Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * The USB Monitor, inspired by Dave Harding's USBMon.
4 *
5 * This is a binary format reader.
6 *
7 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
8 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
9 */
10
11#include <linux/kernel.h>
12#include <linux/sched/signal.h>
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/cdev.h>
16#include <linux/export.h>
17#include <linux/usb.h>
18#include <linux/poll.h>
19#include <linux/compat.h>
20#include <linux/mm.h>
21#include <linux/scatterlist.h>
22#include <linux/slab.h>
23#include <linux/time64.h>
24
25#include <linux/uaccess.h>
26
27#include "usb_mon.h"
28
29/*
30 * Defined by USB 2.0 clause 9.3, table 9.2.
31 */
32#define SETUP_LEN 8
33
34/* ioctl macros */
35#define MON_IOC_MAGIC 0x92
36
37#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
38/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
39#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
40#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
41#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
42#define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
43#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
44#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
45/* #9 was MON_IOCT_SETAPI */
46#define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
47
48#ifdef CONFIG_COMPAT
49#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
50#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
51#define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
52#endif
53
54/*
55 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
56 * But it's all right. Just use a simple way to make sure the chunk is never
57 * smaller than a page.
58 *
59 * N.B. An application does not know our chunk size.
60 *
61 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
62 * page-sized chunks for the time being.
63 */
64#define CHUNK_SIZE PAGE_SIZE
65#define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
66
67/*
68 * The magic limit was calculated so that it allows the monitoring
69 * application to pick data once in two ticks. This way, another application,
70 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
71 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
72 * enormous overhead built into the bus protocol, so we need about 1000 KB.
73 *
74 * This is still too much for most cases, where we just snoop a few
75 * descriptor fetches for enumeration. So, the default is a "reasonable"
76 * amount for systems with HZ=250 and incomplete bus saturation.
77 *
78 * XXX What about multi-megabyte URBs which take minutes to transfer?
79 */
80#define BUFF_MAX CHUNK_ALIGN(1200*1024)
81#define BUFF_DFL CHUNK_ALIGN(300*1024)
82#define BUFF_MIN CHUNK_ALIGN(8*1024)
83
84/*
85 * The per-event API header (2 per URB).
86 *
87 * This structure is seen in userland as defined by the documentation.
88 */
89struct mon_bin_hdr {
90 u64 id; /* URB ID - from submission to callback */
91 unsigned char type; /* Same as in text API; extensible. */
92 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
93 unsigned char epnum; /* Endpoint number and transfer direction */
94 unsigned char devnum; /* Device address */
95 unsigned short busnum; /* Bus number */
96 char flag_setup;
97 char flag_data;
98 s64 ts_sec; /* ktime_get_real_ts64 */
99 s32 ts_usec; /* ktime_get_real_ts64 */
100 int status;
101 unsigned int len_urb; /* Length of data (submitted or actual) */
102 unsigned int len_cap; /* Delivered length */
103 union {
104 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
105 struct iso_rec {
106 int error_count;
107 int numdesc;
108 } iso;
109 } s;
110 int interval;
111 int start_frame;
112 unsigned int xfer_flags;
113 unsigned int ndesc; /* Actual number of ISO descriptors */
114};
115
116/*
117 * ISO vector, packed into the head of data stream.
118 * This has to take 16 bytes to make sure that the end of buffer
119 * wrap is not happening in the middle of a descriptor.
120 */
121struct mon_bin_isodesc {
122 int iso_status;
123 unsigned int iso_off;
124 unsigned int iso_len;
125 u32 _pad;
126};
127
128/* per file statistic */
129struct mon_bin_stats {
130 u32 queued;
131 u32 dropped;
132};
133
134struct mon_bin_get {
135 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
136 void __user *data;
137 size_t alloc; /* Length of data (can be zero) */
138};
139
140struct mon_bin_mfetch {
141 u32 __user *offvec; /* Vector of events fetched */
142 u32 nfetch; /* Number of events to fetch (out: fetched) */
143 u32 nflush; /* Number of events to flush */
144};
145
146#ifdef CONFIG_COMPAT
147struct mon_bin_get32 {
148 u32 hdr32;
149 u32 data32;
150 u32 alloc32;
151};
152
153struct mon_bin_mfetch32 {
154 u32 offvec32;
155 u32 nfetch32;
156 u32 nflush32;
157};
158#endif
159
160/* Having these two values same prevents wrapping of the mon_bin_hdr */
161#define PKT_ALIGN 64
162#define PKT_SIZE 64
163
164#define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
165#define PKT_SZ_API1 64 /* API 1 size: extra fields */
166
167#define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
168
169/* max number of USB bus supported */
170#define MON_BIN_MAX_MINOR 128
171
172/*
173 * The buffer: map of used pages.
174 */
175struct mon_pgmap {
176 struct page *pg;
177 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
178};
179
180/*
181 * This gets associated with an open file struct.
182 */
183struct mon_reader_bin {
184 /* The buffer: one per open. */
185 spinlock_t b_lock; /* Protect b_cnt, b_in */
186 unsigned int b_size; /* Current size of the buffer - bytes */
187 unsigned int b_cnt; /* Bytes used */
188 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
189 unsigned int b_read; /* Amount of read data in curr. pkt. */
190 struct mon_pgmap *b_vec; /* The map array */
191 wait_queue_head_t b_wait; /* Wait for data here */
192
193 struct mutex fetch_lock; /* Protect b_read, b_out */
194 int mmap_active;
195
196 /* A list of these is needed for "bus 0". Some time later. */
197 struct mon_reader r;
198
199 /* Stats */
200 unsigned int cnt_lost;
201};
202
203static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
204 unsigned int offset)
205{
206 return (struct mon_bin_hdr *)
207 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
208}
209
210#define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
211
212static unsigned char xfer_to_pipe[4] = {
213 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
214};
215
216static struct class *mon_bin_class;
217static dev_t mon_bin_dev0;
218static struct cdev mon_bin_cdev;
219
220static void mon_buff_area_fill(const struct mon_reader_bin *rp,
221 unsigned int offset, unsigned int size);
222static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
223static int mon_alloc_buff(struct mon_pgmap *map, int npages);
224static void mon_free_buff(struct mon_pgmap *map, int npages);
225
226/*
227 * This is a "chunked memcpy". It does not manipulate any counters.
228 */
229static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
230 unsigned int off, const unsigned char *from, unsigned int length)
231{
232 unsigned int step_len;
233 unsigned char *buf;
234 unsigned int in_page;
235
236 while (length) {
237 /*
238 * Determine step_len.
239 */
240 step_len = length;
241 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
242 if (in_page < step_len)
243 step_len = in_page;
244
245 /*
246 * Copy data and advance pointers.
247 */
248 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
249 memcpy(buf, from, step_len);
250 if ((off += step_len) >= this->b_size) off = 0;
251 from += step_len;
252 length -= step_len;
253 }
254 return off;
255}
256
257/*
258 * This is a little worse than the above because it's "chunked copy_to_user".
259 * The return value is an error code, not an offset.
260 */
261static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
262 char __user *to, int length)
263{
264 unsigned int step_len;
265 unsigned char *buf;
266 unsigned int in_page;
267
268 while (length) {
269 /*
270 * Determine step_len.
271 */
272 step_len = length;
273 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
274 if (in_page < step_len)
275 step_len = in_page;
276
277 /*
278 * Copy data and advance pointers.
279 */
280 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
281 if (copy_to_user(to, buf, step_len))
282 return -EINVAL;
283 if ((off += step_len) >= this->b_size) off = 0;
284 to += step_len;
285 length -= step_len;
286 }
287 return 0;
288}
289
290/*
291 * Allocate an (aligned) area in the buffer.
292 * This is called under b_lock.
293 * Returns ~0 on failure.
294 */
295static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
296 unsigned int size)
297{
298 unsigned int offset;
299
300 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
301 if (rp->b_cnt + size > rp->b_size)
302 return ~0;
303 offset = rp->b_in;
304 rp->b_cnt += size;
305 if ((rp->b_in += size) >= rp->b_size)
306 rp->b_in -= rp->b_size;
307 return offset;
308}
309
310/*
311 * This is the same thing as mon_buff_area_alloc, only it does not allow
312 * buffers to wrap. This is needed by applications which pass references
313 * into mmap-ed buffers up their stacks (libpcap can do that).
314 *
315 * Currently, we always have the header stuck with the data, although
316 * it is not strictly speaking necessary.
317 *
318 * When a buffer would wrap, we place a filler packet to mark the space.
319 */
320static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
321 unsigned int size)
322{
323 unsigned int offset;
324 unsigned int fill_size;
325
326 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
327 if (rp->b_cnt + size > rp->b_size)
328 return ~0;
329 if (rp->b_in + size > rp->b_size) {
330 /*
331 * This would wrap. Find if we still have space after
332 * skipping to the end of the buffer. If we do, place
333 * a filler packet and allocate a new packet.
334 */
335 fill_size = rp->b_size - rp->b_in;
336 if (rp->b_cnt + size + fill_size > rp->b_size)
337 return ~0;
338 mon_buff_area_fill(rp, rp->b_in, fill_size);
339
340 offset = 0;
341 rp->b_in = size;
342 rp->b_cnt += size + fill_size;
343 } else if (rp->b_in + size == rp->b_size) {
344 offset = rp->b_in;
345 rp->b_in = 0;
346 rp->b_cnt += size;
347 } else {
348 offset = rp->b_in;
349 rp->b_in += size;
350 rp->b_cnt += size;
351 }
352 return offset;
353}
354
355/*
356 * Return a few (kilo-)bytes to the head of the buffer.
357 * This is used if a data fetch fails.
358 */
359static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
360{
361
362 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
363 rp->b_cnt -= size;
364 if (rp->b_in < size)
365 rp->b_in += rp->b_size;
366 rp->b_in -= size;
367}
368
369/*
370 * This has to be called under both b_lock and fetch_lock, because
371 * it accesses both b_cnt and b_out.
