Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
   3
   4#include <linux/module.h>
   5#include <linux/device.h>
   6#include <linux/pci.h>
   7#include <linux/ptp_classify.h>
   8
   9#include "igb.h"
  10
  11#define INCVALUE_MASK		0x7fffffff
  12#define ISGN			0x80000000
  13
  14/* The 82580 timesync updates the system timer every 8ns by 8ns,
  15 * and this update value cannot be reprogrammed.
  16 *
  17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  18 * nanoseconds time values for very long. For the 82580, SYSTIM always
  19 * counts nanoseconds, but the upper 24 bits are not available. The
  20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  21 * register, TIMINCA.
  22 *
  23 * For the 82576, the SYSTIM register time unit is affect by the
  24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  25 * field are needed to provide the nominal 16 nanosecond period,
  26 * leaving 19 bits for fractional nanoseconds.
  27 *
  28 * We scale the NIC clock cycle by a large factor so that relatively
  29 * small clock corrections can be added or subtracted at each clock
  30 * tick. The drawbacks of a large factor are a) that the clock
  31 * register overflows more quickly (not such a big deal) and b) that
  32 * the increment per tick has to fit into 24 bits.  As a result we
  33 * need to use a shift of 19 so we can fit a value of 16 into the
  34 * TIMINCA register.
  35 *
  36 *
  37 *             SYSTIMH            SYSTIML
  38 *        +--------------+   +---+---+------+
  39 *  82576 |      32      |   | 8 | 5 |  19  |
  40 *        +--------------+   +---+---+------+
  41 *         \________ 45 bits _______/  fract
  42 *
  43 *        +----------+---+   +--------------+
  44 *  82580 |    24    | 8 |   |      32      |
  45 *        +----------+---+   +--------------+
  46 *          reserved  \______ 40 bits _____/
  47 *
  48 *
  49 * The 45 bit 82576 SYSTIM overflows every
  50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  51 *
  52 * The 40 bit 82580 SYSTIM overflows every
  53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  54 *
  55 * SYSTIM is converted to real time using a timecounter. As
  56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
  57 * to be updated at least once per half of the SYSTIM interval.
  58 * Scheduling of delayed work is not very accurate, and also the NIC
  59 * clock can be adjusted to run up to 6% faster and the system clock
  60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
  61 * interval in the NIC time is shorter than 9.16 minutes.
  62 */
  63
  64#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
  65#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
  66#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
  67#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  68#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
  69#define IGB_NBITS_82580			40
  70
  71static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  72
  73/* SYSTIM read access for the 82576 */
  74static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  75{
  76	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  77	struct e1000_hw *hw = &igb->hw;
  78	u64 val;
  79	u32 lo, hi;
  80
  81	lo = rd32(E1000_SYSTIML);
  82	hi = rd32(E1000_SYSTIMH);
  83
  84	val = ((u64) hi) << 32;
  85	val |= lo;
  86
  87	return val;
  88}
  89
  90/* SYSTIM read access for the 82580 */
  91static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  92{
  93	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  94	struct e1000_hw *hw = &igb->hw;
  95	u32 lo, hi;
  96	u64 val;
  97
  98	/* The timestamp latches on lowest register read. For the 82580
  99	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 100	 * need to provide nanosecond resolution, so we just ignore it.
 101	 */
 102	rd32(E1000_SYSTIMR);
 103	lo = rd32(E1000_SYSTIML);
 104	hi = rd32(E1000_SYSTIMH);
 105
 106	val = ((u64) hi) << 32;
 107	val |= lo;
 108
 109	return val;
 110}
 111
 112/* SYSTIM read access for I210/I211 */
 113static void igb_ptp_read_i210(struct igb_adapter *adapter,
 114			      struct timespec64 *ts)
 115{
 116	struct e1000_hw *hw = &adapter->hw;
 117	u32 sec, nsec;
 118
 119	/* The timestamp latches on lowest register read. For I210/I211, the
 120	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
 121	 * resolution, we can ignore it.
 122	 */
 123	rd32(E1000_SYSTIMR);
 124	nsec = rd32(E1000_SYSTIML);
 125	sec = rd32(E1000_SYSTIMH);
 126
 127	ts->tv_sec = sec;
 128	ts->tv_nsec = nsec;
 129}
 130
 131static void igb_ptp_write_i210(struct igb_adapter *adapter,
 132			       const struct timespec64 *ts)
 133{
 134	struct e1000_hw *hw = &adapter->hw;
 135
 136	/* Writing the SYSTIMR register is not necessary as it only provides
 137	 * sub-nanosecond resolution.
 138	 */
 139	wr32(E1000_SYSTIML, ts->tv_nsec);
 140	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 141}
 142
 143/**
 144 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 145 * @adapter: board private structure
 146 * @hwtstamps: timestamp structure to update
 147 * @systim: unsigned 64bit system time value.
 148 *
 149 * We need to convert the system time value stored in the RX/TXSTMP registers
 150 * into a hwtstamp which can be used by the upper level timestamping functions.
 151 *
 152 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 153 * system time value. This is needed because reading the 64 bit time
 154 * value involves reading two (or three) 32 bit registers. The first
 155 * read latches the value. Ditto for writing.
 156 *
 157 * In addition, here have extended the system time with an overflow
 158 * counter in software.
 159 **/
 160static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 161				       struct skb_shared_hwtstamps *hwtstamps,
 162				       u64 systim)
 163{
 164	unsigned long flags;
 165	u64 ns;
 166
 167	switch (adapter->hw.mac.type) {
 168	case e1000_82576:
 169	case e1000_82580:
 170	case e1000_i354:
 171	case e1000_i350:
 172		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 173
 174		ns = timecounter_cyc2time(&adapter->tc, systim);
 175
 176		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 177
 178		memset(hwtstamps, 0, sizeof(*hwtstamps));
 179		hwtstamps->hwtstamp = ns_to_ktime(ns);
 180		break;
 181	case e1000_i210:
 182	case e1000_i211:
 183		memset(hwtstamps, 0, sizeof(*hwtstamps));
 184		/* Upper 32 bits contain s, lower 32 bits contain ns. */
 185		hwtstamps->hwtstamp = ktime_set(systim >> 32,
 186						systim & 0xFFFFFFFF);
 187		break;
 188	default:
 189		break;
 190	}
 191}
 192
 193/* PTP clock operations */
 194static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 195{
 196	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 197					       ptp_caps);
 198	struct e1000_hw *hw = &igb->hw;
 199	int neg_adj = 0;
 200	u64 rate;
 201	u32 incvalue;
 202
 203	if (ppb < 0) {
 204		neg_adj = 1;
 205		ppb = -ppb;
 206	}
 207	rate = ppb;
 208	rate <<= 14;
 209	rate = div_u64(rate, 1953125);
 210
 211	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 212
 213	if (neg_adj)
 214		incvalue -= rate;
 215	else
 216		incvalue += rate;
 217
 218	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 219
 220	return 0;
 221}
 222
 223static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 224{
 225	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 226					       ptp_caps);
 227	struct e1000_hw *hw = &igb->hw;
 228	int neg_adj = 0;
 229	u64 rate;
 230	u32 inca;
 231
 232	if (scaled_ppm < 0) {
 233		neg_adj = 1;
 234		scaled_ppm = -scaled_ppm;
 235	}
 236	rate = scaled_ppm;
 237	rate <<= 13;
 238	rate = div_u64(rate, 15625);
 239
 240	inca = rate & INCVALUE_MASK;
 241	if (neg_adj)
 242		inca |= ISGN;
 243
 244	wr32(E1000_TIMINCA, inca);
 245
 246	return 0;
 247}
 248
 249static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 250{
 251	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 252					       ptp_caps);
 253	unsigned long flags;
 254
 255	spin_lock_irqsave(&igb->tmreg_lock, flags);
 256	timecounter_adjtime(&igb->tc, delta);
 257	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 258
 259	return 0;
 260}
 261
 262static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 263{
 264	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 265					       ptp_caps);
