Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
  28#include <linux/dma-fence-array.h>
  29#include <linux/interval_tree_generic.h>
  30#include <linux/idr.h>
  31
  32#include <drm/amdgpu_drm.h>
  33#include "amdgpu.h"
  34#include "amdgpu_trace.h"
  35#include "amdgpu_amdkfd.h"
  36#include "amdgpu_gmc.h"
  37#include "amdgpu_xgmi.h"
  38
  39/**
  40 * DOC: GPUVM
  41 *
  42 * GPUVM is similar to the legacy gart on older asics, however
  43 * rather than there being a single global gart table
  44 * for the entire GPU, there are multiple VM page tables active
  45 * at any given time.  The VM page tables can contain a mix
  46 * vram pages and system memory pages and system memory pages
  47 * can be mapped as snooped (cached system pages) or unsnooped
  48 * (uncached system pages).
  49 * Each VM has an ID associated with it and there is a page table
  50 * associated with each VMID.  When execting a command buffer,
  51 * the kernel tells the the ring what VMID to use for that command
  52 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  53 * The userspace drivers maintain their own address space and the kernel
  54 * sets up their pages tables accordingly when they submit their
  55 * command buffers and a VMID is assigned.
  56 * Cayman/Trinity support up to 8 active VMs at any given time;
  57 * SI supports 16.
  58 */
  59
  60#define START(node) ((node)->start)
  61#define LAST(node) ((node)->last)
  62
  63INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
  64		     START, LAST, static, amdgpu_vm_it)
  65
  66#undef START
  67#undef LAST
  68
  69/**
  70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
  71 */
  72struct amdgpu_prt_cb {
  73
  74	/**
  75	 * @adev: amdgpu device
  76	 */
  77	struct amdgpu_device *adev;
  78
  79	/**
  80	 * @cb: callback
 
 
 
 
 
 
 
 
 
 
 
  81	 */
  82	struct dma_fence_cb cb;
 
  83};
  84
  85/*
  86 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
  87 * happens while holding this lock anywhere to prevent deadlocks when
  88 * an MMU notifier runs in reclaim-FS context.
  89 */
  90static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
  91{
  92	mutex_lock(&vm->eviction_lock);
  93	vm->saved_flags = memalloc_nofs_save();
  94}
  95
  96static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
  97{
  98	if (mutex_trylock(&vm->eviction_lock)) {
  99		vm->saved_flags = memalloc_nofs_save();
 100		return 1;
 101	}
 102	return 0;
 103}
 104
 105static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
 106{
 107	memalloc_nofs_restore(vm->saved_flags);
 108	mutex_unlock(&vm->eviction_lock);
 109}
 110
 111/**
 112 * amdgpu_vm_level_shift - return the addr shift for each level
 113 *
 114 * @adev: amdgpu_device pointer
 115 * @level: VMPT level
 116 *
 117 * Returns:
 118 * The number of bits the pfn needs to be right shifted for a level.
 119 */
 120static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
 121				      unsigned level)
 122{
 
 
 123	switch (level) {
 124	case AMDGPU_VM_PDB2:
 125	case AMDGPU_VM_PDB1:
 126	case AMDGPU_VM_PDB0:
 127		return 9 * (AMDGPU_VM_PDB0 - level) +
 128			adev->vm_manager.block_size;
 
 129	case AMDGPU_VM_PTB:
 130		return 0;
 
 131	default:
 132		return ~0;
 133	}
 
 
 134}
 135
 136/**
 137 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
 138 *
 139 * @adev: amdgpu_device pointer
 140 * @level: VMPT level
 141 *
 142 * Returns:
 143 * The number of entries in a page directory or page table.
 144 */
 145static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
 146				      unsigned level)
 147{
 148	unsigned shift = amdgpu_vm_level_shift(adev,
 149					       adev->vm_manager.root_level);
 150
 151	if (level == adev->vm_manager.root_level)
 152		/* For the root directory */
 153		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
 154			>> shift;
 155	else if (level != AMDGPU_VM_PTB)
 156		/* Everything in between */
 157		return 512;
 158	else
 159		/* For the page tables on the leaves */
 160		return AMDGPU_VM_PTE_COUNT(adev);
 161}
 162
 163/**
 164 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
 165 *
 166 * @adev: amdgpu_device pointer
 167 *
 168 * Returns:
 169 * The number of entries in the root page directory which needs the ATS setting.
 170 */
 171static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
 172{
 173	unsigned shift;
 174
 175	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
 176	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
 177}
 178
 179/**
 180 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
 181 *
 182 * @adev: amdgpu_device pointer
 183 * @level: VMPT level
 184 *
 185 * Returns:
 186 * The mask to extract the entry number of a PD/PT from an address.
 187 */
 188static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
 189				       unsigned int level)
 190{
 191	if (level <= adev->vm_manager.root_level)
 192		return 0xffffffff;
 193	else if (level != AMDGPU_VM_PTB)
 194		return 0x1ff;
 195	else
 196		return AMDGPU_VM_PTE_COUNT(adev) - 1;
 197}
 198
 199/**
 200 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
 201 *
 202 * @adev: amdgpu_device pointer
 203 * @level: VMPT level
 204 *
 205 * Returns:
 206 * The size of the BO for a page directory or page table in bytes.
 207 */
 208static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
 209{
 210	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
 211}
 212
 213/**
 214 * amdgpu_vm_bo_evicted - vm_bo is evicted
 215 *
 216 * @vm_bo: vm_bo which is evicted
 217 *
 218 * State for PDs/PTs and per VM BOs which are not at the location they should
 219 * be.
 220 */
 221static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
 222{
 223	struct amdgpu_vm *vm = vm_bo->vm;
 224	struct amdgpu_bo *bo = vm_bo->bo;
 225
 226	vm_bo->moved = true;
 227	if (bo->tbo.type == ttm_bo_type_kernel)
 228		list_move(&vm_bo->vm_status, &vm->evicted);
 229	else
 230		list_move_tail(&vm_bo->vm_status, &vm->evicted);
 231}
 232/**
 233 * amdgpu_vm_bo_moved - vm_bo is moved
 234 *
 235 * @vm_bo: vm_bo which is moved
 236 *
 237 * State for per VM BOs which are moved, but that change is not yet reflected
 238 * in the page tables.
 239 */
 240static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
 241{
 242	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 243}
 244
 245/**
 246 * amdgpu_vm_bo_idle - vm_bo is idle
 247 *
 248 * @vm_bo: vm_bo which is now idle
 249 *
 250 * State for PDs/PTs and per VM BOs which have gone through the state machine
 251 * and are now idle.
 252 */
 253static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
 254{
 255	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
 256	vm_bo->moved = false;
 257}
 258
 259/**
 260 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
 261 *
 262 * @vm_bo: vm_bo which is now invalidated
 263 *
 264 * State for normal BOs which are invalidated and that change not yet reflected
 265 * in the PTs.
 266 */
 267static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
 268{
 269	spin_lock(&vm_bo->vm->invalidated_lock);
 270	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
 271	spin_unlock(&vm_bo->vm->invalidated_lock);
 272}
 273
 274/**
 275 * amdgpu_vm_bo_relocated - vm_bo is reloacted
 276 *
 277 * @vm_bo: vm_bo which is relocated
 278 *
 279 * State for PDs/PTs which needs to update their parent PD.
 280 * For the root PD, just move to idle state.
 281 */
 282static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
 283{
 284	if (vm_bo->bo->parent)
 285		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 286	else
 287		amdgpu_vm_bo_idle(vm_bo);
 288}
 289
 290/**
 291 * amdgpu_vm_bo_done - vm_bo is done
 292 *
 293 * @vm_bo: vm_bo which is now done
 294 *
 295 * State for normal BOs which are invalidated and that change has been updated
 296 * in the PTs.
 297 */
 298static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
 299{
 300	spin_lock(&vm_bo->vm->invalidated_lock);
 301	list_del_init(&vm_bo->vm_status);
 302	spin_unlock(&vm_bo->vm->invalidated_lock);
 303}
 304
 305/**
 306 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
 307 *
 308 * @base: base structure for tracking BO usage in a VM
 309 * @vm: vm to which bo is to be added
 310 * @bo: amdgpu buffer object
 311 *
 312 * Initialize a bo_va_base structure and add it to the appropriate lists
 313 *
 314 */
 315static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
 316				   struct amdgpu_vm *vm,
 317				   struct amdgpu_bo *bo)
 318{
 319	base->vm = vm;
 320	base->bo = bo;
 321	base->next = NULL;
 322	INIT_LIST_HEAD(&base->vm_status);
 323
 324	if (!bo)
 325		return;
 326	base->next = bo->vm_bo;
 327	bo->vm_bo = base;
 328
 329	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
 330		return;
 331
 332	vm->bulk_moveable = false;
 333	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
 334		amdgpu_vm_bo_relocated(base);
 335	else
 336		amdgpu_vm_bo_idle(base);
 337
 338	if (bo->preferred_domains &
 339	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
 340		return;
 341
 342	/*
 343	 * we checked all the prerequisites, but it looks like this per vm bo
 344	 * is currently evicted. add the bo to the evicted list to make sure it
 345	 * is validated on next vm use to avoid fault.
 346	 * */
 347	amdgpu_vm_bo_evicted(base);
 348}
 349
 350/**
 351 * amdgpu_vm_pt_parent - get the parent page directory
 352 *
 353 * @pt: child page table
 354 *
 355 * Helper to get the parent entry for the child page table. NULL if we are at
 356 * the root page directory.
 357 */
 358static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
 359{
 360	struct amdgpu_bo *parent = pt->base.bo->parent;
 361
 362	if (!parent)
 363		return NULL;
 364
 365	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
 366}
 367
 368/*
 369 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
 370 */
 371struct amdgpu_vm_pt_cursor {
 372	uint64_t pfn;
 373	struct amdgpu_vm_pt *parent;
 374	struct amdgpu_vm_pt *entry;
 375	unsigned level;
 376};
 377
 378/**
 379 * amdgpu_vm_pt_start - start PD/PT walk
 380 *
 381 * @adev: amdgpu_device pointer
 382 * @vm: amdgpu_vm structure
 383 * @start: start address of the walk
 384 * @cursor: state to initialize
 385 *
 386 * Initialize a amdgpu_vm_pt_cursor to start a walk.
 387 */
 388static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
 389			       struct amdgpu_vm *vm, uint64_t start,
 390			       struct amdgpu_vm_pt_cursor *cursor)
 391{
 392	cursor->pfn = start;
 393	cursor->parent = NULL;
 394	cursor->entry = &vm->root;
 395	cursor->level = adev->vm_manager.root_level;
 396}
 397
 398/**
 399 * amdgpu_vm_pt_descendant - go to child node
 400 *
 401 * @adev: amdgpu_device pointer
 402 * @cursor: current state
 403 *
 404 * Walk to the child node of the current node.
 405 * Returns:
 406 * True if the walk was possible, false otherwise.
 407 */
 408static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
 409				    struct amdgpu_vm_pt_cursor *cursor)
 410{
 411	unsigned mask, shift, idx;
 412
 413	if (!cursor->entry->entries)
 414		return false;
 415
 416	BUG_ON(!cursor->entry->base.bo);
 417	mask = amdgpu_vm_entries_mask(adev, cursor->level);
 418	shift = amdgpu_vm_level_shift(adev, cursor->level);
 419
 420	++cursor->level;
 421	idx = (cursor->pfn >> shift) & mask;
 422	cursor->parent = cursor->entry;
 423	cursor->entry = &cursor->entry->entries[idx];
 424	return true;
 425}
 426
 427/**
 428 * amdgpu_vm_pt_sibling - go to sibling node
 429 *
 430 * @adev: amdgpu_device pointer
 431 * @cursor: current state
 432 *
 433 * Walk to the sibling node of the current node.
 434 * Returns:
 435 * True if the walk was possible, false otherwise.
 436 */
 437static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
 438				 struct amdgpu_vm_pt_cursor *cursor)
 439{
 440	unsigned shift, num_entries;
 441
 442	/* Root doesn't have a sibling */
 443	if (!cursor->parent)
 444		return false;
 445
 446	/* Go to our parents and see if we got a sibling */
 447	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
 448	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
 449
 450	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
 451		return false;
 452
 453	cursor->pfn += 1ULL << shift;
 454	cursor->pfn &= ~((1ULL << shift) - 1);
 455	++cursor->entry;
 456	return true;
 457}
 458
 459/**
 460 * amdgpu_vm_pt_ancestor - go to parent node
 461 *
 462 * @cursor: current state
 463 *
 464 * Walk to the parent node of the current node.
 465 * Returns:
 466 * True if the walk was possible, false otherwise.
 467 */
 468static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
 469{
 470	if (!cursor->parent)
 471		return false;
 472
 473	--cursor->level;
 474	cursor->entry = cursor->parent;
 475	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
 476	return true;
 477}
 478
 479/**
 480 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
 481 *
 482 * @adev: amdgpu_device pointer
 483 * @cursor: current state
 484 *
 485 * Walk the PD/PT tree to the next node.
 486 */
 487static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
 488			      struct amdgpu_vm_pt_cursor *cursor)
 489{
 490	/* First try a newborn child */
 491	if (amdgpu_vm_pt_descendant(adev, cursor))
 492		return;
 493
 494	/* If that didn't worked try to find a sibling */
 495	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
 496		/* No sibling, go to our parents and grandparents */
 497		if (!amdgpu_vm_pt_ancestor(cursor)) {
 498			cursor->pfn = ~0ll;
 499			return;
 500		}
 501	}
 502}
 503
 504/**
 505 * amdgpu_vm_pt_first_dfs - start a deep first search
 506 *
 507 * @adev: amdgpu_device structure
 508 * @vm: amdgpu_vm structure
 509 * @start: optional cursor to start with
 510 * @cursor: state to initialize
 511 *
 512 * Starts a deep first traversal of the PD/PT tree.
 513 */
 514static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
 515				   struct amdgpu_vm *vm,
 516				   struct amdgpu_vm_pt_cursor *start,
 517				   struct amdgpu_vm_pt_cursor *cursor)
 518{
 519	if (start)
 520		*cursor = *start;
 521	else
 522		amdgpu_vm_pt_start(adev, vm, 0, cursor);
 523	while (amdgpu_vm_pt_descendant(adev, cursor));
 524}
 525
 526/**
 527 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
 528 *
 529 * @start: starting point for the search
 530 * @entry: current entry
 531 *
 532 * Returns:
 533 * True when the search should continue, false otherwise.
 534 */
 535static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
 536				      struct amdgpu_vm_pt *entry)
 537{
 538	return entry && (!start || entry != start->entry);
 539}
 540
 541/**
 542 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
 543 *
 544 * @adev: amdgpu_device structure
 545 * @cursor: current state
 546 *
 547 * Move the cursor to the next node in a deep first search.
 548 */
 549static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
 550				  struct amdgpu_vm_pt_cursor *cursor)
 551{
 552	if (!cursor->entry)
 553		return;
 554
 555	if (!cursor->parent)
 556		cursor->entry = NULL;
 557	else if (amdgpu_vm_pt_sibling(adev, cursor))
 558		while (amdgpu_vm_pt_descendant(adev, cursor));
 559	else
 560		amdgpu_vm_pt_ancestor(cursor);
 561}
 562
 563/*
 564 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
 565 */
 566#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
 567	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
 568	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
 569	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
 570	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
 571
 572/**
 573 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
 574 *
 575 * @vm: vm providing the BOs
 576 * @validated: head of validation list
 577 * @entry: entry to add
 578 *
 579 * Add the page directory to the list of BOs to
 580 * validate for command submission.
 581 */
 582void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
 583			 struct list_head *validated,
 584			 struct amdgpu_bo_list_entry *entry)
 585{
 
 586	entry->priority = 0;
 587	entry->tv.bo = &vm->root.base.bo->tbo;
 588	/* Two for VM updates, one for TTM and one for the CS job */
 589	entry->tv.num_shared = 4;
 590	entry->user_pages = NULL;
 591	list_add(&entry->tv.head, validated);
 592}
 593
 594/**
 595 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
 596 *
 597 * @bo: BO which was removed from the LRU
 598 *
 599 * Make sure the bulk_moveable flag is updated when a BO is removed from the
 600 * LRU.
 601 */
 602void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
 603{
 604	struct amdgpu_bo *abo;
 605	struct amdgpu_vm_bo_base *bo_base;
 606
 607	if (!amdgpu_bo_is_amdgpu_bo(bo))
 608		return;
 609
 610	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
 611		return;
 612
 613	abo = ttm_to_amdgpu_bo(bo);
 614	if (!abo->parent)
 615		return;
 616	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
 617		struct amdgpu_vm *vm = bo_base->vm;
 618
 619		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
 620			vm->bulk_moveable = false;
 621	}
 622
 623}
 624/**
 625 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
 626 *
 627 * @adev: amdgpu device pointer
 628 * @vm: vm providing the BOs
 629 *
 630 * Move all BOs to the end of LRU and remember their positions to put them
 631 * together.
 632 */
 633void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
 634				struct amdgpu_vm *vm)
 635{
 636	struct amdgpu_vm_bo_base *bo_base;
 637
 638	if (vm->bulk_moveable) {
 639		spin_lock(&ttm_bo_glob.lru_lock);
 640		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
 641		spin_unlock(&ttm_bo_glob.lru_lock);
 642		return;
 643	}
 644
 645	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
 646
 647	spin_lock(&ttm_bo_glob.lru_lock);
 648	list_for_each_entry(bo_base, &vm->idle, vm_status) {
 649		struct amdgpu_bo *bo = bo_base->bo;
 650
 651		if (!bo->parent)
 652			continue;
 653
 654		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
 655		if (bo->shadow)
 656			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
 657						&vm->lru_bulk_move);
 658	}
 659	spin_unlock(&ttm_bo_glob.lru_lock);
 660
 661	vm->bulk_moveable = true;
 662}
 663
 664/**
 665 * amdgpu_vm_validate_pt_bos - validate the page table BOs
 666 *
 667 * @adev: amdgpu device pointer
 668 * @vm: vm providing the BOs
 669 * @validate: callback to do the validation
 670 * @param: parameter for the validation callback
 671 *
 672 * Validate the page table BOs on command submission if neccessary.
 673 *
 674 * Returns:
 675 * Validation result.
 676 */
 677int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 678			      int (*validate)(void *p, struct amdgpu_bo *bo),
 679			      void *param)
 680{
 681	struct amdgpu_vm_bo_base *bo_base, *tmp;
 682	int r;
 683
 684	vm->bulk_moveable &= list_empty(&vm->evicted);
 685
 686	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
 687		struct amdgpu_bo *bo = bo_base->bo;
 
 
 
 
 
 
 
 
 
 
 
 
 688
 689		r = validate(param, bo);
 690		if (r)
 691			return r;
 
 
 
 692
 693		if (bo->tbo.type != ttm_bo_type_kernel) {
 694			amdgpu_vm_bo_moved(bo_base);
 695		} else {
 696			vm->update_funcs->map_table(bo);
 697			amdgpu_vm_bo_relocated(bo_base);
 698		}
 699	}
 700
 701	amdgpu_vm_eviction_lock(vm);
 702	vm->evicting = false;
 703	amdgpu_vm_eviction_unlock(vm);
 
 
 
 
 704
 705	return 0;
 706}
 707
 708/**
 709 * amdgpu_vm_ready - check VM is ready for updates
 710 *
 711 * @vm: VM to check
 712 *
 713 * Check if all VM PDs/PTs are ready for updates
 714 *
 715 * Returns:
 716 * True if eviction list is empty.
 717 */
 718bool amdgpu_vm_ready(struct amdgpu_vm *vm)
 719{
 720	return list_empty(&vm->evicted);
 
 
 
 
 
 
 721}
 722
 723/**
 724 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
 725 *
 726 * @adev: amdgpu_device pointer
 727 * @vm: VM to clear BO from
 728 * @bo: BO to clear
 729 * @immediate: use an immediate update
 730 *
 731 * Root PD needs to be reserved when calling this.
 732 *
 733 * Returns:
 734 * 0 on success, errno otherwise.
 735 */
 736static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
 737			      struct amdgpu_vm *vm,
 738			      struct amdgpu_bo *bo,
 739			      bool immediate)
 740{
 741	struct ttm_operation_ctx ctx = { true, false };
 742	unsigned level = adev->vm_manager.root_level;
 743	struct amdgpu_vm_update_params params;
 744	struct amdgpu_bo *ancestor = bo;
 745	unsigned entries, ats_entries;
 
 
 746	uint64_t addr;
 747	int r;
 748
 749	/* Figure out our place in the hierarchy */
 750	if (ancestor->parent) {
 751		++level;
 752		while (ancestor->parent->parent) {
 753			++level;
 754			ancestor = ancestor->parent;
 755		}
 756	}
 757
 758	entries = amdgpu_bo_size(bo) / 8;
 759	if (!vm->pte_support_ats) {
 760		ats_entries = 0;
 761
 762	} else if (!bo->parent) {
 763		ats_entries = amdgpu_vm_num_ats_entries(adev);
 764		ats_entries = min(ats_entries, entries);
 765		entries -= ats_entries;
 766
 767	} else {
 768		struct amdgpu_vm_pt *pt;
 769
 770		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
 771		ats_entries = amdgpu_vm_num_ats_entries(adev);
 772		if ((pt - vm->root.entries) >= ats_entries) {
 773			ats_entries = 0;
 774		} else {
 775			ats_entries = entries;
 776			entries = 0;
 777		}
 
 
 778	}
 779
 780	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
 781	if (r)
 782		return r;
 783
 784	if (bo->shadow) {
 785		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
 786				    &ctx);
 787		if (r)
 788			return r;
 789	}
 790
 791	r = vm->update_funcs->map_table(bo);
 792	if (r)
 793		return r;
 794
 795	memset(&params, 0, sizeof(params));
 796	params.adev = adev;
 797	params.vm = vm;
 798	params.immediate = immediate;
 799
 800	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
 801	if (r)
 802		return r;
 803
 804	addr = 0;
 805	if (ats_entries) {
 806		uint64_t value = 0, flags;
 807
 808		flags = AMDGPU_PTE_DEFAULT_ATC;
 809		if (level != AMDGPU_VM_PTB) {
 810			/* Handle leaf PDEs as PTEs */
 811			flags |= AMDGPU_PDE_PTE;
 812			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
 813		}
 814
 815		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
 816					     value, flags);
 817		if (r)
 818			return r;
 819
 
 
 820		addr += ats_entries * 8;
 821	}
 822
 823	if (entries) {
 824		uint64_t value = 0, flags = 0;
 
 
 
 
 
 
 
 
 
