Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
   3
   4#include <linux/module.h>
   5#include <linux/device.h>
   6#include <linux/pci.h>
   7#include <linux/ptp_classify.h>
   8
   9#include "igb.h"
  10
  11#define INCVALUE_MASK		0x7fffffff
  12#define ISGN			0x80000000
  13
  14/* The 82580 timesync updates the system timer every 8ns by 8ns,
  15 * and this update value cannot be reprogrammed.
  16 *
  17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  18 * nanoseconds time values for very long. For the 82580, SYSTIM always
  19 * counts nanoseconds, but the upper 24 bits are not available. The
  20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  21 * register, TIMINCA.
  22 *
  23 * For the 82576, the SYSTIM register time unit is affect by the
  24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  25 * field are needed to provide the nominal 16 nanosecond period,
  26 * leaving 19 bits for fractional nanoseconds.
  27 *
  28 * We scale the NIC clock cycle by a large factor so that relatively
  29 * small clock corrections can be added or subtracted at each clock
  30 * tick. The drawbacks of a large factor are a) that the clock
  31 * register overflows more quickly (not such a big deal) and b) that
  32 * the increment per tick has to fit into 24 bits.  As a result we
  33 * need to use a shift of 19 so we can fit a value of 16 into the
  34 * TIMINCA register.
  35 *
  36 *
  37 *             SYSTIMH            SYSTIML
  38 *        +--------------+   +---+---+------+
  39 *  82576 |      32      |   | 8 | 5 |  19  |
  40 *        +--------------+   +---+---+------+
  41 *         \________ 45 bits _______/  fract
  42 *
  43 *        +----------+---+   +--------------+
  44 *  82580 |    24    | 8 |   |      32      |
  45 *        +----------+---+   +--------------+
  46 *          reserved  \______ 40 bits _____/
  47 *
  48 *
  49 * The 45 bit 82576 SYSTIM overflows every
  50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  51 *
  52 * The 40 bit 82580 SYSTIM overflows every
  53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  54 *
  55 * SYSTIM is converted to real time using a timecounter. As
  56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
  57 * to be updated at least once per half of the SYSTIM interval.
  58 * Scheduling of delayed work is not very accurate, and also the NIC
  59 * clock can be adjusted to run up to 6% faster and the system clock
  60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
  61 * interval in the NIC time is shorter than 9.16 minutes.
  62 */
  63
  64#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
  65#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
  66#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
  67#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  68#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
  69#define IGB_NBITS_82580			40
  70
  71static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  72
  73/* SYSTIM read access for the 82576 */
  74static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  75{
  76	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  77	struct e1000_hw *hw = &igb->hw;
  78	u64 val;
  79	u32 lo, hi;
  80
  81	lo = rd32(E1000_SYSTIML);
  82	hi = rd32(E1000_SYSTIMH);
  83
  84	val = ((u64) hi) << 32;
  85	val |= lo;
  86
  87	return val;
  88}
  89
  90/* SYSTIM read access for the 82580 */
  91static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  92{
  93	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  94	struct e1000_hw *hw = &igb->hw;
  95	u32 lo, hi;
  96	u64 val;
  97
  98	/* The timestamp latches on lowest register read. For the 82580
  99	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 100	 * need to provide nanosecond resolution, so we just ignore it.
 101	 */
 102	rd32(E1000_SYSTIMR);
 103	lo = rd32(E1000_SYSTIML);
 104	hi = rd32(E1000_SYSTIMH);
 105
 106	val = ((u64) hi) << 32;
 107	val |= lo;
 108
 109	return val;
 110}
 111
 112/* SYSTIM read access for I210/I211 */
 113static void igb_ptp_read_i210(struct igb_adapter *adapter,
 114			      struct timespec64 *ts)
 115{
 116	struct e1000_hw *hw = &adapter->hw;
 117	u32 sec, nsec;
 118
 119	/* The timestamp latches on lowest register read. For I210/I211, the
 120	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
 121	 * resolution, we can ignore it.
 122	 */
 123	rd32(E1000_SYSTIMR);
 124	nsec = rd32(E1000_SYSTIML);
 125	sec = rd32(E1000_SYSTIMH);
 126
 127	ts->tv_sec = sec;
 128	ts->tv_nsec = nsec;
 129}
 130
 131static void igb_ptp_write_i210(struct igb_adapter *adapter,
 132			       const struct timespec64 *ts)
 133{
 134	struct e1000_hw *hw = &adapter->hw;
 135
 136	/* Writing the SYSTIMR register is not necessary as it only provides
 137	 * sub-nanosecond resolution.
 138	 */
 139	wr32(E1000_SYSTIML, ts->tv_nsec);
 140	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 141}
 142
 143/**
 144 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 145 * @adapter: board private structure
 146 * @hwtstamps: timestamp structure to update
 147 * @systim: unsigned 64bit system time value.
 148 *
 149 * We need to convert the system time value stored in the RX/TXSTMP registers
 150 * into a hwtstamp which can be used by the upper level timestamping functions.
 151 *
 152 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 153 * system time value. This is needed because reading the 64 bit time
 154 * value involves reading two (or three) 32 bit registers. The first
 155 * read latches the value. Ditto for writing.
 156 *
 157 * In addition, here have extended the system time with an overflow
 158 * counter in software.
 159 **/
 160static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 161				       struct skb_shared_hwtstamps *hwtstamps,
 162				       u64 systim)
 163{
 164	unsigned long flags;
 165	u64 ns;
 166
 167	switch (adapter->hw.mac.type) {
 168	case e1000_82576:
 169	case e1000_82580:
 170	case e1000_i354:
 171	case e1000_i350:
 172		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 173
 174		ns = timecounter_cyc2time(&adapter->tc, systim);
 175
 176		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 177
 178		memset(hwtstamps, 0, sizeof(*hwtstamps));
 179		hwtstamps->hwtstamp = ns_to_ktime(ns);
 180		break;
 181	case e1000_i210:
 182	case e1000_i211:
 183		memset(hwtstamps, 0, sizeof(*hwtstamps));
 184		/* Upper 32 bits contain s, lower 32 bits contain ns. */
 185		hwtstamps->hwtstamp = ktime_set(systim >> 32,
 186						systim & 0xFFFFFFFF);
 187		break;
 188	default:
 189		break;
 190	}
 191}
 192
 193/* PTP clock operations */
 194static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 195{
 196	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 197					       ptp_caps);
 198	struct e1000_hw *hw = &igb->hw;
 199	int neg_adj = 0;
 200	u64 rate;
 201	u32 incvalue;
 202
 203	if (ppb < 0) {
 204		neg_adj = 1;
 205		ppb = -ppb;
 206	}
 207	rate = ppb;
 208	rate <<= 14;
 209	rate = div_u64(rate, 1953125);
 210
 211	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 212
 213	if (neg_adj)
 214		incvalue -= rate;
 215	else
 216		incvalue += rate;
 217
 218	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 219
 220	return 0;
 221}
 222
 223static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 224{
 225	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 226					       ptp_caps);
 227	struct e1000_hw *hw = &igb->hw;
 228	int neg_adj = 0;
 229	u64 rate;
 230	u32 inca;
 231
 232	if (scaled_ppm < 0) {
 233		neg_adj = 1;
 234		scaled_ppm = -scaled_ppm;
 235	}
 236	rate = scaled_ppm;
 237	rate <<= 13;
 238	rate = div_u64(rate, 15625);
 239
 240	inca = rate & INCVALUE_MASK;
 241	if (neg_adj)
 242		inca |= ISGN;
 243
 244	wr32(E1000_TIMINCA, inca);
 245
 246	return 0;
 247}
 248
 249static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 250{
 251	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 252					       ptp_caps);
 253	unsigned long flags;
 254
 255	spin_lock_irqsave(&igb->tmreg_lock, flags);
 256	timecounter_adjtime(&igb->tc, delta);
 257	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 258
 259	return 0;
 260}
 261
 262static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 263{
 264	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 265					       ptp_caps);
 266	unsigned long flags;
 267	struct timespec64 now, then = ns_to_timespec64(delta);
 268
 269	spin_lock_irqsave(&igb->tmreg_lock, flags);
 270
 271	igb_ptp_read_i210(igb, &now);
 272	now = timespec64_add(now, then);
 273	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 274
 275	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 276
 277	return 0;
 278}
 279
 280static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
 281				  struct timespec64 *ts,
 282				  struct ptp_system_timestamp *sts)
 283{
 284	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 285					       ptp_caps);
 286	struct e1000_hw *hw = &igb->hw;
 287	unsigned long flags;
 288	u32 lo, hi;
 289	u64 ns;
 290
 291	spin_lock_irqsave(&igb->tmreg_lock, flags);
 292
 293	ptp_read_system_prets(sts);
 294	lo = rd32(E1000_SYSTIML);
 295	ptp_read_system_postts(sts);
 296	hi = rd32(E1000_SYSTIMH);
 297
 298	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 299
 300	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 301
 302	*ts = ns_to_timespec64(ns);
 303
 304	return 0;
 305}
 306
 307static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
 308				  struct timespec64 *ts,
 309				  struct ptp_system_timestamp *sts)
 310{
 311	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 312					       ptp_caps);
 313	struct e1000_hw *hw = &igb->hw;
 314	unsigned long flags;
 315	u32 lo, hi;
 316	u64 ns;
 317
 318	spin_lock_irqsave(&igb->tmreg_lock, flags);
 319
 320	ptp_read_system_prets(sts);
 321	rd32(E1000_SYSTIMR);
 322	ptp_read_system_postts(sts);
 323	lo = rd32(E1000_SYSTIML);
 324	hi = rd32(E1000_SYSTIMH);
 325
 326	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 327
 328	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 329
 330	*ts = ns_to_timespec64(ns);
 331
 332	return 0;
 333}
 334
 335static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
 336				 struct timespec64 *ts,
 337				 struct ptp_system_timestamp *sts)
 338{
