Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  4 *
  5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
  6 *
  7 * Limitations:
  8 * - When outputing the source clock directly, the PWM logic will be bypassed
  9 *   and the currently running period is not guaranteed to be completed
 10 */
 11
 12#include <linux/bitops.h>
 13#include <linux/clk.h>
 14#include <linux/delay.h>
 15#include <linux/err.h>
 16#include <linux/io.h>
 17#include <linux/jiffies.h>
 18#include <linux/module.h>
 19#include <linux/of.h>
 20#include <linux/of_device.h>
 21#include <linux/platform_device.h>
 22#include <linux/pwm.h>
 23#include <linux/reset.h>
 24#include <linux/slab.h>
 25#include <linux/spinlock.h>
 26#include <linux/time.h>
 27
 28#define PWM_CTRL_REG		0x0
 29
 30#define PWM_CH_PRD_BASE		0x4
 31#define PWM_CH_PRD_OFFSET	0x4
 32#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 33
 34#define PWMCH_OFFSET		15
 35#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 36#define PWM_PRESCAL_OFF		0
 37#define PWM_EN			BIT(4)
 38#define PWM_ACT_STATE		BIT(5)
 39#define PWM_CLK_GATING		BIT(6)
 40#define PWM_MODE		BIT(7)
 41#define PWM_PULSE		BIT(8)
 42#define PWM_BYPASS		BIT(9)
 43
 44#define PWM_RDY_BASE		28
 45#define PWM_RDY_OFFSET		1
 46#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 47
 48#define PWM_PRD(prd)		(((prd) - 1) << 16)
 49#define PWM_PRD_MASK		GENMASK(15, 0)
 50
 51#define PWM_DTY_MASK		GENMASK(15, 0)
 52
 53#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 54#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 55#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 56
 57#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 58
 59static const u32 prescaler_table[] = {
 60	120,
 61	180,
 62	240,
 63	360,
 64	480,
 65	0,
 66	0,
 67	0,
 68	12000,
 69	24000,
 70	36000,
 71	48000,
 72	72000,
 73	0,
 74	0,
 75	0, /* Actually 1 but tested separately */
 76};
 77
 78struct sun4i_pwm_data {
 79	bool has_prescaler_bypass;
 80	bool has_direct_mod_clk_output;
 81	unsigned int npwm;
 82};
 83
 84struct sun4i_pwm_chip {
 85	struct pwm_chip chip;
 86	struct clk *bus_clk;
 87	struct clk *clk;
 88	struct reset_control *rst;
 89	void __iomem *base;
 90	spinlock_t ctrl_lock;
 91	const struct sun4i_pwm_data *data;
 92	unsigned long next_period[2];
 93};
 94
 95static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 96{
 97	return container_of(chip, struct sun4i_pwm_chip, chip);
 98}
 99
100static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
101				  unsigned long offset)
102{
103	return readl(chip->base + offset);
104}
105
106static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
107				    u32 val, unsigned long offset)
108{
109	writel(val, chip->base + offset);
110}
111
112static void sun4i_pwm_get_state(struct pwm_chip *chip,
113				struct pwm_device *pwm,
114				struct pwm_state *state)
115{
116	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
117	u64 clk_rate, tmp;
118	u32 val;
119	unsigned int prescaler;
120
121	clk_rate = clk_get_rate(sun4i_pwm->clk);
122
123	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
124
125	/*
126	 * PWM chapter in H6 manual has a diagram which explains that if bypass
127	 * bit is set, no other setting has any meaning. Even more, experiment
128	 * proved that also enable bit is ignored in this case.
129	 */
130	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
131	    sun4i_pwm->data->has_direct_mod_clk_output) {
132		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
133		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
134		state->polarity = PWM_POLARITY_NORMAL;
135		state->enabled = true;
136		return;
137	}
138
139	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
140	    sun4i_pwm->data->has_prescaler_bypass)
141		prescaler = 1;
142	else
143		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
144
145	if (prescaler == 0)
146		return;
147
148	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
149		state->polarity = PWM_POLARITY_NORMAL;
150	else
151		state->polarity = PWM_POLARITY_INVERSED;
152
153	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
154	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
155		state->enabled = true;
156	else
157		state->enabled = false;
158
159	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
160
161	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
162	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
163
164	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
165	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
166}
167
168static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
169			       const struct pwm_state *state,
170			       u32 *dty, u32 *prd, unsigned int *prsclr,
171			       bool *bypass)
172{
173	u64 clk_rate, div = 0;
174	unsigned int prescaler = 0;
 
