Linux Audio

Check our new training course

Loading...
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * kexec.c - kexec_load system call
  4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8
  9#include <linux/capability.h>
 10#include <linux/mm.h>
 11#include <linux/file.h>
 12#include <linux/security.h>
 13#include <linux/kexec.h>
 14#include <linux/mutex.h>
 15#include <linux/list.h>
 16#include <linux/syscalls.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19
 20#include "kexec_internal.h"
 21
 22static int copy_user_segment_list(struct kimage *image,
 23				  unsigned long nr_segments,
 24				  struct kexec_segment __user *segments)
 25{
 26	int ret;
 27	size_t segment_bytes;
 28
 29	/* Read in the segments */
 30	image->nr_segments = nr_segments;
 31	segment_bytes = nr_segments * sizeof(*segments);
 32	ret = copy_from_user(image->segment, segments, segment_bytes);
 33	if (ret)
 34		ret = -EFAULT;
 35
 36	return ret;
 37}
 38
 39static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 40			     unsigned long nr_segments,
 41			     struct kexec_segment __user *segments,
 42			     unsigned long flags)
 43{
 44	int ret;
 45	struct kimage *image;
 46	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 47
 48	if (kexec_on_panic) {
 49		/* Verify we have a valid entry point */
 50		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
 51		    (entry > phys_to_boot_phys(crashk_res.end)))
 52			return -EADDRNOTAVAIL;
 53	}
 54
 55	/* Allocate and initialize a controlling structure */
 56	image = do_kimage_alloc_init();
 57	if (!image)
 58		return -ENOMEM;
 59
 60	image->start = entry;
 61
 62	ret = copy_user_segment_list(image, nr_segments, segments);
 63	if (ret)
 64		goto out_free_image;
 65
 66	if (kexec_on_panic) {
 67		/* Enable special crash kernel control page alloc policy. */
 68		image->control_page = crashk_res.start;
 69		image->type = KEXEC_TYPE_CRASH;
 70	}
 71
 72	ret = sanity_check_segment_list(image);
 73	if (ret)
 74		goto out_free_image;
 75
 76	/*
 77	 * Find a location for the control code buffer, and add it
 78	 * the vector of segments so that it's pages will also be
 79	 * counted as destination pages.
 80	 */
 81	ret = -ENOMEM;
 82	image->control_code_page = kimage_alloc_control_pages(image,
 83					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 84	if (!image->control_code_page) {
 85		pr_err("Could not allocate control_code_buffer\n");
 86		goto out_free_image;
 87	}
 88
 89	if (!kexec_on_panic) {
 90		image->swap_page = kimage_alloc_control_pages(image, 0);
 91		if (!image->swap_page) {
 92			pr_err("Could not allocate swap buffer\n");
 93			goto out_free_control_pages;
 94		}
 95	}
 96
 97	*rimage = image;
 98	return 0;
 99out_free_control_pages:
100	kimage_free_page_list(&image->control_pages);
101out_free_image:
102	kfree(image);
103	return ret;
104}
105
106static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
107		struct kexec_segment __user *segments, unsigned long flags)
108{
109	struct kimage **dest_image, *image;
110	unsigned long i;
111	int ret;
112
113	if (flags & KEXEC_ON_CRASH) {
114		dest_image = &kexec_crash_image;
115		if (kexec_crash_image)
116			arch_kexec_unprotect_crashkres();
117	} else {
118		dest_image = &kexec_image;
119	}
120
121	if (nr_segments == 0) {
122		/* Uninstall image */
123		kimage_free(xchg(dest_image, NULL));
124		return 0;
125	}
126	if (flags & KEXEC_ON_CRASH) {
127		/*
128		 * Loading another kernel to switch to if this one
129		 * crashes.  Free any current crash dump kernel before
130		 * we corrupt it.
131		 */
132		kimage_free(xchg(&kexec_crash_image, NULL));
133	}
134
135	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
136	if (ret)
137		return ret;
138
139	if (flags & KEXEC_PRESERVE_CONTEXT)
140		image->preserve_context = 1;
141
142	ret = machine_kexec_prepare(image);
143	if (ret)
144		goto out;
145
146	/*
147	 * Some architecture(like S390) may touch the crash memory before
148	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
149	 */
150	ret = kimage_crash_copy_vmcoreinfo(image);
151	if (ret)
152		goto out;
153
154	for (i = 0; i < nr_segments; i++) {
155		ret = kimage_load_segment(image, &image->segment[i]);
156		if (ret)
157			goto out;
158	}
159
160	kimage_terminate(image);
161
162	ret = machine_kexec_post_load(image);
163	if (ret)
164		goto out;
165
166	/* Install the new kernel and uninstall the old */
167	image = xchg(dest_image, image);
168
169out:
170	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
171		arch_kexec_protect_crashkres();
172
173	kimage_free(image);
174	return ret;
175}
176
177/*
178 * Exec Kernel system call: for obvious reasons only root may call it.
