(end);
3563	data_len = btrfs_token_item_offset(l, start_item, &token) +
3564		btrfs_token_item_size(l, start_item, &token);
3565	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3566	data_len += sizeof(struct btrfs_item) * nr;
3567	WARN_ON(data_len < 0);
3568	return data_len;
3569}
3570
3571/*
3572 * The space between the end of the leaf items and
3573 * the start of the leaf data.  IOW, how much room
3574 * the leaf has left for both items and data
3575 */
3576noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3577				   struct extent_buffer *leaf)
3578{
 
3579	int nritems = btrfs_header_nritems(leaf);
3580	int ret;
3581
3582	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3583	if (ret < 0) {
3584		btrfs_crit(fs_info,
3585			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586			   ret,
3587			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3588			   leaf_space_used(leaf, 0, nritems), nritems);
3589	}
3590	return ret;
3591}
3592
3593/*
3594 * min slot controls the lowest index we're willing to push to the
3595 * right.  We'll push up to and including min_slot, but no lower
3596 */
3597static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3598				      struct btrfs_fs_info *fs_info,
3599				      struct btrfs_path *path,
3600				      int data_size, int empty,
3601				      struct extent_buffer *right,
3602				      int free_space, u32 left_nritems,
3603				      u32 min_slot)
3604{
 
3605	struct extent_buffer *left = path->nodes[0];
3606	struct extent_buffer *upper = path->nodes[1];
3607	struct btrfs_map_token token;
3608	struct btrfs_disk_key disk_key;
3609	int slot;
3610	u32 i;
3611	int push_space = 0;
3612	int push_items = 0;
3613	struct btrfs_item *item;
3614	u32 nr;
3615	u32 right_nritems;
3616	u32 data_end;
3617	u32 this_item_size;
3618
3619	btrfs_init_map_token(&token);
3620
3621	if (empty)
3622		nr = 0;
3623	else
3624		nr = max_t(u32, 1, min_slot);
3625
3626	if (path->slots[0] >= left_nritems)
3627		push_space += data_size;
3628
3629	slot = path->slots[1];
3630	i = left_nritems - 1;
3631	while (i >= nr) {
3632		item = btrfs_item_nr(i);
3633
3634		if (!empty && push_items > 0) {
3635			if (path->slots[0] > i)
3636				break;
3637			if (path->slots[0] == i) {
3638				int space = btrfs_leaf_free_space(fs_info, left);
 
3639				if (space + push_space * 2 > free_space)
3640					break;
3641			}
3642		}
3643
3644		if (path->slots[0] == i)
3645			push_space += data_size;
3646
3647		this_item_size = btrfs_item_size(left, item);
3648		if (this_item_size + sizeof(*item) + push_space > free_space)
3649			break;
3650
3651		push_items++;
3652		push_space += this_item_size + sizeof(*item);
3653		if (i == 0)
3654			break;
3655		i--;
3656	}
3657
3658	if (push_items == 0)
3659		goto out_unlock;
3660
3661	WARN_ON(!empty && push_items == left_nritems);
3662
3663	/* push left to right */
3664	right_nritems = btrfs_header_nritems(right);
3665
3666	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3667	push_space -= leaf_data_end(fs_info, left);
3668
3669	/* make room in the right data area */
3670	data_end = leaf_data_end(fs_info, right);
3671	memmove_extent_buffer(right,
3672			      btrfs_leaf_data(right) + data_end - push_space,
3673			      btrfs_leaf_data(right) + data_end,
3674			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3675
3676	/* copy from the left data area */
3677	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3678		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3679		     btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
3680		     push_space);
3681
3682	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3683			      btrfs_item_nr_offset(0),
3684			      right_nritems * sizeof(struct btrfs_item));
3685
3686	/* copy the items from left to right */
3687	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3688		   btrfs_item_nr_offset(left_nritems - push_items),
3689		   push_items * sizeof(struct btrfs_item));
3690
3691	/* update the item pointers */
 
3692	right_nritems += push_items;
3693	btrfs_set_header_nritems(right, right_nritems);
3694	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3695	for (i = 0; i < right_nritems; i++) {
3696		item = btrfs_item_nr(i);
3697		push_space -= btrfs_token_item_size(right, item, &token);
3698		btrfs_set_token_item_offset(right, item, push_space, &token);
3699	}
3700
3701	left_nritems -= push_items;
3702	btrfs_set_header_nritems(left, left_nritems);
3703
3704	if (left_nritems)
3705		btrfs_mark_buffer_dirty(left);
3706	else
3707		clean_tree_block(trans, fs_info, left);
3708
3709	btrfs_mark_buffer_dirty(right);
3710
3711	btrfs_item_key(right, &disk_key, 0);
3712	btrfs_set_node_key(upper, &disk_key, slot + 1);
3713	btrfs_mark_buffer_dirty(upper);
3714
3715	/* then fixup the leaf pointer in the path */
3716	if (path->slots[0] >= left_nritems) {
3717		path->slots[0] -= left_nritems;
3718		if (btrfs_header_nritems(path->nodes[0]) == 0)
3719			clean_tree_block(trans, fs_info, path->nodes[0]);
3720		btrfs_tree_unlock(path->nodes[0]);
3721		free_extent_buffer(path->nodes[0]);
3722		path->nodes[0] = right;
3723		path->slots[1] += 1;
3724	} else {
3725		btrfs_tree_unlock(right);
3726		free_extent_buffer(right);
3727	}
3728	return 0;
3729
3730out_unlock:
3731	btrfs_tree_unlock(right);
3732	free_extent_buffer(right);
3733	return 1;
3734}
3735
3736/*
3737 * push some data in the path leaf to the right, trying to free up at
3738 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3739 *
3740 * returns 1 if the push failed because the other node didn't have enough
3741 * room, 0 if everything worked out and < 0 if there were major errors.
3742 *
3743 * this will push starting from min_slot to the end of the leaf.  It won't
3744 * push any slot lower than min_slot
3745 */
3746static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3747			   *root, struct btrfs_path *path,
3748			   int min_data_size, int data_size,
3749			   int empty, u32 min_slot)
3750{
3751	struct btrfs_fs_info *fs_info = root->fs_info;
3752	struct extent_buffer *left = path->nodes[0];
3753	struct extent_buffer *right;
3754	struct extent_buffer *upper;
3755	int slot;
3756	int free_space;
3757	u32 left_nritems;
3758	int ret;
3759
3760	if (!path->nodes[1])
3761		return 1;
3762
3763	slot = path->slots[1];
3764	upper = path->nodes[1];
3765	if (slot >= btrfs_header_nritems(upper) - 1)
3766		return 1;
3767
3768	btrfs_assert_tree_locked(path->nodes[1]);
3769
3770	right = read_node_slot(fs_info, upper, slot + 1);
3771	/*
3772	 * slot + 1 is not valid or we fail to read the right node,
3773	 * no big deal, just return.
3774	 */
3775	if (IS_ERR(right))
3776		return 1;
3777
3778	btrfs_tree_lock(right);
3779	btrfs_set_lock_blocking(right);
3780
3781	free_space = btrfs_leaf_free_space(fs_info, right);
3782	if (free_space < data_size)
3783		goto out_unlock;
3784
3785	/* cow and double check */
3786	ret = btrfs_cow_block(trans, root, right, upper,
3787			      slot + 1, &right);
3788	if (ret)
3789		goto out_unlock;
3790
3791	free_space = btrfs_leaf_free_space(fs_info, right);
3792	if (free_space < data_size)
3793		goto out_unlock;
3794
3795	left_nritems = btrfs_header_nritems(left);
3796	if (left_nritems == 0)
3797		goto out_unlock;
3798
3799	if (path->slots[0] == left_nritems && !empty) {
3800		/* Key greater than all keys in the leaf, right neighbor has
3801		 * enough room for it and we're not emptying our leaf to delete
3802		 * it, therefore use right neighbor to insert the new item and
3803		 * no need to touch/dirty our left leaft. */
3804		btrfs_tree_unlock(left);
3805		free_extent_buffer(left);
3806		path->nodes[0] = right;
3807		path->slots[0] = 0;
3808		path->slots[1]++;
3809		return 0;
3810	}
3811
3812	return __push_leaf_right(trans, fs_info, path, min_data_size, empty,
3813				right, free_space, left_nritems, min_slot);
3814out_unlock:
3815	btrfs_tree_unlock(right);
3816	free_extent_buffer(right);
3817	return 1;
3818}
3819
3820/*
3821 * push some data in the path leaf to the left, trying to free up at
3822 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3823 *
3824 * max_slot can put a limit on how far into the leaf we'll push items.  The
3825 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3826 * items
3827 */
3828static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3829				     struct btrfs_fs_info *fs_info,
3830				     struct btrfs_path *path, int data_size,
3831				     int empty, struct extent_buffer *left,
3832				     int free_space, u32 right_nritems,
3833				     u32 max_slot)
3834{
 
3835	struct btrfs_disk_key disk_key;
3836	struct extent_buffer *right = path->nodes[0];
3837	int i;
3838	int push_space = 0;
3839	int push_items = 0;
3840	struct btrfs_item *item;
3841	u32 old_left_nritems;
3842	u32 nr;
3843	int ret = 0;
3844	u32 this_item_size;
3845	u32 old_left_item_size;
3846	struct btrfs_map_token token;
3847
3848	btrfs_init_map_token(&token);
3849
3850	if (empty)
3851		nr = min(right_nritems, max_slot);
3852	else
3853		nr = min(right_nritems - 1, max_slot);
3854
3855	for (i = 0; i < nr; i++) {
3856		item = btrfs_item_nr(i);
3857
3858		if (!empty && push_items > 0) {
3859			if (path->slots[0] < i)
3860				break;
3861			if (path->slots[0] == i) {
3862				int space = btrfs_leaf_free_space(fs_info, right);
 