175
176	clk_rate = clk_get_rate(sun4i_pwm->clk);
177
178	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
179		  state->enabled &&
180		  (state->period * clk_rate >= NSEC_PER_SEC) &&
181		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
182		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
183
184	/* Skip calculation of other parameters if we bypass them */
185	if (*bypass)
186		return 0;
187
188	if (sun4i_pwm->data->has_prescaler_bypass) {
189		/* First, test without any prescaler when available */
190		prescaler = PWM_PRESCAL_MASK;
191		/*
192		 * When not using any prescaler, the clock period in nanoseconds
193		 * is not an integer so round it half up instead of
194		 * truncating to get less surprising values.
195		 */
196		div = clk_rate * state->period + NSEC_PER_SEC / 2;
197		do_div(div, NSEC_PER_SEC);
198		if (div - 1 > PWM_PRD_MASK)
199			prescaler = 0;
200	}
201
202	if (prescaler == 0) {
203		/* Go up from the first divider */
204		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
205			unsigned int pval = prescaler_table[prescaler];
206
207			if (!pval)
208				continue;
209
210			div = clk_rate;
211			do_div(div, pval);
212			div = div * state->period;
213			do_div(div, NSEC_PER_SEC);
214			if (div - 1 <= PWM_PRD_MASK)
215				break;
216		}
217
218		if (div - 1 > PWM_PRD_MASK)
 
219			return -EINVAL;
 
220	}
221
222	*prd = div;
223	div *= state->duty_cycle;
224	do_div(div, state->period);
225	*dty = div;
226	*prsclr = prescaler;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
228	return 0;
229}
230
231static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
232			   const struct pwm_state *state)
233{
234	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
235	struct pwm_state cstate;
236	u32 ctrl, duty = 0, period = 0, val;
237	int ret;
238	unsigned int delay_us, prescaler = 0;
239	unsigned long now;
240	bool bypass;
241
242	pwm_get_state(pwm, &cstate);
243
244	if (!cstate.enabled) {
245		ret = clk_prepare_enable(sun4i_pwm->clk);
246		if (ret) {
247			dev_err(chip->dev, "failed to enable PWM clock\n");
248			return ret;
249		}
250	}
251
252	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
253				  &bypass);
254	if (ret) {
255		dev_err(chip->dev, "period exceeds the maximum value\n");
256		if (!cstate.enabled)
257			clk_disable_unprepare(sun4i_pwm->clk);
258		return ret;
259	}
260
261	spin_lock(&sun4i_pwm->ctrl_lock);
262	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
263
264	if (sun4i_pwm->data->has_direct_mod_clk_output) {
265		if (bypass) {
266			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
267			/* We can skip other parameter */
268			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
269			spin_unlock(&sun4i_pwm->ctrl_lock);
270			return 0;
271		}
272
273		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
274	}
275
276	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
277		/* Prescaler changed, the clock has to be gated */
278		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
279		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
280
281		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
282		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
283	}
284
285	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
286	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
287	sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
288		nsecs_to_jiffies(cstate.period + 1000);
289
290	if (state->polarity != PWM_POLARITY_NORMAL)
291		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292	else
293		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294
295	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
 
 
 
 
296
297	if (state->enabled) {
298		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
299	} else {
300		ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
301		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
302	}
303
304	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
305
 
