Linux Audio

Check our new training course

Loading...
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * kexec.c - kexec_load system call
  4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8
  9#include <linux/capability.h>
 10#include <linux/mm.h>
 11#include <linux/file.h>
 12#include <linux/security.h>
 13#include <linux/kexec.h>
 14#include <linux/mutex.h>
 15#include <linux/list.h>
 16#include <linux/syscalls.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19
 20#include "kexec_internal.h"
 21
 22static int copy_user_segment_list(struct kimage *image,
 23				  unsigned long nr_segments,
 24				  struct kexec_segment __user *segments)
 25{
 26	int ret;
 27	size_t segment_bytes;
 28
 29	/* Read in the segments */
 30	image->nr_segments = nr_segments;
 31	segment_bytes = nr_segments * sizeof(*segments);
 32	ret = copy_from_user(image->segment, segments, segment_bytes);
 33	if (ret)
 34		ret = -EFAULT;
 35
 36	return ret;
 37}
 38
 39static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 40			     unsigned long nr_segments,
 41			     struct kexec_segment __user *segments,
 42			     unsigned long flags)
 43{
 44	int ret;
 45	struct kimage *image;
 46	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 47
 48	if (kexec_on_panic) {
 49		/* Verify we have a valid entry point */
 50		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
 51		    (entry > phys_to_boot_phys(crashk_res.end)))
 52			return -EADDRNOTAVAIL;
 53	}
 54
 55	/* Allocate and initialize a controlling structure */
 56	image = do_kimage_alloc_init();
 57	if (!image)
 58		return -ENOMEM;
 59
 60	image->start = entry;
 61
 62	ret = copy_user_segment_list(image, nr_segments, segments);
 63	if (ret)
 64		goto out_free_image;
 65
 66	if (kexec_on_panic) {
 67		/* Enable special crash kernel control page alloc policy. */
 68		image->control_page = crashk_res.start;
 69		image->type = KEXEC_TYPE_CRASH;
 70	}
 71
 72	ret = sanity_check_segment_list(image);
 73	if (ret)
 74		goto out_free_image;
 75
 76	/*
 77	 * Find a location for the control code buffer, and add it
 78	 * the vector of segments so that it's pages will also be
 79	 * counted as destination pages.
 80	 */
 81	ret = -ENOMEM;
 82	image->control_code_page = kimage_alloc_control_pages(image,
 83					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 84	if (!image->control_code_page) {
 85		pr_err("Could not allocate control_code_buffer\n");
 86		goto out_free_image;
 87	}
 88
 89	if (!kexec_on_panic) {
 90		image->swap_page = kimage_alloc_control_pages(image, 0);
 91		if (!image->swap_page) {
 92			pr_err("Could not allocate swap buffer\n");
 93			goto out_free_control_pages;
 94		}
 95	}
 96
 97	*rimage = image;
 98	return 0;
 99out_free_control_pages:
100	kimage_free_page_list(&image->control_pages);
101out_free_image:
102	kfree(image);
103	return ret;
104}
105
106static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
107		struct kexec_segment __user *segments, unsigned long flags)
108{
109	struct kimage **dest_image, *image;
110	unsigned long i;
111	int ret;
112
113	if (flags & KEXEC_ON_CRASH) {
114		dest_image = &kexec_crash_image;
115		if (kexec_crash_image)
116			arch_kexec_unprotect_crashkres();
117	} else {
118		dest_image = &kexec_image;
119	}
120
121	if (nr_segments == 0) {
122		/* Uninstall image */
123		kimage_free(xchg(dest_image, NULL));
124		return 0;
125	}
126	if (flags & KEXEC_ON_CRASH) {
127		/*
128		 * Loading another kernel to switch to if this one
129		 * crashes.  Free any current crash dump kernel before
130		 * we corrupt it.
131		 */
132		kimage_free(xchg(&kexec_crash_image, NULL));
133	}
134
135	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
136	if (ret)
137		return ret;
138
139	if (flags & KEXEC_PRESERVE_CONTEXT)
140		image->preserve_context = 1;
141
142	ret = machine_kexec_prepare(image);
143	if (ret)
144		goto out;
145
146	/*
147	 * Some architecture(like S390) may touch the crash memory before
148	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
149	 */
150	ret = kimage_crash_copy_vmcoreinfo(image);
151	if (ret)
152		goto out;
153
154	for (i = 0; i < nr_segments; i++) {
155		ret = kimage_load_segment(image, &image->segment[i]);
156		if (ret)
157			goto out;
158	}
159
160	kimage_terminate(image);
161
162	ret = machine_kexec_post_load(image);
163	if (ret)
164		goto out;
165
166	/* Install the new kernel and uninstall the old */
167	image = xchg(dest_image, image);
168
169out:
170	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
171		arch_kexec_protect_crashkres();
172
173	kimage_free(image);
174	return ret;
175}
176
177/*
178 * Exec Kernel system call: for obvious reasons only root may call it.
179 *
180 * This call breaks up into three pieces.
181 * - A generic part which loads the new kernel from the current
182 *   address space, and very carefully places the data in the
183 *   allocated pages.
184 *
185 * - A generic part that interacts with the kernel and tells all of
186 *   the devices to shut down.  Preventing on-going dmas, and placing
187 *   the devices in a consistent state so a later kernel can
188 *   reinitialize them.
189 *
190 * - A machine specific part that includes the syscall number
191 *   and then copies the image to it's final destination.  And
192 *   jumps into the image at entry.
193 *
194 * kexec does not sync, or unmount filesystems so if you need
195 * that to happen you need to do that yourself.
196 */
197
198static inline int kexec_load_check(unsigned long nr_segments,
199				   unsigned long flags)
200{
201	int result;
202
203	/* We only trust the superuser with rebooting the system. */
204	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
205		return -EPERM;
206
207	/* Permit LSMs and IMA to fail the kexec */
208	result = security_kernel_load_data(LOADING_KEXEC_IMAGE);
209	if (result < 0)
210		return result;
211
212	/*
213	 * kexec can be used to circumvent module loading restrictions, so
214	 * prevent loading in that case
215	 */
216	result = security_locked_down(LOCKDOWN_KEXEC);
217	if (result)
218		return result;
219
220	/*
221	 * Verify we have a legal set of flags
222	 * This leaves us room for future extensions.
223	 */
224	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
225		return -EINVAL;
226
227	/* Put an artificial cap on the number
228	 * of segments passed to kexec_load.
229	 */
230	if (nr_segments > KEXEC_SEGMENT_MAX)
231		return -EINVAL;
232
233	return 0;
234}
235
236SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
237		struct kexec_segment __user *, segments, unsigned long, flags)
238{
239	int result;
240
241	result = kexec_load_check(nr_segments, flags);
242	if (result)
243		return result;
244
245	/* Verify we are on the appropriate architecture */
246	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
247		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
248		return -EINVAL;
249
250	/* Because we write directly to the reserved memory
251	 * region when loading crash kernels we need a mutex here to
252	 * prevent multiple crash  kernels from attempting to load
253	 * simultaneously, and to prevent a crash kernel from loading
254	 * over the top of a in use crash kernel.
255	 *
256	 * KISS: always take the mutex.