 266	unsigned long flags;
 267	struct timespec64 now, then = ns_to_timespec64(delta);
 268
 269	spin_lock_irqsave(&igb->tmreg_lock, flags);
 270
 271	igb_ptp_read_i210(igb, &now);
 272	now = timespec64_add(now, then);
 273	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 274
 275	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 276
 277	return 0;
 278}
 279
 280static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
 281				  struct timespec64 *ts,
 282				  struct ptp_system_timestamp *sts)
 283{
 284	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 285					       ptp_caps);
 286	struct e1000_hw *hw = &igb->hw;
 287	unsigned long flags;
 288	u32 lo, hi;
 289	u64 ns;
 290
 291	spin_lock_irqsave(&igb->tmreg_lock, flags);
 292
 293	ptp_read_system_prets(sts);
 294	lo = rd32(E1000_SYSTIML);
 295	ptp_read_system_postts(sts);
 296	hi = rd32(E1000_SYSTIMH);
 297
 298	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 299
 300	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 301
 302	*ts = ns_to_timespec64(ns);
 303
 304	return 0;
 305}
 306
 307static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
 308				  struct timespec64 *ts,
 309				  struct ptp_system_timestamp *sts)
 310{
 311	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 312					       ptp_caps);
 313	struct e1000_hw *hw = &igb->hw;
 314	unsigned long flags;
 315	u32 lo, hi;
 316	u64 ns;
 317
 318	spin_lock_irqsave(&igb->tmreg_lock, flags);
 319
 320	ptp_read_system_prets(sts);
 321	rd32(E1000_SYSTIMR);
 322	ptp_read_system_postts(sts);
 323	lo = rd32(E1000_SYSTIML);
 324	hi = rd32(E1000_SYSTIMH);
 325
 326	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 327
 328	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 329
 330	*ts = ns_to_timespec64(ns);
 331
 332	return 0;
 333}
 334
 335static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
 336				 struct timespec64 *ts,
 337				 struct ptp_system_timestamp *sts)
 338{
 339	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 340					       ptp_caps);
 341	struct e1000_hw *hw = &igb->hw;
 342	unsigned long flags;
 343
 344	spin_lock_irqsave(&igb->tmreg_lock, flags);
 345
 346	ptp_read_system_prets(sts);
 347	rd32(E1000_SYSTIMR);
 348	ptp_read_system_postts(sts);
 349	ts->tv_nsec = rd32(E1000_SYSTIML);
 350	ts->tv_sec = rd32(E1000_SYSTIMH);
 351
 352	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 353
 354	return 0;
 355}
 356
 357static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 358				 const struct timespec64 *ts)
 359{
 360	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 361					       ptp_caps);
 362	unsigned long flags;
 363	u64 ns;
 364
 365	ns = timespec64_to_ns(ts);
 366
 367	spin_lock_irqsave(&igb->tmreg_lock, flags);
 368
 369	timecounter_init(&igb->tc, &igb->cc, ns);
 370
 371	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 372
 373	return 0;
 374}
 375
 376static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 377				const struct timespec64 *ts)
 378{
 379	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 380					       ptp_caps);
 381	unsigned long flags;
 382
 383	spin_lock_irqsave(&igb->tmreg_lock, flags);
 384
 385	igb_ptp_write_i210(igb, ts);
 386
 387	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 388
 389	return 0;
 390}
 391
 392static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 393{
 394	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 395	static const u32 mask[IGB_N_SDP] = {
 396		E1000_CTRL_SDP0_DIR,
 397		E1000_CTRL_SDP1_DIR,
 398		E1000_CTRL_EXT_SDP2_DIR,
 399		E1000_CTRL_EXT_SDP3_DIR,
 400	};
 401
 402	if (input)
 403		*ptr &= ~mask[pin];
 404	else
 405		*ptr |= mask[pin];
 406}
 407
 408static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 409{
 410	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 411		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 412	};
 413	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 414		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 415	};
 416	static const u32 ts_sdp_en[IGB_N_SDP] = {
 417		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 418	};
 419	struct e1000_hw *hw = &igb->hw;
 420	u32 ctrl, ctrl_ext, tssdp = 0;
 421
 422	ctrl = rd32(E1000_CTRL);
 423	ctrl_ext = rd32(E1000_CTRL_EXT);
 424	tssdp = rd32(E1000_TSSDP);
 425
 426	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 427
 428	/* Make sure this pin is not enabled as an output. */
 429	tssdp &= ~ts_sdp_en[pin];
 430
 431	if (chan == 1) {
 432		tssdp &= ~AUX1_SEL_SDP3;
 433		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 434	} else {
 435		tssdp &= ~AUX0_SEL_SDP3;
 436		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 437	}
 438
 439	wr32(E1000_TSSDP, tssdp);
 440	wr32(E1000_CTRL, ctrl);
 441	wr32(E1000_CTRL_EXT, ctrl_ext);
 442}
 443
 444static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 445{
 446	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 447		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 448	};
 449	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 450		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 451	};
 452	static const u32 ts_sdp_en[IGB_N_SDP] = {
 453		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 454	};
 455	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 456		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 457		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 458	};
 459	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 460		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 461		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 462	};
 463	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 464		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 465		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 466	};
 467	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 468		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 469		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 470	};
 471	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 472		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 473		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 474	};
 475	struct e1000_hw *hw = &igb->hw;
 476	u32 ctrl, ctrl_ext, tssdp = 0;
 477
 478	ctrl = rd32(E1000_CTRL);
 479	ctrl_ext = rd32(E1000_CTRL_EXT);
 480	tssdp = rd32(E1000_TSSDP);
 481
 482	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 483
 484	/* Make sure this pin is not enabled as an input. */
 485	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 486		tssdp &= ~AUX0_TS_SDP_EN;
 487
 488	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 489		tssdp &= ~AUX1_TS_SDP_EN;
 490
 491	tssdp &= ~ts_sdp_sel_clr[pin];
 492	if (freq) {
 493		if (chan == 1)
 494			tssdp |= ts_sdp_sel_fc1[pin];
 495		else
 496			tssdp |= ts_sdp_sel_fc0[pin];
 497	} else {
 498		if (chan == 1)
 499			tssdp |= ts_sdp_sel_tt1[pin];
 500		else
 501			tssdp |= ts_sdp_sel_tt0[pin];
 502	}
 503	tssdp |= ts_sdp_en[pin];
 504
 505	wr32(E1000_TSSDP, tssdp);
 506	wr32(E1000_CTRL, ctrl);
 507	wr32(E1000_CTRL_EXT, ctrl_ext);
 508}
 509
 510static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 511				       struct ptp_clock_request *rq, int on)
 512{
 513	struct igb_adapter *igb =
 514		container_of(ptp, struct igb_adapter, ptp_caps);
 515	struct e1000_hw *hw = &igb->hw;
 516	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 517	unsigned long flags;
 518	struct timespec64 ts;
 519	int use_freq = 0, pin = -1;
 520	s64 ns;
 521
 522	switch (rq->type) {
 523	case PTP_CLK_REQ_EXTTS:
 524		/* Reject requests with unsupported flags */
 525		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 526					PTP_RISING_EDGE |
 527					PTP_FALLING_EDGE |
 528					PTP_STRICT_FLAGS))
 529			return -EOPNOTSUPP;
 530
 531		/* Reject requests failing to enable both edges. */
 532		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
 533		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
 534		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
 535			return -EOPNOTSUPP;
 536
 537		if (on) {
 538			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 539					   rq->extts.index);
 540			if (pin < 0)
 541				return -EBUSY;
 542		}
 543		if (rq->extts.index == 1) {
 544			tsauxc_mask = TSAUXC_EN_TS1;
 545			tsim_mask = TSINTR_AUTT1;
 546		} else {
 547			tsauxc_mask = TSAUXC_EN_TS0;