 
 
306	spin_unlock(&sun4i_pwm->ctrl_lock);
307
308	if (state->enabled)
309		return 0;
310
311	/* We need a full period to elapse before disabling the channel. */
312	now = jiffies;
313	if (time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
314		delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
315					   now);
316		if ((delay_us / 500) > MAX_UDELAY_MS)
317			msleep(delay_us / 1000 + 1);
318		else
319			usleep_range(delay_us, delay_us * 2);
320	}
321
322	spin_lock(&sun4i_pwm->ctrl_lock);
323	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
324	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
325	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
326	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
327	spin_unlock(&sun4i_pwm->ctrl_lock);
328
329	clk_disable_unprepare(sun4i_pwm->clk);
330
331	return 0;
332}
333
334static const struct pwm_ops sun4i_pwm_ops = {
335	.apply = sun4i_pwm_apply,
336	.get_state = sun4i_pwm_get_state,
 
 
337	.owner = THIS_MODULE,
338};
339
340static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
341	.has_prescaler_bypass = false,
 
342	.npwm = 2,
343};
344
345static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
346	.has_prescaler_bypass = true,
 
347	.npwm = 2,
348};
349
350static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
351	.has_prescaler_bypass = true,
352	.npwm = 1,
353};
354
355static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
356	.has_prescaler_bypass = true,
357	.has_direct_mod_clk_output = true,
358	.npwm = 1,
359};
360
361static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
362	.has_prescaler_bypass = true,
363	.has_direct_mod_clk_output = true,
364	.npwm = 2,
365};
366
367static const struct of_device_id sun4i_pwm_dt_ids[] = {
368	{
369		.compatible = "allwinner,sun4i-a10-pwm",
370		.data = &sun4i_pwm_dual_nobypass,
371	}, {
372		.compatible = "allwinner,sun5i-a10s-pwm",
373		.data = &sun4i_pwm_dual_bypass,
374	}, {
375		.compatible = "allwinner,sun5i-a13-pwm",
376		.data = &sun4i_pwm_single_bypass,
377	}, {
378		.compatible = "allwinner,sun7i-a20-pwm",
379		.data = &sun4i_pwm_dual_bypass,
380	}, {
381		.compatible = "allwinner,sun8i-h3-pwm",
382		.data = &sun4i_pwm_single_bypass,
383	}, {
384		.compatible = "allwinner,sun50i-a64-pwm",
385		.data = &sun50i_a64_pwm_data,
386	}, {
387		.compatible = "allwinner,sun50i-h6-pwm",
388		.data = &sun50i_h6_pwm_data,
389	}, {
390		/* sentinel */
391	},
392};
393MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
394
395static int sun4i_pwm_probe(struct platform_device *pdev)
396{
397	struct sun4i_pwm_chip *pwm;
398	struct resource *res;
399	int ret;
 
 
 
