Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  4 *
  5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
  6 *
  7 * Limitations:
  8 * - When outputing the source clock directly, the PWM logic will be bypassed
  9 *   and the currently running period is not guaranteed to be completed
 10 */
 11
 12#include <linux/bitops.h>
 13#include <linux/clk.h>
 14#include <linux/delay.h>
 15#include <linux/err.h>
 16#include <linux/io.h>
 17#include <linux/jiffies.h>
 18#include <linux/module.h>
 19#include <linux/of.h>
 20#include <linux/of_device.h>
 21#include <linux/platform_device.h>
 22#include <linux/pwm.h>
 23#include <linux/reset.h>
 24#include <linux/slab.h>
 25#include <linux/spinlock.h>
 26#include <linux/time.h>
 27
 28#define PWM_CTRL_REG		0x0
 29
 30#define PWM_CH_PRD_BASE		0x4
 31#define PWM_CH_PRD_OFFSET	0x4
 32#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 33
 34#define PWMCH_OFFSET		15
 35#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 36#define PWM_PRESCAL_OFF		0
 37#define PWM_EN			BIT(4)
 38#define PWM_ACT_STATE		BIT(5)
 39#define PWM_CLK_GATING		BIT(6)
 40#define PWM_MODE		BIT(7)
 41#define PWM_PULSE		BIT(8)
 42#define PWM_BYPASS		BIT(9)
 43
 44#define PWM_RDY_BASE		28
 45#define PWM_RDY_OFFSET		1
 46#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 47
 48#define PWM_PRD(prd)		(((prd) - 1) << 16)
 49#define PWM_PRD_MASK		GENMASK(15, 0)
 50
 51#define PWM_DTY_MASK		GENMASK(15, 0)
 52
 53#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 54#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 55#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 56
 57#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 58
 59static const u32 prescaler_table[] = {
 60	120,
 61	180,
 62	240,
 63	360,
 64	480,
 65	0,
 66	0,
 67	0,
 68	12000,
 69	24000,
 70	36000,
 71	48000,
 72	72000,
 73	0,
 74	0,
 75	0, /* Actually 1 but tested separately */
 76};
 77
 78struct sun4i_pwm_data {
 79	bool has_prescaler_bypass;
 80	bool has_direct_mod_clk_output;
 81	unsigned int npwm;
 82};
 83
 84struct sun4i_pwm_chip {
 85	struct pwm_chip chip;
 86	struct clk *bus_clk;
 87	struct clk *clk;
 88	struct reset_control *rst;
 89	void __iomem *base;
 90	spinlock_t ctrl_lock;
 91	const struct sun4i_pwm_data *data;
 92	unsigned long next_period[2];
 
 93};
 94
 95static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 96{
 97	return container_of(chip, struct sun4i_pwm_chip, chip);
 98}
 99
100static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
101				  unsigned long offset)
102{
103	return readl(chip->base + offset);
104}
105
106static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
107				    u32 val, unsigned long offset)
108{
109	writel(val, chip->base + offset);
110}
111
112static void sun4i_pwm_get_state(struct pwm_chip *chip,
113				struct pwm_device *pwm,
114				struct pwm_state *state)
115{
116	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
117	u64 clk_rate, tmp;
118	u32 val;
119	unsigned int prescaler;
120
121	clk_rate = clk_get_rate(sun4i_pwm->clk);
122
123	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
124
125	/*
126	 * PWM chapter in H6 manual has a diagram which explains that if bypass
127	 * bit is set, no other setting has any meaning. Even more, experiment
128	 * proved that also enable bit is ignored in this case.
129	 */
130	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
131	    sun4i_pwm->data->has_direct_mod_clk_output) {
132		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
133		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
134		state->polarity = PWM_POLARITY_NORMAL;
135		state->enabled = true;
136		return;
137	}
138
139	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
140	    sun4i_pwm->data->has_prescaler_bypass)
141		prescaler = 1;
142	else
143		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
144
145	if (prescaler == 0)
146		return;
147
148	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
149		state->polarity = PWM_POLARITY_NORMAL;
150	else
151		state->polarity = PWM_POLARITY_INVERSED;
152
153	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
154	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
155		state->enabled = true;
156	else
157		state->enabled = false;
158
159	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
160
161	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
162	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
163
164	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
165	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
166}
167
168static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
169			       const struct pwm_state *state,
170			       u32 *dty, u32 *prd, unsigned int *prsclr,
171			       bool *bypass)
172{
173	u64 clk_rate, div = 0;
174	unsigned int prescaler = 0;
175
176	clk_rate = clk_get_rate(sun4i_pwm->clk);
177
178	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
179		  state->enabled &&
180		  (state->period * clk_rate >= NSEC_PER_SEC) &&
181		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
182		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
183
184	/* Skip calculation of other parameters if we bypass them */
185	if (*bypass)
186		return 0;
187
188	if (sun4i_pwm->data->has_prescaler_bypass) {
189		/* First, test without any prescaler when available */
190		prescaler = PWM_PRESCAL_MASK;
 