3863				if (space + push_space * 2 > free_space)
3864					break;
3865			}
3866		}
3867
3868		if (path->slots[0] == i)
3869			push_space += data_size;
3870
3871		this_item_size = btrfs_item_size(right, item);
3872		if (this_item_size + sizeof(*item) + push_space > free_space)
3873			break;
3874
3875		push_items++;
3876		push_space += this_item_size + sizeof(*item);
3877	}
3878
3879	if (push_items == 0) {
3880		ret = 1;
3881		goto out;
3882	}
3883	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3884
3885	/* push data from right to left */
3886	copy_extent_buffer(left, right,
3887			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3888			   btrfs_item_nr_offset(0),
3889			   push_items * sizeof(struct btrfs_item));
3890
3891	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3892		     btrfs_item_offset_nr(right, push_items - 1);
3893
3894	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3895		     leaf_data_end(fs_info, left) - push_space,
3896		     btrfs_leaf_data(right) +
3897		     btrfs_item_offset_nr(right, push_items - 1),
3898		     push_space);
3899	old_left_nritems = btrfs_header_nritems(left);
3900	BUG_ON(old_left_nritems <= 0);
3901
 
3902	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3903	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3904		u32 ioff;
3905
3906		item = btrfs_item_nr(i);
3907
3908		ioff = btrfs_token_item_offset(left, item, &token);
3909		btrfs_set_token_item_offset(left, item,
3910		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3911		      &token);
3912	}
3913	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3914
3915	/* fixup right node */
3916	if (push_items > right_nritems)
3917		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3918		       right_nritems);
3919
3920	if (push_items < right_nritems) {
3921		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3922						  leaf_data_end(fs_info, right);
3923		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3924				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3925				      btrfs_leaf_data(right) +
3926				      leaf_data_end(fs_info, right), push_space);
3927
3928		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3929			      btrfs_item_nr_offset(push_items),
3930			     (btrfs_header_nritems(right) - push_items) *
3931			     sizeof(struct btrfs_item));
3932	}
 
 
3933	right_nritems -= push_items;
3934	btrfs_set_header_nritems(right, right_nritems);
3935	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3936	for (i = 0; i < right_nritems; i++) {
3937		item = btrfs_item_nr(i);
3938
3939		push_space = push_space - btrfs_token_item_size(right,
3940								item, &token);
3941		btrfs_set_token_item_offset(right, item, push_space, &token);
3942	}
3943
3944	btrfs_mark_buffer_dirty(left);
3945	if (right_nritems)
3946		btrfs_mark_buffer_dirty(right);
3947	else
3948		clean_tree_block(trans, fs_info, right);
3949
3950	btrfs_item_key(right, &disk_key, 0);
3951	fixup_low_keys(fs_info, path, &disk_key, 1);
3952
3953	/* then fixup the leaf pointer in the path */
3954	if (path->slots[0] < push_items) {
3955		path->slots[0] += old_left_nritems;
3956		btrfs_tree_unlock(path->nodes[0]);
3957		free_extent_buffer(path->nodes[0]);
3958		path->nodes[0] = left;
3959		path->slots[1] -= 1;
3960	} else {
3961		btrfs_tree_unlock(left);
3962		free_extent_buffer(left);
3963		path->slots[0] -= push_items;
3964	}
3965	BUG_ON(path->slots[0] < 0);
3966	return ret;
3967out:
3968	btrfs_tree_unlock(left);
3969	free_extent_buffer(left);
3970	return ret;
3971}
3972
3973/*
3974 * push some data in the path leaf to the left, trying to free up at
3975 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3976 *
3977 * max_slot can put a limit on how far into the leaf we'll push items.  The
3978 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3979 * items
3980 */
3981static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3982			  *root, struct btrfs_path *path, int min_data_size,
3983			  int data_size, int empty, u32 max_slot)
3984{
3985	struct btrfs_fs_info *fs_info = root->fs_info;
3986	struct extent_buffer *right = path->nodes[0];
3987	struct extent_buffer *left;
3988	int slot;
3989	int free_space;
3990	u32 right_nritems;
3991	int ret = 0;
3992
3993	slot = path->slots[1];
3994	if (slot == 0)
3995		return 1;
3996	if (!path->nodes[1])
3997		return 1;
3998
3999	right_nritems = btrfs_header_nritems(right);
4000	if (right_nritems == 0)
4001		return 1;
4002
4003	btrfs_assert_tree_locked(path->nodes[1]);
4004
4005	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4006	/*
4007	 * slot - 1 is not valid or we fail to read the left node,
4008	 * no big deal, just return.
4009	 */
4010	if (IS_ERR(left))
4011		return 1;
4012
4013	btrfs_tree_lock(left);
4014	btrfs_set_lock_blocking(left);
4015
4016	free_space = btrfs_leaf_free_space(fs_info, left);
4017	if (free_space < data_size) {
4018		ret = 1;
4019		goto out;
4020	}
4021
4022	/* cow and double check */
4023	ret = btrfs_cow_block(trans, root, left,
4024			      path->nodes[1], slot - 1, &left);
4025	if (ret) {
4026		/* we hit -ENOSPC, but it isn't fatal here */
4027		if (ret == -ENOSPC)
4028			ret = 1;
4029		goto out;
4030	}
4031
4032	free_space = btrfs_leaf_free_space(fs_info, left);
4033	if (free_space < data_size) {
4034		ret = 1;
4035		goto out;
4036	}
4037
4038	return __push_leaf_left(trans, fs_info, path, min_data_size,
4039			       empty, left, free_space, right_nritems,
4040			       max_slot);
4041out:
4042	btrfs_tree_unlock(left);
4043	free_extent_buffer(left);
4044	return ret;
4045}
4046
4047/*
4048 * split the path's leaf in two, making sure there is at least data_size
4049 * available for the resulting leaf level of the path.
4050 */
4051static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4052				    struct btrfs_fs_info *fs_info,
4053				    struct btrfs_path *path,
4054				    struct extent_buffer *l,
4055				    struct extent_buffer *right,
4056				    int slot, int mid, int nritems)
4057{
 
4058	int data_copy_size;
4059	int rt_data_off;
4060	int i;
4061	struct btrfs_disk_key disk_key;
4062	struct btrfs_map_token token;
4063
4064	btrfs_init_map_token(&token);
4065
4066	nritems = nritems - mid;
4067	btrfs_set_header_nritems(right, nritems);
4068	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4069
4070	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4071			   btrfs_item_nr_offset(mid),
4072			   nritems * sizeof(struct btrfs_item));
4073
4074	copy_extent_buffer(right, l,
4075		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
4076		     data_copy_size, btrfs_leaf_data(l) +
4077		     leaf_data_end(fs_info, l), data_copy_size);
4078
4079	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4080
 
4081	for (i = 0; i < nritems; i++) {
4082		struct btrfs_item *item = btrfs_item_nr(i);
4083		u32 ioff;
4084
4085		ioff = btrfs_token_item_offset(right, item, &token);
4086		btrfs_set_token_item_offset(right, item,
4087					    ioff + rt_data_off, &token);
4088	}
4089
4090	btrfs_set_header_nritems(l, mid);
4091	btrfs_item_key(right, &disk_key, 0);
4092	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4093		   path->slots[1] + 1, 1);
4094
4095	btrfs_mark_buffer_dirty(right);
4096	btrfs_mark_buffer_dirty(l);
4097	BUG_ON(path->slots[0] != slot);
4098
4099	if (mid <= slot) {
4100		btrfs_tree_unlock(path->nodes[0]);
4101		free_extent_buffer(path->nodes[0]);
4102		path->nodes[0] = right;
4103		path->slots[0] -= mid;
4104		path->slots[1] += 1;
4105	} else {
4106		btrfs_tree_unlock(right);
4107		free_extent_buffer(right);
4108	}
4109
4110	BUG_ON(path->slots[0] < 0);
4111}
4112
4113/*
4114 * double splits happen when we need to insert a big item in the middle
4115 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4116 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4117 *          A                 B                 C
4118 *
4119 * We avoid this by trying to push the items on either side of our target
4120 * into the adjacent leaves.  If all goes well we can avoid the double split
4121 * completely.
4122 */
4123static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4124					  struct btrfs_root *root,
4125					  struct btrfs_path *path,
4126					  int data_size)
4127{
4128	struct btrfs_fs_info *fs_info = root->fs_info;
4129	int ret;
4130	int progress = 0;
4131	int slot;
4132	u32 nritems;
4133	int space_needed = data_size;
4134
4135	slot = path->slots[0];
4136	if (slot < btrfs_header_nritems(path->nodes[0]))
4137		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4138
4139	/*
4140	 * try to push all the items after our slot into the
4141	 * right leaf
4142	 */
4143	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4144	if (ret < 0)
4145		return ret;
4146
4147	if (ret == 0)
4148		progress++;
4149
4150	nritems = btrfs_header_nritems(path->nodes[0]);
4151	/*
4152	 * our goal is to get our slot at the start or end of a leaf.  If
4153	 * we've done so we're done
4154	 */
4155	if (path->slots[0] == 0 || path->slots[0] == nritems)
4156		return 0;
4157
4158	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4159		return 0;
4160
4161	/* try to push all the items before our slot into the next leaf */
4162	slot = path->slots[0];
 