 
400
401	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
402	if (!pwm)
403		return -ENOMEM;
404
405	pwm->data = of_device_get_match_data(&pdev->dev);
406	if (!pwm->data)
407		return -ENODEV;
408
409	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
410	pwm->base = devm_ioremap_resource(&pdev->dev, res);
411	if (IS_ERR(pwm->base))
412		return PTR_ERR(pwm->base);
413
414	/*
415	 * All hardware variants need a source clock that is divided and
416	 * then feeds the counter that defines the output wave form. In the
417	 * device tree this clock is either unnamed or called "mod".
418	 * Some variants (e.g. H6) need another clock to access the
419	 * hardware registers; this is called "bus".
420	 * So we request "mod" first (and ignore the corner case that a
421	 * parent provides a "mod" clock while the right one would be the
422	 * unnamed one of the PWM device) and if this is not found we fall
423	 * back to the first clock of the PWM.
424	 */
425	pwm->clk = devm_clk_get_optional(&pdev->dev, "mod");
426	if (IS_ERR(pwm->clk)) {
427		if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
428			dev_err(&pdev->dev, "get mod clock failed %pe\n",
429				pwm->clk);
430		return PTR_ERR(pwm->clk);
431	}
432
433	if (!pwm->clk) {
434		pwm->clk = devm_clk_get(&pdev->dev, NULL);
435		if (IS_ERR(pwm->clk)) {
436			if (PTR_ERR(pwm->clk) != -EPROBE_DEFER)
437				dev_err(&pdev->dev, "get unnamed clock failed %pe\n",
438					pwm->clk);
439			return PTR_ERR(pwm->clk);
440		}
441	}
442
443	pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
444	if (IS_ERR(pwm->bus_clk)) {
445		if (PTR_ERR(pwm->bus_clk) != -EPROBE_DEFER)
446			dev_err(&pdev->dev, "get bus clock failed %pe\n",
447				pwm->bus_clk);
448		return PTR_ERR(pwm->bus_clk);
449	}
450
451	pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
452	if (IS_ERR(pwm->rst)) {
453		if (PTR_ERR(pwm->rst) != -EPROBE_DEFER)
454			dev_err(&pdev->dev, "get reset failed %pe\n",
455				pwm->rst);
456		return PTR_ERR(pwm->rst);
457	}
458
459	/* Deassert reset */
460	ret = reset_control_deassert(pwm->rst);
461	if (ret) {
462		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
463			ERR_PTR(ret));
464		return ret;
465	}
466
467	/*
468	 * We're keeping the bus clock on for the sake of simplicity.
469	 * Actually it only needs to be on for hardware register accesses.
470	 */
471	ret = clk_prepare_enable(pwm->bus_clk);
472	if (ret) {
473		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
474			ERR_PTR(ret));
475		goto err_bus;
476	}
477
 
478	pwm->chip.dev = &pdev->dev;
479	pwm->chip.ops = &sun4i_pwm_ops;
480	pwm->chip.base = -1;
481	pwm->chip.npwm = pwm->data->npwm;
 
482	pwm->chip.of_xlate = of_pwm_xlate_with_flags;
483	pwm->chip.of_pwm_n_cells = 3;
484
485	spin_lock_init(&pwm->ctrl_lock);
486
487	ret = pwmchip_add(&pwm->chip);
488	if (ret < 0) {
489		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
490		goto err_pwm_add;
491	}
492
493	platform_set_drvdata(pdev, pwm);
494
495	return 0;
 
 
 
 
496
497err_pwm_add:
498	clk_disable_unprepare(pwm->bus_clk);
499err_bus:
500	reset_control_assert(pwm->rst);
 
501
 
 
 
 
502	return ret;
503}
504
505static int sun4i_pwm_remove(struct platform_device *pdev)
506{
507	struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
508	int ret;
509
510	ret = pwmchip_remove(&pwm->chip);
511	if (ret)
512		return ret;
513
514	clk_disable_unprepare(pwm->bus_clk);
515	reset_control_assert(pwm->rst);
516
517	return 0;
518}
519
520static struct platform_driver sun4i_pwm_driver = {
521	.driver = {
522		.name = "sun4i-pwm",
523		.of_match_table = sun4i_pwm_dt_ids,
524	},
525	.probe = sun4i_pwm_probe,
526	.remove = sun4i_pwm_remove,
527};
528module_platform_driver(sun4i_pwm_driver);
529
530MODULE_ALIAS("platform:sun4i-pwm");
531MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
532MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
533MODULE_LICENSE("GPL v2");
v4.6
 
  1/*
  2 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  3 *
  4 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
  5 *
  6 * Licensed under GPLv2.
 
