Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
4 *
5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
6 *
7 * Limitations:
8 * - When outputing the source clock directly, the PWM logic will be bypassed
9 * and the currently running period is not guaranteed to be completed
10 */
11
12#include <linux/bitops.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/err.h>
16#include <linux/io.h>
17#include <linux/jiffies.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21#include <linux/platform_device.h>
22#include <linux/pwm.h>
23#include <linux/reset.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26#include <linux/time.h>
27
28#define PWM_CTRL_REG 0x0
29
30#define PWM_CH_PRD_BASE 0x4
31#define PWM_CH_PRD_OFFSET 0x4
32#define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
33
34#define PWMCH_OFFSET 15
35#define PWM_PRESCAL_MASK GENMASK(3, 0)
36#define PWM_PRESCAL_OFF 0
37#define PWM_EN BIT(4)
38#define PWM_ACT_STATE BIT(5)
39#define PWM_CLK_GATING BIT(6)
40#define PWM_MODE BIT(7)
41#define PWM_PULSE BIT(8)
42#define PWM_BYPASS BIT(9)
43
44#define PWM_RDY_BASE 28
45#define PWM_RDY_OFFSET 1
46#define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
47
48#define PWM_PRD(prd) (((prd) - 1) << 16)
49#define PWM_PRD_MASK GENMASK(15, 0)
50
51#define PWM_DTY_MASK GENMASK(15, 0)
52
53#define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
54#define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
55#define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
56
57#define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
58
59static const u32 prescaler_table[] = {
60 120,
61 180,
62 240,
63 360,
64 480,
65 0,
66 0,
67 0,
68 12000,
69 24000,
70 36000,
71 48000,
72 72000,
73 0,
74 0,
75 0, /* Actually 1 but tested separately */
76};
77
78struct sun4i_pwm_data {
79 bool has_prescaler_bypass;
80 bool has_direct_mod_clk_output;
81 unsigned int npwm;
82};
83
84struct sun4i_pwm_chip {
85 struct pwm_chip chip;
86 struct clk *bus_clk;
87 struct clk *clk;
88 struct reset_control *rst;
89 void __iomem *base;
90 spinlock_t ctrl_lock;
91 const struct sun4i_pwm_data *data;
92 unsigned long next_period[2];
93};
94
95static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
96{
97 return container_of(chip, struct sun4i_pwm_chip, chip);
98}
99
100static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
101 unsigned long offset)
102{
103 return readl(chip->base + offset);
104}
105
106static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
107 u32 val, unsigned long offset)
108{
109 writel(val, chip->base + offset);
110}
111
112static void sun4i_pwm_get_state(struct pwm_chip *chip,
113 struct pwm_device *pwm,
114 struct pwm_state *state)
115{
116 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
117 u64 clk_rate, tmp;
118 u32 val;
119 unsigned int prescaler;
120
121 clk_rate = clk_get_rate(sun4i_pwm->clk);
122
123 val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
124
125 /*
126 * PWM chapter in H6 manual has a diagram which explains that if bypass
127 * bit is set, no other setting has any meaning. Even more, experiment
128 * proved that also enable bit is ignored in this case.
129 */
130 if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
131 sun4i_pwm->data->has_direct_mod_clk_output) {
132 state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
133 state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
134 state->polarity = PWM_POLARITY_NORMAL;
135 state->enabled = true;
136 return;
137 }
138
139 if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
140 sun4i_pwm->data->has_prescaler_bypass)
141 prescaler = 1;
142 else
143 prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
144
145 if (prescaler == 0)
146 return;
147
148 if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
149 state->polarity = PWM_POLARITY_NORMAL;
150 else
151 state->polarity = PWM_POLARITY_INVERSED;
152
153 if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
154 BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
155 state->enabled = true;
156 else
157 state->enabled = false;
158
159 val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
160
161 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
162 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
163
164 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
165 state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
166}
167
168static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
169 const struct pwm_state *state,
170 u32 *dty, u32 *prd, unsigned int *prsclr,
171 bool *bypass)
172{
173 u64 clk_rate, div = 0;
174 unsigned int prescaler = 0;
175
176 clk_rate = clk_get_rate(sun4i_pwm->clk);
177
178 *bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
179 state->enabled &&
180 (state->period * clk_rate >= NSEC_PER_SEC) &&
181 (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
182 (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
183
184 /* Skip calculation of other parameters if we bypass them */
185 if (*bypass)
186 return 0;
187
188 if (sun4i_pwm->data->has_prescaler_bypass) {
189 /* First, test without any prescaler when available */
190 prescaler = PWM_PRESCAL_MASK;
191 /*
192 * When not using any prescaler, the clock period in nanoseconds
193 * is not an integer so round it half up instead of
194 * truncating to get less surprising values.
