Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * The USB Monitor, inspired by Dave Harding's USBMon.
4 *
5 * This is a binary format reader.
6 *
7 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
8 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
9 */
10
11#include <linux/kernel.h>
12#include <linux/sched/signal.h>
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/cdev.h>
16#include <linux/export.h>
17#include <linux/usb.h>
18#include <linux/poll.h>
19#include <linux/compat.h>
20#include <linux/mm.h>
21#include <linux/scatterlist.h>
22#include <linux/slab.h>
23#include <linux/time64.h>
24
25#include <linux/uaccess.h>
26
27#include "usb_mon.h"
28
29/*
30 * Defined by USB 2.0 clause 9.3, table 9.2.
31 */
32#define SETUP_LEN 8
33
34/* ioctl macros */
35#define MON_IOC_MAGIC 0x92
36
37#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
38/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
39#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
40#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
41#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
42#define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
43#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
44#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
45/* #9 was MON_IOCT_SETAPI */
46#define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
47
48#ifdef CONFIG_COMPAT
49#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
50#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
51#define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
52#endif
53
54/*
55 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
56 * But it's all right. Just use a simple way to make sure the chunk is never
57 * smaller than a page.
58 *
59 * N.B. An application does not know our chunk size.
60 *
61 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
62 * page-sized chunks for the time being.
63 */
64#define CHUNK_SIZE PAGE_SIZE
65#define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
66
67/*
68 * The magic limit was calculated so that it allows the monitoring
69 * application to pick data once in two ticks. This way, another application,
70 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
71 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
72 * enormous overhead built into the bus protocol, so we need about 1000 KB.
73 *
74 * This is still too much for most cases, where we just snoop a few
75 * descriptor fetches for enumeration. So, the default is a "reasonable"
76 * amount for systems with HZ=250 and incomplete bus saturation.
77 *
78 * XXX What about multi-megabyte URBs which take minutes to transfer?
79 */
80#define BUFF_MAX CHUNK_ALIGN(1200*1024)
81#define BUFF_DFL CHUNK_ALIGN(300*1024)
82#define BUFF_MIN CHUNK_ALIGN(8*1024)
83
84/*
85 * The per-event API header (2 per URB).
86 *
87 * This structure is seen in userland as defined by the documentation.
88 */
89struct mon_bin_hdr {
90 u64 id; /* URB ID - from submission to callback */
91 unsigned char type; /* Same as in text API; extensible. */
92 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
93 unsigned char epnum; /* Endpoint number and transfer direction */
94 unsigned char devnum; /* Device address */
95 unsigned short busnum; /* Bus number */
96 char flag_setup;
97 char flag_data;
98 s64 ts_sec; /* ktime_get_real_ts64 */
99 s32 ts_usec; /* ktime_get_real_ts64 */
100 int status;
101 unsigned int len_urb; /* Length of data (submitted or actual) */
102 unsigned int len_cap; /* Delivered length */
103 union {
104 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
105 struct iso_rec {
106 int error_count;
107 int numdesc;
108 } iso;
109 } s;
110 int interval;
111 int start_frame;
112 unsigned int xfer_flags;
113 unsigned int ndesc; /* Actual number of ISO descriptors */
114};
115
116/*
117 * ISO vector, packed into the head of data stream.
118 * This has to take 16 bytes to make sure that the end of buffer
119 * wrap is not happening in the middle of a descriptor.
120 */
121struct mon_bin_isodesc {
122 int iso_status;
123 unsigned int iso_off;
124 unsigned int iso_len;
125 u32 _pad;
126};
127
128/* per file statistic */
129struct mon_bin_stats {
130 u32 queued;
131 u32 dropped;
132};
133
134struct mon_bin_get {
135 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
136 void __user *data;
137 size_t alloc; /* Length of data (can be zero) */
138};
139
140struct mon_bin_mfetch {
141 u32 __user *offvec; /* Vector of events fetched */
142 u32 nfetch; /* Number of events to fetch (out: fetched) */
143 u32 nflush; /* Number of events to flush */
144};
145
146#ifdef CONFIG_COMPAT
147struct mon_bin_get32 {
148 u32 hdr32;
149 u32 data32;
150 u32 alloc32;
151};
152
153struct mon_bin_mfetch32 {
154 u32 offvec32;
155 u32 nfetch32;
156 u32 nflush32;
157};
158#endif
159
160/* Having these two values same prevents wrapping of the mon_bin_hdr */
161#define PKT_ALIGN 64
162#define PKT_SIZE 64
163
164#define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
165#define PKT_SZ_API1 64 /* API 1 size: extra fields */
166
167#define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
168
169/* max number of USB bus supported */
170#define MON_BIN_MAX_MINOR 128
171
172/*
173 * The buffer: map of used pages.
174 */
175struct mon_pgmap {
176 struct page *pg;
177 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
178};
179
180/*
181 * This gets associated with an open file struct.
182 */
183struct mon_reader_bin {
184 /* The buffer: one per open. */
185 spinlock_t b_lock; /* Protect b_cnt, b_in */
186 unsigned int b_size; /* Current size of the buffer - bytes */
187 unsigned int b_cnt; /* Bytes used */
188 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
189 unsigned int b_read; /* Amount of read data in curr. pkt. */
190 struct mon_pgmap *b_vec; /* The map array */
191 wait_queue_head_t b_wait; /* Wait for data here */
192
193 struct mutex fetch_lock; /* Protect b_read, b_out */
194 int mmap_active;
195
196 /* A list of these is needed for "bus 0". Some time later. */
197 struct mon_reader r;
198
199 /* Stats */
200 unsigned int cnt_lost;
201};
202
203static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
204 unsigned int offset)
205{
206 return (struct mon_bin_hdr *)
207 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
208}
209
210#define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
211
212static unsigned char xfer_to_pipe[4] = {
213 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
214};
215
216static struct class *mon_bin_class;
217static dev_t mon_bin_dev0;
218static struct cdev mon_bin_cdev;
219
220static void mon_buff_area_fill(const struct mon_reader_bin *rp,
221 unsigned int offset, unsigned int size);
222static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
223static int mon_alloc_buff(struct mon_pgmap *map, int npages);
224static void mon_free_buff(struct mon_pgmap *map, int npages);
225
226/*
227 * This is a "chunked memcpy". It does not manipulate any counters.
228 */
229static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
230 unsigned int off, const unsigned char *from, unsigned int length)
231{
232 unsigned int step_len;
233 unsigned char *buf;
234 unsigned int in_page;
235
236 while (length) {
237 /*
238 * Determine step_len.
239 */
240 step_len = length;
241 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
242 if (in_page < step_len)
243 step_len = in_page;
244
245 /*
246 * Copy data and advance pointers.
247 */
248 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
249 memcpy(buf, from, step_len);
250 if ((off += step_len) >= this->b_size) off = 0;
251 from += step_len;
252 length -= step_len;
253 }
254 return off;
255}
256
257/*
258 * This is a little worse than the above because it's "chunked copy_to_user".
259 * The return value is an error code, not an offset.
260 */
261static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
262 char __user *to, int length)
263{
264 unsigned int step_len;
265 unsigned char *buf;
266 unsigned int in_page;
267
268 while (length) {
269 /*
270 * Determine step_len.
271 */
272 step_len = length;
273 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
274 if (in_page < step_len)
275 step_len = in_page;
276
277 /*
278 * Copy data and advance pointers.
279 */
280 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
281 if (copy_to_user(to, buf, step_len))
282 return -EINVAL;
283 if ((off += step_len) >= this->b_size) off = 0;
284 to += step_len;
285 length -= step_len;
286 }
287 return 0;
288}
289
290/*
291 * Allocate an (aligned) area in the buffer.
292 * This is called under b_lock.
293 * Returns ~0 on failure.
294 */
295static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
296 unsigned int size)
297{
298 unsigned int offset;
299
300 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
301 if (rp->b_cnt + size > rp->b_size)
302 return ~0;
303 offset = rp->b_in;
304 rp->b_cnt += size;
305 if ((rp->b_in += size) >= rp->b_size)
306 rp->b_in -= rp->b_size;
307 return offset;
308}
309
310/*
311 * This is the same thing as mon_buff_area_alloc, only it does not allow
312 * buffers to wrap. This is needed by applications which pass references
313 * into mmap-ed buffers up their stacks (libpcap can do that).
314 *
315 * Currently, we always have the header stuck with the data, although
316 * it is not strictly speaking necessary.
317 *
318 * When a buffer would wrap, we place a filler packet to mark the space.
319 */
320static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
321 unsigned int size)
322{
323 unsigned int offset;
324 unsigned int fill_size;
325
326 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
327 if (rp->b_cnt + size > rp->b_size)
328 return ~0;
329 if (rp->b_in + size > rp->b_size) {
330 /*
331 * This would wrap. Find if we still have space after
332 * skipping to the end of the buffer. If we do, place
333 * a filler packet and allocate a new packet.
334 */
335 fill_size = rp->b_size - rp->b_in;
336 if (rp->b_cnt + size + fill_size > rp->b_size)
337 return ~0;
338 mon_buff_area_fill(rp, rp->b_in, fill_size);
339
340 offset = 0;
341 rp->b_in = size;
342 rp->b_cnt += size + fill_size;
343 } else if (rp->b_in + size == rp->b_size) {
344 offset = rp->b_in;
345 rp->b_in = 0;
346 rp->b_cnt += size;
347 } else {
348 offset = rp->b_in;
349 rp->b_in += size;
350 rp->b_cnt += size;
351 }
352 return offset;
353}
354
355/*
356 * Return a few (kilo-)bytes to the head of the buffer.
357 * This is used if a data fetch fails.
358 */
359static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
360{
361
362 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
363 rp->b_cnt -= size;
364 if (rp->b_in < size)
365 rp->b_in += rp->b_size;
366 rp->b_in -= size;
367}
368
369/*
370 * This has to be called under both b_lock and fetch_lock, because
371 * it accesses both b_cnt and b_out.