191		/*
192		 * When not using any prescaler, the clock period in nanoseconds
193		 * is not an integer so round it half up instead of
194		 * truncating to get less surprising values.
195		 */
196		div = clk_rate * state->period + NSEC_PER_SEC / 2;
197		do_div(div, NSEC_PER_SEC);
198		if (div - 1 > PWM_PRD_MASK)
199			prescaler = 0;
200	}
201
202	if (prescaler == 0) {
203		/* Go up from the first divider */
204		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
205			unsigned int pval = prescaler_table[prescaler];
206
207			if (!pval)
208				continue;
209
210			div = clk_rate;
211			do_div(div, pval);
212			div = div * state->period;
213			do_div(div, NSEC_PER_SEC);
214			if (div - 1 <= PWM_PRD_MASK)
215				break;
216		}
217
218		if (div - 1 > PWM_PRD_MASK)
219			return -EINVAL;
220	}
221
222	*prd = div;
223	div *= state->duty_cycle;
224	do_div(div, state->period);
225	*dty = div;
226	*prsclr = prescaler;
227
 
 
 
 
 
 
228	return 0;
229}
230
231static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
232			   const struct pwm_state *state)
233{
234	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
235	struct pwm_state cstate;
236	u32 ctrl, duty = 0, period = 0, val;
237	int ret;
238	unsigned int delay_us, prescaler = 0;
239	unsigned long now;
240	bool bypass;
241
242	pwm_get_state(pwm, &cstate);
243
244	if (!cstate.enabled) {
245		ret = clk_prepare_enable(sun4i_pwm->clk);
246		if (ret) {
247			dev_err(chip->dev, "failed to enable PWM clock\n");
248			return ret;
249		}
250	}
251
252	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
253				  &bypass);
254	if (ret) {
255		dev_err(chip->dev, "period exceeds the maximum value\n");
256		if (!cstate.enabled)
257			clk_disable_unprepare(sun4i_pwm->clk);
258		return ret;
259	}
260
261	spin_lock(&sun4i_pwm->ctrl_lock);
262	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
263
264	if (sun4i_pwm->data->has_direct_mod_clk_output) {
265		if (bypass) {
266			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
267			/* We can skip other parameter */
268			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
 
 
 
 
269			spin_unlock(&sun4i_pwm->ctrl_lock);
270			return 0;
 
 
271		}
272
273		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
274	}
 
 
275
276	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
277		/* Prescaler changed, the clock has to be gated */
278		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
279		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
280
281		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
282		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
 
 
 
