Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2
3/* drivers/atm/firestream.c - FireStream 155 (MB86697) and
4 * FireStream 50 (MB86695) device driver
5 */
6
7/* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
8 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
9 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
10 */
11
12/*
13*/
14
15
16#include <linux/module.h>
17#include <linux/sched.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/pci.h>
21#include <linux/poison.h>
22#include <linux/errno.h>
23#include <linux/atm.h>
24#include <linux/atmdev.h>
25#include <linux/sonet.h>
26#include <linux/skbuff.h>
27#include <linux/netdevice.h>
28#include <linux/delay.h>
29#include <linux/ioport.h> /* for request_region */
30#include <linux/uio.h>
31#include <linux/init.h>
32#include <linux/interrupt.h>
33#include <linux/capability.h>
34#include <linux/bitops.h>
35#include <linux/slab.h>
36#include <asm/byteorder.h>
37#include <asm/string.h>
38#include <asm/io.h>
39#include <linux/atomic.h>
40#include <linux/uaccess.h>
41#include <linux/wait.h>
42
43#include "firestream.h"
44
45static int loopback = 0;
46static int num=0x5a;
47
48/* According to measurements (but they look suspicious to me!) done in
49 * '97, 37% of the packets are one cell in size. So it pays to have
50 * buffers allocated at that size. A large jump in percentage of
51 * packets occurs at packets around 536 bytes in length. So it also
52 * pays to have those pre-allocated. Unfortunately, we can't fully
53 * take advantage of this as the majority of the packets is likely to
54 * be TCP/IP (As where obviously the measurement comes from) There the
55 * link would be opened with say a 1500 byte MTU, and we can't handle
56 * smaller buffers more efficiently than the larger ones. -- REW
57 */
58
59/* Due to the way Linux memory management works, specifying "576" as
60 * an allocation size here isn't going to help. They are allocated
61 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
62 * large), it doesn't pay to allocate the smallest size (64) -- REW */
63
64/* This is all guesswork. Hard numbers to back this up or disprove this,
65 * are appreciated. -- REW */
66
67/* The last entry should be about 64k. However, the "buffer size" is
68 * passed to the chip in a 16 bit field. I don't know how "65536"
69 * would be interpreted. -- REW */
70
71#define NP FS_NR_FREE_POOLS
72static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
73/* log2: 7 8 9 10 11 12 14 16 */
74
75#if 0
76static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
77#else
78/* debug */
79static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
80#endif
81/* log2: 10 10 9 8 7 6 5 5 */
82/* sumlog2: 17 18 18 18 18 18 19 21 */
83/* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
84/* tot mem: almost 4M */
85
86/* NP is shorter, so that it fits on a single line. */
87#undef NP
88
89
90/* Small hardware gotcha:
91
92 The FS50 CAM (VP/VC match registers) always take the lowest channel
93 number that matches. This is not a problem.
94
95 However, they also ignore whether the channel is enabled or
96 not. This means that if you allocate channel 0 to 1.2 and then
97 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
98 match channel for channel 0 will "steal" the traffic from channel
99 1, even if you correctly disable channel 0.
100
101 Workaround:
102
103 - When disabling channels, write an invalid VP/VC value to the
104 match register. (We use 0xffffffff, which in the worst case
105 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
106 anything as some "when not in use, program to 0" bits are now
107 programmed to 1...)
108
109 - Don't initialize the match registers to 0, as 0.0 is a valid
110 channel.
111*/
112
113
114/* Optimization hints and tips.
115
116 The FireStream chips are very capable of reducing the amount of
117 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
118 action. You could try to minimize this a bit.
119
120 Besides that, the userspace->kernel copy and the PCI bus are the
121 performance limiting issues for this driver.
122
123 You could queue up a bunch of outgoing packets without telling the
124 FireStream. I'm not sure that's going to win you much though. The
125 Linux layer won't tell us in advance when it's not going to give us
126 any more packets in a while. So this is tricky to implement right without
127 introducing extra delays.
128
129 -- REW
130 */
131
132
133
134
135/* The strings that define what the RX queue entry is all about. */
136/* Fujitsu: Please tell me which ones can have a pointer to a
137 freepool descriptor! */
138static char *res_strings[] = {
139 "RX OK: streaming not EOP",
140 "RX OK: streaming EOP",
141 "RX OK: Single buffer packet",
142 "RX OK: packet mode",
143 "RX OK: F4 OAM (end to end)",
144 "RX OK: F4 OAM (Segment)",
145 "RX OK: F5 OAM (end to end)",
146 "RX OK: F5 OAM (Segment)",
147 "RX OK: RM cell",
148 "RX OK: TRANSP cell",
149 "RX OK: TRANSPC cell",
150 "Unmatched cell",
151 "reserved 12",
152 "reserved 13",
153 "reserved 14",
154 "Unrecognized cell",
155 "reserved 16",
156 "reassembly abort: AAL5 abort",
157 "packet purged",
158 "packet ageing timeout",
159 "channel ageing timeout",
160 "calculated length error",
161 "programmed length limit error",
162 "aal5 crc32 error",
163 "oam transp or transpc crc10 error",
164 "reserved 25",
165 "reserved 26",
166 "reserved 27",
167 "reserved 28",
168 "reserved 29",
169 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
170 "reassembly abort: no buffers",
171 "receive buffer overflow",
172 "change in GFC",
173 "receive buffer full",
174 "low priority discard - no receive descriptor",
175 "low priority discard - missing end of packet",
176 "reserved 37",
177 "reserved 38",
178 "reserved 39",
179 "reserved 40",
180 "reserved 41",
181 "reserved 42",
182 "reserved 43",
183 "reserved 44",
184 "reserved 45",
185 "reserved 46",
186 "reserved 47",
187 "reserved 48",
188 "reserved 49",
189 "reserved 50",
190 "reserved 51",
191 "reserved 52",
192 "reserved 53",
193 "reserved 54",
194 "reserved 55",
195 "reserved 56",
196 "reserved 57",
197 "reserved 58",
198 "reserved 59",
199 "reserved 60",
200 "reserved 61",
201 "reserved 62",
202 "reserved 63",
203};
204
205static char *irq_bitname[] = {
206 "LPCO",
207 "DPCO",
208 "RBRQ0_W",
209 "RBRQ1_W",
210 "RBRQ2_W",
211 "RBRQ3_W",
212 "RBRQ0_NF",
213 "RBRQ1_NF",
214 "RBRQ2_NF",
215 "RBRQ3_NF",
216 "BFP_SC",
217 "INIT",
218 "INIT_ERR",
219 "USCEO",
220 "UPEC0",
221 "VPFCO",
222 "CRCCO",
223 "HECO",
224 "TBRQ_W",
225 "TBRQ_NF",
226 "CTPQ_E",
227 "GFC_C0",
228 "PCI_FTL",
229 "CSQ_W",
230 "CSQ_NF",
231 "EXT_INT",
232 "RXDMA_S"
233};
234
235
236#define PHY_EOF -1
237#define PHY_CLEARALL -2
238
239struct reginit_item {
240 int reg, val;
241};
242
243
244static struct reginit_item PHY_NTC_INIT[] = {
245 { PHY_CLEARALL, 0x40 },
246 { 0x12, 0x0001 },
247 { 0x13, 0x7605 },
248 { 0x1A, 0x0001 },
249 { 0x1B, 0x0005 },
250 { 0x38, 0x0003 },
251 { 0x39, 0x0006 }, /* changed here to make loopback */
252 { 0x01, 0x5262 },
253 { 0x15, 0x0213 },
254 { 0x00, 0x0003 },
255 { PHY_EOF, 0}, /* -1 signals end of list */
256};
257
258
259/* Safetyfeature: If the card interrupts more than this number of times
260 in a jiffy (1/100th of a second) then we just disable the interrupt and
261 print a message. This prevents the system from hanging.
262
263 150000 packets per second is close to the limit a PC is going to have
264 anyway. We therefore have to disable this for production. -- REW */
265#undef IRQ_RATE_LIMIT // 100
266
267/* Interrupts work now. Unlike serial cards, ATM cards don't work all
268 that great without interrupts. -- REW */
269#undef FS_POLL_FREQ // 100
270
271/*
272 This driver can spew a whole lot of debugging output at you. If you
273 need maximum performance, you should disable the DEBUG define. To
274 aid in debugging in the field, I'm leaving the compile-time debug
275 features enabled, and disable them "runtime". That allows me to
276 instruct people with problems to enable debugging without requiring
277 them to recompile... -- REW
278*/
279#define DEBUG
280
281#ifdef DEBUG
282#define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
283#else
284#define fs_dprintk(f, str...) /* nothing */
285#endif
286
287
288static int fs_keystream = 0;
289
290#ifdef DEBUG
291/* I didn't forget to set this to zero before shipping. Hit me with a stick
292 if you get this with the debug default not set to zero again. -- REW */
293static int fs_debug = 0;
294#else
295#define fs_debug 0
296#endif
297
298#ifdef MODULE
299#ifdef DEBUG
300module_param(fs_debug, int, 0644);
301#endif
302module_param(loopback, int, 0);
303module_param(num, int, 0);
304module_param(fs_keystream, int, 0);
305/* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
306#endif
307
308
309#define FS_DEBUG_FLOW 0x00000001
310#define FS_DEBUG_OPEN 0x00000002
311#define FS_DEBUG_QUEUE 0x00000004
312#define FS_DEBUG_IRQ 0x00000008
313#define FS_DEBUG_INIT 0x00000010
314#define FS_DEBUG_SEND 0x00000020
315#define FS_DEBUG_PHY 0x00000040
316#define FS_DEBUG_CLEANUP 0x00000080
317#define FS_DEBUG_QOS 0x00000100
318#define FS_DEBUG_TXQ 0x00000200
319#define FS_DEBUG_ALLOC 0x00000400
320#define FS_DEBUG_TXMEM 0x00000800
321#define FS_DEBUG_QSIZE 0x00001000
322
323
324#define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
325#define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
326
327
328static struct fs_dev *fs_boards = NULL;
329
330#ifdef DEBUG
331
332static void my_hd (void *addr, int len)
333{
334 int j, ch;
335 unsigned char *ptr = addr;
336
337 while (len > 0) {
338 printk ("%p ", ptr);
339 for (j=0;j < ((len < 16)?len:16);j++) {
340 printk ("%02x %s", ptr[j], (j==7)?" ":"");
341 }
342 for ( ;j < 16;j++) {
343 printk (" %s", (j==7)?" ":"");
344 }
345 for (j=0;j < ((len < 16)?len:16);j++) {
346 ch = ptr[j];
347 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
348 }
349 printk ("\n");
350 ptr += 16;
351 len -= 16;
352 }
353}
354#else /* DEBUG */
355static void my_hd (void *addr, int len){}
356#endif /* DEBUG */
357
358/********** free an skb (as per ATM device driver documentation) **********/
359
360/* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
361 * I copied it over from the ambassador driver. -- REW */
362
363static inline void fs_kfree_skb (struct sk_buff * skb)
364{
365 if (ATM_SKB(skb)->vcc->pop)
366 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
367 else
368 dev_kfree_skb_any (skb);
369}
370
371
372
373
374/* It seems the ATM forum recommends this horribly complicated 16bit
375 * floating point format. Turns out the Ambassador uses the exact same
376 * encoding. I just copied it over. If Mitch agrees, I'll move it over
377 * to the atm_misc file or something like that. (and remove it from
378 * here and the ambassador driver) -- REW
379 */
380
381/* The good thing about this format is that it is monotonic. So,
382 a conversion routine need not be very complicated. To be able to
383 round "nearest" we need to take along a few extra bits. Lets
384 put these after 16 bits, so that we can just return the top 16
385 bits of the 32bit number as the result:
386
387 int mr (unsigned int rate, int r)
388 {
389 int e = 16+9;
390 static int round[4]={0, 0, 0xffff, 0x8000};
391 if (!rate) return 0;
392 while (rate & 0xfc000000) {
393 rate >>= 1;
394 e++;
395 }
396 while (! (rate & 0xfe000000)) {
397 rate <<= 1;
398 e--;
399 }
400
401// Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
402 rate &= ~0x02000000;
403// Next add in the exponent
404 rate |= e << (16+9);
405// And perform the rounding:
406 return (rate + round[r]) >> 16;
407 }
408
409 14 lines-of-code. Compare that with the 120 that the Ambassador
410 guys needed. (would be 8 lines shorter if I'd try to really reduce
411 the number of lines:
412
413 int mr (unsigned int rate, int r)
414 {
415 int e = 16+9;
416 static int round[4]={0, 0, 0xffff, 0x8000};
417 if (!rate) return 0;
418 for (; rate & 0xfc000000 ;rate >>= 1, e++);
419 for (;!(rate & 0xfe000000);rate <<= 1, e--);
420 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
421 }
422
423 Exercise for the reader: Remove one more line-of-code, without
424 cheating. (Just joining two lines is cheating). (I know it's
425 possible, don't think you've beat me if you found it... If you
426 manage to lose two lines or more, keep me updated! ;-)
427
428 -- REW */
429
430
431#define ROUND_UP 1
432#define ROUND_DOWN 2
433#define ROUND_NEAREST 3
434/********** make rate (not quite as much fun as Horizon) **********/
435
436static int make_rate(unsigned int rate, int r,
437 u16 *bits, unsigned int *actual)
438{
439 unsigned char exp = -1; /* hush gcc */
440 unsigned int man = -1; /* hush gcc */
441
442 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
443
444 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
445 given 5-bit e and 9-bit m:
446 rate = EITHER (1+m/2^9)*2^e OR 0
447 bits = EITHER 1<<14 | e<<9 | m OR 0
448 (bit 15 is "reserved", bit 14 "non-zero")
449 smallest rate is 0 (special representation)
450 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
451 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
452 simple algorithm:
453 find position of top bit, this gives e
454 remove top bit and shift (rounding if feeling clever) by 9-e
455 */
456 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
457 representable. // This should move into the ambassador driver
458 when properly merged. -- REW */
459
460 if (rate > 0xffc00000U) {
461 /* larger than largest representable rate */
462
463 if (r == ROUND_UP) {
464 return -EINVAL;
465 } else {
466 exp = 31;
467 man = 511;
468 }
469
470 } else if (rate) {
471 /* representable rate */
472
473 exp = 31;
474 man = rate;
475
476 /* invariant: rate = man*2^(exp-31) */
477 while (!(man & (1<<31))) {
478 exp = exp - 1;
479 man = man<<1;
480 }
481
482 /* man has top bit set
483 rate = (2^31+(man-2^31))*2^(exp-31)
484 rate = (1+(man-2^31)/2^31)*2^exp
485 */
486 man = man<<1;
487 man &= 0xffffffffU; /* a nop on 32-bit systems */
488 /* rate = (1+man/2^32)*2^exp
489
490 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
491 time to lose significance... we want m in the range 0 to 2^9-1
492 rounding presents a minor problem... we first decide which way
493 we are rounding (based on given rounding direction and possibly
494 the bits of the mantissa that are to be discarded).