 
  7 */
  8
  9#include <linux/bitops.h>
 10#include <linux/clk.h>
 
 11#include <linux/err.h>
 12#include <linux/io.h>
 
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/of_device.h>
 16#include <linux/platform_device.h>
 17#include <linux/pwm.h>
 
 18#include <linux/slab.h>
 19#include <linux/spinlock.h>
 20#include <linux/time.h>
 21
 22#define PWM_CTRL_REG		0x0
 23
 24#define PWM_CH_PRD_BASE		0x4
 25#define PWM_CH_PRD_OFFSET	0x4
 26#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 27
 28#define PWMCH_OFFSET		15
 29#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 30#define PWM_PRESCAL_OFF		0
 31#define PWM_EN			BIT(4)
 32#define PWM_ACT_STATE		BIT(5)
 33#define PWM_CLK_GATING		BIT(6)
 34#define PWM_MODE		BIT(7)
 35#define PWM_PULSE		BIT(8)
 36#define PWM_BYPASS		BIT(9)
 37
 38#define PWM_RDY_BASE		28
 39#define PWM_RDY_OFFSET		1
 40#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 41
 42#define PWM_PRD(prd)		(((prd) - 1) << 16)
 43#define PWM_PRD_MASK		GENMASK(15, 0)
 44
 45#define PWM_DTY_MASK		GENMASK(15, 0)
 46
 
 
 
 
 47#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 48
 49static const u32 prescaler_table[] = {
 50	120,
 51	180,
 52	240,
 53	360,
 54	480,
 55	0,
 56	0,
 57	0,
 58	12000,
 59	24000,
 60	36000,
 61	48000,
 62	72000,
 63	0,
 64	0,
 65	0, /* Actually 1 but tested separately */
 66};
 67
 68struct sun4i_pwm_data {
 69	bool has_prescaler_bypass;
 70	bool has_rdy;
 71	unsigned int npwm;
 72};
 73
 74struct sun4i_pwm_chip {
 75	struct pwm_chip chip;
 
 76	struct clk *clk;
 
 77	void __iomem *base;
 78	spinlock_t ctrl_lock;
 79	const struct sun4i_pwm_data *data;
 
 80};
 81
 82static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 83{
 84	return container_of(chip, struct sun4i_pwm_chip, chip);
 85}
 86
 87static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
 88				  unsigned long offset)
 89{
 90	return readl(chip->base + offset);
 91}
 92
 93static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
 94				    u32 val, unsigned long offset)
 95{
 96	writel(val, chip->base + offset);
 97}
 98
 99static int sun4i_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
100			    int duty_ns, int period_ns)
 
101{
102	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
103	u32 prd, dty, val, clk_gate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104	u64 clk_rate, div = 0;
105	unsigned int prescaler = 0;
106	int err;
107
108	clk_rate = clk_get_rate(sun4i_pwm->clk);
109
 
 
 
 
 
 
 
 
 
 
110	if (sun4i_pwm->data->has_prescaler_bypass) {
111		/* First, test without any prescaler when available */
112		prescaler = PWM_PRESCAL_MASK;
113		/*
114		 * When not using any prescaler, the clock period in nanoseconds
115		 * is not an integer so round it half up instead of
116		 * truncating to get less surprising values.
117		 */
118		div = clk_rate * period_ns + NSEC_PER_SEC / 2;
119		do_div(div, NSEC_PER_SEC);
120		if (div - 1 > PWM_PRD_MASK)
121			prescaler = 0;
122	}
123
124	if (prescaler == 0) {
125		/* Go up from the first divider */
126		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
127			if (!prescaler_table[prescaler])
 
 
128				continue;
 