 339	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 340					       ptp_caps);
 341	struct e1000_hw *hw = &igb->hw;
 342	unsigned long flags;
 343
 344	spin_lock_irqsave(&igb->tmreg_lock, flags);
 345
 346	ptp_read_system_prets(sts);
 347	rd32(E1000_SYSTIMR);
 348	ptp_read_system_postts(sts);
 349	ts->tv_nsec = rd32(E1000_SYSTIML);
 350	ts->tv_sec = rd32(E1000_SYSTIMH);
 351
 352	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 353
 354	return 0;
 355}
 356
 357static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 358				 const struct timespec64 *ts)
 359{
 360	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 361					       ptp_caps);
 362	unsigned long flags;
 363	u64 ns;
 364
 365	ns = timespec64_to_ns(ts);
 366
 367	spin_lock_irqsave(&igb->tmreg_lock, flags);
 368
 369	timecounter_init(&igb->tc, &igb->cc, ns);
 370
 371	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 372
 373	return 0;
 374}
 375
 376static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 377				const struct timespec64 *ts)
 378{
 379	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 380					       ptp_caps);
 381	unsigned long flags;
 382
 383	spin_lock_irqsave(&igb->tmreg_lock, flags);
 384
 385	igb_ptp_write_i210(igb, ts);
 386
 387	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 388
 389	return 0;
 390}
 391
 392static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 393{
 394	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 395	static const u32 mask[IGB_N_SDP] = {
 396		E1000_CTRL_SDP0_DIR,
 397		E1000_CTRL_SDP1_DIR,
 398		E1000_CTRL_EXT_SDP2_DIR,
 399		E1000_CTRL_EXT_SDP3_DIR,
 400	};
 401
 402	if (input)
 403		*ptr &= ~mask[pin];
 404	else
 405		*ptr |= mask[pin];
 406}
 407
 408static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 409{
 410	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 411		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 412	};
 413	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 414		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 415	};
 416	static const u32 ts_sdp_en[IGB_N_SDP] = {
 417		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 418	};
 419	struct e1000_hw *hw = &igb->hw;
 420	u32 ctrl, ctrl_ext, tssdp = 0;
 421
 422	ctrl = rd32(E1000_CTRL);
 423	ctrl_ext = rd32(E1000_CTRL_EXT);
 424	tssdp = rd32(E1000_TSSDP);
 425
 426	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 427
 428	/* Make sure this pin is not enabled as an output. */
 429	tssdp &= ~ts_sdp_en[pin];
 430
 431	if (chan == 1) {
 432		tssdp &= ~AUX1_SEL_SDP3;
 433		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 434	} else {
 435		tssdp &= ~AUX0_SEL_SDP3;
 436		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 437	}
 438
 439	wr32(E1000_TSSDP, tssdp);
 440	wr32(E1000_CTRL, ctrl);
 441	wr32(E1000_CTRL_EXT, ctrl_ext);
 442}
 443
 444static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 445{
 446	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 447		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 448	};
 449	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 450		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 451	};
 452	static const u32 ts_sdp_en[IGB_N_SDP] = {
 453		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 454	};
 455	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 456		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 457		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 458	};
 459	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 460		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 461		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 462	};
 463	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 464		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 465		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 466	};
 467	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 468		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 469		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 470	};
 471	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 472		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 473		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 474	};
 475	struct e1000_hw *hw = &igb->hw;
 476	u32 ctrl, ctrl_ext, tssdp = 0;
 477
 478	ctrl = rd32(E1000_CTRL);
 479	ctrl_ext = rd32(E1000_CTRL_EXT);
 480	tssdp = rd32(E1000_TSSDP);
 481
 482	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 483
 484	/* Make sure this pin is not enabled as an input. */
 485	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 486		tssdp &= ~AUX0_TS_SDP_EN;
 487
 488	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 489		tssdp &= ~AUX1_TS_SDP_EN;
 490
 491	tssdp &= ~ts_sdp_sel_clr[pin];
 492	if (freq) {
 493		if (chan == 1)
 494			tssdp |= ts_sdp_sel_fc1[pin];
 495		else
 496			tssdp |= ts_sdp_sel_fc0[pin];
 497	} else {
 498		if (chan == 1)
 499			tssdp |= ts_sdp_sel_tt1[pin];
 500		else
 501			tssdp |= ts_sdp_sel_tt0[pin];
 502	}
 503	tssdp |= ts_sdp_en[pin];
 504
 505	wr32(E1000_TSSDP, tssdp);
 506	wr32(E1000_CTRL, ctrl);
 507	wr32(E1000_CTRL_EXT, ctrl_ext);
 508}
 509
 510static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 511				       struct ptp_clock_request *rq, int on)
 512{
 513	struct igb_adapter *igb =
 514		container_of(ptp, struct igb_adapter, ptp_caps);
 515	struct e1000_hw *hw = &igb->hw;
 516	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 517	unsigned long flags;
 518	struct timespec64 ts;
 519	int use_freq = 0, pin = -1;
 520	s64 ns;
 521
 522	switch (rq->type) {
 523	case PTP_CLK_REQ_EXTTS:
 524		/* Reject requests with unsupported flags */
 525		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 526					PTP_RISING_EDGE |
 527					PTP_FALLING_EDGE |
 528					PTP_STRICT_FLAGS))
 529			return -EOPNOTSUPP;
 530
 531		/* Reject requests failing to enable both edges. */
 532		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
 533		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
 534		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
 535			return -EOPNOTSUPP;
 536
 537		if (on) {
 538			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 539					   rq->extts.index);
 540			if (pin < 0)
 541				return -EBUSY;
 542		}
 543		if (rq->extts.index == 1) {
 544			tsauxc_mask = TSAUXC_EN_TS1;
 545			tsim_mask = TSINTR_AUTT1;
 546		} else {
 547			tsauxc_mask = TSAUXC_EN_TS0;
 548			tsim_mask = TSINTR_AUTT0;
 549		}
 550		spin_lock_irqsave(&igb->tmreg_lock, flags);
 551		tsauxc = rd32(E1000_TSAUXC);
 552		tsim = rd32(E1000_TSIM);
 553		if (on) {
 554			igb_pin_extts(igb, rq->extts.index, pin);
 555			tsauxc |= tsauxc_mask;
 556			tsim |= tsim_mask;
 557		} else {
 558			tsauxc &= ~tsauxc_mask;
 559			tsim &= ~tsim_mask;
 560		}
 561		wr32(E1000_TSAUXC, tsauxc);
 562		wr32(E1000_TSIM, tsim);
 563		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 564		return 0;
 565
 566	case PTP_CLK_REQ_PEROUT:
 567		/* Reject requests with unsupported flags */
 568		if (rq->perout.flags)
 569			return -EOPNOTSUPP;
 570
 571		if (on) {
 572			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 573					   rq->perout.index);
 574			if (pin < 0)
 575				return -EBUSY;
 576		}
 577		ts.tv_sec = rq->perout.period.sec;
 578		ts.tv_nsec = rq->perout.period.nsec;
 579		ns = timespec64_to_ns(&ts);
 580		ns = ns >> 1;
 581		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 582			   (ns == 250000000LL) || (ns == 500000000LL))) {
 583			if (ns < 8LL)
 584				return -EINVAL;
 585			use_freq = 1;
 586		}
 587		ts = ns_to_timespec64(ns);
 588		if (rq->perout.index == 1) {
 589			if (use_freq) {
 590				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 591				tsim_mask = 0;
 592			} else {
 593				tsauxc_mask = TSAUXC_EN_TT1;
 594				tsim_mask = TSINTR_TT1;
 595			}
 596			trgttiml = E1000_TRGTTIML1;
 597			trgttimh = E1000_TRGTTIMH1;
 598			freqout = E1000_FREQOUT1;
 599		} else {
 600			if (use_freq) {
 601				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 602				tsim_mask = 0;
 603			} else {
 604				tsauxc_mask = TSAUXC_EN_TT0;
 605				tsim_mask = TSINTR_TT0;
 606			}
 607			trgttiml = E1000_TRGTTIML0;
 608			trgttimh = E1000_TRGTTIMH0;
 609			freqout = E1000_FREQOUT0;
 610		}
 611		spin_lock_irqsave(&igb->tmreg_lock, flags);
 612		tsauxc = rd32(E1000_TSAUXC);
 613		tsim = rd32(E1000_TSIM);
 614		if (rq->perout.index == 1) {
 615			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 616			tsim &= ~TSINTR_TT1;
 617		} else {
 618			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 619			tsim &= ~TSINTR_TT0;
 620		}
 621		if (on) {
 622			int i = rq->perout.index;
 623			igb_pin_perout(igb, i, pin, use_freq);
 624			igb->perout[i].start.tv_sec = rq->perout.start.sec;
 625			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 626			igb->perout[i].period.tv_sec = ts.tv_sec;
 627			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 628			wr32(trgttimh, rq->perout.start.sec);
 629			wr32(trgttiml, rq->perout.start.nsec);
 630			if (use_freq)
 631				wr32(freqout, ns);
 632			tsauxc |= tsauxc_mask;
 633			tsim |= tsim_mask;
 634		}
 635		wr32(E1000_TSAUXC, tsauxc);
 636		wr32(E1000_TSIM, tsim);
 637		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 638		return 0;
 639
 640	case PTP_CLK_REQ_PPS:
 641		spin_lock_irqsave(&igb->tmreg_lock, flags);
 642		tsim = rd32(E1000_TSIM);
 643		if (on)
 644			tsim |= TSINTR_SYS_WRAP;
 645		else
 646			tsim &= ~TSINTR_SYS_WRAP;
 647		igb->pps_sys_wrap_on = !!on;
 648		wr32(E1000_TSIM, tsim);
 649		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 650		return 0;
 651	}
 652
 653	return -EOPNOTSUPP;
 654}
 655
 656static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 657				  struct ptp_clock_request *rq, int on)
 658{
 659	return -EOPNOTSUPP;
 660}
 661
 662static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 663			      enum ptp_pin_function func, unsigned int chan)
 664{
 665	switch (func) {
 666	case PTP_PF_NONE:
 667	case PTP_PF_EXTTS:
 668	case PTP_PF_PEROUT:
 669		break;
 670	case PTP_PF_PHYSYNC:
 671		return -1;
 672	}
 673	return 0;
 674}
 675
 676/**
 677 * igb_ptp_tx_work
 678 * @work: pointer to work struct
 679 *
 680 * This work function polls the TSYNCTXCTL valid bit to determine when a
 681 * timestamp has been taken for the current stored skb.