 825
 826		if (adev->asic_type >= CHIP_VEGA10) {
 827			if (level != AMDGPU_VM_PTB) {
 828				/* Handle leaf PDEs as PTEs */
 829				flags |= AMDGPU_PDE_PTE;
 830				amdgpu_gmc_get_vm_pde(adev, level,
 831						      &value, &flags);
 832			} else {
 833				/* Workaround for fault priority problem on GMC9 */
 834				flags = AMDGPU_PTE_EXECUTABLE;
 835			}
 836		}
 837
 838		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
 839					     value, flags);
 840		if (r)
 841			return r;
 842	}
 843
 844	return vm->update_funcs->commit(&params, NULL);
 845}
 
 846
 847/**
 848 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
 849 *
 850 * @adev: amdgpu_device pointer
 851 * @vm: requesting vm
 852 * @level: the page table level
 853 * @immediate: use a immediate update
 854 * @bp: resulting BO allocation parameters
 855 */
 856static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 857			       int level, bool immediate,
 858			       struct amdgpu_bo_param *bp)
 859{
 860	memset(bp, 0, sizeof(*bp));
 861
 862	bp->size = amdgpu_vm_bo_size(adev, level);
 863	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
 864	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
 865	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
 866	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
 867		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
 868	if (vm->use_cpu_for_update)
 869		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 870	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
 871		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
 872	bp->type = ttm_bo_type_kernel;
 873	bp->no_wait_gpu = immediate;
 874	if (vm->root.base.bo)
 875		bp->resv = vm->root.base.bo->tbo.base.resv;
 876}
 877
 878/**
 879 * amdgpu_vm_alloc_pts - Allocate a specific page table
 880 *
 881 * @adev: amdgpu_device pointer
 882 * @vm: VM to allocate page tables for
 883 * @cursor: Which page table to allocate
 884 * @immediate: use an immediate update
 885 *
 886 * Make sure a specific page table or directory is allocated.
 887 *
 888 * Returns:
 889 * 1 if page table needed to be allocated, 0 if page table was already
 890 * allocated, negative errno if an error occurred.
 891 */
 892static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
 893			       struct amdgpu_vm *vm,
 894			       struct amdgpu_vm_pt_cursor *cursor,
 895			       bool immediate)
 896{
 897	struct amdgpu_vm_pt *entry = cursor->entry;
 898	struct amdgpu_bo_param bp;
 899	struct amdgpu_bo *pt;
 900	int r;
 901
 902	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
 903		unsigned num_entries;
 904
 905		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
 906		entry->entries = kvmalloc_array(num_entries,
 907						sizeof(*entry->entries),
 908						GFP_KERNEL | __GFP_ZERO);
 909		if (!entry->entries)
 910			return -ENOMEM;
 
 911	}
 912
 913	if (entry->base.bo)
 914		return 0;
 
 
 
 915
 916	amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
 
 
 917
 918	r = amdgpu_bo_create(adev, &bp, &pt);
 919	if (r)
 920		return r;
 
 
 
 921
 922	/* Keep a reference to the root directory to avoid
 923	 * freeing them up in the wrong order.
 924	 */
 925	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
 926	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
 927
 928	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
 929	if (r)
 930		goto error_free_pt;
 
 
 
 
 
 931
 932	return 0;
 
 
 
 
 
 933
 934error_free_pt:
 935	amdgpu_bo_unref(&pt->shadow);
 936	amdgpu_bo_unref(&pt);
 937	return r;
 938}
 
 
 
 939
 940/**
 941 * amdgpu_vm_free_table - fre one PD/PT
 942 *
 943 * @entry: PDE to free
 944 */
 945static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
 946{
 947	if (entry->base.bo) {
 948		entry->base.bo->vm_bo = NULL;
 949		list_del(&entry->base.vm_status);
 950		amdgpu_bo_unref(&entry->base.bo->shadow);
 951		amdgpu_bo_unref(&entry->base.bo);
 
 
 
 
 
 
 
 
 
 
 952	}
 953	kvfree(entry->entries);
 954	entry->entries = NULL;
 955}
 956
 957/**
 958 * amdgpu_vm_free_pts - free PD/PT levels
 959 *
 960 * @adev: amdgpu device structure
 961 * @vm: amdgpu vm structure
 962 * @start: optional cursor where to start freeing PDs/PTs
 
 963 *
 964 * Free the page directory or page table level and all sub levels.
 965 */
 966static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
 967			       struct amdgpu_vm *vm,
 968			       struct amdgpu_vm_pt_cursor *start)
 969{
 970	struct amdgpu_vm_pt_cursor cursor;
 971	struct amdgpu_vm_pt *entry;
 
 
 
 
 972
 973	vm->bulk_moveable = false;
 974
 975	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
 976		amdgpu_vm_free_table(entry);
 977
 978	if (start)
 979		amdgpu_vm_free_table(start->entry);
 
 
 
 
 
 
 
 
 
 980}
 981
 982/**
 983 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
 984 *
 985 * @adev: amdgpu_device pointer
 986 */
 987void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
 988{
 989	const struct amdgpu_ip_block *ip_block;
 990	bool has_compute_vm_bug;
 991	struct amdgpu_ring *ring;
 992	int i;
 993
 994	has_compute_vm_bug = false;
 995
 996	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
 997	if (ip_block) {
 998		/* Compute has a VM bug for GFX version < 7.
 999		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1000		if (ip_block->version->major <= 7)
1001			has_compute_vm_bug = true;
1002		else if (ip_block->version->major == 8)
1003			if (adev->gfx.mec_fw_version < 673)
1004				has_compute_vm_bug = true;
1005	}
1006
1007	for (i = 0; i < adev->num_rings; i++) {
1008		ring = adev->rings[i];
1009		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1010			/* only compute rings */
1011			ring->has_compute_vm_bug = has_compute_vm_bug;
1012		else
1013			ring->has_compute_vm_bug = false;
1014	}
1015}
1016
1017/**
1018 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1019 *
1020 * @ring: ring on which the job will be submitted
1021 * @job: job to submit
1022 *
1023 * Returns:
1024 * True if sync is needed.
1025 */
1026bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1027				  struct amdgpu_job *job)
1028{
1029	struct amdgpu_device *adev = ring->adev;
1030	unsigned vmhub = ring->funcs->vmhub;
1031	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1032	struct amdgpu_vmid *id;
1033	bool gds_switch_needed;
1034	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1035
1036	if (job->vmid == 0)
1037		return false;
1038	id = &id_mgr->ids[job->vmid];
1039	gds_switch_needed = ring->funcs->emit_gds_switch && (
1040		id->gds_base != job->gds_base ||
1041		id->gds_size != job->gds_size ||
1042		id->gws_base != job->gws_base ||
1043		id->gws_size != job->gws_size ||
1044		id->oa_base != job->oa_base ||
1045		id->oa_size != job->oa_size);
1046
1047	if (amdgpu_vmid_had_gpu_reset(adev, id))
1048		return true;
1049
1050	return vm_flush_needed || gds_switch_needed;
1051}
1052
 
 
 
 
 
1053/**
1054 * amdgpu_vm_flush - hardware flush the vm
1055 *
1056 * @ring: ring to use for flush
1057 * @job:  related job
1058 * @need_pipe_sync: is pipe sync needed
1059 *
1060 * Emit a VM flush when it is necessary.
1061 *
1062 * Returns:
1063 * 0 on success, errno otherwise.
1064 */
1065int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1066		    bool need_pipe_sync)
1067{
1068	struct amdgpu_device *adev = ring->adev;
1069	unsigned vmhub = ring->funcs->vmhub;
1070	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1071	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1072	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1073		id->gds_base != job->gds_base ||
1074		id->gds_size != job->gds_size ||
1075		id->gws_base != job->gws_base ||
1076		id->gws_size != job->gws_size ||
1077		id->oa_base != job->oa_base ||
1078		id->oa_size != job->oa_size);
1079	bool vm_flush_needed = job->vm_needs_flush;
 
 
 
1080	struct dma_fence *fence = NULL;
1081	bool pasid_mapping_needed = false;
1082	unsigned patch_offset = 0;
1083	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1084	int r;
1085
1086	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1087		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1088
1089	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1090		gds_switch_needed = true;
1091		vm_flush_needed = true;
1092		pasid_mapping_needed = true;
1093	}
1094
1095	mutex_lock(&id_mgr->lock);
1096	if (id->pasid != job->pasid || !id->pasid_mapping ||
1097	    !dma_fence_is_signaled(id->pasid_mapping))
1098		pasid_mapping_needed = true;
1099	mutex_unlock(&id_mgr->lock);
1100
1101	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1102	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1103			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1104	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1105		ring->funcs->emit_wreg;
1106
1107	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1108		return 0;
1109
1110	if (ring->funcs->init_cond_exec)
1111		patch_offset = amdgpu_ring_init_cond_exec(ring);
1112
1113	if (need_pipe_sync)
1114		amdgpu_ring_emit_pipeline_sync(ring);
1115
1116	if (vm_flush_needed) {
1117		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1118		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1119	}
1120
1121	if (pasid_mapping_needed)
1122		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1123
1124	if (vm_flush_needed || pasid_mapping_needed) {
1125		r = amdgpu_fence_emit(ring, &fence, 0);
1126		if (r)
1127			return r;
1128	}
1129
1130	if (vm_flush_needed) {
1131		mutex_lock(&id_mgr->lock);
1132		dma_fence_put(id->last_flush);
1133		id->last_flush = dma_fence_get(fence);
1134		id->current_gpu_reset_count =
1135			atomic_read(&adev->gpu_reset_counter);
1136		mutex_unlock(&id_mgr->lock);
1137	}
1138
1139	if (pasid_mapping_needed) {
1140		mutex_lock(&id_mgr->lock);
1141		id->pasid = job->pasid;
1142		dma_fence_put(id->pasid_mapping);
1143		id->pasid_mapping = dma_fence_get(fence);
1144		mutex_unlock(&id_mgr->lock);
1145	}
1146	dma_fence_put(fence);
1147
1148	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1149		id->gds_base = job->gds_base;
1150		id->gds_size = job->gds_size;
1151		id->gws_base = job->gws_base;
1152		id->gws_size = job->gws_size;
1153		id->oa_base = job->oa_base;
1154		id->oa_size = job->oa_size;
1155		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1156					    job->gds_size, job->gws_base,
1157					    job->gws_size, job->oa_base,
1158					    job->oa_size);
1159	}
1160
1161	if (ring->funcs->patch_cond_exec)
1162		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1163
1164	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1165	if (ring->funcs->emit_switch_buffer) {
1166		amdgpu_ring_emit_switch_buffer(ring);
1167		amdgpu_ring_emit_switch_buffer(ring);
1168	}
1169	return 0;
1170}
1171
1172/**
1173 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1174 *
1175 * @vm: requested vm
1176 * @bo: requested buffer object
1177 *
1178 * Find @bo inside the requested vm.
1179 * Search inside the @bos vm list for the requested vm
1180 * Returns the found bo_va or NULL if none is found
1181 *
1182 * Object has to be reserved!
1183 *
1184 * Returns:
1185 * Found bo_va or NULL.
1186 */
1187struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1188				       struct amdgpu_bo *bo)
1189{
1190	struct amdgpu_vm_bo_base *base;
1191
1192	for (base = bo->vm_bo; base; base = base->next) {
1193		if (base->vm != vm)
1194			continue;
1195
1196		return container_of(base, struct amdgpu_bo_va, base);
 
 
 
1197	}
1198	return NULL;
1199}
1200
1201/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1203 *
1204 * @pages_addr: optional DMA address to use for lookup
1205 * @addr: the unmapped addr
1206 *
1207 * Look up the physical address of the page that the pte resolves
1208 * to.
1209 *
1210 * Returns:
1211 * The pointer for the page table entry.
1212 */
1213uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1214{
1215	uint64_t result;
1216
1217	/* page table offset */
1218	result = pages_addr[addr >> PAGE_SHIFT];
1219
1220	/* in case cpu page size != gpu page size*/
1221	result |= addr & (~PAGE_MASK);
1222
1223	result &= 0xFFFFFFFFFFFFF000ULL;
1224
1225	return result;
1226}
1227
1228/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229 * amdgpu_vm_update_pde - update a single level in the hierarchy
1230 *
1231 * @params: parameters for the update
1232 * @vm: requested vm
 
1233 * @entry: entry to update
1234 *
1235 * Makes sure the requested entry in parent is up to date.
1236 */
1237static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1238				struct amdgpu_vm *vm,
1239				struct amdgpu_vm_pt *entry)
 
1240{
1241	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1242	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1243	uint64_t pde, pt, flags;
1244	unsigned level;
1245
 
 
 
 
1246	for (level = 0, pbo = bo->parent; pbo; ++level)
1247		pbo = pbo->parent;
1248
1249	level += params->adev->vm_manager.root_level;
1250	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
 
 
1251	pde = (entry - parent->entries) * 8;
1252	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
 
 
1253}
1254
1255/**
1256 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1257 *
1258 * @adev: amdgpu_device pointer
1259 * @vm: related vm
1260 *
1261 * Mark all PD level as invalid after an error.
1262 */
1263static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1264				     struct amdgpu_vm *vm)
 
 
1265{
1266	struct amdgpu_vm_pt_cursor cursor;
1267	struct amdgpu_vm_pt *entry;
 
 
 
 
 
 
 
 
 
 
1268
1269	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1270		if (entry->base.bo && !entry->base.moved)
1271			amdgpu_vm_bo_relocated(&entry->base);
 
 
 
1272}
1273
1274/**
1275 * amdgpu_vm_update_pdes - make sure that all directories are valid
1276 *
1277 * @adev: amdgpu_device pointer
1278 * @vm: requested vm
1279 * @immediate: submit immediately to the paging queue
1280 *
1281 * Makes sure all directories are up to date.
1282 *
1283 * Returns:
1284 * 0 for success, error for failure.
1285 */
1286int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1287			  struct amdgpu_vm *vm, bool immediate)
1288{
1289	struct amdgpu_vm_update_params params;
1290	int r;
 
 
1291
1292	if (list_empty(&vm->relocated))
1293		return 0;
1294
 
1295	memset(&params, 0, sizeof(params));
1296	params.adev = adev;
1297	params.vm = vm;
1298	params.immediate = immediate;
1299
1300	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1301	if (r)
1302		return r;
 
 
 
 
 
 
 
 
1303
 
 
 
 
 
1304	while (!list_empty(&vm->relocated)) {
1305		struct amdgpu_vm_pt *entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306
1307		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1308					 base.vm_status);
1309		amdgpu_vm_bo_idle(&entry->base);
 
 
 
 
 
 
 
 
 
 
1310
1311		r = amdgpu_vm_update_pde(&params, vm, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312		if (r)
1313			goto error;
 
 
 
 
1314	}
1315
1316	r = vm->update_funcs->commit(&params, &vm->last_update);
1317	if (r)
1318		goto error;
1319	return 0;
1320
1321error:
1322	amdgpu_vm_invalidate_pds(adev, vm);
 
 
1323	return r;
1324}
1325
1326/*
1327 * amdgpu_vm_update_flags - figure out flags for PTE updates
 
 
 
 
 
1328 *
1329 * Make sure to set the right flags for the PTEs at the desired level.
1330 */
1331static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1332				   struct amdgpu_bo *bo, unsigned level,
1333				   uint64_t pe, uint64_t addr,
1334				   unsigned count, uint32_t incr,
1335				   uint64_t flags)
1336
1337{
1338	if (level != AMDGPU_VM_PTB) {
1339		flags |= AMDGPU_PDE_PTE;
1340		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1341
1342	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1343		   !(flags & AMDGPU_PTE_VALID) &&
1344		   !(flags & AMDGPU_PTE_PRT)) {
 
1345
1346		/* Workaround for fault priority problem on GMC9 */
1347		flags |= AMDGPU_PTE_EXECUTABLE;
 
1348	}
1349
1350	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1351					 flags);
1352}
1353
1354/**
1355 * amdgpu_vm_fragment - get fragment for PTEs
1356 *
1357 * @params: see amdgpu_vm_update_params definition
1358 * @start: first PTE to handle
1359 * @end: last PTE to handle
1360 * @flags: hw mapping flags
1361 * @frag: resulting fragment size
1362 * @frag_end: end of this fragment
1363 *
1364 * Returns the first possible fragment for the start and end address.
1365 */
1366static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1367			       uint64_t start, uint64_t end, uint64_t flags,
1368			       unsigned int *frag, uint64_t *frag_end)
 
 
1369{
1370	/**
1371	 * The MC L1 TLB supports variable sized pages, based on a fragment
1372	 * field in the PTE. When this field is set to a non-zero value, page
1373	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1374	 * flags are considered valid for all PTEs within the fragment range
1375	 * and corresponding mappings are assumed to be physically contiguous.
1376	 *
1377	 * The L1 TLB can store a single PTE for the whole fragment,
1378	 * significantly increasing the space available for translation
1379	 * caching. This leads to large improvements in throughput when the
1380	 * TLB is under pressure.
1381	 *
1382	 * The L2 TLB distributes small and large fragments into two
1383	 * asymmetric partitions. The large fragment cache is significantly
1384	 * larger. Thus, we try to use large fragments wherever possible.
1385	 * Userspace can support this by aligning virtual base address and
1386	 * allocation size to the fragment size.
1387	 *
1388	 * Starting with Vega10 the fragment size only controls the L1. The L2
1389	 * is now directly feed with small/huge/giant pages from the walker.
1390	 */
1391	unsigned max_frag;
1392
1393	if (params->adev->asic_type < CHIP_VEGA10)
1394		max_frag = params->adev->vm_manager.fragment_size;
1395	else
1396		max_frag = 31;
 
 
1397
1398	/* system pages are non continuously */
1399	if (params->pages_addr) {
1400		*frag = 0;
1401		*frag_end = end;
 
 
 
 
1402		return;
1403	}
1404
1405	/* This intentionally wraps around if no bit is set */
1406	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1407	if (*frag >= max_frag) {
1408		*frag = max_frag;
1409		*frag_end = end & ~((1ULL << max_frag) - 1);
1410	} else {
1411		*frag_end = start + (1 << *frag);
1412	}
1413}
1414
1415/**
1416 * amdgpu_vm_update_ptes - make sure that page tables are valid
1417 *
1418 * @params: see amdgpu_vm_update_params definition
 
1419 * @start: start of GPU address range
1420 * @end: end of GPU address range
1421 * @dst: destination address to map to, the next dst inside the function
1422 * @flags: mapping flags
1423 *
1424 * Update the page tables in the range @start - @end.
1425 *
1426 * Returns:
1427 * 0 for success, -EINVAL for failure.
1428 */
1429static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1430				 uint64_t start, uint64_t end,
1431				 uint64_t dst, uint64_t flags)
1432{
1433	struct amdgpu_device *adev = params->adev;
1434	struct amdgpu_vm_pt_cursor cursor;
1435	uint64_t frag_start = start, frag_end;
1436	unsigned int frag;
1437	int r;
1438
1439	/* figure out the initial fragment */
1440	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
 
1441
1442	/* walk over the address space and update the PTs */
1443	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1444	while (cursor.pfn < end) {
1445		unsigned shift, parent_shift, mask;
1446		uint64_t incr, entry_end, pe_start;
1447		struct amdgpu_bo *pt;
1448
1449		if (!params->unlocked) {
1450			/* make sure that the page tables covering the
1451			 * address range are actually allocated
1452			 */
1453			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1454						&cursor, params->immediate);
1455			if (r)
1456				return r;
1457		}
1458
1459		shift = amdgpu_vm_level_shift(adev, cursor.level);
1460		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1461		if (params->unlocked) {
1462			/* Unlocked updates are only allowed on the leaves */
1463			if (amdgpu_vm_pt_descendant(adev, &cursor))
1464				continue;
1465		} else if (adev->asic_type < CHIP_VEGA10 &&
1466			   (flags & AMDGPU_PTE_VALID)) {
1467			/* No huge page support before GMC v9 */
1468			if (cursor.level != AMDGPU_VM_PTB) {
1469				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1470					return -ENOENT;
1471				continue;
1472			}
1473		} else if (frag < shift) {
1474			/* We can't use this level when the fragment size is
1475			 * smaller than the address shift. Go to the next
1476			 * child entry and try again.
1477			 */
1478			if (amdgpu_vm_pt_descendant(adev, &cursor))
1479				continue;
1480		} else if (frag >= parent_shift) {
1481			/* If the fragment size is even larger than the parent
1482			 * shift we should go up one level and check it again.
1483			 */
1484			if (!amdgpu_vm_pt_ancestor(&cursor))
1485				return -EINVAL;
1486			continue;
1487		}
1488
1489		pt = cursor.entry->base.bo;
1490		if (!pt) {
1491			/* We need all PDs and PTs for mapping something, */
1492			if (flags & AMDGPU_PTE_VALID)
1493				return -ENOENT;
1494
1495			/* but unmapping something can happen at a higher
1496			 * level.
1497			 */
1498			if (!amdgpu_vm_pt_ancestor(&cursor))
1499				return -EINVAL;
1500
1501			pt = cursor.entry->base.bo;
1502			shift = parent_shift;
1503		}
1504
1505		/* Looks good so far, calculate parameters for the update */
1506		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1507		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1508		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1509		entry_end = ((uint64_t)mask + 1) << shift;
1510		entry_end += cursor.pfn & ~(entry_end - 1);
1511		entry_end = min(entry_end, end);
1512
1513		do {
1514			uint64_t upd_end = min(entry_end, frag_end);
1515			unsigned nptes = (upd_end - frag_start) >> shift;
1516
1517			/* This can happen when we set higher level PDs to
1518			 * silent to stop fault floods.
1519			 */
1520			nptes = max(nptes, 1u);
1521			amdgpu_vm_update_flags(params, pt, cursor.level,
1522					       pe_start, dst, nptes, incr,
1523					       flags | AMDGPU_PTE_FRAG(frag));
1524
1525			pe_start += nptes * 8;
1526			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1527
1528			frag_start = upd_end;
1529			if (frag_start >= frag_end) {
1530				/* figure out the next fragment */
1531				amdgpu_vm_fragment(params, frag_start, end,
1532						   flags, &frag, &frag_end);
1533				if (frag < shift)
1534					break;
1535			}
1536		} while (frag_start < entry_end);
1537
1538		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1539			/* Free all child entries.
1540			 * Update the tables with the flags and addresses and free up subsequent
1541			 * tables in the case of huge pages or freed up areas.
1542			 * This is the maximum you can free, because all other page tables are not
1543			 * completely covered by the range and so potentially still in use.
1544			 */
1545			while (cursor.pfn < frag_start) {
1546				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1547				amdgpu_vm_pt_next(adev, &cursor);
1548			}
1549
1550		} else if (frag >= shift) {
1551			/* or just move on to the next on the same level. */
1552			amdgpu_vm_pt_next(adev, &cursor);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553		}
 
 
 
 
 
 
 
 
1554	}
1555
1556	return 0;
1557}
1558
1559/**
1560 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1561 *
1562 * @adev: amdgpu_device pointer
 