283	}
284
285	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
286	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
287	sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
288		nsecs_to_jiffies(cstate.period + 1000);
289
290	if (state->polarity != PWM_POLARITY_NORMAL)
291		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292	else
293		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294
295	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
296
297	if (state->enabled) {
298		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
299	} else {
300		ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
301		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
302	}
303
304	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
305
306	spin_unlock(&sun4i_pwm->ctrl_lock);
307
308	if (state->enabled)
309		return 0;
310
 
 
 
 
 
311	/* We need a full period to elapse before disabling the channel. */
312	now = jiffies;
313	if (time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
 
314		delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
315					   now);
316		if ((delay_us / 500) > MAX_UDELAY_MS)
317			msleep(delay_us / 1000 + 1);
318		else
319			usleep_range(delay_us, delay_us * 2);
320	}
 
321
322	spin_lock(&sun4i_pwm->ctrl_lock);
323	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
324	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
325	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
326	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
327	spin_unlock(&sun4i_pwm->ctrl_lock);
328
329	clk_disable_unprepare(sun4i_pwm->clk);
330
331	return 0;
332}
333
334static const struct pwm_ops sun4i_pwm_ops = {
335	.apply = sun4i_pwm_apply,
336	.get_state = sun4i_pwm_get_state,
337	.owner = THIS_MODULE,
338};
339
340static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
341	.has_prescaler_bypass = false,
342	.npwm = 2,
343};
344
345static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
346	.has_prescaler_bypass = true,
347	.npwm = 2,
348};
349
350static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
351	.has_prescaler_bypass = true,
352	.npwm = 1,
353};
354
355static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
356	.has_prescaler_bypass = true,
357	.has_direct_mod_clk_output = true,
358	.npwm = 1,
359};
360
361static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
362	.has_prescaler_bypass = true,
363	.has_direct_mod_clk_output = true,
364	.npwm = 2,
365};
366
367static const struct of_device_id sun4i_pwm_dt_ids[] = {
368	{
369		.compatible = "allwinner,sun4i-a10-pwm",
370		.data = &sun4i_pwm_dual_nobypass,
371	}, {
372		.compatible = "allwinner,sun5i-a10s-pwm",
373		.data = &sun4i_pwm_dual_bypass,
374	}, {
375		.compatible = "allwinner,sun5i-a13-pwm",
376		.data = &sun4i_pwm_single_bypass,
377	}, {
378		.compatible = "allwinner,sun7i-a20-pwm",
379		.data = &sun4i_pwm_dual_bypass,
380	}, {
381		.compatible = "allwinner,sun8i-h3-pwm",
382		.data = &sun4i_pwm_single_bypass,
383	}, {
384		.compatible = "allwinner,sun50i-a64-pwm",
385		.data = &sun50i_a64_pwm_data,
386	}, {
387		.compatible = "allwinner,sun50i-h6-pwm",
388		.data = &sun50i_h6_pwm_data,
389	}, {
390		/* sentinel */
391	},
392};
393MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
394
395static int sun4i_pwm_probe(struct platform_device *pdev)
396{
397	struct sun4i_pwm_chip *pwm;
398	struct resource *res;
399	int ret;
400
401	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
402	if (!pwm)
403		return -ENOMEM;
404
405	pwm->data = of_device_get_match_data(&pdev->dev);
406	if (!pwm->data)
407		return -ENODEV;
408
409	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
410	pwm->base = devm_ioremap_resource(&pdev->dev, res);
411	if (IS_ERR(pwm->base))