129			div = clk_rate;
130			do_div(div, prescaler_table[prescaler]);
131			div = div * period_ns;
132			do_div(div, NSEC_PER_SEC);
133			if (div - 1 <= PWM_PRD_MASK)
134				break;
135		}
136
137		if (div - 1 > PWM_PRD_MASK) {
138			dev_err(chip->dev, "period exceeds the maximum value\n");
139			return -EINVAL;
140		}
141	}
142
143	prd = div;
144	div *= duty_ns;
145	do_div(div, period_ns);
146	dty = div;
147
148	err = clk_prepare_enable(sun4i_pwm->clk);
149	if (err) {
150		dev_err(chip->dev, "failed to enable PWM clock\n");
151		return err;
152	}
153
154	spin_lock(&sun4i_pwm->ctrl_lock);
155	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
156
157	if (sun4i_pwm->data->has_rdy && (val & PWM_RDY(pwm->hwpwm))) {
158		spin_unlock(&sun4i_pwm->ctrl_lock);
159		clk_disable_unprepare(sun4i_pwm->clk);
160		return -EBUSY;
161	}
162
163	clk_gate = val & BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
164	if (clk_gate) {
165		val &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
166		sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG);
167	}
168
169	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
170	val &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
171	val |= BIT_CH(prescaler, pwm->hwpwm);
172	sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG);
173
174	val = (dty & PWM_DTY_MASK) | PWM_PRD(prd);
175	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
176
177	if (clk_gate) {
178		val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
179		val |= clk_gate;
180		sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG);
181	}
182
183	spin_unlock(&sun4i_pwm->ctrl_lock);
184	clk_disable_unprepare(sun4i_pwm->clk);
185
186	return 0;
187}
188
189static int sun4i_pwm_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm,
190				  enum pwm_polarity polarity)
191{
192	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
193	u32 val;
 
194	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
195
196	ret = clk_prepare_enable(sun4i_pwm->clk);
 
197	if (ret) {
198		dev_err(chip->dev, "failed to enable PWM clock\n");
 
 
199		return ret;
200	}
201
202	spin_lock(&sun4i_pwm->ctrl_lock);
203	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
 
 
 
 
 
 
 
 
 
 
 
 
204
205	if (polarity != PWM_POLARITY_NORMAL)
206		val &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
207	else
208		val |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
209
210	sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG);
 
 
211
212	spin_unlock(&sun4i_pwm->ctrl_lock);
213	clk_disable_unprepare(sun4i_pwm->clk);
 
 
214
215	return 0;
216}
 
 
217
218static int sun4i_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
219{
220	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
221	u32 val;
222	int ret;
223
224	ret = clk_prepare_enable(sun4i_pwm->clk);
225	if (ret) {
226		dev_err(chip->dev, "failed to enable PWM clock\n");
227		return ret;
 
228	}
229
230	spin_lock(&sun4i_pwm->ctrl_lock);
231	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
232	val |= BIT_CH(PWM_EN, pwm->hwpwm);
233	val |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
234	sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG);
235	spin_unlock(&sun4i_pwm->ctrl_lock);
236
237	return 0;
238}
239
240static void sun4i_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
241{
242	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
243	u32 val;
 
 
 
 
 
 
244
245	spin_lock(&sun4i_pwm->ctrl_lock);
246	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
247	val &= ~BIT_CH(PWM_EN, pwm->hwpwm);
248	val &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
249	sun4i_pwm_writel(sun4i_pwm, val, PWM_CTRL_REG);
250	spin_unlock(&sun4i_pwm->ctrl_lock);
251
252	clk_disable_unprepare(sun4i_pwm->clk);
 
 
253}
254
255static const struct pwm_ops sun4i_pwm_ops = {
256	.config = sun4i_pwm_config,
257	.set_polarity = sun4i_pwm_set_polarity,
258	.enable = sun4i_pwm_enable,
259	.disable = sun4i_pwm_disable,
260	.owner = THIS_MODULE,
261};
262
263static const struct sun4i_pwm_data sun4i_pwm_data_a10 = {
264	.has_prescaler_bypass = false,
265	.has_rdy = false,
266	.npwm = 2,
267};
268
269static const struct sun4i_pwm_data sun4i_pwm_data_a10s = {
270	.has_prescaler_bypass = true,
271	.has_rdy = true,
272	.npwm = 2,
273};
274
275static const struct sun4i_pwm_data sun4i_pwm_data_a13 = {
 