 
 
4163	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164	if (ret < 0)
4165		return ret;
4166
4167	if (ret == 0)
4168		progress++;
4169
4170	if (progress)
4171		return 0;
4172	return 1;
4173}
4174
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4178 *
4179 * returns 0 if all went well and < 0 on failure.
4180 */
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182			       struct btrfs_root *root,
4183			       struct btrfs_key *ins_key,
4184			       struct btrfs_path *path, int data_size,
4185			       int extend)
4186{
4187	struct btrfs_disk_key disk_key;
4188	struct extent_buffer *l;
4189	u32 nritems;
4190	int mid;
4191	int slot;
4192	struct extent_buffer *right;
4193	struct btrfs_fs_info *fs_info = root->fs_info;
4194	int ret = 0;
4195	int wret;
4196	int split;
4197	int num_doubles = 0;
4198	int tried_avoid_double = 0;
4199
4200	l = path->nodes[0];
4201	slot = path->slots[0];
4202	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204		return -EOVERFLOW;
4205
4206	/* first try to make some room by pushing left and right */
4207	if (data_size && path->nodes[1]) {
4208		int space_needed = data_size;
4209
4210		if (slot < btrfs_header_nritems(l))
4211			space_needed -= btrfs_leaf_free_space(fs_info, l);
4212
4213		wret = push_leaf_right(trans, root, path, space_needed,
4214				       space_needed, 0, 0);
4215		if (wret < 0)
4216			return wret;
4217		if (wret) {
 
 
 
4218			wret = push_leaf_left(trans, root, path, space_needed,
4219					      space_needed, 0, (u32)-1);
4220			if (wret < 0)
4221				return wret;
4222		}
4223		l = path->nodes[0];
4224
4225		/* did the pushes work? */
4226		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4227			return 0;
4228	}
4229
4230	if (!path->nodes[1]) {
4231		ret = insert_new_root(trans, root, path, 1);
4232		if (ret)
4233			return ret;
4234	}
4235again:
4236	split = 1;
4237	l = path->nodes[0];
4238	slot = path->slots[0];
4239	nritems = btrfs_header_nritems(l);
4240	mid = (nritems + 1) / 2;
4241
4242	if (mid <= slot) {
4243		if (nritems == 1 ||
4244		    leaf_space_used(l, mid, nritems - mid) + data_size >
4245			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246			if (slot >= nritems) {
4247				split = 0;
4248			} else {
4249				mid = slot;
4250				if (mid != nritems &&
4251				    leaf_space_used(l, mid, nritems - mid) +
4252				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253					if (data_size && !tried_avoid_double)
4254						goto push_for_double;
4255					split = 2;
4256				}
4257			}
4258		}
4259	} else {
4260		if (leaf_space_used(l, 0, mid) + data_size >
4261			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262			if (!extend && data_size && slot == 0) {
4263				split = 0;
4264			} else if ((extend || !data_size) && slot == 0) {
4265				mid = 1;
4266			} else {
4267				mid = slot;
4268				if (mid != nritems &&
4269				    leaf_space_used(l, mid, nritems - mid) +
4270				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271					if (data_size && !tried_avoid_double)
4272						goto push_for_double;
4273					split = 2;
4274				}
4275			}
4276		}
4277	}
4278
4279	if (split == 0)
4280		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4281	else
4282		btrfs_item_key(l, &disk_key, mid);
4283
4284	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4285			&disk_key, 0, l->start, 0);
4286	if (IS_ERR(right))
4287		return PTR_ERR(right);
4288
4289	root_add_used(root, fs_info->nodesize);
4290
4291	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4292	btrfs_set_header_bytenr(right, right->start);
4293	btrfs_set_header_generation(right, trans->transid);
4294	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4295	btrfs_set_header_owner(right, root->root_key.objectid);
4296	btrfs_set_header_level(right, 0);
4297	write_extent_buffer_fsid(right, fs_info->fsid);
4298	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4299
4300	if (split == 0) {
4301		if (mid <= slot) {
4302			btrfs_set_header_nritems(right, 0);
4303			insert_ptr(trans, fs_info, path, &disk_key,
4304				   right->start, path->slots[1] + 1, 1);
4305			btrfs_tree_unlock(path->nodes[0]);
4306			free_extent_buffer(path->nodes[0]);
4307			path->nodes[0] = right;
4308			path->slots[0] = 0;
4309			path->slots[1] += 1;
4310		} else {
4311			btrfs_set_header_nritems(right, 0);
4312			insert_ptr(trans, fs_info, path, &disk_key,
4313				   right->start, path->slots[1], 1);
4314			btrfs_tree_unlock(path->nodes[0]);
4315			free_extent_buffer(path->nodes[0]);
4316			path->nodes[0] = right;
4317			path->slots[0] = 0;
4318			if (path->slots[1] == 0)
4319				fixup_low_keys(fs_info, path, &disk_key, 1);
4320		}
4321		/*
4322		 * We create a new leaf 'right' for the required ins_len and
4323		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4324		 * the content of ins_len to 'right'.
4325		 */
4326		return ret;
4327	}
4328
4329	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4330
4331	if (split == 2) {
4332		BUG_ON(num_doubles != 0);
4333		num_doubles++;
4334		goto again;
4335	}
4336
4337	return 0;
4338
4339push_for_double:
4340	push_for_double_split(trans, root, path, data_size);
4341	tried_avoid_double = 1;
4342	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4343		return 0;
4344	goto again;
4345}
4346
4347static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4348					 struct btrfs_root *root,
4349					 struct btrfs_path *path, int ins_len)
4350{
4351	struct btrfs_fs_info *fs_info = root->fs_info;
4352	struct btrfs_key key;
4353	struct extent_buffer *leaf;
4354	struct btrfs_file_extent_item *fi;
4355	u64 extent_len = 0;
4356	u32 item_size;
4357	int ret;
4358
4359	leaf = path->nodes[0];
4360	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4361
4362	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4363	       key.type != BTRFS_EXTENT_CSUM_KEY);
4364
4365	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4366		return 0;
4367
4368	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4369	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4370		fi = btrfs_item_ptr(leaf, path->slots[0],
4371				    struct btrfs_file_extent_item);
4372		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4373	}
4374	btrfs_release_path(path);
4375
4376	path->keep_locks = 1;
4377	path->search_for_split = 1;
4378	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4379	path->search_for_split = 0;
4380	if (ret > 0)
4381		ret = -EAGAIN;
4382	if (ret < 0)
4383		goto err;
4384
4385	ret = -EAGAIN;
4386	leaf = path->nodes[0];
4387	/* if our item isn't there, return now */
4388	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4389		goto err;
4390
4391	/* the leaf has  changed, it now has room.  return now */
4392	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4393		goto err;
4394
4395	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4396		fi = btrfs_item_ptr(leaf, path->slots[0],
4397				    struct btrfs_file_extent_item);
4398		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4399			goto err;
4400	}
4401
4402	btrfs_set_path_blocking(path);
4403	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4404	if (ret)
4405		goto err;
4406
4407	path->keep_locks = 0;
4408	btrfs_unlock_up_safe(path, 1);
4409	return 0;
4410err:
4411	path->keep_locks = 0;
4412	return ret;
4413}
4414
4415static noinline int split_item(struct btrfs_trans_handle *trans,
4416			       struct btrfs_fs_info *fs_info,
4417			       struct btrfs_path *path,
4418			       struct btrfs_key *new_key,
4419			       unsigned long split_offset)
4420{
4421	struct extent_buffer *leaf;
4422	struct btrfs_item *item;
4423	struct btrfs_item *new_item;
4424	int slot;
4425	char *buf;
4426	u32 nritems;
4427	u32 item_size;
4428	u32 orig_offset;
4429	struct btrfs_disk_key disk_key;
4430
4431	leaf = path->nodes[0];
4432	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4433
4434	btrfs_set_path_blocking(path);
4435
4436	item = btrfs_item_nr(path->slots[0]);
4437	orig_offset = btrfs_item_offset(leaf, item);
4438	item_size = btrfs_item_size(leaf, item);
4439
4440	buf = kmalloc(item_size, GFP_NOFS);
4441	if (!buf)
4442		return -ENOMEM;
4443
4444	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4445			    path->slots[0]), item_size);
4446
4447	slot = path->slots[0] + 1;
4448	nritems = btrfs_header_nritems(leaf);
4449	if (slot != nritems) {
4450		/* shift the items */
4451		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4452				btrfs_item_nr_offset(slot),
4453				(nritems - slot) * sizeof(struct btrfs_item));
4454	}
4455
4456	btrfs_cpu_key_to_disk(&disk_key, new_key);
4457	btrfs_set_item_key(leaf, &disk_key, slot);
4458
4459	new_item = btrfs_item_nr(slot);
4460
4461	btrfs_set_item_offset(leaf, new_item, orig_offset);
4462	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4463
4464	btrfs_set_item_offset(leaf, item,
4465			      orig_offset + item_size - split_offset);
4466	btrfs_set_item_size(leaf, item, split_offset);
4467
4468	btrfs_set_header_nritems(leaf, nritems + 1);
4469
4470	/* write the data for the start of the original item */
4471	write_extent_buffer(leaf, buf,
4472			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4473			    split_offset);
4474
4475	/* write the data for the new item */
4476	write_extent_buffer(leaf, buf + split_offset,
4477			    btrfs_item_ptr_offset(leaf, slot),
4478			    item_size - split_offset);
4479	btrfs_mark_buffer_dirty(leaf);
4480
4481	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4482	kfree(buf);
4483	return 0;
4484}
4485
4486/*
4487 * This function splits a single item into two items,
4488 * giving 'new_key' to the new item and splitting the
4489 * old one at split_offset (from the start of the item).
4490 *
4491 * The path may be released by this operation.  After
4492 * the split, the path is pointing to the old item.  The
4493 * new item is going to be in the same node as the old one.
4494 *
4495 * Note, the item being split must be smaller enough to live alone on
4496 * a tree block with room for one extra struct btrfs_item
4497 *
4498 * This allows us to split the item in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_split_item(struct btrfs_trans_handle *trans,
4502		     struct btrfs_root *root,
4503		     struct btrfs_path *path,
4504		     struct btrfs_key *new_key,
4505		     unsigned long split_offset)
4506{
4507	int ret;
4508	ret = setup_leaf_for_split(trans, root, path,
4509				   sizeof(struct btrfs_item));
4510	if (ret)
4511		return ret;
4512
4513	ret = split_item(trans, root->fs_info, path, new_key, split_offset);
4514	return ret;
4515}
4516
4517/*
4518 * This function duplicate a item, giving 'new_key' to the new item.
4519 * It guarantees both items live in the same tree leaf and the new item
4520 * is contiguous with the original item.
4521 *
4522 * This allows us to split file extent in place, keeping a lock on the
4523 * leaf the entire time.
4524 */
4525int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4526			 struct btrfs_root *root,
4527			 struct btrfs_path *path,
4528			 struct btrfs_key *new_key)
4529{
4530	struct extent_buffer *leaf;
4531	int ret;
4532	u32 item_size;
4533
4534	leaf = path->nodes[0];
4535	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4536	ret = setup_leaf_for_split(trans, root, path,
4537				   item_size + sizeof(struct btrfs_item));
4538	if (ret)
4539		return ret;
4540
4541	path->slots[0]++;
4542	setup_items_for_insert(root, path, new_key, &item_size,
4543			       item_size, item_size +
4544			       sizeof(struct btrfs_item), 1);
4545	leaf = path->nodes[0];
4546	memcpy_extent_buffer(leaf,
4547			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4548			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4549			     item_size);
4550	return 0;
4551}
4552
4553/*
4554 * make the item pointed to by the path smaller.  new_size indicates
4555 * how small to make it, and from_end tells us if we just chop bytes
4556 * off the end of the item or if we shift the item to chop bytes off
4557 * the front.
4558 */
4559void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4560			 struct btrfs_path *path, u32 new_size, int from_end)
4561{
4562	int slot;
4563	struct extent_buffer *leaf;
4564	struct btrfs_item *item;
4565	u32 nritems;
4566	unsigned int data_end;
4567	unsigned int old_data_start;
4568	unsigned int old_size;
4569	unsigned int size_diff;
4570	int i;
4571	struct btrfs_map_token token;
4572
4573	btrfs_init_map_token(&token);
4574
4575	leaf = path->nodes[0];
4576	slot = path->slots[0];
4577
4578	old_size = btrfs_item_size_nr(leaf, slot);
4579	if (old_size == new_size)
4580		return;
4581
4582	nritems = btrfs_header_nritems(leaf);
4583	data_end = leaf_data_end(fs_info, leaf);
4584
4585	old_data_start = btrfs_item_offset_nr(leaf, slot);
4586
4587	size_diff = old_size - new_size;
4588
4589	BUG_ON(slot < 0);
4590	BUG_ON(slot >= nritems);
4591
4592	/*
4593	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4594	 */
4595	/* first correct the data pointers */
 