372 */
373static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
374{
375
376 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
377 rp->b_cnt -= size;
378 if ((rp->b_out += size) >= rp->b_size)
379 rp->b_out -= rp->b_size;
380}
381
382static void mon_buff_area_fill(const struct mon_reader_bin *rp,
383 unsigned int offset, unsigned int size)
384{
385 struct mon_bin_hdr *ep;
386
387 ep = MON_OFF2HDR(rp, offset);
388 memset(ep, 0, PKT_SIZE);
389 ep->type = '@';
390 ep->len_cap = size - PKT_SIZE;
391}
392
393static inline char mon_bin_get_setup(unsigned char *setupb,
394 const struct urb *urb, char ev_type)
395{
396
397 if (urb->setup_packet == NULL)
398 return 'Z';
399 memcpy(setupb, urb->setup_packet, SETUP_LEN);
400 return 0;
401}
402
403static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
404 unsigned int offset, struct urb *urb, unsigned int length,
405 char *flag)
406{
407 int i;
408 struct scatterlist *sg;
409 unsigned int this_len;
410
411 *flag = 0;
412 if (urb->num_sgs == 0) {
413 if (urb->transfer_buffer == NULL) {
414 *flag = 'Z';
415 return length;
416 }
417 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
418 length = 0;
419
420 } else {
421 /* If IOMMU coalescing occurred, we cannot trust sg_page */
422 if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
423 *flag = 'D';
424 return length;
425 }
426
427 /* Copy up to the first non-addressable segment */
428 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
429 if (length == 0 || PageHighMem(sg_page(sg)))
430 break;
431 this_len = min_t(unsigned int, sg->length, length);
432 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
433 this_len);
434 length -= this_len;
435 }
436 if (i == 0)
437 *flag = 'D';
438 }
439
440 return length;
441}
442
443/*
444 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
445 * be used to determine the length of the whole contiguous buffer.
446 */
447static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
448 struct urb *urb, unsigned int ndesc)
449{
450 struct usb_iso_packet_descriptor *fp;
451 unsigned int length;
452
453 length = 0;
454 fp = urb->iso_frame_desc;
455 while (ndesc-- != 0) {
456 if (fp->actual_length != 0) {
457 if (fp->offset + fp->actual_length > length)
458 length = fp->offset + fp->actual_length;
459 }
460 fp++;
461 }
462 return length;
463}
464
465static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
466 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
467{
468 struct mon_bin_isodesc *dp;
469 struct usb_iso_packet_descriptor *fp;
470
471 fp = urb->iso_frame_desc;
472 while (ndesc-- != 0) {
473 dp = (struct mon_bin_isodesc *)
474 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
475 dp->iso_status = fp->status;
476 dp->iso_off = fp->offset;
477 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
478 dp->_pad = 0;
479 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
480 offset = 0;
481 fp++;
482 }
483}
484
485static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
486 char ev_type, int status)
487{
488 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
489 struct timespec64 ts;
490 unsigned long flags;
491 unsigned int urb_length;
492 unsigned int offset;
493 unsigned int length;
494 unsigned int delta;
495 unsigned int ndesc, lendesc;
496 unsigned char dir;
497 struct mon_bin_hdr *ep;
498 char data_tag = 0;
499
500 ktime_get_real_ts64(&ts);
501
502 spin_lock_irqsave(&rp->b_lock, flags);
503
504 /*
505 * Find the maximum allowable length, then allocate space.
506 */
507 urb_length = (ev_type == 'S') ?
508 urb->transfer_buffer_length : urb->actual_length;
509 length = urb_length;
510
511 if (usb_endpoint_xfer_isoc(epd)) {
512 if (urb->number_of_packets < 0) {
513 ndesc = 0;
514 } else if (urb->number_of_packets >= ISODESC_MAX) {
515 ndesc = ISODESC_MAX;
516 } else {
517 ndesc = urb->number_of_packets;
518 }
519 if (ev_type == 'C' && usb_urb_dir_in(urb))
520 length = mon_bin_collate_isodesc(rp, urb, ndesc);
521 } else {
522 ndesc = 0;
523 }
524 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
525
526 /* not an issue unless there's a subtle bug in a HCD somewhere */
527 if (length >= urb->transfer_buffer_length)
528 length = urb->transfer_buffer_length;
529
530 if (length >= rp->b_size/5)
531 length = rp->b_size/5;
532
533 if (usb_urb_dir_in(urb)) {
534 if (ev_type == 'S') {
535 length = 0;
536 data_tag = '<';
537 }
538 /* Cannot rely on endpoint number in case of control ep.0 */
539 dir = USB_DIR_IN;
540 } else {
541 if (ev_type == 'C') {
542 length = 0;
543 data_tag = '>';
544 }
545 dir = 0;
546 }
547
548 if (rp->mmap_active) {
549 offset = mon_buff_area_alloc_contiguous(rp,
550 length + PKT_SIZE + lendesc);
551 } else {
552 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
553 }
554 if (offset == ~0) {
555 rp->cnt_lost++;
556 spin_unlock_irqrestore(&rp->b_lock, flags);
557 return;
558 }
559
560 ep = MON_OFF2HDR(rp, offset);
561 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
562
563 /*
564 * Fill the allocated area.
565 */
566 memset(ep, 0, PKT_SIZE);
567 ep->type = ev_type;
568 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
569 ep->epnum = dir | usb_endpoint_num(epd);
570 ep->devnum = urb->dev->devnum;
571 ep->busnum = urb->dev->bus->busnum;
572 ep->id = (unsigned long) urb;
573 ep->ts_sec = ts.tv_sec;
574 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
575 ep->status = status;
576 ep->len_urb = urb_length;
577 ep->len_cap = length + lendesc;
578 ep->xfer_flags = urb->transfer_flags;
579
580 if (usb_endpoint_xfer_int(epd)) {
581 ep->interval = urb->interval;
582 } else if (usb_endpoint_xfer_isoc(epd)) {
583 ep->interval = urb->interval;
584 ep->start_frame = urb->start_frame;
585 ep->s.iso.error_count = urb->error_count;
586 ep->s.iso.numdesc = urb->number_of_packets;
587 }
588
589 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
590 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
591 } else {
592 ep->flag_setup = '-';
593 }
594
595 if (ndesc != 0) {
596 ep->ndesc = ndesc;
597 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
598 if ((offset += lendesc) >= rp->b_size)
599 offset -= rp->b_size;
600 }
601
602 if (length != 0) {
603 length = mon_bin_get_data(rp, offset, urb, length,
604 &ep->flag_data);
605 if (length > 0) {
606 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
607 ep->len_cap -= length;
608 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
609 mon_buff_area_shrink(rp, delta);
610 }
611 } else {
612 ep->flag_data = data_tag;
613 }
614
615 spin_unlock_irqrestore(&rp->b_lock, flags);
616
617 wake_up(&rp->b_wait);
618}
619
620static void mon_bin_submit(void *data, struct urb *urb)
621{
622 struct mon_reader_bin *rp = data;
623 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
624}
625
626static void mon_bin_complete(void *data, struct urb *urb, int status)
627{
628 struct mon_reader_bin *rp = data;
629 mon_bin_event(rp, urb, 'C', status);
630}
631
632static void mon_bin_error(void *data, struct urb *urb, int error)
633{
634 struct mon_reader_bin *rp = data;
635 struct timespec64 ts;
636 unsigned long flags;
637 unsigned int offset;
638 struct mon_bin_hdr *ep;
639
640 ktime_get_real_ts64(&ts);
641
642 spin_lock_irqsave(&rp->b_lock, flags);
643
644 offset = mon_buff_area_alloc(rp, PKT_SIZE);
645 if (offset == ~0) {
646 /* Not incrementing cnt_lost. Just because. */
647 spin_unlock_irqrestore(&rp->b_lock, flags);
648 return;
649 }
650
651 ep = MON_OFF2HDR(rp, offset);
652
653 memset(ep, 0, PKT_SIZE);
654 ep->type = 'E';
655 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
656 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
657 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
658 ep->devnum = urb->dev->devnum;
659 ep->busnum = urb->dev->bus->busnum;
660 ep->id = (unsigned long) urb;
661 ep->ts_sec = ts.tv_sec;
662 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
663 ep->status = error;
664
665 ep->flag_setup = '-';
666 ep->flag_data = 'E';
667
668 spin_unlock_irqrestore(&rp->b_lock, flags);
669
670 wake_up(&rp->b_wait);
671}
672
673static int mon_bin_open(struct inode *inode, struct file *file)
674{
675 struct mon_bus *mbus;
676 struct mon_reader_bin *rp;
677 size_t size;
678 int rc;
679
680 mutex_lock(&mon_lock);
681 mbus = mon_bus_lookup(iminor(inode));
682 if (mbus == NULL) {
683 mutex_unlock(&mon_lock);
684 return -ENODEV;
685 }
686 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
687 printk(KERN_ERR TAG ": consistency error on open\n");
688 mutex_unlock(&mon_lock);
689 return -ENODEV;
690 }
691
692 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
693 if (rp == NULL) {
694 rc = -ENOMEM;
695 goto err_alloc;
696 }
697 spin_lock_init(&rp->b_lock);
698 init_waitqueue_head(&rp->b_wait);
699 mutex_init(&rp->fetch_lock);
700 rp->b_size = BUFF_DFL;
701
702 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
703 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
704 rc = -ENOMEM;
705 goto err_allocvec;
706 }
707
708 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
709 goto err_allocbuff;
710
711 rp->r.m_bus = mbus;
712 rp->r.r_data = rp;
713 rp->r.rnf_submit = mon_bin_submit;
714 rp->r.rnf_error = mon_bin_error;
715 rp->r.rnf_complete = mon_bin_complete;
716
717 mon_reader_add(mbus, &rp->r);
718
719 file->private_data = rp;
720 mutex_unlock(&mon_lock);
721 return 0;
722
723err_allocbuff:
724 kfree(rp->b_vec);
725err_allocvec:
726 kfree(rp);
727err_alloc:
728 mutex_unlock(&mon_lock);
729 return rc;
730}
731
732/*
733 * Extract an event from buffer and copy it to user space.