495 */
496
497 switch (r) {
498 case ROUND_DOWN: {
499 /* just truncate */
500 man = man>>(32-9);
501 break;
502 }
503 case ROUND_UP: {
504 /* check all bits that we are discarding */
505 if (man & (~0U>>9)) {
506 man = (man>>(32-9)) + 1;
507 if (man == (1<<9)) {
508 /* no need to check for round up outside of range */
509 man = 0;
510 exp += 1;
511 }
512 } else {
513 man = (man>>(32-9));
514 }
515 break;
516 }
517 case ROUND_NEAREST: {
518 /* check msb that we are discarding */
519 if (man & (1<<(32-9-1))) {
520 man = (man>>(32-9)) + 1;
521 if (man == (1<<9)) {
522 /* no need to check for round up outside of range */
523 man = 0;
524 exp += 1;
525 }
526 } else {
527 man = (man>>(32-9));
528 }
529 break;
530 }
531 }
532
533 } else {
534 /* zero rate - not representable */
535
536 if (r == ROUND_DOWN) {
537 return -EINVAL;
538 } else {
539 exp = 0;
540 man = 0;
541 }
542 }
543
544 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
545
546 if (bits)
547 *bits = /* (1<<14) | */ (exp<<9) | man;
548
549 if (actual)
550 *actual = (exp >= 9)
551 ? (1 << exp) + (man << (exp-9))
552 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
553
554 return 0;
555}
556
557
558
559
560/* FireStream access routines */
561/* For DEEP-DOWN debugging these can be rigged to intercept accesses to
562 certain registers or to just log all accesses. */
563
564static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
565{
566 writel (val, dev->base + offset);
567}
568
569
570static inline u32 read_fs (struct fs_dev *dev, int offset)
571{
572 return readl (dev->base + offset);
573}
574
575
576
577static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
578{
579 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
580}
581
582
583static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
584{
585 u32 wp;
586 struct FS_QENTRY *cqe;
587
588 /* XXX Sanity check: the write pointer can be checked to be
589 still the same as the value passed as qe... -- REW */
590 /* udelay (5); */
591 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
592 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
593 q->offset);
594 schedule ();
595 }
596
597 wp &= ~0xf;
598 cqe = bus_to_virt (wp);
599 if (qe != cqe) {
600 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
601 }
602
603 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
604
605 {
606 static int c;
607 if (!(c++ % 100))
608 {
609 int rp, wp;
610 rp = read_fs (dev, Q_RP(q->offset));
611 wp = read_fs (dev, Q_WP(q->offset));
612 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
613 q->offset, rp, wp, wp-rp);
614 }
615 }
616}
617
618#ifdef DEBUG_EXTRA
619static struct FS_QENTRY pq[60];
620static int qp;
621
622static struct FS_BPENTRY dq[60];
623static int qd;
624static void *da[60];
625#endif
626
627static void submit_queue (struct fs_dev *dev, struct queue *q,
628 u32 cmd, u32 p1, u32 p2, u32 p3)
629{
630 struct FS_QENTRY *qe;
631
632 qe = get_qentry (dev, q);
633 qe->cmd = cmd;
634 qe->p0 = p1;
635 qe->p1 = p2;
636 qe->p2 = p3;
637 submit_qentry (dev, q, qe);
638
639#ifdef DEBUG_EXTRA
640 pq[qp].cmd = cmd;
641 pq[qp].p0 = p1;
642 pq[qp].p1 = p2;
643 pq[qp].p2 = p3;
644 qp++;
645 if (qp >= 60) qp = 0;
646#endif
647}
648
649/* Test the "other" way one day... -- REW */
650#if 1
651#define submit_command submit_queue
652#else
653
654static void submit_command (struct fs_dev *dev, struct queue *q,
655 u32 cmd, u32 p1, u32 p2, u32 p3)
656{
657 write_fs (dev, CMDR0, cmd);
658 write_fs (dev, CMDR1, p1);
659 write_fs (dev, CMDR2, p2);
660 write_fs (dev, CMDR3, p3);
661}
662#endif
663
664
665
666static void process_return_queue (struct fs_dev *dev, struct queue *q)
667{
668 long rq;
669 struct FS_QENTRY *qe;
670 void *tc;
671
672 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
673 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
674 qe = bus_to_virt (rq);
675
676 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
677 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
678
679 switch (STATUS_CODE (qe)) {
680 case 5:
681 tc = bus_to_virt (qe->p0);
682 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
683 kfree (tc);
684 break;
685 }
686
687 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
688 }
689}
690
691
692static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
693{
694 long rq;
695 long tmp;
696 struct FS_QENTRY *qe;
697 struct sk_buff *skb;
698 struct FS_BPENTRY *td;
699
700 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
701 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
702 qe = bus_to_virt (rq);
703
704 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
705 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
706
707 if (STATUS_CODE (qe) != 2)
708 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
709 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
710
711
712 switch (STATUS_CODE (qe)) {
713 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
714 fallthrough;
715 case 0x02:
716 /* Process a real txdone entry. */
717 tmp = qe->p0;
718 if (tmp & 0x0f)
719 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
720 tmp &= ~0x0f;
721 td = bus_to_virt (tmp);
722
723 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
724 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
725
726 skb = td->skb;
727 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
728 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
729 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
730 }
731 td->dev->ntxpckts--;
732
733 {
734 static int c=0;
735
736 if (!(c++ % 100)) {
737 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
738 }
739 }
740
741 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
742
743 fs_dprintk (FS_DEBUG_TXMEM, "i");
744 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
745 fs_kfree_skb (skb);
746
747 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
748 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
749 kfree (td);
750 break;
751 default:
752 /* Here we get the tx purge inhibit command ... */
753 /* Action, I believe, is "don't do anything". -- REW */
754 ;
755 }
756
757 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
758 }
759}
760
761
762static void process_incoming (struct fs_dev *dev, struct queue *q)
763{
764 long rq;
765 struct FS_QENTRY *qe;
766 struct FS_BPENTRY *pe;
767 struct sk_buff *skb;
768 unsigned int channo;
769 struct atm_vcc *atm_vcc;
770
771 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
772 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
773 qe = bus_to_virt (rq);
774
775 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
776 qe->cmd, qe->p0, qe->p1, qe->p2);
777
778 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
779 STATUS_CODE (qe),
780 res_strings[STATUS_CODE(qe)]);
781
782 pe = bus_to_virt (qe->p0);
783 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
784 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
785 pe->skb, pe->fp);
786
787 channo = qe->cmd & 0xffff;
788
789 if (channo < dev->nchannels)
790 atm_vcc = dev->atm_vccs[channo];
791 else
792 atm_vcc = NULL;
793
794 /* Single buffer packet */
795 switch (STATUS_CODE (qe)) {
796 case 0x1:
797 /* Fall through for streaming mode */
798 case 0x2:/* Packet received OK.... */
799 if (atm_vcc) {
800 skb = pe->skb;
801 pe->fp->n--;
802#if 0
803 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
804 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
805#endif
806 skb_put (skb, qe->p1 & 0xffff);
807 ATM_SKB(skb)->vcc = atm_vcc;
808 atomic_inc(&atm_vcc->stats->rx);
809 __net_timestamp(skb);
810 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
811 atm_vcc->push (atm_vcc, skb);
812 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
813 kfree (pe);
814 } else {
815 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
816 }
817 break;
818 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
819 has been consumed and needs to be processed. -- REW */
820 if (qe->p1 & 0xffff) {
821 pe = bus_to_virt (qe->p0);
822 pe->fp->n--;
823 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
824 dev_kfree_skb_any (pe->skb);
825 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
826 kfree (pe);
827 }
828 if (atm_vcc)
829 atomic_inc(&atm_vcc->stats->rx_drop);
830 break;
831 case 0x1f: /* Reassembly abort: no buffers. */
832 /* Silently increment error counter. */
833 if (atm_vcc)
834 atomic_inc(&atm_vcc->stats->rx_drop);
835 break;
836 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
837 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
838 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
839 }
840 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
841 }
842}
843
844
845
846#define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
847
848static int fs_open(struct atm_vcc *atm_vcc)
849{
850 struct fs_dev *dev;
851 struct fs_vcc *vcc;
852 struct fs_transmit_config *tc;
853 struct atm_trafprm * txtp;
854 struct atm_trafprm * rxtp;
855 /* struct fs_receive_config *rc;*/
856 /* struct FS_QENTRY *qe; */
857 int error;
858 int bfp;
859 int to;
860 unsigned short tmc0;
861 short vpi = atm_vcc->vpi;
862 int vci = atm_vcc->vci;
863
864 func_enter ();
865
866 dev = FS_DEV(atm_vcc->dev);
867 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
868 dev, atm_vcc);
869
870 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
871 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
872
873 if ((atm_vcc->qos.aal != ATM_AAL5) &&
874 (atm_vcc->qos.aal != ATM_AAL2))
875 return -EINVAL; /* XXX AAL0 */
876
877 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
878 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
879
880 /* XXX handle qos parameters (rate limiting) ? */
881
882 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
883 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
884 if (!vcc) {
885 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
886 return -ENOMEM;
887 }
888
889 atm_vcc->dev_data = vcc;
890 vcc->last_skb = NULL;
891
892 init_waitqueue_head (&vcc->close_wait);
893
894 txtp = &atm_vcc->qos.txtp;
895 rxtp = &atm_vcc->qos.rxtp;
896
897 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
898 if (IS_FS50(dev)) {
899 /* Increment the channel numer: take a free one next time. */
900 for (to=33;to;to--, dev->channo++) {
901 /* We only have 32 channels */
902 if (dev->channo >= 32)
903 dev->channo = 0;
904 /* If we need to do RX, AND the RX is inuse, try the next */
905 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
906 continue;
907 /* If we need to do TX, AND the TX is inuse, try the next */
908 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
909 continue;
910 /* Ok, both are free! (or not needed) */
911 break;
912 }
913 if (!to) {
914 printk ("No more free channels for FS50..\n");
915 kfree(vcc);
916 return -EBUSY;
917 }
918 vcc->channo = dev->channo;
919 dev->channo &= dev->channel_mask;
920
921 } else {
922 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
923 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
924 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
925 printk ("Channel is in use for FS155.\n");
926 kfree(vcc);
927 return -EBUSY;
928 }
929 }
930 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
931 vcc->channo, vcc->channo);
932 }
933
934 if (DO_DIRECTION (txtp)) {
935 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
936 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
937 tc, sizeof (struct fs_transmit_config));
938 if (!tc) {
939 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
940 kfree(vcc);
941 return -ENOMEM;
942 }
943
944 /* Allocate the "open" entry from the high priority txq. This makes
945 it most likely that the chip will notice it. It also prevents us
946 from having to wait for completion. On the other hand, we may
947 need to wait for completion anyway, to see if it completed
948 successfully. */
949
950 switch (atm_vcc->qos.aal) {
951 case ATM_AAL2:
952 case ATM_AAL0:
953 tc->flags = 0
954 | TC_FLAGS_TRANSPARENT_PAYLOAD
955 | TC_FLAGS_PACKET
956 | (1 << 28)
957 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
958 | TC_FLAGS_CAL0;
959 break;
960 case ATM_AAL5:
961 tc->flags = 0
962 | TC_FLAGS_AAL5
963 | TC_FLAGS_PACKET /* ??? */
964 | TC_FLAGS_TYPE_CBR
965 | TC_FLAGS_CAL0;
966 break;
967 default:
968 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
969 tc->flags = 0;
970 }
971 /* Docs are vague about this atm_hdr field. By the way, the FS
972 * chip makes odd errors if lower bits are set.... -- REW */
973 tc->atm_hdr = (vpi << 20) | (vci << 4);
974 tmc0 = 0;
975 {
976 int pcr = atm_pcr_goal (txtp);
977
978 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
979
980 /* XXX Hmm. officially we're only allowed to do this if rounding
981 is round_down -- REW */
982 if (IS_FS50(dev)) {
983 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
984 } else {
985 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
986 }
987 if (!pcr) {
988 /* no rate cap */
989 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
990 } else {
991 int r;
992 if (pcr < 0) {
993 r = ROUND_DOWN;
994 pcr = -pcr;
995 } else {
996 r = ROUND_UP;
997 }
998 error = make_rate (pcr, r, &tmc0, NULL);
999 if (error) {
1000 kfree(tc);
1001 kfree(vcc);
1002 return error;
1003 }
1004 }
1005 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1006 }
1007
1008 tc->TMC[0] = tmc0 | 0x4000;
1009 tc->TMC[1] = 0; /* Unused */
1010 tc->TMC[2] = 0; /* Unused */
1011 tc->TMC[3] = 0; /* Unused */
1012
1013 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1014 tc->rtag[0] = 0; /* What should I do with routing tags???