 682 **/
 683static void igb_ptp_tx_work(struct work_struct *work)
 684{
 685	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 686						   ptp_tx_work);
 687	struct e1000_hw *hw = &adapter->hw;
 688	u32 tsynctxctl;
 689
 690	if (!adapter->ptp_tx_skb)
 691		return;
 692
 693	if (time_is_before_jiffies(adapter->ptp_tx_start +
 694				   IGB_PTP_TX_TIMEOUT)) {
 695		dev_kfree_skb_any(adapter->ptp_tx_skb);
 696		adapter->ptp_tx_skb = NULL;
 697		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 698		adapter->tx_hwtstamp_timeouts++;
 699		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 700		 * interrupt
 701		 */
 702		rd32(E1000_TXSTMPH);
 703		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 704		return;
 705	}
 706
 707	tsynctxctl = rd32(E1000_TSYNCTXCTL);
 708	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 709		igb_ptp_tx_hwtstamp(adapter);
 710	else
 711		/* reschedule to check later */
 712		schedule_work(&adapter->ptp_tx_work);
 713}
 714
 715static void igb_ptp_overflow_check(struct work_struct *work)
 716{
 717	struct igb_adapter *igb =
 718		container_of(work, struct igb_adapter, ptp_overflow_work.work);
 719	struct timespec64 ts;
 720	u64 ns;
 721
 722	/* Update the timecounter */
 723	ns = timecounter_read(&igb->tc);
 724
 725	ts = ns_to_timespec64(ns);
 726	pr_debug("igb overflow check at %lld.%09lu\n",
 727		 (long long) ts.tv_sec, ts.tv_nsec);
 728
 729	schedule_delayed_work(&igb->ptp_overflow_work,
 730			      IGB_SYSTIM_OVERFLOW_PERIOD);
 731}
 732
 733/**
 734 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 735 * @adapter: private network adapter structure
 736 *
 737 * This watchdog task is scheduled to detect error case where hardware has
 738 * dropped an Rx packet that was timestamped when the ring is full. The
 739 * particular error is rare but leaves the device in a state unable to timestamp
 740 * any future packets.
 741 **/
 742void igb_ptp_rx_hang(struct igb_adapter *adapter)
 743{
 744	struct e1000_hw *hw = &adapter->hw;
 745	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 746	unsigned long rx_event;
 747
 748	/* Other hardware uses per-packet timestamps */
 749	if (hw->mac.type != e1000_82576)
 750		return;
 751
 752	/* If we don't have a valid timestamp in the registers, just update the
 753	 * timeout counter and exit
 754	 */
 755	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 756		adapter->last_rx_ptp_check = jiffies;
 757		return;
 758	}
 759
 760	/* Determine the most recent watchdog or rx_timestamp event */
 761	rx_event = adapter->last_rx_ptp_check;
 762	if (time_after(adapter->last_rx_timestamp, rx_event))
 763		rx_event = adapter->last_rx_timestamp;
 764
 765	/* Only need to read the high RXSTMP register to clear the lock */
 766	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 767		rd32(E1000_RXSTMPH);
 768		adapter->last_rx_ptp_check = jiffies;
 769		adapter->rx_hwtstamp_cleared++;
 770		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 771	}
 772}
 773
 774/**
 775 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 776 * @adapter: private network adapter structure
 777 */
 778void igb_ptp_tx_hang(struct igb_adapter *adapter)
 779{
 780	struct e1000_hw *hw = &adapter->hw;
 781	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 782					      IGB_PTP_TX_TIMEOUT);
 783
 784	if (!adapter->ptp_tx_skb)
 785		return;
 786
 787	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 788		return;
 789
 790	/* If we haven't received a timestamp within the timeout, it is
 791	 * reasonable to assume that it will never occur, so we can unlock the
 792	 * timestamp bit when this occurs.
 793	 */
 794	if (timeout) {
 795		cancel_work_sync(&adapter->ptp_tx_work);
 796		dev_kfree_skb_any(adapter->ptp_tx_skb);
 797		adapter->ptp_tx_skb = NULL;
 798		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 799		adapter->tx_hwtstamp_timeouts++;
 800		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 801		 * interrupt
 802		 */
 803		rd32(E1000_TXSTMPH);
 804		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 805	}
 806}
 807
 808/**
 809 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 810 * @adapter: Board private structure.
 811 *
 812 * If we were asked to do hardware stamping and such a time stamp is
 813 * available, then it must have been for this skb here because we only
 814 * allow only one such packet into the queue.
 815 **/
 816static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 817{
 818	struct sk_buff *skb = adapter->ptp_tx_skb;
 819	struct e1000_hw *hw = &adapter->hw;
 820	struct skb_shared_hwtstamps shhwtstamps;
 821	u64 regval;
 822	int adjust = 0;
 823
 824	regval = rd32(E1000_TXSTMPL);
 825	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 826
 827	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 828	/* adjust timestamp for the TX latency based on link speed */
 829	if (adapter->hw.mac.type == e1000_i210) {
 830		switch (adapter->link_speed) {
 831		case SPEED_10:
 832			adjust = IGB_I210_TX_LATENCY_10;
 833			break;
 834		case SPEED_100:
 835			adjust = IGB_I210_TX_LATENCY_100;
 836			break;
 837		case SPEED_1000:
 838			adjust = IGB_I210_TX_LATENCY_1000;
 839			break;
 840		}
 841	}
 842
 843	shhwtstamps.hwtstamp =
 844		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 845
 846	/* Clear the lock early before calling skb_tstamp_tx so that
 847	 * applications are not woken up before the lock bit is clear. We use
 848	 * a copy of the skb pointer to ensure other threads can't change it
 849	 * while we're notifying the stack.
 850	 */
 851	adapter->ptp_tx_skb = NULL;
 852	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 853
 854	/* Notify the stack and free the skb after we've unlocked */
 855	skb_tstamp_tx(skb, &shhwtstamps);
 856	dev_kfree_skb_any(skb);
 857}
 858
 859/**
 860 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 861 * @q_vector: Pointer to interrupt specific structure
 862 * @va: Pointer to address containing Rx buffer
 863 * @skb: Buffer containing timestamp and packet
 864 *
 865 * This function is meant to retrieve a timestamp from the first buffer of an
 866 * incoming frame.  The value is stored in little endian format starting on
 867 * byte 8.
 868 **/
 869void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
 870			 struct sk_buff *skb)
 871{
 872	__le64 *regval = (__le64 *)va;
 873	struct igb_adapter *adapter = q_vector->adapter;
 874	int adjust = 0;
 875
 876	/* The timestamp is recorded in little endian format.
 877	 * DWORD: 0        1        2        3
 878	 * Field: Reserved Reserved SYSTIML  SYSTIMH
 879	 */
 880	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
 881				   le64_to_cpu(regval[1]));
 882
 883	/* adjust timestamp for the RX latency based on link speed */
 884	if (adapter->hw.mac.type == e1000_i210) {
 885		switch (adapter->link_speed) {
 886		case SPEED_10:
 887			adjust = IGB_I210_RX_LATENCY_10;
 888			break;
 889		case SPEED_100:
 890			adjust = IGB_I210_RX_LATENCY_100;
 891			break;
 892		case SPEED_1000:
 893			adjust = IGB_I210_RX_LATENCY_1000;
 894			break;
 895		}
 896	}
 897	skb_hwtstamps(skb)->hwtstamp =
 898		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 899}
 900
 901/**
 902 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 903 * @q_vector: Pointer to interrupt specific structure
 904 * @skb: Buffer containing timestamp and packet
 905 *
 906 * This function is meant to retrieve a timestamp from the internal registers
 907 * of the adapter and store it in the skb.
 908 **/
 909void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 910			 struct sk_buff *skb)
 911{
 912	struct igb_adapter *adapter = q_vector->adapter;
 913	struct e1000_hw *hw = &adapter->hw;
 914	u64 regval;
 915	int adjust = 0;
 916
 917	/* If this bit is set, then the RX registers contain the time stamp. No
 918	 * other packet will be time stamped until we read these registers, so
 919	 * read the registers to make them available again. Because only one
 920	 * packet can be time stamped at a time, we know that the register
 921	 * values must belong to this one here and therefore we don't need to
 922	 * compare any of the additional attributes stored for it.
 923	 *
 924	 * If nothing went wrong, then it should have a shared tx_flags that we
 925	 * can turn into a skb_shared_hwtstamps.