372 */
373static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
374{
375
376 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
377 rp->b_cnt -= size;
378 if ((rp->b_out += size) >= rp->b_size)
379 rp->b_out -= rp->b_size;
380}
381
382static void mon_buff_area_fill(const struct mon_reader_bin *rp,
383 unsigned int offset, unsigned int size)
384{
385 struct mon_bin_hdr *ep;
386
387 ep = MON_OFF2HDR(rp, offset);
388 memset(ep, 0, PKT_SIZE);
389 ep->type = '@';
390 ep->len_cap = size - PKT_SIZE;
391}
392
393static inline char mon_bin_get_setup(unsigned char *setupb,
394 const struct urb *urb, char ev_type)
395{
396
397 if (urb->setup_packet == NULL)
398 return 'Z';
399 memcpy(setupb, urb->setup_packet, SETUP_LEN);
400 return 0;
401}
402
403static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
404 unsigned int offset, struct urb *urb, unsigned int length,
405 char *flag)
406{
407 int i;
408 struct scatterlist *sg;
409 unsigned int this_len;
410
411 *flag = 0;
412 if (urb->num_sgs == 0) {
413 if (urb->transfer_buffer == NULL) {
414 *flag = 'Z';
415 return length;
416 }
417 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
418 length = 0;
419
420 } else {
421 /* If IOMMU coalescing occurred, we cannot trust sg_page */
422 if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
423 *flag = 'D';
424 return length;
425 }
426
427 /* Copy up to the first non-addressable segment */
428 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
429 if (length == 0 || PageHighMem(sg_page(sg)))
430 break;
431 this_len = min_t(unsigned int, sg->length, length);
432 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
433 this_len);
434 length -= this_len;
435 }
436 if (i == 0)
437 *flag = 'D';
438 }
439
440 return length;
441}
442
443/*
444 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
445 * be used to determine the length of the whole contiguous buffer.
446 */
447static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
448 struct urb *urb, unsigned int ndesc)
449{
450 struct usb_iso_packet_descriptor *fp;
451 unsigned int length;
452
453 length = 0;
454 fp = urb->iso_frame_desc;
455 while (ndesc-- != 0) {
456 if (fp->actual_length != 0) {
457 if (fp->offset + fp->actual_length > length)
458 length = fp->offset + fp->actual_length;
459 }
460 fp++;
461 }
462 return length;
463}
464
465static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
466 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
467{
468 struct mon_bin_isodesc *dp;
469 struct usb_iso_packet_descriptor *fp;
470
471 fp = urb->iso_frame_desc;
472 while (ndesc-- != 0) {
473 dp = (struct mon_bin_isodesc *)
474 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
475 dp->iso_status = fp->status;
476 dp->iso_off = fp->offset;
477 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
478 dp->_pad = 0;
479 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
480 offset = 0;
481 fp++;
482 }
483}
484
485static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
486 char ev_type, int status)
487{
488 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
489 struct timespec64 ts;
490 unsigned long flags;
491 unsigned int urb_length;
492 unsigned int offset;
493 unsigned int length;
494 unsigned int delta;
495 unsigned int ndesc, lendesc;
496 unsigned char dir;
497 struct mon_bin_hdr *ep;
498 char data_tag = 0;
499
500 ktime_get_real_ts64(&ts);
501
502 spin_lock_irqsave(&rp->b_lock, flags);
503
504 /*
505 * Find the maximum allowable length, then allocate space.
506 */
507 urb_length = (ev_type == 'S') ?
508 urb->transfer_buffer_length : urb->actual_length;
509 length = urb_length;
510
511 if (usb_endpoint_xfer_isoc(epd)) {
512 if (urb->number_of_packets < 0) {
513 ndesc = 0;
514 } else if (urb->number_of_packets >= ISODESC_MAX) {
515 ndesc = ISODESC_MAX;
516 } else {
517 ndesc = urb->number_of_packets;
518 }
519 if (ev_type == 'C' && usb_urb_dir_in(urb))
520 length = mon_bin_collate_isodesc(rp, urb, ndesc);
521 } else {
522 ndesc = 0;
523 }
524 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
525
526 /* not an issue unless there's a subtle bug in a HCD somewhere */
527 if (length >= urb->transfer_buffer_length)
528 length = urb->transfer_buffer_length;
529
530 if (length >= rp->b_size/5)
531 length = rp->b_size/5;
532
533 if (usb_urb_dir_in(urb)) {
534 if (ev_type == 'S') {
535 length = 0;
536 data_tag = '<';
537 }
538 /* Cannot rely on endpoint number in case of control ep.0 */
539 dir = USB_DIR_IN;
540 } else {
541 if (ev_type == 'C') {
542 length = 0;
543 data_tag = '>';
544 }
545 dir = 0;
546 }
547
548 if (rp->mmap_active) {
549 offset = mon_buff_area_alloc_contiguous(rp,
550 length + PKT_SIZE + lendesc);
551 } else {
552 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
553 }
554 if (offset == ~0) {
555 rp->cnt_lost++;
556 spin_unlock_irqrestore(&rp->b_lock, flags);
557 return;
558 }
559
560 ep = MON_OFF2HDR(rp, offset);
561 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
562
563 /*
564 * Fill the allocated area.
565 */
566 memset(ep, 0, PKT_SIZE);
567 ep->type = ev_type;
568 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
569 ep->epnum = dir | usb_endpoint_num(epd);
570 ep->devnum = urb->dev->devnum;
571 ep->busnum = urb->dev->bus->busnum;
572 ep->id = (unsigned long) urb;
573 ep->ts_sec = ts.tv_sec;
574 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
575 ep->status = status;
576 ep->len_urb = urb_length;
577 ep->len_cap = length + lendesc;
578 ep->xfer_flags = urb->transfer_flags;
579
580 if (usb_endpoint_xfer_int(epd)) {
581 ep->interval = urb->interval;
582 } else if (usb_endpoint_xfer_isoc(epd)) {
583 ep->interval = urb->interval;
584 ep->start_frame = urb->start_frame;
585 ep->s.iso.error_count = urb->error_count;
586 ep->s.iso.numdesc = urb->number_of_packets;
587 }
588
589 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
590 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
591 } else {
592 ep->flag_setup = '-';
593 }
594
595 if (ndesc != 0) {
596 ep->ndesc = ndesc;
597 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
598 if ((offset += lendesc) >= rp->b_size)
599 offset -= rp->b_size;
600 }
601
602 if (length != 0) {
603 length = mon_bin_get_data(rp, offset, urb, length,
604 &ep->flag_data);
605 if (length > 0) {
606 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
607 ep->len_cap -= length;
608 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
609 mon_buff_area_shrink(rp, delta);
610 }
611 } else {
612 ep->flag_data = data_tag;
613 }
614
615 spin_unlock_irqrestore(&rp->b_lock, flags);
616
617 wake_up(&rp->b_wait);
618}
619
620static void mon_bin_submit(void *data, struct urb *urb)
621{
622 struct mon_reader_bin *rp = data;
623 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
624}
625
626static void mon_bin_complete(void *data, struct urb *urb, int status)
627{
628 struct mon_reader_bin *rp = data;
629 mon_bin_event(rp, urb, 'C', status);
630}
631
632static void mon_bin_error(void *data, struct urb *urb, int error)
633{
634 struct mon_reader_bin *rp = data;
635 struct timespec64 ts;
636 unsigned long flags;
637 unsigned int offset;
638 struct mon_bin_hdr *ep;
639
640 ktime_get_real_ts64(&ts);
641
642 spin_lock_irqsave(&rp->b_lock, flags);
643
644 offset = mon_buff_area_alloc(rp, PKT_SIZE);
645 if (offset == ~0) {
646 /* Not incrementing cnt_lost. Just because. */
647 spin_unlock_irqrestore(&rp->b_lock, flags);
648 return;
649 }
650
651 ep = MON_OFF2HDR(rp, offset);
652
653 memset(ep, 0, PKT_SIZE);
654 ep->type = 'E';
655 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
656 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
657 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
658 ep->devnum = urb->dev->devnum;
659 ep->busnum = urb->dev->bus->busnum;
660 ep->id = (unsigned long) urb;
661 ep->ts_sec = ts.tv_sec;
662 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
663 ep->status = error;
664
665 ep->flag_setup = '-';
666 ep->flag_data = 'E';
667
668 spin_unlock_irqrestore(&rp->b_lock, flags);
669
670 wake_up(&rp->b_wait);
671}
672
673static int mon_bin_open(struct inode *inode, struct file *file)
674{
675 struct mon_bus *mbus;
676 struct mon_reader_bin *rp;
677 size_t size;
678 int rc;
679
680 mutex_lock(&mon_lock);
681 mbus = mon_bus_lookup(iminor(inode));
682 if (mbus == NULL) {
683 mutex_unlock(&mon_lock);
684 return -ENODEV;
685 }
686 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
687 printk(KERN_ERR TAG ": consistency error on open\n");
688 mutex_unlock(&mon_lock);
689 return -ENODEV;
690 }
691
692 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
693 if (rp == NULL) {
694 rc = -ENOMEM;
695 goto err_alloc;
696 }
697 spin_lock_init(&rp->b_lock);
698 init_waitqueue_head(&rp->b_wait);
699 mutex_init(&rp->fetch_lock);
700 rp->b_size = BUFF_DFL;
701
702 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
703 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
704 rc = -ENOMEM;
705 goto err_allocvec;
706 }
707
708 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
709 goto err_allocbuff;
710
711 rp->r.m_bus = mbus;
712 rp->r.r_data = rp;
713 rp->r.rnf_submit = mon_bin_submit;
714 rp->r.rnf_error = mon_bin_error;
715 rp->r.rnf_complete = mon_bin_complete;
716
717 mon_reader_add(mbus, &rp->r);
718
719 file->private_data = rp;
720 mutex_unlock(&mon_lock);
721 return 0;
722
723err_allocbuff:
724 kfree(rp->b_vec);
725err_allocvec:
726 kfree(rp);
727err_alloc:
728 mutex_unlock(&mon_lock);
729 return rc;
730}
731
732/*
733 * Extract an event from buffer and copy it to user space.