4596	for (i = slot; i < nritems; i++) {
4597		u32 ioff;
4598		item = btrfs_item_nr(i);
4599
4600		ioff = btrfs_token_item_offset(leaf, item, &token);
4601		btrfs_set_token_item_offset(leaf, item,
4602					    ioff + size_diff, &token);
4603	}
4604
4605	/* shift the data */
4606	if (from_end) {
4607		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4608			      data_end + size_diff, btrfs_leaf_data(leaf) +
4609			      data_end, old_data_start + new_size - data_end);
4610	} else {
4611		struct btrfs_disk_key disk_key;
4612		u64 offset;
4613
4614		btrfs_item_key(leaf, &disk_key, slot);
4615
4616		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4617			unsigned long ptr;
4618			struct btrfs_file_extent_item *fi;
4619
4620			fi = btrfs_item_ptr(leaf, slot,
4621					    struct btrfs_file_extent_item);
4622			fi = (struct btrfs_file_extent_item *)(
4623			     (unsigned long)fi - size_diff);
4624
4625			if (btrfs_file_extent_type(leaf, fi) ==
4626			    BTRFS_FILE_EXTENT_INLINE) {
4627				ptr = btrfs_item_ptr_offset(leaf, slot);
4628				memmove_extent_buffer(leaf, ptr,
4629				      (unsigned long)fi,
4630				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4631			}
4632		}
4633
4634		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635			      data_end + size_diff, btrfs_leaf_data(leaf) +
4636			      data_end, old_data_start - data_end);
4637
4638		offset = btrfs_disk_key_offset(&disk_key);
4639		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4640		btrfs_set_item_key(leaf, &disk_key, slot);
4641		if (slot == 0)
4642			fixup_low_keys(fs_info, path, &disk_key, 1);
4643	}
4644
4645	item = btrfs_item_nr(slot);
4646	btrfs_set_item_size(leaf, item, new_size);
4647	btrfs_mark_buffer_dirty(leaf);
4648
4649	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4650		btrfs_print_leaf(fs_info, leaf);
4651		BUG();
4652	}
4653}
4654
4655/*
4656 * make the item pointed to by the path bigger, data_size is the added size.
4657 */
4658void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4659		       u32 data_size)
4660{
4661	int slot;
4662	struct extent_buffer *leaf;
4663	struct btrfs_item *item;
4664	u32 nritems;
4665	unsigned int data_end;
4666	unsigned int old_data;
4667	unsigned int old_size;
4668	int i;
4669	struct btrfs_map_token token;
4670
4671	btrfs_init_map_token(&token);
4672
4673	leaf = path->nodes[0];
4674
4675	nritems = btrfs_header_nritems(leaf);
4676	data_end = leaf_data_end(fs_info, leaf);
4677
4678	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4679		btrfs_print_leaf(fs_info, leaf);
4680		BUG();
4681	}
4682	slot = path->slots[0];
4683	old_data = btrfs_item_end_nr(leaf, slot);
4684
4685	BUG_ON(slot < 0);
4686	if (slot >= nritems) {
4687		btrfs_print_leaf(fs_info, leaf);
4688		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4689			   slot, nritems);
4690		BUG_ON(1);
4691	}
4692
4693	/*
4694	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4695	 */
4696	/* first correct the data pointers */
 
4697	for (i = slot; i < nritems; i++) {
4698		u32 ioff;
4699		item = btrfs_item_nr(i);
4700
4701		ioff = btrfs_token_item_offset(leaf, item, &token);
4702		btrfs_set_token_item_offset(leaf, item,
4703					    ioff - data_size, &token);
4704	}
4705
4706	/* shift the data */
4707	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4708		      data_end - data_size, btrfs_leaf_data(leaf) +
4709		      data_end, old_data - data_end);
4710
4711	data_end = old_data;
4712	old_size = btrfs_item_size_nr(leaf, slot);
4713	item = btrfs_item_nr(slot);
4714	btrfs_set_item_size(leaf, item, old_size + data_size);
4715	btrfs_mark_buffer_dirty(leaf);
4716
4717	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4718		btrfs_print_leaf(fs_info, leaf);
4719		BUG();
4720	}
4721}
4722
4723/*
4724 * this is a helper for btrfs_insert_empty_items, the main goal here is
4725 * to save stack depth by doing the bulk of the work in a function
4726 * that doesn't call btrfs_search_slot
4727 */
4728void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4729			    struct btrfs_key *cpu_key, u32 *data_size,
4730			    u32 total_data, u32 total_size, int nr)
4731{
4732	struct btrfs_fs_info *fs_info = root->fs_info;
4733	struct btrfs_item *item;
4734	int i;
4735	u32 nritems;
4736	unsigned int data_end;
4737	struct btrfs_disk_key disk_key;
4738	struct extent_buffer *leaf;
4739	int slot;
4740	struct btrfs_map_token token;
4741
4742	if (path->slots[0] == 0) {
4743		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4744		fixup_low_keys(fs_info, path, &disk_key, 1);
4745	}
4746	btrfs_unlock_up_safe(path, 1);
4747
4748	btrfs_init_map_token(&token);
4749
4750	leaf = path->nodes[0];
4751	slot = path->slots[0];
4752
4753	nritems = btrfs_header_nritems(leaf);
4754	data_end = leaf_data_end(fs_info, leaf);
4755
4756	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4757		btrfs_print_leaf(fs_info, leaf);
4758		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4759			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4760		BUG();
4761	}
4762
 