734 * Wait if there is no event ready.
735 * Returns zero or error.
736 */
737static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
738 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
739 void __user *data, unsigned int nbytes)
740{
741 unsigned long flags;
742 struct mon_bin_hdr *ep;
743 size_t step_len;
744 unsigned int offset;
745 int rc;
746
747 mutex_lock(&rp->fetch_lock);
748
749 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
750 mutex_unlock(&rp->fetch_lock);
751 return rc;
752 }
753
754 ep = MON_OFF2HDR(rp, rp->b_out);
755
756 if (copy_to_user(hdr, ep, hdrbytes)) {
757 mutex_unlock(&rp->fetch_lock);
758 return -EFAULT;
759 }
760
761 step_len = min(ep->len_cap, nbytes);
762 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
763
764 if (copy_from_buf(rp, offset, data, step_len)) {
765 mutex_unlock(&rp->fetch_lock);
766 return -EFAULT;
767 }
768
769 spin_lock_irqsave(&rp->b_lock, flags);
770 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
771 spin_unlock_irqrestore(&rp->b_lock, flags);
772 rp->b_read = 0;
773
774 mutex_unlock(&rp->fetch_lock);
775 return 0;
776}
777
778static int mon_bin_release(struct inode *inode, struct file *file)
779{
780 struct mon_reader_bin *rp = file->private_data;
781 struct mon_bus* mbus = rp->r.m_bus;
782
783 mutex_lock(&mon_lock);
784
785 if (mbus->nreaders <= 0) {
786 printk(KERN_ERR TAG ": consistency error on close\n");
787 mutex_unlock(&mon_lock);
788 return 0;
789 }
790 mon_reader_del(mbus, &rp->r);
791
792 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
793 kfree(rp->b_vec);
794 kfree(rp);
795
796 mutex_unlock(&mon_lock);
797 return 0;
798}
799
800static ssize_t mon_bin_read(struct file *file, char __user *buf,
801 size_t nbytes, loff_t *ppos)
802{
803 struct mon_reader_bin *rp = file->private_data;
804 unsigned int hdrbytes = PKT_SZ_API0;
805 unsigned long flags;
806 struct mon_bin_hdr *ep;
807 unsigned int offset;
808 size_t step_len;
809 char *ptr;
810 ssize_t done = 0;
811 int rc;
812
813 mutex_lock(&rp->fetch_lock);
814
815 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
816 mutex_unlock(&rp->fetch_lock);
817 return rc;
818 }
819
820 ep = MON_OFF2HDR(rp, rp->b_out);
821
822 if (rp->b_read < hdrbytes) {
823 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
824 ptr = ((char *)ep) + rp->b_read;
825 if (step_len && copy_to_user(buf, ptr, step_len)) {
826 mutex_unlock(&rp->fetch_lock);
827 return -EFAULT;
828 }
829 nbytes -= step_len;
830 buf += step_len;
831 rp->b_read += step_len;
832 done += step_len;
833 }
834
835 if (rp->b_read >= hdrbytes) {
836 step_len = ep->len_cap;
837 step_len -= rp->b_read - hdrbytes;
838 if (step_len > nbytes)
839 step_len = nbytes;
840 offset = rp->b_out + PKT_SIZE;
841 offset += rp->b_read - hdrbytes;
842 if (offset >= rp->b_size)
843 offset -= rp->b_size;
844 if (copy_from_buf(rp, offset, buf, step_len)) {
845 mutex_unlock(&rp->fetch_lock);
846 return -EFAULT;
847 }
848 nbytes -= step_len;
849 buf += step_len;
850 rp->b_read += step_len;
851 done += step_len;
852 }
853
854 /*
855 * Check if whole packet was read, and if so, jump to the next one.
856 */
857 if (rp->b_read >= hdrbytes + ep->len_cap) {
858 spin_lock_irqsave(&rp->b_lock, flags);
859 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
860 spin_unlock_irqrestore(&rp->b_lock, flags);
861 rp->b_read = 0;
862 }
863
864 mutex_unlock(&rp->fetch_lock);
865 return done;
866}
867
868/*
869 * Remove at most nevents from chunked buffer.
870 * Returns the number of removed events.
871 */
872static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
873{
874 unsigned long flags;
875 struct mon_bin_hdr *ep;
876 int i;
877
878 mutex_lock(&rp->fetch_lock);
879 spin_lock_irqsave(&rp->b_lock, flags);
880 for (i = 0; i < nevents; ++i) {
881 if (MON_RING_EMPTY(rp))
882 break;
883
884 ep = MON_OFF2HDR(rp, rp->b_out);
885 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
886 }
887 spin_unlock_irqrestore(&rp->b_lock, flags);
888 rp->b_read = 0;
889 mutex_unlock(&rp->fetch_lock);
890 return i;
891}
892
893/*
894 * Fetch at most max event offsets into the buffer and put them into vec.
895 * The events are usually freed later with mon_bin_flush.
896 * Return the effective number of events fetched.
897 */
898static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
899 u32 __user *vec, unsigned int max)
900{
901 unsigned int cur_out;
902 unsigned int bytes, avail;
903 unsigned int size;
904 unsigned int nevents;
905 struct mon_bin_hdr *ep;
906 unsigned long flags;
907 int rc;
908
909 mutex_lock(&rp->fetch_lock);
910
911 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
912 mutex_unlock(&rp->fetch_lock);
913 return rc;
914 }
915
916 spin_lock_irqsave(&rp->b_lock, flags);
917 avail = rp->b_cnt;
918 spin_unlock_irqrestore(&rp->b_lock, flags);
919
920 cur_out = rp->b_out;
921 nevents = 0;
922 bytes = 0;
923 while (bytes < avail) {
924 if (nevents >= max)
925 break;
926
927 ep = MON_OFF2HDR(rp, cur_out);
928 if (put_user(cur_out, &vec[nevents])) {
929 mutex_unlock(&rp->fetch_lock);
930 return -EFAULT;
931 }
932
933 nevents++;
934 size = ep->len_cap + PKT_SIZE;
935 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
936 if ((cur_out += size) >= rp->b_size)
937 cur_out -= rp->b_size;
938 bytes += size;
939 }
940
941 mutex_unlock(&rp->fetch_lock);
942 return nevents;
943}
944
945/*
946 * Count events. This is almost the same as the above mon_bin_fetch,
947 * only we do not store offsets into user vector, and we have no limit.
948 */
949static int mon_bin_queued(struct mon_reader_bin *rp)
950{
951 unsigned int cur_out;
952 unsigned int bytes, avail;
953 unsigned int size;
954 unsigned int nevents;
955 struct mon_bin_hdr *ep;
956 unsigned long flags;
957
958 mutex_lock(&rp->fetch_lock);
959
960 spin_lock_irqsave(&rp->b_lock, flags);
961 avail = rp->b_cnt;
962 spin_unlock_irqrestore(&rp->b_lock, flags);
963
964 cur_out = rp->b_out;
965 nevents = 0;
966 bytes = 0;
967 while (bytes < avail) {
968 ep = MON_OFF2HDR(rp, cur_out);
969
970 nevents++;
971 size = ep->len_cap + PKT_SIZE;
972 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
973 if ((cur_out += size) >= rp->b_size)
974 cur_out -= rp->b_size;
975 bytes += size;
976 }
977
978 mutex_unlock(&rp->fetch_lock);
979 return nevents;
980}
981
982/*
983 */
984static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
985{
986 struct mon_reader_bin *rp = file->private_data;
987 // struct mon_bus* mbus = rp->r.m_bus;
988 int ret = 0;
989 struct mon_bin_hdr *ep;
990 unsigned long flags;
991
992 switch (cmd) {
993
994 case MON_IOCQ_URB_LEN:
995 /*
996 * N.B. This only returns the size of data, without the header.
997 */
998 spin_lock_irqsave(&rp->b_lock, flags);
999 if (!MON_RING_EMPTY(rp)) {
1000 ep = MON_OFF2HDR(rp, rp->b_out);
1001 ret = ep->len_cap;
1002 }
1003 spin_unlock_irqrestore(&rp->b_lock, flags);
1004 break;
1005
1006 case MON_IOCQ_RING_SIZE:
1007 mutex_lock(&rp->fetch_lock);
1008 ret = rp->b_size;
1009 mutex_unlock(&rp->fetch_lock);
1010 break;
1011
1012 case MON_IOCT_RING_SIZE:
1013 /*
1014 * Changing the buffer size will flush it's contents; the new
1015 * buffer is allocated before releasing the old one to be sure
1016 * the device will stay functional also in case of memory
1017 * pressure.