1015 -- Not used -- AS -- Thanks -- REW*/
1016 tc->rtag[1] = 0;
1017 tc->rtag[2] = 0;
1018
1019 if (fs_debug & FS_DEBUG_OPEN) {
1020 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1021 my_hd (tc, sizeof (*tc));
1022 }
1023
1024 /* We now use the "submit_command" function to submit commands to
1025 the firestream. There is a define up near the definition of
1026 that routine that switches this routine between immediate write
1027 to the immediate command registers and queuing the commands in
1028 the HPTXQ for execution. This last technique might be more
1029 efficient if we know we're going to submit a whole lot of
1030 commands in one go, but this driver is not setup to be able to
1031 use such a construct. So it probably doen't matter much right
1032 now. -- REW */
1033
1034 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1035 submit_command (dev, &dev->hp_txq,
1036 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1037 virt_to_bus (tc), 0, 0);
1038
1039 submit_command (dev, &dev->hp_txq,
1040 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1041 0, 0, 0);
1042 set_bit (vcc->channo, dev->tx_inuse);
1043 }
1044
1045 if (DO_DIRECTION (rxtp)) {
1046 dev->atm_vccs[vcc->channo] = atm_vcc;
1047
1048 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1049 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1050 if (bfp >= FS_NR_FREE_POOLS) {
1051 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1052 atm_vcc->qos.rxtp.max_sdu);
1053 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1054
1055 /* XXX clear tx inuse. Close TX part? */
1056 dev->atm_vccs[vcc->channo] = NULL;
1057 kfree (vcc);
1058 return -EINVAL;
1059 }
1060
1061 switch (atm_vcc->qos.aal) {
1062 case ATM_AAL0:
1063 case ATM_AAL2:
1064 submit_command (dev, &dev->hp_txq,
1065 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1066 RC_FLAGS_TRANSP |
1067 RC_FLAGS_BFPS_BFP * bfp |
1068 RC_FLAGS_RXBM_PSB, 0, 0);
1069 break;
1070 case ATM_AAL5:
1071 submit_command (dev, &dev->hp_txq,
1072 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1073 RC_FLAGS_AAL5 |
1074 RC_FLAGS_BFPS_BFP * bfp |
1075 RC_FLAGS_RXBM_PSB, 0, 0);
1076 break;
1077 }
1078 if (IS_FS50 (dev)) {
1079 submit_command (dev, &dev->hp_txq,
1080 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1081 0x80 + vcc->channo,
1082 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1083 }
1084 submit_command (dev, &dev->hp_txq,
1085 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1086 0, 0, 0);
1087 }
1088
1089 /* Indicate we're done! */
1090 set_bit(ATM_VF_READY, &atm_vcc->flags);
1091
1092 func_exit ();
1093 return 0;
1094}
1095
1096
1097static void fs_close(struct atm_vcc *atm_vcc)
1098{
1099 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1100 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1101 struct atm_trafprm * txtp;
1102 struct atm_trafprm * rxtp;
1103
1104 func_enter ();
1105
1106 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1107
1108 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1109 if (vcc->last_skb) {
1110 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1111 vcc->last_skb);
1112 /* We're going to wait for the last packet to get sent on this VC. It would
1113 be impolite not to send them don't you think?
1114 XXX
1115 We don't know which packets didn't get sent. So if we get interrupted in
1116 this sleep_on, we'll lose any reference to these packets. Memory leak!
1117 On the other hand, it's awfully convenient that we can abort a "close" that
1118 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1119 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1120 }
1121
1122 txtp = &atm_vcc->qos.txtp;
1123 rxtp = &atm_vcc->qos.rxtp;
1124
1125
1126 /* See App note XXX (Unpublished as of now) for the reason for the
1127 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1128
1129 if (DO_DIRECTION (txtp)) {
1130 submit_command (dev, &dev->hp_txq,
1131 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1132 clear_bit (vcc->channo, dev->tx_inuse);
1133 }
1134
1135 if (DO_DIRECTION (rxtp)) {
1136 submit_command (dev, &dev->hp_txq,
1137 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1138 dev->atm_vccs [vcc->channo] = NULL;
1139
1140 /* This means that this is configured as a receive channel */
1141 if (IS_FS50 (dev)) {
1142 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1143 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1144 (0xfff...) -- REW */
1145 submit_command (dev, &dev->hp_txq,
1146 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1147 0x80 + vcc->channo, -1, 0 );
1148 }
1149 }
1150
1151 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1152 kfree (vcc);
1153
1154 func_exit ();
1155}
1156
1157
1158static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1159{
1160 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1161 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1162 struct FS_BPENTRY *td;
1163
1164 func_enter ();
1165
1166 fs_dprintk (FS_DEBUG_TXMEM, "I");
1167 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1168 atm_vcc, skb, vcc, dev);
1169
1170 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1171
1172 ATM_SKB(skb)->vcc = atm_vcc;
1173
1174 vcc->last_skb = skb;
1175
1176 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1177 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1178 if (!td) {
1179 /* Oops out of mem */
1180 return -ENOMEM;
1181 }
1182
1183 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1184 *(int *) skb->data);
1185
1186 td->flags = TD_EPI | TD_DATA | skb->len;
1187 td->next = 0;
1188 td->bsa = virt_to_bus (skb->data);
1189 td->skb = skb;
1190 td->dev = dev;
1191 dev->ntxpckts++;
1192
1193#ifdef DEBUG_EXTRA
1194 da[qd] = td;
1195 dq[qd].flags = td->flags;
1196 dq[qd].next = td->next;
1197 dq[qd].bsa = td->bsa;
1198 dq[qd].skb = td->skb;
1199 dq[qd].dev = td->dev;
1200 qd++;
1201 if (qd >= 60) qd = 0;
1202#endif
1203
1204 submit_queue (dev, &dev->hp_txq,
1205 QE_TRANSMIT_DE | vcc->channo,
1206 virt_to_bus (td), 0,
1207 virt_to_bus (td));
1208
1209 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1210 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1211 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1212 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1213 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1214
1215 func_exit ();
1216 return 0;
1217}
1218
1219
1220/* Some function placeholders for functions we don't yet support. */
1221
1222#if 0
1223static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1224{
1225 func_enter ();
1226 func_exit ();
1227 return -ENOIOCTLCMD;
1228}
1229
1230
1231static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1232 void __user *optval,int optlen)
1233{
1234 func_enter ();
1235 func_exit ();
1236 return 0;
1237}
1238
1239
1240static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1241 void __user *optval,unsigned int optlen)
1242{
1243 func_enter ();
1244 func_exit ();
1245 return 0;
1246}
1247
1248
1249static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1250 unsigned long addr)
1251{
1252 func_enter ();
1253 func_exit ();
1254}
1255
1256
1257static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1258{
1259 func_enter ();
1260 func_exit ();
1261 return 0;
1262}
1263
1264
1265static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1266{
1267 func_enter ();
1268 func_exit ();
1269 return 0;
1270};
1271
1272#endif
1273
1274
1275static const struct atmdev_ops ops = {
1276 .open = fs_open,
1277 .close = fs_close,
1278 .send = fs_send,
1279 .owner = THIS_MODULE,
1280 /* ioctl: fs_ioctl, */
1281 /* change_qos: fs_change_qos, */
1282
1283 /* For now implement these internally here... */
1284 /* phy_put: fs_phy_put, */
1285 /* phy_get: fs_phy_get, */
1286};
1287
1288
1289static void undocumented_pci_fix(struct pci_dev *pdev)
1290{
1291 u32 tint;
1292
1293 /* The Windows driver says: */
1294 /* Switch off FireStream Retry Limit Threshold
1295 */
1296
1297 /* The register at 0x28 is documented as "reserved", no further
1298 comments. */
1299
1300 pci_read_config_dword (pdev, 0x28, &tint);
1301 if (tint != 0x80) {
1302 tint = 0x80;
1303 pci_write_config_dword (pdev, 0x28, tint);
1304 }
1305}
1306
1307
1308
1309/**************************************************************************
1310 * PHY routines *
1311 **************************************************************************/
1312
1313static void write_phy(struct fs_dev *dev, int regnum, int val)
1314{
1315 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1316 regnum, val, 0);
1317}
1318
1319static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1320{
1321 int i;
1322
1323 func_enter ();
1324 while (reginit->reg != PHY_EOF) {
1325 if (reginit->reg == PHY_CLEARALL) {
1326 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1327 for (i=0;i<reginit->val;i++) {
1328 write_phy (dev, i, 0);
1329 }
1330 } else {
1331 write_phy (dev, reginit->reg, reginit->val);
1332 }
1333 reginit++;
1334 }
1335 func_exit ();
1336 return 0;
1337}
1338
1339static void reset_chip (struct fs_dev *dev)
1340{
1341 int i;
1342
1343 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1344
1345 /* Undocumented delay */
1346 udelay (128);
1347
1348 /* The "internal registers are documented to all reset to zero, but
1349 comments & code in the Windows driver indicates that the pools are
1350 NOT reset. */
1351 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1352 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1353 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1354 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1355 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1356 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1357 }
1358
1359 /* The same goes for the match channel registers, although those are
1360 NOT documented that way in the Windows driver. -- REW */
1361 /* The Windows driver DOES write 0 to these registers somewhere in
1362 the init sequence. However, a small hardware-feature, will
1363 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1364 allocated happens to have no disabled channels that have a lower
1365 number. -- REW */
1366
1367 /* Clear the match channel registers. */
1368 if (IS_FS50 (dev)) {
1369 for (i=0;i<FS50_NR_CHANNELS;i++) {
1370 write_fs (dev, 0x200 + i * 4, -1);
1371 }
1372 }
1373}
1374
1375static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1376{
1377 void *t;
1378
1379 if (alignment <= 0x10) {
1380 t = kmalloc (size, flags);
1381 if ((unsigned long)t & (alignment-1)) {
1382 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1383 kfree (t);
1384 return aligned_kmalloc (size, flags, alignment * 4);
1385 }
1386 return t;
1387 }
1388 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1389 return NULL;
1390}
1391
1392static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1393 int nentries, int is_rq)
1394{
1395 int sz = nentries * sizeof (struct FS_QENTRY);
1396 struct FS_QENTRY *p;
1397
1398 func_enter ();
1399
1400 fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1401 queue, nentries);
1402
1403 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1404 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1405
1406 if (!p) return 0;
1407
1408 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1409 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1410 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1411 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1412 if (is_rq) {
1413 /* Configuration for the receive queue: 0: interrupt immediately,
1414 no pre-warning to empty queues: We do our best to keep the
1415 queue filled anyway. */
1416 write_fs (dev, Q_CNF(queue), 0 );
1417 }
1418
1419 txq->sa = p;
1420 txq->ea = p;
1421 txq->offset = queue;
1422
1423 func_exit ();
1424 return 1;
1425}
1426
1427
1428static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1429 int bufsize, int nr_buffers)
1430{
1431 func_enter ();
1432
1433 fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1434
1435 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1436 write_fs (dev, FP_SA(queue), 0);
1437 write_fs (dev, FP_EA(queue), 0);
1438 write_fs (dev, FP_CTU(queue), 0);
1439 write_fs (dev, FP_CNT(queue), 0);
1440
1441 fp->offset = queue;
1442 fp->bufsize = bufsize;
1443 fp->nr_buffers = nr_buffers;
1444
1445 func_exit ();
1446 return 1;
1447}
1448
1449
1450static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1451{
1452#if 0
1453 /* This seems to be unreliable.... */
1454 return read_fs (dev, FP_CNT (fp->offset));
1455#else
1456 return fp->n;
1457#endif
1458}
1459
1460
1461/* Check if this gets going again if a pool ever runs out. -- Yes, it
1462 does. I've seen "receive abort: no buffers" and things started
1463 working again after that... -- REW */
1464
1465static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1466 gfp_t gfp_flags)
1467{
1468 struct FS_BPENTRY *qe, *ne;
1469 struct sk_buff *skb;
1470 int n = 0;
1471 u32 qe_tmp;
1472
1473 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1474 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1475 fp->nr_buffers);
1476 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1477
1478 skb = alloc_skb (fp->bufsize, gfp_flags);
1479 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1480 if (!skb) break;
1481 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1482 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1483 if (!ne) {
1484 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1485 dev_kfree_skb_any (skb);
1486 break;
1487 }
1488
1489 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1490 skb, ne, skb->data, skb->head);
1491 n++;
1492 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1493 ne->next = virt_to_bus (NULL);
1494 ne->bsa = virt_to_bus (skb->data);
1495 ne->aal_bufsize = fp->bufsize;
1496 ne->skb = skb;
1497 ne->fp = fp;
1498
1499 /*
1500 * FIXME: following code encodes and decodes
1501 * machine pointers (could be 64-bit) into a
1502 * 32-bit register.