4763	if (slot != nritems) {
4764		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4765
4766		if (old_data < data_end) {
4767			btrfs_print_leaf(fs_info, leaf);
4768			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4769				   slot, old_data, data_end);
4770			BUG_ON(1);
4771		}
4772		/*
4773		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4774		 */
4775		/* first correct the data pointers */
4776		for (i = slot; i < nritems; i++) {
4777			u32 ioff;
4778
4779			item = btrfs_item_nr(i);
4780			ioff = btrfs_token_item_offset(leaf, item, &token);
4781			btrfs_set_token_item_offset(leaf, item,
4782						    ioff - total_data, &token);
4783		}
4784		/* shift the items */
4785		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4786			      btrfs_item_nr_offset(slot),
4787			      (nritems - slot) * sizeof(struct btrfs_item));
4788
4789		/* shift the data */
4790		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4791			      data_end - total_data, btrfs_leaf_data(leaf) +
4792			      data_end, old_data - data_end);
4793		data_end = old_data;
4794	}
4795
4796	/* setup the item for the new data */
4797	for (i = 0; i < nr; i++) {
4798		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4799		btrfs_set_item_key(leaf, &disk_key, slot + i);
4800		item = btrfs_item_nr(slot + i);
4801		btrfs_set_token_item_offset(leaf, item,
4802					    data_end - data_size[i], &token);
4803		data_end -= data_size[i];
4804		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4805	}
4806
4807	btrfs_set_header_nritems(leaf, nritems + nr);
4808	btrfs_mark_buffer_dirty(leaf);
4809
4810	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4811		btrfs_print_leaf(fs_info, leaf);
4812		BUG();
4813	}
4814}
4815
4816/*
4817 * Given a key and some data, insert items into the tree.
4818 * This does all the path init required, making room in the tree if needed.
4819 */
4820int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4821			    struct btrfs_root *root,
4822			    struct btrfs_path *path,
4823			    struct btrfs_key *cpu_key, u32 *data_size,
4824			    int nr)
4825{
4826	int ret = 0;
4827	int slot;
4828	int i;
4829	u32 total_size = 0;
4830	u32 total_data = 0;
4831
4832	for (i = 0; i < nr; i++)
4833		total_data += data_size[i];
4834
4835	total_size = total_data + (nr * sizeof(struct btrfs_item));
4836	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4837	if (ret == 0)
4838		return -EEXIST;
4839	if (ret < 0)
4840		return ret;
4841
4842	slot = path->slots[0];
4843	BUG_ON(slot < 0);
4844
4845	setup_items_for_insert(root, path, cpu_key, data_size,
4846			       total_data, total_size, nr);
4847	return 0;
4848}
4849
4850/*
4851 * Given a key and some data, insert an item into the tree.
4852 * This does all the path init required, making room in the tree if needed.
4853 */
4854int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4855		      *root, struct btrfs_key *cpu_key, void *data, u32
4856		      data_size)
4857{
4858	int ret = 0;
4859	struct btrfs_path *path;
4860	struct extent_buffer *leaf;
4861	unsigned long ptr;
4862
4863	path = btrfs_alloc_path();
4864	if (!path)
4865		return -ENOMEM;
4866	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4867	if (!ret) {
4868		leaf = path->nodes[0];
4869		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4870		write_extent_buffer(leaf, data, ptr, data_size);
4871		btrfs_mark_buffer_dirty(leaf);
4872	}
4873	btrfs_free_path(path);
4874	return ret;
4875}
4876
4877/*
4878 * delete the pointer from a given node.
4879 *
4880 * the tree should have been previously balanced so the deletion does not
4881 * empty a node.
4882 */
4883static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4884		    int level, int slot)
4885{
4886	struct btrfs_fs_info *fs_info = root->fs_info;
4887	struct extent_buffer *parent = path->nodes[level];
4888	u32 nritems;
4889	int ret;
4890
4891	nritems = btrfs_header_nritems(parent);
4892	if (slot != nritems - 1) {
4893		if (level)
4894			tree_mod_log_eb_move(fs_info, parent, slot,
4895					     slot + 1, nritems - slot - 1);
 
 
4896		memmove_extent_buffer(parent,
4897			      btrfs_node_key_ptr_offset(slot),
4898			      btrfs_node_key_ptr_offset(slot + 1),
4899			      sizeof(struct btrfs_key_ptr) *
4900			      (nritems - slot - 1));
4901	} else if (level) {
4902		ret = tree_mod_log_insert_key(fs_info, parent, slot,
4903					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4904		BUG_ON(ret < 0);
4905	}
4906
4907	nritems--;
4908	btrfs_set_header_nritems(parent, nritems);
4909	if (nritems == 0 && parent == root->node) {
4910		BUG_ON(btrfs_header_level(root->node) != 1);
4911		/* just turn the root into a leaf and break */
4912		btrfs_set_header_level(root->node, 0);
4913	} else if (slot == 0) {
4914		struct btrfs_disk_key disk_key;
4915
4916		btrfs_node_key(parent, &disk_key, 0);
4917		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4918	}
4919	btrfs_mark_buffer_dirty(parent);
4920}
4921
4922/*
4923 * a helper function to delete the leaf pointed to by path->slots[1] and
4924 * path->nodes[1].
4925 *
4926 * This deletes the pointer in path->nodes[1] and frees the leaf
4927 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4928 *
4929 * The path must have already been setup for deleting the leaf, including
4930 * all the proper balancing.  path->nodes[1] must be locked.
4931 */
4932static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4933				    struct btrfs_root *root,
4934				    struct btrfs_path *path,
4935				    struct extent_buffer *leaf)
4936{
4937	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4938	del_ptr(root, path, 1, path->slots[1]);
4939
4940	/*
4941	 * btrfs_free_extent is expensive, we want to make sure we
4942	 * aren't holding any locks when we call it
4943	 */
4944	btrfs_unlock_up_safe(path, 0);
4945
4946	root_sub_used(root, leaf->len);
4947
4948	extent_buffer_get(leaf);
4949	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4950	free_extent_buffer_stale(leaf);
4951}
4952/*
4953 * delete the item at the leaf level in path.  If that empties
4954 * the leaf, remove it from the tree
4955 */
4956int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4957		    struct btrfs_path *path, int slot, int nr)
4958{
4959	struct btrfs_fs_info *fs_info = root->fs_info;
4960	struct extent_buffer *leaf;
4961	struct btrfs_item *item;
4962	u32 last_off;
4963	u32 dsize = 0;
4964	int ret = 0;
4965	int wret;
4966	int i;
4967	u32 nritems;
4968	struct btrfs_map_token token;
4969
4970	btrfs_init_map_token(&token);
4971
4972	leaf = path->nodes[0];
4973	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4974
4975	for (i = 0; i < nr; i++)
4976		dsize += btrfs_item_size_nr(leaf, slot + i);
4977
4978	nritems = btrfs_header_nritems(leaf);
4979
4980	if (slot + nr != nritems) {
4981		int data_end = leaf_data_end(fs_info, leaf);
 
4982
4983		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4984			      data_end + dsize,
4985			      btrfs_leaf_data(leaf) + data_end,
4986			      last_off - data_end);
4987
 