734 * Wait if there is no event ready.
735 * Returns zero or error.
736 */
737static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
738 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
739 void __user *data, unsigned int nbytes)
740{
741 unsigned long flags;
742 struct mon_bin_hdr *ep;
743 size_t step_len;
744 unsigned int offset;
745 int rc;
746
747 mutex_lock(&rp->fetch_lock);
748
749 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
750 mutex_unlock(&rp->fetch_lock);
751 return rc;
752 }
753
754 ep = MON_OFF2HDR(rp, rp->b_out);
755
756 if (copy_to_user(hdr, ep, hdrbytes)) {
757 mutex_unlock(&rp->fetch_lock);
758 return -EFAULT;
759 }
760
761 step_len = min(ep->len_cap, nbytes);
762 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
763
764 if (copy_from_buf(rp, offset, data, step_len)) {
765 mutex_unlock(&rp->fetch_lock);
766 return -EFAULT;
767 }
768
769 spin_lock_irqsave(&rp->b_lock, flags);
770 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
771 spin_unlock_irqrestore(&rp->b_lock, flags);
772 rp->b_read = 0;
773
774 mutex_unlock(&rp->fetch_lock);
775 return 0;
776}
777
778static int mon_bin_release(struct inode *inode, struct file *file)
779{
780 struct mon_reader_bin *rp = file->private_data;
781 struct mon_bus* mbus = rp->r.m_bus;
782
783 mutex_lock(&mon_lock);
784
785 if (mbus->nreaders <= 0) {
786 printk(KERN_ERR TAG ": consistency error on close\n");
787 mutex_unlock(&mon_lock);
788 return 0;
789 }
790 mon_reader_del(mbus, &rp->r);
791
792 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
793 kfree(rp->b_vec);
794 kfree(rp);
795
796 mutex_unlock(&mon_lock);
797 return 0;
798}
799
800static ssize_t mon_bin_read(struct file *file, char __user *buf,
801 size_t nbytes, loff_t *ppos)
802{
803 struct mon_reader_bin *rp = file->private_data;
804 unsigned int hdrbytes = PKT_SZ_API0;
805 unsigned long flags;
806 struct mon_bin_hdr *ep;
807 unsigned int offset;
808 size_t step_len;
809 char *ptr;
810 ssize_t done = 0;
811 int rc;
812
813 mutex_lock(&rp->fetch_lock);
814
815 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
816 mutex_unlock(&rp->fetch_lock);
817 return rc;
818 }
819
820 ep = MON_OFF2HDR(rp, rp->b_out);
821
822 if (rp->b_read < hdrbytes) {
823 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
824 ptr = ((char *)ep) + rp->b_read;
825 if (step_len && copy_to_user(buf, ptr, step_len)) {
826 mutex_unlock(&rp->fetch_lock);
827 return -EFAULT;
828 }
829 nbytes -= step_len;
830 buf += step_len;
831 rp->b_read += step_len;
832 done += step_len;
833 }
834
835 if (rp->b_read >= hdrbytes) {
836 step_len = ep->len_cap;
837 step_len -= rp->b_read - hdrbytes;
838 if (step_len > nbytes)
839 step_len = nbytes;
840 offset = rp->b_out + PKT_SIZE;
841 offset += rp->b_read - hdrbytes;
842 if (offset >= rp->b_size)
843 offset -= rp->b_size;
844 if (copy_from_buf(rp, offset, buf, step_len)) {
845 mutex_unlock(&rp->fetch_lock);
846 return -EFAULT;
847 }
848 nbytes -= step_len;
849 buf += step_len;
850 rp->b_read += step_len;
851 done += step_len;
852 }
853
854 /*
855 * Check if whole packet was read, and if so, jump to the next one.
856 */
857 if (rp->b_read >= hdrbytes + ep->len_cap) {
858 spin_lock_irqsave(&rp->b_lock, flags);
859 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
860 spin_unlock_irqrestore(&rp->b_lock, flags);
861 rp->b_read = 0;
862 }
863
864 mutex_unlock(&rp->fetch_lock);
865 return done;
866}
867
868/*
869 * Remove at most nevents from chunked buffer.
870 * Returns the number of removed events.
871 */
872static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
873{
874 unsigned long flags;
875 struct mon_bin_hdr *ep;
876 int i;
877
878 mutex_lock(&rp->fetch_lock);
879 spin_lock_irqsave(&rp->b_lock, flags);
880 for (i = 0; i < nevents; ++i) {
881 if (MON_RING_EMPTY(rp))
882 break;
883
884 ep = MON_OFF2HDR(rp, rp->b_out);
885 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
886 }
887 spin_unlock_irqrestore(&rp->b_lock, flags);
888 rp->b_read = 0;
889 mutex_unlock(&rp->fetch_lock);
890 return i;
891}
892
893/*
894 * Fetch at most max event offsets into the buffer and put them into vec.
895 * The events are usually freed later with mon_bin_flush.
896 * Return the effective number of events fetched.
897 */
898static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
899 u32 __user *vec, unsigned int max)
900{
901 unsigned int cur_out;
902 unsigned int bytes, avail;
903 unsigned int size;
904 unsigned int nevents;
905 struct mon_bin_hdr *ep;
906 unsigned long flags;
907 int rc;
908
909 mutex_lock(&rp->fetch_lock);
910
911 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
912 mutex_unlock(&rp->fetch_lock);
913 return rc;
914 }
915
916 spin_lock_irqsave(&rp->b_lock, flags);
917 avail = rp->b_cnt;
918 spin_unlock_irqrestore(&rp->b_lock, flags);
919
920 cur_out = rp->b_out;
921 nevents = 0;
922 bytes = 0;
923 while (bytes < avail) {
924 if (nevents >= max)
925 break;
926
927 ep = MON_OFF2HDR(rp, cur_out);
928 if (put_user(cur_out, &vec[nevents])) {
929 mutex_unlock(&rp->fetch_lock);
930 return -EFAULT;
931 }
932
933 nevents++;
934 size = ep->len_cap + PKT_SIZE;
935 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
936 if ((cur_out += size) >= rp->b_size)
937 cur_out -= rp->b_size;
938 bytes += size;
939 }
940
941 mutex_unlock(&rp->fetch_lock);
942 return nevents;
943}
944
945/*
946 * Count events. This is almost the same as the above mon_bin_fetch,
947 * only we do not store offsets into user vector, and we have no limit.
948 */
949static int mon_bin_queued(struct mon_reader_bin *rp)
950{
951 unsigned int cur_out;
952 unsigned int bytes, avail;
953 unsigned int size;
954 unsigned int nevents;
955 struct mon_bin_hdr *ep;
956 unsigned long flags;
957
958 mutex_lock(&rp->fetch_lock);
959
960 spin_lock_irqsave(&rp->b_lock, flags);
961 avail = rp->b_cnt;
962 spin_unlock_irqrestore(&rp->b_lock, flags);
963
964 cur_out = rp->b_out;
965 nevents = 0;
966 bytes = 0;
967 while (bytes < avail) {
968 ep = MON_OFF2HDR(rp, cur_out);
969
970 nevents++;
971 size = ep->len_cap + PKT_SIZE;
972 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
973 if ((cur_out += size) >= rp->b_size)
974 cur_out -= rp->b_size;
975 bytes += size;
976 }
977
978 mutex_unlock(&rp->fetch_lock);
979 return nevents;
980}
981
982/*
983 */
984static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
985{
986 struct mon_reader_bin *rp = file->private_data;
987 // struct mon_bus* mbus = rp->r.m_bus;
988 int ret = 0;
989 struct mon_bin_hdr *ep;
990 unsigned long flags;
991
992 switch (cmd) {
993
994 case MON_IOCQ_URB_LEN:
995 /*
996 * N.B. This only returns the size of data, without the header.
997 */
998 spin_lock_irqsave(&rp->b_lock, flags);
999 if (!MON_RING_EMPTY(rp)) {
1000 ep = MON_OFF2HDR(rp, rp->b_out);
1001 ret = ep->len_cap;
1002 }
1003 spin_unlock_irqrestore(&rp->b_lock, flags);
1004 break;
1005
1006 case MON_IOCQ_RING_SIZE:
1007 mutex_lock(&rp->fetch_lock);
1008 ret = rp->b_size;
1009 mutex_unlock(&rp->fetch_lock);
1010 break;
1011
1012 case MON_IOCT_RING_SIZE:
1013 /*
1014 * Changing the buffer size will flush it's contents; the new
1015 * buffer is allocated before releasing the old one to be sure
1016 * the device will stay functional also in case of memory
1017 * pressure.