257	 */
258	if (!mutex_trylock(&kexec_mutex))
259		return -EBUSY;
260
261	result = do_kexec_load(entry, nr_segments, segments, flags);
262
263	mutex_unlock(&kexec_mutex);
264
265	return result;
266}
267
268#ifdef CONFIG_COMPAT
269COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
270		       compat_ulong_t, nr_segments,
271		       struct compat_kexec_segment __user *, segments,
272		       compat_ulong_t, flags)
273{
274	struct compat_kexec_segment in;
275	struct kexec_segment out, __user *ksegments;
276	unsigned long i, result;
277
278	result = kexec_load_check(nr_segments, flags);
279	if (result)
280		return result;
281
282	/* Don't allow clients that don't understand the native
283	 * architecture to do anything.
284	 */
285	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
286		return -EINVAL;
287
288	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
289	for (i = 0; i < nr_segments; i++) {
290		result = copy_from_user(&in, &segments[i], sizeof(in));
291		if (result)
292			return -EFAULT;
293
294		out.buf   = compat_ptr(in.buf);
295		out.bufsz = in.bufsz;
296		out.mem   = in.mem;
297		out.memsz = in.memsz;
298
299		result = copy_to_user(&ksegments[i], &out, sizeof(out));
300		if (result)
301			return -EFAULT;
302	}
303
304	/* Because we write directly to the reserved memory
305	 * region when loading crash kernels we need a mutex here to
306	 * prevent multiple crash  kernels from attempting to load
307	 * simultaneously, and to prevent a crash kernel from loading
308	 * over the top of a in use crash kernel.
309	 *
310	 * KISS: always take the mutex.
311	 */
312	if (!mutex_trylock(&kexec_mutex))
313		return -EBUSY;
314
315	result = do_kexec_load(entry, nr_segments, ksegments, flags);
316
317	mutex_unlock(&kexec_mutex);
318
319	return result;
320}
321#endif
   1/*
   2 * kexec.c - kexec system call
   3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8
   9#include <linux/capability.h>
  10#include <linux/mm.h>
  11#include <linux/file.h>
  12#include <linux/slab.h>
  13#include <linux/fs.h>
  14#include <linux/kexec.h>
  15#include <linux/mutex.h>
  16#include <linux/list.h>
  17#include <linux/highmem.h>
  18#include <linux/syscalls.h>
  19#include <linux/reboot.h>
  20#include <linux/ioport.h>
  21#include <linux/hardirq.h>
  22#include <linux/elf.h>
  23#include <linux/elfcore.h>
  24#include <generated/utsrelease.h>
  25#include <linux/utsname.h>
  26#include <linux/numa.h>
  27#include <linux/suspend.h>
  28#include <linux/device.h>
  29#include <linux/freezer.h>
  30#include <linux/pm.h>
  31#include <linux/cpu.h>
  32#include <linux/console.h>
  33#include <linux/vmalloc.h>
  34#include <linux/swap.h>
  35#include <linux/syscore_ops.h>
  36
  37#include <asm/page.h>
  38#include <asm/uaccess.h>
  39#include <asm/io.h>
  40#include <asm/sections.h>
  41
  42/* Per cpu memory for storing cpu states in case of system crash. */
  43note_buf_t __percpu *crash_notes;
  44
  45/* vmcoreinfo stuff */
  46static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
  47u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
  48size_t vmcoreinfo_size;
  49size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
  50
  51/* Location of the reserved area for the crash kernel */
  52struct resource crashk_res = {
  53	.name  = "Crash kernel",
  54	.start = 0,
  55	.end   = 0,
  56	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
  57};
  58
  59int kexec_should_crash(struct task_struct *p)
  60{
  61	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  62		return 1;
  63	return 0;
  64}
  65
  66/*
  67 * When kexec transitions to the new kernel there is a one-to-one
  68 * mapping between physical and virtual addresses.  On processors
  69 * where you can disable the MMU this is trivial, and easy.  For
  70 * others it is still a simple predictable page table to setup.
  71 *
  72 * In that environment kexec copies the new kernel to its final
  73 * resting place.  This means I can only support memory whose
  74 * physical address can fit in an unsigned long.  In particular
  75 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
  76 * If the assembly stub has more restrictive requirements
  77 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
  78 * defined more restrictively in <asm/kexec.h>.
  79 *
  80 * The code for the transition from the current kernel to the
  81 * the new kernel is placed in the control_code_buffer, whose size
  82 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
  83 * page of memory is necessary, but some architectures require more.
  84 * Because this memory must be identity mapped in the transition from
  85 * virtual to physical addresses it must live in the range
  86 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
  87 * modifiable.
  88 *
  89 * The assembly stub in the control code buffer is passed a linked list
  90 * of descriptor pages detailing the source pages of the new kernel,
  91 * and the destination addresses of those source pages.  As this data
  92 * structure is not used in the context of the current OS, it must
  93 * be self-contained.
  94 *
  95 * The code has been made to work with highmem pages and will use a
  96 * destination page in its final resting place (if it happens
  97 * to allocate it).  The end product of this is that most of the
  98 * physical address space, and most of RAM can be used.
  99 *
 100 * Future directions include:
 101 *  - allocating a page table with the control code buffer identity
 102 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 103 *    reliable.
 104 */
 105
 106/*
 107 * KIMAGE_NO_DEST is an impossible destination address..., for
 108 * allocating pages whose destination address we do not care about.
 109 */
 110#define KIMAGE_NO_DEST (-1UL)
 111
 112static int kimage_is_destination_range(struct kimage *image,
 113				       unsigned long start, unsigned long end);
 114static struct page *kimage_alloc_page(struct kimage *image,
 115				       gfp_t gfp_mask,
 116				       unsigned long dest);
 117
 118static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
 119	                    unsigned long nr_segments,
 120                            struct kexec_segment __user *segments)
 121{
 122	size_t segment_bytes;
 123	struct kimage *image;
 124	unsigned long i;
 125	int result;
 126
 127	/* Allocate a controlling structure */
 128	result = -ENOMEM;
 129	image = kzalloc(sizeof(*image), GFP_KERNEL);
 130	if (!image)
 131		goto out;
 132
 133	image->head = 0;
 134	image->entry = &image->head;
 135	image->last_entry = &image->head;
 136	image->control_page = ~0; /* By default this does not apply */
 137	image->start = entry;
 138	image->type = KEXEC_TYPE_DEFAULT;
 139
 140	/* Initialize the list of control pages */
 141	INIT_LIST_HEAD(&image->control_pages);
 142
 143	/* Initialize the list of destination pages */
 144	INIT_LIST_HEAD(&image->dest_pages);
 145
 146	/* Initialize the list of unusable pages */
 147	INIT_LIST_HEAD(&image->unuseable_pages);
 148
 149	/* Read in the segments */
 150	image->nr_segments = nr_segments;
 151	segment_bytes = nr_segments * sizeof(*segments);
 152	result = copy_from_user(image->segment, segments, segment_bytes);
 153	if (result) {
 154		result = -EFAULT;
 155		goto out;
 156	}
 157
 158	/*
 159	 * Verify we have good destination addresses.  The caller is
 160	 * responsible for making certain we don't attempt to load
 161	 * the new image into invalid or reserved areas of RAM.  This
 162	 * just verifies it is an address we can use.
 163	 *
 164	 * Since the kernel does everything in page size chunks ensure
 165	 * the destination addresses are page aligned.  Too many
 166	 * special cases crop of when we don't do this.  The most
 167	 * insidious is getting overlapping destination addresses
 168	 * simply because addresses are changed to page size
 169	 * granularity.