179 *
180 * This call breaks up into three pieces.
181 * - A generic part which loads the new kernel from the current
182 *   address space, and very carefully places the data in the
183 *   allocated pages.
184 *
185 * - A generic part that interacts with the kernel and tells all of
186 *   the devices to shut down.  Preventing on-going dmas, and placing
187 *   the devices in a consistent state so a later kernel can
188 *   reinitialize them.
189 *
190 * - A machine specific part that includes the syscall number
191 *   and then copies the image to it's final destination.  And
192 *   jumps into the image at entry.
193 *
194 * kexec does not sync, or unmount filesystems so if you need
195 * that to happen you need to do that yourself.
196 */
197
198static inline int kexec_load_check(unsigned long nr_segments,
199				   unsigned long flags)
200{
201	int result;
202
203	/* We only trust the superuser with rebooting the system. */
204	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
205		return -EPERM;
206
207	/* Permit LSMs and IMA to fail the kexec */
208	result = security_kernel_load_data(LOADING_KEXEC_IMAGE);
209	if (result < 0)
210		return result;
211
212	/*
213	 * kexec can be used to circumvent module loading restrictions, so
214	 * prevent loading in that case
215	 */
216	result = security_locked_down(LOCKDOWN_KEXEC);
217	if (result)
218		return result;
219
220	/*
221	 * Verify we have a legal set of flags
222	 * This leaves us room for future extensions.
223	 */
224	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
225		return -EINVAL;
226
227	/* Put an artificial cap on the number
228	 * of segments passed to kexec_load.
229	 */
230	if (nr_segments > KEXEC_SEGMENT_MAX)
231		return -EINVAL;
232
233	return 0;
234}
235
236SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
237		struct kexec_segment __user *, segments, unsigned long, flags)
238{
239	int result;
240
241	result = kexec_load_check(nr_segments, flags);
242	if (result)
243		return result;
244
245	/* Verify we are on the appropriate architecture */
246	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
247		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
248		return -EINVAL;
249
250	/* Because we write directly to the reserved memory
251	 * region when loading crash kernels we need a mutex here to
252	 * prevent multiple crash  kernels from attempting to load
253	 * simultaneously, and to prevent a crash kernel from loading
254	 * over the top of a in use crash kernel.
255	 *
256	 * KISS: always take the mutex.
257	 */
258	if (!mutex_trylock(&kexec_mutex))
259		return -EBUSY;
260
261	result = do_kexec_load(entry, nr_segments, segments, flags);
262
263	mutex_unlock(&kexec_mutex);
264
265	return result;
266}
267
268#ifdef CONFIG_COMPAT
269COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
270		       compat_ulong_t, nr_segments,
271		       struct compat_kexec_segment __user *, segments,
272		       compat_ulong_t, flags)
273{
274	struct compat_kexec_segment in;
275	struct kexec_segment out, __user *ksegments;
276	unsigned long i, result;
277
278	result = kexec_load_check(nr_segments, flags);
279	if (result)
280		return result;
281
282	/* Don't allow clients that don't understand the native
283	 * architecture to do anything.
284	 */
285	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
286		return -EINVAL;
287
288	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
289	for (i = 0; i < nr_segments; i++) {
290		result = copy_from_user(&in, &segments[i], sizeof(in));
291		if (result)
292			return -EFAULT;
293
294		out.buf   = compat_ptr(in.buf);
295		out.bufsz = in.bufsz;
296		out.mem   = in.mem;
297		out.memsz = in.memsz;
298
299		result = copy_to_user(&ksegments[i], &out, sizeof(out));
300		if (result)
301			return -EFAULT;
302	}
303
304	/* Because we write directly to the reserved memory
305	 * region when loading crash kernels we need a mutex here to
306	 * prevent multiple crash  kernels from attempting to load
307	 * simultaneously, and to prevent a crash kernel from loading
308	 * over the top of a in use crash kernel.
309	 *
310	 * KISS: always take the mutex.