195 */
196 div = clk_rate * state->period + NSEC_PER_SEC / 2;
197 do_div(div, NSEC_PER_SEC);
198 if (div - 1 > PWM_PRD_MASK)
199 prescaler = 0;
200 }
201
202 if (prescaler == 0) {
203 /* Go up from the first divider */
204 for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
205 unsigned int pval = prescaler_table[prescaler];
206
207 if (!pval)
208 continue;
209
210 div = clk_rate;
211 do_div(div, pval);
212 div = div * state->period;
213 do_div(div, NSEC_PER_SEC);
214 if (div - 1 <= PWM_PRD_MASK)
215 break;
216 }
217
218 if (div - 1 > PWM_PRD_MASK)
219 return -EINVAL;
220 }
221
222 *prd = div;
223 div *= state->duty_cycle;
224 do_div(div, state->period);
225 *dty = div;
226 *prsclr = prescaler;
227
228 return 0;
229}
230
231static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
232 const struct pwm_state *state)
233{
234 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
235 struct pwm_state cstate;
236 u32 ctrl, duty = 0, period = 0, val;
237 int ret;
238 unsigned int delay_us, prescaler = 0;
239 unsigned long now;
240 bool bypass;
241
242 pwm_get_state(pwm, &cstate);
243
244 if (!cstate.enabled) {
245 ret = clk_prepare_enable(sun4i_pwm->clk);
246 if (ret) {
247 dev_err(chip->dev, "failed to enable PWM clock\n");
248 return ret;
249 }
250 }
251
252 ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
253 &bypass);
254 if (ret) {
255 dev_err(chip->dev, "period exceeds the maximum value\n");
256 if (!cstate.enabled)
257 clk_disable_unprepare(sun4i_pwm->clk);
258 return ret;
259 }
260
261 spin_lock(&sun4i_pwm->ctrl_lock);
262 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
263
264 if (sun4i_pwm->data->has_direct_mod_clk_output) {
265 if (bypass) {
266 ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
267 /* We can skip other parameter */
268 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
269 spin_unlock(&sun4i_pwm->ctrl_lock);
270 return 0;
271 }
272
273 ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
274 }
275
276 if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
277 /* Prescaler changed, the clock has to be gated */
278 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
279 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
280
281 ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
282 ctrl |= BIT_CH(prescaler, pwm->hwpwm);
283 }
284
285 val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
286 sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
287 sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
288 nsecs_to_jiffies(cstate.period + 1000);
289
290 if (state->polarity != PWM_POLARITY_NORMAL)
291 ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292 else
293 ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294
295 ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
296
297 if (state->enabled) {
298 ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
299 } else {
300 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
301 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
302 }
303
304 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
305
306 spin_unlock(&sun4i_pwm->ctrl_lock);
307
308 if (state->enabled)
309 return 0;
310
311 /* We need a full period to elapse before disabling the channel. */
312 now = jiffies;
313 if (time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
314 delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
315 now);
316 if ((delay_us / 500) > MAX_UDELAY_MS)
317 msleep(delay_us / 1000 + 1);
318 else
319 usleep_range(delay_us, delay_us * 2);
320 }
321
322 spin_lock(&sun4i_pwm->ctrl_lock);
323 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
324 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
325 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
326 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
327 spin_unlock(&sun4i_pwm->ctrl_lock);
328
329 clk_disable_unprepare(sun4i_pwm->clk);
330
331 return 0;
332}
333
334static const struct pwm_ops sun4i_pwm_ops = {
335 .apply = sun4i_pwm_apply,