1503 */
1504
1505 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1506 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1507 if (qe_tmp) {
1508 qe = bus_to_virt ((long) qe_tmp);
1509 qe->next = virt_to_bus(ne);
1510 qe->flags &= ~FP_FLAGS_EPI;
1511 } else
1512 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1513
1514 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1515 fp->n++; /* XXX Atomic_inc? */
1516 write_fs (dev, FP_CTU(fp->offset), 1);
1517 }
1518
1519 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1520}
1521
1522static void free_queue(struct fs_dev *dev, struct queue *txq)
1523{
1524 func_enter ();
1525
1526 write_fs (dev, Q_SA(txq->offset), 0);
1527 write_fs (dev, Q_EA(txq->offset), 0);
1528 write_fs (dev, Q_RP(txq->offset), 0);
1529 write_fs (dev, Q_WP(txq->offset), 0);
1530 /* Configuration ? */
1531
1532 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1533 kfree (txq->sa);
1534
1535 func_exit ();
1536}
1537
1538static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1539{
1540 func_enter ();
1541
1542 write_fs (dev, FP_CNF(fp->offset), 0);
1543 write_fs (dev, FP_SA (fp->offset), 0);
1544 write_fs (dev, FP_EA (fp->offset), 0);
1545 write_fs (dev, FP_CNT(fp->offset), 0);
1546 write_fs (dev, FP_CTU(fp->offset), 0);
1547
1548 func_exit ();
1549}
1550
1551
1552
1553static irqreturn_t fs_irq (int irq, void *dev_id)
1554{
1555 int i;
1556 u32 status;
1557 struct fs_dev *dev = dev_id;
1558
1559 status = read_fs (dev, ISR);
1560 if (!status)
1561 return IRQ_NONE;
1562
1563 func_enter ();
1564
1565#ifdef IRQ_RATE_LIMIT
1566 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1567 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1568 {
1569 static int lastjif;
1570 static int nintr=0;
1571
1572 if (lastjif == jiffies) {
1573 if (++nintr > IRQ_RATE_LIMIT) {
1574 free_irq (dev->irq, dev_id);
1575 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1576 dev->irq);
1577 }
1578 } else {
1579 lastjif = jiffies;
1580 nintr = 0;
1581 }
1582 }
1583#endif
1584 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1585 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1586 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1587 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1588 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1589
1590 /* print the bits in the ISR register. */
1591 if (fs_debug & FS_DEBUG_IRQ) {
1592 /* The FS_DEBUG things are unnecessary here. But this way it is
1593 clear for grep that these are debug prints. */
1594 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1595 for (i=0;i<27;i++)
1596 if (status & (1 << i))
1597 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1598 fs_dprintk (FS_DEBUG_IRQ, "\n");
1599 }
1600
1601 if (status & ISR_RBRQ0_W) {
1602 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1603 process_incoming (dev, &dev->rx_rq[0]);
1604 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1605 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1606 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1607 }
1608
1609 if (status & ISR_RBRQ1_W) {
1610 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1611 process_incoming (dev, &dev->rx_rq[1]);
1612 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1613 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1614 }
1615
1616 if (status & ISR_RBRQ2_W) {
1617 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1618 process_incoming (dev, &dev->rx_rq[2]);
1619 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1620 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1621 }
1622
1623 if (status & ISR_RBRQ3_W) {
1624 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1625 process_incoming (dev, &dev->rx_rq[3]);
1626 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1627 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1628 }
1629
1630 if (status & ISR_CSQ_W) {
1631 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1632 process_return_queue (dev, &dev->st_q);
1633 }
1634
1635 if (status & ISR_TBRQ_W) {
1636 fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1637 process_txdone_queue (dev, &dev->tx_relq);
1638 }
1639
1640 func_exit ();
1641 return IRQ_HANDLED;
1642}
1643
1644
1645#ifdef FS_POLL_FREQ
1646static void fs_poll (struct timer_list *t)
1647{
1648 struct fs_dev *dev = from_timer(dev, t, timer);
1649
1650 fs_irq (0, dev);
1651 dev->timer.expires = jiffies + FS_POLL_FREQ;
1652 add_timer (&dev->timer);
1653}
1654#endif
1655
1656static int fs_init(struct fs_dev *dev)
1657{
1658 struct pci_dev *pci_dev;
1659 int isr, to;
1660 int i;
1661
1662 func_enter ();
1663 pci_dev = dev->pci_dev;
1664
1665 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1666 IS_FS50(dev)?50:155,
1667 (unsigned long long)pci_resource_start(pci_dev, 0),
1668 dev->pci_dev->irq);
1669
1670 if (fs_debug & FS_DEBUG_INIT)
1671 my_hd ((unsigned char *) dev, sizeof (*dev));
1672
1673 undocumented_pci_fix (pci_dev);
1674
1675 dev->hw_base = pci_resource_start(pci_dev, 0);
1676
1677 dev->base = ioremap(dev->hw_base, 0x1000);
1678
1679 reset_chip (dev);
1680
1681 write_fs (dev, SARMODE0, 0
1682 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1683 | (1 * SARMODE0_INTMODE_READCLEAR)
1684 | (1 * SARMODE0_CWRE)
1685 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1686 SARMODE0_PRPWT_FS155_3)
1687 | (1 * SARMODE0_CALSUP_1)
1688 | (IS_FS50(dev) ? (0
1689 | SARMODE0_RXVCS_32
1690 | SARMODE0_ABRVCS_32
1691 | SARMODE0_TXVCS_32):
1692 (0
1693 | SARMODE0_RXVCS_1k
1694 | SARMODE0_ABRVCS_1k
1695 | SARMODE0_TXVCS_1k)));
1696
1697 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1698 1ms. */
1699 to = 100;
1700 while (--to) {
1701 isr = read_fs (dev, ISR);
1702
1703 /* This bit is documented as "RESERVED" */
1704 if (isr & ISR_INIT_ERR) {
1705 printk (KERN_ERR "Error initializing the FS... \n");
1706 goto unmap;
1707 }
1708 if (isr & ISR_INIT) {
1709 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1710 break;
1711 }
1712
1713 /* Try again after 10ms. */
1714 msleep(10);
1715 }
1716
1717 if (!to) {
1718 printk (KERN_ERR "timeout initializing the FS... \n");
1719 goto unmap;
1720 }
1721
1722 /* XXX fix for fs155 */
1723 dev->channel_mask = 0x1f;
1724 dev->channo = 0;
1725
1726 /* AN3: 10 */
1727 write_fs (dev, SARMODE1, 0
1728 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1729 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1730 | (1 * SARMODE1_DCRM)
1731 | (1 * SARMODE1_DCOAM)
1732 | (0 * SARMODE1_OAMCRC)
1733 | (0 * SARMODE1_DUMPE)
1734 | (0 * SARMODE1_GPLEN)
1735 | (0 * SARMODE1_GNAM)
1736 | (0 * SARMODE1_GVAS)
1737 | (0 * SARMODE1_GPAS)
1738 | (1 * SARMODE1_GPRI)
1739 | (0 * SARMODE1_PMS)
1740 | (0 * SARMODE1_GFCR)
1741 | (1 * SARMODE1_HECM2)
1742 | (1 * SARMODE1_HECM1)
1743 | (1 * SARMODE1_HECM0)
1744 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1745 | (0 * 0xff) /* XXX FS155 */);
1746
1747
1748 /* Cal prescale etc */
1749
1750 /* AN3: 11 */
1751 write_fs (dev, TMCONF, 0x0000000f);
1752 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1753 write_fs (dev, 0x80, 0x000F00E4);
1754
1755 /* AN3: 12 */
1756 write_fs (dev, CELLOSCONF, 0
1757 | ( 0 * CELLOSCONF_CEN)
1758 | ( CELLOSCONF_SC1)
1759 | (0x80 * CELLOSCONF_COBS)
1760 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1761 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1762 * performance jumped 50->70... */
1763
1764 /* Magic value by Hang */
1765 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1766
1767 if (IS_FS50 (dev)) {
1768 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1769 dev->atm_dev->ci_range.vpi_bits = 12;
1770 dev->atm_dev->ci_range.vci_bits = 16;
1771 dev->nchannels = FS50_NR_CHANNELS;
1772 } else {
1773 write_fs (dev, RAS0, RAS0_DCD_XHLT
1774 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1775 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1776 /* We can chose the split arbitrarily. We might be able to
1777 support more. Whatever. This should do for now. */
1778 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1779 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1780
1781 /* Address bits we can't use should be compared to 0. */
1782 write_fs (dev, RAC, 0);
1783
1784 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1785 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1786 * other bits, then compare with 0, which is exactly what we
1787 * want. */
1788 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1789 dev->nchannels = FS155_NR_CHANNELS;
1790 }
1791 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1792 GFP_KERNEL);
1793 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1794 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1795
1796 if (!dev->atm_vccs) {
1797 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1798 /* XXX Clean up..... */
1799 goto unmap;
1800 }
1801
1802 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1803 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1804 dev->atm_vccs, dev->nchannels / 8);
1805
1806 if (!dev->tx_inuse) {
1807 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1808 /* XXX Clean up..... */
1809 goto unmap;
1810 }
1811 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1812 /* -- RAS2 : FS50 only: Default is OK. */
1813
1814 /* DMAMODE, default should be OK. -- REW */
1815 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1816
1817 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1818 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1819 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1820 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1821
1822 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1823 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1824 rx_buf_sizes[i], rx_pool_sizes[i]);
1825 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1826 }
1827
1828
1829 for (i=0;i < FS_NR_RX_QUEUES;i++)
1830 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1831
1832 dev->irq = pci_dev->irq;
1833 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1834 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1835 /* XXX undo all previous stuff... */
1836 goto unmap;
1837 }
1838 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1839
1840 /* We want to be notified of most things. Just the statistics count
1841 overflows are not interesting */
1842 write_fs (dev, IMR, 0
1843 | ISR_RBRQ0_W
1844 | ISR_RBRQ1_W
1845 | ISR_RBRQ2_W
1846 | ISR_RBRQ3_W
1847 | ISR_TBRQ_W
1848 | ISR_CSQ_W);
1849
1850 write_fs (dev, SARMODE0, 0
1851 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1852 | (1 * SARMODE0_GINT)
1853 | (1 * SARMODE0_INTMODE_READCLEAR)
1854 | (0 * SARMODE0_CWRE)
1855 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1856 SARMODE0_PRPWT_FS155_3)
1857 | (1 * SARMODE0_CALSUP_1)
1858 | (IS_FS50 (dev)?(0
1859 | SARMODE0_RXVCS_32
1860 | SARMODE0_ABRVCS_32
1861 | SARMODE0_TXVCS_32):
1862 (0
1863 | SARMODE0_RXVCS_1k
1864 | SARMODE0_ABRVCS_1k
1865 | SARMODE0_TXVCS_1k))
1866 | (1 * SARMODE0_RUN));
1867
1868 init_phy (dev, PHY_NTC_INIT);
1869
1870 if (loopback == 2) {
1871 write_phy (dev, 0x39, 0x000e);
1872 }
1873
1874#ifdef FS_POLL_FREQ
1875 timer_setup(&dev->timer, fs_poll, 0);
1876 dev->timer.expires = jiffies + FS_POLL_FREQ;
1877 add_timer (&dev->timer);
1878#endif
1879
1880 dev->atm_dev->dev_data = dev;
1881
1882 func_exit ();
1883 return 0;
1884unmap:
1885 iounmap(dev->base);
1886 return 1;
1887}
1888
1889static int firestream_init_one(struct pci_dev *pci_dev,
1890 const struct pci_device_id *ent)
1891{
1892 struct atm_dev *atm_dev;
1893 struct fs_dev *fs_dev;
1894
1895 if (pci_enable_device(pci_dev))
1896 goto err_out;
1897
1898 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1899 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1900 fs_dev, sizeof (struct fs_dev));
1901 if (!fs_dev)
1902 goto err_out;
1903 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1904 if (!atm_dev)
1905 goto err_out_free_fs_dev;
1906
1907 fs_dev->pci_dev = pci_dev;
1908 fs_dev->atm_dev = atm_dev;
1909 fs_dev->flags = ent->driver_data;
1910
1911 if (fs_init(fs_dev))
1912 goto err_out_free_atm_dev;
1913
1914 fs_dev->next = fs_boards;
1915 fs_boards = fs_dev;
1916 return 0;
1917
1918 err_out_free_atm_dev:
1919 atm_dev_deregister(atm_dev);
1920 err_out_free_fs_dev:
1921 kfree(fs_dev);
1922 err_out:
1923 return -ENODEV;
1924}
1925
1926static void firestream_remove_one(struct pci_dev *pdev)
1927{
1928 int i;
1929 struct fs_dev *dev, *nxtdev;
1930 struct fs_vcc *vcc;
1931 struct FS_BPENTRY *fp, *nxt;
1932
1933 func_enter ();
1934
1935#if 0
1936 printk ("hptxq:\n");
1937 for (i=0;i<60;i++) {
1938 printk ("%d: %08x %08x %08x %08x \n",
1939 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1940 qp++;
1941 if (qp >= 60) qp = 0;
1942 }
1943
1944 printk ("descriptors:\n");
1945 for (i=0;i<60;i++) {
1946 printk ("%d: %p: %08x %08x %p %p\n",
1947 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1948 qd++;
1949 if (qd >= 60) qd = 0;
1950 }
1951#endif
1952
1953 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1954 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1955
1956 /* XXX Hit all the tx channels too! */
1957
1958 for (i=0;i < dev->nchannels;i++) {
1959 if (dev->atm_vccs[i]) {
1960 vcc = FS_VCC (dev->atm_vccs[i]);
1961 submit_command (dev, &dev->hp_txq,
1962 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1963 submit_command (dev, &dev->hp_txq,
1964 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1965
1966 }
1967 }
1968
1969 /* XXX Wait a while for the chip to release all buffers. */
1970
1971 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1972 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1973 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1974 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1975 dev_kfree_skb_any (fp->skb);
1976 nxt = bus_to_virt (fp->next);
1977 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1978 kfree (fp);
1979 }
1980 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1981 dev_kfree_skb_any (fp->skb);
1982 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1983 kfree (fp);
1984 }
1985
1986 /* Hang the chip in "reset", prevent it clobbering memory that is
1987 no longer ours. */
1988 reset_chip (dev);
1989
1990 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1991 free_irq (dev->irq, dev);
1992 del_timer_sync (&dev->timer);
1993
1994 atm_dev_deregister(dev->atm_dev);
1995 free_queue (dev, &dev->hp_txq);
1996 free_queue (dev, &dev->lp_txq);
1997 free_queue (dev, &dev->tx_relq);
1998 free_queue (dev, &dev->st_q);
1999
2000 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2001 kfree (dev->atm_vccs);
2002
2003 for (i=0;i< FS_NR_FREE_POOLS;i++)
2004 free_freepool (dev, &dev->rx_fp[i]);
2005
2006 for (i=0;i < FS_NR_RX_QUEUES;i++)
2007 free_queue (dev, &dev->rx_rq[i]);
2008
2009 iounmap(dev->base);
2010 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2011 nxtdev = dev->next;
2012 kfree (dev);
2013 }
2014
2015 func_exit ();
2016}
2017
2018static const struct pci_device_id firestream_pci_tbl[] = {
2019 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2020 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2021 { 0, }
2022};
2023
2024MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2025
2026static struct pci_driver firestream_driver = {
2027 .name = "firestream",
2028 .id_table = firestream_pci_tbl,
2029 .probe = firestream_init_one,
2030 .remove = firestream_remove_one,
2031};
2032
2033static int __init firestream_init_module (void)
2034{
2035 int error;
2036
2037 func_enter ();
2038 error = pci_register_driver(&firestream_driver);
2039 func_exit ();
2040 return error;
2041}
2042
2043static void __exit firestream_cleanup_module(void)
2044{
2045 pci_unregister_driver(&firestream_driver);
2046}
2047
2048module_init(firestream_init_module);
2049module_exit(firestream_cleanup_module);
2050
2051MODULE_LICENSE("GPL");
2052
2053
2054
1
2/* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3 * FireStream 50 (MB86695) device driver
4 */
5
6/* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
9 */
10
11/*
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25
26 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27 system and in the file COPYING in the Linux kernel source.