 
1563 * @vm: requested vm
1564 * @immediate: immediate submission in a page fault
1565 * @unlocked: unlocked invalidation during MM callback
1566 * @resv: fences we need to sync to
1567 * @start: start of mapped range
1568 * @last: last mapped entry
1569 * @flags: flags for the entries
1570 * @addr: addr to set the area to
1571 * @pages_addr: DMA addresses to use for mapping
1572 * @fence: optional resulting fence
1573 *
1574 * Fill in the page table entries between @start and @last.
1575 *
1576 * Returns:
1577 * 0 for success, -EINVAL for failure.
1578 */
1579static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1580				       struct amdgpu_vm *vm, bool immediate,
1581				       bool unlocked, struct dma_resv *resv,
 
1582				       uint64_t start, uint64_t last,
1583				       uint64_t flags, uint64_t addr,
1584				       dma_addr_t *pages_addr,
1585				       struct dma_fence **fence)
1586{
1587	struct amdgpu_vm_update_params params;
1588	enum amdgpu_sync_mode sync_mode;
 
 
 
 
1589	int r;
1590
1591	memset(&params, 0, sizeof(params));
1592	params.adev = adev;
1593	params.vm = vm;
1594	params.immediate = immediate;
1595	params.pages_addr = pages_addr;
1596	params.unlocked = unlocked;
1597
1598	/* Implicitly sync to command submissions in the same VM before
1599	 * unmapping. Sync to moving fences before mapping.
1600	 */
1601	if (!(flags & AMDGPU_PTE_VALID))
1602		sync_mode = AMDGPU_SYNC_EQ_OWNER;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603	else
1604		sync_mode = AMDGPU_SYNC_EXPLICIT;
 
 
 
 
 
 
 
 
 
 
 
 
1605
1606	amdgpu_vm_eviction_lock(vm);
1607	if (vm->evicting) {
1608		r = -EBUSY;
1609		goto error_unlock;
 
 
 
 
1610	}
1611
1612	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1613		struct dma_fence *tmp = dma_fence_get_stub();
 
 
 
 
 
 
 
1614
1615		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1616		swap(vm->last_unlocked, tmp);
1617		dma_fence_put(tmp);
 
 
 
 
 
 
 
 
1618	}
1619
1620	r = vm->update_funcs->prepare(&params, resv, sync_mode);
 
 
 
 
 
1621	if (r)
1622		goto error_unlock;
1623
1624	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1625	if (r)
1626		goto error_unlock;
1627
1628	r = vm->update_funcs->commit(&params, fence);
 
 
 
 
 
 
 
 
 
1629
1630error_unlock:
1631	amdgpu_vm_eviction_unlock(vm);
 
 
 
 
 
1632	return r;
1633}
1634
1635/**
1636 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1637 *
1638 * @adev: amdgpu_device pointer
1639 * @resv: fences we need to sync to
1640 * @pages_addr: DMA addresses to use for mapping
1641 * @vm: requested vm
1642 * @mapping: mapped range and flags to use for the update
1643 * @flags: HW flags for the mapping
1644 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1645 * @nodes: array of drm_mm_nodes with the MC addresses
1646 * @fence: optional resulting fence
1647 *
1648 * Split the mapping into smaller chunks so that each update fits
1649 * into a SDMA IB.
1650 *
1651 * Returns:
1652 * 0 for success, -EINVAL for failure.
1653 */
1654static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1655				      struct dma_resv *resv,
1656				      dma_addr_t *pages_addr,
1657				      struct amdgpu_vm *vm,
1658				      struct amdgpu_bo_va_mapping *mapping,
1659				      uint64_t flags,
1660				      struct amdgpu_device *bo_adev,
1661				      struct drm_mm_node *nodes,
1662				      struct dma_fence **fence)
1663{
1664	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1665	uint64_t pfn, start = mapping->start;
1666	int r;
1667
1668	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1669	 * but in case of something, we filter the flags in first place
1670	 */
1671	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1672		flags &= ~AMDGPU_PTE_READABLE;
1673	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1674		flags &= ~AMDGPU_PTE_WRITEABLE;
1675
1676	/* Apply ASIC specific mapping flags */
1677	amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
 
 
 
 
 
 
 
 
 
1678
1679	trace_amdgpu_vm_bo_update(mapping);
1680
1681	pfn = mapping->offset >> PAGE_SHIFT;
1682	if (nodes) {
1683		while (pfn >= nodes->size) {
1684			pfn -= nodes->size;
1685			++nodes;
1686		}
1687	}
1688
1689	do {
1690		dma_addr_t *dma_addr = NULL;
1691		uint64_t max_entries;
1692		uint64_t addr, last;
1693
1694		if (nodes) {
1695			addr = nodes->start << PAGE_SHIFT;
1696			max_entries = (nodes->size - pfn) *
1697				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1698		} else {
1699			addr = 0;
1700			max_entries = S64_MAX;
1701		}
1702
1703		if (pages_addr) {
1704			uint64_t count;
1705
1706			for (count = 1;
1707			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1708			     ++count) {
1709				uint64_t idx = pfn + count;
1710
1711				if (pages_addr[idx] !=
1712				    (pages_addr[idx - 1] + PAGE_SIZE))
1713					break;
1714			}
1715
1716			if (count < min_linear_pages) {
1717				addr = pfn << PAGE_SHIFT;
1718				dma_addr = pages_addr;
1719			} else {
1720				addr = pages_addr[pfn];
1721				max_entries = count *
1722					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1723			}
1724
1725		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1726			addr += bo_adev->vm_manager.vram_base_offset;
1727			addr += pfn << PAGE_SHIFT;
1728		}
1729
1730		last = min((uint64_t)mapping->last, start + max_entries - 1);
1731		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1732						start, last, flags, addr,
1733						dma_addr, fence);
1734		if (r)
1735			return r;
1736
1737		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1738		if (nodes && nodes->size == pfn) {
1739			pfn = 0;
1740			++nodes;
1741		}
1742		start = last + 1;
1743
1744	} while (unlikely(start != mapping->last + 1));
1745
1746	return 0;
1747}
1748
1749/**
1750 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1751 *
1752 * @adev: amdgpu_device pointer
1753 * @bo_va: requested BO and VM object
1754 * @clear: if true clear the entries
1755 *
1756 * Fill in the page table entries for @bo_va.
1757 *
1758 * Returns:
1759 * 0 for success, -EINVAL for failure.
1760 */
1761int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
 
1762			bool clear)
1763{
1764	struct amdgpu_bo *bo = bo_va->base.bo;
1765	struct amdgpu_vm *vm = bo_va->base.vm;
1766	struct amdgpu_bo_va_mapping *mapping;
1767	dma_addr_t *pages_addr = NULL;
1768	struct ttm_mem_reg *mem;
1769	struct drm_mm_node *nodes;
1770	struct dma_fence **last_update;
1771	struct dma_resv *resv;
1772	uint64_t flags;
1773	struct amdgpu_device *bo_adev = adev;
1774	int r;
1775
1776	if (clear || !bo) {
1777		mem = NULL;
1778		nodes = NULL;
1779		resv = vm->root.base.bo->tbo.base.resv;
1780	} else {
1781		struct ttm_dma_tt *ttm;
1782
1783		mem = &bo->tbo.mem;
1784		nodes = mem->mm_node;
1785		if (mem->mem_type == TTM_PL_TT) {
1786			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
 
1787			pages_addr = ttm->dma_address;
1788		}
1789		resv = bo->tbo.base.resv;
1790	}
1791
1792	if (bo) {
1793		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1794
1795		if (amdgpu_bo_encrypted(bo))
1796			flags |= AMDGPU_PTE_TMZ;
1797
1798		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1799	} else {
1800		flags = 0x0;
1801	}
1802
1803	if (clear || (bo && bo->tbo.base.resv ==
1804		      vm->root.base.bo->tbo.base.resv))
1805		last_update = &vm->last_update;
1806	else
1807		last_update = &bo_va->last_pt_update;
1808
1809	if (!clear && bo_va->base.moved) {
1810		bo_va->base.moved = false;
1811		list_splice_init(&bo_va->valids, &bo_va->invalids);
1812
1813	} else if (bo_va->cleared != clear) {
1814		list_splice_init(&bo_va->valids, &bo_va->invalids);
1815	}
1816
1817	list_for_each_entry(mapping, &bo_va->invalids, list) {
1818		r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1819					       mapping, flags, bo_adev, nodes,
1820					       last_update);
1821		if (r)
1822			return r;
1823	}
1824
1825	/* If the BO is not in its preferred location add it back to
1826	 * the evicted list so that it gets validated again on the
1827	 * next command submission.
1828	 */
1829	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1830		uint32_t mem_type = bo->tbo.mem.mem_type;
1831
1832		if (!(bo->preferred_domains &
1833		      amdgpu_mem_type_to_domain(mem_type)))
1834			amdgpu_vm_bo_evicted(&bo_va->base);
1835		else
1836			amdgpu_vm_bo_idle(&bo_va->base);
1837	} else {
1838		amdgpu_vm_bo_done(&bo_va->base);
1839	}
1840
 
 
 
 
1841	list_splice_init(&bo_va->invalids, &bo_va->valids);
1842	bo_va->cleared = clear;
1843
1844	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1845		list_for_each_entry(mapping, &bo_va->valids, list)
1846			trace_amdgpu_vm_bo_mapping(mapping);
1847	}
1848
1849	return 0;
1850}
1851
1852/**
1853 * amdgpu_vm_update_prt_state - update the global PRT state
1854 *
1855 * @adev: amdgpu_device pointer
1856 */
1857static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1858{
1859	unsigned long flags;
1860	bool enable;
1861
1862	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1863	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1864	adev->gmc.gmc_funcs->set_prt(adev, enable);
1865	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1866}
1867
1868/**
1869 * amdgpu_vm_prt_get - add a PRT user
1870 *
1871 * @adev: amdgpu_device pointer
1872 */
1873static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1874{
1875	if (!adev->gmc.gmc_funcs->set_prt)
1876		return;
1877
1878	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1879		amdgpu_vm_update_prt_state(adev);
1880}
1881
1882/**
1883 * amdgpu_vm_prt_put - drop a PRT user
1884 *
1885 * @adev: amdgpu_device pointer
1886 */
1887static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1888{
1889	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1890		amdgpu_vm_update_prt_state(adev);
1891}
1892
1893/**
1894 * amdgpu_vm_prt_cb - callback for updating the PRT status
1895 *
1896 * @fence: fence for the callback
1897 * @_cb: the callback function
1898 */
1899static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1900{
1901	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1902
1903	amdgpu_vm_prt_put(cb->adev);
1904	kfree(cb);
1905}
1906
1907/**
1908 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1909 *
1910 * @adev: amdgpu_device pointer
1911 * @fence: fence for the callback
1912 */
1913static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1914				 struct dma_fence *fence)
1915{
1916	struct amdgpu_prt_cb *cb;
1917
1918	if (!adev->gmc.gmc_funcs->set_prt)
1919		return;
1920
1921	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1922	if (!cb) {
1923		/* Last resort when we are OOM */
1924		if (fence)
1925			dma_fence_wait(fence, false);
1926
1927		amdgpu_vm_prt_put(adev);
1928	} else {
1929		cb->adev = adev;
1930		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1931						     amdgpu_vm_prt_cb))
1932			amdgpu_vm_prt_cb(fence, &cb->cb);
1933	}
1934}
1935
1936/**
1937 * amdgpu_vm_free_mapping - free a mapping
1938 *
1939 * @adev: amdgpu_device pointer
1940 * @vm: requested vm
1941 * @mapping: mapping to be freed
1942 * @fence: fence of the unmap operation
1943 *
1944 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1945 */
1946static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1947				   struct amdgpu_vm *vm,
1948				   struct amdgpu_bo_va_mapping *mapping,
1949				   struct dma_fence *fence)
1950{
1951	if (mapping->flags & AMDGPU_PTE_PRT)
1952		amdgpu_vm_add_prt_cb(adev, fence);
1953	kfree(mapping);
1954}
1955
1956/**
1957 * amdgpu_vm_prt_fini - finish all prt mappings
1958 *
1959 * @adev: amdgpu_device pointer
1960 * @vm: requested vm
1961 *
1962 * Register a cleanup callback to disable PRT support after VM dies.
1963 */
1964static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1965{
1966	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1967	struct dma_fence *excl, **shared;
1968	unsigned i, shared_count;
1969	int r;
1970
1971	r = dma_resv_get_fences_rcu(resv, &excl,
1972					      &shared_count, &shared);
1973	if (r) {
1974		/* Not enough memory to grab the fence list, as last resort
1975		 * block for all the fences to complete.
1976		 */
1977		dma_resv_wait_timeout_rcu(resv, true, false,
1978						    MAX_SCHEDULE_TIMEOUT);
1979		return;
1980	}
1981
1982	/* Add a callback for each fence in the reservation object */
1983	amdgpu_vm_prt_get(adev);
1984	amdgpu_vm_add_prt_cb(adev, excl);
1985
1986	for (i = 0; i < shared_count; ++i) {
1987		amdgpu_vm_prt_get(adev);
1988		amdgpu_vm_add_prt_cb(adev, shared[i]);
1989	}
1990
1991	kfree(shared);
1992}
1993
1994/**
1995 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1996 *
1997 * @adev: amdgpu_device pointer
1998 * @vm: requested vm
1999 * @fence: optional resulting fence (unchanged if no work needed to be done
2000 * or if an error occurred)
2001 *
2002 * Make sure all freed BOs are cleared in the PT.
2003 * PTs have to be reserved and mutex must be locked!
2004 *
2005 * Returns:
2006 * 0 for success.
2007 *
 
2008 */
2009int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2010			  struct amdgpu_vm *vm,
2011			  struct dma_fence **fence)
2012{
2013	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2014	struct amdgpu_bo_va_mapping *mapping;
2015	uint64_t init_pte_value = 0;
2016	struct dma_fence *f = NULL;
2017	int r;
2018
2019	while (!list_empty(&vm->freed)) {
2020		mapping = list_first_entry(&vm->freed,
2021			struct amdgpu_bo_va_mapping, list);
2022		list_del(&mapping->list);
2023
2024		if (vm->pte_support_ats &&
2025		    mapping->start < AMDGPU_GMC_HOLE_START)
2026			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2027
2028		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2029						mapping->start, mapping->last,
2030						init_pte_value, 0, NULL, &f);
2031		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2032		if (r) {
2033			dma_fence_put(f);
2034			return r;
2035		}
2036	}
2037
2038	if (fence && f) {
2039		dma_fence_put(*fence);
2040		*fence = f;
2041	} else {
2042		dma_fence_put(f);
2043	}
2044
2045	return 0;
2046
2047}
2048
2049/**
2050 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2051 *
2052 * @adev: amdgpu_device pointer
2053 * @vm: requested vm
 
2054 *
2055 * Make sure all BOs which are moved are updated in the PTs.
2056 *
2057 * Returns:
2058 * 0 for success.
2059 *
2060 * PTs have to be reserved!
2061 */
2062int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2063			   struct amdgpu_vm *vm)
2064{
2065	struct amdgpu_bo_va *bo_va, *tmp;
2066	struct dma_resv *resv;
2067	bool clear;
2068	int r;
2069
2070	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2071		/* Per VM BOs never need to bo cleared in the page tables */
2072		r = amdgpu_vm_bo_update(adev, bo_va, false);
2073		if (r)
2074			return r;
2075	}
 
 
2076
2077	spin_lock(&vm->invalidated_lock);
2078	while (!list_empty(&vm->invalidated)) {
2079		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2080					 base.vm_status);
2081		resv = bo_va->base.bo->tbo.base.resv;
2082		spin_unlock(&vm->invalidated_lock);
2083
 
 
 
2084		/* Try to reserve the BO to avoid clearing its ptes */
2085		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2086			clear = false;
2087		/* Somebody else is using the BO right now */
2088		else
2089			clear = true;
2090
2091		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2092		if (r)
2093			return r;
2094
2095		if (!clear)
2096			dma_resv_unlock(resv);
2097		spin_lock(&vm->invalidated_lock);
 
2098	}
2099	spin_unlock(&vm->invalidated_lock);
2100
2101	return 0;
2102}
2103
2104/**
2105 * amdgpu_vm_bo_add - add a bo to a specific vm
2106 *
2107 * @adev: amdgpu_device pointer
2108 * @vm: requested vm
2109 * @bo: amdgpu buffer object
2110 *
2111 * Add @bo into the requested vm.
2112 * Add @bo to the list of bos associated with the vm
2113 *
2114 * Returns:
2115 * Newly added bo_va or NULL for failure
2116 *
2117 * Object has to be reserved!
2118 */
2119struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2120				      struct amdgpu_vm *vm,
2121				      struct amdgpu_bo *bo)
2122{
2123	struct amdgpu_bo_va *bo_va;
2124
2125	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2126	if (bo_va == NULL) {
2127		return NULL;
2128	}
2129	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
 
 
 
2130
2131	bo_va->ref_count = 1;
2132	INIT_LIST_HEAD(&bo_va->valids);
2133	INIT_LIST_HEAD(&bo_va->invalids);
2134
2135	if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2136	    (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2137		bo_va->is_xgmi = true;
2138		/* Power up XGMI if it can be potentially used */
2139		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2140	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2141
2142	return bo_va;
2143}
2144
2145
2146/**
2147 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2148 *
2149 * @adev: amdgpu_device pointer
2150 * @bo_va: bo_va to store the address
2151 * @mapping: the mapping to insert
2152 *
2153 * Insert a new mapping into all structures.
2154 */
2155static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2156				    struct amdgpu_bo_va *bo_va,
2157				    struct amdgpu_bo_va_mapping *mapping)
2158{
2159	struct amdgpu_vm *vm = bo_va->base.vm;
2160	struct amdgpu_bo *bo = bo_va->base.bo;
2161
2162	mapping->bo_va = bo_va;
2163	list_add(&mapping->list, &bo_va->invalids);
2164	amdgpu_vm_it_insert(mapping, &vm->va);
2165
2166	if (mapping->flags & AMDGPU_PTE_PRT)
2167		amdgpu_vm_prt_get(adev);
2168
2169	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2170	    !bo_va->base.moved) {
2171		list_move(&bo_va->base.vm_status, &vm->moved);
 