1018 */
1019 {
1020 int size;
1021 struct mon_pgmap *vec;
1022
1023 if (arg < BUFF_MIN || arg > BUFF_MAX)
1024 return -EINVAL;
1025
1026 size = CHUNK_ALIGN(arg);
1027 vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap),
1028 GFP_KERNEL);
1029 if (vec == NULL) {
1030 ret = -ENOMEM;
1031 break;
1032 }
1033
1034 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1035 if (ret < 0) {
1036 kfree(vec);
1037 break;
1038 }
1039
1040 mutex_lock(&rp->fetch_lock);
1041 spin_lock_irqsave(&rp->b_lock, flags);
1042 if (rp->mmap_active) {
1043 mon_free_buff(vec, size/CHUNK_SIZE);
1044 kfree(vec);
1045 ret = -EBUSY;
1046 } else {
1047 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1048 kfree(rp->b_vec);
1049 rp->b_vec = vec;
1050 rp->b_size = size;
1051 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1052 rp->cnt_lost = 0;
1053 }
1054 spin_unlock_irqrestore(&rp->b_lock, flags);
1055 mutex_unlock(&rp->fetch_lock);
1056 }
1057 break;
1058
1059 case MON_IOCH_MFLUSH:
1060 ret = mon_bin_flush(rp, arg);
1061 break;
1062
1063 case MON_IOCX_GET:
1064 case MON_IOCX_GETX:
1065 {
1066 struct mon_bin_get getb;
1067
1068 if (copy_from_user(&getb, (void __user *)arg,
1069 sizeof(struct mon_bin_get)))
1070 return -EFAULT;
1071
1072 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1073 return -EINVAL;
1074 ret = mon_bin_get_event(file, rp, getb.hdr,
1075 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1076 getb.data, (unsigned int)getb.alloc);
1077 }
1078 break;
1079
1080 case MON_IOCX_MFETCH:
1081 {
1082 struct mon_bin_mfetch mfetch;
1083 struct mon_bin_mfetch __user *uptr;
1084
1085 uptr = (struct mon_bin_mfetch __user *)arg;
1086
1087 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1088 return -EFAULT;
1089
1090 if (mfetch.nflush) {
1091 ret = mon_bin_flush(rp, mfetch.nflush);
1092 if (ret < 0)
1093 return ret;
1094 if (put_user(ret, &uptr->nflush))
1095 return -EFAULT;
1096 }
1097 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1098 if (ret < 0)
1099 return ret;
1100 if (put_user(ret, &uptr->nfetch))
1101 return -EFAULT;
1102 ret = 0;
1103 }
1104 break;
1105
1106 case MON_IOCG_STATS: {
1107 struct mon_bin_stats __user *sp;
1108 unsigned int nevents;
1109 unsigned int ndropped;
1110
1111 spin_lock_irqsave(&rp->b_lock, flags);
1112 ndropped = rp->cnt_lost;
1113 rp->cnt_lost = 0;
1114 spin_unlock_irqrestore(&rp->b_lock, flags);
1115 nevents = mon_bin_queued(rp);
1116
1117 sp = (struct mon_bin_stats __user *)arg;
1118 if (put_user(ndropped, &sp->dropped))
1119 return -EFAULT;
1120 if (put_user(nevents, &sp->queued))
1121 return -EFAULT;
1122
1123 }
1124 break;
1125
1126 default:
1127 return -ENOTTY;
1128 }
1129
1130 return ret;
1131}
1132
1133#ifdef CONFIG_COMPAT
1134static long mon_bin_compat_ioctl(struct file *file,
1135 unsigned int cmd, unsigned long arg)
1136{
1137 struct mon_reader_bin *rp = file->private_data;
1138 int ret;
1139
1140 switch (cmd) {
1141
1142 case MON_IOCX_GET32:
1143 case MON_IOCX_GETX32:
1144 {
1145 struct mon_bin_get32 getb;
1146
1147 if (copy_from_user(&getb, (void __user *)arg,
1148 sizeof(struct mon_bin_get32)))
1149 return -EFAULT;
1150
1151 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1152 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1153 compat_ptr(getb.data32), getb.alloc32);
1154 if (ret < 0)
1155 return ret;
1156 }
1157 return 0;
1158
1159 case MON_IOCX_MFETCH32:
1160 {
1161 struct mon_bin_mfetch32 mfetch;
1162 struct mon_bin_mfetch32 __user *uptr;
1163
1164 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1165
1166 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1167 return -EFAULT;
1168
1169 if (mfetch.nflush32) {
1170 ret = mon_bin_flush(rp, mfetch.nflush32);
1171 if (ret < 0)
1172 return ret;
1173 if (put_user(ret, &uptr->nflush32))
1174 return -EFAULT;
1175 }
1176 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1177 mfetch.nfetch32);
1178 if (ret < 0)
1179 return ret;
1180 if (put_user(ret, &uptr->nfetch32))
1181 return -EFAULT;
1182 }
1183 return 0;
1184
1185 case MON_IOCG_STATS:
1186 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1187
1188 case MON_IOCQ_URB_LEN:
1189 case MON_IOCQ_RING_SIZE:
1190 case MON_IOCT_RING_SIZE:
1191 case MON_IOCH_MFLUSH:
1192 return mon_bin_ioctl(file, cmd, arg);
1193
1194 default:
1195 ;
1196 }
1197 return -ENOTTY;
1198}
1199#endif /* CONFIG_COMPAT */
1200
1201static __poll_t
1202mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1203{
1204 struct mon_reader_bin *rp = file->private_data;
1205 __poll_t mask = 0;
1206 unsigned long flags;
1207
1208 if (file->f_mode & FMODE_READ)
1209 poll_wait(file, &rp->b_wait, wait);
1210
1211 spin_lock_irqsave(&rp->b_lock, flags);
1212 if (!MON_RING_EMPTY(rp))
1213 mask |= EPOLLIN | EPOLLRDNORM; /* readable */
1214 spin_unlock_irqrestore(&rp->b_lock, flags);
1215 return mask;
1216}
1217
1218/*
1219 * open and close: just keep track of how many times the device is
1220 * mapped, to use the proper memory allocation function.
1221 */
1222static void mon_bin_vma_open(struct vm_area_struct *vma)
1223{
1224 struct mon_reader_bin *rp = vma->vm_private_data;
1225 unsigned long flags;
1226
1227 spin_lock_irqsave(&rp->b_lock, flags);
1228 rp->mmap_active++;
1229 spin_unlock_irqrestore(&rp->b_lock, flags);
1230}
1231
1232static void mon_bin_vma_close(struct vm_area_struct *vma)
1233{
1234 unsigned long flags;
1235
1236 struct mon_reader_bin *rp = vma->vm_private_data;
1237 spin_lock_irqsave(&rp->b_lock, flags);
1238 rp->mmap_active--;
1239 spin_unlock_irqrestore(&rp->b_lock, flags);
1240}
1241
1242/*
1243 * Map ring pages to user space.
1244 */
1245static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf)
1246{
1247 struct mon_reader_bin *rp = vmf->vma->vm_private_data;
1248 unsigned long offset, chunk_idx;
1249 struct page *pageptr;
1250
1251 offset = vmf->pgoff << PAGE_SHIFT;
1252 if (offset >= rp->b_size)
1253 return VM_FAULT_SIGBUS;
1254 chunk_idx = offset / CHUNK_SIZE;
1255 pageptr = rp->b_vec[chunk_idx].pg;
1256 get_page(pageptr);
1257 vmf->page = pageptr;
1258 return 0;
1259}
1260
1261static const struct vm_operations_struct mon_bin_vm_ops = {
1262 .open = mon_bin_vma_open,
1263 .close = mon_bin_vma_close,
1264 .fault = mon_bin_vma_fault,
1265};
1266
1267static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1268{
1269 /* don't do anything here: "fault" will set up page table entries */
1270 vma->vm_ops = &mon_bin_vm_ops;
1271 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1272 vma->vm_private_data = filp->private_data;
1273 mon_bin_vma_open(vma);
1274 return 0;
1275}
1276
1277static const struct file_operations mon_fops_binary = {
1278 .owner = THIS_MODULE,
1279 .open = mon_bin_open,
1280 .llseek = no_llseek,
1281 .read = mon_bin_read,
1282 /* .write = mon_text_write, */
1283 .poll = mon_bin_poll,
1284 .unlocked_ioctl = mon_bin_ioctl,
1285#ifdef CONFIG_COMPAT
1286 .compat_ioctl = mon_bin_compat_ioctl,
1287#endif
1288 .release = mon_bin_release,
1289 .mmap = mon_bin_mmap,
1290};
1291
1292static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1293{
1294 DECLARE_WAITQUEUE(waita, current);
1295 unsigned long flags;
1296
1297 add_wait_queue(&rp->b_wait, &waita);
1298 set_current_state(TASK_INTERRUPTIBLE);
1299
1300 spin_lock_irqsave(&rp->b_lock, flags);
1301 while (MON_RING_EMPTY(rp)) {
1302 spin_unlock_irqrestore(&rp->b_lock, flags);
1303
1304 if (file->f_flags & O_NONBLOCK) {
1305 set_current_state(TASK_RUNNING);
1306 remove_wait_queue(&rp->b_wait, &waita);
1307 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1308 }
1309 schedule();
1310 if (signal_pending(current)) {
1311 remove_wait_queue(&rp->b_wait, &waita);
1312 return -EINTR;
1313 }
1314 set_current_state(TASK_INTERRUPTIBLE);
1315
1316 spin_lock_irqsave(&rp->b_lock, flags);
1317 }
1318 spin_unlock_irqrestore(&rp->b_lock, flags);
1319
1320 set_current_state(TASK_RUNNING);
1321 remove_wait_queue(&rp->b_wait, &waita);
1322 return 0;
1323}
1324
1325static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1326{
1327 int n;
1328 unsigned long vaddr;
1329
1330 for (n = 0; n < npages; n++) {
1331 vaddr = get_zeroed_page(GFP_KERNEL);
1332 if (vaddr == 0) {
1333 while (n-- != 0)
1334 free_page((unsigned long) map[n].ptr);
1335 return -ENOMEM;
1336 }
1337 map[n].ptr = (unsigned char *) vaddr;
1338 map[n].pg = virt_to_page((void *) vaddr);
1339 }
1340 return 0;
1341}
1342
1343static void mon_free_buff(struct mon_pgmap *map, int npages)
1344{
1345 int n;
1346
1347 for (n = 0; n < npages; n++)
1348 free_page((unsigned long) map[n].ptr);
1349}
1350
1351int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1352{
1353 struct device *dev;
1354 unsigned minor = ubus? ubus->busnum: 0;
1355
1356 if (minor >= MON_BIN_MAX_MINOR)
1357 return 0;
1358
1359 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1360 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1361 "usbmon%d", minor);
1362 if (IS_ERR(dev))
1363 return 0;
1364
1365 mbus->classdev = dev;
1366 return 1;
1367}
1368
1369void mon_bin_del(struct mon_bus *mbus)
1370{
1371 device_destroy(mon_bin_class, mbus->classdev->devt);
1372}
1373
1374int __init mon_bin_init(void)
1375{
1376 int rc;
1377
1378 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1379 if (IS_ERR(mon_bin_class)) {
1380 rc = PTR_ERR(mon_bin_class);
1381 goto err_class;
1382 }
1383
1384 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1385 if (rc < 0)
1386 goto err_dev;
1387
1388 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1389 mon_bin_cdev.owner = THIS_MODULE;
1390
1391 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1392 if (rc < 0)
1393 goto err_add;
1394
1395 return 0;
1396
1397err_add:
1398 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1399err_dev:
1400 class_destroy(mon_bin_class);
1401err_class:
1402 return rc;
1403}
1404
1405void mon_bin_exit(void)
1406{
1407 cdev_del(&mon_bin_cdev);
1408 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1409 class_destroy(mon_bin_class);
1410}
1/*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10#include <linux/kernel.h>
11#include <linux/types.h>
12#include <linux/fs.h>
13#include <linux/cdev.h>
14#include <linux/export.h>
15#include <linux/usb.h>
16#include <linux/poll.h>
17#include <linux/compat.h>
18#include <linux/mm.h>
19#include <linux/scatterlist.h>
20#include <linux/slab.h>
21#include <linux/time64.h>
22
23#include <asm/uaccess.h>
24
25#include "usb_mon.h"
26
27/*
28 * Defined by USB 2.0 clause 9.3, table 9.2.