412		return PTR_ERR(pwm->base);
413
414	/*
415	 * All hardware variants need a source clock that is divided and
416	 * then feeds the counter that defines the output wave form. In the
417	 * device tree this clock is either unnamed or called "mod".
418	 * Some variants (e.g. H6) need another clock to access the
419	 * hardware registers; this is called "bus".
420	 * So we request "mod" first (and ignore the corner case that a
421	 * parent provides a "mod" clock while the right one would be the
422	 * unnamed one of the PWM device) and if this is not found we fall
423	 * back to the first clock of the PWM.
424	 */
425	pwm->clk = devm_clk_get_optional(&pdev->dev, "mod");
426	if (IS_ERR(pwm->clk)) {
427		if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
428			dev_err(&pdev->dev, "get mod clock failed %pe\n",
429				pwm->clk);
430		return PTR_ERR(pwm->clk);
431	}
432
433	if (!pwm->clk) {
434		pwm->clk = devm_clk_get(&pdev->dev, NULL);
435		if (IS_ERR(pwm->clk)) {
436			if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
437				dev_err(&pdev->dev, "get unnamed clock failed %pe\n",
438					pwm->clk);
439			return PTR_ERR(pwm->clk);
440		}
441	}
442
443	pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
444	if (IS_ERR(pwm->bus_clk)) {
445		if (PTR_ERR(pwm->bus_clk) != -EPROBE_DEFER)
446			dev_err(&pdev->dev, "get bus clock failed %pe\n",
447				pwm->bus_clk);
448		return PTR_ERR(pwm->bus_clk);
449	}
450
451	pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
452	if (IS_ERR(pwm->rst)) {
453		if (PTR_ERR(pwm->rst) != -EPROBE_DEFER)
454			dev_err(&pdev->dev, "get reset failed %pe\n",
455				pwm->rst);
456		return PTR_ERR(pwm->rst);
457	}
458
459	/* Deassert reset */
460	ret = reset_control_deassert(pwm->rst);
461	if (ret) {
462		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
463			ERR_PTR(ret));
464		return ret;
465	}
466
467	/*
468	 * We're keeping the bus clock on for the sake of simplicity.
469	 * Actually it only needs to be on for hardware register accesses.
470	 */
471	ret = clk_prepare_enable(pwm->bus_clk);
472	if (ret) {
473		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
474			ERR_PTR(ret));
475		goto err_bus;
476	}
477
478	pwm->chip.dev = &pdev->dev;
479	pwm->chip.ops = &sun4i_pwm_ops;
480	pwm->chip.base = -1;
481	pwm->chip.npwm = pwm->data->npwm;
482	pwm->chip.of_xlate = of_pwm_xlate_with_flags;
483	pwm->chip.of_pwm_n_cells = 3;
484
485	spin_lock_init(&pwm->ctrl_lock);
486
487	ret = pwmchip_add(&pwm->chip);
488	if (ret < 0) {
489		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
490		goto err_pwm_add;
491	}
492
493	platform_set_drvdata(pdev, pwm);
494
495	return 0;
496
497err_pwm_add:
498	clk_disable_unprepare(pwm->bus_clk);
499err_bus:
500	reset_control_assert(pwm->rst);
501
502	return ret;
503}
504
505static int sun4i_pwm_remove(struct platform_device *pdev)
506{
507	struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
508	int ret;
509
510	ret = pwmchip_remove(&pwm->chip);
511	if (ret)
512		return ret;
513
514	clk_disable_unprepare(pwm->bus_clk);
515	reset_control_assert(pwm->rst);
516
517	return 0;
518}
519
520static struct platform_driver sun4i_pwm_driver = {
521	.driver = {
522		.name = "sun4i-pwm",
523		.of_match_table = sun4i_pwm_dt_ids,
524	},
525	.probe = sun4i_pwm_probe,
526	.remove = sun4i_pwm_remove,
527};
528module_platform_driver(sun4i_pwm_driver);
529
530MODULE_ALIAS("platform:sun4i-pwm");
531MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
532MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
533MODULE_LICENSE("GPL v2");
v4.17
 
  1/*
  2 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  3 *
  4 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
  5 *
  6 * Licensed under GPLv2.
 