1018 */
1019 {
1020 int size;
1021 struct mon_pgmap *vec;
1022
1023 if (arg < BUFF_MIN || arg > BUFF_MAX)
1024 return -EINVAL;
1025
1026 size = CHUNK_ALIGN(arg);
1027 vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap),
1028 GFP_KERNEL);
1029 if (vec == NULL) {
1030 ret = -ENOMEM;
1031 break;
1032 }
1033
1034 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1035 if (ret < 0) {
1036 kfree(vec);
1037 break;
1038 }
1039
1040 mutex_lock(&rp->fetch_lock);
1041 spin_lock_irqsave(&rp->b_lock, flags);
1042 if (rp->mmap_active) {
1043 mon_free_buff(vec, size/CHUNK_SIZE);
1044 kfree(vec);
1045 ret = -EBUSY;
1046 } else {
1047 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1048 kfree(rp->b_vec);
1049 rp->b_vec = vec;
1050 rp->b_size = size;
1051 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1052 rp->cnt_lost = 0;
1053 }
1054 spin_unlock_irqrestore(&rp->b_lock, flags);
1055 mutex_unlock(&rp->fetch_lock);
1056 }
1057 break;
1058
1059 case MON_IOCH_MFLUSH:
1060 ret = mon_bin_flush(rp, arg);
1061 break;
1062
1063 case MON_IOCX_GET:
1064 case MON_IOCX_GETX:
1065 {
1066 struct mon_bin_get getb;
1067
1068 if (copy_from_user(&getb, (void __user *)arg,
1069 sizeof(struct mon_bin_get)))
1070 return -EFAULT;
1071
1072 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1073 return -EINVAL;
1074 ret = mon_bin_get_event(file, rp, getb.hdr,
1075 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1076 getb.data, (unsigned int)getb.alloc);
1077 }
1078 break;
1079
1080 case MON_IOCX_MFETCH:
1081 {
1082 struct mon_bin_mfetch mfetch;
1083 struct mon_bin_mfetch __user *uptr;
1084
1085 uptr = (struct mon_bin_mfetch __user *)arg;
1086
1087 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1088 return -EFAULT;
1089
1090 if (mfetch.nflush) {
1091 ret = mon_bin_flush(rp, mfetch.nflush);
1092 if (ret < 0)
1093 return ret;
1094 if (put_user(ret, &uptr->nflush))
1095 return -EFAULT;
1096 }
1097 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1098 if (ret < 0)
1099 return ret;
1100 if (put_user(ret, &uptr->nfetch))
1101 return -EFAULT;
1102 ret = 0;
1103 }
1104 break;
1105
1106 case MON_IOCG_STATS: {
1107 struct mon_bin_stats __user *sp;
1108 unsigned int nevents;
1109 unsigned int ndropped;
1110
1111 spin_lock_irqsave(&rp->b_lock, flags);
1112 ndropped = rp->cnt_lost;
1113 rp->cnt_lost = 0;
1114 spin_unlock_irqrestore(&rp->b_lock, flags);
1115 nevents = mon_bin_queued(rp);
1116
1117 sp = (struct mon_bin_stats __user *)arg;
1118 if (put_user(ndropped, &sp->dropped))
1119 return -EFAULT;
1120 if (put_user(nevents, &sp->queued))
1121 return -EFAULT;
1122
1123 }
1124 break;
1125
1126 default:
1127 return -ENOTTY;
1128 }
1129
1130 return ret;
1131}
1132
1133#ifdef CONFIG_COMPAT
1134static long mon_bin_compat_ioctl(struct file *file,
1135 unsigned int cmd, unsigned long arg)
1136{
1137 struct mon_reader_bin *rp = file->private_data;
1138 int ret;
1139
1140 switch (cmd) {
1141
1142 case MON_IOCX_GET32:
1143 case MON_IOCX_GETX32:
1144 {
1145 struct mon_bin_get32 getb;
1146
1147 if (copy_from_user(&getb, (void __user *)arg,
1148 sizeof(struct mon_bin_get32)))
1149 return -EFAULT;
1150
1151 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1152 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1153 compat_ptr(getb.data32), getb.alloc32);
1154 if (ret < 0)
1155 return ret;
1156 }
1157 return 0;
1158
1159 case MON_IOCX_MFETCH32:
1160 {
1161 struct mon_bin_mfetch32 mfetch;
1162 struct mon_bin_mfetch32 __user *uptr;
1163
1164 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1165
1166 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1167 return -EFAULT;
1168
1169 if (mfetch.nflush32) {
1170 ret = mon_bin_flush(rp, mfetch.nflush32);
1171 if (ret < 0)
1172 return ret;
1173 if (put_user(ret, &uptr->nflush32))
1174 return -EFAULT;
1175 }
1176 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1177 mfetch.nfetch32);
1178 if (ret < 0)
1179 return ret;
1180 if (put_user(ret, &uptr->nfetch32))
1181 return -EFAULT;
1182 }
1183 return 0;
1184
1185 case MON_IOCG_STATS:
1186 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1187
1188 case MON_IOCQ_URB_LEN:
1189 case MON_IOCQ_RING_SIZE:
1190 case MON_IOCT_RING_SIZE:
1191 case MON_IOCH_MFLUSH:
1192 return mon_bin_ioctl(file, cmd, arg);
1193
1194 default:
1195 ;
1196 }
1197 return -ENOTTY;
1198}
1199#endif /* CONFIG_COMPAT */
1200
1201static __poll_t
1202mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1203{
1204 struct mon_reader_bin *rp = file->private_data;
1205 __poll_t mask = 0;
1206 unsigned long flags;
1207
1208 if (file->f_mode & FMODE_READ)
1209 poll_wait(file, &rp->b_wait, wait);
1210
1211 spin_lock_irqsave(&rp->b_lock, flags);
1212 if (!MON_RING_EMPTY(rp))
1213 mask |= EPOLLIN | EPOLLRDNORM; /* readable */
1214 spin_unlock_irqrestore(&rp->b_lock, flags);
1215 return mask;
1216}
1217
1218/*
1219 * open and close: just keep track of how many times the device is
1220 * mapped, to use the proper memory allocation function.
1221 */
1222static void mon_bin_vma_open(struct vm_area_struct *vma)
1223{
1224 struct mon_reader_bin *rp = vma->vm_private_data;
1225 unsigned long flags;
1226
1227 spin_lock_irqsave(&rp->b_lock, flags);
1228 rp->mmap_active++;
1229 spin_unlock_irqrestore(&rp->b_lock, flags);
1230}
1231
1232static void mon_bin_vma_close(struct vm_area_struct *vma)
1233{
1234 unsigned long flags;
1235
1236 struct mon_reader_bin *rp = vma->vm_private_data;
1237 spin_lock_irqsave(&rp->b_lock, flags);
1238 rp->mmap_active--;
1239 spin_unlock_irqrestore(&rp->b_lock, flags);
1240}
1241
1242/*
1243 * Map ring pages to user space.
1244 */
1245static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf)
1246{
1247 struct mon_reader_bin *rp = vmf->vma->vm_private_data;
1248 unsigned long offset, chunk_idx;
1249 struct page *pageptr;
1250
1251 offset = vmf->pgoff << PAGE_SHIFT;
1252 if (offset >= rp->b_size)
1253 return VM_FAULT_SIGBUS;
1254 chunk_idx = offset / CHUNK_SIZE;
1255 pageptr = rp->b_vec[chunk_idx].pg;
1256 get_page(pageptr);
1257 vmf->page = pageptr;
1258 return 0;
1259}
1260
1261static const struct vm_operations_struct mon_bin_vm_ops = {
1262 .open = mon_bin_vma_open,
1263 .close = mon_bin_vma_close,
1264 .fault = mon_bin_vma_fault,
1265};
1266
1267static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1268{
1269 /* don't do anything here: "fault" will set up page table entries */
1270 vma->vm_ops = &mon_bin_vm_ops;
1271 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1272 vma->vm_private_data = filp->private_data;
1273 mon_bin_vma_open(vma);
1274 return 0;
1275}
1276
1277static const struct file_operations mon_fops_binary = {
1278 .owner = THIS_MODULE,
1279 .open = mon_bin_open,
1280 .llseek = no_llseek,
1281 .read = mon_bin_read,
1282 /* .write = mon_text_write, */
1283 .poll = mon_bin_poll,
1284 .unlocked_ioctl = mon_bin_ioctl,
1285#ifdef CONFIG_COMPAT
1286 .compat_ioctl = mon_bin_compat_ioctl,
1287#endif
1288 .release = mon_bin_release,
1289 .mmap = mon_bin_mmap,
1290};
1291
1292static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1293{
1294 DECLARE_WAITQUEUE(waita, current);
1295 unsigned long flags;
1296
1297 add_wait_queue(&rp->b_wait, &waita);
1298 set_current_state(TASK_INTERRUPTIBLE);
1299
1300 spin_lock_irqsave(&rp->b_lock, flags);
1301 while (MON_RING_EMPTY(rp)) {
1302 spin_unlock_irqrestore(&rp->b_lock, flags);
1303
1304 if (file->f_flags & O_NONBLOCK) {
1305 set_current_state(TASK_RUNNING);
1306 remove_wait_queue(&rp->b_wait, &waita);
1307 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1308 }
1309 schedule();
1310 if (signal_pending(current)) {
1311 remove_wait_queue(&rp->b_wait, &waita);
1312 return -EINTR;
1313 }
1314 set_current_state(TASK_INTERRUPTIBLE);
1315
1316 spin_lock_irqsave(&rp->b_lock, flags);
1317 }
1318 spin_unlock_irqrestore(&rp->b_lock, flags);
1319
1320 set_current_state(TASK_RUNNING);
1321 remove_wait_queue(&rp->b_wait, &waita);
1322 return 0;
1323}
1324
1325static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1326{
1327 int n;
1328 unsigned long vaddr;
1329
1330 for (n = 0; n < npages; n++) {
1331 vaddr = get_zeroed_page(GFP_KERNEL);
1332 if (vaddr == 0) {
1333 while (n-- != 0)
1334 free_page((unsigned long) map[n].ptr);
1335 return -ENOMEM;
1336 }
1337 map[n].ptr = (unsigned char *) vaddr;
1338 map[n].pg = virt_to_page((void *) vaddr);
1339 }
1340 return 0;
1341}
1342
1343static void mon_free_buff(struct mon_pgmap *map, int npages)
1344{
1345 int n;
1346
1347 for (n = 0; n < npages; n++)
1348 free_page((unsigned long) map[n].ptr);
1349}
1350
1351int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1352{
1353 struct device *dev;
1354 unsigned minor = ubus? ubus->busnum: 0;
1355
1356 if (minor >= MON_BIN_MAX_MINOR)
1357 return 0;
1358
1359 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1360 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1361 "usbmon%d", minor);
1362 if (IS_ERR(dev))
1363 return 0;
1364
1365 mbus->classdev = dev;
1366 return 1;
1367}
1368
1369void mon_bin_del(struct mon_bus *mbus)
1370{
1371 device_destroy(mon_bin_class, mbus->classdev->devt);
1372}
1373
1374int __init mon_bin_init(void)
1375{
1376 int rc;
1377
1378 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1379 if (IS_ERR(mon_bin_class)) {
1380 rc = PTR_ERR(mon_bin_class);
1381 goto err_class;
1382 }
1383
1384 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1385 if (rc < 0)
1386 goto err_dev;
1387
1388 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1389 mon_bin_cdev.owner = THIS_MODULE;
1390
1391 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1392 if (rc < 0)
1393 goto err_add;
1394
1395 return 0;
1396
1397err_add:
1398 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1399err_dev:
1400 class_destroy(mon_bin_class);
1401err_class:
1402 return rc;
1403}
1404
1405void mon_bin_exit(void)
1406{
1407 cdev_del(&mon_bin_cdev);
1408 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1409 class_destroy(mon_bin_class);
1410}
1/*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10#include <linux/kernel.h>
11#include <linux/types.h>
12#include <linux/fs.h>
13#include <linux/cdev.h>
14#include <linux/export.h>
15#include <linux/usb.h>
16#include <linux/poll.h>
17#include <linux/compat.h>
18#include <linux/mm.h>
19#include <linux/scatterlist.h>
20#include <linux/slab.h>
21
22#include <asm/uaccess.h>
23
24#include "usb_mon.h"
25
26/*
27 * Defined by USB 2.0 clause 9.3, table 9.2.