 926	 */
 927	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 928		return;
 929
 930	regval = rd32(E1000_RXSTMPL);
 931	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 932
 933	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 934
 935	/* adjust timestamp for the RX latency based on link speed */
 936	if (adapter->hw.mac.type == e1000_i210) {
 937		switch (adapter->link_speed) {
 938		case SPEED_10:
 939			adjust = IGB_I210_RX_LATENCY_10;
 940			break;
 941		case SPEED_100:
 942			adjust = IGB_I210_RX_LATENCY_100;
 943			break;
 944		case SPEED_1000:
 945			adjust = IGB_I210_RX_LATENCY_1000;
 946			break;
 947		}
 948	}
 949	skb_hwtstamps(skb)->hwtstamp =
 950		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 951
 952	/* Update the last_rx_timestamp timer in order to enable watchdog check
 953	 * for error case of latched timestamp on a dropped packet.
 954	 */
 955	adapter->last_rx_timestamp = jiffies;
 956}
 957
 958/**
 959 * igb_ptp_get_ts_config - get hardware time stamping config
 960 * @netdev:
 961 * @ifreq:
 962 *
 963 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 964 * to deconstruct the settings from the registers, just return a shadow copy
 965 * of the last known settings.
 966 **/
 967int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 968{
 969	struct igb_adapter *adapter = netdev_priv(netdev);
 970	struct hwtstamp_config *config = &adapter->tstamp_config;
 971
 972	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 973		-EFAULT : 0;
 974}
 975
 976/**
 977 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 978 * @adapter: networking device structure
 979 * @config: hwtstamp configuration
 980 *
 981 * Outgoing time stamping can be enabled and disabled. Play nice and
 982 * disable it when requested, although it shouldn't case any overhead
 983 * when no packet needs it. At most one packet in the queue may be
 984 * marked for time stamping, otherwise it would be impossible to tell
 985 * for sure to which packet the hardware time stamp belongs.
 986 *
 987 * Incoming time stamping has to be configured via the hardware
 988 * filters. Not all combinations are supported, in particular event
 989 * type has to be specified. Matching the kind of event packet is
 990 * not supported, with the exception of "all V2 events regardless of
 991 * level 2 or 4".
 992 */
 993static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 994				      struct hwtstamp_config *config)
 995{
 996	struct e1000_hw *hw = &adapter->hw;
 997	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 998	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 999	u32 tsync_rx_cfg = 0;
1000	bool is_l4 = false;
1001	bool is_l2 = false;
1002	u32 regval;
1003
1004	/* reserved for future extensions */
1005	if (config->flags)
1006		return -EINVAL;
1007
1008	switch (config->tx_type) {
1009	case HWTSTAMP_TX_OFF:
1010		tsync_tx_ctl = 0;
1011	case HWTSTAMP_TX_ON:
1012		break;
1013	default:
1014		return -ERANGE;
1015	}
1016
1017	switch (config->rx_filter) {
1018	case HWTSTAMP_FILTER_NONE:
1019		tsync_rx_ctl = 0;
1020		break;
1021	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1022		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1023		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1024		is_l4 = true;
1025		break;
1026	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1027		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1028		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1029		is_l4 = true;
1030		break;
1031	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1032	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1033	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1034	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1035	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1036	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1037	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1038	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1039	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1040		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1041		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1042		is_l2 = true;
1043		is_l4 = true;
1044		break;
1045	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1046	case HWTSTAMP_FILTER_NTP_ALL:
1047	case HWTSTAMP_FILTER_ALL:
1048		/* 82576 cannot timestamp all packets, which it needs to do to
1049		 * support both V1 Sync and Delay_Req messages
1050		 */
1051		if (hw->mac.type != e1000_82576) {
1052			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1053			config->rx_filter = HWTSTAMP_FILTER_ALL;
1054			break;
1055		}
1056		fallthrough;
1057	default:
1058		config->rx_filter = HWTSTAMP_FILTER_NONE;
1059		return -ERANGE;
1060	}
1061
1062	if (hw->mac.type == e1000_82575) {
1063		if (tsync_rx_ctl | tsync_tx_ctl)
1064			return -EINVAL;
1065		return 0;
1066	}
1067
1068	/* Per-packet timestamping only works if all packets are
1069	 * timestamped, so enable timestamping in all packets as
1070	 * long as one Rx filter was configured.
1071	 */
1072	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1073		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1074		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1075		config->rx_filter = HWTSTAMP_FILTER_ALL;
1076		is_l2 = true;
1077		is_l4 = true;
1078
1079		if ((hw->mac.type == e1000_i210) ||
1080		    (hw->mac.type == e1000_i211)) {
1081			regval = rd32(E1000_RXPBS);
1082			regval |= E1000_RXPBS_CFG_TS_EN;
1083			wr32(E1000_RXPBS, regval);
1084		}
1085	}
1086
1087	/* enable/disable TX */
1088	regval = rd32(E1000_TSYNCTXCTL);
1089	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1090	regval |= tsync_tx_ctl;
1091	wr32(E1000_TSYNCTXCTL, regval);
1092
1093	/* enable/disable RX */
1094	regval = rd32(E1000_TSYNCRXCTL);
1095	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1096	regval |= tsync_rx_ctl;
1097	wr32(E1000_TSYNCRXCTL, regval);
1098
1099	/* define which PTP packets are time stamped */
1100	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1101
1102	/* define ethertype filter for timestamped packets */
1103	if (is_l2)
1104		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1105		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1106		      E1000_ETQF_1588 | /* enable timestamping */
1107		      ETH_P_1588));     /* 1588 eth protocol type */
1108	else
1109		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1110
1111	/* L4 Queue Filter[3]: filter by destination port and protocol */
1112	if (is_l4) {
1113		u32 ftqf = (IPPROTO_UDP /* UDP */
1114			| E1000_FTQF_VF_BP /* VF not compared */
1115			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1116			| E1000_FTQF_MASK); /* mask all inputs */
1117		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1118
1119		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1120		wr32(E1000_IMIREXT(3),
1121		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1122		if (hw->mac.type == e1000_82576) {
1123			/* enable source port check */
1124			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1125			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1126		}
1127		wr32(E1000_FTQF(3), ftqf);
1128	} else {
1129		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1130	}
1131	wrfl();
1132
1133	/* clear TX/RX time stamp registers, just to be sure */
1134	regval = rd32(E1000_TXSTMPL);
1135	regval = rd32(E1000_TXSTMPH);
1136	regval = rd32(E1000_RXSTMPL);
1137	regval = rd32(E1000_RXSTMPH);
1138
1139	return 0;
1140}
1141
1142/**
1143 * igb_ptp_set_ts_config - set hardware time stamping config
1144 * @netdev:
1145 * @ifreq:
1146 *
1147 **/
1148int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1149{
1150	struct igb_adapter *adapter = netdev_priv(netdev);
1151	struct hwtstamp_config config;
1152	int err;
1153
1154	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1155		return -EFAULT;
1156
1157	err = igb_ptp_set_timestamp_mode(adapter, &config);
1158	if (err)
1159		return err;
1160
1161	/* save these settings for future reference */
1162	memcpy(&adapter->tstamp_config, &config,
1163	       sizeof(adapter->tstamp_config));
1164
1165	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1166		-EFAULT : 0;
1167}
1168
1169/**
1170 * igb_ptp_init - Initialize PTP functionality
1171 * @adapter: Board private structure
1172 *
1173 * This function is called at device probe to initialize the PTP
1174 * functionality.
1175 */
1176void igb_ptp_init(struct igb_adapter *adapter)
1177{
1178	struct e1000_hw *hw = &adapter->hw;
1179	struct net_device *netdev = adapter->netdev;
1180	int i;
1181
1182	switch (hw->mac.type) {
1183	case e1000_82576:
1184		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1185		adapter->ptp_caps.owner = THIS_MODULE;
1186		adapter->ptp_caps.max_adj = 999999881;
1187		adapter->ptp_caps.n_ext_ts = 0;
1188		adapter->ptp_caps.pps = 0;
1189		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1190		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1191		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1192		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1193		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1194		adapter->cc.read = igb_ptp_read_82576;
1195		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1196		adapter->cc.mult = 1;
1197		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1198		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1199		break;
1200	case e1000_82580:
1201	case e1000_i354:
1202	case e1000_i350:
1203		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1204		adapter->ptp_caps.owner = THIS_MODULE;
1205		adapter->ptp_caps.max_adj = 62499999;
1206		adapter->ptp_caps.n_ext_ts = 0;
1207		adapter->ptp_caps.pps = 0;
1208		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1209		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1210		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1211		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1212		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1213		adapter->cc.read = igb_ptp_read_82580;
1214		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1215		adapter->cc.mult = 1;
1216		adapter->cc.shift = 0;
1217		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1218		break;
1219	case e1000_i210:
1220	case e1000_i211:
1221		for (i = 0; i < IGB_N_SDP; i++) {
1222			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1223
1224			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1225			ppd->index = i;
1226			ppd->func = PTP_PF_NONE;
1227		}
1228		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1229		adapter->ptp_caps.owner = THIS_MODULE;
1230		adapter->ptp_caps.max_adj = 62499999;
1231		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1232		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1233		adapter->ptp_caps.n_pins = IGB_N_SDP;
1234		adapter->ptp_caps.pps = 1;
1235		adapter->ptp_caps.pin_config = adapter->sdp_config;
1236		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1237		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1238		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1239		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1240		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1241		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1242		break;
1243	default:
1244		adapter->ptp_clock = NULL;
1245		return;
1246	}
1247
1248	spin_lock_init(&adapter->tmreg_lock);
1249	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1250
1251	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1252		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1253				  igb_ptp_overflow_check);
1254
1255	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1256	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1257
1258	igb_ptp_reset(adapter);
1259
1260	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1261						&adapter->pdev->dev);
1262	if (IS_ERR(adapter->ptp_clock)) {
1263		adapter->ptp_clock = NULL;
1264		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1265	} else if (adapter->ptp_clock) {
1266		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1267			 adapter->netdev->name);
1268		adapter->ptp_flags |= IGB_PTP_ENABLED;
1269	}
1270}
1271
1272/**
1273 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1274 * @adapter: Board private structure
1275 *
1276 * This function stops the overflow check work and PTP Tx timestamp work, and
1277 * will prepare the device for OS suspend.