 
  7 */
  8
  9#include <linux/bitops.h>
 10#include <linux/clk.h>
 11#include <linux/delay.h>
 12#include <linux/err.h>
 13#include <linux/io.h>
 14#include <linux/jiffies.h>
 15#include <linux/module.h>
 16#include <linux/of.h>
 17#include <linux/of_device.h>
 18#include <linux/platform_device.h>
 19#include <linux/pwm.h>
 
 20#include <linux/slab.h>
 21#include <linux/spinlock.h>
 22#include <linux/time.h>
 23
 24#define PWM_CTRL_REG		0x0
 25
 26#define PWM_CH_PRD_BASE		0x4
 27#define PWM_CH_PRD_OFFSET	0x4
 28#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 29
 30#define PWMCH_OFFSET		15
 31#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 32#define PWM_PRESCAL_OFF		0
 33#define PWM_EN			BIT(4)
 34#define PWM_ACT_STATE		BIT(5)
 35#define PWM_CLK_GATING		BIT(6)
 36#define PWM_MODE		BIT(7)
 37#define PWM_PULSE		BIT(8)
 38#define PWM_BYPASS		BIT(9)
 39
 40#define PWM_RDY_BASE		28
 41#define PWM_RDY_OFFSET		1
 42#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 43
 44#define PWM_PRD(prd)		(((prd) - 1) << 16)
 45#define PWM_PRD_MASK		GENMASK(15, 0)
 46
 47#define PWM_DTY_MASK		GENMASK(15, 0)
 48
 49#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 50#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 51#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 52
 53#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 54
 55static const u32 prescaler_table[] = {
 56	120,
 57	180,
 58	240,
 59	360,
 60	480,
 61	0,
 62	0,
 63	0,
 64	12000,
 65	24000,
 66	36000,
 67	48000,
 68	72000,
 69	0,
 70	0,
 71	0, /* Actually 1 but tested separately */
 72};
 73
 74struct sun4i_pwm_data {
 75	bool has_prescaler_bypass;
 
 76	unsigned int npwm;
 77};
 78
 79struct sun4i_pwm_chip {
 80	struct pwm_chip chip;
 
 81	struct clk *clk;
 
 82	void __iomem *base;
 83	spinlock_t ctrl_lock;
 84	const struct sun4i_pwm_data *data;
 85	unsigned long next_period[2];
 86	bool needs_delay[2];
 87};
 88
 89static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 90{
 91	return container_of(chip, struct sun4i_pwm_chip, chip);
 92}
 93
 94static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
 95				  unsigned long offset)
 96{
 97	return readl(chip->base + offset);
 98}
 99
100static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
101				    u32 val, unsigned long offset)
102{
103	writel(val, chip->base + offset);
104}
105
106static void sun4i_pwm_get_state(struct pwm_chip *chip,
107				struct pwm_device *pwm,
108				struct pwm_state *state)
109{
110	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
111	u64 clk_rate, tmp;
112	u32 val;
113	unsigned int prescaler;
114
115	clk_rate = clk_get_rate(sun4i_pwm->clk);
116
117	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
120	    sun4i_pwm->data->has_prescaler_bypass)
121		prescaler = 1;
122	else
123		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
124
125	if (prescaler == 0)
126		return;
127
128	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
129		state->polarity = PWM_POLARITY_NORMAL;
130	else
131		state->polarity = PWM_POLARITY_INVERSED;
132
133	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
134	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
135		state->enabled = true;
136	else
137		state->enabled = false;
138
139	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
140
141	tmp = prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
142	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
143
144	tmp = prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
145	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
146}
147
148static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
149			       struct pwm_state *state,
150			       u32 *dty, u32 *prd, unsigned int *prsclr)
 
151{
152	u64 clk_rate, div = 0;
153	unsigned int pval, prescaler = 0;
154
155	clk_rate = clk_get_rate(sun4i_pwm->clk);
156
 
 
 
 
 
 
 
 
 