29 */
30#define SETUP_LEN 8
31
32/* ioctl macros */
33#define MON_IOC_MAGIC 0x92
34
35#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
36/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
37#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
38#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
39#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
40#define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
41#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
42#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
43/* #9 was MON_IOCT_SETAPI */
44#define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
45
46#ifdef CONFIG_COMPAT
47#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
48#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
49#define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
50#endif
51
52/*
53 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
54 * But it's all right. Just use a simple way to make sure the chunk is never
55 * smaller than a page.
56 *
57 * N.B. An application does not know our chunk size.
58 *
59 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
60 * page-sized chunks for the time being.
61 */
62#define CHUNK_SIZE PAGE_SIZE
63#define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
64
65/*
66 * The magic limit was calculated so that it allows the monitoring
67 * application to pick data once in two ticks. This way, another application,
68 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
69 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
70 * enormous overhead built into the bus protocol, so we need about 1000 KB.
71 *
72 * This is still too much for most cases, where we just snoop a few
73 * descriptor fetches for enumeration. So, the default is a "reasonable"
74 * amount for systems with HZ=250 and incomplete bus saturation.
75 *
76 * XXX What about multi-megabyte URBs which take minutes to transfer?
77 */
78#define BUFF_MAX CHUNK_ALIGN(1200*1024)
79#define BUFF_DFL CHUNK_ALIGN(300*1024)
80#define BUFF_MIN CHUNK_ALIGN(8*1024)
81
82/*
83 * The per-event API header (2 per URB).
84 *
85 * This structure is seen in userland as defined by the documentation.
86 */
87struct mon_bin_hdr {
88 u64 id; /* URB ID - from submission to callback */
89 unsigned char type; /* Same as in text API; extensible. */
90 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
91 unsigned char epnum; /* Endpoint number and transfer direction */
92 unsigned char devnum; /* Device address */
93 unsigned short busnum; /* Bus number */
94 char flag_setup;
95 char flag_data;
96 s64 ts_sec; /* getnstimeofday64 */
97 s32 ts_usec; /* getnstimeofday64 */
98 int status;
99 unsigned int len_urb; /* Length of data (submitted or actual) */
100 unsigned int len_cap; /* Delivered length */
101 union {
102 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
103 struct iso_rec {
104 int error_count;
105 int numdesc;
106 } iso;
107 } s;
108 int interval;
109 int start_frame;
110 unsigned int xfer_flags;
111 unsigned int ndesc; /* Actual number of ISO descriptors */
112};
113
114/*
115 * ISO vector, packed into the head of data stream.
116 * This has to take 16 bytes to make sure that the end of buffer
117 * wrap is not happening in the middle of a descriptor.
118 */
119struct mon_bin_isodesc {
120 int iso_status;
121 unsigned int iso_off;
122 unsigned int iso_len;
123 u32 _pad;
124};
125
126/* per file statistic */
127struct mon_bin_stats {
128 u32 queued;
129 u32 dropped;
130};
131
132struct mon_bin_get {
133 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
134 void __user *data;
135 size_t alloc; /* Length of data (can be zero) */
136};
137
138struct mon_bin_mfetch {
139 u32 __user *offvec; /* Vector of events fetched */
140 u32 nfetch; /* Number of events to fetch (out: fetched) */
141 u32 nflush; /* Number of events to flush */
142};
143
144#ifdef CONFIG_COMPAT
145struct mon_bin_get32 {
146 u32 hdr32;
147 u32 data32;
148 u32 alloc32;
149};
150
151struct mon_bin_mfetch32 {
152 u32 offvec32;
153 u32 nfetch32;
154 u32 nflush32;
155};
156#endif
157
158/* Having these two values same prevents wrapping of the mon_bin_hdr */
159#define PKT_ALIGN 64
160#define PKT_SIZE 64
161
162#define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
163#define PKT_SZ_API1 64 /* API 1 size: extra fields */
164
165#define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
166
167/* max number of USB bus supported */
168#define MON_BIN_MAX_MINOR 128
169
170/*
171 * The buffer: map of used pages.
172 */
173struct mon_pgmap {
174 struct page *pg;
175 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
176};
177
178/*
179 * This gets associated with an open file struct.
180 */
181struct mon_reader_bin {
182 /* The buffer: one per open. */
183 spinlock_t b_lock; /* Protect b_cnt, b_in */
184 unsigned int b_size; /* Current size of the buffer - bytes */
185 unsigned int b_cnt; /* Bytes used */
186 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
187 unsigned int b_read; /* Amount of read data in curr. pkt. */
188 struct mon_pgmap *b_vec; /* The map array */
189 wait_queue_head_t b_wait; /* Wait for data here */
190
191 struct mutex fetch_lock; /* Protect b_read, b_out */
192 int mmap_active;
193
194 /* A list of these is needed for "bus 0". Some time later. */
195 struct mon_reader r;
196
197 /* Stats */
198 unsigned int cnt_lost;
199};
200
201static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
202 unsigned int offset)
203{
204 return (struct mon_bin_hdr *)
205 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
206}
207
208#define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
209
210static unsigned char xfer_to_pipe[4] = {
211 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
212};
213
214static struct class *mon_bin_class;
215static dev_t mon_bin_dev0;
216static struct cdev mon_bin_cdev;
217
218static void mon_buff_area_fill(const struct mon_reader_bin *rp,
219 unsigned int offset, unsigned int size);
220static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
221static int mon_alloc_buff(struct mon_pgmap *map, int npages);
222static void mon_free_buff(struct mon_pgmap *map, int npages);
223
224/*
225 * This is a "chunked memcpy". It does not manipulate any counters.
226 */
227static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
228 unsigned int off, const unsigned char *from, unsigned int length)
229{
230 unsigned int step_len;
231 unsigned char *buf;
232 unsigned int in_page;
233
234 while (length) {
235 /*
236 * Determine step_len.
237 */
238 step_len = length;
239 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
240 if (in_page < step_len)
241 step_len = in_page;
242
243 /*
244 * Copy data and advance pointers.
245 */
246 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
247 memcpy(buf, from, step_len);
248 if ((off += step_len) >= this->b_size) off = 0;
249 from += step_len;
250 length -= step_len;
251 }
252 return off;
253}
254
255/*
256 * This is a little worse than the above because it's "chunked copy_to_user".
257 * The return value is an error code, not an offset.
258 */
259static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
260 char __user *to, int length)
261{
262 unsigned int step_len;
263 unsigned char *buf;
264 unsigned int in_page;
265
266 while (length) {
267 /*
268 * Determine step_len.
269 */
270 step_len = length;
271 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
272 if (in_page < step_len)
273 step_len = in_page;
274
275 /*
276 * Copy data and advance pointers.
277 */
278 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
279 if (copy_to_user(to, buf, step_len))
280 return -EINVAL;
281 if ((off += step_len) >= this->b_size) off = 0;
282 to += step_len;
283 length -= step_len;
284 }
285 return 0;
286}
287
288/*
289 * Allocate an (aligned) area in the buffer.
290 * This is called under b_lock.
291 * Returns ~0 on failure.
292 */
293static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
294 unsigned int size)
295{
296 unsigned int offset;
297
298 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
299 if (rp->b_cnt + size > rp->b_size)
300 return ~0;
301 offset = rp->b_in;
302 rp->b_cnt += size;
303 if ((rp->b_in += size) >= rp->b_size)
304 rp->b_in -= rp->b_size;
305 return offset;
306}
307
308/*
309 * This is the same thing as mon_buff_area_alloc, only it does not allow
310 * buffers to wrap. This is needed by applications which pass references
311 * into mmap-ed buffers up their stacks (libpcap can do that).
312 *
313 * Currently, we always have the header stuck with the data, although
314 * it is not strictly speaking necessary.
315 *
316 * When a buffer would wrap, we place a filler packet to mark the space.
317 */
318static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
319 unsigned int size)
320{
321 unsigned int offset;
322 unsigned int fill_size;
323
324 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
325 if (rp->b_cnt + size > rp->b_size)
326 return ~0;
327 if (rp->b_in + size > rp->b_size) {
328 /*
329 * This would wrap. Find if we still have space after
330 * skipping to the end of the buffer. If we do, place
331 * a filler packet and allocate a new packet.
332 */
333 fill_size = rp->b_size - rp->b_in;
334 if (rp->b_cnt + size + fill_size > rp->b_size)
335 return ~0;
336 mon_buff_area_fill(rp, rp->b_in, fill_size);
337
338 offset = 0;
339 rp->b_in = size;
340 rp->b_cnt += size + fill_size;
341 } else if (rp->b_in + size == rp->b_size) {
342 offset = rp->b_in;
343 rp->b_in = 0;
344 rp->b_cnt += size;
345 } else {
346 offset = rp->b_in;
347 rp->b_in += size;
348 rp->b_cnt += size;
349 }
350 return offset;
351}
352
353/*
354 * Return a few (kilo-)bytes to the head of the buffer.
355 * This is used if a data fetch fails.