28 */
29#define SETUP_LEN 8
30
31/* ioctl macros */
32#define MON_IOC_MAGIC 0x92
33
34#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
35/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
36#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
37#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
38#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
39#define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
40#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
41#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
42/* #9 was MON_IOCT_SETAPI */
43#define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
44
45#ifdef CONFIG_COMPAT
46#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
47#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
48#define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
49#endif
50
51/*
52 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
53 * But it's all right. Just use a simple way to make sure the chunk is never
54 * smaller than a page.
55 *
56 * N.B. An application does not know our chunk size.
57 *
58 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
59 * page-sized chunks for the time being.
60 */
61#define CHUNK_SIZE PAGE_SIZE
62#define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
63
64/*
65 * The magic limit was calculated so that it allows the monitoring
66 * application to pick data once in two ticks. This way, another application,
67 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
68 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
69 * enormous overhead built into the bus protocol, so we need about 1000 KB.
70 *
71 * This is still too much for most cases, where we just snoop a few
72 * descriptor fetches for enumeration. So, the default is a "reasonable"
73 * amount for systems with HZ=250 and incomplete bus saturation.
74 *
75 * XXX What about multi-megabyte URBs which take minutes to transfer?
76 */
77#define BUFF_MAX CHUNK_ALIGN(1200*1024)
78#define BUFF_DFL CHUNK_ALIGN(300*1024)
79#define BUFF_MIN CHUNK_ALIGN(8*1024)
80
81/*
82 * The per-event API header (2 per URB).
83 *
84 * This structure is seen in userland as defined by the documentation.
85 */
86struct mon_bin_hdr {
87 u64 id; /* URB ID - from submission to callback */
88 unsigned char type; /* Same as in text API; extensible. */
89 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
90 unsigned char epnum; /* Endpoint number and transfer direction */
91 unsigned char devnum; /* Device address */
92 unsigned short busnum; /* Bus number */
93 char flag_setup;
94 char flag_data;
95 s64 ts_sec; /* gettimeofday */
96 s32 ts_usec; /* gettimeofday */
97 int status;
98 unsigned int len_urb; /* Length of data (submitted or actual) */
99 unsigned int len_cap; /* Delivered length */
100 union {
101 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
102 struct iso_rec {
103 int error_count;
104 int numdesc;
105 } iso;
106 } s;
107 int interval;
108 int start_frame;
109 unsigned int xfer_flags;
110 unsigned int ndesc; /* Actual number of ISO descriptors */
111};
112
113/*
114 * ISO vector, packed into the head of data stream.
115 * This has to take 16 bytes to make sure that the end of buffer
116 * wrap is not happening in the middle of a descriptor.
117 */
118struct mon_bin_isodesc {
119 int iso_status;
120 unsigned int iso_off;
121 unsigned int iso_len;
122 u32 _pad;
123};
124
125/* per file statistic */
126struct mon_bin_stats {
127 u32 queued;
128 u32 dropped;
129};
130
131struct mon_bin_get {
132 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
133 void __user *data;
134 size_t alloc; /* Length of data (can be zero) */
135};
136
137struct mon_bin_mfetch {
138 u32 __user *offvec; /* Vector of events fetched */
139 u32 nfetch; /* Number of events to fetch (out: fetched) */
140 u32 nflush; /* Number of events to flush */
141};
142
143#ifdef CONFIG_COMPAT
144struct mon_bin_get32 {
145 u32 hdr32;
146 u32 data32;
147 u32 alloc32;
148};
149
150struct mon_bin_mfetch32 {
151 u32 offvec32;
152 u32 nfetch32;
153 u32 nflush32;
154};
155#endif
156
157/* Having these two values same prevents wrapping of the mon_bin_hdr */
158#define PKT_ALIGN 64
159#define PKT_SIZE 64
160
161#define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
162#define PKT_SZ_API1 64 /* API 1 size: extra fields */
163
164#define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
165
166/* max number of USB bus supported */
167#define MON_BIN_MAX_MINOR 128
168
169/*
170 * The buffer: map of used pages.
171 */
172struct mon_pgmap {
173 struct page *pg;
174 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
175};
176
177/*
178 * This gets associated with an open file struct.
179 */
180struct mon_reader_bin {
181 /* The buffer: one per open. */
182 spinlock_t b_lock; /* Protect b_cnt, b_in */
183 unsigned int b_size; /* Current size of the buffer - bytes */
184 unsigned int b_cnt; /* Bytes used */
185 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
186 unsigned int b_read; /* Amount of read data in curr. pkt. */
187 struct mon_pgmap *b_vec; /* The map array */
188 wait_queue_head_t b_wait; /* Wait for data here */
189
190 struct mutex fetch_lock; /* Protect b_read, b_out */
191 int mmap_active;
192
193 /* A list of these is needed for "bus 0". Some time later. */
194 struct mon_reader r;
195
196 /* Stats */
197 unsigned int cnt_lost;
198};
199
200static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
201 unsigned int offset)
202{
203 return (struct mon_bin_hdr *)
204 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
205}
206
207#define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
208
209static unsigned char xfer_to_pipe[4] = {
210 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
211};
212
213static struct class *mon_bin_class;
214static dev_t mon_bin_dev0;
215static struct cdev mon_bin_cdev;
216
217static void mon_buff_area_fill(const struct mon_reader_bin *rp,
218 unsigned int offset, unsigned int size);
219static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
220static int mon_alloc_buff(struct mon_pgmap *map, int npages);
221static void mon_free_buff(struct mon_pgmap *map, int npages);
222
223/*
224 * This is a "chunked memcpy". It does not manipulate any counters.
225 */
226static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
227 unsigned int off, const unsigned char *from, unsigned int length)
228{
229 unsigned int step_len;
230 unsigned char *buf;
231 unsigned int in_page;
232
233 while (length) {
234 /*
235 * Determine step_len.
236 */
237 step_len = length;
238 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239 if (in_page < step_len)
240 step_len = in_page;
241
242 /*
243 * Copy data and advance pointers.
244 */
245 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246 memcpy(buf, from, step_len);
247 if ((off += step_len) >= this->b_size) off = 0;
248 from += step_len;
249 length -= step_len;
250 }
251 return off;
252}
253
254/*
255 * This is a little worse than the above because it's "chunked copy_to_user".
256 * The return value is an error code, not an offset.
257 */
258static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
259 char __user *to, int length)
260{
261 unsigned int step_len;
262 unsigned char *buf;
263 unsigned int in_page;
264
265 while (length) {
266 /*
267 * Determine step_len.
268 */
269 step_len = length;
270 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
271 if (in_page < step_len)
272 step_len = in_page;
273
274 /*
275 * Copy data and advance pointers.
276 */
277 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
278 if (copy_to_user(to, buf, step_len))
279 return -EINVAL;
280 if ((off += step_len) >= this->b_size) off = 0;
281 to += step_len;
282 length -= step_len;
283 }
284 return 0;
285}
286
287/*
288 * Allocate an (aligned) area in the buffer.
289 * This is called under b_lock.
290 * Returns ~0 on failure.
291 */
292static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
293 unsigned int size)
294{
295 unsigned int offset;
296
297 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
298 if (rp->b_cnt + size > rp->b_size)
299 return ~0;
300 offset = rp->b_in;
301 rp->b_cnt += size;
302 if ((rp->b_in += size) >= rp->b_size)
303 rp->b_in -= rp->b_size;
304 return offset;
305}
306
307/*
308 * This is the same thing as mon_buff_area_alloc, only it does not allow
309 * buffers to wrap. This is needed by applications which pass references
310 * into mmap-ed buffers up their stacks (libpcap can do that).
311 *
312 * Currently, we always have the header stuck with the data, although
313 * it is not strictly speaking necessary.
314 *
315 * When a buffer would wrap, we place a filler packet to mark the space.
316 */
317static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
318 unsigned int size)
319{
320 unsigned int offset;
321 unsigned int fill_size;
322
323 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324 if (rp->b_cnt + size > rp->b_size)
325 return ~0;
326 if (rp->b_in + size > rp->b_size) {
327 /*
328 * This would wrap. Find if we still have space after
329 * skipping to the end of the buffer. If we do, place
330 * a filler packet and allocate a new packet.
331 */
332 fill_size = rp->b_size - rp->b_in;
333 if (rp->b_cnt + size + fill_size > rp->b_size)
334 return ~0;
335 mon_buff_area_fill(rp, rp->b_in, fill_size);
336
337 offset = 0;
338 rp->b_in = size;
339 rp->b_cnt += size + fill_size;
340 } else if (rp->b_in + size == rp->b_size) {
341 offset = rp->b_in;
342 rp->b_in = 0;
343 rp->b_cnt += size;
344 } else {
345 offset = rp->b_in;
346 rp->b_in += size;
347 rp->b_cnt += size;
348 }
349 return offset;
350}
351
352/*
353 * Return a few (kilo-)bytes to the head of the buffer.
354 * This is used if a data fetch fails.