 
2172	}
2173	trace_amdgpu_vm_bo_map(bo_va, mapping);
2174}
2175
2176/**
2177 * amdgpu_vm_bo_map - map bo inside a vm
2178 *
2179 * @adev: amdgpu_device pointer
2180 * @bo_va: bo_va to store the address
2181 * @saddr: where to map the BO
2182 * @offset: requested offset in the BO
2183 * @size: BO size in bytes
2184 * @flags: attributes of pages (read/write/valid/etc.)
2185 *
2186 * Add a mapping of the BO at the specefied addr into the VM.
2187 *
2188 * Returns:
2189 * 0 for success, error for failure.
2190 *
2191 * Object has to be reserved and unreserved outside!
2192 */
2193int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2194		     struct amdgpu_bo_va *bo_va,
2195		     uint64_t saddr, uint64_t offset,
2196		     uint64_t size, uint64_t flags)
2197{
2198	struct amdgpu_bo_va_mapping *mapping, *tmp;
2199	struct amdgpu_bo *bo = bo_va->base.bo;
2200	struct amdgpu_vm *vm = bo_va->base.vm;
2201	uint64_t eaddr;
2202
2203	/* validate the parameters */
2204	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2205	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2206		return -EINVAL;
2207
2208	/* make sure object fit at this offset */
2209	eaddr = saddr + size - 1;
2210	if (saddr >= eaddr ||
2211	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2212	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2213		return -EINVAL;
2214
2215	saddr /= AMDGPU_GPU_PAGE_SIZE;
2216	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2217
2218	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2219	if (tmp) {
2220		/* bo and tmp overlap, invalid addr */
2221		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2222			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2223			tmp->start, tmp->last + 1);
2224		return -EINVAL;
2225	}
2226
2227	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2228	if (!mapping)
2229		return -ENOMEM;
2230
2231	mapping->start = saddr;
2232	mapping->last = eaddr;
2233	mapping->offset = offset;
2234	mapping->flags = flags;
2235
2236	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2237
2238	return 0;
2239}
2240
2241/**
2242 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2243 *
2244 * @adev: amdgpu_device pointer
2245 * @bo_va: bo_va to store the address
2246 * @saddr: where to map the BO
2247 * @offset: requested offset in the BO
2248 * @size: BO size in bytes
2249 * @flags: attributes of pages (read/write/valid/etc.)
2250 *
2251 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2252 * mappings as we do so.
2253 *
2254 * Returns:
2255 * 0 for success, error for failure.
2256 *
2257 * Object has to be reserved and unreserved outside!
2258 */
2259int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2260			     struct amdgpu_bo_va *bo_va,
2261			     uint64_t saddr, uint64_t offset,
2262			     uint64_t size, uint64_t flags)
2263{
2264	struct amdgpu_bo_va_mapping *mapping;
2265	struct amdgpu_bo *bo = bo_va->base.bo;
2266	uint64_t eaddr;
2267	int r;
2268
2269	/* validate the parameters */
2270	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2271	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2272		return -EINVAL;
2273
2274	/* make sure object fit at this offset */
2275	eaddr = saddr + size - 1;
2276	if (saddr >= eaddr ||
2277	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2278	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2279		return -EINVAL;
2280
2281	/* Allocate all the needed memory */
2282	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2283	if (!mapping)
2284		return -ENOMEM;
2285
2286	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2287	if (r) {
2288		kfree(mapping);
2289		return r;
2290	}
2291
2292	saddr /= AMDGPU_GPU_PAGE_SIZE;
2293	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2294
2295	mapping->start = saddr;
2296	mapping->last = eaddr;
2297	mapping->offset = offset;
2298	mapping->flags = flags;
2299
2300	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2301
2302	return 0;
2303}
2304
2305/**
2306 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2307 *
2308 * @adev: amdgpu_device pointer
2309 * @bo_va: bo_va to remove the address from
2310 * @saddr: where to the BO is mapped
2311 *
2312 * Remove a mapping of the BO at the specefied addr from the VM.
2313 *
2314 * Returns:
2315 * 0 for success, error for failure.
2316 *
2317 * Object has to be reserved and unreserved outside!
2318 */
2319int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2320		       struct amdgpu_bo_va *bo_va,
2321		       uint64_t saddr)
2322{
2323	struct amdgpu_bo_va_mapping *mapping;
2324	struct amdgpu_vm *vm = bo_va->base.vm;
2325	bool valid = true;
2326
2327	saddr /= AMDGPU_GPU_PAGE_SIZE;
2328
2329	list_for_each_entry(mapping, &bo_va->valids, list) {
2330		if (mapping->start == saddr)
2331			break;
2332	}
2333
2334	if (&mapping->list == &bo_va->valids) {
2335		valid = false;
2336
2337		list_for_each_entry(mapping, &bo_va->invalids, list) {
2338			if (mapping->start == saddr)
2339				break;
2340		}
2341
2342		if (&mapping->list == &bo_va->invalids)
2343			return -ENOENT;
2344	}
2345
2346	list_del(&mapping->list);
2347	amdgpu_vm_it_remove(mapping, &vm->va);
2348	mapping->bo_va = NULL;
2349	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2350
2351	if (valid)
2352		list_add(&mapping->list, &vm->freed);
2353	else
2354		amdgpu_vm_free_mapping(adev, vm, mapping,
2355				       bo_va->last_pt_update);
2356
2357	return 0;
2358}
2359
2360/**
2361 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2362 *
2363 * @adev: amdgpu_device pointer
2364 * @vm: VM structure to use
2365 * @saddr: start of the range
2366 * @size: size of the range
2367 *
2368 * Remove all mappings in a range, split them as appropriate.
2369 *
2370 * Returns:
2371 * 0 for success, error for failure.
2372 */
2373int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2374				struct amdgpu_vm *vm,
2375				uint64_t saddr, uint64_t size)
2376{
2377	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2378	LIST_HEAD(removed);
2379	uint64_t eaddr;
2380
2381	eaddr = saddr + size - 1;
2382	saddr /= AMDGPU_GPU_PAGE_SIZE;
2383	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2384
2385	/* Allocate all the needed memory */
2386	before = kzalloc(sizeof(*before), GFP_KERNEL);
2387	if (!before)
2388		return -ENOMEM;
2389	INIT_LIST_HEAD(&before->list);
2390
2391	after = kzalloc(sizeof(*after), GFP_KERNEL);
2392	if (!after) {
2393		kfree(before);
2394		return -ENOMEM;
2395	}
2396	INIT_LIST_HEAD(&after->list);
2397
2398	/* Now gather all removed mappings */
2399	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2400	while (tmp) {
2401		/* Remember mapping split at the start */
2402		if (tmp->start < saddr) {
2403			before->start = tmp->start;
2404			before->last = saddr - 1;
2405			before->offset = tmp->offset;
2406			before->flags = tmp->flags;
2407			before->bo_va = tmp->bo_va;
2408			list_add(&before->list, &tmp->bo_va->invalids);
2409		}
2410
2411		/* Remember mapping split at the end */
2412		if (tmp->last > eaddr) {
2413			after->start = eaddr + 1;
2414			after->last = tmp->last;
2415			after->offset = tmp->offset;
2416			after->offset += after->start - tmp->start;
2417			after->flags = tmp->flags;
2418			after->bo_va = tmp->bo_va;
2419			list_add(&after->list, &tmp->bo_va->invalids);
2420		}
2421
2422		list_del(&tmp->list);
2423		list_add(&tmp->list, &removed);
2424
2425		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2426	}
2427
2428	/* And free them up */
2429	list_for_each_entry_safe(tmp, next, &removed, list) {
2430		amdgpu_vm_it_remove(tmp, &vm->va);
2431		list_del(&tmp->list);
2432
2433		if (tmp->start < saddr)
2434		    tmp->start = saddr;
2435		if (tmp->last > eaddr)
2436		    tmp->last = eaddr;
2437
2438		tmp->bo_va = NULL;
2439		list_add(&tmp->list, &vm->freed);
2440		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2441	}
2442
2443	/* Insert partial mapping before the range */
2444	if (!list_empty(&before->list)) {
2445		amdgpu_vm_it_insert(before, &vm->va);
2446		if (before->flags & AMDGPU_PTE_PRT)
2447			amdgpu_vm_prt_get(adev);
2448	} else {
2449		kfree(before);
2450	}
2451
2452	/* Insert partial mapping after the range */
2453	if (!list_empty(&after->list)) {
2454		amdgpu_vm_it_insert(after, &vm->va);
2455		if (after->flags & AMDGPU_PTE_PRT)
2456			amdgpu_vm_prt_get(adev);
2457	} else {
2458		kfree(after);
2459	}
2460
2461	return 0;
2462}
2463
2464/**
2465 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2466 *
2467 * @vm: the requested VM
2468 * @addr: the address
2469 *
2470 * Find a mapping by it's address.
2471 *
2472 * Returns:
2473 * The amdgpu_bo_va_mapping matching for addr or NULL
2474 *
2475 */
2476struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2477							 uint64_t addr)
2478{
2479	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2480}
2481
2482/**
2483 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2484 *
2485 * @vm: the requested vm
2486 * @ticket: CS ticket
2487 *
2488 * Trace all mappings of BOs reserved during a command submission.
2489 */
2490void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2491{
2492	struct amdgpu_bo_va_mapping *mapping;
2493
2494	if (!trace_amdgpu_vm_bo_cs_enabled())
2495		return;
2496
2497	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2498	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2499		if (mapping->bo_va && mapping->bo_va->base.bo) {
2500			struct amdgpu_bo *bo;
2501
2502			bo = mapping->bo_va->base.bo;
2503			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2504			    ticket)
2505				continue;
2506		}
2507
2508		trace_amdgpu_vm_bo_cs(mapping);
2509	}
2510}
2511
2512/**
2513 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2514 *
2515 * @adev: amdgpu_device pointer
2516 * @bo_va: requested bo_va
2517 *
2518 * Remove @bo_va->bo from the requested vm.
2519 *
2520 * Object have to be reserved!
2521 */
2522void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2523		      struct amdgpu_bo_va *bo_va)
2524{
2525	struct amdgpu_bo_va_mapping *mapping, *next;
2526	struct amdgpu_bo *bo = bo_va->base.bo;
2527	struct amdgpu_vm *vm = bo_va->base.vm;
2528	struct amdgpu_vm_bo_base **base;
2529
2530	if (bo) {
2531		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2532			vm->bulk_moveable = false;
2533
2534		for (base = &bo_va->base.bo->vm_bo; *base;
2535		     base = &(*base)->next) {
2536			if (*base != &bo_va->base)
2537				continue;
2538
2539			*base = bo_va->base.next;
2540			break;
2541		}
2542	}
2543
2544	spin_lock(&vm->invalidated_lock);
2545	list_del(&bo_va->base.vm_status);
2546	spin_unlock(&vm->invalidated_lock);
2547
2548	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2549		list_del(&mapping->list);
2550		amdgpu_vm_it_remove(mapping, &vm->va);
2551		mapping->bo_va = NULL;
2552		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2553		list_add(&mapping->list, &vm->freed);
2554	}
2555	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2556		list_del(&mapping->list);
2557		amdgpu_vm_it_remove(mapping, &vm->va);
2558		amdgpu_vm_free_mapping(adev, vm, mapping,
2559				       bo_va->last_pt_update);
2560	}
2561
2562	dma_fence_put(bo_va->last_pt_update);
2563
2564	if (bo && bo_va->is_xgmi)
2565		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2566
2567	kfree(bo_va);
2568}
2569
2570/**
2571 * amdgpu_vm_evictable - check if we can evict a VM
2572 *
2573 * @bo: A page table of the VM.
2574 *
2575 * Check if it is possible to evict a VM.
2576 */
2577bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2578{
2579	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2580
2581	/* Page tables of a destroyed VM can go away immediately */
2582	if (!bo_base || !bo_base->vm)
2583		return true;
2584
2585	/* Don't evict VM page tables while they are busy */
2586	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2587		return false;
2588
2589	/* Try to block ongoing updates */
2590	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2591		return false;
2592
2593	/* Don't evict VM page tables while they are updated */
2594	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2595		amdgpu_vm_eviction_unlock(bo_base->vm);
2596		return false;
2597	}
2598
2599	bo_base->vm->evicting = true;
2600	amdgpu_vm_eviction_unlock(bo_base->vm);
2601	return true;
2602}
2603
2604/**
2605 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2606 *
2607 * @adev: amdgpu_device pointer
 
2608 * @bo: amdgpu buffer object
2609 * @evicted: is the BO evicted
2610 *
2611 * Mark @bo as invalid.
2612 */
2613void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2614			     struct amdgpu_bo *bo, bool evicted)
2615{
2616	struct amdgpu_vm_bo_base *bo_base;
2617
2618	/* shadow bo doesn't have bo base, its validation needs its parent */
2619	if (bo->parent && bo->parent->shadow == bo)
2620		bo = bo->parent;
2621
2622	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2623		struct amdgpu_vm *vm = bo_base->vm;
2624
2625		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2626			amdgpu_vm_bo_evicted(bo_base);
 
 
 
 
 
 
 
2627			continue;
2628		}
2629
2630		if (bo_base->moved)
 
 
 
 
2631			continue;
2632		bo_base->moved = true;
2633
2634		if (bo->tbo.type == ttm_bo_type_kernel)
2635			amdgpu_vm_bo_relocated(bo_base);
2636		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2637			amdgpu_vm_bo_moved(bo_base);
2638		else
2639			amdgpu_vm_bo_invalidated(bo_base);
2640	}
2641}
2642
2643/**
2644 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2645 *
2646 * @vm_size: VM size
2647 *
2648 * Returns:
2649 * VM page table as power of two
2650 */
2651static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2652{
2653	/* Total bits covered by PD + PTs */
2654	unsigned bits = ilog2(vm_size) + 18;
2655
2656	/* Make sure the PD is 4K in size up to 8GB address space.
2657	   Above that split equal between PD and PTs */
2658	if (vm_size <= 8)
2659		return (bits - 9);
2660	else
2661		return ((bits + 3) / 2);
2662}
2663
2664/**
2665 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2666 *
2667 * @adev: amdgpu_device pointer
2668 * @min_vm_size: the minimum vm size in GB if it's set auto
2669 * @fragment_size_default: Default PTE fragment size
2670 * @max_level: max VMPT level
2671 * @max_bits: max address space size in bits
2672 *
2673 */
2674void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2675			   uint32_t fragment_size_default, unsigned max_level,
2676			   unsigned max_bits)
2677{
2678	unsigned int max_size = 1 << (max_bits - 30);
2679	unsigned int vm_size;
2680	uint64_t tmp;
2681
2682	/* adjust vm size first */
2683	if (amdgpu_vm_size != -1) {
 
 
2684		vm_size = amdgpu_vm_size;
2685		if (vm_size > max_size) {
2686			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2687				 amdgpu_vm_size, max_size);
2688			vm_size = max_size;
2689		}
2690	} else {
2691		struct sysinfo si;
2692		unsigned int phys_ram_gb;
2693
2694		/* Optimal VM size depends on the amount of physical
2695		 * RAM available. Underlying requirements and
2696		 * assumptions:
2697		 *
2698		 *  - Need to map system memory and VRAM from all GPUs
2699		 *     - VRAM from other GPUs not known here
2700		 *     - Assume VRAM <= system memory
2701		 *  - On GFX8 and older, VM space can be segmented for
2702		 *    different MTYPEs
2703		 *  - Need to allow room for fragmentation, guard pages etc.
2704		 *
2705		 * This adds up to a rough guess of system memory x3.
2706		 * Round up to power of two to maximize the available
2707		 * VM size with the given page table size.
2708		 */
2709		si_meminfo(&si);
2710		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2711			       (1 << 30) - 1) >> 30;
2712		vm_size = roundup_pow_of_two(
2713			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2714	}
2715
2716	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2717
2718	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2719	if (amdgpu_vm_block_size != -1)
2720		tmp >>= amdgpu_vm_block_size - 9;
2721	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2722	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2723	switch (adev->vm_manager.num_level) {
2724	case 3:
2725		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2726		break;
2727	case 2:
2728		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2729		break;
2730	case 1:
2731		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2732		break;
2733	default:
2734		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2735	}
2736	/* block size depends on vm size and hw setup*/
2737	if (amdgpu_vm_block_size != -1)
2738		adev->vm_manager.block_size =
2739			min((unsigned)amdgpu_vm_block_size, max_bits
2740			    - AMDGPU_GPU_PAGE_SHIFT
2741			    - 9 * adev->vm_manager.num_level);
2742	else if (adev->vm_manager.num_level > 1)
2743		adev->vm_manager.block_size = 9;
2744	else
2745		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2746
2747	if (amdgpu_vm_fragment_size == -1)
2748		adev->vm_manager.fragment_size = fragment_size_default;
2749	else
2750		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2751
2752	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2753		 vm_size, adev->vm_manager.num_level + 1,
2754		 adev->vm_manager.block_size,
2755		 adev->vm_manager.fragment_size);
2756}
2757
2758/**
2759 * amdgpu_vm_wait_idle - wait for the VM to become idle
2760 *
2761 * @vm: VM object to wait for
2762 * @timeout: timeout to wait for VM to become idle
2763 */
2764long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2765{
2766	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2767					    true, true, timeout);
2768	if (timeout <= 0)
2769		return timeout;
2770
2771	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2772}
2773
2774/**
2775 * amdgpu_vm_init - initialize a vm instance
2776 *
2777 * @adev: amdgpu_device pointer
2778 * @vm: requested vm
2779 * @vm_context: Indicates if it GFX or Compute context
2780 * @pasid: Process address space identifier
2781 *
2782 * Init @vm fields.
2783 *
2784 * Returns:
2785 * 0 for success, error for failure.
2786 */
2787int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2788		   int vm_context, unsigned int pasid)
2789{
2790	struct amdgpu_bo_param bp;
2791	struct amdgpu_bo *root;
 
 
 
 
 
2792	int r, i;
2793
2794	vm->va = RB_ROOT_CACHED;
2795	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2796		vm->reserved_vmid[i] = NULL;
 
2797	INIT_LIST_HEAD(&vm->evicted);
2798	INIT_LIST_HEAD(&vm->relocated);
2799	INIT_LIST_HEAD(&vm->moved);
2800	INIT_LIST_HEAD(&vm->idle);
2801	INIT_LIST_HEAD(&vm->invalidated);
2802	spin_lock_init(&vm->invalidated_lock);
2803	INIT_LIST_HEAD(&vm->freed);
2804
 
2805
2806	/* create scheduler entities for page table updates */
2807	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2808				  adev->vm_manager.vm_pte_scheds,
2809				  adev->vm_manager.vm_pte_num_scheds, NULL);
 
 
2810	if (r)
2811		return r;
2812
2813	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2814				  adev->vm_manager.vm_pte_scheds,
2815				  adev->vm_manager.vm_pte_num_scheds, NULL);
2816	if (r)
2817		goto error_free_immediate;
2818
2819	vm->pte_support_ats = false;
2820	vm->is_compute_context = false;
2821
2822	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2823		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2824						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2825
2826		if (adev->asic_type == CHIP_RAVEN)
2827			vm->pte_support_ats = true;
2828	} else {
2829		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2830						AMDGPU_VM_USE_CPU_FOR_GFX);
2831	}
2832	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2833			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2834	WARN_ONCE((vm->use_cpu_for_update &&
2835		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2836		  "CPU update of VM recommended only for large BAR system\n");
 
2837
 
2838	if (vm->use_cpu_for_update)
2839		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2840	else
2841		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2842	vm->last_update = NULL;
2843	vm->last_unlocked = dma_fence_get_stub();
2844
2845	mutex_init(&vm->eviction_lock);
2846	vm->evicting = false;
2847
2848	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2849	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2850		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2851	r = amdgpu_bo_create(adev, &bp, &root);
2852	if (r)
2853		goto error_free_delayed;
2854
2855	r = amdgpu_bo_reserve(root, true);
2856	if (r)
2857		goto error_free_root;
2858
2859	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2860	if (r)
2861		goto error_unreserve;
2862
2863	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2864
2865	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2866	if (r)
2867		goto error_unreserve;
2868
 
 
 
2869	amdgpu_bo_unreserve(vm->root.base.bo);
2870
2871	if (pasid) {
2872		unsigned long flags;
2873
2874		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2875		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2876			      GFP_ATOMIC);
2877		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2878		if (r < 0)
2879			goto error_free_root;
2880
2881		vm->pasid = pasid;
2882	}
2883
2884	INIT_KFIFO(vm->faults);
 
2885
2886	return 0;
2887
2888error_unreserve:
2889	amdgpu_bo_unreserve(vm->root.base.bo);
2890
2891error_free_root:
2892	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2893	amdgpu_bo_unref(&vm->root.base.bo);
2894	vm->root.base.bo = NULL;
2895
2896error_free_delayed:
2897	dma_fence_put(vm->last_unlocked);
2898	drm_sched_entity_destroy(&vm->delayed);
2899
2900error_free_immediate:
2901	drm_sched_entity_destroy(&vm->immediate);
2902
2903	return r;
2904}
2905
2906/**
2907 * amdgpu_vm_check_clean_reserved - check if a VM is clean
2908 *
2909 * @adev: amdgpu_device pointer
2910 * @vm: the VM to check
2911 *
2912 * check all entries of the root PD, if any subsequent PDs are allocated,
2913 * it means there are page table creating and filling, and is no a clean
2914 * VM
2915 *
2916 * Returns:
2917 *	0 if this VM is clean
2918 */
2919static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2920	struct amdgpu_vm *vm)
2921{
2922	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2923	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2924	unsigned int i = 0;
2925
2926	if (!(vm->root.entries))
2927		return 0;
2928
2929	for (i = 0; i < entries; i++) {
2930		if (vm->root.entries[i].base.bo)
2931			return -EINVAL;
2932	}
2933
2934	return 0;
2935}
2936
2937/**
2938 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2939 *
2940 * @adev: amdgpu_device pointer
2941 * @vm: requested vm
2942 * @pasid: pasid to use
2943 *
2944 * This only works on GFX VMs that don't have any BOs added and no
2945 * page tables allocated yet.
2946 *
2947 * Changes the following VM parameters:
2948 * - use_cpu_for_update
2949 * - pte_supports_ats
2950 * - pasid (old PASID is released, because compute manages its own PASIDs)
2951 *
2952 * Reinitializes the page directory to reflect the changed ATS
2953 * setting.
 
2954 *
2955 * Returns:
2956 * 0 for success, -errno for errors.
2957 */
2958int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2959			   unsigned int pasid)
2960{
2961	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2962	int r;
2963
2964	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2965	if (r)
2966		return r;
2967
2968	/* Sanity checks */
2969	r = amdgpu_vm_check_clean_reserved(adev, vm);
2970	if (r)
2971		goto unreserve_bo;
2972
2973	if (pasid) {
2974		unsigned long flags;
2975
2976		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2977		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2978			      GFP_ATOMIC);
2979		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2980
2981		if (r == -ENOSPC)
2982			goto unreserve_bo;
2983		r = 0;
2984	}
2985
2986	/* Check if PD needs to be reinitialized and do it before
2987	 * changing any other state, in case it fails.
2988	 */
2989	if (pte_support_ats != vm->pte_support_ats) {
2990		vm->pte_support_ats = pte_support_ats;
2991		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
 
2992		if (r)
2993			goto free_idr;
2994	}
2995
2996	/* Update VM state */
2997	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2998				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
 
2999	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3000			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3001	WARN_ONCE((vm->use_cpu_for_update &&
3002		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3003		  "CPU update of VM recommended only for large BAR system\n");
3004
3005	if (vm->use_cpu_for_update) {
3006		/* Sync with last SDMA update/clear before switching to CPU */
3007		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3008					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3009		if (r)
3010			goto free_idr;
3011
3012		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3013	} else {
3014		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3015	}
3016	dma_fence_put(vm->last_update);
3017	vm->last_update = NULL;
3018	vm->is_compute_context = true;
3019
3020	if (vm->pasid) {
3021		unsigned long flags;
3022
3023		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3024		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3025		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3026
3027		/* Free the original amdgpu allocated pasid
3028		 * Will be replaced with kfd allocated pasid
3029		 */
3030		amdgpu_pasid_free(vm->pasid);
3031		vm->pasid = 0;
3032	}
3033
3034	/* Free the shadow bo for compute VM */
3035	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3036
3037	if (pasid)
3038		vm->pasid = pasid;
3039
3040	goto unreserve_bo;
3041
3042free_idr:
3043	if (pasid) {
3044		unsigned long flags;
3045
3046		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3047		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3048		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3049	}
3050unreserve_bo:
3051	amdgpu_bo_unreserve(vm->root.base.bo);
3052	return r;
3053}
3054
3055/**
3056 * amdgpu_vm_release_compute - release a compute vm
3057 * @adev: amdgpu_device pointer
3058 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
 
 
3059 *
3060 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3061 * pasid from vm. Compute should stop use of vm after this call.
3062 */
3063void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
 
 
3064{
3065	if (vm->pasid) {
3066		unsigned long flags;
3067
3068		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3069		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3070		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
 
 
3071	}
3072	vm->pasid = 0;
3073	vm->is_compute_context = false;
 
 
 
 
 
3074}
3075
3076/**
3077 * amdgpu_vm_fini - tear down a vm instance
3078 *
3079 * @adev: amdgpu_device pointer
3080 * @vm: requested vm
3081 *
3082 * Tear down @vm.
3083 * Unbind the VM and remove all bos from the vm bo list
3084 */
3085void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3086{
3087	struct amdgpu_bo_va_mapping *mapping, *tmp;
3088	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3089	struct amdgpu_bo *root;
3090	int i;
 
3091
3092	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3093
3094	root = amdgpu_bo_ref(vm->root.base.bo);
3095	amdgpu_bo_reserve(root, true);
 
 
3096	if (vm->pasid) {
3097		unsigned long flags;
3098
3099		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3100		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3101		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3102		vm->pasid = 0;
3103	}
3104
3105	dma_fence_wait(vm->last_unlocked, false);
3106	dma_fence_put(vm->last_unlocked);
3107
 
 
 
 
 
 
 
 
 
3108	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3109		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3110			amdgpu_vm_prt_fini(adev, vm);
3111			prt_fini_needed = false;
3112		}
3113
3114		list_del(&mapping->list);
3115		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3116	}
3117
3118	amdgpu_vm_free_pts(adev, vm, NULL);
3119	amdgpu_bo_unreserve(root);
 
 
 
 
 
 
 
3120	amdgpu_bo_unref(&root);
3121	WARN_ON(vm->root.base.bo);
 
 
 
3122
3123	drm_sched_entity_destroy(&vm->immediate);
3124	drm_sched_entity_destroy(&vm->delayed);
 
 
 
 
 
 
 
 
 
 
 
3125
3126	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3127		dev_err(adev->dev, "still active bo inside vm\n");
 
 
 
 
3128	}
3129	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3130					     &vm->va.rb_root, rb) {
3131		/* Don't remove the mapping here, we don't want to trigger a
3132		 * rebalance and the tree is about to be destroyed anyway.
3133		 */
3134		list_del(&mapping->list);
3135		kfree(mapping);
3136	}
3137
3138	dma_fence_put(vm->last_update);
3139	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3140		amdgpu_vmid_free_reserved(adev, vm, i);
3141}
3142
3143/**
3144 * amdgpu_vm_manager_init - init the VM manager
3145 *
3146 * @adev: amdgpu_device pointer
3147 *
3148 * Initialize the VM manager structures
3149 */
3150void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3151{
3152	unsigned i;
3153
3154	amdgpu_vmid_mgr_init(adev);
3155
3156	adev->vm_manager.fence_context =
3157		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3158	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3159		adev->vm_manager.seqno[i] = 0;
3160
 