 170	 */
 171	result = -EADDRNOTAVAIL;
 172	for (i = 0; i < nr_segments; i++) {
 173		unsigned long mstart, mend;
 174
 175		mstart = image->segment[i].mem;
 176		mend   = mstart + image->segment[i].memsz;
 177		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 178			goto out;
 179		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 180			goto out;
 181	}
 182
 183	/* Verify our destination addresses do not overlap.
 184	 * If we alloed overlapping destination addresses
 185	 * through very weird things can happen with no
 186	 * easy explanation as one segment stops on another.
 187	 */
 188	result = -EINVAL;
 189	for (i = 0; i < nr_segments; i++) {
 190		unsigned long mstart, mend;
 191		unsigned long j;
 192
 193		mstart = image->segment[i].mem;
 194		mend   = mstart + image->segment[i].memsz;
 195		for (j = 0; j < i; j++) {
 196			unsigned long pstart, pend;
 197			pstart = image->segment[j].mem;
 198			pend   = pstart + image->segment[j].memsz;
 199			/* Do the segments overlap ? */
 200			if ((mend > pstart) && (mstart < pend))
 201				goto out;
 202		}
 203	}
 204
 205	/* Ensure our buffer sizes are strictly less than
 206	 * our memory sizes.  This should always be the case,
 207	 * and it is easier to check up front than to be surprised
 208	 * later on.
 209	 */
 210	result = -EINVAL;
 211	for (i = 0; i < nr_segments; i++) {
 212		if (image->segment[i].bufsz > image->segment[i].memsz)
 213			goto out;
 214	}
 215
 216	result = 0;
 217out:
 218	if (result == 0)
 219		*rimage = image;
 220	else
 221		kfree(image);
 222
 223	return result;
 224
 225}
 226
 227static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
 228				unsigned long nr_segments,
 229				struct kexec_segment __user *segments)
 230{
 231	int result;
 232	struct kimage *image;
 233
 234	/* Allocate and initialize a controlling structure */
 235	image = NULL;
 236	result = do_kimage_alloc(&image, entry, nr_segments, segments);
 237	if (result)
 238		goto out;
 239
 240	*rimage = image;
 241
 242	/*
 243	 * Find a location for the control code buffer, and add it
 244	 * the vector of segments so that it's pages will also be
 245	 * counted as destination pages.
 246	 */
 247	result = -ENOMEM;
 248	image->control_code_page = kimage_alloc_control_pages(image,
 249					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 250	if (!image->control_code_page) {
 251		printk(KERN_ERR "Could not allocate control_code_buffer\n");
 252		goto out;
 253	}
 254
 255	image->swap_page = kimage_alloc_control_pages(image, 0);
 256	if (!image->swap_page) {
 257		printk(KERN_ERR "Could not allocate swap buffer\n");
 258		goto out;
 259	}
 260
 261	result = 0;
 262 out:
 263	if (result == 0)
 264		*rimage = image;
 265	else
 266		kfree(image);
 267
 268	return result;
 269}
 270
 271static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
 272				unsigned long nr_segments,
 273				struct kexec_segment __user *segments)
 274{
 275	int result;
 276	struct kimage *image;
 277	unsigned long i;
 278
 279	image = NULL;
 280	/* Verify we have a valid entry point */
 281	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
 282		result = -EADDRNOTAVAIL;
 283		goto out;
 284	}
 285
 286	/* Allocate and initialize a controlling structure */
 287	result = do_kimage_alloc(&image, entry, nr_segments, segments);
 288	if (result)
 289		goto out;
 290
 291	/* Enable the special crash kernel control page
 292	 * allocation policy.
 293	 */
 294	image->control_page = crashk_res.start;
 295	image->type = KEXEC_TYPE_CRASH;
 296
 297	/*
 298	 * Verify we have good destination addresses.  Normally
 299	 * the caller is responsible for making certain we don't
 300	 * attempt to load the new image into invalid or reserved
 301	 * areas of RAM.  But crash kernels are preloaded into a
 302	 * reserved area of ram.  We must ensure the addresses
 303	 * are in the reserved area otherwise preloading the
 304	 * kernel could corrupt things.
 305	 */
 306	result = -EADDRNOTAVAIL;
 307	for (i = 0; i < nr_segments; i++) {
 308		unsigned long mstart, mend;
 309
 310		mstart = image->segment[i].mem;
 311		mend = mstart + image->segment[i].memsz - 1;
 312		/* Ensure we are within the crash kernel limits */
 313		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
 314			goto out;
 315	}
 316
 317	/*
 318	 * Find a location for the control code buffer, and add
 319	 * the vector of segments so that it's pages will also be
 320	 * counted as destination pages.
 321	 */
 322	result = -ENOMEM;
 323	image->control_code_page = kimage_alloc_control_pages(image,
 324					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 325	if (!image->control_code_page) {
 326		printk(KERN_ERR "Could not allocate control_code_buffer\n");
 327		goto out;
 328	}
 329
 330	result = 0;
 331out:
 332	if (result == 0)
 333		*rimage = image;
 334	else
 335		kfree(image);
 336
 337	return result;
 338}
 339
 340static int kimage_is_destination_range(struct kimage *image,
 341					unsigned long start,
 342					unsigned long end)
 343{
 344	unsigned long i;
 345
 346	for (i = 0; i < image->nr_segments; i++) {
 347		unsigned long mstart, mend;
 348
 349		mstart = image->segment[i].mem;
 350		mend = mstart + image->segment[i].memsz;
 351		if ((end > mstart) && (start < mend))
 352			return 1;
 353	}
 354
 355	return 0;
 356}
 357
 358static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 359{
 360	struct page *pages;
 361
 362	pages = alloc_pages(gfp_mask, order);
 363	if (pages) {
 364		unsigned int count, i;
 365		pages->mapping = NULL;
 366		set_page_private(pages, order);
 367		count = 1 << order;
 368		for (i = 0; i < count; i++)
 369			SetPageReserved(pages + i);
 370	}
 371
 372	return pages;
 373}
 374
 375static void kimage_free_pages(struct page *page)
 376{
 377	unsigned int order, count, i;
 378
 379	order = page_private(page);
 380	count = 1 << order;
 381	for (i = 0; i < count; i++)
 382		ClearPageReserved(page + i);
 383	__free_pages(page, order);
 384}
 385
 386static void kimage_free_page_list(struct list_head *list)
 387{
 388	struct list_head *pos, *next;
 389
 390	list_for_each_safe(pos, next, list) {
 391		struct page *page;
 392
 393		page = list_entry(pos, struct page, lru);
 394		list_del(&page->lru);
 395		kimage_free_pages(page);
 396	}
 397}
 398
 399static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 400							unsigned int order)
 401{
 402	/* Control pages are special, they are the intermediaries
 403	 * that are needed while we copy the rest of the pages
 404	 * to their final resting place.  As such they must
 405	 * not conflict with either the destination addresses
 406	 * or memory the kernel is already using.
 407	 *
 408	 * The only case where we really need more than one of
 409	 * these are for architectures where we cannot disable
 410	 * the MMU and must instead generate an identity mapped
 411	 * page table for all of the memory.
 412	 *
 413	 * At worst this runs in O(N) of the image size.
 414	 */
 415	struct list_head extra_pages;
 416	struct page *pages;
 417	unsigned int count;
 418
 419	count = 1 << order;
 420	INIT_LIST_HEAD(&extra_pages);
 421
 422	/* Loop while I can allocate a page and the page allocated
 423	 * is a destination page.