 
157	if (sun4i_pwm->data->has_prescaler_bypass) {
158		/* First, test without any prescaler when available */
159		prescaler = PWM_PRESCAL_MASK;
160		pval = 1;
161		/*
162		 * When not using any prescaler, the clock period in nanoseconds
163		 * is not an integer so round it half up instead of
164		 * truncating to get less surprising values.
165		 */
166		div = clk_rate * state->period + NSEC_PER_SEC / 2;
167		do_div(div, NSEC_PER_SEC);
168		if (div - 1 > PWM_PRD_MASK)
169			prescaler = 0;
170	}
171
172	if (prescaler == 0) {
173		/* Go up from the first divider */
174		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
175			if (!prescaler_table[prescaler])
 
 
176				continue;
177			pval = prescaler_table[prescaler];
178			div = clk_rate;
179			do_div(div, pval);
180			div = div * state->period;
181			do_div(div, NSEC_PER_SEC);
182			if (div - 1 <= PWM_PRD_MASK)
183				break;
184		}
185
186		if (div - 1 > PWM_PRD_MASK)
187			return -EINVAL;
188	}
189
190	*prd = div;
191	div *= state->duty_cycle;
192	do_div(div, state->period);
193	*dty = div;
194	*prsclr = prescaler;
195
196	div = (u64)pval * NSEC_PER_SEC * *prd;
197	state->period = DIV_ROUND_CLOSEST_ULL(div, clk_rate);
198
199	div = (u64)pval * NSEC_PER_SEC * *dty;
200	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(div, clk_rate);
201
202	return 0;
203}
204
205static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
206			   struct pwm_state *state)
207{
208	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
209	struct pwm_state cstate;
210	u32 ctrl;
211	int ret;
212	unsigned int delay_us;
213	unsigned long now;
 
214
215	pwm_get_state(pwm, &cstate);
216
217	if (!cstate.enabled) {
218		ret = clk_prepare_enable(sun4i_pwm->clk);
219		if (ret) {
220			dev_err(chip->dev, "failed to enable PWM clock\n");
221			return ret;
222		}
223	}
224
 
 
 
 
 
 
 
 
 
225	spin_lock(&sun4i_pwm->ctrl_lock);
226	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
227
228	if ((cstate.period != state->period) ||
229	    (cstate.duty_cycle != state->duty_cycle)) {
230		u32 period, duty, val;
231		unsigned int prescaler;
232
233		ret = sun4i_pwm_calculate(sun4i_pwm, state,
234					  &duty, &period, &prescaler);
235		if (ret) {
236			dev_err(chip->dev, "period exceeds the maximum value\n");
237			spin_unlock(&sun4i_pwm->ctrl_lock);
238			if (!cstate.enabled)
239				clk_disable_unprepare(sun4i_pwm->clk);
240			return ret;
241		}
242
243		if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
244			/* Prescaler changed, the clock has to be gated */
245			ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
246			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
247
248			ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
249			ctrl |= BIT_CH(prescaler, pwm->hwpwm);
250		}
 
251
252		val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
253		sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
254		sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
255			usecs_to_jiffies(cstate.period / 1000 + 1);
256		sun4i_pwm->needs_delay[pwm->hwpwm] = true;
257	}
258
 
 
 
 
 
259	if (state->polarity != PWM_POLARITY_NORMAL)
260		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
261	else
262		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
263
264	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
 