 548			tsim_mask = TSINTR_AUTT0;
 549		}
 550		spin_lock_irqsave(&igb->tmreg_lock, flags);
 551		tsauxc = rd32(E1000_TSAUXC);
 552		tsim = rd32(E1000_TSIM);
 553		if (on) {
 554			igb_pin_extts(igb, rq->extts.index, pin);
 555			tsauxc |= tsauxc_mask;
 556			tsim |= tsim_mask;
 557		} else {
 558			tsauxc &= ~tsauxc_mask;
 559			tsim &= ~tsim_mask;
 560		}
 561		wr32(E1000_TSAUXC, tsauxc);
 562		wr32(E1000_TSIM, tsim);
 563		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 564		return 0;
 565
 566	case PTP_CLK_REQ_PEROUT:
 567		/* Reject requests with unsupported flags */
 568		if (rq->perout.flags)
 569			return -EOPNOTSUPP;
 570
 571		if (on) {
 572			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 573					   rq->perout.index);
 574			if (pin < 0)
 575				return -EBUSY;
 576		}
 577		ts.tv_sec = rq->perout.period.sec;
 578		ts.tv_nsec = rq->perout.period.nsec;
 579		ns = timespec64_to_ns(&ts);
 580		ns = ns >> 1;
 581		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 582			   (ns == 250000000LL) || (ns == 500000000LL))) {
 583			if (ns < 8LL)
 584				return -EINVAL;
 585			use_freq = 1;
 586		}
 587		ts = ns_to_timespec64(ns);
 588		if (rq->perout.index == 1) {
 589			if (use_freq) {
 590				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 591				tsim_mask = 0;
 592			} else {
 593				tsauxc_mask = TSAUXC_EN_TT1;
 594				tsim_mask = TSINTR_TT1;
 595			}
 596			trgttiml = E1000_TRGTTIML1;
 597			trgttimh = E1000_TRGTTIMH1;
 598			freqout = E1000_FREQOUT1;
 599		} else {
 600			if (use_freq) {
 601				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 602				tsim_mask = 0;
 603			} else {
 604				tsauxc_mask = TSAUXC_EN_TT0;
 605				tsim_mask = TSINTR_TT0;
 606			}
 607			trgttiml = E1000_TRGTTIML0;
 608			trgttimh = E1000_TRGTTIMH0;
 609			freqout = E1000_FREQOUT0;
 610		}
 611		spin_lock_irqsave(&igb->tmreg_lock, flags);
 612		tsauxc = rd32(E1000_TSAUXC);
 613		tsim = rd32(E1000_TSIM);
 614		if (rq->perout.index == 1) {
 615			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 616			tsim &= ~TSINTR_TT1;
 617		} else {
 618			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 619			tsim &= ~TSINTR_TT0;
 620		}
 621		if (on) {
 622			int i = rq->perout.index;
 623			igb_pin_perout(igb, i, pin, use_freq);
 624			igb->perout[i].start.tv_sec = rq->perout.start.sec;
 625			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 626			igb->perout[i].period.tv_sec = ts.tv_sec;
 627			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 628			wr32(trgttimh, rq->perout.start.sec);
 629			wr32(trgttiml, rq->perout.start.nsec);
 630			if (use_freq)
 631				wr32(freqout, ns);
 632			tsauxc |= tsauxc_mask;
 633			tsim |= tsim_mask;
 634		}
 635		wr32(E1000_TSAUXC, tsauxc);
 636		wr32(E1000_TSIM, tsim);
 637		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 638		return 0;
 639
 640	case PTP_CLK_REQ_PPS:
 641		spin_lock_irqsave(&igb->tmreg_lock, flags);
 642		tsim = rd32(E1000_TSIM);
 643		if (on)
 644			tsim |= TSINTR_SYS_WRAP;
 645		else
 646			tsim &= ~TSINTR_SYS_WRAP;
 647		igb->pps_sys_wrap_on = !!on;
 648		wr32(E1000_TSIM, tsim);
 649		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 650		return 0;
 651	}
 652
 653	return -EOPNOTSUPP;
 654}
 655
 656static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 657				  struct ptp_clock_request *rq, int on)
 658{
 659	return -EOPNOTSUPP;
 660}
 661
 662static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 663			      enum ptp_pin_function func, unsigned int chan)
 664{
 665	switch (func) {
 666	case PTP_PF_NONE:
 667	case PTP_PF_EXTTS:
 668	case PTP_PF_PEROUT:
 669		break;
 670	case PTP_PF_PHYSYNC:
 671		return -1;
 672	}
 673	return 0;
 674}
 675
 676/**
 677 * igb_ptp_tx_work
 678 * @work: pointer to work struct
 679 *
 680 * This work function polls the TSYNCTXCTL valid bit to determine when a
 681 * timestamp has been taken for the current stored skb.
 682 **/
 683static void igb_ptp_tx_work(struct work_struct *work)
 684{
 685	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 686						   ptp_tx_work);
 687	struct e1000_hw *hw = &adapter->hw;
 688	u32 tsynctxctl;
 689
 690	if (!adapter->ptp_tx_skb)
 691		return;
 692
 693	if (time_is_before_jiffies(adapter->ptp_tx_start +
 694				   IGB_PTP_TX_TIMEOUT)) {
 695		dev_kfree_skb_any(adapter->ptp_tx_skb);
 696		adapter->ptp_tx_skb = NULL;
 697		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 698		adapter->tx_hwtstamp_timeouts++;
 699		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 700		 * interrupt
 701		 */
 702		rd32(E1000_TXSTMPH);
 703		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 704		return;
 705	}
 706
 707	tsynctxctl = rd32(E1000_TSYNCTXCTL);
 708	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 709		igb_ptp_tx_hwtstamp(adapter);
 710	else
 711		/* reschedule to check later */
 712		schedule_work(&adapter->ptp_tx_work);
 713}
 714
 715static void igb_ptp_overflow_check(struct work_struct *work)
 716{
 717	struct igb_adapter *igb =
 718		container_of(work, struct igb_adapter, ptp_overflow_work.work);
 719	struct timespec64 ts;
 720	u64 ns;
 721
 722	/* Update the timecounter */
 723	ns = timecounter_read(&igb->tc);
 724
 725	ts = ns_to_timespec64(ns);
 726	pr_debug("igb overflow check at %lld.%09lu\n",
 727		 (long long) ts.tv_sec, ts.tv_nsec);
 728
 729	schedule_delayed_work(&igb->ptp_overflow_work,
 730			      IGB_SYSTIM_OVERFLOW_PERIOD);
 731}
 732
 733/**
 734 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 735 * @adapter: private network adapter structure
 736 *
 737 * This watchdog task is scheduled to detect error case where hardware has
 738 * dropped an Rx packet that was timestamped when the ring is full. The
 739 * particular error is rare but leaves the device in a state unable to timestamp
 740 * any future packets.
 741 **/
 742void igb_ptp_rx_hang(struct igb_adapter *adapter)
 743{
 744	struct e1000_hw *hw = &adapter->hw;
 745	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 746	unsigned long rx_event;
 747
 748	/* Other hardware uses per-packet timestamps */
 749	if (hw->mac.type != e1000_82576)
 750		return;
 751
 752	/* If we don't have a valid timestamp in the registers, just update the
 753	 * timeout counter and exit
 754	 */
 755	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 756		adapter->last_rx_ptp_check = jiffies;
 757		return;
 758	}
 759
 760	/* Determine the most recent watchdog or rx_timestamp event */
 761	rx_event = adapter->last_rx_ptp_check;
 762	if (time_after(adapter->last_rx_timestamp, rx_event))
 763		rx_event = adapter->last_rx_timestamp;
 764
 765	/* Only need to read the high RXSTMP register to clear the lock */
 766	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 767		rd32(E1000_RXSTMPH);
 768		adapter->last_rx_ptp_check = jiffies;
 769		adapter->rx_hwtstamp_cleared++;
 770		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 771	}
 772}
 773
 774/**
 775 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 776 * @adapter: private network adapter structure
 777 */
 778void igb_ptp_tx_hang(struct igb_adapter *adapter)
 779{
 780	struct e1000_hw *hw = &adapter->hw;
 781	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 782					      IGB_PTP_TX_TIMEOUT);
 783
 784	if (!adapter->ptp_tx_skb)
 785		return;
 786
 787	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 788		return;
 789
 790	/* If we haven't received a timestamp within the timeout, it is
 791	 * reasonable to assume that it will never occur, so we can unlock the
 792	 * timestamp bit when this occurs.
 793	 */
 794	if (timeout) {
 795		cancel_work_sync(&adapter->ptp_tx_work);
 796		dev_kfree_skb_any(adapter->ptp_tx_skb);
 797		adapter->ptp_tx_skb = NULL;
 798		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 799		adapter->tx_hwtstamp_timeouts++;
 800		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 801		 * interrupt
 802		 */
 803		rd32(E1000_TXSTMPH);
 804		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 805	}
 806}
 807
 808/**
 809 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 810 * @adapter: Board private structure.
 811 *
 812 * If we were asked to do hardware stamping and such a time stamp is
 813 * available, then it must have been for this skb here because we only
 814 * allow only one such packet into the queue.