3161	spin_lock_init(&adev->vm_manager.prt_lock);
3162	atomic_set(&adev->vm_manager.num_prt_users, 0);
3163
3164	/* If not overridden by the user, by default, only in large BAR systems
3165	 * Compute VM tables will be updated by CPU
3166	 */
3167#ifdef CONFIG_X86_64
3168	if (amdgpu_vm_update_mode == -1) {
3169		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3170			adev->vm_manager.vm_update_mode =
3171				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3172		else
3173			adev->vm_manager.vm_update_mode = 0;
3174	} else
3175		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3176#else
3177	adev->vm_manager.vm_update_mode = 0;
3178#endif
3179
3180	idr_init(&adev->vm_manager.pasid_idr);
3181	spin_lock_init(&adev->vm_manager.pasid_lock);
3182}
3183
3184/**
3185 * amdgpu_vm_manager_fini - cleanup VM manager
3186 *
3187 * @adev: amdgpu_device pointer
3188 *
3189 * Cleanup the VM manager and free resources.
3190 */
3191void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3192{
3193	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3194	idr_destroy(&adev->vm_manager.pasid_idr);
3195
3196	amdgpu_vmid_mgr_fini(adev);
3197}
3198
3199/**
3200 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3201 *
3202 * @dev: drm device pointer
3203 * @data: drm_amdgpu_vm
3204 * @filp: drm file pointer
3205 *
3206 * Returns:
3207 * 0 for success, -errno for errors.
3208 */
3209int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3210{
3211	union drm_amdgpu_vm *args = data;
3212	struct amdgpu_device *adev = dev->dev_private;
3213	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3214	long timeout = msecs_to_jiffies(2000);
3215	int r;
3216
3217	switch (args->in.op) {
3218	case AMDGPU_VM_OP_RESERVE_VMID:
3219		/* We only have requirement to reserve vmid from gfxhub */
3220		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3221					       AMDGPU_GFXHUB_0);
3222		if (r)
3223			return r;
3224		break;
3225	case AMDGPU_VM_OP_UNRESERVE_VMID:
3226		if (amdgpu_sriov_runtime(adev))
3227			timeout = 8 * timeout;
3228
3229		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3230		 * not referenced anymore.
3231		 */
3232		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3233		if (r)
3234			return r;
3235
3236		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3237		if (r < 0)
3238			return r;
3239
3240		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3241		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3242		break;
3243	default:
3244		return -EINVAL;
3245	}
3246
3247	return 0;
3248}
3249
3250/**
3251 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3252 *
3253 * @adev: drm device pointer
3254 * @pasid: PASID identifier for VM
3255 * @task_info: task_info to fill.
3256 */
3257void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3258			 struct amdgpu_task_info *task_info)
3259{
3260	struct amdgpu_vm *vm;
3261	unsigned long flags;
3262
3263	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3264
3265	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3266	if (vm)
3267		*task_info = vm->task_info;
3268
3269	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3270}
3271
3272/**
3273 * amdgpu_vm_set_task_info - Sets VMs task info.
3274 *
3275 * @vm: vm for which to set the info
3276 */
3277void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3278{
3279	if (vm->task_info.pid)
3280		return;
3281
3282	vm->task_info.pid = current->pid;
3283	get_task_comm(vm->task_info.task_name, current);
3284
3285	if (current->group_leader->mm != current->mm)
3286		return;
3287
3288	vm->task_info.tgid = current->group_leader->pid;
3289	get_task_comm(vm->task_info.process_name, current->group_leader);
3290}
3291
3292/**
3293 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3294 * @adev: amdgpu device pointer
3295 * @pasid: PASID of the VM
3296 * @addr: Address of the fault
3297 *
3298 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3299 * shouldn't be reported any more.
3300 */
3301bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3302			    uint64_t addr)
3303{
3304	struct amdgpu_bo *root;
3305	uint64_t value, flags;
3306	struct amdgpu_vm *vm;
3307	long r;
3308
3309	spin_lock(&adev->vm_manager.pasid_lock);
3310	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3311	if (vm)
3312		root = amdgpu_bo_ref(vm->root.base.bo);
3313	else
3314		root = NULL;
3315	spin_unlock(&adev->vm_manager.pasid_lock);
3316
3317	if (!root)
3318		return false;
3319
3320	r = amdgpu_bo_reserve(root, true);
3321	if (r)
3322		goto error_unref;
3323
3324	/* Double check that the VM still exists */
3325	spin_lock(&adev->vm_manager.pasid_lock);
3326	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3327	if (vm && vm->root.base.bo != root)
3328		vm = NULL;
3329	spin_unlock(&adev->vm_manager.pasid_lock);
3330	if (!vm)
3331		goto error_unlock;
3332
3333	addr /= AMDGPU_GPU_PAGE_SIZE;
3334	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3335		AMDGPU_PTE_SYSTEM;
3336
3337	if (vm->is_compute_context) {
3338		/* Intentionally setting invalid PTE flag
3339		 * combination to force a no-retry-fault
3340		 */
3341		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3342			AMDGPU_PTE_TF;
3343		value = 0;
3344
3345	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3346		/* Redirect the access to the dummy page */
3347		value = adev->dummy_page_addr;
3348		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3349			AMDGPU_PTE_WRITEABLE;
3350
3351	} else {
3352		/* Let the hw retry silently on the PTE */
3353		value = 0;
3354	}
3355
3356	r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3357					addr + 1, flags, value, NULL, NULL);
3358	if (r)
3359		goto error_unlock;
3360
3361	r = amdgpu_vm_update_pdes(adev, vm, true);
3362
3363error_unlock:
3364	amdgpu_bo_unreserve(root);
3365	if (r < 0)
3366		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3367
3368error_unref:
3369	amdgpu_bo_unref(&root);
3370
3371	return false;
3372}
v4.17
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
  28#include <linux/dma-fence-array.h>
  29#include <linux/interval_tree_generic.h>
  30#include <linux/idr.h>
  31#include <drm/drmP.h>
  32#include <drm/amdgpu_drm.h>
  33#include "amdgpu.h"
  34#include "amdgpu_trace.h"
  35#include "amdgpu_amdkfd.h"
 
 
  36
  37/*
  38 * GPUVM
 
  39 * GPUVM is similar to the legacy gart on older asics, however
  40 * rather than there being a single global gart table
  41 * for the entire GPU, there are multiple VM page tables active
  42 * at any given time.  The VM page tables can contain a mix
  43 * vram pages and system memory pages and system memory pages
  44 * can be mapped as snooped (cached system pages) or unsnooped
  45 * (uncached system pages).
  46 * Each VM has an ID associated with it and there is a page table
  47 * associated with each VMID.  When execting a command buffer,
  48 * the kernel tells the the ring what VMID to use for that command
  49 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  50 * The userspace drivers maintain their own address space and the kernel
  51 * sets up their pages tables accordingly when they submit their
  52 * command buffers and a VMID is assigned.
  53 * Cayman/Trinity support up to 8 active VMs at any given time;
  54 * SI supports 16.
  55 */
  56
  57#define START(node) ((node)->start)
  58#define LAST(node) ((node)->last)
  59
  60INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
  61		     START, LAST, static, amdgpu_vm_it)
  62
  63#undef START
  64#undef LAST
  65
  66/* Local structure. Encapsulate some VM table update parameters to reduce
  67 * the number of function parameters
  68 */
  69struct amdgpu_pte_update_params {
  70	/* amdgpu device we do this update for */
 
 
 
  71	struct amdgpu_device *adev;
  72	/* optional amdgpu_vm we do this update for */
  73	struct amdgpu_vm *vm;
  74	/* address where to copy page table entries from */
  75	uint64_t src;
  76	/* indirect buffer to fill with commands */
  77	struct amdgpu_ib *ib;
  78	/* Function which actually does the update */
  79	void (*func)(struct amdgpu_pte_update_params *params,
  80		     struct amdgpu_bo *bo, uint64_t pe,
  81		     uint64_t addr, unsigned count, uint32_t incr,
  82		     uint64_t flags);
  83	/* The next two are used during VM update by CPU
  84	 *  DMA addresses to use for mapping
  85	 *  Kernel pointer of PD/PT BO that needs to be updated
  86	 */
  87	dma_addr_t *pages_addr;
  88	void *kptr;
  89};
  90
  91/* Helper to disable partial resident texture feature from a fence callback */
  92struct amdgpu_prt_cb {
  93	struct amdgpu_device *adev;
  94	struct dma_fence_cb cb;
  95};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96
  97/**
  98 * amdgpu_vm_level_shift - return the addr shift for each level
  99 *
 100 * @adev: amdgpu_device pointer
 
 101 *
 102 * Returns the number of bits the pfn needs to be right shifted for a level.
 
 103 */
 104static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
 105				      unsigned level)
 106{
 107	unsigned shift = 0xff;
 108
 109	switch (level) {
 110	case AMDGPU_VM_PDB2:
 111	case AMDGPU_VM_PDB1:
 112	case AMDGPU_VM_PDB0:
 113		shift = 9 * (AMDGPU_VM_PDB0 - level) +
 114			adev->vm_manager.block_size;
 115		break;
 116	case AMDGPU_VM_PTB:
 117		shift = 0;
 118		break;
 119	default:
 120		dev_err(adev->dev, "the level%d isn't supported.\n", level);
 121	}
 122
 123	return shift;
 124}
 125
 126/**
 127 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
 128 *
 129 * @adev: amdgpu_device pointer
 
 130 *
 131 * Calculate the number of entries in a page directory or page table.
 
 132 */
 133static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
 134				      unsigned level)
 135{
 136	unsigned shift = amdgpu_vm_level_shift(adev,
 137					       adev->vm_manager.root_level);
 138
 139	if (level == adev->vm_manager.root_level)
 140		/* For the root directory */
 141		return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift;
 
 142	else if (level != AMDGPU_VM_PTB)
 143		/* Everything in between */
 144		return 512;
 145	else
 146		/* For the page tables on the leaves */
 147		return AMDGPU_VM_PTE_COUNT(adev);
 148}
 149
 150/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
 152 *
 153 * @adev: amdgpu_device pointer
 
 154 *
 155 * Calculate the size of the BO for a page directory or page table in bytes.
 
 156 */
 157static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
 158{
 159	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
 160}
 161
 162/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
 164 *
 165 * @vm: vm providing the BOs
 166 * @validated: head of validation list
 167 * @entry: entry to add
 168 *
 169 * Add the page directory to the list of BOs to
 170 * validate for command submission.
 171 */
 172void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
 173			 struct list_head *validated,
 174			 struct amdgpu_bo_list_entry *entry)
 175{
 176	entry->robj = vm->root.base.bo;
 177	entry->priority = 0;
 178	entry->tv.bo = &entry->robj->tbo;
 179	entry->tv.shared = true;
 
 180	entry->user_pages = NULL;
 181	list_add(&entry->tv.head, validated);
 182}
 183
 184/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185 * amdgpu_vm_validate_pt_bos - validate the page table BOs
 186 *
 187 * @adev: amdgpu device pointer
 188 * @vm: vm providing the BOs
 189 * @validate: callback to do the validation
 190 * @param: parameter for the validation callback
 191 *
 192 * Validate the page table BOs on command submission if neccessary.
 
 
 
 193 */
 194int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 195			      int (*validate)(void *p, struct amdgpu_bo *bo),
 196			      void *param)
 197{
 198	struct ttm_bo_global *glob = adev->mman.bdev.glob;
 199	int r;
 200
 201	spin_lock(&vm->status_lock);
 202	while (!list_empty(&vm->evicted)) {
 203		struct amdgpu_vm_bo_base *bo_base;
 204		struct amdgpu_bo *bo;
 205
 206		bo_base = list_first_entry(&vm->evicted,
 207					   struct amdgpu_vm_bo_base,
 208					   vm_status);
 209		spin_unlock(&vm->status_lock);
 210
 211		bo = bo_base->bo;
 212		BUG_ON(!bo);
 213		if (bo->parent) {
 214			r = validate(param, bo);
 215			if (r)
 216				return r;
 217
 218			spin_lock(&glob->lru_lock);
 219			ttm_bo_move_to_lru_tail(&bo->tbo);
 220			if (bo->shadow)
 221				ttm_bo_move_to_lru_tail(&bo->shadow->tbo);
 222			spin_unlock(&glob->lru_lock);
 223		}
 224
 225		if (bo->tbo.type == ttm_bo_type_kernel &&
 226		    vm->use_cpu_for_update) {
 227			r = amdgpu_bo_kmap(bo, NULL);
 228			if (r)
 229				return r;
 230		}
 
 231
 232		spin_lock(&vm->status_lock);
 233		if (bo->tbo.type != ttm_bo_type_kernel)
 234			list_move(&bo_base->vm_status, &vm->moved);
 235		else
 236			list_move(&bo_base->vm_status, &vm->relocated);
 237	}
 238	spin_unlock(&vm->status_lock);
 239
 240	return 0;
 241}
 242
 243/**
 244 * amdgpu_vm_ready - check VM is ready for updates
 245 *
 246 * @vm: VM to check
 247 *
 248 * Check if all VM PDs/PTs are ready for updates
 
 
 
 249 */
 250bool amdgpu_vm_ready(struct amdgpu_vm *vm)
 251{
 252	bool ready;
 253
 254	spin_lock(&vm->status_lock);
 255	ready = list_empty(&vm->evicted);
 256	spin_unlock(&vm->status_lock);
 257
 258	return ready;
 259}
 260
 261/**
 262 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
 263 *
 264 * @adev: amdgpu_device pointer
 
 265 * @bo: BO to clear
 266 * @level: level this BO is at
 267 *
 268 * Root PD needs to be reserved when calling this.
 
 
 
 269 */
 270static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
 271			      struct amdgpu_vm *vm, struct amdgpu_bo *bo,
 272			      unsigned level, bool pte_support_ats)
 
 273{
 274	struct ttm_operation_ctx ctx = { true, false };
 275	struct dma_fence *fence = NULL;
 
 
 276	unsigned entries, ats_entries;
 277	struct amdgpu_ring *ring;
 278	struct amdgpu_job *job;
 279	uint64_t addr;
 280	int r;
 281
 282	addr = amdgpu_bo_gpu_offset(bo);
 
 
 
 
 
 
 
 
 283	entries = amdgpu_bo_size(bo) / 8;
 
 
 
 
 
 
 
 284
 285	if (pte_support_ats) {
 286		if (level == adev->vm_manager.root_level) {
 287			ats_entries = amdgpu_vm_level_shift(adev, level);
 288			ats_entries += AMDGPU_GPU_PAGE_SHIFT;
 289			ats_entries = AMDGPU_VA_HOLE_START >> ats_entries;
 290			ats_entries = min(ats_entries, entries);
 291			entries -= ats_entries;
 292		} else {
 293			ats_entries = entries;
 294			entries = 0;
 295		}
 296	} else {
 297		ats_entries = 0;
 298	}
 299
 300	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
 
 
 
 
 
 
 
 
 
 301
 302	r = reservation_object_reserve_shared(bo->tbo.resv);
 303	if (r)
 304		return r;
 305
 306	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
 307	if (r)
 308		goto error;
 
 309
 310	r = amdgpu_job_alloc_with_ib(adev, 64, &job);
 311	if (r)
 312		goto error;
 313
 
 314	if (ats_entries) {
 315		uint64_t ats_value;
 316
 317		ats_value = AMDGPU_PTE_DEFAULT_ATC;
 318		if (level != AMDGPU_VM_PTB)
 319			ats_value |= AMDGPU_PDE_PTE;
 
 
 
 
 
 
 
 
 320
 321		amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
 322				      ats_entries, 0, ats_value);
 323		addr += ats_entries * 8;
 324	}
 325
 326	if (entries)
 327		amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
 328				      entries, 0, 0);
 329
 330	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 331
 332	WARN_ON(job->ibs[0].length_dw > 64);
 333	r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv,
 334			     AMDGPU_FENCE_OWNER_UNDEFINED, false);
 335	if (r)
 336		goto error_free;
 337
 338	r = amdgpu_job_submit(job, ring, &vm->entity,
 339			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
 340	if (r)
 341		goto error_free;
 
 
 
 
 
 
 
 342
 343	amdgpu_bo_fence(bo, fence, true);
 344	dma_fence_put(fence);
 
 
 
 345
 346	if (bo->shadow)
 347		return amdgpu_vm_clear_bo(adev, vm, bo->shadow,
 348					  level, pte_support_ats);
 349
 350	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 351
 352error_free:
 353	amdgpu_job_free(job);
 354
 355error:
 356	return r;
 
 
 
 
 
 
 
 
 
 357}
 358
 359/**
 360 * amdgpu_vm_alloc_levels - allocate the PD/PT levels
 361 *
 362 * @adev: amdgpu_device pointer
 363 * @vm: requested vm
 364 * @saddr: start of the address range
 365 * @eaddr: end of the address range
 
 
 366 *
 367 * Make sure the page directories and page tables are allocated
 368 */
 369static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
 370				  struct amdgpu_vm *vm,
 371				  struct amdgpu_vm_pt *parent,
 372				  uint64_t saddr, uint64_t eaddr,
 373				  unsigned level, bool ats)
 374{
 375	unsigned shift = amdgpu_vm_level_shift(adev, level);
 376	unsigned pt_idx, from, to;
 377	u64 flags;
 
 378	int r;
 379
 380	if (!parent->entries) {
 381		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
 382
 383		parent->entries = kvmalloc_array(num_entries,
 384						   sizeof(struct amdgpu_vm_pt),
 385						   GFP_KERNEL | __GFP_ZERO);
 386		if (!parent->entries)
 
 387			return -ENOMEM;
 388		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
 389	}
 390
 391	from = saddr >> shift;
 392	to = eaddr >> shift;
 393	if (from >= amdgpu_vm_num_entries(adev, level) ||
 394	    to >= amdgpu_vm_num_entries(adev, level))
 395		return -EINVAL;
 396
 397	++level;
 398	saddr = saddr & ((1 << shift) - 1);
 399	eaddr = eaddr & ((1 << shift) - 1);
 400
 401	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
 402	if (vm->use_cpu_for_update)
 403		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 404	else
 405		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
 406				AMDGPU_GEM_CREATE_SHADOW);
 407
 408	/* walk over the address space and allocate the page tables */
 409	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
 410		struct reservation_object *resv = vm->root.base.bo->tbo.resv;
 411		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
 412		struct amdgpu_bo *pt;
 413
 414		if (!entry->base.bo) {
 415			r = amdgpu_bo_create(adev,
 416					     amdgpu_vm_bo_size(adev, level),
 417					     AMDGPU_GPU_PAGE_SIZE,
 418					     AMDGPU_GEM_DOMAIN_VRAM, flags,
 419					     ttm_bo_type_kernel, resv, &pt);
 420			if (r)
 421				return r;
 422
 423			r = amdgpu_vm_clear_bo(adev, vm, pt, level, ats);
 424			if (r) {
 425				amdgpu_bo_unref(&pt->shadow);
 426				amdgpu_bo_unref(&pt);
 427				return r;
 428			}
 429
 430			if (vm->use_cpu_for_update) {
 431				r = amdgpu_bo_kmap(pt, NULL);
 432				if (r) {
 433					amdgpu_bo_unref(&pt->shadow);
 434					amdgpu_bo_unref(&pt);
 435					return r;
 436				}
 437			}
 438
 439			/* Keep a reference to the root directory to avoid
 440			* freeing them up in the wrong order.
 441			*/
 442			pt->parent = amdgpu_bo_ref(parent->base.bo);
 443
 444			entry->base.vm = vm;
 445			entry->base.bo = pt;
 446			list_add_tail(&entry->base.bo_list, &pt->va);
 447			spin_lock(&vm->status_lock);
 448			list_add(&entry->base.vm_status, &vm->relocated);
 449			spin_unlock(&vm->status_lock);
 450		}
 451
 452		if (level < AMDGPU_VM_PTB) {
 453			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
 454			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
 455				((1 << shift) - 1);
 456			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
 457						   sub_eaddr, level, ats);
 458			if (r)
 459				return r;
 460		}
 461	}
 462
 463	return 0;
 464}
 465
 466/**
 467 * amdgpu_vm_alloc_pts - Allocate page tables.
 468 *
 469 * @adev: amdgpu_device pointer
 470 * @vm: VM to allocate page tables for
 471 * @saddr: Start address which needs to be allocated
 472 * @size: Size from start address we need.
 473 *
 474 * Make sure the page tables are allocated.
 475 */
 476int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
 477			struct amdgpu_vm *vm,
 478			uint64_t saddr, uint64_t size)
 479{
 480	uint64_t eaddr;
 481	bool ats = false;
 482
 483	/* validate the parameters */
 484	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
 485		return -EINVAL;
 486
 487	eaddr = saddr + size - 1;
 488
 489	if (vm->pte_support_ats)
 490		ats = saddr < AMDGPU_VA_HOLE_START;
 491
 492	saddr /= AMDGPU_GPU_PAGE_SIZE;
 493	eaddr /= AMDGPU_GPU_PAGE_SIZE;
 494
 495	if (eaddr >= adev->vm_manager.max_pfn) {
 496		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
 497			eaddr, adev->vm_manager.max_pfn);
 498		return -EINVAL;
 499	}
 500
 501	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr,
 502				      adev->vm_manager.root_level, ats);
 503}
 504
 505/**
 506 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
 507 *
 508 * @adev: amdgpu_device pointer
 509 */
 510void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
 511{
 512	const struct amdgpu_ip_block *ip_block;
 513	bool has_compute_vm_bug;
 514	struct amdgpu_ring *ring;
 515	int i;
 516
 517	has_compute_vm_bug = false;
 518
 519	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
 520	if (ip_block) {
 521		/* Compute has a VM bug for GFX version < 7.
 522		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
 523		if (ip_block->version->major <= 7)
 524			has_compute_vm_bug = true;
 525		else if (ip_block->version->major == 8)
 526			if (adev->gfx.mec_fw_version < 673)
 527				has_compute_vm_bug = true;
 528	}
 529
 530	for (i = 0; i < adev->num_rings; i++) {
 531		ring = adev->rings[i];
 532		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
 533			/* only compute rings */
 534			ring->has_compute_vm_bug = has_compute_vm_bug;
 535		else
 536			ring->has_compute_vm_bug = false;
 537	}
 538}
 539
 
 
 
 
 
 
 
 
 
 540bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
 541				  struct amdgpu_job *job)
 542{
 543	struct amdgpu_device *adev = ring->adev;
 544	unsigned vmhub = ring->funcs->vmhub;
 545	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
 546	struct amdgpu_vmid *id;
 547	bool gds_switch_needed;
 548	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
 549
 550	if (job->vmid == 0)
 551		return false;
 552	id = &id_mgr->ids[job->vmid];
 553	gds_switch_needed = ring->funcs->emit_gds_switch && (
 554		id->gds_base != job->gds_base ||
 555		id->gds_size != job->gds_size ||
 556		id->gws_base != job->gws_base ||
 557		id->gws_size != job->gws_size ||
 558		id->oa_base != job->oa_base ||
 559		id->oa_size != job->oa_size);
 560
 561	if (amdgpu_vmid_had_gpu_reset(adev, id))
 562		return true;
 563
 564	return vm_flush_needed || gds_switch_needed;
 565}
 566
 567static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
 568{
 569	return (adev->gmc.real_vram_size == adev->gmc.visible_vram_size);
 570}
 571
 572/**
 573 * amdgpu_vm_flush - hardware flush the vm
 574 *
 575 * @ring: ring to use for flush
 576 * @vmid: vmid number to use
 577 * @pd_addr: address of the page directory
 578 *
 579 * Emit a VM flush when it is necessary.
 