 
 
 
 
276	.has_prescaler_bypass = true,
277	.has_rdy = true,
278	.npwm = 1,
279};
280
281static const struct sun4i_pwm_data sun4i_pwm_data_a20 = {
282	.has_prescaler_bypass = true,
283	.has_rdy = true,
284	.npwm = 2,
285};
286
287static const struct of_device_id sun4i_pwm_dt_ids[] = {
288	{
289		.compatible = "allwinner,sun4i-a10-pwm",
290		.data = &sun4i_pwm_data_a10,
291	}, {
292		.compatible = "allwinner,sun5i-a10s-pwm",
293		.data = &sun4i_pwm_data_a10s,
294	}, {
295		.compatible = "allwinner,sun5i-a13-pwm",
296		.data = &sun4i_pwm_data_a13,
297	}, {
298		.compatible = "allwinner,sun7i-a20-pwm",
299		.data = &sun4i_pwm_data_a20,
 
 
 
 
 
 
 
 
 
300	}, {
301		/* sentinel */
302	},
303};
304MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
305
306static int sun4i_pwm_probe(struct platform_device *pdev)
307{
308	struct sun4i_pwm_chip *pwm;
309	struct resource *res;
310	u32 val;
311	int i, ret;
312	const struct of_device_id *match;
313
314	match = of_match_device(sun4i_pwm_dt_ids, &pdev->dev);
315
316	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
317	if (!pwm)
318		return -ENOMEM;
319
 
 
 
 
320	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
321	pwm->base = devm_ioremap_resource(&pdev->dev, res);
322	if (IS_ERR(pwm->base))
323		return PTR_ERR(pwm->base);
324
325	pwm->clk = devm_clk_get(&pdev->dev, NULL);
326	if (IS_ERR(pwm->clk))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327		return PTR_ERR(pwm->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328
329	pwm->data = match->data;
330	pwm->chip.dev = &pdev->dev;
331	pwm->chip.ops = &sun4i_pwm_ops;
332	pwm->chip.base = -1;
333	pwm->chip.npwm = pwm->data->npwm;
334	pwm->chip.can_sleep = true;
335	pwm->chip.of_xlate = of_pwm_xlate_with_flags;
336	pwm->chip.of_pwm_n_cells = 3;
337
338	spin_lock_init(&pwm->ctrl_lock);
339
340	ret = pwmchip_add(&pwm->chip);
341	if (ret < 0) {
342		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
343		return ret;
344	}
345
346	platform_set_drvdata(pdev, pwm);
347
348	ret = clk_prepare_enable(pwm->clk);
349	if (ret) {
350		dev_err(&pdev->dev, "failed to enable PWM clock\n");
351		goto clk_error;
352	}
353
354	val = sun4i_pwm_readl(pwm, PWM_CTRL_REG);
355	for (i = 0; i < pwm->chip.npwm; i++)
356		if (!(val & BIT_CH(PWM_ACT_STATE, i)))
357			pwm->chip.pwms[i].polarity = PWM_POLARITY_INVERSED;
358	clk_disable_unprepare(pwm->clk);
359
360	return 0;
361
362clk_error:
363	pwmchip_remove(&pwm->chip);
364	return ret;
365}
366
367static int sun4i_pwm_remove(struct platform_device *pdev)
368{
369	struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
 
370
371	return pwmchip_remove(&pwm->chip);
 
 
 
 
 
 
 
372}
373
374static struct platform_driver sun4i_pwm_driver = {
375	.driver = {
376		.name = "sun4i-pwm",
377		.of_match_table = sun4i_pwm_dt_ids,
378	},
379	.probe = sun4i_pwm_probe,
380	.remove = sun4i_pwm_remove,
381};
382module_platform_driver(sun4i_pwm_driver);
383
384MODULE_ALIAS("platform:sun4i-pwm");
385MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
386MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
387MODULE_LICENSE("GPL v2");