 815 **/
 816static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 817{
 818	struct sk_buff *skb = adapter->ptp_tx_skb;
 819	struct e1000_hw *hw = &adapter->hw;
 820	struct skb_shared_hwtstamps shhwtstamps;
 821	u64 regval;
 822	int adjust = 0;
 823
 824	regval = rd32(E1000_TXSTMPL);
 825	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 826
 827	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 828	/* adjust timestamp for the TX latency based on link speed */
 829	if (adapter->hw.mac.type == e1000_i210) {
 830		switch (adapter->link_speed) {
 831		case SPEED_10:
 832			adjust = IGB_I210_TX_LATENCY_10;
 833			break;
 834		case SPEED_100:
 835			adjust = IGB_I210_TX_LATENCY_100;
 836			break;
 837		case SPEED_1000:
 838			adjust = IGB_I210_TX_LATENCY_1000;
 839			break;
 840		}
 841	}
 842
 843	shhwtstamps.hwtstamp =
 844		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 845
 846	/* Clear the lock early before calling skb_tstamp_tx so that
 847	 * applications are not woken up before the lock bit is clear. We use
 848	 * a copy of the skb pointer to ensure other threads can't change it
 849	 * while we're notifying the stack.
 850	 */
 851	adapter->ptp_tx_skb = NULL;
 852	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 853
 854	/* Notify the stack and free the skb after we've unlocked */
 855	skb_tstamp_tx(skb, &shhwtstamps);
 856	dev_kfree_skb_any(skb);
 857}
 858
 859/**
 860 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 861 * @q_vector: Pointer to interrupt specific structure
 862 * @va: Pointer to address containing Rx buffer
 863 * @skb: Buffer containing timestamp and packet
 864 *
 865 * This function is meant to retrieve a timestamp from the first buffer of an
 866 * incoming frame.  The value is stored in little endian format starting on
 867 * byte 8.
 868 **/
 869void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
 870			 struct sk_buff *skb)
 871{
 872	__le64 *regval = (__le64 *)va;
 873	struct igb_adapter *adapter = q_vector->adapter;
 874	int adjust = 0;
 875
 876	/* The timestamp is recorded in little endian format.
 877	 * DWORD: 0        1        2        3
 878	 * Field: Reserved Reserved SYSTIML  SYSTIMH
 879	 */
 880	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
 881				   le64_to_cpu(regval[1]));
 882
 883	/* adjust timestamp for the RX latency based on link speed */
 884	if (adapter->hw.mac.type == e1000_i210) {
 885		switch (adapter->link_speed) {
 886		case SPEED_10:
 887			adjust = IGB_I210_RX_LATENCY_10;
 888			break;
 889		case SPEED_100:
 890			adjust = IGB_I210_RX_LATENCY_100;
 891			break;
 892		case SPEED_1000:
 893			adjust = IGB_I210_RX_LATENCY_1000;
 894			break;
 895		}
 896	}
 897	skb_hwtstamps(skb)->hwtstamp =
 898		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 899}
 900
 901/**
 902 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 903 * @q_vector: Pointer to interrupt specific structure
 904 * @skb: Buffer containing timestamp and packet
 905 *
 906 * This function is meant to retrieve a timestamp from the internal registers
 907 * of the adapter and store it in the skb.
 908 **/
 909void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 910			 struct sk_buff *skb)
 911{
 912	struct igb_adapter *adapter = q_vector->adapter;
 913	struct e1000_hw *hw = &adapter->hw;
 914	u64 regval;
 915	int adjust = 0;
 916
 917	/* If this bit is set, then the RX registers contain the time stamp. No
 918	 * other packet will be time stamped until we read these registers, so
 919	 * read the registers to make them available again. Because only one
 920	 * packet can be time stamped at a time, we know that the register
 921	 * values must belong to this one here and therefore we don't need to
 922	 * compare any of the additional attributes stored for it.
 923	 *
 924	 * If nothing went wrong, then it should have a shared tx_flags that we
 925	 * can turn into a skb_shared_hwtstamps.
 926	 */
 927	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 928		return;
 929
 930	regval = rd32(E1000_RXSTMPL);
 931	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 932
 933	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 934
 935	/* adjust timestamp for the RX latency based on link speed */
 936	if (adapter->hw.mac.type == e1000_i210) {
 937		switch (adapter->link_speed) {
 938		case SPEED_10:
 939			adjust = IGB_I210_RX_LATENCY_10;
 940			break;
 941		case SPEED_100:
 942			adjust = IGB_I210_RX_LATENCY_100;
 943			break;
 944		case SPEED_1000:
 945			adjust = IGB_I210_RX_LATENCY_1000;
 946			break;
 947		}
 948	}
 949	skb_hwtstamps(skb)->hwtstamp =
 950		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 951
 952	/* Update the last_rx_timestamp timer in order to enable watchdog check
 953	 * for error case of latched timestamp on a dropped packet.
 954	 */
 955	adapter->last_rx_timestamp = jiffies;
 956}
 957
 958/**
 959 * igb_ptp_get_ts_config - get hardware time stamping config
 960 * @netdev:
 961 * @ifreq:
 962 *
 963 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 964 * to deconstruct the settings from the registers, just return a shadow copy
 965 * of the last known settings.
 966 **/
 967int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 968{
 969	struct igb_adapter *adapter = netdev_priv(netdev);
 970	struct hwtstamp_config *config = &adapter->tstamp_config;
 971
 972	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 973		-EFAULT : 0;
 974}
 975
 976/**
 977 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 978 * @adapter: networking device structure
 979 * @config: hwtstamp configuration
 980 *
 981 * Outgoing time stamping can be enabled and disabled. Play nice and
 982 * disable it when requested, although it shouldn't case any overhead
 983 * when no packet needs it. At most one packet in the queue may be
 984 * marked for time stamping, otherwise it would be impossible to tell
 985 * for sure to which packet the hardware time stamp belongs.
 986 *
 987 * Incoming time stamping has to be configured via the hardware
 988 * filters. Not all combinations are supported, in particular event
 989 * type has to be specified. Matching the kind of event packet is
 990 * not supported, with the exception of "all V2 events regardless of
 991 * level 2 or 4".
 992 */
 993static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 994				      struct hwtstamp_config *config)
 995{
 996	struct e1000_hw *hw = &adapter->hw;
 997	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 998	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 999	u32 tsync_rx_cfg = 0;
1000	bool is_l4 = false;
1001	bool is_l2 = false;
1002	u32 regval;
1003
1004	/* reserved for future extensions */
1005	if (config->flags)
1006		return -EINVAL;
1007
1008	switch (config->tx_type) {
1009	case HWTSTAMP_TX_OFF:
1010		tsync_tx_ctl = 0;
1011	case HWTSTAMP_TX_ON:
1012		break;
1013	default:
1014		return -ERANGE;
1015	}
1016
1017	switch (config->rx_filter) {
1018	case HWTSTAMP_FILTER_NONE:
1019		tsync_rx_ctl = 0;
1020		break;
1021	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1022		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1023		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1024		is_l4 = true;
1025		break;
1026	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1027		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1028		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1029		is_l4 = true;
1030		break;
1031	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1032	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1033	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1034	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1035	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1036	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1037	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1038	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1039	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1040		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1041		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1042		is_l2 = true;
1043		is_l4 = true;
1044		break;
1045	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1046	case HWTSTAMP_FILTER_NTP_ALL:
1047	case HWTSTAMP_FILTER_ALL:
1048		/* 82576 cannot timestamp all packets, which it needs to do to
1049		 * support both V1 Sync and Delay_Req messages
1050		 */
1051		if (hw->mac.type != e1000_82576) {
1052			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1053			config->rx_filter = HWTSTAMP_FILTER_ALL;
1054			break;
1055		}
1056		fallthrough;
1057	default:
1058		config->rx_filter = HWTSTAMP_FILTER_NONE;
1059		return -ERANGE;
1060	}
1061
1062	if (hw->mac.type == e1000_82575) {
1063		if (tsync_rx_ctl | tsync_tx_ctl)
1064			return -EINVAL;
1065		return 0;
1066	}
1067
1068	/* Per-packet timestamping only works if all packets are
1069	 * timestamped, so enable timestamping in all packets as
1070	 * long as one Rx filter was configured.