28*/
29
30
31#include <linux/module.h>
32#include <linux/sched.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/pci.h>
36#include <linux/poison.h>
37#include <linux/errno.h>
38#include <linux/atm.h>
39#include <linux/atmdev.h>
40#include <linux/sonet.h>
41#include <linux/skbuff.h>
42#include <linux/netdevice.h>
43#include <linux/delay.h>
44#include <linux/ioport.h> /* for request_region */
45#include <linux/uio.h>
46#include <linux/init.h>
47#include <linux/interrupt.h>
48#include <linux/capability.h>
49#include <linux/bitops.h>
50#include <linux/slab.h>
51#include <asm/byteorder.h>
52#include <asm/string.h>
53#include <asm/io.h>
54#include <linux/atomic.h>
55#include <linux/uaccess.h>
56#include <linux/wait.h>
57
58#include "firestream.h"
59
60static int loopback = 0;
61static int num=0x5a;
62
63/* According to measurements (but they look suspicious to me!) done in
64 * '97, 37% of the packets are one cell in size. So it pays to have
65 * buffers allocated at that size. A large jump in percentage of
66 * packets occurs at packets around 536 bytes in length. So it also
67 * pays to have those pre-allocated. Unfortunately, we can't fully
68 * take advantage of this as the majority of the packets is likely to
69 * be TCP/IP (As where obviously the measurement comes from) There the
70 * link would be opened with say a 1500 byte MTU, and we can't handle
71 * smaller buffers more efficiently than the larger ones. -- REW
72 */
73
74/* Due to the way Linux memory management works, specifying "576" as
75 * an allocation size here isn't going to help. They are allocated
76 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
77 * large), it doesn't pay to allocate the smallest size (64) -- REW */
78
79/* This is all guesswork. Hard numbers to back this up or disprove this,
80 * are appreciated. -- REW */
81
82/* The last entry should be about 64k. However, the "buffer size" is
83 * passed to the chip in a 16 bit field. I don't know how "65536"
84 * would be interpreted. -- REW */
85
86#define NP FS_NR_FREE_POOLS
87static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
88/* log2: 7 8 9 10 11 12 14 16 */
89
90#if 0
91static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
92#else
93/* debug */
94static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
95#endif
96/* log2: 10 10 9 8 7 6 5 5 */
97/* sumlog2: 17 18 18 18 18 18 19 21 */
98/* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
99/* tot mem: almost 4M */
100
101/* NP is shorter, so that it fits on a single line. */
102#undef NP
103
104
105/* Small hardware gotcha:
106
107 The FS50 CAM (VP/VC match registers) always take the lowest channel
108 number that matches. This is not a problem.
109
110 However, they also ignore whether the channel is enabled or
111 not. This means that if you allocate channel 0 to 1.2 and then
112 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113 match channel for channel 0 will "steal" the traffic from channel
114 1, even if you correctly disable channel 0.
115
116 Workaround:
117
118 - When disabling channels, write an invalid VP/VC value to the
119 match register. (We use 0xffffffff, which in the worst case
120 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121 anything as some "when not in use, program to 0" bits are now
122 programmed to 1...)
123
124 - Don't initialize the match registers to 0, as 0.0 is a valid
125 channel.
126*/
127
128
129/* Optimization hints and tips.
130
131 The FireStream chips are very capable of reducing the amount of
132 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133 action. You could try to minimize this a bit.
134
135 Besides that, the userspace->kernel copy and the PCI bus are the
136 performance limiting issues for this driver.
137
138 You could queue up a bunch of outgoing packets without telling the
139 FireStream. I'm not sure that's going to win you much though. The
140 Linux layer won't tell us in advance when it's not going to give us
141 any more packets in a while. So this is tricky to implement right without
142 introducing extra delays.
143
144 -- REW
145 */
146
147
148
149
150/* The strings that define what the RX queue entry is all about. */
151/* Fujitsu: Please tell me which ones can have a pointer to a
152 freepool descriptor! */
153static char *res_strings[] = {
154 "RX OK: streaming not EOP",
155 "RX OK: streaming EOP",
156 "RX OK: Single buffer packet",
157 "RX OK: packet mode",
158 "RX OK: F4 OAM (end to end)",
159 "RX OK: F4 OAM (Segment)",
160 "RX OK: F5 OAM (end to end)",
161 "RX OK: F5 OAM (Segment)",
162 "RX OK: RM cell",
163 "RX OK: TRANSP cell",
164 "RX OK: TRANSPC cell",
165 "Unmatched cell",
166 "reserved 12",
167 "reserved 13",
168 "reserved 14",
169 "Unrecognized cell",
170 "reserved 16",
171 "reassembly abort: AAL5 abort",
172 "packet purged",
173 "packet ageing timeout",
174 "channel ageing timeout",
175 "calculated length error",
176 "programmed length limit error",
177 "aal5 crc32 error",
178 "oam transp or transpc crc10 error",
179 "reserved 25",
180 "reserved 26",
181 "reserved 27",
182 "reserved 28",
183 "reserved 29",
184 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
185 "reassembly abort: no buffers",
186 "receive buffer overflow",
187 "change in GFC",
188 "receive buffer full",
189 "low priority discard - no receive descriptor",
190 "low priority discard - missing end of packet",
191 "reserved 37",
192 "reserved 38",
193 "reserved 39",
194 "reserved 40",
195 "reserved 41",
196 "reserved 42",
197 "reserved 43",
198 "reserved 44",
199 "reserved 45",
200 "reserved 46",
201 "reserved 47",
202 "reserved 48",
203 "reserved 49",
204 "reserved 50",
205 "reserved 51",
206 "reserved 52",
207 "reserved 53",
208 "reserved 54",
209 "reserved 55",
210 "reserved 56",
211 "reserved 57",
212 "reserved 58",
213 "reserved 59",
214 "reserved 60",
215 "reserved 61",
216 "reserved 62",
217 "reserved 63",
218};
219
220static char *irq_bitname[] = {
221 "LPCO",
222 "DPCO",
223 "RBRQ0_W",
224 "RBRQ1_W",
225 "RBRQ2_W",
226 "RBRQ3_W",
227 "RBRQ0_NF",
228 "RBRQ1_NF",
229 "RBRQ2_NF",
230 "RBRQ3_NF",
231 "BFP_SC",
232 "INIT",
233 "INIT_ERR",
234 "USCEO",
235 "UPEC0",
236 "VPFCO",
237 "CRCCO",
238 "HECO",
239 "TBRQ_W",
240 "TBRQ_NF",
241 "CTPQ_E",
242 "GFC_C0",
243 "PCI_FTL",
244 "CSQ_W",
245 "CSQ_NF",
246 "EXT_INT",
247 "RXDMA_S"
248};
249
250
251#define PHY_EOF -1
252#define PHY_CLEARALL -2
253
254struct reginit_item {
255 int reg, val;
256};
257
258
259static struct reginit_item PHY_NTC_INIT[] = {
260 { PHY_CLEARALL, 0x40 },
261 { 0x12, 0x0001 },
262 { 0x13, 0x7605 },
263 { 0x1A, 0x0001 },
264 { 0x1B, 0x0005 },
265 { 0x38, 0x0003 },
266 { 0x39, 0x0006 }, /* changed here to make loopback */
267 { 0x01, 0x5262 },
268 { 0x15, 0x0213 },
269 { 0x00, 0x0003 },
270 { PHY_EOF, 0}, /* -1 signals end of list */
271};
272
273
274/* Safetyfeature: If the card interrupts more than this number of times
275 in a jiffy (1/100th of a second) then we just disable the interrupt and
276 print a message. This prevents the system from hanging.
277
278 150000 packets per second is close to the limit a PC is going to have
279 anyway. We therefore have to disable this for production. -- REW */
280#undef IRQ_RATE_LIMIT // 100
281
282/* Interrupts work now. Unlike serial cards, ATM cards don't work all
283 that great without interrupts. -- REW */
284#undef FS_POLL_FREQ // 100
285
286/*
287 This driver can spew a whole lot of debugging output at you. If you
288 need maximum performance, you should disable the DEBUG define. To
289 aid in debugging in the field, I'm leaving the compile-time debug
290 features enabled, and disable them "runtime". That allows me to
291 instruct people with problems to enable debugging without requiring
292 them to recompile... -- REW
293*/
294#define DEBUG
295
296#ifdef DEBUG
297#define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
298#else
299#define fs_dprintk(f, str...) /* nothing */
300#endif
301
302
303static int fs_keystream = 0;
304
305#ifdef DEBUG
306/* I didn't forget to set this to zero before shipping. Hit me with a stick
307 if you get this with the debug default not set to zero again. -- REW */
308static int fs_debug = 0;
309#else
310#define fs_debug 0
311#endif
312
313#ifdef MODULE
314#ifdef DEBUG
315module_param(fs_debug, int, 0644);
316#endif
317module_param(loopback, int, 0);
318module_param(num, int, 0);
319module_param(fs_keystream, int, 0);
320/* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
321#endif
322
323
324#define FS_DEBUG_FLOW 0x00000001
325#define FS_DEBUG_OPEN 0x00000002
326#define FS_DEBUG_QUEUE 0x00000004
327#define FS_DEBUG_IRQ 0x00000008
328#define FS_DEBUG_INIT 0x00000010
329#define FS_DEBUG_SEND 0x00000020
330#define FS_DEBUG_PHY 0x00000040
331#define FS_DEBUG_CLEANUP 0x00000080
332#define FS_DEBUG_QOS 0x00000100
333#define FS_DEBUG_TXQ 0x00000200
334#define FS_DEBUG_ALLOC 0x00000400
335#define FS_DEBUG_TXMEM 0x00000800
336#define FS_DEBUG_QSIZE 0x00001000
337
338
339#define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
340#define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
341
342
343static struct fs_dev *fs_boards = NULL;
344
345#ifdef DEBUG
346
347static void my_hd (void *addr, int len)
348{
349 int j, ch;
350 unsigned char *ptr = addr;
351
352 while (len > 0) {
353 printk ("%p ", ptr);
354 for (j=0;j < ((len < 16)?len:16);j++) {
355 printk ("%02x %s", ptr[j], (j==7)?" ":"");
356 }
357 for ( ;j < 16;j++) {
358 printk (" %s", (j==7)?" ":"");
359 }
360 for (j=0;j < ((len < 16)?len:16);j++) {
361 ch = ptr[j];
362 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
363 }
364 printk ("\n");
365 ptr += 16;
366 len -= 16;
367 }
368}
369#else /* DEBUG */
370static void my_hd (void *addr, int len){}
371#endif /* DEBUG */
372
373/********** free an skb (as per ATM device driver documentation) **********/
374
375/* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
376 * I copied it over from the ambassador driver. -- REW */
377
378static inline void fs_kfree_skb (struct sk_buff * skb)
379{
380 if (ATM_SKB(skb)->vcc->pop)
381 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
382 else
383 dev_kfree_skb_any (skb);
384}
385
386
387
388
389/* It seems the ATM forum recommends this horribly complicated 16bit
390 * floating point format. Turns out the Ambassador uses the exact same
391 * encoding. I just copied it over. If Mitch agrees, I'll move it over
392 * to the atm_misc file or something like that. (and remove it from
393 * here and the ambassador driver) -- REW
394 */
395
396/* The good thing about this format is that it is monotonic. So,
397 a conversion routine need not be very complicated. To be able to
398 round "nearest" we need to take along a few extra bits. Lets
399 put these after 16 bits, so that we can just return the top 16
400 bits of the 32bit number as the result:
401
402 int mr (unsigned int rate, int r)
403 {
404 int e = 16+9;
405 static int round[4]={0, 0, 0xffff, 0x8000};
406 if (!rate) return 0;
407 while (rate & 0xfc000000) {
408 rate >>= 1;
409 e++;
410 }
411 while (! (rate & 0xfe000000)) {
412 rate <<= 1;
413 e--;
414 }
415
416// Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
417 rate &= ~0x02000000;
418// Next add in the exponent
419 rate |= e << (16+9);
420// And perform the rounding:
421 return (rate + round[r]) >> 16;
422 }
423
424 14 lines-of-code. Compare that with the 120 that the Ambassador
425 guys needed. (would be 8 lines shorter if I'd try to really reduce
426 the number of lines:
427
428 int mr (unsigned int rate, int r)
429 {
430 int e = 16+9;
431 static int round[4]={0, 0, 0xffff, 0x8000};
432 if (!rate) return 0;
433 for (; rate & 0xfc000000 ;rate >>= 1, e++);
434 for (;!(rate & 0xfe000000);rate <<= 1, e--);
435 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
436 }
437
438 Exercise for the reader: Remove one more line-of-code, without
439 cheating. (Just joining two lines is cheating). (I know it's
440 possible, don't think you've beat me if you found it... If you
441 manage to lose two lines or more, keep me updated! ;-)
442
443 -- REW */
444
445
446#define ROUND_UP 1
447#define ROUND_DOWN 2
448#define ROUND_NEAREST 3
449/********** make rate (not quite as much fun as Horizon) **********/
450
451static int make_rate(unsigned int rate, int r,
452 u16 *bits, unsigned int *actual)
453{
454 unsigned char exp = -1; /* hush gcc */
455 unsigned int man = -1; /* hush gcc */
456
457 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
458
459 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
460 given 5-bit e and 9-bit m:
461 rate = EITHER (1+m/2^9)*2^e OR 0
462 bits = EITHER 1<<14 | e<<9 | m OR 0
463 (bit 15 is "reserved", bit 14 "non-zero")
464 smallest rate is 0 (special representation)
465 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
466 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
467 simple algorithm:
468 find position of top bit, this gives e
469 remove top bit and shift (rounding if feeling clever) by 9-e
470 */
471 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
472 representable. // This should move into the ambassador driver
473 when properly merged. -- REW */
474
475 if (rate > 0xffc00000U) {
476 /* larger than largest representable rate */
477
478 if (r == ROUND_UP) {
479 return -EINVAL;
480 } else {
481 exp = 31;
482 man = 511;
483 }
484
485 } else if (rate) {
486 /* representable rate */
487
488 exp = 31;
489 man = rate;
490
491 /* invariant: rate = man*2^(exp-31) */
492 while (!(man & (1<<31))) {
493 exp = exp - 1;
494 man = man<<1;
495 }
496
497 /* man has top bit set
498 rate = (2^31+(man-2^31))*2^(exp-31)
499 rate = (1+(man-2^31)/2^31)*2^exp
500 */
501 man = man<<1;
502 man &= 0xffffffffU; /* a nop on 32-bit systems */
503 /* rate = (1+man/2^32)*2^exp
504
505 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
506 time to lose significance... we want m in the range 0 to 2^9-1
507 rounding presents a minor problem... we first decide which way
508 we are rounding (based on given rounding direction and possibly
509 the bits of the mantissa that are to be discarded).