1278 */
1279void igb_ptp_suspend(struct igb_adapter *adapter)
1280{
1281	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1282		return;
1283
1284	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1285		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1286
1287	cancel_work_sync(&adapter->ptp_tx_work);
1288	if (adapter->ptp_tx_skb) {
1289		dev_kfree_skb_any(adapter->ptp_tx_skb);
1290		adapter->ptp_tx_skb = NULL;
1291		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1292	}
1293}
1294
1295/**
1296 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1297 * @adapter: Board private structure.
1298 *
1299 * This function stops the PTP support and cancels the delayed work.
1300 **/
1301void igb_ptp_stop(struct igb_adapter *adapter)
1302{
1303	igb_ptp_suspend(adapter);
1304
1305	if (adapter->ptp_clock) {
1306		ptp_clock_unregister(adapter->ptp_clock);
1307		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1308			 adapter->netdev->name);
1309		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1310	}
1311}
1312
1313/**
1314 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1315 * @adapter: Board private structure.
1316 *
1317 * This function handles the reset work required to re-enable the PTP device.
1318 **/
1319void igb_ptp_reset(struct igb_adapter *adapter)
1320{
1321	struct e1000_hw *hw = &adapter->hw;
1322	unsigned long flags;
1323
1324	/* reset the tstamp_config */
1325	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1326
1327	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1328
1329	switch (adapter->hw.mac.type) {
1330	case e1000_82576:
1331		/* Dial the nominal frequency. */
1332		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1333		break;
1334	case e1000_82580:
1335	case e1000_i354:
1336	case e1000_i350:
1337	case e1000_i210:
1338	case e1000_i211:
1339		wr32(E1000_TSAUXC, 0x0);
1340		wr32(E1000_TSSDP, 0x0);
1341		wr32(E1000_TSIM,
1342		     TSYNC_INTERRUPTS |
1343		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1344		wr32(E1000_IMS, E1000_IMS_TS);
1345		break;
1346	default:
1347		/* No work to do. */
1348		goto out;
1349	}
1350
1351	/* Re-initialize the timer. */
1352	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1353		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1354
1355		igb_ptp_write_i210(adapter, &ts);
1356	} else {
1357		timecounter_init(&adapter->tc, &adapter->cc,
1358				 ktime_to_ns(ktime_get_real()));
1359	}
1360out:
1361	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1362
1363	wrfl();
1364
1365	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1366		schedule_delayed_work(&adapter->ptp_overflow_work,
1367				      IGB_SYSTIM_OVERFLOW_PERIOD);
1368}
   1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
   2 *
   3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/pci.h>
  21#include <linux/ptp_classify.h>
  22
  23#include "igb.h"
  24
  25#define INCVALUE_MASK		0x7fffffff
  26#define ISGN			0x80000000
  27
  28/* The 82580 timesync updates the system timer every 8ns by 8ns,
  29 * and this update value cannot be reprogrammed.
  30 *
  31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  32 * nanoseconds time values for very long. For the 82580, SYSTIM always
  33 * counts nanoseconds, but the upper 24 bits are not available. The
  34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  35 * register, TIMINCA.
  36 *
  37 * For the 82576, the SYSTIM register time unit is affect by the
  38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  39 * field are needed to provide the nominal 16 nanosecond period,
  40 * leaving 19 bits for fractional nanoseconds.
  41 *
  42 * We scale the NIC clock cycle by a large factor so that relatively
  43 * small clock corrections can be added or subtracted at each clock
  44 * tick. The drawbacks of a large factor are a) that the clock
  45 * register overflows more quickly (not such a big deal) and b) that
  46 * the increment per tick has to fit into 24 bits.  As a result we
  47 * need to use a shift of 19 so we can fit a value of 16 into the
  48 * TIMINCA register.
  49 *
  50 *
  51 *             SYSTIMH            SYSTIML
  52 *        +--------------+   +---+---+------+
  53 *  82576 |      32      |   | 8 | 5 |  19  |
  54 *        +--------------+   +---+---+------+
  55 *         \________ 45 bits _______/  fract
  56 *
  57 *        +----------+---+   +--------------+
  58 *  82580 |    24    | 8 |   |      32      |
  59 *        +----------+---+   +--------------+
  60 *          reserved  \______ 40 bits _____/
  61 *
  62 *
  63 * The 45 bit 82576 SYSTIM overflows every
  64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  65 *
  66 * The 40 bit 82580 SYSTIM overflows every
  67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  68 */
  69
  70#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
  71#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
  72#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
  73#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
  74#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
  75#define IGB_NBITS_82580			40
  76
  77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  78
  79/* SYSTIM read access for the 82576 */
  80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
  81{
  82	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  83	struct e1000_hw *hw = &igb->hw;
  84	u64 val;
  85	u32 lo, hi;
  86
  87	lo = rd32(E1000_SYSTIML);
  88	hi = rd32(E1000_SYSTIMH);
  89
  90	val = ((u64) hi) << 32;
  91	val |= lo;
  92
  93	return val;
  94}
  95
  96/* SYSTIM read access for the 82580 */
  97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
  98{
  99	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
 100	struct e1000_hw *hw = &igb->hw;
 101	u32 lo, hi;
 102	u64 val;
 103
 104	/* The timestamp latches on lowest register read. For the 82580
 105	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 106	 * need to provide nanosecond resolution, so we just ignore it.
 107	 */
 108	rd32(E1000_SYSTIMR);
 109	lo = rd32(E1000_SYSTIML);
 110	hi = rd32(E1000_SYSTIMH);
 111
 112	val = ((u64) hi) << 32;
 113	val |= lo;
 114
 115	return val;
 116}
 117
 118/* SYSTIM read access for I210/I211 */
 119static void igb_ptp_read_i210(struct igb_adapter *adapter,
 120			      struct timespec64 *ts)
 121{
 122	struct e1000_hw *hw = &adapter->hw;
 123	u32 sec, nsec;
 124
 125	/* The timestamp latches on lowest register read. For I210/I211, the
 126	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
 127	 * resolution, we can ignore it.
 128	 */
 129	rd32(E1000_SYSTIMR);
 130	nsec = rd32(E1000_SYSTIML);
 131	sec = rd32(E1000_SYSTIMH);
 132
 133	ts->tv_sec = sec;
 134	ts->tv_nsec = nsec;
 135}
 136
 137static void igb_ptp_write_i210(struct igb_adapter *adapter,
 138			       const struct timespec64 *ts)
 139{
 140	struct e1000_hw *hw = &adapter->hw;
 141
 142	/* Writing the SYSTIMR register is not necessary as it only provides
 143	 * sub-nanosecond resolution.
 144	 */
 145	wr32(E1000_SYSTIML, ts->tv_nsec);
 146	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 147}
 148
 149/**
 150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 151 * @adapter: board private structure
 152 * @hwtstamps: timestamp structure to update
 153 * @systim: unsigned 64bit system time value.
 154 *
 155 * We need to convert the system time value stored in the RX/TXSTMP registers
 156 * into a hwtstamp which can be used by the upper level timestamping functions.
 157 *
 158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 159 * system time value. This is needed because reading the 64 bit time
 160 * value involves reading two (or three) 32 bit registers. The first
 161 * read latches the value. Ditto for writing.
 162 *
 163 * In addition, here have extended the system time with an overflow
 164 * counter in software.