1071	 */
1072	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1073		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1074		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1075		config->rx_filter = HWTSTAMP_FILTER_ALL;
1076		is_l2 = true;
1077		is_l4 = true;
1078
1079		if ((hw->mac.type == e1000_i210) ||
1080		    (hw->mac.type == e1000_i211)) {
1081			regval = rd32(E1000_RXPBS);
1082			regval |= E1000_RXPBS_CFG_TS_EN;
1083			wr32(E1000_RXPBS, regval);
1084		}
1085	}
1086
1087	/* enable/disable TX */
1088	regval = rd32(E1000_TSYNCTXCTL);
1089	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1090	regval |= tsync_tx_ctl;
1091	wr32(E1000_TSYNCTXCTL, regval);
1092
1093	/* enable/disable RX */
1094	regval = rd32(E1000_TSYNCRXCTL);
1095	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1096	regval |= tsync_rx_ctl;
1097	wr32(E1000_TSYNCRXCTL, regval);
1098
1099	/* define which PTP packets are time stamped */
1100	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1101
1102	/* define ethertype filter for timestamped packets */
1103	if (is_l2)
1104		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1105		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1106		      E1000_ETQF_1588 | /* enable timestamping */
1107		      ETH_P_1588));     /* 1588 eth protocol type */
1108	else
1109		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1110
1111	/* L4 Queue Filter[3]: filter by destination port and protocol */
1112	if (is_l4) {
1113		u32 ftqf = (IPPROTO_UDP /* UDP */
1114			| E1000_FTQF_VF_BP /* VF not compared */
1115			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1116			| E1000_FTQF_MASK); /* mask all inputs */
1117		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1118
1119		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1120		wr32(E1000_IMIREXT(3),
1121		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1122		if (hw->mac.type == e1000_82576) {
1123			/* enable source port check */
1124			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1125			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1126		}
1127		wr32(E1000_FTQF(3), ftqf);
1128	} else {
1129		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1130	}
1131	wrfl();
1132
1133	/* clear TX/RX time stamp registers, just to be sure */
1134	regval = rd32(E1000_TXSTMPL);
1135	regval = rd32(E1000_TXSTMPH);
1136	regval = rd32(E1000_RXSTMPL);
1137	regval = rd32(E1000_RXSTMPH);
1138
1139	return 0;
1140}
1141
1142/**
1143 * igb_ptp_set_ts_config - set hardware time stamping config
1144 * @netdev:
1145 * @ifreq:
1146 *
1147 **/
1148int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1149{
1150	struct igb_adapter *adapter = netdev_priv(netdev);
1151	struct hwtstamp_config config;
1152	int err;
1153
1154	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1155		return -EFAULT;
1156
1157	err = igb_ptp_set_timestamp_mode(adapter, &config);
1158	if (err)
1159		return err;
1160
1161	/* save these settings for future reference */
1162	memcpy(&adapter->tstamp_config, &config,
1163	       sizeof(adapter->tstamp_config));
1164
1165	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1166		-EFAULT : 0;
1167}
1168
1169/**
1170 * igb_ptp_init - Initialize PTP functionality
1171 * @adapter: Board private structure
1172 *
1173 * This function is called at device probe to initialize the PTP
1174 * functionality.
1175 */
1176void igb_ptp_init(struct igb_adapter *adapter)
1177{
1178	struct e1000_hw *hw = &adapter->hw;
1179	struct net_device *netdev = adapter->netdev;
1180	int i;
1181
1182	switch (hw->mac.type) {
1183	case e1000_82576:
1184		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1185		adapter->ptp_caps.owner = THIS_MODULE;
1186		adapter->ptp_caps.max_adj = 999999881;
1187		adapter->ptp_caps.n_ext_ts = 0;
1188		adapter->ptp_caps.pps = 0;
1189		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1190		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1191		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1192		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1193		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1194		adapter->cc.read = igb_ptp_read_82576;
1195		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1196		adapter->cc.mult = 1;
1197		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1198		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1199		break;
1200	case e1000_82580:
1201	case e1000_i354:
1202	case e1000_i350:
1203		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1204		adapter->ptp_caps.owner = THIS_MODULE;
1205		adapter->ptp_caps.max_adj = 62499999;
1206		adapter->ptp_caps.n_ext_ts = 0;
1207		adapter->ptp_caps.pps = 0;
1208		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1209		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1210		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1211		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1212		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1213		adapter->cc.read = igb_ptp_read_82580;
1214		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1215		adapter->cc.mult = 1;
1216		adapter->cc.shift = 0;
1217		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1218		break;
1219	case e1000_i210:
1220	case e1000_i211:
1221		for (i = 0; i < IGB_N_SDP; i++) {
1222			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1223
1224			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1225			ppd->index = i;
1226			ppd->func = PTP_PF_NONE;
1227		}
1228		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1229		adapter->ptp_caps.owner = THIS_MODULE;
1230		adapter->ptp_caps.max_adj = 62499999;
1231		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1232		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1233		adapter->ptp_caps.n_pins = IGB_N_SDP;
1234		adapter->ptp_caps.pps = 1;
1235		adapter->ptp_caps.pin_config = adapter->sdp_config;
1236		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1237		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1238		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1239		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1240		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1241		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1242		break;
1243	default:
1244		adapter->ptp_clock = NULL;
1245		return;
1246	}
1247
1248	spin_lock_init(&adapter->tmreg_lock);
1249	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1250
1251	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1252		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1253				  igb_ptp_overflow_check);
1254
1255	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1256	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1257
1258	igb_ptp_reset(adapter);
1259
1260	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1261						&adapter->pdev->dev);
1262	if (IS_ERR(adapter->ptp_clock)) {
1263		adapter->ptp_clock = NULL;
1264		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1265	} else if (adapter->ptp_clock) {
1266		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1267			 adapter->netdev->name);
1268		adapter->ptp_flags |= IGB_PTP_ENABLED;
1269	}
1270}
1271
1272/**
1273 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1274 * @adapter: Board private structure
1275 *
1276 * This function stops the overflow check work and PTP Tx timestamp work, and
1277 * will prepare the device for OS suspend.
1278 */
1279void igb_ptp_suspend(struct igb_adapter *adapter)
1280{
1281	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1282		return;
1283
1284	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1285		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1286
1287	cancel_work_sync(&adapter->ptp_tx_work);
1288	if (adapter->ptp_tx_skb) {
1289		dev_kfree_skb_any(adapter->ptp_tx_skb);
1290		adapter->ptp_tx_skb = NULL;
1291		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1292	}
1293}
1294
1295/**
1296 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1297 * @adapter: Board private structure.
1298 *
1299 * This function stops the PTP support and cancels the delayed work.
1300 **/
1301void igb_ptp_stop(struct igb_adapter *adapter)
1302{
1303	igb_ptp_suspend(adapter);
1304
1305	if (adapter->ptp_clock) {
1306		ptp_clock_unregister(adapter->ptp_clock);
1307		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1308			 adapter->netdev->name);
1309		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1310	}
1311}
1312
1313/**
1314 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1315 * @adapter: Board private structure.
1316 *
1317 * This function handles the reset work required to re-enable the PTP device.
1318 **/
1319void igb_ptp_reset(struct igb_adapter *adapter)
1320{
1321	struct e1000_hw *hw = &adapter->hw;
1322	unsigned long flags;
1323
1324	/* reset the tstamp_config */
1325	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1326
1327	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1328
1329	switch (adapter->hw.mac.type) {
1330	case e1000_82576:
1331		/* Dial the nominal frequency. */
1332		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1333		break;
1334	case e1000_82580:
1335	case e1000_i354:
1336	case e1000_i350:
1337	case e1000_i210:
1338	case e1000_i211:
1339		wr32(E1000_TSAUXC, 0x0);
1340		wr32(E1000_TSSDP, 0x0);
1341		wr32(E1000_TSIM,
1342		     TSYNC_INTERRUPTS |
1343		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1344		wr32(E1000_IMS, E1000_IMS_TS);
1345		break;
1346	default:
1347		/* No work to do. */
1348		goto out;
1349	}
1350
1351	/* Re-initialize the timer. */
1352	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1353		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1354
1355		igb_ptp_write_i210(adapter, &ts);
1356	} else {
1357		timecounter_init(&adapter->tc, &adapter->cc,
1358				 ktime_to_ns(ktime_get_real()));
1359	}
1360out:
1361	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1362
1363	wrfl();
1364
1365	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1366		schedule_delayed_work(&adapter->ptp_overflow_work,
1367				      IGB_SYSTIM_OVERFLOW_PERIOD);
1368}
  1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
  2 *
  3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License as published by
  7 * the Free Software Foundation; either version 2 of the License, or
  8 * (at your option) any later version.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, see <http://www.gnu.org/licenses/>.
 17 */
 18#include <linux/module.h>
 19#include <linux/device.h>
 20#include <linux/pci.h>
 21#include <linux/ptp_classify.h>
 22
 23#include "igb.h"
 24
 25#define INCVALUE_MASK		0x7fffffff
 26#define ISGN			0x80000000
 27
 28/* The 82580 timesync updates the system timer every 8ns by 8ns,
 29 * and this update value cannot be reprogrammed.
 30 *
 31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 32 * nanoseconds time values for very long. For the 82580, SYSTIM always
 33 * counts nanoseconds, but the upper 24 bits are not availible. The
 34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 35 * register, TIMINCA.