356 */
357static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
358{
359
360 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
361 rp->b_cnt -= size;
362 if (rp->b_in < size)
363 rp->b_in += rp->b_size;
364 rp->b_in -= size;
365}
366
367/*
368 * This has to be called under both b_lock and fetch_lock, because
369 * it accesses both b_cnt and b_out.
370 */
371static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
372{
373
374 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
375 rp->b_cnt -= size;
376 if ((rp->b_out += size) >= rp->b_size)
377 rp->b_out -= rp->b_size;
378}
379
380static void mon_buff_area_fill(const struct mon_reader_bin *rp,
381 unsigned int offset, unsigned int size)
382{
383 struct mon_bin_hdr *ep;
384
385 ep = MON_OFF2HDR(rp, offset);
386 memset(ep, 0, PKT_SIZE);
387 ep->type = '@';
388 ep->len_cap = size - PKT_SIZE;
389}
390
391static inline char mon_bin_get_setup(unsigned char *setupb,
392 const struct urb *urb, char ev_type)
393{
394
395 if (urb->setup_packet == NULL)
396 return 'Z';
397 memcpy(setupb, urb->setup_packet, SETUP_LEN);
398 return 0;
399}
400
401static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
402 unsigned int offset, struct urb *urb, unsigned int length,
403 char *flag)
404{
405 int i;
406 struct scatterlist *sg;
407 unsigned int this_len;
408
409 *flag = 0;
410 if (urb->num_sgs == 0) {
411 if (urb->transfer_buffer == NULL) {
412 *flag = 'Z';
413 return length;
414 }
415 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
416 length = 0;
417
418 } else {
419 /* If IOMMU coalescing occurred, we cannot trust sg_page */
420 if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
421 *flag = 'D';
422 return length;
423 }
424
425 /* Copy up to the first non-addressable segment */
426 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
427 if (length == 0 || PageHighMem(sg_page(sg)))
428 break;
429 this_len = min_t(unsigned int, sg->length, length);
430 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
431 this_len);
432 length -= this_len;
433 }
434 if (i == 0)
435 *flag = 'D';
436 }
437
438 return length;
439}
440
441/*
442 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
443 * be used to determine the length of the whole contiguous buffer.
444 */
445static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
446 struct urb *urb, unsigned int ndesc)
447{
448 struct usb_iso_packet_descriptor *fp;
449 unsigned int length;
450
451 length = 0;
452 fp = urb->iso_frame_desc;
453 while (ndesc-- != 0) {
454 if (fp->actual_length != 0) {
455 if (fp->offset + fp->actual_length > length)
456 length = fp->offset + fp->actual_length;
457 }
458 fp++;
459 }
460 return length;
461}
462
463static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
464 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
465{
466 struct mon_bin_isodesc *dp;
467 struct usb_iso_packet_descriptor *fp;
468
469 fp = urb->iso_frame_desc;
470 while (ndesc-- != 0) {
471 dp = (struct mon_bin_isodesc *)
472 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
473 dp->iso_status = fp->status;
474 dp->iso_off = fp->offset;
475 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
476 dp->_pad = 0;
477 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
478 offset = 0;
479 fp++;
480 }
481}
482
483static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
484 char ev_type, int status)
485{
486 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
487 struct timespec64 ts;
488 unsigned long flags;
489 unsigned int urb_length;
490 unsigned int offset;
491 unsigned int length;
492 unsigned int delta;
493 unsigned int ndesc, lendesc;
494 unsigned char dir;
495 struct mon_bin_hdr *ep;
496 char data_tag = 0;
497
498 getnstimeofday64(&ts);
499
500 spin_lock_irqsave(&rp->b_lock, flags);
501
502 /*
503 * Find the maximum allowable length, then allocate space.
504 */
505 urb_length = (ev_type == 'S') ?
506 urb->transfer_buffer_length : urb->actual_length;
507 length = urb_length;
508
509 if (usb_endpoint_xfer_isoc(epd)) {
510 if (urb->number_of_packets < 0) {
511 ndesc = 0;
512 } else if (urb->number_of_packets >= ISODESC_MAX) {
513 ndesc = ISODESC_MAX;
514 } else {
515 ndesc = urb->number_of_packets;
516 }
517 if (ev_type == 'C' && usb_urb_dir_in(urb))
518 length = mon_bin_collate_isodesc(rp, urb, ndesc);
519 } else {
520 ndesc = 0;
521 }
522 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
523
524 /* not an issue unless there's a subtle bug in a HCD somewhere */
525 if (length >= urb->transfer_buffer_length)
526 length = urb->transfer_buffer_length;
527
528 if (length >= rp->b_size/5)
529 length = rp->b_size/5;
530
531 if (usb_urb_dir_in(urb)) {
532 if (ev_type == 'S') {
533 length = 0;
534 data_tag = '<';
535 }
536 /* Cannot rely on endpoint number in case of control ep.0 */
537 dir = USB_DIR_IN;
538 } else {
539 if (ev_type == 'C') {
540 length = 0;
541 data_tag = '>';
542 }
543 dir = 0;
544 }
545
546 if (rp->mmap_active) {
547 offset = mon_buff_area_alloc_contiguous(rp,
548 length + PKT_SIZE + lendesc);
549 } else {
550 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
551 }
552 if (offset == ~0) {
553 rp->cnt_lost++;
554 spin_unlock_irqrestore(&rp->b_lock, flags);
555 return;
556 }
557
558 ep = MON_OFF2HDR(rp, offset);
559 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
560
561 /*
562 * Fill the allocated area.
563 */
564 memset(ep, 0, PKT_SIZE);
565 ep->type = ev_type;
566 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
567 ep->epnum = dir | usb_endpoint_num(epd);
568 ep->devnum = urb->dev->devnum;
569 ep->busnum = urb->dev->bus->busnum;
570 ep->id = (unsigned long) urb;
571 ep->ts_sec = ts.tv_sec;
572 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
573 ep->status = status;
574 ep->len_urb = urb_length;
575 ep->len_cap = length + lendesc;
576 ep->xfer_flags = urb->transfer_flags;
577
578 if (usb_endpoint_xfer_int(epd)) {
579 ep->interval = urb->interval;
580 } else if (usb_endpoint_xfer_isoc(epd)) {
581 ep->interval = urb->interval;
582 ep->start_frame = urb->start_frame;
583 ep->s.iso.error_count = urb->error_count;
584 ep->s.iso.numdesc = urb->number_of_packets;
585 }
586
587 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
588 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
589 } else {
590 ep->flag_setup = '-';
591 }
592
593 if (ndesc != 0) {
594 ep->ndesc = ndesc;
595 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
596 if ((offset += lendesc) >= rp->b_size)
597 offset -= rp->b_size;
598 }
599
600 if (length != 0) {
601 length = mon_bin_get_data(rp, offset, urb, length,
602 &ep->flag_data);
603 if (length > 0) {
604 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
605 ep->len_cap -= length;
606 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
607 mon_buff_area_shrink(rp, delta);
608 }
609 } else {
610 ep->flag_data = data_tag;
611 }
612
613 spin_unlock_irqrestore(&rp->b_lock, flags);
614
615 wake_up(&rp->b_wait);
616}
617
618static void mon_bin_submit(void *data, struct urb *urb)
619{
620 struct mon_reader_bin *rp = data;
621 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
622}
623
624static void mon_bin_complete(void *data, struct urb *urb, int status)
625{
626 struct mon_reader_bin *rp = data;
627 mon_bin_event(rp, urb, 'C', status);
628}
629
630static void mon_bin_error(void *data, struct urb *urb, int error)
631{
632 struct mon_reader_bin *rp = data;
633 struct timespec64 ts;
634 unsigned long flags;
635 unsigned int offset;
636 struct mon_bin_hdr *ep;
637
638 getnstimeofday64(&ts);
639
640 spin_lock_irqsave(&rp->b_lock, flags);
641
642 offset = mon_buff_area_alloc(rp, PKT_SIZE);
643 if (offset == ~0) {
644 /* Not incrementing cnt_lost. Just because. */
645 spin_unlock_irqrestore(&rp->b_lock, flags);
646 return;
647 }
648
649 ep = MON_OFF2HDR(rp, offset);
650
651 memset(ep, 0, PKT_SIZE);
652 ep->type = 'E';
653 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
654 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
655 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
656 ep->devnum = urb->dev->devnum;
657 ep->busnum = urb->dev->bus->busnum;
658 ep->id = (unsigned long) urb;
659 ep->ts_sec = ts.tv_sec;
660 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
661 ep->status = error;
662
663 ep->flag_setup = '-';
664 ep->flag_data = 'E';
665
666 spin_unlock_irqrestore(&rp->b_lock, flags);
667
668 wake_up(&rp->b_wait);
669}
670
671static int mon_bin_open(struct inode *inode, struct file *file)
672{
673 struct mon_bus *mbus;
674 struct mon_reader_bin *rp;
675 size_t size;
676 int rc;
677
678 mutex_lock(&mon_lock);
679 mbus = mon_bus_lookup(iminor(inode));
680 if (mbus == NULL) {
681 mutex_unlock(&mon_lock);
682 return -ENODEV;
683 }
684 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
685 printk(KERN_ERR TAG ": consistency error on open\n");
686 mutex_unlock(&mon_lock);
687 return -ENODEV;
688 }
689
690 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
691 if (rp == NULL) {
692 rc = -ENOMEM;
693 goto err_alloc;
694 }
695 spin_lock_init(&rp->b_lock);
696 init_waitqueue_head(&rp->b_wait);
697 mutex_init(&rp->fetch_lock);
698 rp->b_size = BUFF_DFL;
699
700 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
701 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
702 rc = -ENOMEM;
703 goto err_allocvec;
704 }
705
706 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
707 goto err_allocbuff;
708
709 rp->r.m_bus = mbus;
710 rp->r.r_data = rp;
711 rp->r.rnf_submit = mon_bin_submit;
712 rp->r.rnf_error = mon_bin_error;
713 rp->r.rnf_complete = mon_bin_complete;
714
715 mon_reader_add(mbus, &rp->r);
716
717 file->private_data = rp;
718 mutex_unlock(&mon_lock);
719 return 0;
720
721err_allocbuff:
722 kfree(rp->b_vec);
723err_allocvec:
724 kfree(rp);
725err_alloc:
726 mutex_unlock(&mon_lock);
727 return rc;
728}
729
730/*
731 * Extract an event from buffer and copy it to user space.