 424	 */
 425	do {
 426		unsigned long pfn, epfn, addr, eaddr;
 427
 428		pages = kimage_alloc_pages(GFP_KERNEL, order);
 429		if (!pages)
 430			break;
 431		pfn   = page_to_pfn(pages);
 432		epfn  = pfn + count;
 433		addr  = pfn << PAGE_SHIFT;
 434		eaddr = epfn << PAGE_SHIFT;
 435		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 436			      kimage_is_destination_range(image, addr, eaddr)) {
 437			list_add(&pages->lru, &extra_pages);
 438			pages = NULL;
 439		}
 440	} while (!pages);
 441
 442	if (pages) {
 443		/* Remember the allocated page... */
 444		list_add(&pages->lru, &image->control_pages);
 445
 446		/* Because the page is already in it's destination
 447		 * location we will never allocate another page at
 448		 * that address.  Therefore kimage_alloc_pages
 449		 * will not return it (again) and we don't need
 450		 * to give it an entry in image->segment[].
 451		 */
 452	}
 453	/* Deal with the destination pages I have inadvertently allocated.
 454	 *
 455	 * Ideally I would convert multi-page allocations into single
 456	 * page allocations, and add everything to image->dest_pages.
 457	 *
 458	 * For now it is simpler to just free the pages.
 459	 */
 460	kimage_free_page_list(&extra_pages);
 461
 462	return pages;
 463}
 464
 465static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 466						      unsigned int order)
 467{
 468	/* Control pages are special, they are the intermediaries
 469	 * that are needed while we copy the rest of the pages
 470	 * to their final resting place.  As such they must
 471	 * not conflict with either the destination addresses
 472	 * or memory the kernel is already using.
 473	 *
 474	 * Control pages are also the only pags we must allocate
 475	 * when loading a crash kernel.  All of the other pages
 476	 * are specified by the segments and we just memcpy
 477	 * into them directly.
 478	 *
 479	 * The only case where we really need more than one of
 480	 * these are for architectures where we cannot disable
 481	 * the MMU and must instead generate an identity mapped
 482	 * page table for all of the memory.
 483	 *
 484	 * Given the low demand this implements a very simple
 485	 * allocator that finds the first hole of the appropriate
 486	 * size in the reserved memory region, and allocates all
 487	 * of the memory up to and including the hole.
 488	 */
 489	unsigned long hole_start, hole_end, size;
 490	struct page *pages;
 491
 492	pages = NULL;
 493	size = (1 << order) << PAGE_SHIFT;
 494	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 495	hole_end   = hole_start + size - 1;
 496	while (hole_end <= crashk_res.end) {
 497		unsigned long i;
 498
 499		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 500			break;
 501		if (hole_end > crashk_res.end)
 502			break;
 503		/* See if I overlap any of the segments */
 504		for (i = 0; i < image->nr_segments; i++) {
 505			unsigned long mstart, mend;
 506
 507			mstart = image->segment[i].mem;
 508			mend   = mstart + image->segment[i].memsz - 1;
 509			if ((hole_end >= mstart) && (hole_start <= mend)) {
 510				/* Advance the hole to the end of the segment */
 511				hole_start = (mend + (size - 1)) & ~(size - 1);
 512				hole_end   = hole_start + size - 1;
 513				break;
 514			}
 515		}
 516		/* If I don't overlap any segments I have found my hole! */
 517		if (i == image->nr_segments) {
 518			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 519			break;
 520		}
 521	}
 522	if (pages)
 523		image->control_page = hole_end;
 524
 525	return pages;
 526}
 527
 528
 529struct page *kimage_alloc_control_pages(struct kimage *image,
 530					 unsigned int order)
 531{
 532	struct page *pages = NULL;
 533
 534	switch (image->type) {
 535	case KEXEC_TYPE_DEFAULT:
 536		pages = kimage_alloc_normal_control_pages(image, order);
 537		break;
 538	case KEXEC_TYPE_CRASH:
 539		pages = kimage_alloc_crash_control_pages(image, order);
 540		break;
 541	}
 542
 543	return pages;
 544}
 545
 546static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 547{
 548	if (*image->entry != 0)
 549		image->entry++;
 550
 551	if (image->entry == image->last_entry) {
 552		kimage_entry_t *ind_page;
 553		struct page *page;
 554
 555		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 556		if (!page)
 557			return -ENOMEM;
 558
 559		ind_page = page_address(page);
 560		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
 561		image->entry = ind_page;
 562		image->last_entry = ind_page +
 563				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 564	}
 565	*image->entry = entry;
 566	image->entry++;
 567	*image->entry = 0;
 568
 569	return 0;
 570}
 571
 572static int kimage_set_destination(struct kimage *image,
 573				   unsigned long destination)
 574{
 575	int result;
 576
 577	destination &= PAGE_MASK;
 578	result = kimage_add_entry(image, destination | IND_DESTINATION);
 579	if (result == 0)
 580		image->destination = destination;
 581
 582	return result;
 583}
 584
 585
 586static int kimage_add_page(struct kimage *image, unsigned long page)
 587{
 588	int result;
 589
 590	page &= PAGE_MASK;
 591	result = kimage_add_entry(image, page | IND_SOURCE);
 592	if (result == 0)
 593		image->destination += PAGE_SIZE;
 594
 595	return result;
 596}
 597
 598
 599static void kimage_free_extra_pages(struct kimage *image)
 600{
 601	/* Walk through and free any extra destination pages I may have */
 602	kimage_free_page_list(&image->dest_pages);
 603
 604	/* Walk through and free any unusable pages I have cached */
 605	kimage_free_page_list(&image->unuseable_pages);
 606
 607}
 608static void kimage_terminate(struct kimage *image)
 609{
 610	if (*image->entry != 0)
 611		image->entry++;
 612
 613	*image->entry = IND_DONE;
 614}
 615
 616#define for_each_kimage_entry(image, ptr, entry) \
 617	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 618		ptr = (entry & IND_INDIRECTION)? \
 619			phys_to_virt((entry & PAGE_MASK)): ptr +1)
 620
 621static void kimage_free_entry(kimage_entry_t entry)
 622{
 623	struct page *page;
 624
 625	page = pfn_to_page(entry >> PAGE_SHIFT);
 626	kimage_free_pages(page);
 627}
 628
 629static void kimage_free(struct kimage *image)
 630{
 631	kimage_entry_t *ptr, entry;
 632	kimage_entry_t ind = 0;
 633
 634	if (!image)
 635		return;
 636
 637	kimage_free_extra_pages(image);
 638	for_each_kimage_entry(image, ptr, entry) {
 639		if (entry & IND_INDIRECTION) {
 640			/* Free the previous indirection page */
 641			if (ind & IND_INDIRECTION)
 642				kimage_free_entry(ind);
 643			/* Save this indirection page until we are
 644			 * done with it.