 36 *
 37 * For the 82576, the SYSTIM register time unit is affect by the
 38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 39 * field are needed to provide the nominal 16 nanosecond period,
 40 * leaving 19 bits for fractional nanoseconds.
 41 *
 42 * We scale the NIC clock cycle by a large factor so that relatively
 43 * small clock corrections can be added or subtracted at each clock
 44 * tick. The drawbacks of a large factor are a) that the clock
 45 * register overflows more quickly (not such a big deal) and b) that
 46 * the increment per tick has to fit into 24 bits.  As a result we
 47 * need to use a shift of 19 so we can fit a value of 16 into the
 48 * TIMINCA register.
 49 *
 50 *
 51 *             SYSTIMH            SYSTIML
 52 *        +--------------+   +---+---+------+
 53 *  82576 |      32      |   | 8 | 5 |  19  |
 54 *        +--------------+   +---+---+------+
 55 *         \________ 45 bits _______/  fract
 56 *
 57 *        +----------+---+   +--------------+
 58 *  82580 |    24    | 8 |   |      32      |
 59 *        +----------+---+   +--------------+
 60 *          reserved  \______ 40 bits _____/
 61 *
 62 *
 63 * The 45 bit 82576 SYSTIM overflows every
 64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 65 *
 66 * The 40 bit 82580 SYSTIM overflows every
 67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 68 */
 69
 70#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
 71#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
 72#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
 73#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
 74#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
 75#define IGB_NBITS_82580			40
 76
 77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
 78
 79/* SYSTIM read access for the 82576 */
 80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
 81{
 82	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
 83	struct e1000_hw *hw = &igb->hw;
 84	u64 val;
 85	u32 lo, hi;
 86
 87	lo = rd32(E1000_SYSTIML);
 88	hi = rd32(E1000_SYSTIMH);
 89
 90	val = ((u64) hi) << 32;
 91	val |= lo;
 92
 93	return val;
 94}
 95
 96/* SYSTIM read access for the 82580 */
 97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
 98{
 99	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100	struct e1000_hw *hw = &igb->hw;
101	u32 lo, hi;
102	u64 val;
103
104	/* The timestamp latches on lowest register read. For the 82580
105	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106	 * need to provide nanosecond resolution, so we just ignore it.
107	 */
108	rd32(E1000_SYSTIMR);
109	lo = rd32(E1000_SYSTIML);
110	hi = rd32(E1000_SYSTIMH);
111
112	val = ((u64) hi) << 32;
113	val |= lo;
114
115	return val;
116}
117
118/* SYSTIM read access for I210/I211 */
119static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120{
121	struct e1000_hw *hw = &adapter->hw;
122	u32 sec, nsec;
123
124	/* The timestamp latches on lowest register read. For I210/I211, the
125	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126	 * resolution, we can ignore it.
127	 */
128	rd32(E1000_SYSTIMR);
129	nsec = rd32(E1000_SYSTIML);
130	sec = rd32(E1000_SYSTIMH);
131
132	ts->tv_sec = sec;
133	ts->tv_nsec = nsec;
134}
135
136static void igb_ptp_write_i210(struct igb_adapter *adapter,
137			       const struct timespec *ts)
138{
139	struct e1000_hw *hw = &adapter->hw;
140
141	/* Writing the SYSTIMR register is not necessary as it only provides
142	 * sub-nanosecond resolution.
143	 */
144	wr32(E1000_SYSTIML, ts->tv_nsec);
145	wr32(E1000_SYSTIMH, ts->tv_sec);
146}
147
148/**
149 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150 * @adapter: board private structure
151 * @hwtstamps: timestamp structure to update
152 * @systim: unsigned 64bit system time value.
153 *
154 * We need to convert the system time value stored in the RX/TXSTMP registers
155 * into a hwtstamp which can be used by the upper level timestamping functions.
156 *
157 * The 'tmreg_lock' spinlock is used to protect the consistency of the
158 * system time value. This is needed because reading the 64 bit time
159 * value involves reading two (or three) 32 bit registers. The first
160 * read latches the value. Ditto for writing.
161 *
162 * In addition, here have extended the system time with an overflow
163 * counter in software.
164 **/
165static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166				       struct skb_shared_hwtstamps *hwtstamps,
167				       u64 systim)
168{
169	unsigned long flags;
170	u64 ns;
171
172	switch (adapter->hw.mac.type) {
173	case e1000_82576:
174	case e1000_82580:
175	case e1000_i354:
176	case e1000_i350:
177		spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179		ns = timecounter_cyc2time(&adapter->tc, systim);
180
181		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183		memset(hwtstamps, 0, sizeof(*hwtstamps));
184		hwtstamps->hwtstamp = ns_to_ktime(ns);
185		break;
186	case e1000_i210:
187	case e1000_i211:
188		memset(hwtstamps, 0, sizeof(*hwtstamps));
189		/* Upper 32 bits contain s, lower 32 bits contain ns. */
190		hwtstamps->hwtstamp = ktime_set(systim >> 32,
191						systim & 0xFFFFFFFF);
192		break;
193	default:
194		break;
195	}
196}
197
198/* PTP clock operations */
199static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200{
201	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202					       ptp_caps);
203	struct e1000_hw *hw = &igb->hw;
204	int neg_adj = 0;
205	u64 rate;
206	u32 incvalue;
207
208	if (ppb < 0) {
209		neg_adj = 1;
210		ppb = -ppb;
211	}
212	rate = ppb;
213	rate <<= 14;
214	rate = div_u64(rate, 1953125);
215
216	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218	if (neg_adj)
219		incvalue -= rate;
220	else
221		incvalue += rate;
222
223	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225	return 0;
226}
227
228static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229{
230	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231					       ptp_caps);
232	struct e1000_hw *hw = &igb->hw;
233	int neg_adj = 0;
234	u64 rate;
235	u32 inca;
236
237	if (ppb < 0) {
238		neg_adj = 1;
239		ppb = -ppb;
240	}
241	rate = ppb;
242	rate <<= 26;
243	rate = div_u64(rate, 1953125);
244
245	inca = rate & INCVALUE_MASK;
246	if (neg_adj)
247		inca |= ISGN;
248
249	wr32(E1000_TIMINCA, inca);
250
251	return 0;
252}
253
254static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255{
256	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257					       ptp_caps);
258	unsigned long flags;
259	s64 now;
260
261	spin_lock_irqsave(&igb->tmreg_lock, flags);
262
263	now = timecounter_read(&igb->tc);
264	now += delta;
265	timecounter_init(&igb->tc, &igb->cc, now);
266
267	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268
269	return 0;
270}
271
272static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
273{
274	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
275					       ptp_caps);
276	unsigned long flags;
277	struct timespec now, then = ns_to_timespec(delta);
278
279	spin_lock_irqsave(&igb->tmreg_lock, flags);
280
281	igb_ptp_read_i210(igb, &now);
282	now = timespec_add(now, then);
283	igb_ptp_write_i210(igb, (const struct timespec *)&now);
284
285	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286
287	return 0;
288}
289
290static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
291				 struct timespec *ts)
292{
293	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
294					       ptp_caps);
295	unsigned long flags;
296	u64 ns;
297	u32 remainder;
298
299	spin_lock_irqsave(&igb->tmreg_lock, flags);
300
301	ns = timecounter_read(&igb->tc);
302
303	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304
305	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
306	ts->tv_nsec = remainder;
307
308	return 0;
309}
310
311static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312				struct timespec *ts)
313{
314	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315					       ptp_caps);
316	unsigned long flags;
317
318	spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320	igb_ptp_read_i210(igb, ts);
321
322	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323
324	return 0;
325}
326
327static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328				 const struct timespec *ts)
329{
330	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331					       ptp_caps);
332	unsigned long flags;
333	u64 ns;
334
335	ns = ts->tv_sec * 1000000000ULL;
336	ns += ts->tv_nsec;
337
338	spin_lock_irqsave(&igb->tmreg_lock, flags);
339
340	timecounter_init(&igb->tc, &igb->cc, ns);
341
342	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
343
344	return 0;
345}
346
347static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
348				const struct timespec *ts)
349{
350	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
351					       ptp_caps);
352	unsigned long flags;
353
354	spin_lock_irqsave(&igb->tmreg_lock, flags);
355
356	igb_ptp_write_i210(igb, ts);
357
358	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
359
360	return 0;
361}
362
363static int igb_ptp_enable(struct ptp_clock_info *ptp,
364			  struct ptp_clock_request *rq, int on)
365{
366	return -EOPNOTSUPP;
367}
368
369/**
370 * igb_ptp_tx_work
371 * @work: pointer to work struct
372 *
373 * This work function polls the TSYNCTXCTL valid bit to determine when a
374 * timestamp has been taken for the current stored skb.