336 .get_state = sun4i_pwm_get_state,
337 .owner = THIS_MODULE,
338};
339
340static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
341 .has_prescaler_bypass = false,
342 .npwm = 2,
343};
344
345static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
346 .has_prescaler_bypass = true,
347 .npwm = 2,
348};
349
350static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
351 .has_prescaler_bypass = true,
352 .npwm = 1,
353};
354
355static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
356 .has_prescaler_bypass = true,
357 .has_direct_mod_clk_output = true,
358 .npwm = 1,
359};
360
361static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
362 .has_prescaler_bypass = true,
363 .has_direct_mod_clk_output = true,
364 .npwm = 2,
365};
366
367static const struct of_device_id sun4i_pwm_dt_ids[] = {
368 {
369 .compatible = "allwinner,sun4i-a10-pwm",
370 .data = &sun4i_pwm_dual_nobypass,
371 }, {
372 .compatible = "allwinner,sun5i-a10s-pwm",
373 .data = &sun4i_pwm_dual_bypass,
374 }, {
375 .compatible = "allwinner,sun5i-a13-pwm",
376 .data = &sun4i_pwm_single_bypass,
377 }, {
378 .compatible = "allwinner,sun7i-a20-pwm",
379 .data = &sun4i_pwm_dual_bypass,
380 }, {
381 .compatible = "allwinner,sun8i-h3-pwm",
382 .data = &sun4i_pwm_single_bypass,
383 }, {
384 .compatible = "allwinner,sun50i-a64-pwm",
385 .data = &sun50i_a64_pwm_data,
386 }, {
387 .compatible = "allwinner,sun50i-h6-pwm",
388 .data = &sun50i_h6_pwm_data,
389 }, {
390 /* sentinel */
391 },
392};
393MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
394
395static int sun4i_pwm_probe(struct platform_device *pdev)
396{
397 struct sun4i_pwm_chip *pwm;
398 struct resource *res;
399 int ret;
400
401 pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
402 if (!pwm)
403 return -ENOMEM;
404
405 pwm->data = of_device_get_match_data(&pdev->dev);
406 if (!pwm->data)
407 return -ENODEV;
408
409 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
410 pwm->base = devm_ioremap_resource(&pdev->dev, res);
411 if (IS_ERR(pwm->base))
412 return PTR_ERR(pwm->base);
413
414 /*
415 * All hardware variants need a source clock that is divided and
416 * then feeds the counter that defines the output wave form. In the
417 * device tree this clock is either unnamed or called "mod".
418 * Some variants (e.g. H6) need another clock to access the
419 * hardware registers; this is called "bus".
420 * So we request "mod" first (and ignore the corner case that a
421 * parent provides a "mod" clock while the right one would be the
422 * unnamed one of the PWM device) and if this is not found we fall
423 * back to the first clock of the PWM.
424 */
425 pwm->clk = devm_clk_get_optional(&pdev->dev, "mod");
426 if (IS_ERR(pwm->clk)) {
427 if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
428 dev_err(&pdev->dev, "get mod clock failed %pe\n",
429 pwm->clk);
430 return PTR_ERR(pwm->clk);
431 }
432
433 if (!pwm->clk) {
434 pwm->clk = devm_clk_get(&pdev->dev, NULL);
435 if (IS_ERR(pwm->clk)) {
436 if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
437 dev_err(&pdev->dev, "get unnamed clock failed %pe\n",
438 pwm->clk);
439 return PTR_ERR(pwm->clk);
440 }
441 }
442
443 pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
444 if (IS_ERR(pwm->bus_clk)) {
445 if (PTR_ERR(pwm->bus_clk) != -EPROBE_DEFER)
446 dev_err(&pdev->dev, "get bus clock failed %pe\n",
447 pwm->bus_clk);
448 return PTR_ERR(pwm->bus_clk);
449 }
450
451 pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
452 if (IS_ERR(pwm->rst)) {
453 if (PTR_ERR(pwm->rst) != -EPROBE_DEFER)
454 dev_err(&pdev->dev, "get reset failed %pe\n",
455 pwm->rst);
456 return PTR_ERR(pwm->rst);
457 }
458
459 /* Deassert reset */
460 ret = reset_control_deassert(pwm->rst);
461 if (ret) {
462 dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
463 ERR_PTR(ret));
464 return ret;
465 }
466
467 /*
468 * We're keeping the bus clock on for the sake of simplicity.
469 * Actually it only needs to be on for hardware register accesses.