355 */
356static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
357{
358
359 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
360 rp->b_cnt -= size;
361 if (rp->b_in < size)
362 rp->b_in += rp->b_size;
363 rp->b_in -= size;
364}
365
366/*
367 * This has to be called under both b_lock and fetch_lock, because
368 * it accesses both b_cnt and b_out.
369 */
370static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
371{
372
373 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
374 rp->b_cnt -= size;
375 if ((rp->b_out += size) >= rp->b_size)
376 rp->b_out -= rp->b_size;
377}
378
379static void mon_buff_area_fill(const struct mon_reader_bin *rp,
380 unsigned int offset, unsigned int size)
381{
382 struct mon_bin_hdr *ep;
383
384 ep = MON_OFF2HDR(rp, offset);
385 memset(ep, 0, PKT_SIZE);
386 ep->type = '@';
387 ep->len_cap = size - PKT_SIZE;
388}
389
390static inline char mon_bin_get_setup(unsigned char *setupb,
391 const struct urb *urb, char ev_type)
392{
393
394 if (urb->setup_packet == NULL)
395 return 'Z';
396 memcpy(setupb, urb->setup_packet, SETUP_LEN);
397 return 0;
398}
399
400static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
401 unsigned int offset, struct urb *urb, unsigned int length,
402 char *flag)
403{
404 int i;
405 struct scatterlist *sg;
406 unsigned int this_len;
407
408 *flag = 0;
409 if (urb->num_sgs == 0) {
410 if (urb->transfer_buffer == NULL) {
411 *flag = 'Z';
412 return length;
413 }
414 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
415 length = 0;
416
417 } else {
418 /* If IOMMU coalescing occurred, we cannot trust sg_page */
419 if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
420 *flag = 'D';
421 return length;
422 }
423
424 /* Copy up to the first non-addressable segment */
425 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
426 if (length == 0 || PageHighMem(sg_page(sg)))
427 break;
428 this_len = min_t(unsigned int, sg->length, length);
429 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
430 this_len);
431 length -= this_len;
432 }
433 if (i == 0)
434 *flag = 'D';
435 }
436
437 return length;
438}
439
440/*
441 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
442 * be used to determine the length of the whole contiguous buffer.
443 */
444static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
445 struct urb *urb, unsigned int ndesc)
446{
447 struct usb_iso_packet_descriptor *fp;
448 unsigned int length;
449
450 length = 0;
451 fp = urb->iso_frame_desc;
452 while (ndesc-- != 0) {
453 if (fp->actual_length != 0) {
454 if (fp->offset + fp->actual_length > length)
455 length = fp->offset + fp->actual_length;
456 }
457 fp++;
458 }
459 return length;
460}
461
462static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
463 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
464{
465 struct mon_bin_isodesc *dp;
466 struct usb_iso_packet_descriptor *fp;
467
468 fp = urb->iso_frame_desc;
469 while (ndesc-- != 0) {
470 dp = (struct mon_bin_isodesc *)
471 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
472 dp->iso_status = fp->status;
473 dp->iso_off = fp->offset;
474 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
475 dp->_pad = 0;
476 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
477 offset = 0;
478 fp++;
479 }
480}
481
482static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
483 char ev_type, int status)
484{
485 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
486 struct timeval ts;
487 unsigned long flags;
488 unsigned int urb_length;
489 unsigned int offset;
490 unsigned int length;
491 unsigned int delta;
492 unsigned int ndesc, lendesc;
493 unsigned char dir;
494 struct mon_bin_hdr *ep;
495 char data_tag = 0;
496
497 do_gettimeofday(&ts);
498
499 spin_lock_irqsave(&rp->b_lock, flags);
500
501 /*
502 * Find the maximum allowable length, then allocate space.
503 */
504 urb_length = (ev_type == 'S') ?
505 urb->transfer_buffer_length : urb->actual_length;
506 length = urb_length;
507
508 if (usb_endpoint_xfer_isoc(epd)) {
509 if (urb->number_of_packets < 0) {
510 ndesc = 0;
511 } else if (urb->number_of_packets >= ISODESC_MAX) {
512 ndesc = ISODESC_MAX;
513 } else {
514 ndesc = urb->number_of_packets;
515 }
516 if (ev_type == 'C' && usb_urb_dir_in(urb))
517 length = mon_bin_collate_isodesc(rp, urb, ndesc);
518 } else {
519 ndesc = 0;
520 }
521 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
522
523 /* not an issue unless there's a subtle bug in a HCD somewhere */
524 if (length >= urb->transfer_buffer_length)
525 length = urb->transfer_buffer_length;
526
527 if (length >= rp->b_size/5)
528 length = rp->b_size/5;
529
530 if (usb_urb_dir_in(urb)) {
531 if (ev_type == 'S') {
532 length = 0;
533 data_tag = '<';
534 }
535 /* Cannot rely on endpoint number in case of control ep.0 */
536 dir = USB_DIR_IN;
537 } else {
538 if (ev_type == 'C') {
539 length = 0;
540 data_tag = '>';
541 }
542 dir = 0;
543 }
544
545 if (rp->mmap_active) {
546 offset = mon_buff_area_alloc_contiguous(rp,
547 length + PKT_SIZE + lendesc);
548 } else {
549 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
550 }
551 if (offset == ~0) {
552 rp->cnt_lost++;
553 spin_unlock_irqrestore(&rp->b_lock, flags);
554 return;
555 }
556
557 ep = MON_OFF2HDR(rp, offset);
558 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
559
560 /*
561 * Fill the allocated area.
562 */
563 memset(ep, 0, PKT_SIZE);
564 ep->type = ev_type;
565 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
566 ep->epnum = dir | usb_endpoint_num(epd);
567 ep->devnum = urb->dev->devnum;
568 ep->busnum = urb->dev->bus->busnum;
569 ep->id = (unsigned long) urb;
570 ep->ts_sec = ts.tv_sec;
571 ep->ts_usec = ts.tv_usec;
572 ep->status = status;
573 ep->len_urb = urb_length;
574 ep->len_cap = length + lendesc;
575 ep->xfer_flags = urb->transfer_flags;
576
577 if (usb_endpoint_xfer_int(epd)) {
578 ep->interval = urb->interval;
579 } else if (usb_endpoint_xfer_isoc(epd)) {
580 ep->interval = urb->interval;
581 ep->start_frame = urb->start_frame;
582 ep->s.iso.error_count = urb->error_count;
583 ep->s.iso.numdesc = urb->number_of_packets;
584 }
585
586 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
587 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
588 } else {
589 ep->flag_setup = '-';
590 }
591
592 if (ndesc != 0) {
593 ep->ndesc = ndesc;
594 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
595 if ((offset += lendesc) >= rp->b_size)
596 offset -= rp->b_size;
597 }
598
599 if (length != 0) {
600 length = mon_bin_get_data(rp, offset, urb, length,
601 &ep->flag_data);
602 if (length > 0) {
603 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
604 ep->len_cap -= length;
605 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
606 mon_buff_area_shrink(rp, delta);
607 }
608 } else {
609 ep->flag_data = data_tag;
610 }
611
612 spin_unlock_irqrestore(&rp->b_lock, flags);
613
614 wake_up(&rp->b_wait);
615}
616
617static void mon_bin_submit(void *data, struct urb *urb)
618{
619 struct mon_reader_bin *rp = data;
620 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
621}
622
623static void mon_bin_complete(void *data, struct urb *urb, int status)
624{
625 struct mon_reader_bin *rp = data;
626 mon_bin_event(rp, urb, 'C', status);
627}
628
629static void mon_bin_error(void *data, struct urb *urb, int error)
630{
631 struct mon_reader_bin *rp = data;
632 struct timeval ts;
633 unsigned long flags;
634 unsigned int offset;
635 struct mon_bin_hdr *ep;
636
637 do_gettimeofday(&ts);
638
639 spin_lock_irqsave(&rp->b_lock, flags);
640
641 offset = mon_buff_area_alloc(rp, PKT_SIZE);
642 if (offset == ~0) {
643 /* Not incrementing cnt_lost. Just because. */
644 spin_unlock_irqrestore(&rp->b_lock, flags);
645 return;
646 }
647
648 ep = MON_OFF2HDR(rp, offset);
649
650 memset(ep, 0, PKT_SIZE);
651 ep->type = 'E';
652 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
653 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
654 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
655 ep->devnum = urb->dev->devnum;
656 ep->busnum = urb->dev->bus->busnum;
657 ep->id = (unsigned long) urb;
658 ep->ts_sec = ts.tv_sec;
659 ep->ts_usec = ts.tv_usec;
660 ep->status = error;
661
662 ep->flag_setup = '-';
663 ep->flag_data = 'E';
664
665 spin_unlock_irqrestore(&rp->b_lock, flags);
666
667 wake_up(&rp->b_wait);
668}
669
670static int mon_bin_open(struct inode *inode, struct file *file)
671{
672 struct mon_bus *mbus;
673 struct mon_reader_bin *rp;
674 size_t size;
675 int rc;
676
677 mutex_lock(&mon_lock);
678 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
679 mutex_unlock(&mon_lock);
680 return -ENODEV;
681 }
682 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
683 printk(KERN_ERR TAG ": consistency error on open\n");
684 mutex_unlock(&mon_lock);
685 return -ENODEV;
686 }
687
688 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
689 if (rp == NULL) {
690 rc = -ENOMEM;
691 goto err_alloc;
692 }
693 spin_lock_init(&rp->b_lock);
694 init_waitqueue_head(&rp->b_wait);
695 mutex_init(&rp->fetch_lock);
696 rp->b_size = BUFF_DFL;
697
698 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
699 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
700 rc = -ENOMEM;
701 goto err_allocvec;
702 }
703
704 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
705 goto err_allocbuff;
706
707 rp->r.m_bus = mbus;
708 rp->r.r_data = rp;
709 rp->r.rnf_submit = mon_bin_submit;
710 rp->r.rnf_error = mon_bin_error;
711 rp->r.rnf_complete = mon_bin_complete;
712
713 mon_reader_add(mbus, &rp->r);
714
715 file->private_data = rp;
716 mutex_unlock(&mon_lock);
717 return 0;
718
719err_allocbuff:
720 kfree(rp->b_vec);
721err_allocvec:
722 kfree(rp);
723err_alloc:
724 mutex_unlock(&mon_lock);
725 return rc;
726}
727
728/*
729 * Extract an event from buffer and copy it to user space.