375 **/
376static void igb_ptp_tx_work(struct work_struct *work)
377{
378	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
379						   ptp_tx_work);
380	struct e1000_hw *hw = &adapter->hw;
381	u32 tsynctxctl;
382
383	if (!adapter->ptp_tx_skb)
384		return;
385
386	if (time_is_before_jiffies(adapter->ptp_tx_start +
387				   IGB_PTP_TX_TIMEOUT)) {
388		dev_kfree_skb_any(adapter->ptp_tx_skb);
389		adapter->ptp_tx_skb = NULL;
390		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
391		adapter->tx_hwtstamp_timeouts++;
392		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
393		return;
394	}
395
396	tsynctxctl = rd32(E1000_TSYNCTXCTL);
397	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
398		igb_ptp_tx_hwtstamp(adapter);
399	else
400		/* reschedule to check later */
401		schedule_work(&adapter->ptp_tx_work);
402}
403
404static void igb_ptp_overflow_check(struct work_struct *work)
405{
406	struct igb_adapter *igb =
407		container_of(work, struct igb_adapter, ptp_overflow_work.work);
408	struct timespec ts;
409
410	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
411
412	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
413
414	schedule_delayed_work(&igb->ptp_overflow_work,
415			      IGB_SYSTIM_OVERFLOW_PERIOD);
416}
417
418/**
419 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
420 * @adapter: private network adapter structure
421 *
422 * This watchdog task is scheduled to detect error case where hardware has
423 * dropped an Rx packet that was timestamped when the ring is full. The
424 * particular error is rare but leaves the device in a state unable to timestamp
425 * any future packets.
426 **/
427void igb_ptp_rx_hang(struct igb_adapter *adapter)
428{
429	struct e1000_hw *hw = &adapter->hw;
430	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
431	unsigned long rx_event;
432
433	if (hw->mac.type != e1000_82576)
434		return;
435
436	/* If we don't have a valid timestamp in the registers, just update the
437	 * timeout counter and exit
438	 */
439	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
440		adapter->last_rx_ptp_check = jiffies;
441		return;
442	}
443
444	/* Determine the most recent watchdog or rx_timestamp event */
445	rx_event = adapter->last_rx_ptp_check;
446	if (time_after(adapter->last_rx_timestamp, rx_event))
447		rx_event = adapter->last_rx_timestamp;
448
449	/* Only need to read the high RXSTMP register to clear the lock */
450	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
451		rd32(E1000_RXSTMPH);
452		adapter->last_rx_ptp_check = jiffies;
453		adapter->rx_hwtstamp_cleared++;
454		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
455	}
456}
457
458/**
459 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
460 * @adapter: Board private structure.
461 *
462 * If we were asked to do hardware stamping and such a time stamp is
463 * available, then it must have been for this skb here because we only
464 * allow only one such packet into the queue.
465 **/
466static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
467{
468	struct e1000_hw *hw = &adapter->hw;
469	struct skb_shared_hwtstamps shhwtstamps;
470	u64 regval;
471
472	regval = rd32(E1000_TXSTMPL);
473	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
474
475	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
476	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
477	dev_kfree_skb_any(adapter->ptp_tx_skb);
478	adapter->ptp_tx_skb = NULL;
479	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
480}
481
482/**
483 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
484 * @q_vector: Pointer to interrupt specific structure
485 * @va: Pointer to address containing Rx buffer
486 * @skb: Buffer containing timestamp and packet
487 *
488 * This function is meant to retrieve a timestamp from the first buffer of an
489 * incoming frame.  The value is stored in little endian format starting on
490 * byte 8.
491 **/
492void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
493			 unsigned char *va,
494			 struct sk_buff *skb)
495{
496	__le64 *regval = (__le64 *)va;
497
498	/* The timestamp is recorded in little endian format.
499	 * DWORD: 0        1        2        3
500	 * Field: Reserved Reserved SYSTIML  SYSTIMH
501	 */
502	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
503				   le64_to_cpu(regval[1]));
504}
505
506/**
507 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
508 * @q_vector: Pointer to interrupt specific structure
509 * @skb: Buffer containing timestamp and packet
510 *
511 * This function is meant to retrieve a timestamp from the internal registers
512 * of the adapter and store it in the skb.
513 **/
514void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
515			 struct sk_buff *skb)
516{
517	struct igb_adapter *adapter = q_vector->adapter;
518	struct e1000_hw *hw = &adapter->hw;
519	u64 regval;
520
521	/* If this bit is set, then the RX registers contain the time stamp. No
522	 * other packet will be time stamped until we read these registers, so
523	 * read the registers to make them available again. Because only one
524	 * packet can be time stamped at a time, we know that the register
525	 * values must belong to this one here and therefore we don't need to
526	 * compare any of the additional attributes stored for it.
527	 *
528	 * If nothing went wrong, then it should have a shared tx_flags that we
529	 * can turn into a skb_shared_hwtstamps.
530	 */
531	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
532		return;
533
534	regval = rd32(E1000_RXSTMPL);
535	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
536
537	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
538
539	/* Update the last_rx_timestamp timer in order to enable watchdog check
540	 * for error case of latched timestamp on a dropped packet.
541	 */
542	adapter->last_rx_timestamp = jiffies;
543}
544
545/**
546 * igb_ptp_get_ts_config - get hardware time stamping config
547 * @netdev:
548 * @ifreq:
549 *
550 * Get the hwtstamp_config settings to return to the user. Rather than attempt
551 * to deconstruct the settings from the registers, just return a shadow copy
552 * of the last known settings.
553 **/
554int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
555{
556	struct igb_adapter *adapter = netdev_priv(netdev);
557	struct hwtstamp_config *config = &adapter->tstamp_config;
558
559	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
560		-EFAULT : 0;
561}
562/**
563 * igb_ptp_set_ts_config - control hardware time stamping
564 * @netdev:
565 * @ifreq:
566 *
567 * Outgoing time stamping can be enabled and disabled. Play nice and
568 * disable it when requested, although it shouldn't case any overhead
569 * when no packet needs it. At most one packet in the queue may be
570 * marked for time stamping, otherwise it would be impossible to tell
571 * for sure to which packet the hardware time stamp belongs.
572 *
573 * Incoming time stamping has to be configured via the hardware
574 * filters. Not all combinations are supported, in particular event
575 * type has to be specified. Matching the kind of event packet is
576 * not supported, with the exception of "all V2 events regardless of
577 * level 2 or 4".
578 **/
579int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
580{
581	struct igb_adapter *adapter = netdev_priv(netdev);
582	struct e1000_hw *hw = &adapter->hw;
583	struct hwtstamp_config *config = &adapter->tstamp_config;
584	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
585	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
586	u32 tsync_rx_cfg = 0;
587	bool is_l4 = false;
588	bool is_l2 = false;
589	u32 regval;
590
591	if (copy_from_user(config, ifr->ifr_data, sizeof(*config)))
592		return -EFAULT;
593
594	/* reserved for future extensions */
595	if (config->flags)
596		return -EINVAL;
597
598	switch (config->tx_type) {
599	case HWTSTAMP_TX_OFF:
600		tsync_tx_ctl = 0;
601	case HWTSTAMP_TX_ON:
602		break;
603	default:
604		return -ERANGE;
605	}
606
607	switch (config->rx_filter) {
608	case HWTSTAMP_FILTER_NONE:
609		tsync_rx_ctl = 0;
610		break;
611	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
612		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
613		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
614		is_l4 = true;
615		break;
616	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
617		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
618		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
619		is_l4 = true;
620		break;
621	case HWTSTAMP_FILTER_PTP_V2_EVENT:
622	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
623	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
624	case HWTSTAMP_FILTER_PTP_V2_SYNC:
625	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
626	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
627	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
628	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
629	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
630		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
631		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
632		is_l2 = true;
633		is_l4 = true;
634		break;
635	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
636	case HWTSTAMP_FILTER_ALL:
637		/* 82576 cannot timestamp all packets, which it needs to do to
638		 * support both V1 Sync and Delay_Req messages
639		 */
640		if (hw->mac.type != e1000_82576) {
641			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
642			config->rx_filter = HWTSTAMP_FILTER_ALL;
643			break;
644		}
645		/* fall through */
646	default:
647		config->rx_filter = HWTSTAMP_FILTER_NONE;
648		return -ERANGE;
649	}
650
651	if (hw->mac.type == e1000_82575) {
652		if (tsync_rx_ctl | tsync_tx_ctl)
653			return -EINVAL;
654		return 0;
655	}
656
657	/* Per-packet timestamping only works if all packets are
658	 * timestamped, so enable timestamping in all packets as
659	 * long as one Rx filter was configured.