265	if (state->enabled) {
266		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
267	} else if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
268		ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
269		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
270	}
271
272	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
273
274	spin_unlock(&sun4i_pwm->ctrl_lock);
275
276	if (state->enabled)
277		return 0;
278
279	if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
280		clk_disable_unprepare(sun4i_pwm->clk);
281		return 0;
282	}
283
284	/* We need a full period to elapse before disabling the channel. */
285	now = jiffies;
286	if (sun4i_pwm->needs_delay[pwm->hwpwm] &&
287	    time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
288		delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
289					   now);
290		if ((delay_us / 500) > MAX_UDELAY_MS)
291			msleep(delay_us / 1000 + 1);
292		else
293			usleep_range(delay_us, delay_us * 2);
294	}
295	sun4i_pwm->needs_delay[pwm->hwpwm] = false;
296
297	spin_lock(&sun4i_pwm->ctrl_lock);
298	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
299	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
300	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
301	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
302	spin_unlock(&sun4i_pwm->ctrl_lock);
303
304	clk_disable_unprepare(sun4i_pwm->clk);
305
306	return 0;
307}
308
309static const struct pwm_ops sun4i_pwm_ops = {
310	.apply = sun4i_pwm_apply,
311	.get_state = sun4i_pwm_get_state,
312	.owner = THIS_MODULE,
313};
314
315static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
316	.has_prescaler_bypass = false,
317	.npwm = 2,
318};
319
320static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
321	.has_prescaler_bypass = true,
322	.npwm = 2,
323};
324
325static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
326	.has_prescaler_bypass = true,
327	.npwm = 1,
328};
329
 
 
 
 
 
 
 
 
 
 
 
 
330static const struct of_device_id sun4i_pwm_dt_ids[] = {
331	{
332		.compatible = "allwinner,sun4i-a10-pwm",
333		.data = &sun4i_pwm_dual_nobypass,
334	}, {
335		.compatible = "allwinner,sun5i-a10s-pwm",
336		.data = &sun4i_pwm_dual_bypass,
337	}, {
338		.compatible = "allwinner,sun5i-a13-pwm",
339		.data = &sun4i_pwm_single_bypass,
340	}, {
341		.compatible = "allwinner,sun7i-a20-pwm",
342		.data = &sun4i_pwm_dual_bypass,
343	}, {
344		.compatible = "allwinner,sun8i-h3-pwm",
345		.data = &sun4i_pwm_single_bypass,
346	}, {
 
 
 
 
 
 
347		/* sentinel */
348	},
349};
350MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
351
352static int sun4i_pwm_probe(struct platform_device *pdev)
353{
354	struct sun4i_pwm_chip *pwm;
355	struct resource *res;
356	int ret;
357
358	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
359	if (!pwm)
360		return -ENOMEM;
361
362	pwm->data = of_device_get_match_data(&pdev->dev);
363	if (!pwm->data)
364		return -ENODEV;
365
366	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
367	pwm->base = devm_ioremap_resource(&pdev->dev, res);
368	if (IS_ERR(pwm->base))
369		return PTR_ERR(pwm->base);
370
371	pwm->clk = devm_clk_get(&pdev->dev, NULL);
372	if (IS_ERR(pwm->clk))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373		return PTR_ERR(pwm->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374
375	pwm->chip.dev = &pdev->dev;
376	pwm->chip.ops = &sun4i_pwm_ops;
377	pwm->chip.base = -1;
378	pwm->chip.npwm = pwm->data->npwm;
379	pwm->chip.of_xlate = of_pwm_xlate_with_flags;
380	pwm->chip.of_pwm_n_cells = 3;
381
382	spin_lock_init(&pwm->ctrl_lock);
383
384	ret = pwmchip_add(&pwm->chip);
385	if (ret < 0) {
386		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
387		return ret;
388	}
389
390	platform_set_drvdata(pdev, pwm);
391
392	return 0;
 
 
 
 
 
 
 
393}
394
395static int sun4i_pwm_remove(struct platform_device *pdev)
396{
397	struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
 
398
399	return pwmchip_remove(&pwm->chip);
 
 
 
 
 
 
 
400}
401
402static struct platform_driver sun4i_pwm_driver = {
403	.driver = {
404		.name = "sun4i-pwm",
405		.of_match_table = sun4i_pwm_dt_ids,
406	},
407	.probe = sun4i_pwm_probe,
408	.remove = sun4i_pwm_remove,
409};
410module_platform_driver(sun4i_pwm_driver);
411
412MODULE_ALIAS("platform:sun4i-pwm");
413MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
414MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
415MODULE_LICENSE("GPL v2");