 
 
 580 */
 581int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
 
 582{
 583	struct amdgpu_device *adev = ring->adev;
 584	unsigned vmhub = ring->funcs->vmhub;
 585	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
 586	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
 587	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
 588		id->gds_base != job->gds_base ||
 589		id->gds_size != job->gds_size ||
 590		id->gws_base != job->gws_base ||
 591		id->gws_size != job->gws_size ||
 592		id->oa_base != job->oa_base ||
 593		id->oa_size != job->oa_size);
 594	bool vm_flush_needed = job->vm_needs_flush;
 595	bool pasid_mapping_needed = id->pasid != job->pasid ||
 596		!id->pasid_mapping ||
 597		!dma_fence_is_signaled(id->pasid_mapping);
 598	struct dma_fence *fence = NULL;
 
 599	unsigned patch_offset = 0;
 
 600	int r;
 601
 
 
 
 602	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
 603		gds_switch_needed = true;
 604		vm_flush_needed = true;
 605		pasid_mapping_needed = true;
 606	}
 607
 
 
 
 
 
 
 608	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
 609	vm_flush_needed &= !!ring->funcs->emit_vm_flush;
 
 610	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
 611		ring->funcs->emit_wreg;
 612
 613	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
 614		return 0;
 615
 616	if (ring->funcs->init_cond_exec)
 617		patch_offset = amdgpu_ring_init_cond_exec(ring);
 618
 619	if (need_pipe_sync)
 620		amdgpu_ring_emit_pipeline_sync(ring);
 621
 622	if (vm_flush_needed) {
 623		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
 624		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
 625	}
 626
 627	if (pasid_mapping_needed)
 628		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
 629
 630	if (vm_flush_needed || pasid_mapping_needed) {
 631		r = amdgpu_fence_emit(ring, &fence);
 632		if (r)
 633			return r;
 634	}
 635
 636	if (vm_flush_needed) {
 637		mutex_lock(&id_mgr->lock);
 638		dma_fence_put(id->last_flush);
 639		id->last_flush = dma_fence_get(fence);
 640		id->current_gpu_reset_count =
 641			atomic_read(&adev->gpu_reset_counter);
 642		mutex_unlock(&id_mgr->lock);
 643	}
 644
 645	if (pasid_mapping_needed) {
 
 646		id->pasid = job->pasid;
 647		dma_fence_put(id->pasid_mapping);
 648		id->pasid_mapping = dma_fence_get(fence);
 
 649	}
 650	dma_fence_put(fence);
 651
 652	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
 653		id->gds_base = job->gds_base;
 654		id->gds_size = job->gds_size;
 655		id->gws_base = job->gws_base;
 656		id->gws_size = job->gws_size;
 657		id->oa_base = job->oa_base;
 658		id->oa_size = job->oa_size;
 659		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
 660					    job->gds_size, job->gws_base,
 661					    job->gws_size, job->oa_base,
 662					    job->oa_size);
 663	}
 664
 665	if (ring->funcs->patch_cond_exec)
 666		amdgpu_ring_patch_cond_exec(ring, patch_offset);
 667
 668	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
 669	if (ring->funcs->emit_switch_buffer) {
 670		amdgpu_ring_emit_switch_buffer(ring);
 671		amdgpu_ring_emit_switch_buffer(ring);
 672	}
 673	return 0;
 674}
 675
 676/**
 677 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
 678 *
 679 * @vm: requested vm
 680 * @bo: requested buffer object
 681 *
 682 * Find @bo inside the requested vm.
 683 * Search inside the @bos vm list for the requested vm
 684 * Returns the found bo_va or NULL if none is found
 685 *
 686 * Object has to be reserved!
 
 
 
 687 */
 688struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
 689				       struct amdgpu_bo *bo)
 690{
 691	struct amdgpu_bo_va *bo_va;
 
 
 
 
 692
 693	list_for_each_entry(bo_va, &bo->va, base.bo_list) {
 694		if (bo_va->base.vm == vm) {
 695			return bo_va;
 696		}
 697	}
 698	return NULL;
 699}
 700
 701/**
 702 * amdgpu_vm_do_set_ptes - helper to call the right asic function
 703 *
 704 * @params: see amdgpu_pte_update_params definition
 705 * @bo: PD/PT to update
 706 * @pe: addr of the page entry
 707 * @addr: dst addr to write into pe
 708 * @count: number of page entries to update
 709 * @incr: increase next addr by incr bytes
 710 * @flags: hw access flags
 711 *
 712 * Traces the parameters and calls the right asic functions
 713 * to setup the page table using the DMA.
 714 */
 715static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
 716				  struct amdgpu_bo *bo,
 717				  uint64_t pe, uint64_t addr,
 718				  unsigned count, uint32_t incr,
 719				  uint64_t flags)
 720{
 721	pe += amdgpu_bo_gpu_offset(bo);
 722	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
 723
 724	if (count < 3) {
 725		amdgpu_vm_write_pte(params->adev, params->ib, pe,
 726				    addr | flags, count, incr);
 727
 728	} else {
 729		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
 730				      count, incr, flags);
 731	}
 732}
 733
 734/**
 735 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
 736 *
 737 * @params: see amdgpu_pte_update_params definition
 738 * @bo: PD/PT to update
 739 * @pe: addr of the page entry
 740 * @addr: dst addr to write into pe
 741 * @count: number of page entries to update
 742 * @incr: increase next addr by incr bytes
 743 * @flags: hw access flags
 744 *
 745 * Traces the parameters and calls the DMA function to copy the PTEs.
 746 */
 747static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
 748				   struct amdgpu_bo *bo,
 749				   uint64_t pe, uint64_t addr,
 750				   unsigned count, uint32_t incr,
 751				   uint64_t flags)
 752{
 753	uint64_t src = (params->src + (addr >> 12) * 8);
 754
 755	pe += amdgpu_bo_gpu_offset(bo);
 756	trace_amdgpu_vm_copy_ptes(pe, src, count);
 757
 758	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
 759}
 760
 761/**
 762 * amdgpu_vm_map_gart - Resolve gart mapping of addr
 763 *
 764 * @pages_addr: optional DMA address to use for lookup
 765 * @addr: the unmapped addr
 766 *
 767 * Look up the physical address of the page that the pte resolves
 768 * to and return the pointer for the page table entry.
 
 
 
 769 */
 770static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
 771{
 772	uint64_t result;
 773
 774	/* page table offset */
 775	result = pages_addr[addr >> PAGE_SHIFT];
 776
 777	/* in case cpu page size != gpu page size*/
 778	result |= addr & (~PAGE_MASK);
 779
 780	result &= 0xFFFFFFFFFFFFF000ULL;
 781
 782	return result;
 783}
 784
 785/**
 786 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
 787 *
 788 * @params: see amdgpu_pte_update_params definition
 789 * @bo: PD/PT to update
 790 * @pe: kmap addr of the page entry
 791 * @addr: dst addr to write into pe
 792 * @count: number of page entries to update
 793 * @incr: increase next addr by incr bytes
 794 * @flags: hw access flags
 795 *
 796 * Write count number of PT/PD entries directly.
 797 */
 798static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
 799				   struct amdgpu_bo *bo,
 800				   uint64_t pe, uint64_t addr,
 801				   unsigned count, uint32_t incr,
 802				   uint64_t flags)
 803{
 804	unsigned int i;
 805	uint64_t value;
 806
 807	pe += (unsigned long)amdgpu_bo_kptr(bo);
 808
 809	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
 810
 811	for (i = 0; i < count; i++) {
 812		value = params->pages_addr ?
 813			amdgpu_vm_map_gart(params->pages_addr, addr) :
 814			addr;
 815		amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
 816				       i, value, flags);
 817		addr += incr;
 818	}
 819}
 820
 821static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 822			     void *owner)
 823{
 824	struct amdgpu_sync sync;
 825	int r;
 826
 827	amdgpu_sync_create(&sync);
 828	amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false);
 829	r = amdgpu_sync_wait(&sync, true);
 830	amdgpu_sync_free(&sync);
 831
 832	return r;
 833}
 834
 835/*
 836 * amdgpu_vm_update_pde - update a single level in the hierarchy
 837 *
 838 * @param: parameters for the update
 839 * @vm: requested vm
 840 * @parent: parent directory
 841 * @entry: entry to update
 842 *
 843 * Makes sure the requested entry in parent is up to date.
 844 */
 845static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params,
 846				 struct amdgpu_vm *vm,
 847				 struct amdgpu_vm_pt *parent,
 848				 struct amdgpu_vm_pt *entry)
 849{
 
 850	struct amdgpu_bo *bo = parent->base.bo, *pbo;
 851	uint64_t pde, pt, flags;
 852	unsigned level;
 853
 854	/* Don't update huge pages here */
 855	if (entry->huge)
 856		return;
 857
 858	for (level = 0, pbo = bo->parent; pbo; ++level)
 859		pbo = pbo->parent;
 860
 861	level += params->adev->vm_manager.root_level;
 862	pt = amdgpu_bo_gpu_offset(entry->base.bo);
 863	flags = AMDGPU_PTE_VALID;
 864	amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags);
 865	pde = (entry - parent->entries) * 8;
 866	if (bo->shadow)
 867		params->func(params, bo->shadow, pde, pt, 1, 0, flags);
 868	params->func(params, bo, pde, pt, 1, 0, flags);
 869}
 870
 871/*
 872 * amdgpu_vm_invalidate_level - mark all PD levels as invalid
 873 *
 874 * @parent: parent PD
 
 875 *
 876 * Mark all PD level as invalid after an error.
 877 */
 878static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev,
 879				       struct amdgpu_vm *vm,
 880				       struct amdgpu_vm_pt *parent,
 881				       unsigned level)
 882{
 883	unsigned pt_idx, num_entries;
 884
 885	/*
 886	 * Recurse into the subdirectories. This recursion is harmless because
 887	 * we only have a maximum of 5 layers.
 888	 */
 889	num_entries = amdgpu_vm_num_entries(adev, level);
 890	for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) {
 891		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
 892
 893		if (!entry->base.bo)
 894			continue;
 895
 896		spin_lock(&vm->status_lock);
 897		if (list_empty(&entry->base.vm_status))
 898			list_add(&entry->base.vm_status, &vm->relocated);
 899		spin_unlock(&vm->status_lock);
 900		amdgpu_vm_invalidate_level(adev, vm, entry, level + 1);
 901	}
 902}
 903
 904/*
 905 * amdgpu_vm_update_directories - make sure that all directories are valid
 906 *
 907 * @adev: amdgpu_device pointer
 908 * @vm: requested vm
 
 909 *
 910 * Makes sure all directories are up to date.
 911 * Returns 0 for success, error for failure.
 
 
 912 */
 913int amdgpu_vm_update_directories(struct amdgpu_device *adev,
 914				 struct amdgpu_vm *vm)
 915{
 916	struct amdgpu_pte_update_params params;
 917	struct amdgpu_job *job;
 918	unsigned ndw = 0;
 919	int r = 0;
 920
 921	if (list_empty(&vm->relocated))
 922		return 0;
 923
 924restart:
 925	memset(&params, 0, sizeof(params));
 926	params.adev = adev;
 
 
 927
 928	if (vm->use_cpu_for_update) {
 929		r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
 930		if (unlikely(r))
 931			return r;
 932
 933		params.func = amdgpu_vm_cpu_set_ptes;
 934	} else {
 935		ndw = 512 * 8;
 936		r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
 937		if (r)
 938			return r;
 939
 940		params.ib = &job->ibs[0];
 941		params.func = amdgpu_vm_do_set_ptes;
 942	}
 943
 944	spin_lock(&vm->status_lock);
 945	while (!list_empty(&vm->relocated)) {
 946		struct amdgpu_vm_bo_base *bo_base, *parent;
 947		struct amdgpu_vm_pt *pt, *entry;
 948		struct amdgpu_bo *bo;
 949
 950		bo_base = list_first_entry(&vm->relocated,
 951					   struct amdgpu_vm_bo_base,
 952					   vm_status);
 953		list_del_init(&bo_base->vm_status);
 954		spin_unlock(&vm->status_lock);
 955
 956		bo = bo_base->bo->parent;
 957		if (!bo) {
 958			spin_lock(&vm->status_lock);
 959			continue;
 960		}
 961
 962		parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base,
 963					  bo_list);
 964		pt = container_of(parent, struct amdgpu_vm_pt, base);
 965		entry = container_of(bo_base, struct amdgpu_vm_pt, base);
 966
 967		amdgpu_vm_update_pde(&params, vm, pt, entry);
 968
 969		spin_lock(&vm->status_lock);
 970		if (!vm->use_cpu_for_update &&
 971		    (ndw - params.ib->length_dw) < 32)
 972			break;
 973	}
 974	spin_unlock(&vm->status_lock);
 975
 976	if (vm->use_cpu_for_update) {
 977		/* Flush HDP */
 978		mb();
 979		amdgpu_asic_flush_hdp(adev, NULL);
 980	} else if (params.ib->length_dw == 0) {
 981		amdgpu_job_free(job);
 982	} else {
 983		struct amdgpu_bo *root = vm->root.base.bo;
 984		struct amdgpu_ring *ring;
 985		struct dma_fence *fence;
 986
 987		ring = container_of(vm->entity.sched, struct amdgpu_ring,
 988				    sched);
 989
 990		amdgpu_ring_pad_ib(ring, params.ib);
 991		amdgpu_sync_resv(adev, &job->sync, root->tbo.resv,
 992				 AMDGPU_FENCE_OWNER_VM, false);
 993		WARN_ON(params.ib->length_dw > ndw);
 994		r = amdgpu_job_submit(job, ring, &vm->entity,
 995				      AMDGPU_FENCE_OWNER_VM, &fence);
 996		if (r)
 997			goto error;
 998
 999		amdgpu_bo_fence(root, fence, true);
1000		dma_fence_put(vm->last_update);
1001		vm->last_update = fence;
1002	}
1003
1004	if (!list_empty(&vm->relocated))
1005		goto restart;
1006
1007	return 0;
1008
1009error:
1010	amdgpu_vm_invalidate_level(adev, vm, &vm->root,
1011				   adev->vm_manager.root_level);
1012	amdgpu_job_free(job);
1013	return r;
1014}
1015
1016/**
1017 * amdgpu_vm_find_entry - find the entry for an address
1018 *
1019 * @p: see amdgpu_pte_update_params definition
1020 * @addr: virtual address in question
1021 * @entry: resulting entry or NULL
1022 * @parent: parent entry
1023 *
1024 * Find the vm_pt entry and it's parent for the given address.
1025 */
1026void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
1027			 struct amdgpu_vm_pt **entry,
1028			 struct amdgpu_vm_pt **parent)
 
 
 
1029{
1030	unsigned level = p->adev->vm_manager.root_level;
 
 
1031
1032	*parent = NULL;
1033	*entry = &p->vm->root;
1034	while ((*entry)->entries) {
1035		unsigned shift = amdgpu_vm_level_shift(p->adev, level++);
1036
1037		*parent = *entry;
1038		*entry = &(*entry)->entries[addr >> shift];
1039		addr &= (1ULL << shift) - 1;
1040	}
1041
1042	if (level != AMDGPU_VM_PTB)
1043		*entry = NULL;
1044}
1045
1046/**
1047 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
1048 *
1049 * @p: see amdgpu_pte_update_params definition
1050 * @entry: vm_pt entry to check
1051 * @parent: parent entry
1052 * @nptes: number of PTEs updated with this operation
1053 * @dst: destination address where the PTEs should point to
1054 * @flags: access flags fro the PTEs
1055 *
1056 * Check if we can update the PD with a huge page.
1057 */
1058static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
1059					struct amdgpu_vm_pt *entry,
1060					struct amdgpu_vm_pt *parent,
1061					unsigned nptes, uint64_t dst,
1062					uint64_t flags)
1063{
1064	uint64_t pde;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065
1066	/* In the case of a mixed PT the PDE must point to it*/
1067	if (p->adev->asic_type >= CHIP_VEGA10 && !p->src &&
1068	    nptes == AMDGPU_VM_PTE_COUNT(p->adev)) {
1069		/* Set the huge page flag to stop scanning at this PDE */
1070		flags |= AMDGPU_PDE_PTE;
1071	}
1072
1073	if (!(flags & AMDGPU_PDE_PTE)) {
1074		if (entry->huge) {
1075			/* Add the entry to the relocated list to update it. */
1076			entry->huge = false;
1077			spin_lock(&p->vm->status_lock);
1078			list_move(&entry->base.vm_status, &p->vm->relocated);
1079			spin_unlock(&p->vm->status_lock);
1080		}
1081		return;
1082	}
1083
1084	entry->huge = true;
1085	amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags);
1086
1087	pde = (entry - parent->entries) * 8;
1088	if (parent->base.bo->shadow)
1089		p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags);
1090	p->func(p, parent->base.bo, pde, dst, 1, 0, flags);
 
1091}
1092
1093/**
1094 * amdgpu_vm_update_ptes - make sure that page tables are valid
1095 *
1096 * @params: see amdgpu_pte_update_params definition
1097 * @vm: requested vm
1098 * @start: start of GPU address range
1099 * @end: end of GPU address range
1100 * @dst: destination address to map to, the next dst inside the function
1101 * @flags: mapping flags
1102 *
1103 * Update the page tables in the range @start - @end.
1104 * Returns 0 for success, -EINVAL for failure.
 
 
1105 */
1106static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1107				  uint64_t start, uint64_t end,
1108				  uint64_t dst, uint64_t flags)
1109{
1110	struct amdgpu_device *adev = params->adev;
1111	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
 
 
 
1112
1113	uint64_t addr, pe_start;
1114	struct amdgpu_bo *pt;
1115	unsigned nptes;
1116
1117	/* walk over the address space and update the page tables */
1118	for (addr = start; addr < end; addr += nptes,
1119	     dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1120		struct amdgpu_vm_pt *entry, *parent;
 
 
1121
1122		amdgpu_vm_get_entry(params, addr, &entry, &parent);
1123		if (!entry)
1124			return -ENOENT;
 
 
 
 
 
 
1125
1126		if ((addr & ~mask) == (end & ~mask))
1127			nptes = end - addr;
1128		else
1129			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1130
1131		amdgpu_vm_handle_huge_pages(params, entry, parent,
1132					    nptes, dst, flags);
1133		/* We don't need to update PTEs for huge pages */
1134		if (entry->huge)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135			continue;
 
1136
1137		pt = entry->base.bo;
1138		pe_start = (addr & mask) * 8;
1139		if (pt->shadow)
1140			params->func(params, pt->shadow, pe_start, dst, nptes,
1141				     AMDGPU_GPU_PAGE_SIZE, flags);
1142		params->func(params, pt, pe_start, dst, nptes,
1143			     AMDGPU_GPU_PAGE_SIZE, flags);
1144	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145
1146	return 0;
1147}
 
 
 
 
 
 
 
 
 
1148
1149/*
1150 * amdgpu_vm_frag_ptes - add fragment information to PTEs
1151 *
1152 * @params: see amdgpu_pte_update_params definition
1153 * @vm: requested vm
1154 * @start: first PTE to handle
1155 * @end: last PTE to handle
1156 * @dst: addr those PTEs should point to
1157 * @flags: hw mapping flags
1158 * Returns 0 for success, -EINVAL for failure.
1159 */
1160static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
1161				uint64_t start, uint64_t end,
1162				uint64_t dst, uint64_t flags)
1163{
1164	/**
1165	 * The MC L1 TLB supports variable sized pages, based on a fragment
1166	 * field in the PTE. When this field is set to a non-zero value, page
1167	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1168	 * flags are considered valid for all PTEs within the fragment range
1169	 * and corresponding mappings are assumed to be physically contiguous.
1170	 *
1171	 * The L1 TLB can store a single PTE for the whole fragment,
1172	 * significantly increasing the space available for translation
1173	 * caching. This leads to large improvements in throughput when the
1174	 * TLB is under pressure.
1175	 *
1176	 * The L2 TLB distributes small and large fragments into two
1177	 * asymmetric partitions. The large fragment cache is significantly
1178	 * larger. Thus, we try to use large fragments wherever possible.
1179	 * Userspace can support this by aligning virtual base address and
1180	 * allocation size to the fragment size.
1181	 */
1182	unsigned max_frag = params->adev->vm_manager.fragment_size;
1183	int r;
1184
1185	/* system pages are non continuously */
1186	if (params->src || !(flags & AMDGPU_PTE_VALID))
1187		return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1188
1189	while (start != end) {
1190		uint64_t frag_flags, frag_end;
1191		unsigned frag;
1192
1193		/* This intentionally wraps around if no bit is set */
1194		frag = min((unsigned)ffs(start) - 1,
1195			   (unsigned)fls64(end - start) - 1);
1196		if (frag >= max_frag) {
1197			frag_flags = AMDGPU_PTE_FRAG(max_frag);
1198			frag_end = end & ~((1ULL << max_frag) - 1);
1199		} else {
1200			frag_flags = AMDGPU_PTE_FRAG(frag);
1201			frag_end = start + (1 << frag);
1202		}
1203
1204		r = amdgpu_vm_update_ptes(params, start, frag_end, dst,
1205					  flags | frag_flags);
1206		if (r)
1207			return r;
1208
1209		dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE;
1210		start = frag_end;
1211	}
1212
1213	return 0;
1214}
1215
1216/**
1217 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1218 *
1219 * @adev: amdgpu_device pointer
1220 * @exclusive: fence we need to sync to
1221 * @pages_addr: DMA addresses to use for mapping
1222 * @vm: requested vm
 
 
 
1223 * @start: start of mapped range
1224 * @last: last mapped entry
1225 * @flags: flags for the entries
1226 * @addr: addr to set the area to
 
1227 * @fence: optional resulting fence
1228 *
1229 * Fill in the page table entries between @start and @last.
1230 * Returns 0 for success, -EINVAL for failure.
 