470 */
471 ret = clk_prepare_enable(pwm->bus_clk);
472 if (ret) {
473 dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
474 ERR_PTR(ret));
475 goto err_bus;
476 }
477
478 pwm->chip.dev = &pdev->dev;
479 pwm->chip.ops = &sun4i_pwm_ops;
480 pwm->chip.base = -1;
481 pwm->chip.npwm = pwm->data->npwm;
482 pwm->chip.of_xlate = of_pwm_xlate_with_flags;
483 pwm->chip.of_pwm_n_cells = 3;
484
485 spin_lock_init(&pwm->ctrl_lock);
486
487 ret = pwmchip_add(&pwm->chip);
488 if (ret < 0) {
489 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
490 goto err_pwm_add;
491 }
492
493 platform_set_drvdata(pdev, pwm);
494
495 return 0;
496
497err_pwm_add:
498 clk_disable_unprepare(pwm->bus_clk);
499err_bus:
500 reset_control_assert(pwm->rst);
501
502 return ret;
503}
504
505static int sun4i_pwm_remove(struct platform_device *pdev)
506{
507 struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
508 int ret;
509
510 ret = pwmchip_remove(&pwm->chip);
511 if (ret)
512 return ret;
513
514 clk_disable_unprepare(pwm->bus_clk);
515 reset_control_assert(pwm->rst);
516
517 return 0;
518}
519
520static struct platform_driver sun4i_pwm_driver = {
521 .driver = {
522 .name = "sun4i-pwm",
523 .of_match_table = sun4i_pwm_dt_ids,
524 },
525 .probe = sun4i_pwm_probe,
526 .remove = sun4i_pwm_remove,
527};
528module_platform_driver(sun4i_pwm_driver);
529
530MODULE_ALIAS("platform:sun4i-pwm");
531MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
532MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
533MODULE_LICENSE("GPL v2");
1/*
2 * Driver for Allwinner sun4i Pulse Width Modulation Controller
3 *
4 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
5 *
6 * Licensed under GPLv2.
7 */
8
9#include <linux/bitops.h>
10#include <linux/clk.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/io.h>
14#include <linux/jiffies.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/of_device.h>
18#include <linux/platform_device.h>
19#include <linux/pwm.h>
20#include <linux/slab.h>
21#include <linux/spinlock.h>
22#include <linux/time.h>
23
24#define PWM_CTRL_REG 0x0
25
26#define PWM_CH_PRD_BASE 0x4
27#define PWM_CH_PRD_OFFSET 0x4
28#define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
29
30#define PWMCH_OFFSET 15
31#define PWM_PRESCAL_MASK GENMASK(3, 0)
32#define PWM_PRESCAL_OFF 0
33#define PWM_EN BIT(4)
34#define PWM_ACT_STATE BIT(5)
35#define PWM_CLK_GATING BIT(6)
36#define PWM_MODE BIT(7)
37#define PWM_PULSE BIT(8)
38#define PWM_BYPASS BIT(9)
39
40#define PWM_RDY_BASE 28
41#define PWM_RDY_OFFSET 1
42#define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
43
44#define PWM_PRD(prd) (((prd) - 1) << 16)
45#define PWM_PRD_MASK GENMASK(15, 0)
46
47#define PWM_DTY_MASK GENMASK(15, 0)
48
49#define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
50#define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
51#define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
52
53#define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
54
55static const u32 prescaler_table[] = {
56 120,
57 180,
58 240,
59 360,
60 480,
61 0,
62 0,
63 0,
64 12000,
65 24000,
66 36000,
67 48000,
68 72000,
69 0,
70 0,
71 0, /* Actually 1 but tested separately */
72};
73
74struct sun4i_pwm_data {
75 bool has_prescaler_bypass;
76 unsigned int npwm;
77};
78
79struct sun4i_pwm_chip {
80 struct pwm_chip chip;
81 struct clk *clk;
82 void __iomem *base;
83 spinlock_t ctrl_lock;
84 const struct sun4i_pwm_data *data;
85 unsigned long next_period[2];
86 bool needs_delay[2];
87};
88
89static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
90{
91 return container_of(chip, struct sun4i_pwm_chip, chip);
92}
93
94static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
95 unsigned long offset)
96{
97 return readl(chip->base + offset);
98}
99
100static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
101 u32 val, unsigned long offset)
102{
103 writel(val, chip->base + offset);
104}
105
106static void sun4i_pwm_get_state(struct pwm_chip *chip,
107 struct pwm_device *pwm,
108 struct pwm_state *state)
109{
110 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
111 u64 clk_rate, tmp;
112 u32 val;
113 unsigned int prescaler;
114
115 clk_rate = clk_get_rate(sun4i_pwm->clk);
116
117 val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
118