510 */
511
512 switch (r) {
513 case ROUND_DOWN: {
514 /* just truncate */
515 man = man>>(32-9);
516 break;
517 }
518 case ROUND_UP: {
519 /* check all bits that we are discarding */
520 if (man & (~0U>>9)) {
521 man = (man>>(32-9)) + 1;
522 if (man == (1<<9)) {
523 /* no need to check for round up outside of range */
524 man = 0;
525 exp += 1;
526 }
527 } else {
528 man = (man>>(32-9));
529 }
530 break;
531 }
532 case ROUND_NEAREST: {
533 /* check msb that we are discarding */
534 if (man & (1<<(32-9-1))) {
535 man = (man>>(32-9)) + 1;
536 if (man == (1<<9)) {
537 /* no need to check for round up outside of range */
538 man = 0;
539 exp += 1;
540 }
541 } else {
542 man = (man>>(32-9));
543 }
544 break;
545 }
546 }
547
548 } else {
549 /* zero rate - not representable */
550
551 if (r == ROUND_DOWN) {
552 return -EINVAL;
553 } else {
554 exp = 0;
555 man = 0;
556 }
557 }
558
559 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
560
561 if (bits)
562 *bits = /* (1<<14) | */ (exp<<9) | man;
563
564 if (actual)
565 *actual = (exp >= 9)
566 ? (1 << exp) + (man << (exp-9))
567 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
568
569 return 0;
570}
571
572
573
574
575/* FireStream access routines */
576/* For DEEP-DOWN debugging these can be rigged to intercept accesses to
577 certain registers or to just log all accesses. */
578
579static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
580{
581 writel (val, dev->base + offset);
582}
583
584
585static inline u32 read_fs (struct fs_dev *dev, int offset)
586{
587 return readl (dev->base + offset);
588}
589
590
591
592static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
593{
594 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
595}
596
597
598static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
599{
600 u32 wp;
601 struct FS_QENTRY *cqe;
602
603 /* XXX Sanity check: the write pointer can be checked to be
604 still the same as the value passed as qe... -- REW */
605 /* udelay (5); */
606 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
607 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
608 q->offset);
609 schedule ();
610 }
611
612 wp &= ~0xf;
613 cqe = bus_to_virt (wp);
614 if (qe != cqe) {
615 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
616 }
617
618 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
619
620 {
621 static int c;
622 if (!(c++ % 100))
623 {
624 int rp, wp;
625 rp = read_fs (dev, Q_RP(q->offset));
626 wp = read_fs (dev, Q_WP(q->offset));
627 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
628 q->offset, rp, wp, wp-rp);
629 }
630 }
631}
632
633#ifdef DEBUG_EXTRA
634static struct FS_QENTRY pq[60];
635static int qp;
636
637static struct FS_BPENTRY dq[60];
638static int qd;
639static void *da[60];
640#endif
641
642static void submit_queue (struct fs_dev *dev, struct queue *q,
643 u32 cmd, u32 p1, u32 p2, u32 p3)
644{
645 struct FS_QENTRY *qe;
646
647 qe = get_qentry (dev, q);
648 qe->cmd = cmd;
649 qe->p0 = p1;
650 qe->p1 = p2;
651 qe->p2 = p3;
652 submit_qentry (dev, q, qe);
653
654#ifdef DEBUG_EXTRA
655 pq[qp].cmd = cmd;
656 pq[qp].p0 = p1;
657 pq[qp].p1 = p2;
658 pq[qp].p2 = p3;
659 qp++;
660 if (qp >= 60) qp = 0;
661#endif
662}
663
664/* Test the "other" way one day... -- REW */
665#if 1
666#define submit_command submit_queue
667#else
668
669static void submit_command (struct fs_dev *dev, struct queue *q,
670 u32 cmd, u32 p1, u32 p2, u32 p3)
671{
672 write_fs (dev, CMDR0, cmd);
673 write_fs (dev, CMDR1, p1);
674 write_fs (dev, CMDR2, p2);
675 write_fs (dev, CMDR3, p3);
676}
677#endif
678
679
680
681static void process_return_queue (struct fs_dev *dev, struct queue *q)
682{
683 long rq;
684 struct FS_QENTRY *qe;
685 void *tc;
686
687 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
688 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
689 qe = bus_to_virt (rq);
690
691 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
692 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
693
694 switch (STATUS_CODE (qe)) {
695 case 5:
696 tc = bus_to_virt (qe->p0);
697 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
698 kfree (tc);
699 break;
700 }
701
702 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
703 }
704}
705
706
707static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
708{
709 long rq;
710 long tmp;
711 struct FS_QENTRY *qe;
712 struct sk_buff *skb;
713 struct FS_BPENTRY *td;
714
715 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
716 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
717 qe = bus_to_virt (rq);
718
719 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
720 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
721
722 if (STATUS_CODE (qe) != 2)
723 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
724 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
725
726
727 switch (STATUS_CODE (qe)) {
728 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
729 /* Fall through */
730 case 0x02:
731 /* Process a real txdone entry. */
732 tmp = qe->p0;
733 if (tmp & 0x0f)
734 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
735 tmp &= ~0x0f;
736 td = bus_to_virt (tmp);
737
738 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
739 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
740
741 skb = td->skb;
742 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
743 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
744 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
745 }
746 td->dev->ntxpckts--;
747
748 {
749 static int c=0;
750
751 if (!(c++ % 100)) {
752 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
753 }
754 }
755
756 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
757
758 fs_dprintk (FS_DEBUG_TXMEM, "i");
759 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
760 fs_kfree_skb (skb);
761
762 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
763 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
764 kfree (td);
765 break;
766 default:
767 /* Here we get the tx purge inhibit command ... */
768 /* Action, I believe, is "don't do anything". -- REW */
769 ;
770 }
771
772 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
773 }
774}
775
776
777static void process_incoming (struct fs_dev *dev, struct queue *q)
778{
779 long rq;
780 struct FS_QENTRY *qe;
781 struct FS_BPENTRY *pe;
782 struct sk_buff *skb;
783 unsigned int channo;
784 struct atm_vcc *atm_vcc;
785
786 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
787 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
788 qe = bus_to_virt (rq);
789
790 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
791 qe->cmd, qe->p0, qe->p1, qe->p2);
792
793 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
794 STATUS_CODE (qe),
795 res_strings[STATUS_CODE(qe)]);
796
797 pe = bus_to_virt (qe->p0);
798 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
799 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
800 pe->skb, pe->fp);
801
802 channo = qe->cmd & 0xffff;
803
804 if (channo < dev->nchannels)
805 atm_vcc = dev->atm_vccs[channo];
806 else
807 atm_vcc = NULL;
808
809 /* Single buffer packet */
810 switch (STATUS_CODE (qe)) {
811 case 0x1:
812 /* Fall through for streaming mode */
813 case 0x2:/* Packet received OK.... */
814 if (atm_vcc) {
815 skb = pe->skb;
816 pe->fp->n--;
817#if 0
818 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
819 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
820#endif
821 skb_put (skb, qe->p1 & 0xffff);
822 ATM_SKB(skb)->vcc = atm_vcc;
823 atomic_inc(&atm_vcc->stats->rx);
824 __net_timestamp(skb);
825 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
826 atm_vcc->push (atm_vcc, skb);
827 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
828 kfree (pe);
829 } else {
830 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
831 }
832 break;
833 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
834 has been consumed and needs to be processed. -- REW */
835 if (qe->p1 & 0xffff) {
836 pe = bus_to_virt (qe->p0);
837 pe->fp->n--;
838 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
839 dev_kfree_skb_any (pe->skb);
840 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
841 kfree (pe);
842 }
843 if (atm_vcc)
844 atomic_inc(&atm_vcc->stats->rx_drop);
845 break;
846 case 0x1f: /* Reassembly abort: no buffers. */
847 /* Silently increment error counter. */
848 if (atm_vcc)
849 atomic_inc(&atm_vcc->stats->rx_drop);
850 break;
851 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
852 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
853 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
854 }
855 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
856 }
857}
858
859
860
861#define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
862
863static int fs_open(struct atm_vcc *atm_vcc)
864{
865 struct fs_dev *dev;
866 struct fs_vcc *vcc;
867 struct fs_transmit_config *tc;
868 struct atm_trafprm * txtp;
869 struct atm_trafprm * rxtp;
870 /* struct fs_receive_config *rc;*/
871 /* struct FS_QENTRY *qe; */
872 int error;
873 int bfp;
874 int to;
875 unsigned short tmc0;
876 short vpi = atm_vcc->vpi;
877 int vci = atm_vcc->vci;
878
879 func_enter ();
880
881 dev = FS_DEV(atm_vcc->dev);
882 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
883 dev, atm_vcc);
884
885 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
886 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
887
888 if ((atm_vcc->qos.aal != ATM_AAL5) &&
889 (atm_vcc->qos.aal != ATM_AAL2))
890 return -EINVAL; /* XXX AAL0 */
891
892 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
893 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
894
895 /* XXX handle qos parameters (rate limiting) ? */
896
897 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
898 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
899 if (!vcc) {
900 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
901 return -ENOMEM;
902 }
903
904 atm_vcc->dev_data = vcc;
905 vcc->last_skb = NULL;
906
907 init_waitqueue_head (&vcc->close_wait);
908
909 txtp = &atm_vcc->qos.txtp;
910 rxtp = &atm_vcc->qos.rxtp;
911
912 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
913 if (IS_FS50(dev)) {
914 /* Increment the channel numer: take a free one next time. */
915 for (to=33;to;to--, dev->channo++) {
916 /* We only have 32 channels */
917 if (dev->channo >= 32)
918 dev->channo = 0;
919 /* If we need to do RX, AND the RX is inuse, try the next */
920 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
921 continue;
922 /* If we need to do TX, AND the TX is inuse, try the next */
923 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
924 continue;
925 /* Ok, both are free! (or not needed) */
926 break;
927 }
928 if (!to) {
929 printk ("No more free channels for FS50..\n");
930 return -EBUSY;
931 }
932 vcc->channo = dev->channo;
933 dev->channo &= dev->channel_mask;
934
935 } else {
936 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
937 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
938 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
939 printk ("Channel is in use for FS155.\n");
940 return -EBUSY;
941 }
942 }
943 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
944 vcc->channo, vcc->channo);
945 }
946
947 if (DO_DIRECTION (txtp)) {
948 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
949 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
950 tc, sizeof (struct fs_transmit_config));
951 if (!tc) {
952 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
953 return -ENOMEM;
954 }
955
956 /* Allocate the "open" entry from the high priority txq. This makes
957 it most likely that the chip will notice it. It also prevents us
958 from having to wait for completion. On the other hand, we may
959 need to wait for completion anyway, to see if it completed
960 successfully. */
961
962 switch (atm_vcc->qos.aal) {
963 case ATM_AAL2:
964 case ATM_AAL0:
965 tc->flags = 0
966 | TC_FLAGS_TRANSPARENT_PAYLOAD
967 | TC_FLAGS_PACKET
968 | (1 << 28)
969 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
970 | TC_FLAGS_CAL0;
971 break;
972 case ATM_AAL5:
973 tc->flags = 0
974 | TC_FLAGS_AAL5
975 | TC_FLAGS_PACKET /* ??? */
976 | TC_FLAGS_TYPE_CBR
977 | TC_FLAGS_CAL0;
978 break;
979 default:
980 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
981 tc->flags = 0;
982 }
983 /* Docs are vague about this atm_hdr field. By the way, the FS
984 * chip makes odd errors if lower bits are set.... -- REW */
985 tc->atm_hdr = (vpi << 20) | (vci << 4);
986 tmc0 = 0;
987 {
988 int pcr = atm_pcr_goal (txtp);
989
990 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
991
992 /* XXX Hmm. officially we're only allowed to do this if rounding
993 is round_down -- REW */
994 if (IS_FS50(dev)) {
995 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
996 } else {
997 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
998 }
999 if (!pcr) {
1000 /* no rate cap */
1001 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
1002 } else {
1003 int r;
1004 if (pcr < 0) {
1005 r = ROUND_DOWN;
1006 pcr = -pcr;
1007 } else {
1008 r = ROUND_UP;
1009 }
1010 error = make_rate (pcr, r, &tmc0, NULL);
1011 if (error) {
1012 kfree(tc);
1013 return error;
1014 }
1015 }
1016 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1017 }
1018
1019 tc->TMC[0] = tmc0 | 0x4000;
1020 tc->TMC[1] = 0; /* Unused */
1021 tc->TMC[2] = 0; /* Unused */
1022 tc->TMC[3] = 0; /* Unused */
1023
1024 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1025 tc->rtag[0] = 0; /* What should I do with routing tags???