4988		for (i = slot + nr; i < nritems; i++) {
4989			u32 ioff;
4990
4991			item = btrfs_item_nr(i);
4992			ioff = btrfs_token_item_offset(leaf, item, &token);
4993			btrfs_set_token_item_offset(leaf, item,
4994						    ioff + dsize, &token);
4995		}
4996
4997		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4998			      btrfs_item_nr_offset(slot + nr),
4999			      sizeof(struct btrfs_item) *
5000			      (nritems - slot - nr));
5001	}
5002	btrfs_set_header_nritems(leaf, nritems - nr);
5003	nritems -= nr;
5004
5005	/* delete the leaf if we've emptied it */
5006	if (nritems == 0) {
5007		if (leaf == root->node) {
5008			btrfs_set_header_level(leaf, 0);
5009		} else {
5010			btrfs_set_path_blocking(path);
5011			clean_tree_block(trans, fs_info, leaf);
5012			btrfs_del_leaf(trans, root, path, leaf);
5013		}
5014	} else {
5015		int used = leaf_space_used(leaf, 0, nritems);
5016		if (slot == 0) {
5017			struct btrfs_disk_key disk_key;
5018
5019			btrfs_item_key(leaf, &disk_key, 0);
5020			fixup_low_keys(fs_info, path, &disk_key, 1);
5021		}
5022
5023		/* delete the leaf if it is mostly empty */
5024		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5025			/* push_leaf_left fixes the path.
5026			 * make sure the path still points to our leaf
5027			 * for possible call to del_ptr below
5028			 */
5029			slot = path->slots[1];
5030			extent_buffer_get(leaf);
5031
5032			btrfs_set_path_blocking(path);
5033			wret = push_leaf_left(trans, root, path, 1, 1,
5034					      1, (u32)-1);
5035			if (wret < 0 && wret != -ENOSPC)
5036				ret = wret;
5037
5038			if (path->nodes[0] == leaf &&
5039			    btrfs_header_nritems(leaf)) {
5040				wret = push_leaf_right(trans, root, path, 1,
5041						       1, 1, 0);
5042				if (wret < 0 && wret != -ENOSPC)
5043					ret = wret;
5044			}
5045
5046			if (btrfs_header_nritems(leaf) == 0) {
5047				path->slots[1] = slot;
5048				btrfs_del_leaf(trans, root, path, leaf);
5049				free_extent_buffer(leaf);
5050				ret = 0;
5051			} else {
5052				/* if we're still in the path, make sure
5053				 * we're dirty.  Otherwise, one of the
5054				 * push_leaf functions must have already
5055				 * dirtied this buffer
5056				 */
5057				if (path->nodes[0] == leaf)
5058					btrfs_mark_buffer_dirty(leaf);
5059				free_extent_buffer(leaf);
5060			}
5061		} else {
5062			btrfs_mark_buffer_dirty(leaf);
5063		}
5064	}
5065	return ret;
5066}
5067
5068/*
5069 * search the tree again to find a leaf with lesser keys
5070 * returns 0 if it found something or 1 if there are no lesser leaves.
5071 * returns < 0 on io errors.
5072 *
5073 * This may release the path, and so you may lose any locks held at the
5074 * time you call it.
5075 */
5076int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5077{
5078	struct btrfs_key key;
5079	struct btrfs_disk_key found_key;
5080	int ret;
5081
5082	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5083
5084	if (key.offset > 0) {
5085		key.offset--;
5086	} else if (key.type > 0) {
5087		key.type--;
5088		key.offset = (u64)-1;
5089	} else if (key.objectid > 0) {
5090		key.objectid--;
5091		key.type = (u8)-1;
5092		key.offset = (u64)-1;
5093	} else {
5094		return 1;
5095	}
5096
5097	btrfs_release_path(path);
5098	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5099	if (ret < 0)
5100		return ret;
5101	btrfs_item_key(path->nodes[0], &found_key, 0);
5102	ret = comp_keys(&found_key, &key);
5103	/*
5104	 * We might have had an item with the previous key in the tree right
5105	 * before we released our path. And after we released our path, that
5106	 * item might have been pushed to the first slot (0) of the leaf we
5107	 * were holding due to a tree balance. Alternatively, an item with the
5108	 * previous key can exist as the only element of a leaf (big fat item).
5109	 * Therefore account for these 2 cases, so that our callers (like
5110	 * btrfs_previous_item) don't miss an existing item with a key matching
5111	 * the previous key we computed above.
5112	 */
5113	if (ret <= 0)
5114		return 0;
5115	return 1;
5116}
5117
5118/*
5119 * A helper function to walk down the tree starting at min_key, and looking
5120 * for nodes or leaves that are have a minimum transaction id.
5121 * This is used by the btree defrag code, and tree logging
5122 *
5123 * This does not cow, but it does stuff the starting key it finds back
5124 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5125 * key and get a writable path.
5126 *
5127 * This does lock as it descends, and path->keep_locks should be set
5128 * to 1 by the caller.
5129 *
5130 * This honors path->lowest_level to prevent descent past a given level
5131 * of the tree.
5132 *
5133 * min_trans indicates the oldest transaction that you are interested
5134 * in walking through.  Any nodes or leaves older than min_trans are
5135 * skipped over (without reading them).
5136 *
5137 * returns zero if something useful was found, < 0 on error and 1 if there
5138 * was nothing in the tree that matched the search criteria.
5139 */
5140int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5141			 struct btrfs_path *path,
5142			 u64 min_trans)
5143{
5144	struct btrfs_fs_info *fs_info = root->fs_info;
5145	struct extent_buffer *cur;
5146	struct btrfs_key found_key;
5147	int slot;
5148	int sret;
5149	u32 nritems;
5150	int level;
5151	int ret = 1;
5152	int keep_locks = path->keep_locks;
5153
5154	path->keep_locks = 1;
5155again:
5156	cur = btrfs_read_lock_root_node(root);
5157	level = btrfs_header_level(cur);
5158	WARN_ON(path->nodes[level]);
5159	path->nodes[level] = cur;
5160	path->locks[level] = BTRFS_READ_LOCK;
5161
5162	if (btrfs_header_generation(cur) < min_trans) {
5163		ret = 1;
5164		goto out;
5165	}
5166	while (1) {
5167		nritems = btrfs_header_nritems(cur);
5168		level = btrfs_header_level(cur);
5169		sret = bin_search(cur, min_key, level, &slot);
 
 
 