 165 **/
 166static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 167				       struct skb_shared_hwtstamps *hwtstamps,
 168				       u64 systim)
 169{
 170	unsigned long flags;
 171	u64 ns;
 172
 173	switch (adapter->hw.mac.type) {
 174	case e1000_82576:
 175	case e1000_82580:
 176	case e1000_i354:
 177	case e1000_i350:
 178		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 179
 180		ns = timecounter_cyc2time(&adapter->tc, systim);
 181
 182		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 183
 184		memset(hwtstamps, 0, sizeof(*hwtstamps));
 185		hwtstamps->hwtstamp = ns_to_ktime(ns);
 186		break;
 187	case e1000_i210:
 188	case e1000_i211:
 189		memset(hwtstamps, 0, sizeof(*hwtstamps));
 190		/* Upper 32 bits contain s, lower 32 bits contain ns. */
 191		hwtstamps->hwtstamp = ktime_set(systim >> 32,
 192						systim & 0xFFFFFFFF);
 193		break;
 194	default:
 195		break;
 196	}
 197}
 198
 199/* PTP clock operations */
 200static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 201{
 202	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 203					       ptp_caps);
 204	struct e1000_hw *hw = &igb->hw;
 205	int neg_adj = 0;
 206	u64 rate;
 207	u32 incvalue;
 208
 209	if (ppb < 0) {
 210		neg_adj = 1;
 211		ppb = -ppb;
 212	}
 213	rate = ppb;
 214	rate <<= 14;
 215	rate = div_u64(rate, 1953125);
 216
 217	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 218
 219	if (neg_adj)
 220		incvalue -= rate;
 221	else
 222		incvalue += rate;
 223
 224	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 225
 226	return 0;
 227}
 228
 229static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
 230{
 231	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 232					       ptp_caps);
 233	struct e1000_hw *hw = &igb->hw;
 234	int neg_adj = 0;
 235	u64 rate;
 236	u32 inca;
 237
 238	if (ppb < 0) {
 239		neg_adj = 1;
 240		ppb = -ppb;
 241	}
 242	rate = ppb;
 243	rate <<= 26;
 244	rate = div_u64(rate, 1953125);
 245
 246	inca = rate & INCVALUE_MASK;
 247	if (neg_adj)
 248		inca |= ISGN;
 249
 250	wr32(E1000_TIMINCA, inca);
 251
 252	return 0;
 253}
 254
 255static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 256{
 257	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 258					       ptp_caps);
 259	unsigned long flags;
 260
 261	spin_lock_irqsave(&igb->tmreg_lock, flags);
 262	timecounter_adjtime(&igb->tc, delta);
 263	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 264
 265	return 0;
 266}
 267
 268static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 269{
 270	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 271					       ptp_caps);
 272	unsigned long flags;
 273	struct timespec64 now, then = ns_to_timespec64(delta);
 274
 275	spin_lock_irqsave(&igb->tmreg_lock, flags);
 276
 277	igb_ptp_read_i210(igb, &now);
 278	now = timespec64_add(now, then);
 279	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 280
 281	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 282
 283	return 0;
 284}
 285
 286static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
 287				 struct timespec64 *ts)
 288{
 289	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 290					       ptp_caps);
 291	unsigned long flags;
 292	u64 ns;
 293
 294	spin_lock_irqsave(&igb->tmreg_lock, flags);
 295
 296	ns = timecounter_read(&igb->tc);
 297
 298	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 299
 300	*ts = ns_to_timespec64(ns);
 301
 302	return 0;
 303}
 304
 305static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
 306				struct timespec64 *ts)
 307{
 308	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 309					       ptp_caps);
 310	unsigned long flags;
 311
 312	spin_lock_irqsave(&igb->tmreg_lock, flags);
 313
 314	igb_ptp_read_i210(igb, ts);
 315
 316	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 317
 318	return 0;
 319}
 320
 321static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 322				 const struct timespec64 *ts)
 323{
 324	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 325					       ptp_caps);
 326	unsigned long flags;
 327	u64 ns;
 328
 329	ns = timespec64_to_ns(ts);
 330
 331	spin_lock_irqsave(&igb->tmreg_lock, flags);
 332
 333	timecounter_init(&igb->tc, &igb->cc, ns);
 334
 335	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 336
 337	return 0;
 338}
 339
 340static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 341				const struct timespec64 *ts)
 342{
 343	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 344					       ptp_caps);
 345	unsigned long flags;
 346
 347	spin_lock_irqsave(&igb->tmreg_lock, flags);
 348
 349	igb_ptp_write_i210(igb, ts);
 350
 351	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 352
 353	return 0;
 354}
 355
 356static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 357{
 358	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 359	static const u32 mask[IGB_N_SDP] = {
 360		E1000_CTRL_SDP0_DIR,
 361		E1000_CTRL_SDP1_DIR,
 362		E1000_CTRL_EXT_SDP2_DIR,
 363		E1000_CTRL_EXT_SDP3_DIR,
 364	};
 365
 366	if (input)
 367		*ptr &= ~mask[pin];
 368	else
 369		*ptr |= mask[pin];
 370}
 371
 372static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 373{
 374	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 375		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 376	};
 377	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 378		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 379	};
 380	static const u32 ts_sdp_en[IGB_N_SDP] = {
 381		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 382	};
 383	struct e1000_hw *hw = &igb->hw;
 384	u32 ctrl, ctrl_ext, tssdp = 0;
 385
 386	ctrl = rd32(E1000_CTRL);
 387	ctrl_ext = rd32(E1000_CTRL_EXT);
 388	tssdp = rd32(E1000_TSSDP);
 389
 390	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 391
 392	/* Make sure this pin is not enabled as an output. */
 393	tssdp &= ~ts_sdp_en[pin];
 394
 395	if (chan == 1) {
 396		tssdp &= ~AUX1_SEL_SDP3;
 397		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 398	} else {
 399		tssdp &= ~AUX0_SEL_SDP3;
 400		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 401	}
 402
 403	wr32(E1000_TSSDP, tssdp);
 404	wr32(E1000_CTRL, ctrl);
 405	wr32(E1000_CTRL_EXT, ctrl_ext);
 406}
 407
 408static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 409{
 410	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 411		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 412	};
 413	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 414		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 415	};
 416	static const u32 ts_sdp_en[IGB_N_SDP] = {
 417		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 418	};
 419	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 420		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 421		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 422	};
 423	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 424		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 425		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 426	};
 427	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 428		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 429		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 430	};
 431	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 432		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 433		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 434	};
 435	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 436		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 437		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 438	};
 439	struct e1000_hw *hw = &igb->hw;
 440	u32 ctrl, ctrl_ext, tssdp = 0;
 441
 442	ctrl = rd32(E1000_CTRL);
 443	ctrl_ext = rd32(E1000_CTRL_EXT);
 444	tssdp = rd32(E1000_TSSDP);
 445
 446	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 447
 448	/* Make sure this pin is not enabled as an input. */
 449	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 450		tssdp &= ~AUX0_TS_SDP_EN;
 451
 452	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 453		tssdp &= ~AUX1_TS_SDP_EN;
 454
 455	tssdp &= ~ts_sdp_sel_clr[pin];
 456	if (freq) {
 457		if (chan == 1)
 458			tssdp |= ts_sdp_sel_fc1[pin];
 459		else
 460			tssdp |= ts_sdp_sel_fc0[pin];
 461	} else {
 462		if (chan == 1)
 463			tssdp |= ts_sdp_sel_tt1[pin];
 464		else
 465			tssdp |= ts_sdp_sel_tt0[pin];
 466	}
 467	tssdp |= ts_sdp_en[pin];
 468
 469	wr32(E1000_TSSDP, tssdp);
 470	wr32(E1000_CTRL, ctrl);
 471	wr32(E1000_CTRL_EXT, ctrl_ext);
 472}
 473
 474static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 475				       struct ptp_clock_request *rq, int on)
 476{
 477	struct igb_adapter *igb =
 478		container_of(ptp, struct igb_adapter, ptp_caps);
 479	struct e1000_hw *hw = &igb->hw;
 480	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 481	unsigned long flags;
 482	struct timespec64 ts;
 483	int use_freq = 0, pin = -1;
 484	s64 ns;
 485
 486	switch (rq->type) {
 487	case PTP_CLK_REQ_EXTTS:
 488		if (on) {
 489			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 490					   rq->extts.index);
 491			if (pin < 0)
 492				return -EBUSY;
 493		}
 494		if (rq->extts.index == 1) {
 495			tsauxc_mask = TSAUXC_EN_TS1;
 496			tsim_mask = TSINTR_AUTT1;
 497		} else {
 498			tsauxc_mask = TSAUXC_EN_TS0;
 499			tsim_mask = TSINTR_AUTT0;
 500		}
 501		spin_lock_irqsave(&igb->tmreg_lock, flags);
 502		tsauxc = rd32(E1000_TSAUXC);
 503		tsim = rd32(E1000_TSIM);
 504		if (on) {
 505			igb_pin_extts(igb, rq->extts.index, pin);
 506			tsauxc |= tsauxc_mask;
 507			tsim |= tsim_mask;
 508		} else {
 509			tsauxc &= ~tsauxc_mask;
 510			tsim &= ~tsim_mask;
 511		}
 512		wr32(E1000_TSAUXC, tsauxc);
 513		wr32(E1000_TSIM, tsim);
 514		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 515		return 0;
 516
 517	case PTP_CLK_REQ_PEROUT:
 518		if (on) {
 519			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 520					   rq->perout.index);
 521			if (pin < 0)
 522				return -EBUSY;
 523		}
 524		ts.tv_sec = rq->perout.period.sec;
 525		ts.tv_nsec = rq->perout.period.nsec;
 526		ns = timespec64_to_ns(&ts);
 527		ns = ns >> 1;
 528		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 529			   (ns == 250000000LL) || (ns == 500000000LL))) {
 530			if (ns < 8LL)
 531				return -EINVAL;
 532			use_freq = 1;
 533		}
 534		ts = ns_to_timespec64(ns);
 535		if (rq->perout.index == 1) {
 536			if (use_freq) {
 537				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 538				tsim_mask = 0;
 539			} else {
 540				tsauxc_mask = TSAUXC_EN_TT1;
 541				tsim_mask = TSINTR_TT1;
 542			}
 543			trgttiml = E1000_TRGTTIML1;
 544			trgttimh = E1000_TRGTTIMH1;
 545			freqout = E1000_FREQOUT1;
 546		} else {
 547			if (use_freq) {
 548				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 549				tsim_mask = 0;
 550			} else {
 551				tsauxc_mask = TSAUXC_EN_TT0;
 552				tsim_mask = TSINTR_TT0;
 553			}
 554			trgttiml = E1000_TRGTTIML0;
 555			trgttimh = E1000_TRGTTIMH0;
 556			freqout = E1000_FREQOUT0;
 557		}
 558		spin_lock_irqsave(&igb->tmreg_lock, flags);
 559		tsauxc = rd32(E1000_TSAUXC);
 560		tsim = rd32(E1000_TSIM);
 561		if (rq->perout.index == 1) {
 562			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 563			tsim &= ~TSINTR_TT1;
 564		} else {
 565			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 566			tsim &= ~TSINTR_TT0;
 567		}
 568		if (on) {
 569			int i = rq->perout.index;
 570			igb_pin_perout(igb, i, pin, use_freq);
 571			igb->perout[i].start.tv_sec = rq->perout.start.sec;
 572			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 573			igb->perout[i].period.tv_sec = ts.tv_sec;
 574			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 575			wr32(trgttimh, rq->perout.start.sec);
 576			wr32(trgttiml, rq->perout.start.nsec);
 577			if (use_freq)
 578				wr32(freqout, ns);
 579			tsauxc |= tsauxc_mask;
 580			tsim |= tsim_mask;
 581		}
 582		wr32(E1000_TSAUXC, tsauxc);
 583		wr32(E1000_TSIM, tsim);
 584		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 585		return 0;
 586
 587	case PTP_CLK_REQ_PPS:
 588		spin_lock_irqsave(&igb->tmreg_lock, flags);
 589		tsim = rd32(E1000_TSIM);
 590		if (on)
 591			tsim |= TSINTR_SYS_WRAP;
 592		else
 593			tsim &= ~TSINTR_SYS_WRAP;
 594		wr32(E1000_TSIM, tsim);
 595		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 596		return 0;
 597	}
 598
 599	return -EOPNOTSUPP;
 600}
 601
 602static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 603				  struct ptp_clock_request *rq, int on)
 604{
 605	return -EOPNOTSUPP;
 606}
 607
 608static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 609			      enum ptp_pin_function func, unsigned int chan)
 610{
 611	switch (func) {
 612	case PTP_PF_NONE:
 613	case PTP_PF_EXTTS:
 614	case PTP_PF_PEROUT:
 615		break;
 616	case PTP_PF_PHYSYNC:
 617		return -1;
 618	}
 619	return 0;
 620}
 621
 622/**
 623 * igb_ptp_tx_work
 624 * @work: pointer to work struct
 625 *
 626 * This work function polls the TSYNCTXCTL valid bit to determine when a
 627 * timestamp has been taken for the current stored skb.