 
1231 */
1232static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1233				       struct dma_fence *exclusive,
1234				       dma_addr_t *pages_addr,
1235				       struct amdgpu_vm *vm,
1236				       uint64_t start, uint64_t last,
1237				       uint64_t flags, uint64_t addr,
 
1238				       struct dma_fence **fence)
1239{
1240	struct amdgpu_ring *ring;
1241	void *owner = AMDGPU_FENCE_OWNER_VM;
1242	unsigned nptes, ncmds, ndw;
1243	struct amdgpu_job *job;
1244	struct amdgpu_pte_update_params params;
1245	struct dma_fence *f = NULL;
1246	int r;
1247
1248	memset(&params, 0, sizeof(params));
1249	params.adev = adev;
1250	params.vm = vm;
 
 
 
1251
1252	/* sync to everything on unmapping */
 
 
1253	if (!(flags & AMDGPU_PTE_VALID))
1254		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1255
1256	if (vm->use_cpu_for_update) {
1257		/* params.src is used as flag to indicate system Memory */
1258		if (pages_addr)
1259			params.src = ~0;
1260
1261		/* Wait for PT BOs to be free. PTs share the same resv. object
1262		 * as the root PD BO
1263		 */
1264		r = amdgpu_vm_wait_pd(adev, vm, owner);
1265		if (unlikely(r))
1266			return r;
1267
1268		params.func = amdgpu_vm_cpu_set_ptes;
1269		params.pages_addr = pages_addr;
1270		return amdgpu_vm_frag_ptes(&params, start, last + 1,
1271					   addr, flags);
1272	}
1273
1274	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1275
1276	nptes = last - start + 1;
1277
1278	/*
1279	 * reserve space for two commands every (1 << BLOCK_SIZE)
1280	 *  entries or 2k dwords (whatever is smaller)
1281         *
1282         * The second command is for the shadow pagetables.
1283	 */
1284	if (vm->root.base.bo->shadow)
1285		ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
1286	else
1287		ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1);
1288
1289	/* padding, etc. */
1290	ndw = 64;
1291
1292	if (pages_addr) {
1293		/* copy commands needed */
1294		ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1295
1296		/* and also PTEs */
1297		ndw += nptes * 2;
1298
1299		params.func = amdgpu_vm_do_copy_ptes;
1300
1301	} else {
1302		/* set page commands needed */
1303		ndw += ncmds * 10;
1304
1305		/* extra commands for begin/end fragments */
1306		ndw += 2 * 10 * adev->vm_manager.fragment_size;
1307
1308		params.func = amdgpu_vm_do_set_ptes;
1309	}
1310
1311	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1312	if (r)
1313		return r;
1314
1315	params.ib = &job->ibs[0];
1316
1317	if (pages_addr) {
1318		uint64_t *pte;
1319		unsigned i;
1320
1321		/* Put the PTEs at the end of the IB. */
1322		i = ndw - nptes * 2;
1323		pte= (uint64_t *)&(job->ibs->ptr[i]);
1324		params.src = job->ibs->gpu_addr + i * 4;
1325
1326		for (i = 0; i < nptes; ++i) {
1327			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1328						    AMDGPU_GPU_PAGE_SIZE);
1329			pte[i] |= flags;
1330		}
1331		addr = 0;
1332	}
1333
1334	r = amdgpu_sync_fence(adev, &job->sync, exclusive, false);
1335	if (r)
1336		goto error_free;
1337
1338	r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1339			     owner, false);
1340	if (r)
1341		goto error_free;
1342
1343	r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv);
1344	if (r)
1345		goto error_free;
1346
1347	r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1348	if (r)
1349		goto error_free;
1350
1351	amdgpu_ring_pad_ib(ring, params.ib);
1352	WARN_ON(params.ib->length_dw > ndw);
1353	r = amdgpu_job_submit(job, ring, &vm->entity,
1354			      AMDGPU_FENCE_OWNER_VM, &f);
1355	if (r)
1356		goto error_free;
1357
1358	amdgpu_bo_fence(vm->root.base.bo, f, true);
1359	dma_fence_put(*fence);
1360	*fence = f;
1361	return 0;
1362
1363error_free:
1364	amdgpu_job_free(job);
1365	return r;
1366}
1367
1368/**
1369 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1370 *
1371 * @adev: amdgpu_device pointer
1372 * @exclusive: fence we need to sync to
1373 * @pages_addr: DMA addresses to use for mapping
1374 * @vm: requested vm
1375 * @mapping: mapped range and flags to use for the update
1376 * @flags: HW flags for the mapping
 
1377 * @nodes: array of drm_mm_nodes with the MC addresses
1378 * @fence: optional resulting fence
1379 *
1380 * Split the mapping into smaller chunks so that each update fits
1381 * into a SDMA IB.
1382 * Returns 0 for success, -EINVAL for failure.
 
 
1383 */
1384static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1385				      struct dma_fence *exclusive,
1386				      dma_addr_t *pages_addr,
1387				      struct amdgpu_vm *vm,
1388				      struct amdgpu_bo_va_mapping *mapping,
1389				      uint64_t flags,
 
1390				      struct drm_mm_node *nodes,
1391				      struct dma_fence **fence)
1392{
1393	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1394	uint64_t pfn, start = mapping->start;
1395	int r;
1396
1397	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1398	 * but in case of something, we filter the flags in first place
1399	 */
1400	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1401		flags &= ~AMDGPU_PTE_READABLE;
1402	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1403		flags &= ~AMDGPU_PTE_WRITEABLE;
1404
1405	flags &= ~AMDGPU_PTE_EXECUTABLE;
1406	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1407
1408	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1409	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1410
1411	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1412	    (adev->asic_type >= CHIP_VEGA10)) {
1413		flags |= AMDGPU_PTE_PRT;
1414		flags &= ~AMDGPU_PTE_VALID;
1415	}
1416
1417	trace_amdgpu_vm_bo_update(mapping);
1418
1419	pfn = mapping->offset >> PAGE_SHIFT;
1420	if (nodes) {
1421		while (pfn >= nodes->size) {
1422			pfn -= nodes->size;
1423			++nodes;
1424		}
1425	}
1426
1427	do {
1428		dma_addr_t *dma_addr = NULL;
1429		uint64_t max_entries;
1430		uint64_t addr, last;
1431
1432		if (nodes) {
1433			addr = nodes->start << PAGE_SHIFT;
1434			max_entries = (nodes->size - pfn) *
1435				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1436		} else {
1437			addr = 0;
1438			max_entries = S64_MAX;
1439		}
1440
1441		if (pages_addr) {
1442			uint64_t count;
1443
1444			max_entries = min(max_entries, 16ull * 1024ull);
1445			for (count = 1; count < max_entries; ++count) {
 
1446				uint64_t idx = pfn + count;
1447
1448				if (pages_addr[idx] !=
1449				    (pages_addr[idx - 1] + PAGE_SIZE))
1450					break;
1451			}
1452
1453			if (count < min_linear_pages) {
1454				addr = pfn << PAGE_SHIFT;
1455				dma_addr = pages_addr;
1456			} else {
1457				addr = pages_addr[pfn];
1458				max_entries = count;
 
1459			}
1460
1461		} else if (flags & AMDGPU_PTE_VALID) {
1462			addr += adev->vm_manager.vram_base_offset;
1463			addr += pfn << PAGE_SHIFT;
1464		}
1465
1466		last = min((uint64_t)mapping->last, start + max_entries - 1);
1467		r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1468						start, last, flags, addr,
1469						fence);
1470		if (r)
1471			return r;
1472
1473		pfn += last - start + 1;
1474		if (nodes && nodes->size == pfn) {
1475			pfn = 0;
1476			++nodes;
1477		}
1478		start = last + 1;
1479
1480	} while (unlikely(start != mapping->last + 1));
1481
1482	return 0;
1483}
1484
1485/**
1486 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1487 *
1488 * @adev: amdgpu_device pointer
1489 * @bo_va: requested BO and VM object
1490 * @clear: if true clear the entries
1491 *
1492 * Fill in the page table entries for @bo_va.
1493 * Returns 0 for success, -EINVAL for failure.
 
 
1494 */
1495int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1496			struct amdgpu_bo_va *bo_va,
1497			bool clear)
1498{
1499	struct amdgpu_bo *bo = bo_va->base.bo;
1500	struct amdgpu_vm *vm = bo_va->base.vm;
1501	struct amdgpu_bo_va_mapping *mapping;
1502	dma_addr_t *pages_addr = NULL;
1503	struct ttm_mem_reg *mem;
1504	struct drm_mm_node *nodes;
1505	struct dma_fence *exclusive, **last_update;
 
1506	uint64_t flags;
 
1507	int r;
1508
1509	if (clear || !bo_va->base.bo) {
1510		mem = NULL;
1511		nodes = NULL;
1512		exclusive = NULL;
1513	} else {
1514		struct ttm_dma_tt *ttm;
1515
1516		mem = &bo_va->base.bo->tbo.mem;
1517		nodes = mem->mm_node;
1518		if (mem->mem_type == TTM_PL_TT) {
1519			ttm = container_of(bo_va->base.bo->tbo.ttm,
1520					   struct ttm_dma_tt, ttm);
1521			pages_addr = ttm->dma_address;
1522		}
1523		exclusive = reservation_object_get_excl(bo->tbo.resv);
1524	}
1525
1526	if (bo)
1527		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1528	else
 
 
 
 
 
1529		flags = 0x0;
 
1530
1531	if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
 
1532		last_update = &vm->last_update;
1533	else
1534		last_update = &bo_va->last_pt_update;
1535
1536	if (!clear && bo_va->base.moved) {
1537		bo_va->base.moved = false;
1538		list_splice_init(&bo_va->valids, &bo_va->invalids);
1539
1540	} else if (bo_va->cleared != clear) {
1541		list_splice_init(&bo_va->valids, &bo_va->invalids);
1542	}
1543
1544	list_for_each_entry(mapping, &bo_va->invalids, list) {
1545		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1546					       mapping, flags, nodes,
1547					       last_update);
1548		if (r)
1549			return r;
1550	}
1551
1552	if (vm->use_cpu_for_update) {
1553		/* Flush HDP */
1554		mb();
1555		amdgpu_asic_flush_hdp(adev, NULL);
 
 
 
 
 
 
 
 
 
 
1556	}
1557
1558	spin_lock(&vm->status_lock);
1559	list_del_init(&bo_va->base.vm_status);
1560	spin_unlock(&vm->status_lock);
1561
1562	list_splice_init(&bo_va->invalids, &bo_va->valids);
1563	bo_va->cleared = clear;
1564
1565	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1566		list_for_each_entry(mapping, &bo_va->valids, list)
1567			trace_amdgpu_vm_bo_mapping(mapping);
1568	}
1569
1570	return 0;
1571}
1572
1573/**
1574 * amdgpu_vm_update_prt_state - update the global PRT state
 
 
1575 */
1576static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1577{
1578	unsigned long flags;
1579	bool enable;
1580
1581	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1582	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1583	adev->gmc.gmc_funcs->set_prt(adev, enable);
1584	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1585}
1586
1587/**
1588 * amdgpu_vm_prt_get - add a PRT user
 
 
1589 */
1590static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1591{
1592	if (!adev->gmc.gmc_funcs->set_prt)
1593		return;
1594
1595	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1596		amdgpu_vm_update_prt_state(adev);
1597}
1598
1599/**
1600 * amdgpu_vm_prt_put - drop a PRT user
 
 
1601 */
1602static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1603{
1604	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1605		amdgpu_vm_update_prt_state(adev);
1606}
1607
1608/**
1609 * amdgpu_vm_prt_cb - callback for updating the PRT status
 
 
 
1610 */
1611static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1612{
1613	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1614
1615	amdgpu_vm_prt_put(cb->adev);
1616	kfree(cb);
1617}
1618
1619/**
1620 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
 
 
 
1621 */
1622static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1623				 struct dma_fence *fence)
1624{
1625	struct amdgpu_prt_cb *cb;
1626
1627	if (!adev->gmc.gmc_funcs->set_prt)
1628		return;
1629
1630	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1631	if (!cb) {
1632		/* Last resort when we are OOM */
1633		if (fence)
1634			dma_fence_wait(fence, false);
1635
1636		amdgpu_vm_prt_put(adev);
1637	} else {
1638		cb->adev = adev;
1639		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1640						     amdgpu_vm_prt_cb))
1641			amdgpu_vm_prt_cb(fence, &cb->cb);
1642	}
1643}
1644
1645/**
1646 * amdgpu_vm_free_mapping - free a mapping
1647 *
1648 * @adev: amdgpu_device pointer
1649 * @vm: requested vm
1650 * @mapping: mapping to be freed
1651 * @fence: fence of the unmap operation
1652 *
1653 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1654 */
1655static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1656				   struct amdgpu_vm *vm,
1657				   struct amdgpu_bo_va_mapping *mapping,
1658				   struct dma_fence *fence)
1659{
1660	if (mapping->flags & AMDGPU_PTE_PRT)
1661		amdgpu_vm_add_prt_cb(adev, fence);
1662	kfree(mapping);
1663}
1664
1665/**
1666 * amdgpu_vm_prt_fini - finish all prt mappings
1667 *
1668 * @adev: amdgpu_device pointer
1669 * @vm: requested vm
1670 *
1671 * Register a cleanup callback to disable PRT support after VM dies.
1672 */
1673static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1674{
1675	struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1676	struct dma_fence *excl, **shared;
1677	unsigned i, shared_count;
1678	int r;
1679
1680	r = reservation_object_get_fences_rcu(resv, &excl,
1681					      &shared_count, &shared);
1682	if (r) {
1683		/* Not enough memory to grab the fence list, as last resort
1684		 * block for all the fences to complete.
1685		 */
1686		reservation_object_wait_timeout_rcu(resv, true, false,
1687						    MAX_SCHEDULE_TIMEOUT);
1688		return;
1689	}
1690
1691	/* Add a callback for each fence in the reservation object */
1692	amdgpu_vm_prt_get(adev);
1693	amdgpu_vm_add_prt_cb(adev, excl);
1694
1695	for (i = 0; i < shared_count; ++i) {
1696		amdgpu_vm_prt_get(adev);
1697		amdgpu_vm_add_prt_cb(adev, shared[i]);
1698	}
1699
1700	kfree(shared);
1701}
1702
1703/**
1704 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1705 *
1706 * @adev: amdgpu_device pointer
1707 * @vm: requested vm
1708 * @fence: optional resulting fence (unchanged if no work needed to be done
1709 * or if an error occurred)
1710 *
1711 * Make sure all freed BOs are cleared in the PT.
1712 * Returns 0 for success.
 
 
 
1713 *
1714 * PTs have to be reserved and mutex must be locked!
1715 */
1716int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1717			  struct amdgpu_vm *vm,
1718			  struct dma_fence **fence)
1719{
 
1720	struct amdgpu_bo_va_mapping *mapping;
1721	uint64_t init_pte_value = 0;
1722	struct dma_fence *f = NULL;
1723	int r;
1724
1725	while (!list_empty(&vm->freed)) {
1726		mapping = list_first_entry(&vm->freed,
1727			struct amdgpu_bo_va_mapping, list);
1728		list_del(&mapping->list);
1729
1730		if (vm->pte_support_ats && mapping->start < AMDGPU_VA_HOLE_START)
 
1731			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1732
1733		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
1734						mapping->start, mapping->last,
1735						init_pte_value, 0, &f);
1736		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1737		if (r) {
1738			dma_fence_put(f);
1739			return r;
1740		}
1741	}
1742
1743	if (fence && f) {
1744		dma_fence_put(*fence);
1745		*fence = f;
1746	} else {
1747		dma_fence_put(f);
1748	}
1749
1750	return 0;
1751
1752}
1753
1754/**
1755 * amdgpu_vm_handle_moved - handle moved BOs in the PT
1756 *
1757 * @adev: amdgpu_device pointer
1758 * @vm: requested vm
1759 * @sync: sync object to add fences to
1760 *
1761 * Make sure all BOs which are moved are updated in the PTs.
1762 * Returns 0 for success.
 
 
1763 *
1764 * PTs have to be reserved!
1765 */
1766int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1767			   struct amdgpu_vm *vm)
1768{
 
 
1769	bool clear;
1770	int r = 0;
1771
1772	spin_lock(&vm->status_lock);
1773	while (!list_empty(&vm->moved)) {
1774		struct amdgpu_bo_va *bo_va;
1775		struct reservation_object *resv;
1776
1777		bo_va = list_first_entry(&vm->moved,
1778			struct amdgpu_bo_va, base.vm_status);
1779		spin_unlock(&vm->status_lock);
1780
1781		resv = bo_va->base.bo->tbo.resv;
 
 
 
 
 
1782
1783		/* Per VM BOs never need to bo cleared in the page tables */
1784		if (resv == vm->root.base.bo->tbo.resv)
1785			clear = false;
1786		/* Try to reserve the BO to avoid clearing its ptes */
1787		else if (!amdgpu_vm_debug && reservation_object_trylock(resv))
1788			clear = false;
1789		/* Somebody else is using the BO right now */
1790		else
1791			clear = true;
1792
1793		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1794		if (r)
1795			return r;
1796
1797		if (!clear && resv != vm->root.base.bo->tbo.resv)
1798			reservation_object_unlock(resv);
1799
1800		spin_lock(&vm->status_lock);
1801	}
1802	spin_unlock(&vm->status_lock);
1803
1804	return r;
1805}
1806
1807/**
1808 * amdgpu_vm_bo_add - add a bo to a specific vm
1809 *
1810 * @adev: amdgpu_device pointer
1811 * @vm: requested vm
1812 * @bo: amdgpu buffer object
1813 *
1814 * Add @bo into the requested vm.
1815 * Add @bo to the list of bos associated with the vm
1816 * Returns newly added bo_va or NULL for failure
 
 
1817 *
1818 * Object has to be reserved!
1819 */
1820struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1821				      struct amdgpu_vm *vm,
1822				      struct amdgpu_bo *bo)
1823{
1824	struct amdgpu_bo_va *bo_va;
1825
1826	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1827	if (bo_va == NULL) {
1828		return NULL;
1829	}
1830	bo_va->base.vm = vm;
1831	bo_va->base.bo = bo;
1832	INIT_LIST_HEAD(&bo_va->base.bo_list);
1833	INIT_LIST_HEAD(&bo_va->base.vm_status);
1834
1835	bo_va->ref_count = 1;
1836	INIT_LIST_HEAD(&bo_va->valids);
1837	INIT_LIST_HEAD(&bo_va->invalids);
1838
1839	if (!bo)
1840		return bo_va;
1841
1842	list_add_tail(&bo_va->base.bo_list, &bo->va);
1843
1844	if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
1845		return bo_va;
1846
1847	if (bo->preferred_domains &
1848	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
1849		return bo_va;
1850
1851	/*
1852	 * We checked all the prerequisites, but it looks like this per VM BO
1853	 * is currently evicted. add the BO to the evicted list to make sure it
1854	 * is validated on next VM use to avoid fault.
1855	 * */
1856	spin_lock(&vm->status_lock);
1857	list_move_tail(&bo_va->base.vm_status, &vm->evicted);
1858	spin_unlock(&vm->status_lock);
1859
1860	return bo_va;
1861}
1862
1863
1864/**
1865 * amdgpu_vm_bo_insert_mapping - insert a new mapping
1866 *
1867 * @adev: amdgpu_device pointer
1868 * @bo_va: bo_va to store the address
1869 * @mapping: the mapping to insert
1870 *
1871 * Insert a new mapping into all structures.
1872 */
1873static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1874				    struct amdgpu_bo_va *bo_va,
1875				    struct amdgpu_bo_va_mapping *mapping)
1876{
1877	struct amdgpu_vm *vm = bo_va->base.vm;
1878	struct amdgpu_bo *bo = bo_va->base.bo;
1879
1880	mapping->bo_va = bo_va;
1881	list_add(&mapping->list, &bo_va->invalids);
1882	amdgpu_vm_it_insert(mapping, &vm->va);
1883
1884	if (mapping->flags & AMDGPU_PTE_PRT)
1885		amdgpu_vm_prt_get(adev);
1886
1887	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
1888		spin_lock(&vm->status_lock);
1889		if (list_empty(&bo_va->base.vm_status))
1890			list_add(&bo_va->base.vm_status, &vm->moved);
1891		spin_unlock(&vm->status_lock);
1892	}
1893	trace_amdgpu_vm_bo_map(bo_va, mapping);
1894}
1895
1896/**
1897 * amdgpu_vm_bo_map - map bo inside a vm
1898 *
1899 * @adev: amdgpu_device pointer
1900 * @bo_va: bo_va to store the address
1901 * @saddr: where to map the BO
1902 * @offset: requested offset in the BO
 
1903 * @flags: attributes of pages (read/write/valid/etc.)
1904 *
1905 * Add a mapping of the BO at the specefied addr into the VM.
1906 * Returns 0 for success, error for failure.
 
 
1907 *
1908 * Object has to be reserved and unreserved outside!
1909 */
1910int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1911		     struct amdgpu_bo_va *bo_va,
1912		     uint64_t saddr, uint64_t offset,
1913		     uint64_t size, uint64_t flags)
1914{
1915	struct amdgpu_bo_va_mapping *mapping, *tmp;
1916	struct amdgpu_bo *bo = bo_va->base.bo;
1917	struct amdgpu_vm *vm = bo_va->base.vm;
1918	uint64_t eaddr;
1919
1920	/* validate the parameters */
1921	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1922	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1923		return -EINVAL;
1924
1925	/* make sure object fit at this offset */
1926	eaddr = saddr + size - 1;
1927	if (saddr >= eaddr ||
1928	    (bo && offset + size > amdgpu_bo_size(bo)))
 
1929		return -EINVAL;
1930
1931	saddr /= AMDGPU_GPU_PAGE_SIZE;
1932	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1933
1934	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1935	if (tmp) {
1936		/* bo and tmp overlap, invalid addr */
1937		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1938			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1939			tmp->start, tmp->last + 1);
1940		return -EINVAL;
1941	}
1942
1943	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1944	if (!mapping)
1945		return -ENOMEM;
1946
1947	mapping->start = saddr;
1948	mapping->last = eaddr;
1949	mapping->offset = offset;
1950	mapping->flags = flags;
1951
1952	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1953
1954	return 0;
1955}
1956
1957/**
1958 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1959 *
1960 * @adev: amdgpu_device pointer
1961 * @bo_va: bo_va to store the address
1962 * @saddr: where to map the BO
1963 * @offset: requested offset in the BO
 
1964 * @flags: attributes of pages (read/write/valid/etc.)
1965 *
1966 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1967 * mappings as we do so.
1968 * Returns 0 for success, error for failure.
 