732 * Wait if there is no event ready.
733 * Returns zero or error.
734 */
735static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
736 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
737 void __user *data, unsigned int nbytes)
738{
739 unsigned long flags;
740 struct mon_bin_hdr *ep;
741 size_t step_len;
742 unsigned int offset;
743 int rc;
744
745 mutex_lock(&rp->fetch_lock);
746
747 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
748 mutex_unlock(&rp->fetch_lock);
749 return rc;
750 }
751
752 ep = MON_OFF2HDR(rp, rp->b_out);
753
754 if (copy_to_user(hdr, ep, hdrbytes)) {
755 mutex_unlock(&rp->fetch_lock);
756 return -EFAULT;
757 }
758
759 step_len = min(ep->len_cap, nbytes);
760 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
761
762 if (copy_from_buf(rp, offset, data, step_len)) {
763 mutex_unlock(&rp->fetch_lock);
764 return -EFAULT;
765 }
766
767 spin_lock_irqsave(&rp->b_lock, flags);
768 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
769 spin_unlock_irqrestore(&rp->b_lock, flags);
770 rp->b_read = 0;
771
772 mutex_unlock(&rp->fetch_lock);
773 return 0;
774}
775
776static int mon_bin_release(struct inode *inode, struct file *file)
777{
778 struct mon_reader_bin *rp = file->private_data;
779 struct mon_bus* mbus = rp->r.m_bus;
780
781 mutex_lock(&mon_lock);
782
783 if (mbus->nreaders <= 0) {
784 printk(KERN_ERR TAG ": consistency error on close\n");
785 mutex_unlock(&mon_lock);
786 return 0;
787 }
788 mon_reader_del(mbus, &rp->r);
789
790 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
791 kfree(rp->b_vec);
792 kfree(rp);
793
794 mutex_unlock(&mon_lock);
795 return 0;
796}
797
798static ssize_t mon_bin_read(struct file *file, char __user *buf,
799 size_t nbytes, loff_t *ppos)
800{
801 struct mon_reader_bin *rp = file->private_data;
802 unsigned int hdrbytes = PKT_SZ_API0;
803 unsigned long flags;
804 struct mon_bin_hdr *ep;
805 unsigned int offset;
806 size_t step_len;
807 char *ptr;
808 ssize_t done = 0;
809 int rc;
810
811 mutex_lock(&rp->fetch_lock);
812
813 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
814 mutex_unlock(&rp->fetch_lock);
815 return rc;
816 }
817
818 ep = MON_OFF2HDR(rp, rp->b_out);
819
820 if (rp->b_read < hdrbytes) {
821 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
822 ptr = ((char *)ep) + rp->b_read;
823 if (step_len && copy_to_user(buf, ptr, step_len)) {
824 mutex_unlock(&rp->fetch_lock);
825 return -EFAULT;
826 }
827 nbytes -= step_len;
828 buf += step_len;
829 rp->b_read += step_len;
830 done += step_len;
831 }
832
833 if (rp->b_read >= hdrbytes) {
834 step_len = ep->len_cap;
835 step_len -= rp->b_read - hdrbytes;
836 if (step_len > nbytes)
837 step_len = nbytes;
838 offset = rp->b_out + PKT_SIZE;
839 offset += rp->b_read - hdrbytes;
840 if (offset >= rp->b_size)
841 offset -= rp->b_size;
842 if (copy_from_buf(rp, offset, buf, step_len)) {
843 mutex_unlock(&rp->fetch_lock);
844 return -EFAULT;
845 }
846 nbytes -= step_len;
847 buf += step_len;
848 rp->b_read += step_len;
849 done += step_len;
850 }
851
852 /*
853 * Check if whole packet was read, and if so, jump to the next one.
854 */
855 if (rp->b_read >= hdrbytes + ep->len_cap) {
856 spin_lock_irqsave(&rp->b_lock, flags);
857 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
858 spin_unlock_irqrestore(&rp->b_lock, flags);
859 rp->b_read = 0;
860 }
861
862 mutex_unlock(&rp->fetch_lock);
863 return done;
864}
865
866/*
867 * Remove at most nevents from chunked buffer.
868 * Returns the number of removed events.
869 */
870static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
871{
872 unsigned long flags;
873 struct mon_bin_hdr *ep;
874 int i;
875
876 mutex_lock(&rp->fetch_lock);
877 spin_lock_irqsave(&rp->b_lock, flags);
878 for (i = 0; i < nevents; ++i) {
879 if (MON_RING_EMPTY(rp))
880 break;
881
882 ep = MON_OFF2HDR(rp, rp->b_out);
883 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
884 }
885 spin_unlock_irqrestore(&rp->b_lock, flags);
886 rp->b_read = 0;
887 mutex_unlock(&rp->fetch_lock);
888 return i;
889}
890
891/*
892 * Fetch at most max event offsets into the buffer and put them into vec.
893 * The events are usually freed later with mon_bin_flush.
894 * Return the effective number of events fetched.
895 */
896static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
897 u32 __user *vec, unsigned int max)
898{
899 unsigned int cur_out;
900 unsigned int bytes, avail;
901 unsigned int size;
902 unsigned int nevents;
903 struct mon_bin_hdr *ep;
904 unsigned long flags;
905 int rc;
906
907 mutex_lock(&rp->fetch_lock);
908
909 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
910 mutex_unlock(&rp->fetch_lock);
911 return rc;
912 }
913
914 spin_lock_irqsave(&rp->b_lock, flags);
915 avail = rp->b_cnt;
916 spin_unlock_irqrestore(&rp->b_lock, flags);
917
918 cur_out = rp->b_out;
919 nevents = 0;
920 bytes = 0;
921 while (bytes < avail) {
922 if (nevents >= max)
923 break;
924
925 ep = MON_OFF2HDR(rp, cur_out);
926 if (put_user(cur_out, &vec[nevents])) {
927 mutex_unlock(&rp->fetch_lock);
928 return -EFAULT;
929 }
930
931 nevents++;
932 size = ep->len_cap + PKT_SIZE;
933 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
934 if ((cur_out += size) >= rp->b_size)
935 cur_out -= rp->b_size;
936 bytes += size;
937 }
938
939 mutex_unlock(&rp->fetch_lock);
940 return nevents;
941}
942
943/*
944 * Count events. This is almost the same as the above mon_bin_fetch,
945 * only we do not store offsets into user vector, and we have no limit.
946 */
947static int mon_bin_queued(struct mon_reader_bin *rp)
948{
949 unsigned int cur_out;
950 unsigned int bytes, avail;
951 unsigned int size;
952 unsigned int nevents;
953 struct mon_bin_hdr *ep;
954 unsigned long flags;
955
956 mutex_lock(&rp->fetch_lock);
957
958 spin_lock_irqsave(&rp->b_lock, flags);
959 avail = rp->b_cnt;
960 spin_unlock_irqrestore(&rp->b_lock, flags);
961
962 cur_out = rp->b_out;
963 nevents = 0;
964 bytes = 0;
965 while (bytes < avail) {
966 ep = MON_OFF2HDR(rp, cur_out);
967
968 nevents++;
969 size = ep->len_cap + PKT_SIZE;
970 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
971 if ((cur_out += size) >= rp->b_size)
972 cur_out -= rp->b_size;
973 bytes += size;
974 }
975
976 mutex_unlock(&rp->fetch_lock);
977 return nevents;
978}
979
980/*
981 */
982static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
983{
984 struct mon_reader_bin *rp = file->private_data;
985 // struct mon_bus* mbus = rp->r.m_bus;
986 int ret = 0;
987 struct mon_bin_hdr *ep;
988 unsigned long flags;
989
990 switch (cmd) {
991
992 case MON_IOCQ_URB_LEN:
993 /*
994 * N.B. This only returns the size of data, without the header.
995 */
996 spin_lock_irqsave(&rp->b_lock, flags);
997 if (!MON_RING_EMPTY(rp)) {
998 ep = MON_OFF2HDR(rp, rp->b_out);
999 ret = ep->len_cap;
1000 }
1001 spin_unlock_irqrestore(&rp->b_lock, flags);
1002 break;
1003
1004 case MON_IOCQ_RING_SIZE:
1005 ret = rp->b_size;
1006 break;
1007
1008 case MON_IOCT_RING_SIZE:
1009 /*
1010 * Changing the buffer size will flush it's contents; the new
1011 * buffer is allocated before releasing the old one to be sure
1012 * the device will stay functional also in case of memory
1013 * pressure.