1026 -- Not used -- AS -- Thanks -- REW*/
1027 tc->rtag[1] = 0;
1028 tc->rtag[2] = 0;
1029
1030 if (fs_debug & FS_DEBUG_OPEN) {
1031 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1032 my_hd (tc, sizeof (*tc));
1033 }
1034
1035 /* We now use the "submit_command" function to submit commands to
1036 the firestream. There is a define up near the definition of
1037 that routine that switches this routine between immediate write
1038 to the immediate command registers and queuing the commands in
1039 the HPTXQ for execution. This last technique might be more
1040 efficient if we know we're going to submit a whole lot of
1041 commands in one go, but this driver is not setup to be able to
1042 use such a construct. So it probably doen't matter much right
1043 now. -- REW */
1044
1045 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1046 submit_command (dev, &dev->hp_txq,
1047 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1048 virt_to_bus (tc), 0, 0);
1049
1050 submit_command (dev, &dev->hp_txq,
1051 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1052 0, 0, 0);
1053 set_bit (vcc->channo, dev->tx_inuse);
1054 }
1055
1056 if (DO_DIRECTION (rxtp)) {
1057 dev->atm_vccs[vcc->channo] = atm_vcc;
1058
1059 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1060 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1061 if (bfp >= FS_NR_FREE_POOLS) {
1062 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1063 atm_vcc->qos.rxtp.max_sdu);
1064 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1065
1066 /* XXX clear tx inuse. Close TX part? */
1067 dev->atm_vccs[vcc->channo] = NULL;
1068 kfree (vcc);
1069 return -EINVAL;
1070 }
1071
1072 switch (atm_vcc->qos.aal) {
1073 case ATM_AAL0:
1074 case ATM_AAL2:
1075 submit_command (dev, &dev->hp_txq,
1076 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1077 RC_FLAGS_TRANSP |
1078 RC_FLAGS_BFPS_BFP * bfp |
1079 RC_FLAGS_RXBM_PSB, 0, 0);
1080 break;
1081 case ATM_AAL5:
1082 submit_command (dev, &dev->hp_txq,
1083 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1084 RC_FLAGS_AAL5 |
1085 RC_FLAGS_BFPS_BFP * bfp |
1086 RC_FLAGS_RXBM_PSB, 0, 0);
1087 break;
1088 };
1089 if (IS_FS50 (dev)) {
1090 submit_command (dev, &dev->hp_txq,
1091 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1092 0x80 + vcc->channo,
1093 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1094 }
1095 submit_command (dev, &dev->hp_txq,
1096 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1097 0, 0, 0);
1098 }
1099
1100 /* Indicate we're done! */
1101 set_bit(ATM_VF_READY, &atm_vcc->flags);
1102
1103 func_exit ();
1104 return 0;
1105}
1106
1107
1108static void fs_close(struct atm_vcc *atm_vcc)
1109{
1110 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1111 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1112 struct atm_trafprm * txtp;
1113 struct atm_trafprm * rxtp;
1114
1115 func_enter ();
1116
1117 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1118
1119 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1120 if (vcc->last_skb) {
1121 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1122 vcc->last_skb);
1123 /* We're going to wait for the last packet to get sent on this VC. It would
1124 be impolite not to send them don't you think?
1125 XXX
1126 We don't know which packets didn't get sent. So if we get interrupted in
1127 this sleep_on, we'll lose any reference to these packets. Memory leak!
1128 On the other hand, it's awfully convenient that we can abort a "close" that
1129 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1130 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1131 }
1132
1133 txtp = &atm_vcc->qos.txtp;
1134 rxtp = &atm_vcc->qos.rxtp;
1135
1136
1137 /* See App note XXX (Unpublished as of now) for the reason for the
1138 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1139
1140 if (DO_DIRECTION (txtp)) {
1141 submit_command (dev, &dev->hp_txq,
1142 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1143 clear_bit (vcc->channo, dev->tx_inuse);
1144 }
1145
1146 if (DO_DIRECTION (rxtp)) {
1147 submit_command (dev, &dev->hp_txq,
1148 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1149 dev->atm_vccs [vcc->channo] = NULL;
1150
1151 /* This means that this is configured as a receive channel */
1152 if (IS_FS50 (dev)) {
1153 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1154 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1155 (0xfff...) -- REW */
1156 submit_command (dev, &dev->hp_txq,
1157 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1158 0x80 + vcc->channo, -1, 0 );
1159 }
1160 }
1161
1162 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1163 kfree (vcc);
1164
1165 func_exit ();
1166}
1167
1168
1169static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1170{
1171 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1172 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1173 struct FS_BPENTRY *td;
1174
1175 func_enter ();
1176
1177 fs_dprintk (FS_DEBUG_TXMEM, "I");
1178 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1179 atm_vcc, skb, vcc, dev);
1180
1181 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1182
1183 ATM_SKB(skb)->vcc = atm_vcc;
1184
1185 vcc->last_skb = skb;
1186
1187 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1188 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1189 if (!td) {
1190 /* Oops out of mem */
1191 return -ENOMEM;
1192 }
1193
1194 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1195 *(int *) skb->data);
1196
1197 td->flags = TD_EPI | TD_DATA | skb->len;
1198 td->next = 0;
1199 td->bsa = virt_to_bus (skb->data);
1200 td->skb = skb;
1201 td->dev = dev;
1202 dev->ntxpckts++;
1203
1204#ifdef DEBUG_EXTRA
1205 da[qd] = td;
1206 dq[qd].flags = td->flags;
1207 dq[qd].next = td->next;
1208 dq[qd].bsa = td->bsa;
1209 dq[qd].skb = td->skb;
1210 dq[qd].dev = td->dev;
1211 qd++;
1212 if (qd >= 60) qd = 0;
1213#endif
1214
1215 submit_queue (dev, &dev->hp_txq,
1216 QE_TRANSMIT_DE | vcc->channo,
1217 virt_to_bus (td), 0,
1218 virt_to_bus (td));
1219
1220 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1221 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1222 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1223 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1224 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1225
1226 func_exit ();
1227 return 0;
1228}
1229
1230
1231/* Some function placeholders for functions we don't yet support. */
1232
1233#if 0
1234static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1235{
1236 func_enter ();
1237 func_exit ();
1238 return -ENOIOCTLCMD;
1239}
1240
1241
1242static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1243 void __user *optval,int optlen)
1244{
1245 func_enter ();
1246 func_exit ();
1247 return 0;
1248}
1249
1250
1251static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1252 void __user *optval,unsigned int optlen)
1253{
1254 func_enter ();
1255 func_exit ();
1256 return 0;
1257}
1258
1259
1260static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1261 unsigned long addr)
1262{
1263 func_enter ();
1264 func_exit ();
1265}
1266
1267
1268static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1269{
1270 func_enter ();
1271 func_exit ();
1272 return 0;
1273}
1274
1275
1276static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1277{
1278 func_enter ();
1279 func_exit ();
1280 return 0;
1281};
1282
1283#endif
1284
1285
1286static const struct atmdev_ops ops = {
1287 .open = fs_open,
1288 .close = fs_close,
1289 .send = fs_send,
1290 .owner = THIS_MODULE,
1291 /* ioctl: fs_ioctl, */
1292 /* getsockopt: fs_getsockopt, */
1293 /* setsockopt: fs_setsockopt, */
1294 /* change_qos: fs_change_qos, */
1295
1296 /* For now implement these internally here... */
1297 /* phy_put: fs_phy_put, */
1298 /* phy_get: fs_phy_get, */
1299};
1300
1301
1302static void undocumented_pci_fix(struct pci_dev *pdev)
1303{
1304 u32 tint;
1305
1306 /* The Windows driver says: */
1307 /* Switch off FireStream Retry Limit Threshold
1308 */
1309
1310 /* The register at 0x28 is documented as "reserved", no further
1311 comments. */
1312
1313 pci_read_config_dword (pdev, 0x28, &tint);
1314 if (tint != 0x80) {
1315 tint = 0x80;
1316 pci_write_config_dword (pdev, 0x28, tint);
1317 }
1318}
1319
1320
1321
1322/**************************************************************************
1323 * PHY routines *
1324 **************************************************************************/
1325
1326static void write_phy(struct fs_dev *dev, int regnum, int val)
1327{
1328 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1329 regnum, val, 0);
1330}
1331
1332static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1333{
1334 int i;
1335
1336 func_enter ();
1337 while (reginit->reg != PHY_EOF) {
1338 if (reginit->reg == PHY_CLEARALL) {
1339 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1340 for (i=0;i<reginit->val;i++) {
1341 write_phy (dev, i, 0);
1342 }
1343 } else {
1344 write_phy (dev, reginit->reg, reginit->val);
1345 }
1346 reginit++;
1347 }
1348 func_exit ();
1349 return 0;
1350}
1351
1352static void reset_chip (struct fs_dev *dev)
1353{
1354 int i;
1355
1356 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1357
1358 /* Undocumented delay */
1359 udelay (128);
1360
1361 /* The "internal registers are documented to all reset to zero, but
1362 comments & code in the Windows driver indicates that the pools are
1363 NOT reset. */
1364 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1365 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1366 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1367 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1368 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1369 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1370 }
1371
1372 /* The same goes for the match channel registers, although those are
1373 NOT documented that way in the Windows driver. -- REW */
1374 /* The Windows driver DOES write 0 to these registers somewhere in
1375 the init sequence. However, a small hardware-feature, will
1376 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1377 allocated happens to have no disabled channels that have a lower
1378 number. -- REW */
1379
1380 /* Clear the match channel registers. */
1381 if (IS_FS50 (dev)) {
1382 for (i=0;i<FS50_NR_CHANNELS;i++) {
1383 write_fs (dev, 0x200 + i * 4, -1);
1384 }
1385 }
1386}
1387
1388static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1389{
1390 void *t;
1391
1392 if (alignment <= 0x10) {
1393 t = kmalloc (size, flags);
1394 if ((unsigned long)t & (alignment-1)) {
1395 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1396 kfree (t);
1397 return aligned_kmalloc (size, flags, alignment * 4);
1398 }
1399 return t;
1400 }
1401 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1402 return NULL;
1403}
1404
1405static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1406 int nentries, int is_rq)
1407{
1408 int sz = nentries * sizeof (struct FS_QENTRY);
1409 struct FS_QENTRY *p;
1410
1411 func_enter ();
1412
1413 fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1414 queue, nentries);
1415
1416 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1417 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1418
1419 if (!p) return 0;
1420
1421 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1422 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1423 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1424 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1425 if (is_rq) {
1426 /* Configuration for the receive queue: 0: interrupt immediately,
1427 no pre-warning to empty queues: We do our best to keep the
1428 queue filled anyway. */
1429 write_fs (dev, Q_CNF(queue), 0 );
1430 }
1431
1432 txq->sa = p;
1433 txq->ea = p;
1434 txq->offset = queue;
1435
1436 func_exit ();
1437 return 1;
1438}
1439
1440
1441static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1442 int bufsize, int nr_buffers)
1443{
1444 func_enter ();
1445
1446 fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1447
1448 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1449 write_fs (dev, FP_SA(queue), 0);
1450 write_fs (dev, FP_EA(queue), 0);
1451 write_fs (dev, FP_CTU(queue), 0);
1452 write_fs (dev, FP_CNT(queue), 0);
1453
1454 fp->offset = queue;
1455 fp->bufsize = bufsize;
1456 fp->nr_buffers = nr_buffers;
1457
1458 func_exit ();
1459 return 1;
1460}
1461
1462
1463static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1464{
1465#if 0
1466 /* This seems to be unreliable.... */
1467 return read_fs (dev, FP_CNT (fp->offset));
1468#else
1469 return fp->n;
1470#endif
1471}
1472
1473
1474/* Check if this gets going again if a pool ever runs out. -- Yes, it
1475 does. I've seen "receive abort: no buffers" and things started
1476 working again after that... -- REW */
1477
1478static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1479 gfp_t gfp_flags)
1480{
1481 struct FS_BPENTRY *qe, *ne;
1482 struct sk_buff *skb;
1483 int n = 0;
1484 u32 qe_tmp;
1485
1486 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1487 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1488 fp->nr_buffers);
1489 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1490
1491 skb = alloc_skb (fp->bufsize, gfp_flags);
1492 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1493 if (!skb) break;
1494 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1495 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1496 if (!ne) {
1497 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1498 dev_kfree_skb_any (skb);
1499 break;
1500 }
1501
1502 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1503 skb, ne, skb->data, skb->head);
1504 n++;
1505 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1506 ne->next = virt_to_bus (NULL);
1507 ne->bsa = virt_to_bus (skb->data);
1508 ne->aal_bufsize = fp->bufsize;
1509 ne->skb = skb;
1510 ne->fp = fp;
1511
1512 /*
1513 * FIXME: following code encodes and decodes
1514 * machine pointers (could be 64-bit) into a
1515 * 32-bit register.