 
5170
5171		/* at the lowest level, we're done, setup the path and exit */
5172		if (level == path->lowest_level) {
5173			if (slot >= nritems)
5174				goto find_next_key;
5175			ret = 0;
5176			path->slots[level] = slot;
5177			btrfs_item_key_to_cpu(cur, &found_key, slot);
5178			goto out;
5179		}
5180		if (sret && slot > 0)
5181			slot--;
5182		/*
5183		 * check this node pointer against the min_trans parameters.
5184		 * If it is too old, old, skip to the next one.
5185		 */
5186		while (slot < nritems) {
5187			u64 gen;
5188
5189			gen = btrfs_node_ptr_generation(cur, slot);
5190			if (gen < min_trans) {
5191				slot++;
5192				continue;
5193			}
5194			break;
5195		}
5196find_next_key:
5197		/*
5198		 * we didn't find a candidate key in this node, walk forward
5199		 * and find another one
5200		 */
5201		if (slot >= nritems) {
5202			path->slots[level] = slot;
5203			btrfs_set_path_blocking(path);
5204			sret = btrfs_find_next_key(root, path, min_key, level,
5205						  min_trans);
5206			if (sret == 0) {
5207				btrfs_release_path(path);
5208				goto again;
5209			} else {
5210				goto out;
5211			}
5212		}
5213		/* save our key for returning back */
5214		btrfs_node_key_to_cpu(cur, &found_key, slot);
5215		path->slots[level] = slot;
5216		if (level == path->lowest_level) {
5217			ret = 0;
5218			goto out;
5219		}
5220		btrfs_set_path_blocking(path);
5221		cur = read_node_slot(fs_info, cur, slot);
5222		if (IS_ERR(cur)) {
5223			ret = PTR_ERR(cur);
5224			goto out;
5225		}
5226
5227		btrfs_tree_read_lock(cur);
5228
5229		path->locks[level - 1] = BTRFS_READ_LOCK;
5230		path->nodes[level - 1] = cur;
5231		unlock_up(path, level, 1, 0, NULL);
5232		btrfs_clear_path_blocking(path, NULL, 0);
5233	}
5234out:
5235	path->keep_locks = keep_locks;
5236	if (ret == 0) {
5237		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5238		btrfs_set_path_blocking(path);
5239		memcpy(min_key, &found_key, sizeof(found_key));
5240	}
5241	return ret;
5242}
5243
5244static int tree_move_down(struct btrfs_fs_info *fs_info,
5245			   struct btrfs_path *path,
5246			   int *level, int root_level)
5247{
5248	struct extent_buffer *eb;
5249
5250	BUG_ON(*level == 0);
5251	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5252	if (IS_ERR(eb))
5253		return PTR_ERR(eb);
5254
5255	path->nodes[*level - 1] = eb;
5256	path->slots[*level - 1] = 0;
5257	(*level)--;
5258	return 0;
5259}
5260
5261static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info,
5262				    struct btrfs_path *path,
5263				    int *level, int root_level)
5264{
5265	int ret = 0;
5266	int nritems;
5267	nritems = btrfs_header_nritems(path->nodes[*level]);
5268
5269	path->slots[*level]++;
5270
5271	while (path->slots[*level] >= nritems) {
5272		if (*level == root_level)
5273			return -1;
5274
5275		/* move upnext */
5276		path->slots[*level] = 0;
5277		free_extent_buffer(path->nodes[*level]);
5278		path->nodes[*level] = NULL;
5279		(*level)++;
5280		path->slots[*level]++;
5281
5282		nritems = btrfs_header_nritems(path->nodes[*level]);
5283		ret = 1;
5284	}
5285	return ret;
5286}
5287
5288/*
5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5290 * or down.
5291 */
5292static int tree_advance(struct btrfs_fs_info *fs_info,
5293			struct btrfs_path *path,
5294			int *level, int root_level,
5295			int allow_down,
5296			struct btrfs_key *key)
5297{
5298	int ret;
5299
5300	if (*level == 0 || !allow_down) {
5301		ret = tree_move_next_or_upnext(fs_info, path, level,
5302					       root_level);
5303	} else {
5304		ret = tree_move_down(fs_info, path, level, root_level);
5305	}
5306	if (ret >= 0) {
5307		if (*level == 0)
5308			btrfs_item_key_to_cpu(path->nodes[*level], key,
5309					path->slots[*level]);
5310		else
5311			btrfs_node_key_to_cpu(path->nodes[*level], key,
5312					path->slots[*level]);
5313	}
5314	return ret;
5315}
5316
5317static int tree_compare_item(struct btrfs_path *left_path,
5318			     struct btrfs_path *right_path,
5319			     char *tmp_buf)
5320{
5321	int cmp;
5322	int len1, len2;
5323	unsigned long off1, off2;
5324
5325	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5326	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5327	if (len1 != len2)
5328		return 1;
5329
5330	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5331	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5332				right_path->slots[0]);
5333
5334	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5335
5336	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5337	if (cmp)
5338		return 1;
5339	return 0;
5340}
5341
5342#define ADVANCE 1
5343#define ADVANCE_ONLY_NEXT -1
5344
5345/*
5346 * This function compares two trees and calls the provided callback for
5347 * every changed/new/deleted item it finds.
5348 * If shared tree blocks are encountered, whole subtrees are skipped, making
5349 * the compare pretty fast on snapshotted subvolumes.
5350 *
5351 * This currently works on commit roots only. As commit roots are read only,
5352 * we don't do any locking. The commit roots are protected with transactions.
5353 * Transactions are ended and rejoined when a commit is tried in between.
5354 *
5355 * This function checks for modifications done to the trees while comparing.
5356 * If it detects a change, it aborts immediately.
5357 */
5358int btrfs_compare_trees(struct btrfs_root *left_root,
5359			struct btrfs_root *right_root,
5360			btrfs_changed_cb_t changed_cb, void *ctx)
5361{
5362	struct btrfs_fs_info *fs_info = left_root->fs_info;
5363	int ret;
5364	int cmp;
5365	struct btrfs_path *left_path = NULL;
5366	struct btrfs_path *right_path = NULL;
5367	struct btrfs_key left_key;
5368	struct btrfs_key right_key;
5369	char *tmp_buf = NULL;
5370	int left_root_level;
5371	int right_root_level;
5372	int left_level;
5373	int right_level;
5374	int left_end_reached;
5375	int right_end_reached;
5376	int advance_left;
5377	int advance_right;
5378	u64 left_blockptr;
5379	u64 right_blockptr;
5380	u64 left_gen;
5381	u64 right_gen;
5382
5383	left_path = btrfs_alloc_path();
5384	if (!left_path) {
5385		ret = -ENOMEM;
5386		goto out;
5387	}
5388	right_path = btrfs_alloc_path();
5389	if (!right_path) {
5390		ret = -ENOMEM;
5391		goto out;
5392	}
5393
5394	tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
5395	if (!tmp_buf) {
5396		tmp_buf = vmalloc(fs_info->nodesize);
5397		if (!tmp_buf) {
5398			ret = -ENOMEM;
5399			goto out;
5400		}
5401	}
5402
5403	left_path->search_commit_root = 1;
5404	left_path->skip_locking = 1;
5405	right_path->search_commit_root = 1;
5406	right_path->skip_locking = 1;
5407
5408	/*
5409	 * Strategy: Go to the first items of both trees. Then do
5410	 *
5411	 * If both trees are at level 0
5412	 *   Compare keys of current items
5413	 *     If left < right treat left item as new, advance left tree
5414	 *       and repeat
5415	 *     If left > right treat right item as deleted, advance right tree
5416	 *       and repeat
5417	 *     If left == right do deep compare of items, treat as changed if
5418	 *       needed, advance both trees and repeat
5419	 * If both trees are at the same level but not at level 0
5420	 *   Compare keys of current nodes/leafs
5421	 *     If left < right advance left tree and repeat
5422	 *     If left > right advance right tree and repeat
5423	 *     If left == right compare blockptrs of the next nodes/leafs
5424	 *       If they match advance both trees but stay at the same level
5425	 *         and repeat
5426	 *       If they don't match advance both trees while allowing to go
5427	 *         deeper and repeat
5428	 * If tree levels are different
5429	 *   Advance the tree that needs it and repeat
5430	 *
5431	 * Advancing a tree means:
5432	 *   If we are at level 0, try to go to the next slot. If that's not
5433	 *   possible, go one level up and repeat. Stop when we found a level
5434	 *   where we could go to the next slot. We may at this point be on a
5435	 *   node or a leaf.
5436	 *
5437	 *   If we are not at level 0 and not on shared tree blocks, go one
5438	 *   level deeper.
5439	 *
5440	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5441	 *   the right if possible or go up and right.
5442	 */
5443
5444	down_read(&fs_info->commit_root_sem);
5445	left_level = btrfs_header_level(left_root->commit_root);
5446	left_root_level = left_level;
5447	left_path->nodes[left_level] = left_root->commit_root;
5448	extent_buffer_get(left_path->nodes[left_level]);
5449
5450	right_level = btrfs_header_level(right_root->commit_root);
5451	right_root_level = right_level;
5452	right_path->nodes[right_level] = right_root->commit_root;
5453	extent_buffer_get(right_path->nodes[right_level]);
5454	up_read(&fs_info->commit_root_sem);
5455
5456	if (left_level == 0)
5457		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5458				&left_key, left_path->slots[left_level]);
5459	else
5460		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5461				&left_key, left_path->slots[left_level]);
5462	if (right_level == 0)
5463		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5464				&right_key, right_path->slots[right_level]);
5465	else
5466		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5467				&right_key, right_path->slots[right_level]);
5468
5469	left_end_reached = right_end_reached = 0;
5470	advance_left = advance_right = 0;
5471
5472	while (1) {
5473		if (advance_left && !left_end_reached) {
5474			ret = tree_advance(fs_info, left_path, &left_level,
5475					left_root_level,
5476					advance_left != ADVANCE_ONLY_NEXT,
5477					&left_key);
5478			if (ret == -1)
5479				left_end_reached = ADVANCE;
5480			else if (ret < 0)
5481				goto out;
5482			advance_left = 0;
5483		}
5484		if (advance_right && !right_end_reached) {
5485			ret = tree_advance(fs_info, right_path, &right_level,
5486					right_root_level,
5487					advance_right != ADVANCE_ONLY_NEXT,
5488					&right_key);
5489			if (ret == -1)
5490				right_end_reached = ADVANCE;
5491			else if (ret < 0)
5492				goto out;
5493			advance_right = 0;
5494		}
5495
5496		if (left_end_reached && right_end_reached) {
5497			ret = 0;
5498			goto out;
5499		} else if (left_end_reached) {
5500			if (right_level == 0) {
5501				ret = changed_cb(left_root, right_root,
5502						left_path, right_path,
5503						&right_key,
5504						BTRFS_COMPARE_TREE_DELETED,
5505						ctx);
5506				if (ret < 0)
5507					goto out;
5508			}
5509			advance_right = ADVANCE;
5510			continue;
5511		} else if (right_end_reached) {
5512			if (left_level == 0) {
5513				ret = changed_cb(left_root, right_root,
5514						left_path, right_path,
5515						&left_key,
5516						BTRFS_COMPARE_TREE_NEW,
5517						ctx);
5518				if (ret < 0)
5519					goto out;
5520			}
5521			advance_left = ADVANCE;
5522			continue;
5523		}
5524
5525		if (left_level == 0 && right_level == 0) {
5526			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5527			if (cmp < 0) {
5528				ret = changed_cb(left_root, right_root,
5529						left_path, right_path,
5530						&left_key,
5531						BTRFS_COMPARE_TREE_NEW,
5532						ctx);
5533				if (ret < 0)
5534					goto out;
5535				advance_left = ADVANCE;
5536			} else if (cmp > 0) {
5537				ret = changed_cb(left_root, right_root,
5538						left_path, right_path,
5539						&right_key,
5540						BTRFS_COMPARE_TREE_DELETED,
5541						ctx);
5542				if (ret < 0)
5543					goto out;
5544				advance_right = ADVANCE;
5545			} else {