660	 */
661	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
662		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
663		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
664		config->rx_filter = HWTSTAMP_FILTER_ALL;
665		is_l2 = true;
666		is_l4 = true;
667
668		if ((hw->mac.type == e1000_i210) ||
669		    (hw->mac.type == e1000_i211)) {
670			regval = rd32(E1000_RXPBS);
671			regval |= E1000_RXPBS_CFG_TS_EN;
672			wr32(E1000_RXPBS, regval);
673		}
674	}
675
676	/* enable/disable TX */
677	regval = rd32(E1000_TSYNCTXCTL);
678	regval &= ~E1000_TSYNCTXCTL_ENABLED;
679	regval |= tsync_tx_ctl;
680	wr32(E1000_TSYNCTXCTL, regval);
681
682	/* enable/disable RX */
683	regval = rd32(E1000_TSYNCRXCTL);
684	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
685	regval |= tsync_rx_ctl;
686	wr32(E1000_TSYNCRXCTL, regval);
687
688	/* define which PTP packets are time stamped */
689	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
690
691	/* define ethertype filter for timestamped packets */
692	if (is_l2)
693		wr32(E1000_ETQF(3),
694		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
695		      E1000_ETQF_1588 | /* enable timestamping */
696		      ETH_P_1588));     /* 1588 eth protocol type */
697	else
698		wr32(E1000_ETQF(3), 0);
699
700	/* L4 Queue Filter[3]: filter by destination port and protocol */
701	if (is_l4) {
702		u32 ftqf = (IPPROTO_UDP /* UDP */
703			| E1000_FTQF_VF_BP /* VF not compared */
704			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
705			| E1000_FTQF_MASK); /* mask all inputs */
706		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
707
708		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
709		wr32(E1000_IMIREXT(3),
710		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
711		if (hw->mac.type == e1000_82576) {
712			/* enable source port check */
713			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
714			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
715		}
716		wr32(E1000_FTQF(3), ftqf);
717	} else {
718		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
719	}
720	wrfl();
721
722	/* clear TX/RX time stamp registers, just to be sure */
723	regval = rd32(E1000_TXSTMPL);
724	regval = rd32(E1000_TXSTMPH);
725	regval = rd32(E1000_RXSTMPL);
726	regval = rd32(E1000_RXSTMPH);
727
728	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
729		-EFAULT : 0;
730}
731
732void igb_ptp_init(struct igb_adapter *adapter)
733{
734	struct e1000_hw *hw = &adapter->hw;
735	struct net_device *netdev = adapter->netdev;
736
737	switch (hw->mac.type) {
738	case e1000_82576:
739		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
740		adapter->ptp_caps.owner = THIS_MODULE;
741		adapter->ptp_caps.max_adj = 999999881;
742		adapter->ptp_caps.n_ext_ts = 0;
743		adapter->ptp_caps.pps = 0;
744		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
745		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
746		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
747		adapter->ptp_caps.settime = igb_ptp_settime_82576;
748		adapter->ptp_caps.enable = igb_ptp_enable;
749		adapter->cc.read = igb_ptp_read_82576;
750		adapter->cc.mask = CLOCKSOURCE_MASK(64);
751		adapter->cc.mult = 1;
752		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
753		/* Dial the nominal frequency. */
754		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
755		break;
756	case e1000_82580:
757	case e1000_i354:
758	case e1000_i350:
759		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
760		adapter->ptp_caps.owner = THIS_MODULE;
761		adapter->ptp_caps.max_adj = 62499999;
762		adapter->ptp_caps.n_ext_ts = 0;
763		adapter->ptp_caps.pps = 0;
764		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
765		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
766		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
767		adapter->ptp_caps.settime = igb_ptp_settime_82576;
768		adapter->ptp_caps.enable = igb_ptp_enable;
769		adapter->cc.read = igb_ptp_read_82580;
770		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
771		adapter->cc.mult = 1;
772		adapter->cc.shift = 0;
773		/* Enable the timer functions by clearing bit 31. */
774		wr32(E1000_TSAUXC, 0x0);
775		break;
776	case e1000_i210:
777	case e1000_i211:
778		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
779		adapter->ptp_caps.owner = THIS_MODULE;
780		adapter->ptp_caps.max_adj = 62499999;
781		adapter->ptp_caps.n_ext_ts = 0;
782		adapter->ptp_caps.pps = 0;
783		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
784		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
785		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
786		adapter->ptp_caps.settime = igb_ptp_settime_i210;
787		adapter->ptp_caps.enable = igb_ptp_enable;
788		/* Enable the timer functions by clearing bit 31. */
789		wr32(E1000_TSAUXC, 0x0);
790		break;
791	default:
792		adapter->ptp_clock = NULL;
793		return;
794	}
795
796	wrfl();
797
798	spin_lock_init(&adapter->tmreg_lock);
799	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
800
801	/* Initialize the clock and overflow work for devices that need it. */
802	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
803		struct timespec ts = ktime_to_timespec(ktime_get_real());
804
805		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
806	} else {
807		timecounter_init(&adapter->tc, &adapter->cc,
808				 ktime_to_ns(ktime_get_real()));
809
810		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
811				  igb_ptp_overflow_check);
812
813		schedule_delayed_work(&adapter->ptp_overflow_work,
814				      IGB_SYSTIM_OVERFLOW_PERIOD);
815	}
816
817	/* Initialize the time sync interrupts for devices that support it. */
818	if (hw->mac.type >= e1000_82580) {
819		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
820		wr32(E1000_IMS, E1000_IMS_TS);
821	}
822
823	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
824						&adapter->pdev->dev);
825	if (IS_ERR(adapter->ptp_clock)) {
826		adapter->ptp_clock = NULL;
827		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
828	} else {
829		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
830			 adapter->netdev->name);
831		adapter->flags |= IGB_FLAG_PTP;
832	}
833}
834
835/**
836 * igb_ptp_stop - Disable PTP device and stop the overflow check.
837 * @adapter: Board private structure.
838 *
839 * This function stops the PTP support and cancels the delayed work.
840 **/
841void igb_ptp_stop(struct igb_adapter *adapter)
842{
843	switch (adapter->hw.mac.type) {
844	case e1000_82576:
845	case e1000_82580:
846	case e1000_i354:
847	case e1000_i350:
848		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
849		break;
850	case e1000_i210:
851	case e1000_i211:
852		/* No delayed work to cancel. */
853		break;
854	default:
855		return;
856	}
857
858	cancel_work_sync(&adapter->ptp_tx_work);
859	if (adapter->ptp_tx_skb) {
860		dev_kfree_skb_any(adapter->ptp_tx_skb);
861		adapter->ptp_tx_skb = NULL;
862		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
863	}
864
865	if (adapter->ptp_clock) {
866		ptp_clock_unregister(adapter->ptp_clock);
867		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
868			 adapter->netdev->name);
869		adapter->flags &= ~IGB_FLAG_PTP;
870	}
871}
872
873/**
874 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
875 * @adapter: Board private structure.
876 *
877 * This function handles the reset work required to re-enable the PTP device.
878 **/
879void igb_ptp_reset(struct igb_adapter *adapter)
880{
881	struct e1000_hw *hw = &adapter->hw;
882
883	if (!(adapter->flags & IGB_FLAG_PTP))
884		return;
885
886	/* reset the tstamp_config */
887	memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));
888
889	switch (adapter->hw.mac.type) {
890	case e1000_82576:
891		/* Dial the nominal frequency. */
892		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
893		break;
894	case e1000_82580:
895	case e1000_i354:
896	case e1000_i350:
897	case e1000_i210:
898	case e1000_i211:
899		/* Enable the timer functions and interrupts. */
900		wr32(E1000_TSAUXC, 0x0);
901		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
902		wr32(E1000_IMS, E1000_IMS_TS);
903		break;
904	default:
905		/* No work to do. */
906		return;
907	}
908
909	/* Re-initialize the timer. */
910	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
911		struct timespec ts = ktime_to_timespec(ktime_get_real());
912
913		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
914	} else {
915		timecounter_init(&adapter->tc, &adapter->cc,
916				 ktime_to_ns(ktime_get_real()));
917	}
918}