311	 */
312	if (!mutex_trylock(&kexec_mutex))
313		return -EBUSY;
314
315	result = do_kexec_load(entry, nr_segments, ksegments, flags);
316
317	mutex_unlock(&kexec_mutex);
318
319	return result;
320}
321#endif
  1/*
  2 * kexec.c - kexec_load system call
  3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/capability.h>
 12#include <linux/mm.h>
 13#include <linux/file.h>
 14#include <linux/kexec.h>
 15#include <linux/mutex.h>
 16#include <linux/list.h>
 17#include <linux/syscalls.h>
 18#include <linux/vmalloc.h>
 19#include <linux/slab.h>
 20
 21#include "kexec_internal.h"
 22
 23static int copy_user_segment_list(struct kimage *image,
 24				  unsigned long nr_segments,
 25				  struct kexec_segment __user *segments)
 26{
 27	int ret;
 28	size_t segment_bytes;
 29
 30	/* Read in the segments */
 31	image->nr_segments = nr_segments;
 32	segment_bytes = nr_segments * sizeof(*segments);
 33	ret = copy_from_user(image->segment, segments, segment_bytes);
 34	if (ret)
 35		ret = -EFAULT;
 36
 37	return ret;
 38}
 39
 40static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 41			     unsigned long nr_segments,
 42			     struct kexec_segment __user *segments,
 43			     unsigned long flags)
 44{
 45	int ret;
 46	struct kimage *image;
 47	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 48
 49	if (kexec_on_panic) {
 50		/* Verify we have a valid entry point */
 51		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
 52		    (entry > phys_to_boot_phys(crashk_res.end)))
 53			return -EADDRNOTAVAIL;
 54	}
 55
 56	/* Allocate and initialize a controlling structure */
 57	image = do_kimage_alloc_init();
 58	if (!image)
 59		return -ENOMEM;
 60
 61	image->start = entry;
 62
 63	ret = copy_user_segment_list(image, nr_segments, segments);
 64	if (ret)
 65		goto out_free_image;
 66
 67	if (kexec_on_panic) {
 68		/* Enable special crash kernel control page alloc policy. */
 69		image->control_page = crashk_res.start;
 70		image->type = KEXEC_TYPE_CRASH;
 71	}
 72
 73	ret = sanity_check_segment_list(image);
 74	if (ret)
 75		goto out_free_image;
 76
 77	/*
 78	 * Find a location for the control code buffer, and add it
 79	 * the vector of segments so that it's pages will also be
 80	 * counted as destination pages.
 81	 */
 82	ret = -ENOMEM;
 83	image->control_code_page = kimage_alloc_control_pages(image,
 84					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 85	if (!image->control_code_page) {
 86		pr_err("Could not allocate control_code_buffer\n");
 87		goto out_free_image;
 88	}
 89
 90	if (!kexec_on_panic) {
 91		image->swap_page = kimage_alloc_control_pages(image, 0);
 92		if (!image->swap_page) {
 93			pr_err("Could not allocate swap buffer\n");
 94			goto out_free_control_pages;
 95		}
 96	}
 97
 98	*rimage = image;
 99	return 0;
100out_free_control_pages:
101	kimage_free_page_list(&image->control_pages);
102out_free_image:
103	kfree(image);
104	return ret;
105}
106
107static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
108		struct kexec_segment __user *segments, unsigned long flags)
109{
110	struct kimage **dest_image, *image;
111	unsigned long i;
112	int ret;
113
114	if (flags & KEXEC_ON_CRASH) {
115		dest_image = &kexec_crash_image;
116		if (kexec_crash_image)
117			arch_kexec_unprotect_crashkres();
118	} else {
119		dest_image = &kexec_image;
120	}
121
122	if (nr_segments == 0) {
123		/* Uninstall image */
124		kimage_free(xchg(dest_image, NULL));
125		return 0;
126	}
127	if (flags & KEXEC_ON_CRASH) {
128		/*
129		 * Loading another kernel to switch to if this one
130		 * crashes.  Free any current crash dump kernel before
131		 * we corrupt it.