5546				enum btrfs_compare_tree_result result;
5547
5548				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5549				ret = tree_compare_item(left_path, right_path,
5550							tmp_buf);
5551				if (ret)
5552					result = BTRFS_COMPARE_TREE_CHANGED;
5553				else
5554					result = BTRFS_COMPARE_TREE_SAME;
5555				ret = changed_cb(left_root, right_root,
5556						 left_path, right_path,
5557						 &left_key, result, ctx);
5558				if (ret < 0)
5559					goto out;
5560				advance_left = ADVANCE;
5561				advance_right = ADVANCE;
5562			}
5563		} else if (left_level == right_level) {
5564			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5565			if (cmp < 0) {
5566				advance_left = ADVANCE;
5567			} else if (cmp > 0) {
5568				advance_right = ADVANCE;
5569			} else {
5570				left_blockptr = btrfs_node_blockptr(
5571						left_path->nodes[left_level],
5572						left_path->slots[left_level]);
5573				right_blockptr = btrfs_node_blockptr(
5574						right_path->nodes[right_level],
5575						right_path->slots[right_level]);
5576				left_gen = btrfs_node_ptr_generation(
5577						left_path->nodes[left_level],
5578						left_path->slots[left_level]);
5579				right_gen = btrfs_node_ptr_generation(
5580						right_path->nodes[right_level],
5581						right_path->slots[right_level]);
5582				if (left_blockptr == right_blockptr &&
5583				    left_gen == right_gen) {
5584					/*
5585					 * As we're on a shared block, don't
5586					 * allow to go deeper.
5587					 */
5588					advance_left = ADVANCE_ONLY_NEXT;
5589					advance_right = ADVANCE_ONLY_NEXT;
5590				} else {
5591					advance_left = ADVANCE;
5592					advance_right = ADVANCE;
5593				}
5594			}
5595		} else if (left_level < right_level) {
5596			advance_right = ADVANCE;
5597		} else {
5598			advance_left = ADVANCE;
5599		}
5600	}
5601
5602out:
5603	btrfs_free_path(left_path);
5604	btrfs_free_path(right_path);
5605	kvfree(tmp_buf);
5606	return ret;
5607}
5608
5609/*
5610 * this is similar to btrfs_next_leaf, but does not try to preserve
5611 * and fixup the path.  It looks for and returns the next key in the
5612 * tree based on the current path and the min_trans parameters.
5613 *
5614 * 0 is returned if another key is found, < 0 if there are any errors
5615 * and 1 is returned if there are no higher keys in the tree
5616 *
5617 * path->keep_locks should be set to 1 on the search made before
5618 * calling this function.
5619 */
5620int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5621			struct btrfs_key *key, int level, u64 min_trans)
5622{
5623	int slot;
5624	struct extent_buffer *c;
5625
5626	WARN_ON(!path->keep_locks);
5627	while (level < BTRFS_MAX_LEVEL) {
5628		if (!path->nodes[level])
5629			return 1;
5630
5631		slot = path->slots[level] + 1;
5632		c = path->nodes[level];
5633next:
5634		if (slot >= btrfs_header_nritems(c)) {
5635			int ret;
5636			int orig_lowest;
5637			struct btrfs_key cur_key;
5638			if (level + 1 >= BTRFS_MAX_LEVEL ||
5639			    !path->nodes[level + 1])
5640				return 1;
5641
5642			if (path->locks[level + 1]) {
5643				level++;
5644				continue;
5645			}
5646
5647			slot = btrfs_header_nritems(c) - 1;
5648			if (level == 0)
5649				btrfs_item_key_to_cpu(c, &cur_key, slot);
5650			else
5651				btrfs_node_key_to_cpu(c, &cur_key, slot);
5652
5653			orig_lowest = path->lowest_level;
5654			btrfs_release_path(path);
5655			path->lowest_level = level;
5656			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5657						0, 0);
5658			path->lowest_level = orig_lowest;
5659			if (ret < 0)
5660				return ret;
5661
5662			c = path->nodes[level];
5663			slot = path->slots[level];
5664			if (ret == 0)
5665				slot++;
5666			goto next;
5667		}
5668
5669		if (level == 0)
5670			btrfs_item_key_to_cpu(c, key, slot);
5671		else {
5672			u64 gen = btrfs_node_ptr_generation(c, slot);
5673
5674			if (gen < min_trans) {
5675				slot++;
5676				goto next;
5677			}
5678			btrfs_node_key_to_cpu(c, key, slot);
5679		}
5680		return 0;
5681	}
5682	return 1;
5683}
5684
5685/*
5686 * search the tree again to find a leaf with greater keys
5687 * returns 0 if it found something or 1 if there are no greater leaves.
5688 * returns < 0 on io errors.
5689 */
5690int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5691{
5692	return btrfs_next_old_leaf(root, path, 0);
5693}
5694
5695int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5696			u64 time_seq)
5697{
5698	int slot;
5699	int level;
5700	struct extent_buffer *c;
5701	struct extent_buffer *next;
5702	struct btrfs_key key;
5703	u32 nritems;
5704	int ret;
5705	int old_spinning = path->leave_spinning;
5706	int next_rw_lock = 0;
5707
5708	nritems = btrfs_header_nritems(path->nodes[0]);
5709	if (nritems == 0)
5710		return 1;
5711
5712	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5713again:
5714	level = 1;
5715	next = NULL;
5716	next_rw_lock = 0;
5717	btrfs_release_path(path);
5718
5719	path->keep_locks = 1;
5720	path->leave_spinning = 1;
5721
5722	if (time_seq)
5723		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5724	else
5725		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726	path->keep_locks = 0;
5727
5728	if (ret < 0)
5729		return ret;
5730
5731	nritems = btrfs_header_nritems(path->nodes[0]);
5732	/*
5733	 * by releasing the path above we dropped all our locks.  A balance
5734	 * could have added more items next to the key that used to be
5735	 * at the very end of the block.  So, check again here and
5736	 * advance the path if there are now more items available.
5737	 */
5738	if (nritems > 0 && path->slots[0] < nritems - 1) {
5739		if (ret == 0)
5740			path->slots[0]++;
5741		ret = 0;
5742		goto done;
5743	}
5744	/*
5745	 * So the above check misses one case:
5746	 * - after releasing the path above, someone has removed the item that
5747	 *   used to be at the very end of the block, and balance between leafs
5748	 *   gets another one with bigger key.offset to replace it.
5749	 *
5750	 * This one should be returned as well, or we can get leaf corruption
5751	 * later(esp. in __btrfs_drop_extents()).
5752	 *
5753	 * And a bit more explanation about this check,
5754	 * with ret > 0, the key isn't found, the path points to the slot
5755	 * where it should be inserted, so the path->slots[0] item must be the
5756	 * bigger one.
5757	 */
5758	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5759		ret = 0;
5760		goto done;
5761	}
5762
5763	while (level < BTRFS_MAX_LEVEL) {
5764		if (!path->nodes[level]) {
5765			ret = 1;
5766			goto done;
5767		}
5768
5769		slot = path->slots[level] + 1;
5770		c = path->nodes[level];
5771		if (slot >= btrfs_header_nritems(c)) {
5772			level++;
5773			if (level == BTRFS_MAX_LEVEL) {
5774				ret = 1;
5775				goto done;
5776			}
5777			continue;
5778		}
5779
5780		if (next) {
5781			btrfs_tree_unlock_rw(next, next_rw_lock);
5782			free_extent_buffer(next);
5783		}
5784
5785		next = c;
5786		next_rw_lock = path->locks[level];
5787		ret = read_block_for_search(NULL, root, path, &next, level,
5788					    slot, &key, 0);
5789		if (ret == -EAGAIN)
5790			goto again;
5791
5792		if (ret < 0) {
5793			btrfs_release_path(path);
5794			goto done;
5795		}
5796
5797		if (!path->skip_locking) {
5798			ret = btrfs_try_tree_read_lock(next);
5799			if (!ret && time_seq) {
5800				/*
5801				 * If we don't get the lock, we may be racing
5802				 * with push_leaf_left, holding that lock while
5803				 * itself waiting for the leaf we've currently
5804				 * locked. To solve this situation, we give up
5805				 * on our lock and cycle.
5806				 */
5807				free_extent_buffer(next);
5808				btrfs_release_path(path);
5809				cond_resched();
5810				goto again;
5811			}
5812			if (!ret) {
5813				btrfs_set_path_blocking(path);
5814				btrfs_tree_read_lock(next);
5815				btrfs_clear_path_blocking(path, next,
5816							  BTRFS_READ_LOCK);
5817			}
5818			next_rw_lock = BTRFS_READ_LOCK;
5819		}
5820		break;
5821	}
5822	path->slots[level] = slot;
5823	while (1) {
5824		level--;
5825		c = path->nodes[level];
5826		if (path->locks[level])
5827			btrfs_tree_unlock_rw(c, path->locks[level]);
5828
5829		free_extent_buffer(c);
5830		path->nodes[level] = next;
5831		path->slots[level] = 0;
5832		if (!path->skip_locking)
5833			path->locks[level] = next_rw_lock;
5834		if (!level)
5835			break;
5836
5837		ret = read_block_for_search(NULL, root, path, &next, level,
5838					    0, &key, 0);
5839		if (ret == -EAGAIN)
5840			goto again;
5841
5842		if (ret < 0) {
5843			btrfs_release_path(path);
5844			goto done;
5845		}
5846
5847		if (!path->skip_locking) {
5848			ret = btrfs_try_tree_read_lock(next);
5849			if (!ret) {
5850				btrfs_set_path_blocking(path);
5851				btrfs_tree_read_lock(next);
5852				btrfs_clear_path_blocking(path, next,
5853							  BTRFS_READ_LOCK);
5854			}
5855			next_rw_lock = BTRFS_READ_LOCK;
5856		}
5857	}
5858	ret = 0;
5859done:
5860	unlock_up(path, 0, 1, 0, NULL);
5861	path->leave_spinning = old_spinning;
5862	if (!old_spinning)
5863		btrfs_set_path_blocking(path);
5864
5865	return ret;
5866}
5867
5868/*
5869 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5870 * searching until it gets past min_objectid or finds an item of 'type'
5871 *
5872 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5873 */
5874int btrfs_previous_item(struct btrfs_root *root,
5875			struct btrfs_path *path, u64 min_objectid,
5876			int type)
5877{
5878	struct btrfs_key found_key;
5879	struct extent_buffer *leaf;
5880	u32 nritems;
5881	int ret;
5882
5883	while (1) {
5884		if (path->slots[0] == 0) {
5885			btrfs_set_path_blocking(path);
5886			ret = btrfs_prev_leaf(root, path);
5887			if (ret != 0)
5888				return ret;
5889		} else {
5890			path->slots[0]--;
5891		}
5892		leaf = path->nodes[0];
5893		nritems = btrfs_header_nritems(leaf);
5894		if (nritems == 0)
5895			return 1;
5896		if (path->slots[0] == nritems)
5897			path->slots[0]--;
5898
5899		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5900		if (found_key.objectid < min_objectid)
5901			break;
5902		if (found_key.type == type)
5903			return 0;
5904		if (found_key.objectid == min_objectid &&
5905		    found_key.type < type)
5906			break;
5907	}
5908	return 1;
5909}
5910
5911/*
5912 * search in extent tree to find a previous Metadata/Data extent item with
5913 * min objecitd.
5914 *
5915 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5916 */
5917int btrfs_previous_extent_item(struct btrfs_root *root,
5918			struct btrfs_path *path, u64 min_objectid)
5919{
5920	struct btrfs_key found_key;
5921	struct extent_buffer *leaf;
5922	u32 nritems;
5923	int ret;
5924
5925	while (1) {
5926		if (path->slots[0] == 0) {
5927			btrfs_set_path_blocking(path);
5928			ret = btrfs_prev_leaf(root, path);
5929			if (ret != 0)
5930				return ret;
5931		} else {
5932			path->slots[0]--;
5933		}
5934		leaf = path->nodes[0];
5935		nritems = btrfs_header_nritems(leaf);
5936		if (nritems == 0)
5937			return 1;
5938		if (path->slots[0] == nritems)
5939			path->slots[0]--;
5940
5941		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5942		if (found_key.objectid < min_objectid)
5943			break;
5944		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5945		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5946			return 0;
5947		if (found_key.objectid == min_objectid &&
5948		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5949			break;
5950	}
5951	return 1;
5952}