 645			 */
 646			ind = entry;
 647		}
 648		else if (entry & IND_SOURCE)
 649			kimage_free_entry(entry);
 650	}
 651	/* Free the final indirection page */
 652	if (ind & IND_INDIRECTION)
 653		kimage_free_entry(ind);
 654
 655	/* Handle any machine specific cleanup */
 656	machine_kexec_cleanup(image);
 657
 658	/* Free the kexec control pages... */
 659	kimage_free_page_list(&image->control_pages);
 660	kfree(image);
 661}
 662
 663static kimage_entry_t *kimage_dst_used(struct kimage *image,
 664					unsigned long page)
 665{
 666	kimage_entry_t *ptr, entry;
 667	unsigned long destination = 0;
 668
 669	for_each_kimage_entry(image, ptr, entry) {
 670		if (entry & IND_DESTINATION)
 671			destination = entry & PAGE_MASK;
 672		else if (entry & IND_SOURCE) {
 673			if (page == destination)
 674				return ptr;
 675			destination += PAGE_SIZE;
 676		}
 677	}
 678
 679	return NULL;
 680}
 681
 682static struct page *kimage_alloc_page(struct kimage *image,
 683					gfp_t gfp_mask,
 684					unsigned long destination)
 685{
 686	/*
 687	 * Here we implement safeguards to ensure that a source page
 688	 * is not copied to its destination page before the data on
 689	 * the destination page is no longer useful.
 690	 *
 691	 * To do this we maintain the invariant that a source page is
 692	 * either its own destination page, or it is not a
 693	 * destination page at all.
 694	 *
 695	 * That is slightly stronger than required, but the proof
 696	 * that no problems will not occur is trivial, and the
 697	 * implementation is simply to verify.
 698	 *
 699	 * When allocating all pages normally this algorithm will run
 700	 * in O(N) time, but in the worst case it will run in O(N^2)
 701	 * time.   If the runtime is a problem the data structures can
 702	 * be fixed.
 703	 */
 704	struct page *page;
 705	unsigned long addr;
 706
 707	/*
 708	 * Walk through the list of destination pages, and see if I
 709	 * have a match.
 710	 */
 711	list_for_each_entry(page, &image->dest_pages, lru) {
 712		addr = page_to_pfn(page) << PAGE_SHIFT;
 713		if (addr == destination) {
 714			list_del(&page->lru);
 715			return page;
 716		}
 717	}
 718	page = NULL;
 719	while (1) {
 720		kimage_entry_t *old;
 721
 722		/* Allocate a page, if we run out of memory give up */
 723		page = kimage_alloc_pages(gfp_mask, 0);
 724		if (!page)
 725			return NULL;
 726		/* If the page cannot be used file it away */
 727		if (page_to_pfn(page) >
 728				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 729			list_add(&page->lru, &image->unuseable_pages);
 730			continue;
 731		}
 732		addr = page_to_pfn(page) << PAGE_SHIFT;
 733
 734		/* If it is the destination page we want use it */
 735		if (addr == destination)
 736			break;
 737
 738		/* If the page is not a destination page use it */
 739		if (!kimage_is_destination_range(image, addr,
 740						  addr + PAGE_SIZE))
 741			break;
 742
 743		/*
 744		 * I know that the page is someones destination page.
 745		 * See if there is already a source page for this
 746		 * destination page.  And if so swap the source pages.
 747		 */
 748		old = kimage_dst_used(image, addr);
 749		if (old) {
 750			/* If so move it */
 751			unsigned long old_addr;
 752			struct page *old_page;
 753
 754			old_addr = *old & PAGE_MASK;
 755			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
 756			copy_highpage(page, old_page);
 757			*old = addr | (*old & ~PAGE_MASK);
 758
 759			/* The old page I have found cannot be a
 760			 * destination page, so return it if it's
 761			 * gfp_flags honor the ones passed in.
 762			 */
 763			if (!(gfp_mask & __GFP_HIGHMEM) &&
 764			    PageHighMem(old_page)) {
 765				kimage_free_pages(old_page);
 766				continue;
 767			}
 768			addr = old_addr;
 769			page = old_page;
 770			break;
 771		}
 772		else {
 773			/* Place the page on the destination list I
 774			 * will use it later.
 775			 */
 776			list_add(&page->lru, &image->dest_pages);
 777		}
 778	}
 779
 780	return page;
 781}
 782
 783static int kimage_load_normal_segment(struct kimage *image,
 784					 struct kexec_segment *segment)
 785{
 786	unsigned long maddr;
 787	unsigned long ubytes, mbytes;
 788	int result;
 789	unsigned char __user *buf;
 790
 791	result = 0;
 792	buf = segment->buf;
 793	ubytes = segment->bufsz;
 794	mbytes = segment->memsz;
 795	maddr = segment->mem;
 796
 797	result = kimage_set_destination(image, maddr);
 798	if (result < 0)
 799		goto out;
 800
 801	while (mbytes) {
 802		struct page *page;
 803		char *ptr;
 804		size_t uchunk, mchunk;
 805
 806		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 807		if (!page) {
 808			result  = -ENOMEM;
 809			goto out;
 810		}
 811		result = kimage_add_page(image, page_to_pfn(page)
 812								<< PAGE_SHIFT);
 813		if (result < 0)
 814			goto out;
 815
 816		ptr = kmap(page);
 817		/* Start with a clear page */
 818		clear_page(ptr);
 819		ptr += maddr & ~PAGE_MASK;
 820		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
 821		if (mchunk > mbytes)
 822			mchunk = mbytes;
 823
 824		uchunk = mchunk;
 825		if (uchunk > ubytes)
 826			uchunk = ubytes;
 827
 828		result = copy_from_user(ptr, buf, uchunk);
 829		kunmap(page);
 830		if (result) {
 831			result = -EFAULT;
 832			goto out;
 833		}
 834		ubytes -= uchunk;
 835		maddr  += mchunk;
 836		buf    += mchunk;
 837		mbytes -= mchunk;
 838	}
 839out:
 840	return result;
 841}
 842
 843static int kimage_load_crash_segment(struct kimage *image,
 844					struct kexec_segment *segment)
 845{
 846	/* For crash dumps kernels we simply copy the data from
 847	 * user space to it's destination.
 848	 * We do things a page at a time for the sake of kmap.
 849	 */
 850	unsigned long maddr;
 851	unsigned long ubytes, mbytes;
 852	int result;
 853	unsigned char __user *buf;
 854
 855	result = 0;
 856	buf = segment->buf;
 857	ubytes = segment->bufsz;
 858	mbytes = segment->memsz;
 859	maddr = segment->mem;
 860	while (mbytes) {
 861		struct page *page;
 862		char *ptr;
 863		size_t uchunk, mchunk;
 864
 865		page = pfn_to_page(maddr >> PAGE_SHIFT);
 866		if (!page) {
 867			result  = -ENOMEM;
 868			goto out;
 869		}
 870		ptr = kmap(page);
 871		ptr += maddr & ~PAGE_MASK;
 872		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
 873		if (mchunk > mbytes)
 874			mchunk = mbytes;
 875
 876		uchunk = mchunk;
 877		if (uchunk > ubytes) {
 878			uchunk = ubytes;
 879			/* Zero the trailing part of the page */
 880			memset(ptr + uchunk, 0, mchunk - uchunk);
 881		}
 882		result = copy_from_user(ptr, buf, uchunk);
 883		kexec_flush_icache_page(page);
 884		kunmap(page);
 885		if (result) {
 886			result = -EFAULT;
 887			goto out;
 888		}
 889		ubytes -= uchunk;
 890		maddr  += mchunk;
 891		buf    += mchunk;
 892		mbytes -= mchunk;
 893	}
 894out:
 895	return result;
 896}
 897
 898static int kimage_load_segment(struct kimage *image,
 899				struct kexec_segment *segment)
 900{
 901	int result = -ENOMEM;
 902
 903	switch (image->type) {
 904	case KEXEC_TYPE_DEFAULT:
 905		result = kimage_load_normal_segment(image, segment);
 906		break;
 907	case KEXEC_TYPE_CRASH:
 908		result = kimage_load_crash_segment(image, segment);
 909		break;
 910	}
 911
 912	return result;
 913}
 914
 915/*
 916 * Exec Kernel system call: for obvious reasons only root may call it.