 628 **/
 629static void igb_ptp_tx_work(struct work_struct *work)
 630{
 631	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 632						   ptp_tx_work);
 633	struct e1000_hw *hw = &adapter->hw;
 634	u32 tsynctxctl;
 635
 636	if (!adapter->ptp_tx_skb)
 637		return;
 638
 639	if (time_is_before_jiffies(adapter->ptp_tx_start +
 640				   IGB_PTP_TX_TIMEOUT)) {
 641		dev_kfree_skb_any(adapter->ptp_tx_skb);
 642		adapter->ptp_tx_skb = NULL;
 643		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 644		adapter->tx_hwtstamp_timeouts++;
 645		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 646		return;
 647	}
 648
 649	tsynctxctl = rd32(E1000_TSYNCTXCTL);
 650	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 651		igb_ptp_tx_hwtstamp(adapter);
 652	else
 653		/* reschedule to check later */
 654		schedule_work(&adapter->ptp_tx_work);
 655}
 656
 657static void igb_ptp_overflow_check(struct work_struct *work)
 658{
 659	struct igb_adapter *igb =
 660		container_of(work, struct igb_adapter, ptp_overflow_work.work);
 661	struct timespec64 ts;
 662
 663	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
 664
 665	pr_debug("igb overflow check at %lld.%09lu\n",
 666		 (long long) ts.tv_sec, ts.tv_nsec);
 667
 668	schedule_delayed_work(&igb->ptp_overflow_work,
 669			      IGB_SYSTIM_OVERFLOW_PERIOD);
 670}
 671
 672/**
 673 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 674 * @adapter: private network adapter structure
 675 *
 676 * This watchdog task is scheduled to detect error case where hardware has
 677 * dropped an Rx packet that was timestamped when the ring is full. The
 678 * particular error is rare but leaves the device in a state unable to timestamp
 679 * any future packets.
 680 **/
 681void igb_ptp_rx_hang(struct igb_adapter *adapter)
 682{
 683	struct e1000_hw *hw = &adapter->hw;
 684	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 685	unsigned long rx_event;
 686
 687	if (hw->mac.type != e1000_82576)
 688		return;
 689
 690	/* If we don't have a valid timestamp in the registers, just update the
 691	 * timeout counter and exit
 692	 */
 693	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 694		adapter->last_rx_ptp_check = jiffies;
 695		return;
 696	}
 697
 698	/* Determine the most recent watchdog or rx_timestamp event */
 699	rx_event = adapter->last_rx_ptp_check;
 700	if (time_after(adapter->last_rx_timestamp, rx_event))
 701		rx_event = adapter->last_rx_timestamp;
 702
 703	/* Only need to read the high RXSTMP register to clear the lock */
 704	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 705		rd32(E1000_RXSTMPH);
 706		adapter->last_rx_ptp_check = jiffies;
 707		adapter->rx_hwtstamp_cleared++;
 708		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 709	}
 710}
 711
 712/**
 713 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 714 * @adapter: Board private structure.
 715 *
 716 * If we were asked to do hardware stamping and such a time stamp is
 717 * available, then it must have been for this skb here because we only
 718 * allow only one such packet into the queue.
 719 **/
 720static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 721{
 722	struct e1000_hw *hw = &adapter->hw;
 723	struct skb_shared_hwtstamps shhwtstamps;
 724	u64 regval;
 725
 726	regval = rd32(E1000_TXSTMPL);
 727	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 728
 729	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 730	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
 731	dev_kfree_skb_any(adapter->ptp_tx_skb);
 732	adapter->ptp_tx_skb = NULL;
 733	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 734}
 735
 736/**
 737 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 738 * @q_vector: Pointer to interrupt specific structure
 739 * @va: Pointer to address containing Rx buffer
 740 * @skb: Buffer containing timestamp and packet
 741 *
 742 * This function is meant to retrieve a timestamp from the first buffer of an
 743 * incoming frame.  The value is stored in little endian format starting on
 744 * byte 8.
 745 **/
 746void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
 747			 unsigned char *va,
 748			 struct sk_buff *skb)
 749{
 750	__le64 *regval = (__le64 *)va;
 751
 752	/* The timestamp is recorded in little endian format.
 753	 * DWORD: 0        1        2        3
 754	 * Field: Reserved Reserved SYSTIML  SYSTIMH
 755	 */
 756	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
 757				   le64_to_cpu(regval[1]));
 758}
 759
 760/**
 761 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 762 * @q_vector: Pointer to interrupt specific structure
 763 * @skb: Buffer containing timestamp and packet
 764 *
 765 * This function is meant to retrieve a timestamp from the internal registers
 766 * of the adapter and store it in the skb.
 767 **/
 768void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 769			 struct sk_buff *skb)
 770{
 771	struct igb_adapter *adapter = q_vector->adapter;
 772	struct e1000_hw *hw = &adapter->hw;
 773	u64 regval;
 774
 775	/* If this bit is set, then the RX registers contain the time stamp. No
 776	 * other packet will be time stamped until we read these registers, so
 777	 * read the registers to make them available again. Because only one
 778	 * packet can be time stamped at a time, we know that the register
 779	 * values must belong to this one here and therefore we don't need to
 780	 * compare any of the additional attributes stored for it.
 781	 *
 782	 * If nothing went wrong, then it should have a shared tx_flags that we
 783	 * can turn into a skb_shared_hwtstamps.
 784	 */
 785	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 786		return;
 787
 788	regval = rd32(E1000_RXSTMPL);
 789	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 790
 791	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 792
 793	/* Update the last_rx_timestamp timer in order to enable watchdog check
 794	 * for error case of latched timestamp on a dropped packet.
 795	 */
 796	adapter->last_rx_timestamp = jiffies;
 797}
 798
 799/**
 800 * igb_ptp_get_ts_config - get hardware time stamping config
 801 * @netdev:
 802 * @ifreq:
 803 *
 804 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 805 * to deconstruct the settings from the registers, just return a shadow copy
 806 * of the last known settings.
 807 **/
 808int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 809{
 810	struct igb_adapter *adapter = netdev_priv(netdev);
 811	struct hwtstamp_config *config = &adapter->tstamp_config;
 812
 813	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 814		-EFAULT : 0;
 815}
 816
 817/**
 818 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 819 * @adapter: networking device structure
 820 * @config: hwtstamp configuration
 821 *
 822 * Outgoing time stamping can be enabled and disabled. Play nice and
 823 * disable it when requested, although it shouldn't case any overhead
 824 * when no packet needs it. At most one packet in the queue may be
 825 * marked for time stamping, otherwise it would be impossible to tell
 826 * for sure to which packet the hardware time stamp belongs.
 827 *
 828 * Incoming time stamping has to be configured via the hardware
 829 * filters. Not all combinations are supported, in particular event
 830 * type has to be specified. Matching the kind of event packet is
 831 * not supported, with the exception of "all V2 events regardless of
 832 * level 2 or 4".
 833 */
 834static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 835				      struct hwtstamp_config *config)
 836{
 837	struct e1000_hw *hw = &adapter->hw;
 838	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 839	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 840	u32 tsync_rx_cfg = 0;
 841	bool is_l4 = false;
 842	bool is_l2 = false;
 843	u32 regval;
 844
 845	/* reserved for future extensions */
 846	if (config->flags)
 847		return -EINVAL;
 848
 849	switch (config->tx_type) {
 850	case HWTSTAMP_TX_OFF:
 851		tsync_tx_ctl = 0;
 852	case HWTSTAMP_TX_ON:
 853		break;
 854	default:
 855		return -ERANGE;
 856	}
 857
 858	switch (config->rx_filter) {
 859	case HWTSTAMP_FILTER_NONE:
 860		tsync_rx_ctl = 0;
 861		break;
 862	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 863		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 864		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
 865		is_l4 = true;
 866		break;
 867	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 868		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 869		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
 870		is_l4 = true;
 871		break;
 872	case HWTSTAMP_FILTER_PTP_V2_EVENT:
 873	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 874	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 875	case HWTSTAMP_FILTER_PTP_V2_SYNC:
 876	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 877	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 878	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 879	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 880	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 881		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
 882		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 883		is_l2 = true;
 884		is_l4 = true;
 885		break;
 886	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 887	case HWTSTAMP_FILTER_ALL:
 888		/* 82576 cannot timestamp all packets, which it needs to do to
 889		 * support both V1 Sync and Delay_Req messages
 890		 */
 891		if (hw->mac.type != e1000_82576) {
 892			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 893			config->rx_filter = HWTSTAMP_FILTER_ALL;
 894			break;
 895		}
 896		/* fall through */
 897	default:
 898		config->rx_filter = HWTSTAMP_FILTER_NONE;
 899		return -ERANGE;
 900	}
 901
 902	if (hw->mac.type == e1000_82575) {
 903		if (tsync_rx_ctl | tsync_tx_ctl)
 904			return -EINVAL;
 905		return 0;
 906	}
 907
 908	/* Per-packet timestamping only works if all packets are
 909	 * timestamped, so enable timestamping in all packets as
 910	 * long as one Rx filter was configured.