730 * Wait if there is no event ready.
731 * Returns zero or error.
732 */
733static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
734 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
735 void __user *data, unsigned int nbytes)
736{
737 unsigned long flags;
738 struct mon_bin_hdr *ep;
739 size_t step_len;
740 unsigned int offset;
741 int rc;
742
743 mutex_lock(&rp->fetch_lock);
744
745 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
746 mutex_unlock(&rp->fetch_lock);
747 return rc;
748 }
749
750 ep = MON_OFF2HDR(rp, rp->b_out);
751
752 if (copy_to_user(hdr, ep, hdrbytes)) {
753 mutex_unlock(&rp->fetch_lock);
754 return -EFAULT;
755 }
756
757 step_len = min(ep->len_cap, nbytes);
758 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
759
760 if (copy_from_buf(rp, offset, data, step_len)) {
761 mutex_unlock(&rp->fetch_lock);
762 return -EFAULT;
763 }
764
765 spin_lock_irqsave(&rp->b_lock, flags);
766 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
767 spin_unlock_irqrestore(&rp->b_lock, flags);
768 rp->b_read = 0;
769
770 mutex_unlock(&rp->fetch_lock);
771 return 0;
772}
773
774static int mon_bin_release(struct inode *inode, struct file *file)
775{
776 struct mon_reader_bin *rp = file->private_data;
777 struct mon_bus* mbus = rp->r.m_bus;
778
779 mutex_lock(&mon_lock);
780
781 if (mbus->nreaders <= 0) {
782 printk(KERN_ERR TAG ": consistency error on close\n");
783 mutex_unlock(&mon_lock);
784 return 0;
785 }
786 mon_reader_del(mbus, &rp->r);
787
788 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
789 kfree(rp->b_vec);
790 kfree(rp);
791
792 mutex_unlock(&mon_lock);
793 return 0;
794}
795
796static ssize_t mon_bin_read(struct file *file, char __user *buf,
797 size_t nbytes, loff_t *ppos)
798{
799 struct mon_reader_bin *rp = file->private_data;
800 unsigned int hdrbytes = PKT_SZ_API0;
801 unsigned long flags;
802 struct mon_bin_hdr *ep;
803 unsigned int offset;
804 size_t step_len;
805 char *ptr;
806 ssize_t done = 0;
807 int rc;
808
809 mutex_lock(&rp->fetch_lock);
810
811 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
812 mutex_unlock(&rp->fetch_lock);
813 return rc;
814 }
815
816 ep = MON_OFF2HDR(rp, rp->b_out);
817
818 if (rp->b_read < hdrbytes) {
819 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
820 ptr = ((char *)ep) + rp->b_read;
821 if (step_len && copy_to_user(buf, ptr, step_len)) {
822 mutex_unlock(&rp->fetch_lock);
823 return -EFAULT;
824 }
825 nbytes -= step_len;
826 buf += step_len;
827 rp->b_read += step_len;
828 done += step_len;
829 }
830
831 if (rp->b_read >= hdrbytes) {
832 step_len = ep->len_cap;
833 step_len -= rp->b_read - hdrbytes;
834 if (step_len > nbytes)
835 step_len = nbytes;
836 offset = rp->b_out + PKT_SIZE;
837 offset += rp->b_read - hdrbytes;
838 if (offset >= rp->b_size)
839 offset -= rp->b_size;
840 if (copy_from_buf(rp, offset, buf, step_len)) {
841 mutex_unlock(&rp->fetch_lock);
842 return -EFAULT;
843 }
844 nbytes -= step_len;
845 buf += step_len;
846 rp->b_read += step_len;
847 done += step_len;
848 }
849
850 /*
851 * Check if whole packet was read, and if so, jump to the next one.
852 */
853 if (rp->b_read >= hdrbytes + ep->len_cap) {
854 spin_lock_irqsave(&rp->b_lock, flags);
855 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
856 spin_unlock_irqrestore(&rp->b_lock, flags);
857 rp->b_read = 0;
858 }
859
860 mutex_unlock(&rp->fetch_lock);
861 return done;
862}
863
864/*
865 * Remove at most nevents from chunked buffer.
866 * Returns the number of removed events.
867 */
868static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
869{
870 unsigned long flags;
871 struct mon_bin_hdr *ep;
872 int i;
873
874 mutex_lock(&rp->fetch_lock);
875 spin_lock_irqsave(&rp->b_lock, flags);
876 for (i = 0; i < nevents; ++i) {
877 if (MON_RING_EMPTY(rp))
878 break;
879
880 ep = MON_OFF2HDR(rp, rp->b_out);
881 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
882 }
883 spin_unlock_irqrestore(&rp->b_lock, flags);
884 rp->b_read = 0;
885 mutex_unlock(&rp->fetch_lock);
886 return i;
887}
888
889/*
890 * Fetch at most max event offsets into the buffer and put them into vec.
891 * The events are usually freed later with mon_bin_flush.
892 * Return the effective number of events fetched.
893 */
894static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
895 u32 __user *vec, unsigned int max)
896{
897 unsigned int cur_out;
898 unsigned int bytes, avail;
899 unsigned int size;
900 unsigned int nevents;
901 struct mon_bin_hdr *ep;
902 unsigned long flags;
903 int rc;
904
905 mutex_lock(&rp->fetch_lock);
906
907 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
908 mutex_unlock(&rp->fetch_lock);
909 return rc;
910 }
911
912 spin_lock_irqsave(&rp->b_lock, flags);
913 avail = rp->b_cnt;
914 spin_unlock_irqrestore(&rp->b_lock, flags);
915
916 cur_out = rp->b_out;
917 nevents = 0;
918 bytes = 0;
919 while (bytes < avail) {
920 if (nevents >= max)
921 break;
922
923 ep = MON_OFF2HDR(rp, cur_out);
924 if (put_user(cur_out, &vec[nevents])) {
925 mutex_unlock(&rp->fetch_lock);
926 return -EFAULT;
927 }
928
929 nevents++;
930 size = ep->len_cap + PKT_SIZE;
931 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
932 if ((cur_out += size) >= rp->b_size)
933 cur_out -= rp->b_size;
934 bytes += size;
935 }
936
937 mutex_unlock(&rp->fetch_lock);
938 return nevents;
939}
940
941/*
942 * Count events. This is almost the same as the above mon_bin_fetch,
943 * only we do not store offsets into user vector, and we have no limit.
944 */
945static int mon_bin_queued(struct mon_reader_bin *rp)
946{
947 unsigned int cur_out;
948 unsigned int bytes, avail;
949 unsigned int size;
950 unsigned int nevents;
951 struct mon_bin_hdr *ep;
952 unsigned long flags;
953
954 mutex_lock(&rp->fetch_lock);
955
956 spin_lock_irqsave(&rp->b_lock, flags);
957 avail = rp->b_cnt;
958 spin_unlock_irqrestore(&rp->b_lock, flags);
959
960 cur_out = rp->b_out;
961 nevents = 0;
962 bytes = 0;
963 while (bytes < avail) {
964 ep = MON_OFF2HDR(rp, cur_out);
965
966 nevents++;
967 size = ep->len_cap + PKT_SIZE;
968 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
969 if ((cur_out += size) >= rp->b_size)
970 cur_out -= rp->b_size;
971 bytes += size;
972 }
973
974 mutex_unlock(&rp->fetch_lock);
975 return nevents;
976}
977
978/*
979 */
980static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
981{
982 struct mon_reader_bin *rp = file->private_data;
983 // struct mon_bus* mbus = rp->r.m_bus;
984 int ret = 0;
985 struct mon_bin_hdr *ep;
986 unsigned long flags;
987
988 switch (cmd) {
989
990 case MON_IOCQ_URB_LEN:
991 /*
992 * N.B. This only returns the size of data, without the header.
993 */
994 spin_lock_irqsave(&rp->b_lock, flags);
995 if (!MON_RING_EMPTY(rp)) {
996 ep = MON_OFF2HDR(rp, rp->b_out);
997 ret = ep->len_cap;
998 }
999 spin_unlock_irqrestore(&rp->b_lock, flags);
1000 break;
1001
1002 case MON_IOCQ_RING_SIZE:
1003 ret = rp->b_size;
1004 break;
1005
1006 case MON_IOCT_RING_SIZE:
1007 /*
1008 * Changing the buffer size will flush it's contents; the new
1009 * buffer is allocated before releasing the old one to be sure
1010 * the device will stay functional also in case of memory
1011 * pressure.