119 if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
120 sun4i_pwm->data->has_prescaler_bypass)
121 prescaler = 1;
122 else
123 prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
124
125 if (prescaler == 0)
126 return;
127
128 if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
129 state->polarity = PWM_POLARITY_NORMAL;
130 else
131 state->polarity = PWM_POLARITY_INVERSED;
132
133 if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
134 BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
135 state->enabled = true;
136 else
137 state->enabled = false;
138
139 val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
140
141 tmp = prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
142 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
143
144 tmp = prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
145 state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
146}
147
148static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
149 struct pwm_state *state,
150 u32 *dty, u32 *prd, unsigned int *prsclr)
151{
152 u64 clk_rate, div = 0;
153 unsigned int pval, prescaler = 0;
154
155 clk_rate = clk_get_rate(sun4i_pwm->clk);
156
157 if (sun4i_pwm->data->has_prescaler_bypass) {
158 /* First, test without any prescaler when available */
159 prescaler = PWM_PRESCAL_MASK;
160 pval = 1;
161 /*
162 * When not using any prescaler, the clock period in nanoseconds
163 * is not an integer so round it half up instead of
164 * truncating to get less surprising values.
165 */
166 div = clk_rate * state->period + NSEC_PER_SEC / 2;
167 do_div(div, NSEC_PER_SEC);
168 if (div - 1 > PWM_PRD_MASK)
169 prescaler = 0;
170 }
171
172 if (prescaler == 0) {
173 /* Go up from the first divider */
174 for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
175 if (!prescaler_table[prescaler])
176 continue;
177 pval = prescaler_table[prescaler];
178 div = clk_rate;
179 do_div(div, pval);
180 div = div * state->period;
181 do_div(div, NSEC_PER_SEC);
182 if (div - 1 <= PWM_PRD_MASK)
183 break;
184 }
185
186 if (div - 1 > PWM_PRD_MASK)
187 return -EINVAL;
188 }
189
190 *prd = div;
191 div *= state->duty_cycle;
192 do_div(div, state->period);
193 *dty = div;
194 *prsclr = prescaler;
195
196 div = (u64)pval * NSEC_PER_SEC * *prd;
197 state->period = DIV_ROUND_CLOSEST_ULL(div, clk_rate);
198
199 div = (u64)pval * NSEC_PER_SEC * *dty;
200 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(div, clk_rate);
201
202 return 0;
203}
204
205static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
206 struct pwm_state *state)
207{
208 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
209 struct pwm_state cstate;
210 u32 ctrl;
211 int ret;
212 unsigned int delay_us;
213 unsigned long now;
214
215 pwm_get_state(pwm, &cstate);
216
217 if (!cstate.enabled) {
218 ret = clk_prepare_enable(sun4i_pwm->clk);
219 if (ret) {
220 dev_err(chip->dev, "failed to enable PWM clock\n");
221 return ret;
222 }
223 }
224
225 spin_lock(&sun4i_pwm->ctrl_lock);
226 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
227
228 if ((cstate.period != state->period) ||
229 (cstate.duty_cycle != state->duty_cycle)) {
230 u32 period, duty, val;
231 unsigned int prescaler;
232
233 ret = sun4i_pwm_calculate(sun4i_pwm, state,
234 &duty, &period, &prescaler);
235 if (ret) {
236 dev_err(chip->dev, "period exceeds the maximum value\n");
237 spin_unlock(&sun4i_pwm->ctrl_lock);
238 if (!cstate.enabled)
239 clk_disable_unprepare(sun4i_pwm->clk);
240 return ret;
241 }
242
243 if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
244 /* Prescaler changed, the clock has to be gated */
245 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
246 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
247
248 ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
249 ctrl |= BIT_CH(prescaler, pwm->hwpwm);
250 }
251
252 val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
253 sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
254 sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
255 usecs_to_jiffies(cstate.period / 1000 + 1);
256 sun4i_pwm->needs_delay[pwm->hwpwm] = true;
257 }
258
259 if (state->polarity != PWM_POLARITY_NORMAL)
260 ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
261 else
262 ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
263