1014 */
1015 {
1016 int size;
1017 struct mon_pgmap *vec;
1018
1019 if (arg < BUFF_MIN || arg > BUFF_MAX)
1020 return -EINVAL;
1021
1022 size = CHUNK_ALIGN(arg);
1023 vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL);
1024 if (vec == NULL) {
1025 ret = -ENOMEM;
1026 break;
1027 }
1028
1029 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1030 if (ret < 0) {
1031 kfree(vec);
1032 break;
1033 }
1034
1035 mutex_lock(&rp->fetch_lock);
1036 spin_lock_irqsave(&rp->b_lock, flags);
1037 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1038 kfree(rp->b_vec);
1039 rp->b_vec = vec;
1040 rp->b_size = size;
1041 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1042 rp->cnt_lost = 0;
1043 spin_unlock_irqrestore(&rp->b_lock, flags);
1044 mutex_unlock(&rp->fetch_lock);
1045 }
1046 break;
1047
1048 case MON_IOCH_MFLUSH:
1049 ret = mon_bin_flush(rp, arg);
1050 break;
1051
1052 case MON_IOCX_GET:
1053 case MON_IOCX_GETX:
1054 {
1055 struct mon_bin_get getb;
1056
1057 if (copy_from_user(&getb, (void __user *)arg,
1058 sizeof(struct mon_bin_get)))
1059 return -EFAULT;
1060
1061 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1062 return -EINVAL;
1063 ret = mon_bin_get_event(file, rp, getb.hdr,
1064 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1065 getb.data, (unsigned int)getb.alloc);
1066 }
1067 break;
1068
1069 case MON_IOCX_MFETCH:
1070 {
1071 struct mon_bin_mfetch mfetch;
1072 struct mon_bin_mfetch __user *uptr;
1073
1074 uptr = (struct mon_bin_mfetch __user *)arg;
1075
1076 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1077 return -EFAULT;
1078
1079 if (mfetch.nflush) {
1080 ret = mon_bin_flush(rp, mfetch.nflush);
1081 if (ret < 0)
1082 return ret;
1083 if (put_user(ret, &uptr->nflush))
1084 return -EFAULT;
1085 }
1086 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1087 if (ret < 0)
1088 return ret;
1089 if (put_user(ret, &uptr->nfetch))
1090 return -EFAULT;
1091 ret = 0;
1092 }
1093 break;
1094
1095 case MON_IOCG_STATS: {
1096 struct mon_bin_stats __user *sp;
1097 unsigned int nevents;
1098 unsigned int ndropped;
1099
1100 spin_lock_irqsave(&rp->b_lock, flags);
1101 ndropped = rp->cnt_lost;
1102 rp->cnt_lost = 0;
1103 spin_unlock_irqrestore(&rp->b_lock, flags);
1104 nevents = mon_bin_queued(rp);
1105
1106 sp = (struct mon_bin_stats __user *)arg;
1107 if (put_user(ndropped, &sp->dropped))
1108 return -EFAULT;
1109 if (put_user(nevents, &sp->queued))
1110 return -EFAULT;
1111
1112 }
1113 break;
1114
1115 default:
1116 return -ENOTTY;
1117 }
1118
1119 return ret;
1120}
1121
1122#ifdef CONFIG_COMPAT
1123static long mon_bin_compat_ioctl(struct file *file,
1124 unsigned int cmd, unsigned long arg)
1125{
1126 struct mon_reader_bin *rp = file->private_data;
1127 int ret;
1128
1129 switch (cmd) {
1130
1131 case MON_IOCX_GET32:
1132 case MON_IOCX_GETX32:
1133 {
1134 struct mon_bin_get32 getb;
1135
1136 if (copy_from_user(&getb, (void __user *)arg,
1137 sizeof(struct mon_bin_get32)))
1138 return -EFAULT;
1139
1140 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1141 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1142 compat_ptr(getb.data32), getb.alloc32);
1143 if (ret < 0)
1144 return ret;
1145 }
1146 return 0;
1147
1148 case MON_IOCX_MFETCH32:
1149 {
1150 struct mon_bin_mfetch32 mfetch;
1151 struct mon_bin_mfetch32 __user *uptr;
1152
1153 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1154
1155 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1156 return -EFAULT;
1157
1158 if (mfetch.nflush32) {
1159 ret = mon_bin_flush(rp, mfetch.nflush32);
1160 if (ret < 0)
1161 return ret;
1162 if (put_user(ret, &uptr->nflush32))
1163 return -EFAULT;
1164 }
1165 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1166 mfetch.nfetch32);
1167 if (ret < 0)
1168 return ret;
1169 if (put_user(ret, &uptr->nfetch32))
1170 return -EFAULT;
1171 }
1172 return 0;
1173
1174 case MON_IOCG_STATS:
1175 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1176
1177 case MON_IOCQ_URB_LEN:
1178 case MON_IOCQ_RING_SIZE:
1179 case MON_IOCT_RING_SIZE:
1180 case MON_IOCH_MFLUSH:
1181 return mon_bin_ioctl(file, cmd, arg);
1182
1183 default:
1184 ;
1185 }
1186 return -ENOTTY;
1187}
1188#endif /* CONFIG_COMPAT */
1189
1190static unsigned int
1191mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1192{
1193 struct mon_reader_bin *rp = file->private_data;
1194 unsigned int mask = 0;
1195 unsigned long flags;
1196
1197 if (file->f_mode & FMODE_READ)
1198 poll_wait(file, &rp->b_wait, wait);
1199
1200 spin_lock_irqsave(&rp->b_lock, flags);
1201 if (!MON_RING_EMPTY(rp))
1202 mask |= POLLIN | POLLRDNORM; /* readable */
1203 spin_unlock_irqrestore(&rp->b_lock, flags);
1204 return mask;
1205}
1206
1207/*
1208 * open and close: just keep track of how many times the device is
1209 * mapped, to use the proper memory allocation function.
1210 */
1211static void mon_bin_vma_open(struct vm_area_struct *vma)
1212{
1213 struct mon_reader_bin *rp = vma->vm_private_data;
1214 rp->mmap_active++;
1215}
1216
1217static void mon_bin_vma_close(struct vm_area_struct *vma)
1218{
1219 struct mon_reader_bin *rp = vma->vm_private_data;
1220 rp->mmap_active--;
1221}
1222
1223/*
1224 * Map ring pages to user space.
1225 */
1226static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1227{
1228 struct mon_reader_bin *rp = vma->vm_private_data;
1229 unsigned long offset, chunk_idx;
1230 struct page *pageptr;
1231
1232 offset = vmf->pgoff << PAGE_SHIFT;
1233 if (offset >= rp->b_size)
1234 return VM_FAULT_SIGBUS;
1235 chunk_idx = offset / CHUNK_SIZE;
1236 pageptr = rp->b_vec[chunk_idx].pg;
1237 get_page(pageptr);
1238 vmf->page = pageptr;
1239 return 0;
1240}
1241
1242static const struct vm_operations_struct mon_bin_vm_ops = {
1243 .open = mon_bin_vma_open,
1244 .close = mon_bin_vma_close,
1245 .fault = mon_bin_vma_fault,
1246};
1247
1248static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1249{
1250 /* don't do anything here: "fault" will set up page table entries */
1251 vma->vm_ops = &mon_bin_vm_ops;
1252 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1253 vma->vm_private_data = filp->private_data;
1254 mon_bin_vma_open(vma);
1255 return 0;
1256}
1257
1258static const struct file_operations mon_fops_binary = {
1259 .owner = THIS_MODULE,
1260 .open = mon_bin_open,
1261 .llseek = no_llseek,
1262 .read = mon_bin_read,
1263 /* .write = mon_text_write, */
1264 .poll = mon_bin_poll,
1265 .unlocked_ioctl = mon_bin_ioctl,
1266#ifdef CONFIG_COMPAT
1267 .compat_ioctl = mon_bin_compat_ioctl,
1268#endif
1269 .release = mon_bin_release,
1270 .mmap = mon_bin_mmap,
1271};
1272
1273static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1274{
1275 DECLARE_WAITQUEUE(waita, current);
1276 unsigned long flags;
1277
1278 add_wait_queue(&rp->b_wait, &waita);
1279 set_current_state(TASK_INTERRUPTIBLE);
1280
1281 spin_lock_irqsave(&rp->b_lock, flags);
1282 while (MON_RING_EMPTY(rp)) {
1283 spin_unlock_irqrestore(&rp->b_lock, flags);
1284
1285 if (file->f_flags & O_NONBLOCK) {
1286 set_current_state(TASK_RUNNING);
1287 remove_wait_queue(&rp->b_wait, &waita);
1288 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1289 }
1290 schedule();
1291 if (signal_pending(current)) {
1292 remove_wait_queue(&rp->b_wait, &waita);
1293 return -EINTR;
1294 }
1295 set_current_state(TASK_INTERRUPTIBLE);
1296
1297 spin_lock_irqsave(&rp->b_lock, flags);
1298 }
1299 spin_unlock_irqrestore(&rp->b_lock, flags);
1300
1301 set_current_state(TASK_RUNNING);
1302 remove_wait_queue(&rp->b_wait, &waita);
1303 return 0;
1304}
1305
1306static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1307{
1308 int n;
1309 unsigned long vaddr;
1310
1311 for (n = 0; n < npages; n++) {
1312 vaddr = get_zeroed_page(GFP_KERNEL);
1313 if (vaddr == 0) {
1314 while (n-- != 0)
1315 free_page((unsigned long) map[n].ptr);
1316 return -ENOMEM;
1317 }
1318 map[n].ptr = (unsigned char *) vaddr;
1319 map[n].pg = virt_to_page((void *) vaddr);
1320 }
1321 return 0;
1322}
1323
1324static void mon_free_buff(struct mon_pgmap *map, int npages)
1325{
1326 int n;
1327
1328 for (n = 0; n < npages; n++)
1329 free_page((unsigned long) map[n].ptr);
1330}
1331
1332int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1333{
1334 struct device *dev;
1335 unsigned minor = ubus? ubus->busnum: 0;
1336
1337 if (minor >= MON_BIN_MAX_MINOR)
1338 return 0;
1339
1340 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1341 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1342 "usbmon%d", minor);
1343 if (IS_ERR(dev))
1344 return 0;
1345
1346 mbus->classdev = dev;
1347 return 1;
1348}
1349
1350void mon_bin_del(struct mon_bus *mbus)
1351{
1352 device_destroy(mon_bin_class, mbus->classdev->devt);
1353}
1354
1355int __init mon_bin_init(void)
1356{
1357 int rc;
1358
1359 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1360 if (IS_ERR(mon_bin_class)) {
1361 rc = PTR_ERR(mon_bin_class);
1362 goto err_class;
1363 }
1364
1365 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1366 if (rc < 0)
1367 goto err_dev;
1368
1369 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1370 mon_bin_cdev.owner = THIS_MODULE;
1371
1372 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1373 if (rc < 0)
1374 goto err_add;
1375
1376 return 0;
1377
1378err_add:
1379 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1380err_dev:
1381 class_destroy(mon_bin_class);
1382err_class:
1383 return rc;
1384}
1385
1386void mon_bin_exit(void)
1387{
1388 cdev_del(&mon_bin_cdev);
1389 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1390 class_destroy(mon_bin_class);
1391}