1516 */
1517
1518 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1519 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1520 if (qe_tmp) {
1521 qe = bus_to_virt ((long) qe_tmp);
1522 qe->next = virt_to_bus(ne);
1523 qe->flags &= ~FP_FLAGS_EPI;
1524 } else
1525 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1526
1527 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1528 fp->n++; /* XXX Atomic_inc? */
1529 write_fs (dev, FP_CTU(fp->offset), 1);
1530 }
1531
1532 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1533}
1534
1535static void free_queue(struct fs_dev *dev, struct queue *txq)
1536{
1537 func_enter ();
1538
1539 write_fs (dev, Q_SA(txq->offset), 0);
1540 write_fs (dev, Q_EA(txq->offset), 0);
1541 write_fs (dev, Q_RP(txq->offset), 0);
1542 write_fs (dev, Q_WP(txq->offset), 0);
1543 /* Configuration ? */
1544
1545 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1546 kfree (txq->sa);
1547
1548 func_exit ();
1549}
1550
1551static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1552{
1553 func_enter ();
1554
1555 write_fs (dev, FP_CNF(fp->offset), 0);
1556 write_fs (dev, FP_SA (fp->offset), 0);
1557 write_fs (dev, FP_EA (fp->offset), 0);
1558 write_fs (dev, FP_CNT(fp->offset), 0);
1559 write_fs (dev, FP_CTU(fp->offset), 0);
1560
1561 func_exit ();
1562}
1563
1564
1565
1566static irqreturn_t fs_irq (int irq, void *dev_id)
1567{
1568 int i;
1569 u32 status;
1570 struct fs_dev *dev = dev_id;
1571
1572 status = read_fs (dev, ISR);
1573 if (!status)
1574 return IRQ_NONE;
1575
1576 func_enter ();
1577
1578#ifdef IRQ_RATE_LIMIT
1579 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1580 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1581 {
1582 static int lastjif;
1583 static int nintr=0;
1584
1585 if (lastjif == jiffies) {
1586 if (++nintr > IRQ_RATE_LIMIT) {
1587 free_irq (dev->irq, dev_id);
1588 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1589 dev->irq);
1590 }
1591 } else {
1592 lastjif = jiffies;
1593 nintr = 0;
1594 }
1595 }
1596#endif
1597 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1598 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1599 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1600 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1601 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1602
1603 /* print the bits in the ISR register. */
1604 if (fs_debug & FS_DEBUG_IRQ) {
1605 /* The FS_DEBUG things are unnecessary here. But this way it is
1606 clear for grep that these are debug prints. */
1607 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1608 for (i=0;i<27;i++)
1609 if (status & (1 << i))
1610 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1611 fs_dprintk (FS_DEBUG_IRQ, "\n");
1612 }
1613
1614 if (status & ISR_RBRQ0_W) {
1615 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1616 process_incoming (dev, &dev->rx_rq[0]);
1617 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1618 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1619 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1620 }
1621
1622 if (status & ISR_RBRQ1_W) {
1623 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1624 process_incoming (dev, &dev->rx_rq[1]);
1625 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1626 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1627 }
1628
1629 if (status & ISR_RBRQ2_W) {
1630 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1631 process_incoming (dev, &dev->rx_rq[2]);
1632 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1633 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1634 }
1635
1636 if (status & ISR_RBRQ3_W) {
1637 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1638 process_incoming (dev, &dev->rx_rq[3]);
1639 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1640 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1641 }
1642
1643 if (status & ISR_CSQ_W) {
1644 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1645 process_return_queue (dev, &dev->st_q);
1646 }
1647
1648 if (status & ISR_TBRQ_W) {
1649 fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1650 process_txdone_queue (dev, &dev->tx_relq);
1651 }
1652
1653 func_exit ();
1654 return IRQ_HANDLED;
1655}
1656
1657
1658#ifdef FS_POLL_FREQ
1659static void fs_poll (struct timer_list *t)
1660{
1661 struct fs_dev *dev = from_timer(dev, t, timer);
1662
1663 fs_irq (0, dev);
1664 dev->timer.expires = jiffies + FS_POLL_FREQ;
1665 add_timer (&dev->timer);
1666}
1667#endif
1668
1669static int fs_init(struct fs_dev *dev)
1670{
1671 struct pci_dev *pci_dev;
1672 int isr, to;
1673 int i;
1674
1675 func_enter ();
1676 pci_dev = dev->pci_dev;
1677
1678 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1679 IS_FS50(dev)?50:155,
1680 (unsigned long long)pci_resource_start(pci_dev, 0),
1681 dev->pci_dev->irq);
1682
1683 if (fs_debug & FS_DEBUG_INIT)
1684 my_hd ((unsigned char *) dev, sizeof (*dev));
1685
1686 undocumented_pci_fix (pci_dev);
1687
1688 dev->hw_base = pci_resource_start(pci_dev, 0);
1689
1690 dev->base = ioremap(dev->hw_base, 0x1000);
1691
1692 reset_chip (dev);
1693
1694 write_fs (dev, SARMODE0, 0
1695 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1696 | (1 * SARMODE0_INTMODE_READCLEAR)
1697 | (1 * SARMODE0_CWRE)
1698 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1699 SARMODE0_PRPWT_FS155_3)
1700 | (1 * SARMODE0_CALSUP_1)
1701 | (IS_FS50(dev) ? (0
1702 | SARMODE0_RXVCS_32
1703 | SARMODE0_ABRVCS_32
1704 | SARMODE0_TXVCS_32):
1705 (0
1706 | SARMODE0_RXVCS_1k
1707 | SARMODE0_ABRVCS_1k
1708 | SARMODE0_TXVCS_1k)));
1709
1710 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1711 1ms. */
1712 to = 100;
1713 while (--to) {
1714 isr = read_fs (dev, ISR);
1715
1716 /* This bit is documented as "RESERVED" */
1717 if (isr & ISR_INIT_ERR) {
1718 printk (KERN_ERR "Error initializing the FS... \n");
1719 goto unmap;
1720 }
1721 if (isr & ISR_INIT) {
1722 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1723 break;
1724 }
1725
1726 /* Try again after 10ms. */
1727 msleep(10);
1728 }
1729
1730 if (!to) {
1731 printk (KERN_ERR "timeout initializing the FS... \n");
1732 goto unmap;
1733 }
1734
1735 /* XXX fix for fs155 */
1736 dev->channel_mask = 0x1f;
1737 dev->channo = 0;
1738
1739 /* AN3: 10 */
1740 write_fs (dev, SARMODE1, 0
1741 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1742 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1743 | (1 * SARMODE1_DCRM)
1744 | (1 * SARMODE1_DCOAM)
1745 | (0 * SARMODE1_OAMCRC)
1746 | (0 * SARMODE1_DUMPE)
1747 | (0 * SARMODE1_GPLEN)
1748 | (0 * SARMODE1_GNAM)
1749 | (0 * SARMODE1_GVAS)
1750 | (0 * SARMODE1_GPAS)
1751 | (1 * SARMODE1_GPRI)
1752 | (0 * SARMODE1_PMS)
1753 | (0 * SARMODE1_GFCR)
1754 | (1 * SARMODE1_HECM2)
1755 | (1 * SARMODE1_HECM1)
1756 | (1 * SARMODE1_HECM0)
1757 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1758 | (0 * 0xff) /* XXX FS155 */);
1759
1760
1761 /* Cal prescale etc */
1762
1763 /* AN3: 11 */
1764 write_fs (dev, TMCONF, 0x0000000f);
1765 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1766 write_fs (dev, 0x80, 0x000F00E4);
1767
1768 /* AN3: 12 */
1769 write_fs (dev, CELLOSCONF, 0
1770 | ( 0 * CELLOSCONF_CEN)
1771 | ( CELLOSCONF_SC1)
1772 | (0x80 * CELLOSCONF_COBS)
1773 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1774 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1775 * performance jumped 50->70... */
1776
1777 /* Magic value by Hang */
1778 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1779
1780 if (IS_FS50 (dev)) {
1781 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1782 dev->atm_dev->ci_range.vpi_bits = 12;
1783 dev->atm_dev->ci_range.vci_bits = 16;
1784 dev->nchannels = FS50_NR_CHANNELS;
1785 } else {
1786 write_fs (dev, RAS0, RAS0_DCD_XHLT
1787 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1788 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1789 /* We can chose the split arbitrarily. We might be able to
1790 support more. Whatever. This should do for now. */
1791 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1792 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1793
1794 /* Address bits we can't use should be compared to 0. */
1795 write_fs (dev, RAC, 0);
1796
1797 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1798 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1799 * other bits, then compare with 0, which is exactly what we
1800 * want. */
1801 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1802 dev->nchannels = FS155_NR_CHANNELS;
1803 }
1804 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1805 GFP_KERNEL);
1806 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1807 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1808
1809 if (!dev->atm_vccs) {
1810 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1811 /* XXX Clean up..... */
1812 goto unmap;
1813 }
1814
1815 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1816 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1817 dev->atm_vccs, dev->nchannels / 8);
1818
1819 if (!dev->tx_inuse) {
1820 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1821 /* XXX Clean up..... */
1822 goto unmap;
1823 }
1824 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1825 /* -- RAS2 : FS50 only: Default is OK. */
1826
1827 /* DMAMODE, default should be OK. -- REW */
1828 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1829
1830 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1831 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1832 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1833 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1834
1835 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1836 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1837 rx_buf_sizes[i], rx_pool_sizes[i]);
1838 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1839 }
1840
1841
1842 for (i=0;i < FS_NR_RX_QUEUES;i++)
1843 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1844
1845 dev->irq = pci_dev->irq;
1846 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1847 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1848 /* XXX undo all previous stuff... */
1849 goto unmap;
1850 }
1851 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1852
1853 /* We want to be notified of most things. Just the statistics count
1854 overflows are not interesting */
1855 write_fs (dev, IMR, 0
1856 | ISR_RBRQ0_W
1857 | ISR_RBRQ1_W
1858 | ISR_RBRQ2_W
1859 | ISR_RBRQ3_W
1860 | ISR_TBRQ_W
1861 | ISR_CSQ_W);
1862
1863 write_fs (dev, SARMODE0, 0
1864 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1865 | (1 * SARMODE0_GINT)
1866 | (1 * SARMODE0_INTMODE_READCLEAR)
1867 | (0 * SARMODE0_CWRE)
1868 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1869 SARMODE0_PRPWT_FS155_3)
1870 | (1 * SARMODE0_CALSUP_1)
1871 | (IS_FS50 (dev)?(0
1872 | SARMODE0_RXVCS_32
1873 | SARMODE0_ABRVCS_32
1874 | SARMODE0_TXVCS_32):
1875 (0
1876 | SARMODE0_RXVCS_1k
1877 | SARMODE0_ABRVCS_1k
1878 | SARMODE0_TXVCS_1k))
1879 | (1 * SARMODE0_RUN));
1880
1881 init_phy (dev, PHY_NTC_INIT);
1882
1883 if (loopback == 2) {
1884 write_phy (dev, 0x39, 0x000e);
1885 }
1886
1887#ifdef FS_POLL_FREQ
1888 timer_setup(&dev->timer, fs_poll, 0);
1889 dev->timer.expires = jiffies + FS_POLL_FREQ;
1890 add_timer (&dev->timer);
1891#endif
1892
1893 dev->atm_dev->dev_data = dev;
1894
1895 func_exit ();
1896 return 0;
1897unmap:
1898 iounmap(dev->base);
1899 return 1;
1900}
1901
1902static int firestream_init_one(struct pci_dev *pci_dev,
1903 const struct pci_device_id *ent)
1904{
1905 struct atm_dev *atm_dev;
1906 struct fs_dev *fs_dev;
1907
1908 if (pci_enable_device(pci_dev))
1909 goto err_out;
1910
1911 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1912 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1913 fs_dev, sizeof (struct fs_dev));
1914 if (!fs_dev)
1915 goto err_out;
1916 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1917 if (!atm_dev)
1918 goto err_out_free_fs_dev;
1919
1920 fs_dev->pci_dev = pci_dev;
1921 fs_dev->atm_dev = atm_dev;
1922 fs_dev->flags = ent->driver_data;
1923
1924 if (fs_init(fs_dev))
1925 goto err_out_free_atm_dev;
1926
1927 fs_dev->next = fs_boards;
1928 fs_boards = fs_dev;
1929 return 0;
1930
1931 err_out_free_atm_dev:
1932 atm_dev_deregister(atm_dev);
1933 err_out_free_fs_dev:
1934 kfree(fs_dev);
1935 err_out:
1936 return -ENODEV;
1937}
1938
1939static void firestream_remove_one(struct pci_dev *pdev)
1940{
1941 int i;
1942 struct fs_dev *dev, *nxtdev;
1943 struct fs_vcc *vcc;
1944 struct FS_BPENTRY *fp, *nxt;
1945
1946 func_enter ();
1947
1948#if 0
1949 printk ("hptxq:\n");
1950 for (i=0;i<60;i++) {
1951 printk ("%d: %08x %08x %08x %08x \n",
1952 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1953 qp++;
1954 if (qp >= 60) qp = 0;
1955 }
1956
1957 printk ("descriptors:\n");
1958 for (i=0;i<60;i++) {
1959 printk ("%d: %p: %08x %08x %p %p\n",
1960 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1961 qd++;
1962 if (qd >= 60) qd = 0;
1963 }
1964#endif
1965
1966 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1967 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1968
1969 /* XXX Hit all the tx channels too! */
1970
1971 for (i=0;i < dev->nchannels;i++) {
1972 if (dev->atm_vccs[i]) {
1973 vcc = FS_VCC (dev->atm_vccs[i]);
1974 submit_command (dev, &dev->hp_txq,
1975 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1976 submit_command (dev, &dev->hp_txq,
1977 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1978
1979 }
1980 }
1981
1982 /* XXX Wait a while for the chip to release all buffers. */
1983
1984 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1985 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1986 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1987 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1988 dev_kfree_skb_any (fp->skb);
1989 nxt = bus_to_virt (fp->next);
1990 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1991 kfree (fp);
1992 }
1993 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1994 dev_kfree_skb_any (fp->skb);
1995 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1996 kfree (fp);
1997 }
1998
1999 /* Hang the chip in "reset", prevent it clobbering memory that is
2000 no longer ours. */
2001 reset_chip (dev);
2002
2003 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2004 free_irq (dev->irq, dev);
2005 del_timer_sync (&dev->timer);
2006
2007 atm_dev_deregister(dev->atm_dev);
2008 free_queue (dev, &dev->hp_txq);
2009 free_queue (dev, &dev->lp_txq);
2010 free_queue (dev, &dev->tx_relq);
2011 free_queue (dev, &dev->st_q);
2012
2013 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2014 kfree (dev->atm_vccs);
2015
2016 for (i=0;i< FS_NR_FREE_POOLS;i++)
2017 free_freepool (dev, &dev->rx_fp[i]);
2018
2019 for (i=0;i < FS_NR_RX_QUEUES;i++)
2020 free_queue (dev, &dev->rx_rq[i]);
2021
2022 iounmap(dev->base);
2023 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2024 nxtdev = dev->next;
2025 kfree (dev);
2026 }
2027
2028 func_exit ();
2029}
2030
2031static const struct pci_device_id firestream_pci_tbl[] = {
2032 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2033 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2034 { 0, }
2035};
2036
2037MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2038
2039static struct pci_driver firestream_driver = {
2040 .name = "firestream",
2041 .id_table = firestream_pci_tbl,
2042 .probe = firestream_init_one,
2043 .remove = firestream_remove_one,
2044};
2045
2046static int __init firestream_init_module (void)
2047{
2048 int error;
2049
2050 func_enter ();
2051 error = pci_register_driver(&firestream_driver);
2052 func_exit ();
2053 return error;
2054}
2055
2056static void __exit firestream_cleanup_module(void)
2057{
2058 pci_unregister_driver(&firestream_driver);
2059}
2060
2061module_init(firestream_init_module);
2062module_exit(firestream_cleanup_module);
2063
2064MODULE_LICENSE("GPL");
2065
2066
2067