264 ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
265 if (state->enabled) {
266 ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
267 } else if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
268 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
269 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
270 }
271
272 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
273
274 spin_unlock(&sun4i_pwm->ctrl_lock);
275
276 if (state->enabled)
277 return 0;
278
279 if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
280 clk_disable_unprepare(sun4i_pwm->clk);
281 return 0;
282 }
283
284 /* We need a full period to elapse before disabling the channel. */
285 now = jiffies;
286 if (sun4i_pwm->needs_delay[pwm->hwpwm] &&
287 time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
288 delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
289 now);
290 if ((delay_us / 500) > MAX_UDELAY_MS)
291 msleep(delay_us / 1000 + 1);
292 else
293 usleep_range(delay_us, delay_us * 2);
294 }
295 sun4i_pwm->needs_delay[pwm->hwpwm] = false;
296
297 spin_lock(&sun4i_pwm->ctrl_lock);
298 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
299 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
300 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
301 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
302 spin_unlock(&sun4i_pwm->ctrl_lock);
303
304 clk_disable_unprepare(sun4i_pwm->clk);
305
306 return 0;
307}
308
309static const struct pwm_ops sun4i_pwm_ops = {
310 .apply = sun4i_pwm_apply,
311 .get_state = sun4i_pwm_get_state,
312 .owner = THIS_MODULE,
313};
314
315static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
316 .has_prescaler_bypass = false,
317 .npwm = 2,
318};
319
320static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
321 .has_prescaler_bypass = true,
322 .npwm = 2,
323};
324
325static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
326 .has_prescaler_bypass = true,
327 .npwm = 1,
328};
329
330static const struct of_device_id sun4i_pwm_dt_ids[] = {
331 {
332 .compatible = "allwinner,sun4i-a10-pwm",
333 .data = &sun4i_pwm_dual_nobypass,
334 }, {
335 .compatible = "allwinner,sun5i-a10s-pwm",
336 .data = &sun4i_pwm_dual_bypass,
337 }, {
338 .compatible = "allwinner,sun5i-a13-pwm",
339 .data = &sun4i_pwm_single_bypass,
340 }, {
341 .compatible = "allwinner,sun7i-a20-pwm",
342 .data = &sun4i_pwm_dual_bypass,
343 }, {
344 .compatible = "allwinner,sun8i-h3-pwm",
345 .data = &sun4i_pwm_single_bypass,
346 }, {
347 /* sentinel */
348 },
349};
350MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
351
352static int sun4i_pwm_probe(struct platform_device *pdev)
353{
354 struct sun4i_pwm_chip *pwm;
355 struct resource *res;
356 int ret;
357
358 pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
359 if (!pwm)
360 return -ENOMEM;
361
362 pwm->data = of_device_get_match_data(&pdev->dev);
363 if (!pwm->data)
364 return -ENODEV;
365
366 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
367 pwm->base = devm_ioremap_resource(&pdev->dev, res);
368 if (IS_ERR(pwm->base))
369 return PTR_ERR(pwm->base);
370
371 pwm->clk = devm_clk_get(&pdev->dev, NULL);
372 if (IS_ERR(pwm->clk))
373 return PTR_ERR(pwm->clk);
374
375 pwm->chip.dev = &pdev->dev;
376 pwm->chip.ops = &sun4i_pwm_ops;
377 pwm->chip.base = -1;
378 pwm->chip.npwm = pwm->data->npwm;
379 pwm->chip.of_xlate = of_pwm_xlate_with_flags;
380 pwm->chip.of_pwm_n_cells = 3;
381
382 spin_lock_init(&pwm->ctrl_lock);
383
384 ret = pwmchip_add(&pwm->chip);
385 if (ret < 0) {
386 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
387 return ret;
388 }
389
390 platform_set_drvdata(pdev, pwm);
391
392 return 0;
393}
394
395static int sun4i_pwm_remove(struct platform_device *pdev)
396{
397 struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
398
399 return pwmchip_remove(&pwm->chip);
400}
401
402static struct platform_driver sun4i_pwm_driver = {
403 .driver = {
404 .name = "sun4i-pwm",
405 .of_match_table = sun4i_pwm_dt_ids,
406 },
407 .probe = sun4i_pwm_probe,
408 .remove = sun4i_pwm_remove,
409};
410module_platform_driver(sun4i_pwm_driver);
411
412MODULE_ALIAS("platform:sun4i-pwm");
413MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
414MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
415MODULE_LICENSE("GPL v2");