132		 */
133		kimage_free(xchg(&kexec_crash_image, NULL));
134	}
135
136	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
137	if (ret)
138		return ret;
139
140	if (flags & KEXEC_PRESERVE_CONTEXT)
141		image->preserve_context = 1;
142
143	ret = machine_kexec_prepare(image);
144	if (ret)
145		goto out;
146
147	/*
148	 * Some architecture(like S390) may touch the crash memory before
149	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
150	 */
151	ret = kimage_crash_copy_vmcoreinfo(image);
152	if (ret)
153		goto out;
154
155	for (i = 0; i < nr_segments; i++) {
156		ret = kimage_load_segment(image, &image->segment[i]);
157		if (ret)
158			goto out;
159	}
160
161	kimage_terminate(image);
162
163	/* Install the new kernel and uninstall the old */
164	image = xchg(dest_image, image);
165
166out:
167	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
168		arch_kexec_protect_crashkres();
169
170	kimage_free(image);
171	return ret;
172}
173
174/*
175 * Exec Kernel system call: for obvious reasons only root may call it.
176 *
177 * This call breaks up into three pieces.
178 * - A generic part which loads the new kernel from the current
179 *   address space, and very carefully places the data in the
180 *   allocated pages.
181 *
182 * - A generic part that interacts with the kernel and tells all of
183 *   the devices to shut down.  Preventing on-going dmas, and placing
184 *   the devices in a consistent state so a later kernel can
185 *   reinitialize them.
186 *
187 * - A machine specific part that includes the syscall number
188 *   and then copies the image to it's final destination.  And
189 *   jumps into the image at entry.
190 *
191 * kexec does not sync, or unmount filesystems so if you need
192 * that to happen you need to do that yourself.
193 */
194
195static inline int kexec_load_check(unsigned long nr_segments,
196				   unsigned long flags)
197{
198	/* We only trust the superuser with rebooting the system. */
199	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
200		return -EPERM;
201
202	/*
203	 * Verify we have a legal set of flags
204	 * This leaves us room for future extensions.
205	 */
206	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
207		return -EINVAL;
208
209	/* Put an artificial cap on the number
210	 * of segments passed to kexec_load.
211	 */
212	if (nr_segments > KEXEC_SEGMENT_MAX)
213		return -EINVAL;
214
215	return 0;
216}
217
218SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
219		struct kexec_segment __user *, segments, unsigned long, flags)
220{
221	int result;
222
223	result = kexec_load_check(nr_segments, flags);
224	if (result)
225		return result;
226
227	/* Verify we are on the appropriate architecture */
228	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
229		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
230		return -EINVAL;
231
232	/* Because we write directly to the reserved memory
233	 * region when loading crash kernels we need a mutex here to
234	 * prevent multiple crash  kernels from attempting to load
235	 * simultaneously, and to prevent a crash kernel from loading
236	 * over the top of a in use crash kernel.
237	 *
238	 * KISS: always take the mutex.
239	 */
240	if (!mutex_trylock(&kexec_mutex))
241		return -EBUSY;
242
243	result = do_kexec_load(entry, nr_segments, segments, flags);
244
245	mutex_unlock(&kexec_mutex);
246
247	return result;
248}
249
250#ifdef CONFIG_COMPAT
251COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
252		       compat_ulong_t, nr_segments,
253		       struct compat_kexec_segment __user *, segments,
254		       compat_ulong_t, flags)
255{
256	struct compat_kexec_segment in;
257	struct kexec_segment out, __user *ksegments;
258	unsigned long i, result;
259
260	result = kexec_load_check(nr_segments, flags);
261	if (result)
262		return result;
263
264	/* Don't allow clients that don't understand the native
265	 * architecture to do anything.
266	 */
267	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
268		return -EINVAL;
269
270	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
271	for (i = 0; i < nr_segments; i++) {
272		result = copy_from_user(&in, &segments[i], sizeof(in));
273		if (result)
274			return -EFAULT;
275
276		out.buf   = compat_ptr(in.buf);
277		out.bufsz = in.bufsz;
278		out.mem   = in.mem;
279		out.memsz = in.memsz;
280
281		result = copy_to_user(&ksegments[i], &out, sizeof(out));
282		if (result)
283			return -EFAULT;
284	}
285
286	/* Because we write directly to the reserved memory
287	 * region when loading crash kernels we need a mutex here to
288	 * prevent multiple crash  kernels from attempting to load
289	 * simultaneously, and to prevent a crash kernel from loading
290	 * over the top of a in use crash kernel.
291	 *
292	 * KISS: always take the mutex.
293	 */
294	if (!mutex_trylock(&kexec_mutex))
295		return -EBUSY;
296
297	result = do_kexec_load(entry, nr_segments, ksegments, flags);
298
299	mutex_unlock(&kexec_mutex);
300
301	return result;
302}
303#endif