 911	 */
 912	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
 913		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 914		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 915		config->rx_filter = HWTSTAMP_FILTER_ALL;
 916		is_l2 = true;
 917		is_l4 = true;
 918
 919		if ((hw->mac.type == e1000_i210) ||
 920		    (hw->mac.type == e1000_i211)) {
 921			regval = rd32(E1000_RXPBS);
 922			regval |= E1000_RXPBS_CFG_TS_EN;
 923			wr32(E1000_RXPBS, regval);
 924		}
 925	}
 926
 927	/* enable/disable TX */
 928	regval = rd32(E1000_TSYNCTXCTL);
 929	regval &= ~E1000_TSYNCTXCTL_ENABLED;
 930	regval |= tsync_tx_ctl;
 931	wr32(E1000_TSYNCTXCTL, regval);
 932
 933	/* enable/disable RX */
 934	regval = rd32(E1000_TSYNCRXCTL);
 935	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
 936	regval |= tsync_rx_ctl;
 937	wr32(E1000_TSYNCRXCTL, regval);
 938
 939	/* define which PTP packets are time stamped */
 940	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
 941
 942	/* define ethertype filter for timestamped packets */
 943	if (is_l2)
 944		wr32(E1000_ETQF(3),
 945		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
 946		      E1000_ETQF_1588 | /* enable timestamping */
 947		      ETH_P_1588));     /* 1588 eth protocol type */
 948	else
 949		wr32(E1000_ETQF(3), 0);
 950
 951	/* L4 Queue Filter[3]: filter by destination port and protocol */
 952	if (is_l4) {
 953		u32 ftqf = (IPPROTO_UDP /* UDP */
 954			| E1000_FTQF_VF_BP /* VF not compared */
 955			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
 956			| E1000_FTQF_MASK); /* mask all inputs */
 957		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
 958
 959		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
 960		wr32(E1000_IMIREXT(3),
 961		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
 962		if (hw->mac.type == e1000_82576) {
 963			/* enable source port check */
 964			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
 965			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
 966		}
 967		wr32(E1000_FTQF(3), ftqf);
 968	} else {
 969		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
 970	}
 971	wrfl();
 972
 973	/* clear TX/RX time stamp registers, just to be sure */
 974	regval = rd32(E1000_TXSTMPL);
 975	regval = rd32(E1000_TXSTMPH);
 976	regval = rd32(E1000_RXSTMPL);
 977	regval = rd32(E1000_RXSTMPH);
 978
 979	return 0;
 980}
 981
 982/**
 983 * igb_ptp_set_ts_config - set hardware time stamping config
 984 * @netdev:
 985 * @ifreq:
 986 *
 987 **/
 988int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
 989{
 990	struct igb_adapter *adapter = netdev_priv(netdev);
 991	struct hwtstamp_config config;
 992	int err;
 993
 994	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 995		return -EFAULT;
 996
 997	err = igb_ptp_set_timestamp_mode(adapter, &config);
 998	if (err)
 999		return err;
1000
1001	/* save these settings for future reference */
1002	memcpy(&adapter->tstamp_config, &config,
1003	       sizeof(adapter->tstamp_config));
1004
1005	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1006		-EFAULT : 0;
1007}
1008
1009void igb_ptp_init(struct igb_adapter *adapter)
1010{
1011	struct e1000_hw *hw = &adapter->hw;
1012	struct net_device *netdev = adapter->netdev;
1013	int i;
1014
1015	switch (hw->mac.type) {
1016	case e1000_82576:
1017		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1018		adapter->ptp_caps.owner = THIS_MODULE;
1019		adapter->ptp_caps.max_adj = 999999881;
1020		adapter->ptp_caps.n_ext_ts = 0;
1021		adapter->ptp_caps.pps = 0;
1022		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1023		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1024		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1025		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1026		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1027		adapter->cc.read = igb_ptp_read_82576;
1028		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1029		adapter->cc.mult = 1;
1030		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1031		/* Dial the nominal frequency. */
1032		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1033		break;
1034	case e1000_82580:
1035	case e1000_i354:
1036	case e1000_i350:
1037		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1038		adapter->ptp_caps.owner = THIS_MODULE;
1039		adapter->ptp_caps.max_adj = 62499999;
1040		adapter->ptp_caps.n_ext_ts = 0;
1041		adapter->ptp_caps.pps = 0;
1042		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1043		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1044		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1045		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1046		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1047		adapter->cc.read = igb_ptp_read_82580;
1048		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1049		adapter->cc.mult = 1;
1050		adapter->cc.shift = 0;
1051		/* Enable the timer functions by clearing bit 31. */
1052		wr32(E1000_TSAUXC, 0x0);
1053		break;
1054	case e1000_i210:
1055	case e1000_i211:
1056		for (i = 0; i < IGB_N_SDP; i++) {
1057			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1058
1059			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1060			ppd->index = i;
1061			ppd->func = PTP_PF_NONE;
1062		}
1063		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1064		adapter->ptp_caps.owner = THIS_MODULE;
1065		adapter->ptp_caps.max_adj = 62499999;
1066		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1067		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1068		adapter->ptp_caps.n_pins = IGB_N_SDP;
1069		adapter->ptp_caps.pps = 1;
1070		adapter->ptp_caps.pin_config = adapter->sdp_config;
1071		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1072		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1073		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1074		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1075		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1076		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1077		/* Enable the timer functions by clearing bit 31. */
1078		wr32(E1000_TSAUXC, 0x0);
1079		break;
1080	default:
1081		adapter->ptp_clock = NULL;
1082		return;
1083	}
1084
1085	wrfl();
1086
1087	spin_lock_init(&adapter->tmreg_lock);
1088	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1089
1090	/* Initialize the clock and overflow work for devices that need it. */
1091	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1092		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1093
1094		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1095	} else {
1096		timecounter_init(&adapter->tc, &adapter->cc,
1097				 ktime_to_ns(ktime_get_real()));
1098
1099		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1100				  igb_ptp_overflow_check);
1101
1102		schedule_delayed_work(&adapter->ptp_overflow_work,
1103				      IGB_SYSTIM_OVERFLOW_PERIOD);
1104	}
1105
1106	/* Initialize the time sync interrupts for devices that support it. */
1107	if (hw->mac.type >= e1000_82580) {
1108		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1109		wr32(E1000_IMS, E1000_IMS_TS);
1110	}
1111
1112	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1113	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1114
1115	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1116						&adapter->pdev->dev);
1117	if (IS_ERR(adapter->ptp_clock)) {
1118		adapter->ptp_clock = NULL;
1119		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1120	} else {
1121		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1122			 adapter->netdev->name);
1123		adapter->flags |= IGB_FLAG_PTP;
1124	}
1125}
1126
1127/**
1128 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1129 * @adapter: Board private structure.
1130 *
1131 * This function stops the PTP support and cancels the delayed work.
1132 **/
1133void igb_ptp_stop(struct igb_adapter *adapter)
1134{
1135	switch (adapter->hw.mac.type) {
1136	case e1000_82576:
1137	case e1000_82580:
1138	case e1000_i354:
1139	case e1000_i350:
1140		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1141		break;
1142	case e1000_i210:
1143	case e1000_i211:
1144		/* No delayed work to cancel. */
1145		break;
1146	default:
1147		return;
1148	}
1149
1150	cancel_work_sync(&adapter->ptp_tx_work);
1151	if (adapter->ptp_tx_skb) {
1152		dev_kfree_skb_any(adapter->ptp_tx_skb);
1153		adapter->ptp_tx_skb = NULL;
1154		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1155	}
1156
1157	if (adapter->ptp_clock) {
1158		ptp_clock_unregister(adapter->ptp_clock);
1159		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1160			 adapter->netdev->name);
1161		adapter->flags &= ~IGB_FLAG_PTP;
1162	}
1163}
1164
1165/**
1166 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1167 * @adapter: Board private structure.
1168 *
1169 * This function handles the reset work required to re-enable the PTP device.
1170 **/
1171void igb_ptp_reset(struct igb_adapter *adapter)
1172{
1173	struct e1000_hw *hw = &adapter->hw;
1174	unsigned long flags;
1175
1176	if (!(adapter->flags & IGB_FLAG_PTP))
1177		return;
1178
1179	/* reset the tstamp_config */
1180	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1181
1182	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1183
1184	switch (adapter->hw.mac.type) {
1185	case e1000_82576:
1186		/* Dial the nominal frequency. */
1187		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1188		break;
1189	case e1000_82580:
1190	case e1000_i354:
1191	case e1000_i350:
1192	case e1000_i210:
1193	case e1000_i211:
1194		wr32(E1000_TSAUXC, 0x0);
1195		wr32(E1000_TSSDP, 0x0);
1196		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1197		wr32(E1000_IMS, E1000_IMS_TS);
1198		break;
1199	default:
1200		/* No work to do. */
1201		goto out;
1202	}
1203
1204	/* Re-initialize the timer. */
1205	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1206		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1207
1208		igb_ptp_write_i210(adapter, &ts);
1209	} else {
1210		timecounter_init(&adapter->tc, &adapter->cc,
1211				 ktime_to_ns(ktime_get_real()));
1212	}
1213out:
1214	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1215}