 917 *
 918 * This call breaks up into three pieces.
 919 * - A generic part which loads the new kernel from the current
 920 *   address space, and very carefully places the data in the
 921 *   allocated pages.
 922 *
 923 * - A generic part that interacts with the kernel and tells all of
 924 *   the devices to shut down.  Preventing on-going dmas, and placing
 925 *   the devices in a consistent state so a later kernel can
 926 *   reinitialize them.
 927 *
 928 * - A machine specific part that includes the syscall number
 929 *   and the copies the image to it's final destination.  And
 930 *   jumps into the image at entry.
 931 *
 932 * kexec does not sync, or unmount filesystems so if you need
 933 * that to happen you need to do that yourself.
 934 */
 935struct kimage *kexec_image;
 936struct kimage *kexec_crash_image;
 937
 938static DEFINE_MUTEX(kexec_mutex);
 939
 940SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
 941		struct kexec_segment __user *, segments, unsigned long, flags)
 942{
 943	struct kimage **dest_image, *image;
 944	int result;
 945
 946	/* We only trust the superuser with rebooting the system. */
 947	if (!capable(CAP_SYS_BOOT))
 948		return -EPERM;
 949
 950	/*
 951	 * Verify we have a legal set of flags
 952	 * This leaves us room for future extensions.
 953	 */
 954	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
 955		return -EINVAL;
 956
 957	/* Verify we are on the appropriate architecture */
 958	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
 959		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
 960		return -EINVAL;
 961
 962	/* Put an artificial cap on the number
 963	 * of segments passed to kexec_load.
 964	 */
 965	if (nr_segments > KEXEC_SEGMENT_MAX)
 966		return -EINVAL;
 967
 968	image = NULL;
 969	result = 0;
 970
 971	/* Because we write directly to the reserved memory
 972	 * region when loading crash kernels we need a mutex here to
 973	 * prevent multiple crash  kernels from attempting to load
 974	 * simultaneously, and to prevent a crash kernel from loading
 975	 * over the top of a in use crash kernel.
 976	 *
 977	 * KISS: always take the mutex.
 978	 */
 979	if (!mutex_trylock(&kexec_mutex))
 980		return -EBUSY;
 981
 982	dest_image = &kexec_image;
 983	if (flags & KEXEC_ON_CRASH)
 984		dest_image = &kexec_crash_image;
 985	if (nr_segments > 0) {
 986		unsigned long i;
 987
 988		/* Loading another kernel to reboot into */
 989		if ((flags & KEXEC_ON_CRASH) == 0)
 990			result = kimage_normal_alloc(&image, entry,
 991							nr_segments, segments);
 992		/* Loading another kernel to switch to if this one crashes */
 993		else if (flags & KEXEC_ON_CRASH) {
 994			/* Free any current crash dump kernel before
 995			 * we corrupt it.
 996			 */
 997			kimage_free(xchg(&kexec_crash_image, NULL));
 998			result = kimage_crash_alloc(&image, entry,
 999						     nr_segments, segments);
1000			crash_map_reserved_pages();
1001		}
1002		if (result)
1003			goto out;
1004
1005		if (flags & KEXEC_PRESERVE_CONTEXT)
1006			image->preserve_context = 1;
1007		result = machine_kexec_prepare(image);
1008		if (result)
1009			goto out;
1010
1011		for (i = 0; i < nr_segments; i++) {
1012			result = kimage_load_segment(image, &image->segment[i]);
1013			if (result)
1014				goto out;
1015		}
1016		kimage_terminate(image);
1017		if (flags & KEXEC_ON_CRASH)
1018			crash_unmap_reserved_pages();
1019	}
1020	/* Install the new kernel, and  Uninstall the old */
1021	image = xchg(dest_image, image);
1022
1023out:
1024	mutex_unlock(&kexec_mutex);
1025	kimage_free(image);
1026
1027	return result;
1028}
1029
1030/*
1031 * Add and remove page tables for crashkernel memory
1032 *
1033 * Provide an empty default implementation here -- architecture
1034 * code may override this
1035 */
1036void __weak crash_map_reserved_pages(void)
1037{}
1038
1039void __weak crash_unmap_reserved_pages(void)
1040{}
1041
1042#ifdef CONFIG_COMPAT
1043asmlinkage long compat_sys_kexec_load(unsigned long entry,
1044				unsigned long nr_segments,
1045				struct compat_kexec_segment __user *segments,
1046				unsigned long flags)
1047{
1048	struct compat_kexec_segment in;
1049	struct kexec_segment out, __user *ksegments;
1050	unsigned long i, result;
1051
1052	/* Don't allow clients that don't understand the native
1053	 * architecture to do anything.
1054	 */
1055	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1056		return -EINVAL;
1057
1058	if (nr_segments > KEXEC_SEGMENT_MAX)
1059		return -EINVAL;
1060
1061	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1062	for (i=0; i < nr_segments; i++) {
1063		result = copy_from_user(&in, &segments[i], sizeof(in));
1064		if (result)
1065			return -EFAULT;
1066
1067		out.buf   = compat_ptr(in.buf);
1068		out.bufsz = in.bufsz;
1069		out.mem   = in.mem;
1070		out.memsz = in.memsz;
1071
1072		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1073		if (result)
1074			return -EFAULT;
1075	}
1076
1077	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1078}
1079#endif
1080
1081void crash_kexec(struct pt_regs *regs)
1082{
1083	/* Take the kexec_mutex here to prevent sys_kexec_load
1084	 * running on one cpu from replacing the crash kernel
1085	 * we are using after a panic on a different cpu.
1086	 *
1087	 * If the crash kernel was not located in a fixed area
1088	 * of memory the xchg(&kexec_crash_image) would be
1089	 * sufficient.  But since I reuse the memory...