1012 */
1013 {
1014 int size;
1015 struct mon_pgmap *vec;
1016
1017 if (arg < BUFF_MIN || arg > BUFF_MAX)
1018 return -EINVAL;
1019
1020 size = CHUNK_ALIGN(arg);
1021 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
1022 GFP_KERNEL)) == NULL) {
1023 ret = -ENOMEM;
1024 break;
1025 }
1026
1027 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1028 if (ret < 0) {
1029 kfree(vec);
1030 break;
1031 }
1032
1033 mutex_lock(&rp->fetch_lock);
1034 spin_lock_irqsave(&rp->b_lock, flags);
1035 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1036 kfree(rp->b_vec);
1037 rp->b_vec = vec;
1038 rp->b_size = size;
1039 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1040 rp->cnt_lost = 0;
1041 spin_unlock_irqrestore(&rp->b_lock, flags);
1042 mutex_unlock(&rp->fetch_lock);
1043 }
1044 break;
1045
1046 case MON_IOCH_MFLUSH:
1047 ret = mon_bin_flush(rp, arg);
1048 break;
1049
1050 case MON_IOCX_GET:
1051 case MON_IOCX_GETX:
1052 {
1053 struct mon_bin_get getb;
1054
1055 if (copy_from_user(&getb, (void __user *)arg,
1056 sizeof(struct mon_bin_get)))
1057 return -EFAULT;
1058
1059 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1060 return -EINVAL;
1061 ret = mon_bin_get_event(file, rp, getb.hdr,
1062 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1063 getb.data, (unsigned int)getb.alloc);
1064 }
1065 break;
1066
1067 case MON_IOCX_MFETCH:
1068 {
1069 struct mon_bin_mfetch mfetch;
1070 struct mon_bin_mfetch __user *uptr;
1071
1072 uptr = (struct mon_bin_mfetch __user *)arg;
1073
1074 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1075 return -EFAULT;
1076
1077 if (mfetch.nflush) {
1078 ret = mon_bin_flush(rp, mfetch.nflush);
1079 if (ret < 0)
1080 return ret;
1081 if (put_user(ret, &uptr->nflush))
1082 return -EFAULT;
1083 }
1084 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1085 if (ret < 0)
1086 return ret;
1087 if (put_user(ret, &uptr->nfetch))
1088 return -EFAULT;
1089 ret = 0;
1090 }
1091 break;
1092
1093 case MON_IOCG_STATS: {
1094 struct mon_bin_stats __user *sp;
1095 unsigned int nevents;
1096 unsigned int ndropped;
1097
1098 spin_lock_irqsave(&rp->b_lock, flags);
1099 ndropped = rp->cnt_lost;
1100 rp->cnt_lost = 0;
1101 spin_unlock_irqrestore(&rp->b_lock, flags);
1102 nevents = mon_bin_queued(rp);
1103
1104 sp = (struct mon_bin_stats __user *)arg;
1105 if (put_user(ndropped, &sp->dropped))
1106 return -EFAULT;
1107 if (put_user(nevents, &sp->queued))
1108 return -EFAULT;
1109
1110 }
1111 break;
1112
1113 default:
1114 return -ENOTTY;
1115 }
1116
1117 return ret;
1118}
1119
1120#ifdef CONFIG_COMPAT
1121static long mon_bin_compat_ioctl(struct file *file,
1122 unsigned int cmd, unsigned long arg)
1123{
1124 struct mon_reader_bin *rp = file->private_data;
1125 int ret;
1126
1127 switch (cmd) {
1128
1129 case MON_IOCX_GET32:
1130 case MON_IOCX_GETX32:
1131 {
1132 struct mon_bin_get32 getb;
1133
1134 if (copy_from_user(&getb, (void __user *)arg,
1135 sizeof(struct mon_bin_get32)))
1136 return -EFAULT;
1137
1138 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1139 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1140 compat_ptr(getb.data32), getb.alloc32);
1141 if (ret < 0)
1142 return ret;
1143 }
1144 return 0;
1145
1146 case MON_IOCX_MFETCH32:
1147 {
1148 struct mon_bin_mfetch32 mfetch;
1149 struct mon_bin_mfetch32 __user *uptr;
1150
1151 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1152
1153 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1154 return -EFAULT;
1155
1156 if (mfetch.nflush32) {
1157 ret = mon_bin_flush(rp, mfetch.nflush32);
1158 if (ret < 0)
1159 return ret;
1160 if (put_user(ret, &uptr->nflush32))
1161 return -EFAULT;
1162 }
1163 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1164 mfetch.nfetch32);
1165 if (ret < 0)
1166 return ret;
1167 if (put_user(ret, &uptr->nfetch32))
1168 return -EFAULT;
1169 }
1170 return 0;
1171
1172 case MON_IOCG_STATS:
1173 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1174
1175 case MON_IOCQ_URB_LEN:
1176 case MON_IOCQ_RING_SIZE:
1177 case MON_IOCT_RING_SIZE:
1178 case MON_IOCH_MFLUSH:
1179 return mon_bin_ioctl(file, cmd, arg);
1180
1181 default:
1182 ;
1183 }
1184 return -ENOTTY;
1185}
1186#endif /* CONFIG_COMPAT */
1187
1188static unsigned int
1189mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1190{
1191 struct mon_reader_bin *rp = file->private_data;
1192 unsigned int mask = 0;
1193 unsigned long flags;
1194
1195 if (file->f_mode & FMODE_READ)
1196 poll_wait(file, &rp->b_wait, wait);
1197
1198 spin_lock_irqsave(&rp->b_lock, flags);
1199 if (!MON_RING_EMPTY(rp))
1200 mask |= POLLIN | POLLRDNORM; /* readable */
1201 spin_unlock_irqrestore(&rp->b_lock, flags);
1202 return mask;
1203}
1204
1205/*
1206 * open and close: just keep track of how many times the device is
1207 * mapped, to use the proper memory allocation function.
1208 */
1209static void mon_bin_vma_open(struct vm_area_struct *vma)
1210{
1211 struct mon_reader_bin *rp = vma->vm_private_data;
1212 rp->mmap_active++;
1213}
1214
1215static void mon_bin_vma_close(struct vm_area_struct *vma)
1216{
1217 struct mon_reader_bin *rp = vma->vm_private_data;
1218 rp->mmap_active--;
1219}
1220
1221/*
1222 * Map ring pages to user space.
1223 */
1224static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1225{
1226 struct mon_reader_bin *rp = vma->vm_private_data;
1227 unsigned long offset, chunk_idx;
1228 struct page *pageptr;
1229
1230 offset = vmf->pgoff << PAGE_SHIFT;
1231 if (offset >= rp->b_size)
1232 return VM_FAULT_SIGBUS;
1233 chunk_idx = offset / CHUNK_SIZE;
1234 pageptr = rp->b_vec[chunk_idx].pg;
1235 get_page(pageptr);
1236 vmf->page = pageptr;
1237 return 0;
1238}
1239
1240static const struct vm_operations_struct mon_bin_vm_ops = {
1241 .open = mon_bin_vma_open,
1242 .close = mon_bin_vma_close,
1243 .fault = mon_bin_vma_fault,
1244};
1245
1246static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1247{
1248 /* don't do anything here: "fault" will set up page table entries */
1249 vma->vm_ops = &mon_bin_vm_ops;
1250 vma->vm_flags |= VM_RESERVED;
1251 vma->vm_private_data = filp->private_data;
1252 mon_bin_vma_open(vma);
1253 return 0;
1254}
1255
1256static const struct file_operations mon_fops_binary = {
1257 .owner = THIS_MODULE,
1258 .open = mon_bin_open,
1259 .llseek = no_llseek,
1260 .read = mon_bin_read,
1261 /* .write = mon_text_write, */
1262 .poll = mon_bin_poll,
1263 .unlocked_ioctl = mon_bin_ioctl,
1264#ifdef CONFIG_COMPAT
1265 .compat_ioctl = mon_bin_compat_ioctl,
1266#endif
1267 .release = mon_bin_release,
1268 .mmap = mon_bin_mmap,
1269};
1270
1271static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1272{
1273 DECLARE_WAITQUEUE(waita, current);
1274 unsigned long flags;
1275
1276 add_wait_queue(&rp->b_wait, &waita);
1277 set_current_state(TASK_INTERRUPTIBLE);
1278
1279 spin_lock_irqsave(&rp->b_lock, flags);
1280 while (MON_RING_EMPTY(rp)) {
1281 spin_unlock_irqrestore(&rp->b_lock, flags);
1282
1283 if (file->f_flags & O_NONBLOCK) {
1284 set_current_state(TASK_RUNNING);
1285 remove_wait_queue(&rp->b_wait, &waita);
1286 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1287 }
1288 schedule();
1289 if (signal_pending(current)) {
1290 remove_wait_queue(&rp->b_wait, &waita);
1291 return -EINTR;
1292 }
1293 set_current_state(TASK_INTERRUPTIBLE);
1294
1295 spin_lock_irqsave(&rp->b_lock, flags);
1296 }
1297 spin_unlock_irqrestore(&rp->b_lock, flags);
1298
1299 set_current_state(TASK_RUNNING);
1300 remove_wait_queue(&rp->b_wait, &waita);
1301 return 0;
1302}
1303
1304static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1305{
1306 int n;
1307 unsigned long vaddr;
1308
1309 for (n = 0; n < npages; n++) {
1310 vaddr = get_zeroed_page(GFP_KERNEL);
1311 if (vaddr == 0) {
1312 while (n-- != 0)
1313 free_page((unsigned long) map[n].ptr);
1314 return -ENOMEM;
1315 }
1316 map[n].ptr = (unsigned char *) vaddr;
1317 map[n].pg = virt_to_page((void *) vaddr);
1318 }
1319 return 0;
1320}
1321
1322static void mon_free_buff(struct mon_pgmap *map, int npages)
1323{
1324 int n;
1325
1326 for (n = 0; n < npages; n++)
1327 free_page((unsigned long) map[n].ptr);
1328}
1329
1330int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1331{
1332 struct device *dev;
1333 unsigned minor = ubus? ubus->busnum: 0;
1334
1335 if (minor >= MON_BIN_MAX_MINOR)
1336 return 0;
1337
1338 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1339 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1340 "usbmon%d", minor);
1341 if (IS_ERR(dev))
1342 return 0;
1343
1344 mbus->classdev = dev;
1345 return 1;
1346}
1347
1348void mon_bin_del(struct mon_bus *mbus)
1349{
1350 device_destroy(mon_bin_class, mbus->classdev->devt);
1351}
1352
1353int __init mon_bin_init(void)
1354{
1355 int rc;
1356
1357 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1358 if (IS_ERR(mon_bin_class)) {
1359 rc = PTR_ERR(mon_bin_class);
1360 goto err_class;
1361 }
1362
1363 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1364 if (rc < 0)
1365 goto err_dev;
1366
1367 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1368 mon_bin_cdev.owner = THIS_MODULE;
1369
1370 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1371 if (rc < 0)
1372 goto err_add;
1373
1374 return 0;
1375
1376err_add:
1377 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1378err_dev:
1379 class_destroy(mon_bin_class);
1380err_class:
1381 return rc;
1382}
1383
1384void mon_bin_exit(void)
1385{
1386 cdev_del(&mon_bin_cdev);
1387 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1388 class_destroy(mon_bin_class);
1389}