 
1969 *
1970 * Object has to be reserved and unreserved outside!
1971 */
1972int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1973			     struct amdgpu_bo_va *bo_va,
1974			     uint64_t saddr, uint64_t offset,
1975			     uint64_t size, uint64_t flags)
1976{
1977	struct amdgpu_bo_va_mapping *mapping;
1978	struct amdgpu_bo *bo = bo_va->base.bo;
1979	uint64_t eaddr;
1980	int r;
1981
1982	/* validate the parameters */
1983	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1984	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1985		return -EINVAL;
1986
1987	/* make sure object fit at this offset */
1988	eaddr = saddr + size - 1;
1989	if (saddr >= eaddr ||
1990	    (bo && offset + size > amdgpu_bo_size(bo)))
 
1991		return -EINVAL;
1992
1993	/* Allocate all the needed memory */
1994	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1995	if (!mapping)
1996		return -ENOMEM;
1997
1998	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1999	if (r) {
2000		kfree(mapping);
2001		return r;
2002	}
2003
2004	saddr /= AMDGPU_GPU_PAGE_SIZE;
2005	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2006
2007	mapping->start = saddr;
2008	mapping->last = eaddr;
2009	mapping->offset = offset;
2010	mapping->flags = flags;
2011
2012	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2013
2014	return 0;
2015}
2016
2017/**
2018 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2019 *
2020 * @adev: amdgpu_device pointer
2021 * @bo_va: bo_va to remove the address from
2022 * @saddr: where to the BO is mapped
2023 *
2024 * Remove a mapping of the BO at the specefied addr from the VM.
2025 * Returns 0 for success, error for failure.
 
 
2026 *
2027 * Object has to be reserved and unreserved outside!
2028 */
2029int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2030		       struct amdgpu_bo_va *bo_va,
2031		       uint64_t saddr)
2032{
2033	struct amdgpu_bo_va_mapping *mapping;
2034	struct amdgpu_vm *vm = bo_va->base.vm;
2035	bool valid = true;
2036
2037	saddr /= AMDGPU_GPU_PAGE_SIZE;
2038
2039	list_for_each_entry(mapping, &bo_va->valids, list) {
2040		if (mapping->start == saddr)
2041			break;
2042	}
2043
2044	if (&mapping->list == &bo_va->valids) {
2045		valid = false;
2046
2047		list_for_each_entry(mapping, &bo_va->invalids, list) {
2048			if (mapping->start == saddr)
2049				break;
2050		}
2051
2052		if (&mapping->list == &bo_va->invalids)
2053			return -ENOENT;
2054	}
2055
2056	list_del(&mapping->list);
2057	amdgpu_vm_it_remove(mapping, &vm->va);
2058	mapping->bo_va = NULL;
2059	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2060
2061	if (valid)
2062		list_add(&mapping->list, &vm->freed);
2063	else
2064		amdgpu_vm_free_mapping(adev, vm, mapping,
2065				       bo_va->last_pt_update);
2066
2067	return 0;
2068}
2069
2070/**
2071 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2072 *
2073 * @adev: amdgpu_device pointer
2074 * @vm: VM structure to use
2075 * @saddr: start of the range
2076 * @size: size of the range
2077 *
2078 * Remove all mappings in a range, split them as appropriate.
2079 * Returns 0 for success, error for failure.
 
 
2080 */
2081int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2082				struct amdgpu_vm *vm,
2083				uint64_t saddr, uint64_t size)
2084{
2085	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2086	LIST_HEAD(removed);
2087	uint64_t eaddr;
2088
2089	eaddr = saddr + size - 1;
2090	saddr /= AMDGPU_GPU_PAGE_SIZE;
2091	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2092
2093	/* Allocate all the needed memory */
2094	before = kzalloc(sizeof(*before), GFP_KERNEL);
2095	if (!before)
2096		return -ENOMEM;
2097	INIT_LIST_HEAD(&before->list);
2098
2099	after = kzalloc(sizeof(*after), GFP_KERNEL);
2100	if (!after) {
2101		kfree(before);
2102		return -ENOMEM;
2103	}
2104	INIT_LIST_HEAD(&after->list);
2105
2106	/* Now gather all removed mappings */
2107	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2108	while (tmp) {
2109		/* Remember mapping split at the start */
2110		if (tmp->start < saddr) {
2111			before->start = tmp->start;
2112			before->last = saddr - 1;
2113			before->offset = tmp->offset;
2114			before->flags = tmp->flags;
2115			list_add(&before->list, &tmp->list);
 
2116		}
2117
2118		/* Remember mapping split at the end */
2119		if (tmp->last > eaddr) {
2120			after->start = eaddr + 1;
2121			after->last = tmp->last;
2122			after->offset = tmp->offset;
2123			after->offset += after->start - tmp->start;
2124			after->flags = tmp->flags;
2125			list_add(&after->list, &tmp->list);
 
2126		}
2127
2128		list_del(&tmp->list);
2129		list_add(&tmp->list, &removed);
2130
2131		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2132	}
2133
2134	/* And free them up */
2135	list_for_each_entry_safe(tmp, next, &removed, list) {
2136		amdgpu_vm_it_remove(tmp, &vm->va);
2137		list_del(&tmp->list);
2138
2139		if (tmp->start < saddr)
2140		    tmp->start = saddr;
2141		if (tmp->last > eaddr)
2142		    tmp->last = eaddr;
2143
2144		tmp->bo_va = NULL;
2145		list_add(&tmp->list, &vm->freed);
2146		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2147	}
2148
2149	/* Insert partial mapping before the range */
2150	if (!list_empty(&before->list)) {
2151		amdgpu_vm_it_insert(before, &vm->va);
2152		if (before->flags & AMDGPU_PTE_PRT)
2153			amdgpu_vm_prt_get(adev);
2154	} else {
2155		kfree(before);
2156	}
2157
2158	/* Insert partial mapping after the range */
2159	if (!list_empty(&after->list)) {
2160		amdgpu_vm_it_insert(after, &vm->va);
2161		if (after->flags & AMDGPU_PTE_PRT)
2162			amdgpu_vm_prt_get(adev);
2163	} else {
2164		kfree(after);
2165	}
2166
2167	return 0;
2168}
2169
2170/**
2171 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2172 *
2173 * @vm: the requested VM
 
2174 *
2175 * Find a mapping by it's address.
 
 
 
 
2176 */
2177struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2178							 uint64_t addr)
2179{
2180	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2181}
2182
2183/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2184 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2185 *
2186 * @adev: amdgpu_device pointer
2187 * @bo_va: requested bo_va
2188 *
2189 * Remove @bo_va->bo from the requested vm.
2190 *
2191 * Object have to be reserved!
2192 */
2193void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2194		      struct amdgpu_bo_va *bo_va)
2195{
2196	struct amdgpu_bo_va_mapping *mapping, *next;
 
2197	struct amdgpu_vm *vm = bo_va->base.vm;
 
2198
2199	list_del(&bo_va->base.bo_list);
 
 
 
 
 
 
 
2200
2201	spin_lock(&vm->status_lock);
 
 
 
 
 
2202	list_del(&bo_va->base.vm_status);
2203	spin_unlock(&vm->status_lock);
2204
2205	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2206		list_del(&mapping->list);
2207		amdgpu_vm_it_remove(mapping, &vm->va);
2208		mapping->bo_va = NULL;
2209		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2210		list_add(&mapping->list, &vm->freed);
2211	}
2212	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2213		list_del(&mapping->list);
2214		amdgpu_vm_it_remove(mapping, &vm->va);
2215		amdgpu_vm_free_mapping(adev, vm, mapping,
2216				       bo_va->last_pt_update);
2217	}
2218
2219	dma_fence_put(bo_va->last_pt_update);
 
 
 
 
2220	kfree(bo_va);
2221}
2222
2223/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2224 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2225 *
2226 * @adev: amdgpu_device pointer
2227 * @vm: requested vm
2228 * @bo: amdgpu buffer object
 
2229 *
2230 * Mark @bo as invalid.
2231 */
2232void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2233			     struct amdgpu_bo *bo, bool evicted)
2234{
2235	struct amdgpu_vm_bo_base *bo_base;
2236
2237	list_for_each_entry(bo_base, &bo->va, bo_list) {
 
 
 
 
2238		struct amdgpu_vm *vm = bo_base->vm;
2239
2240		bo_base->moved = true;
2241		if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2242			spin_lock(&bo_base->vm->status_lock);
2243			if (bo->tbo.type == ttm_bo_type_kernel)
2244				list_move(&bo_base->vm_status, &vm->evicted);
2245			else
2246				list_move_tail(&bo_base->vm_status,
2247					       &vm->evicted);
2248			spin_unlock(&bo_base->vm->status_lock);
2249			continue;
2250		}
2251
2252		if (bo->tbo.type == ttm_bo_type_kernel) {
2253			spin_lock(&bo_base->vm->status_lock);
2254			if (list_empty(&bo_base->vm_status))
2255				list_add(&bo_base->vm_status, &vm->relocated);
2256			spin_unlock(&bo_base->vm->status_lock);
2257			continue;
2258		}
2259
2260		spin_lock(&bo_base->vm->status_lock);
2261		if (list_empty(&bo_base->vm_status))
2262			list_add(&bo_base->vm_status, &vm->moved);
2263		spin_unlock(&bo_base->vm->status_lock);
 
 
2264	}
2265}
2266
 
 
 
 
 
 
 
 
2267static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2268{
2269	/* Total bits covered by PD + PTs */
2270	unsigned bits = ilog2(vm_size) + 18;
2271
2272	/* Make sure the PD is 4K in size up to 8GB address space.
2273	   Above that split equal between PD and PTs */
2274	if (vm_size <= 8)
2275		return (bits - 9);
2276	else
2277		return ((bits + 3) / 2);
2278}
2279
2280/**
2281 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2282 *
2283 * @adev: amdgpu_device pointer
2284 * @vm_size: the default vm size if it's set auto
 
 
 
 
2285 */
2286void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t vm_size,
2287			   uint32_t fragment_size_default, unsigned max_level,
2288			   unsigned max_bits)
2289{
 
 
2290	uint64_t tmp;
2291
2292	/* adjust vm size first */
2293	if (amdgpu_vm_size != -1) {
2294		unsigned max_size = 1 << (max_bits - 30);
2295
2296		vm_size = amdgpu_vm_size;
2297		if (vm_size > max_size) {
2298			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2299				 amdgpu_vm_size, max_size);
2300			vm_size = max_size;
2301		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302	}
2303
2304	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2305
2306	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2307	if (amdgpu_vm_block_size != -1)
2308		tmp >>= amdgpu_vm_block_size - 9;
2309	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2310	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2311	switch (adev->vm_manager.num_level) {
2312	case 3:
2313		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2314		break;
2315	case 2:
2316		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2317		break;
2318	case 1:
2319		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2320		break;
2321	default:
2322		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2323	}
2324	/* block size depends on vm size and hw setup*/
2325	if (amdgpu_vm_block_size != -1)
2326		adev->vm_manager.block_size =
2327			min((unsigned)amdgpu_vm_block_size, max_bits
2328			    - AMDGPU_GPU_PAGE_SHIFT
2329			    - 9 * adev->vm_manager.num_level);
2330	else if (adev->vm_manager.num_level > 1)
2331		adev->vm_manager.block_size = 9;
2332	else
2333		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2334
2335	if (amdgpu_vm_fragment_size == -1)
2336		adev->vm_manager.fragment_size = fragment_size_default;
2337	else
2338		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2339
2340	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2341		 vm_size, adev->vm_manager.num_level + 1,
2342		 adev->vm_manager.block_size,
2343		 adev->vm_manager.fragment_size);
2344}
2345
2346/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347 * amdgpu_vm_init - initialize a vm instance
2348 *
2349 * @adev: amdgpu_device pointer
2350 * @vm: requested vm
2351 * @vm_context: Indicates if it GFX or Compute context
 
2352 *
2353 * Init @vm fields.
 
 
 
2354 */
2355int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2356		   int vm_context, unsigned int pasid)
2357{
2358	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2359		AMDGPU_VM_PTE_COUNT(adev) * 8);
2360	unsigned ring_instance;
2361	struct amdgpu_ring *ring;
2362	struct drm_sched_rq *rq;
2363	unsigned long size;
2364	uint64_t flags;
2365	int r, i;
2366
2367	vm->va = RB_ROOT_CACHED;
2368	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2369		vm->reserved_vmid[i] = NULL;
2370	spin_lock_init(&vm->status_lock);
2371	INIT_LIST_HEAD(&vm->evicted);
2372	INIT_LIST_HEAD(&vm->relocated);
2373	INIT_LIST_HEAD(&vm->moved);
 
 
 
2374	INIT_LIST_HEAD(&vm->freed);
2375
2376	/* create scheduler entity for page table updates */
2377
2378	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2379	ring_instance %= adev->vm_manager.vm_pte_num_rings;
2380	ring = adev->vm_manager.vm_pte_rings[ring_instance];
2381	rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2382	r = drm_sched_entity_init(&ring->sched, &vm->entity,
2383				  rq, amdgpu_sched_jobs, NULL);
2384	if (r)
2385		return r;
2386
 
 
 
 
 
 
2387	vm->pte_support_ats = false;
 
2388
2389	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2390		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2391						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2392
2393		if (adev->asic_type == CHIP_RAVEN)
2394			vm->pte_support_ats = true;
2395	} else {
2396		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2397						AMDGPU_VM_USE_CPU_FOR_GFX);
2398	}
2399	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2400			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2401	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
 
2402		  "CPU update of VM recommended only for large BAR system\n");
2403	vm->last_update = NULL;
2404
2405	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
2406	if (vm->use_cpu_for_update)
2407		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2408	else
2409		flags |= AMDGPU_GEM_CREATE_SHADOW;
 
 
 
 
 
2410
2411	size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level);
2412	r = amdgpu_bo_create(adev, size, align, AMDGPU_GEM_DOMAIN_VRAM, flags,
2413			     ttm_bo_type_kernel, NULL, &vm->root.base.bo);
 
2414	if (r)
2415		goto error_free_sched_entity;
2416
2417	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2418	if (r)
2419		goto error_free_root;
2420
2421	r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
2422			       adev->vm_manager.root_level,
2423			       vm->pte_support_ats);
 
 
 
 
2424	if (r)
2425		goto error_unreserve;
2426
2427	vm->root.base.vm = vm;
2428	list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va);
2429	list_add_tail(&vm->root.base.vm_status, &vm->evicted);
2430	amdgpu_bo_unreserve(vm->root.base.bo);
2431
2432	if (pasid) {
2433		unsigned long flags;
2434
2435		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2436		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2437			      GFP_ATOMIC);
2438		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2439		if (r < 0)
2440			goto error_free_root;
2441
2442		vm->pasid = pasid;
2443	}
2444
2445	INIT_KFIFO(vm->faults);
2446	vm->fault_credit = 16;
2447
2448	return 0;
2449
2450error_unreserve:
2451	amdgpu_bo_unreserve(vm->root.base.bo);
2452
2453error_free_root:
2454	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2455	amdgpu_bo_unref(&vm->root.base.bo);
2456	vm->root.base.bo = NULL;
2457
2458error_free_sched_entity:
2459	drm_sched_entity_fini(&ring->sched, &vm->entity);
 
 
 
 
2460
2461	return r;
2462}
2463
2464/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2466 *
 
 
 
 
2467 * This only works on GFX VMs that don't have any BOs added and no
2468 * page tables allocated yet.
2469 *
2470 * Changes the following VM parameters:
2471 * - use_cpu_for_update
2472 * - pte_supports_ats
2473 * - pasid (old PASID is released, because compute manages its own PASIDs)
2474 *
2475 * Reinitializes the page directory to reflect the changed ATS
2476 * setting. May leave behind an unused shadow BO for the page
2477 * directory when switching from SDMA updates to CPU updates.
2478 *
2479 * Returns 0 for success, -errno for errors.
 
2480 */
2481int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
 
2482{
2483	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2484	int r;
2485
2486	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2487	if (r)
2488		return r;
2489
2490	/* Sanity checks */
2491	if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
2492		r = -EINVAL;
2493		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
2494	}
2495
2496	/* Check if PD needs to be reinitialized and do it before
2497	 * changing any other state, in case it fails.
2498	 */
2499	if (pte_support_ats != vm->pte_support_ats) {
2500		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
2501			       adev->vm_manager.root_level,
2502			       pte_support_ats);
2503		if (r)
2504			goto error;
2505	}
2506
2507	/* Update VM state */
2508	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2509				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2510	vm->pte_support_ats = pte_support_ats;
2511	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2512			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2513	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
 
2514		  "CPU update of VM recommended only for large BAR system\n");
2515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516	if (vm->pasid) {
2517		unsigned long flags;
2518
2519		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2520		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2521		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2522
 
 
 
 
2523		vm->pasid = 0;
2524	}
2525
2526error:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527	amdgpu_bo_unreserve(vm->root.base.bo);
2528	return r;
2529}
2530
2531/**
2532 * amdgpu_vm_free_levels - free PD/PT levels
2533 *
2534 * @adev: amdgpu device structure
2535 * @parent: PD/PT starting level to free
2536 * @level: level of parent structure
2537 *
2538 * Free the page directory or page table level and all sub levels.
 
2539 */
2540static void amdgpu_vm_free_levels(struct amdgpu_device *adev,
2541				  struct amdgpu_vm_pt *parent,
2542				  unsigned level)
2543{
2544	unsigned i, num_entries = amdgpu_vm_num_entries(adev, level);
 
2545
2546	if (parent->base.bo) {
2547		list_del(&parent->base.bo_list);
2548		list_del(&parent->base.vm_status);
2549		amdgpu_bo_unref(&parent->base.bo->shadow);
2550		amdgpu_bo_unref(&parent->base.bo);
2551	}
2552
2553	if (parent->entries)
2554		for (i = 0; i < num_entries; i++)
2555			amdgpu_vm_free_levels(adev, &parent->entries[i],
2556					      level + 1);
2557
2558	kvfree(parent->entries);
2559}
2560
2561/**
2562 * amdgpu_vm_fini - tear down a vm instance
2563 *
2564 * @adev: amdgpu_device pointer
2565 * @vm: requested vm
2566 *
2567 * Tear down @vm.
2568 * Unbind the VM and remove all bos from the vm bo list
2569 */
2570void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2571{
2572	struct amdgpu_bo_va_mapping *mapping, *tmp;
2573	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2574	struct amdgpu_bo *root;
2575	u64 fault;
2576	int i, r;
2577
2578	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2579
2580	/* Clear pending page faults from IH when the VM is destroyed */
2581	while (kfifo_get(&vm->faults, &fault))
2582		amdgpu_ih_clear_fault(adev, fault);
2583
2584	if (vm->pasid) {
2585		unsigned long flags;
2586
2587		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2588		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2589		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
 
2590	}
2591
2592	drm_sched_entity_fini(vm->entity.sched, &vm->entity);
 
2593
2594	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2595		dev_err(adev->dev, "still active bo inside vm\n");
2596	}
2597	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2598					     &vm->va.rb_root, rb) {
2599		list_del(&mapping->list);
2600		amdgpu_vm_it_remove(mapping, &vm->va);
2601		kfree(mapping);
2602	}
2603	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2604		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2605			amdgpu_vm_prt_fini(adev, vm);
2606			prt_fini_needed = false;
2607		}
2608
2609		list_del(&mapping->list);
2610		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2611	}
2612
2613	root = amdgpu_bo_ref(vm->root.base.bo);
2614	r = amdgpu_bo_reserve(root, true);
2615	if (r) {
2616		dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2617	} else {
2618		amdgpu_vm_free_levels(adev, &vm->root,
2619				      adev->vm_manager.root_level);
2620		amdgpu_bo_unreserve(root);
2621	}
2622	amdgpu_bo_unref(&root);
2623	dma_fence_put(vm->last_update);
2624	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2625		amdgpu_vmid_free_reserved(adev, vm, i);
2626}
2627
2628/**
2629 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID
2630 *
2631 * @adev: amdgpu_device pointer
2632 * @pasid: PASID do identify the VM
2633 *
2634 * This function is expected to be called in interrupt context. Returns
2635 * true if there was fault credit, false otherwise
2636 */
2637bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev,
2638				  unsigned int pasid)
2639{
2640	struct amdgpu_vm *vm;
2641
2642	spin_lock(&adev->vm_manager.pasid_lock);
2643	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
2644	if (!vm) {
2645		/* VM not found, can't track fault credit */
2646		spin_unlock(&adev->vm_manager.pasid_lock);
2647		return true;
2648	}
2649
2650	/* No lock needed. only accessed by IRQ handler */
2651	if (!vm->fault_credit) {
2652		/* Too many faults in this VM */
2653		spin_unlock(&adev->vm_manager.pasid_lock);
2654		return false;
 
2655	}
2656
2657	vm->fault_credit--;
2658	spin_unlock(&adev->vm_manager.pasid_lock);
2659	return true;
2660}
2661
2662/**
2663 * amdgpu_vm_manager_init - init the VM manager
2664 *
2665 * @adev: amdgpu_device pointer
2666 *
2667 * Initialize the VM manager structures
2668 */
2669void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2670{
2671	unsigned i;
2672
2673	amdgpu_vmid_mgr_init(adev);
2674
2675	adev->vm_manager.fence_context =
2676		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2677	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2678		adev->vm_manager.seqno[i] = 0;
2679
2680	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2681	spin_lock_init(&adev->vm_manager.prt_lock);
2682	atomic_set(&adev->vm_manager.num_prt_users, 0);
2683
2684	/* If not overridden by the user, by default, only in large BAR systems
2685	 * Compute VM tables will be updated by CPU
2686	 */
2687#ifdef CONFIG_X86_64
2688	if (amdgpu_vm_update_mode == -1) {
2689		if (amdgpu_vm_is_large_bar(adev))
2690			adev->vm_manager.vm_update_mode =
2691				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2692		else
2693			adev->vm_manager.vm_update_mode = 0;
2694	} else
2695		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2696#else
2697	adev->vm_manager.vm_update_mode = 0;
2698#endif
2699
2700	idr_init(&adev->vm_manager.pasid_idr);
2701	spin_lock_init(&adev->vm_manager.pasid_lock);
2702}
2703
2704/**
2705 * amdgpu_vm_manager_fini - cleanup VM manager
2706 *
2707 * @adev: amdgpu_device pointer
2708 *
2709 * Cleanup the VM manager and free resources.
2710 */
2711void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2712{
2713	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
2714	idr_destroy(&adev->vm_manager.pasid_idr);
2715
2716	amdgpu_vmid_mgr_fini(adev);
2717}
2718
 
 
 
 
 
 
 
 
 
 
2719int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2720{
2721	union drm_amdgpu_vm *args = data;
2722	struct amdgpu_device *adev = dev->dev_private;
2723	struct amdgpu_fpriv *fpriv = filp->driver_priv;
 
2724	int r;
2725
2726	switch (args->in.op) {
2727	case AMDGPU_VM_OP_RESERVE_VMID:
2728		/* current, we only have requirement to reserve vmid from gfxhub */
2729		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
 
2730		if (r)
2731			return r;
2732		break;
2733	case AMDGPU_VM_OP_UNRESERVE_VMID:
2734		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2735		break;
2736	default:
2737		return -EINVAL;
2738	}
2739
2740	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741}