1090	 */
1091	if (mutex_trylock(&kexec_mutex)) {
1092		if (kexec_crash_image) {
1093			struct pt_regs fixed_regs;
1094
1095			crash_setup_regs(&fixed_regs, regs);
1096			crash_save_vmcoreinfo();
1097			machine_crash_shutdown(&fixed_regs);
1098			machine_kexec(kexec_crash_image);
1099		}
1100		mutex_unlock(&kexec_mutex);
1101	}
1102}
1103
1104size_t crash_get_memory_size(void)
1105{
1106	size_t size = 0;
1107	mutex_lock(&kexec_mutex);
1108	if (crashk_res.end != crashk_res.start)
1109		size = resource_size(&crashk_res);
1110	mutex_unlock(&kexec_mutex);
1111	return size;
1112}
1113
1114void __weak crash_free_reserved_phys_range(unsigned long begin,
1115					   unsigned long end)
1116{
1117	unsigned long addr;
1118
1119	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1120		ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1121		init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1122		free_page((unsigned long)__va(addr));
1123		totalram_pages++;
1124	}
1125}
1126
1127int crash_shrink_memory(unsigned long new_size)
1128{
1129	int ret = 0;
1130	unsigned long start, end;
1131	unsigned long old_size;
1132	struct resource *ram_res;
1133
1134	mutex_lock(&kexec_mutex);
1135
1136	if (kexec_crash_image) {
1137		ret = -ENOENT;
1138		goto unlock;
1139	}
1140	start = crashk_res.start;
1141	end = crashk_res.end;
1142	old_size = (end == 0) ? 0 : end - start + 1;
1143	if (new_size >= old_size) {
1144		ret = (new_size == old_size) ? 0 : -EINVAL;
1145		goto unlock;
1146	}
1147
1148	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1149	if (!ram_res) {
1150		ret = -ENOMEM;
1151		goto unlock;
1152	}
1153
1154	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1155	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1156
1157	crash_map_reserved_pages();
1158	crash_free_reserved_phys_range(end, crashk_res.end);
1159
1160	if ((start == end) && (crashk_res.parent != NULL))
1161		release_resource(&crashk_res);
1162
1163	ram_res->start = end;
1164	ram_res->end = crashk_res.end;
1165	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1166	ram_res->name = "System RAM";
1167
1168	crashk_res.end = end - 1;
1169
1170	insert_resource(&iomem_resource, ram_res);
1171	crash_unmap_reserved_pages();
1172
1173unlock:
1174	mutex_unlock(&kexec_mutex);
1175	return ret;
1176}
1177
1178static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1179			    size_t data_len)
1180{
1181	struct elf_note note;
1182
1183	note.n_namesz = strlen(name) + 1;
1184	note.n_descsz = data_len;
1185	note.n_type   = type;
1186	memcpy(buf, &note, sizeof(note));
1187	buf += (sizeof(note) + 3)/4;
1188	memcpy(buf, name, note.n_namesz);
1189	buf += (note.n_namesz + 3)/4;
1190	memcpy(buf, data, note.n_descsz);
1191	buf += (note.n_descsz + 3)/4;
1192
1193	return buf;
1194}
1195
1196static void final_note(u32 *buf)
1197{
1198	struct elf_note note;
1199
1200	note.n_namesz = 0;
1201	note.n_descsz = 0;
1202	note.n_type   = 0;
1203	memcpy(buf, &note, sizeof(note));
1204}
1205
1206void crash_save_cpu(struct pt_regs *regs, int cpu)
1207{
1208	struct elf_prstatus prstatus;
1209	u32 *buf;
1210
1211	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1212		return;
1213
1214	/* Using ELF notes here is opportunistic.
1215	 * I need a well defined structure format
1216	 * for the data I pass, and I need tags
1217	 * on the data to indicate what information I have
1218	 * squirrelled away.  ELF notes happen to provide
1219	 * all of that, so there is no need to invent something new.
1220	 */
1221	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1222	if (!buf)
1223		return;
1224	memset(&prstatus, 0, sizeof(prstatus));
1225	prstatus.pr_pid = current->pid;
1226	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1227	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1228		      	      &prstatus, sizeof(prstatus));
1229	final_note(buf);
1230}
1231
1232static int __init crash_notes_memory_init(void)
1233{
1234	/* Allocate memory for saving cpu registers. */
1235	crash_notes = alloc_percpu(note_buf_t);
1236	if (!crash_notes) {
1237		printk("Kexec: Memory allocation for saving cpu register"
1238		" states failed\n");
1239		return -ENOMEM;
1240	}
1241	return 0;
1242}
1243module_init(crash_notes_memory_init)
1244
1245
1246/*
1247 * parsing the "crashkernel" commandline
1248 *
1249 * this code is intended to be called from architecture specific code
1250 */
1251
1252
1253/*
1254 * This function parses command lines in the format
1255 *
1256 *   crashkernel=ramsize-range:size[,...][@offset]
1257 *
1258 * The function returns 0 on success and -EINVAL on failure.
1259 */
1260static int __init parse_crashkernel_mem(char 			*cmdline,
1261					unsigned long long	system_ram,
1262					unsigned long long	*crash_size,
1263					unsigned long long	*crash_base)
1264{
1265	char *cur = cmdline, *tmp;
1266
1267	/* for each entry of the comma-separated list */
1268	do {
1269		unsigned long long start, end = ULLONG_MAX, size;
1270
1271		/* get the start of the range */
1272		start = memparse(cur, &tmp);
1273		if (cur == tmp) {
1274			pr_warning("crashkernel: Memory value expected\n");
1275			return -EINVAL;
1276		}
1277		cur = tmp;
1278		if (*cur != '-') {
1279			pr_warning("crashkernel: '-' expected\n");
1280			return -EINVAL;
1281		}
1282		cur++;
1283
1284		/* if no ':' is here, than we read the end */
1285		if (*cur != ':') {
1286			end = memparse(cur, &tmp);
1287			if (cur == tmp) {
1288				pr_warning("crashkernel: Memory "
1289						"value expected\n");
1290				return -EINVAL;
1291			}
1292			cur = tmp;
1293			if (end <= start) {
1294				pr_warning("crashkernel: end <= start\n");
1295				return -EINVAL;
1296			}
1297		}
1298
1299		if (*cur != ':') {
1300			pr_warning("crashkernel: ':' expected\n");
1301			return -EINVAL;
1302		}
1303		cur++;
1304
1305		size = memparse(cur, &tmp);
1306		if (cur == tmp) {
1307			pr_warning("Memory value expected\n");
1308			return -EINVAL;
1309		}
1310		cur = tmp;
1311		if (size >= system_ram) {
1312			pr_warning("crashkernel: invalid size\n");
1313			return -EINVAL;
1314		}
1315
1316		/* match ? */
1317		if (system_ram >= start && system_ram < end) {
1318			*crash_size = size;
1319			break;
1320		}
1321	} while (*cur++ == ',');
1322
1323	if (*crash_size > 0) {
1324		while (*cur && *cur != ' ' && *cur != '@')
1325			cur++;
1326		if (*cur == '@') {
1327			cur++;
1328			*crash_base = memparse(cur, &tmp);
1329			if (cur == tmp) {
1330				pr_warning("Memory value expected "
1331						"after '@'\n");
1332				return -EINVAL;
1333			}
1334		}
1335	}
1336
1337	return 0;
1338}
1339
1340/*
1341 * That function parses "simple" (old) crashkernel command lines like
1342 *
1343 * 	crashkernel=size[@offset]
1344 *
1345 * It returns 0 on success and -EINVAL on failure.
1346 */
1347static int __init parse_crashkernel_simple(char 		*cmdline,
1348					   unsigned long long 	*crash_size,
1349					   unsigned long long 	*crash_base)
1350{
1351	char *cur = cmdline;
1352
1353	*crash_size = memparse(cmdline, &cur);
1354	if (cmdline == cur) {
1355		pr_warning("crashkernel: memory value expected\n");
1356		return -EINVAL;
1357	}
1358
1359	if (*cur == '@')
1360		*crash_base = memparse(cur+1, &cur);
1361	else if (*cur != ' ' && *cur != '\0') {
1362		pr_warning("crashkernel: unrecognized char\n");
1363		return -EINVAL;
1364	}
1365
1366	return 0;
1367}
1368
1369/*
1370 * That function is the entry point for command line parsing and should be
1371 * called from the arch-specific code.
1372 */
1373int __init parse_crashkernel(char 		 *cmdline,
1374			     unsigned long long system_ram,
1375			     unsigned long long *crash_size,
1376			     unsigned long long *crash_base)
1377{
1378	char 	*p = cmdline, *ck_cmdline = NULL;
1379	char	*first_colon, *first_space;
1380
1381	BUG_ON(!crash_size || !crash_base);
1382	*crash_size = 0;
1383	*crash_base = 0;
1384
1385	/* find crashkernel and use the last one if there are more */
1386	p = strstr(p, "crashkernel=");
1387	while (p) {
1388		ck_cmdline = p;
1389		p = strstr(p+1, "crashkernel=");
1390	}
1391
1392	if (!ck_cmdline)
1393		return -EINVAL;
1394
1395	ck_cmdline += 12; /* strlen("crashkernel=") */
1396
1397	/*
1398	 * if the commandline contains a ':', then that's the extended
1399	 * syntax -- if not, it must be the classic syntax
1400	 */
1401	first_colon = strchr(ck_cmdline, ':');
1402	first_space = strchr(ck_cmdline, ' ');
1403	if (first_colon && (!first_space || first_colon < first_space))
1404		return parse_crashkernel_mem(ck_cmdline, system_ram,
1405				crash_size, crash_base);
1406	else
1407		return parse_crashkernel_simple(ck_cmdline, crash_size,
1408				crash_base);
1409
1410	return 0;
1411}
1412
1413
1414static void update_vmcoreinfo_note(void)
1415{
1416	u32 *buf = vmcoreinfo_note;
1417
1418	if (!vmcoreinfo_size)
1419		return;
1420	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1421			      vmcoreinfo_size);
1422	final_note(buf);
1423}
1424
1425void crash_save_vmcoreinfo(void)
1426{
1427	vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1428	update_vmcoreinfo_note();
1429}
1430
1431void vmcoreinfo_append_str(const char *fmt, ...)
1432{
1433	va_list args;
1434	char buf[0x50];
1435	int r;
1436
1437	va_start(args, fmt);
1438	r = vsnprintf(buf, sizeof(buf), fmt, args);
1439	va_end(args);
1440
1441	if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1442		r = vmcoreinfo_max_size - vmcoreinfo_size;
1443
1444	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1445
1446	vmcoreinfo_size += r;
1447}
1448
1449/*
1450 * provide an empty default implementation here -- architecture
1451 * code may override this
1452 */
1453void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1454{}
1455
1456unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1457{
1458	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1459}
1460
1461static int __init crash_save_vmcoreinfo_init(void)
1462{
1463	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1464	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1465
1466	VMCOREINFO_SYMBOL(init_uts_ns);
1467	VMCOREINFO_SYMBOL(node_online_map);
1468#ifdef CONFIG_MMU
1469	VMCOREINFO_SYMBOL(swapper_pg_dir);
1470#endif
1471	VMCOREINFO_SYMBOL(_stext);
1472	VMCOREINFO_SYMBOL(vmlist);
1473
1474#ifndef CONFIG_NEED_MULTIPLE_NODES
1475	VMCOREINFO_SYMBOL(mem_map);
1476	VMCOREINFO_SYMBOL(contig_page_data);
1477#endif
1478#ifdef CONFIG_SPARSEMEM
1479	VMCOREINFO_SYMBOL(mem_section);
1480	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1481	VMCOREINFO_STRUCT_SIZE(mem_section);
1482	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1483#endif
1484	VMCOREINFO_STRUCT_SIZE(page);
1485	VMCOREINFO_STRUCT_SIZE(pglist_data);
1486	VMCOREINFO_STRUCT_SIZE(zone);
1487	VMCOREINFO_STRUCT_SIZE(free_area);
1488	VMCOREINFO_STRUCT_SIZE(list_head);
1489	VMCOREINFO_SIZE(nodemask_t);
1490	VMCOREINFO_OFFSET(page, flags);
1491	VMCOREINFO_OFFSET(page, _count);
1492	VMCOREINFO_OFFSET(page, mapping);
1493	VMCOREINFO_OFFSET(page, lru);
1494	VMCOREINFO_OFFSET(pglist_data, node_zones);
1495	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1496#ifdef CONFIG_FLAT_NODE_MEM_MAP
1497	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1498#endif
1499	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1500	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1501	VMCOREINFO_OFFSET(pglist_data, node_id);
1502	VMCOREINFO_OFFSET(zone, free_area);
1503	VMCOREINFO_OFFSET(zone, vm_stat);
1504	VMCOREINFO_OFFSET(zone, spanned_pages);
1505	VMCOREINFO_OFFSET(free_area, free_list);
1506	VMCOREINFO_OFFSET(list_head, next);
1507	VMCOREINFO_OFFSET(list_head, prev);
1508	VMCOREINFO_OFFSET(vm_struct, addr);
1509	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1510	log_buf_kexec_setup();
1511	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1512	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1513	VMCOREINFO_NUMBER(PG_lru);
1514	VMCOREINFO_NUMBER(PG_private);
1515	VMCOREINFO_NUMBER(PG_swapcache);
1516
1517	arch_crash_save_vmcoreinfo();
1518	update_vmcoreinfo_note();
1519
1520	return 0;
1521}
1522
1523module_init(crash_save_vmcoreinfo_init)
1524
1525/*
1526 * Move into place and start executing a preloaded standalone
1527 * executable.  If nothing was preloaded return an error.
1528 */
1529int kernel_kexec(void)
1530{
1531	int error = 0;
1532
1533	if (!mutex_trylock(&kexec_mutex))
1534		return -EBUSY;
1535	if (!kexec_image) {
1536		error = -EINVAL;
1537		goto Unlock;
1538	}
1539
1540#ifdef CONFIG_KEXEC_JUMP
1541	if (kexec_image->preserve_context) {
1542		lock_system_sleep();
1543		pm_prepare_console();
1544		error = freeze_processes();
1545		if (error) {
1546			error = -EBUSY;
1547			goto Restore_console;
1548		}
1549		suspend_console();
1550		error = dpm_suspend_start(PMSG_FREEZE);
1551		if (error)
1552			goto Resume_console;
1553		/* At this point, dpm_suspend_start() has been called,
1554		 * but *not* dpm_suspend_end(). We *must* call
1555		 * dpm_suspend_end() now.  Otherwise, drivers for
1556		 * some devices (e.g. interrupt controllers) become
1557		 * desynchronized with the actual state of the
1558		 * hardware at resume time, and evil weirdness ensues.
1559		 */
1560		error = dpm_suspend_end(PMSG_FREEZE);
1561		if (error)
1562			goto Resume_devices;
1563		error = disable_nonboot_cpus();
1564		if (error)
1565			goto Enable_cpus;
1566		local_irq_disable();
1567		error = syscore_suspend();
1568		if (error)
1569			goto Enable_irqs;
1570	} else
1571#endif
1572	{
1573		kernel_restart_prepare(NULL);
1574		printk(KERN_EMERG "Starting new kernel\n");
1575		machine_shutdown();
1576	}
1577
1578	machine_kexec(kexec_image);
1579
1580#ifdef CONFIG_KEXEC_JUMP
1581	if (kexec_image->preserve_context) {
1582		syscore_resume();
1583 Enable_irqs:
1584		local_irq_enable();
1585 Enable_cpus:
1586		enable_nonboot_cpus();
1587		dpm_resume_start(PMSG_RESTORE);
1588 Resume_devices:
1589		dpm_resume_end(PMSG_RESTORE);
1590 Resume_console:
1591		resume_console();
1592		thaw_processes();
1593 Restore_console:
1594		pm_restore_console();
1595		unlock_system_sleep();
1596	}
1597#endif
1598
1599 Unlock:
1600	mutex_unlock(&kexec_mutex);
1601	return error;
1602}