Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *	Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
 
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define AVC_CACHE_SLOTS			512
  35#define AVC_DEF_CACHE_THRESHOLD		512
  36#define AVC_CACHE_RECLAIM		16
  37
  38#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  39#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  40#else
  41#define avc_cache_stats_incr(field)	do {} while (0)
  42#endif
  43
  44struct avc_entry {
  45	u32			ssid;
  46	u32			tsid;
  47	u16			tclass;
  48	struct av_decision	avd;
  49	struct avc_xperms_node	*xp_node;
  50};
  51
  52struct avc_node {
  53	struct avc_entry	ae;
  54	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  55	struct rcu_head		rhead;
  56};
  57
  58struct avc_xperms_decision_node {
  59	struct extended_perms_decision xpd;
  60	struct list_head xpd_list; /* list of extended_perms_decision */
  61};
  62
  63struct avc_xperms_node {
  64	struct extended_perms xp;
  65	struct list_head xpd_head; /* list head of extended_perms_decision */
  66};
  67
  68struct avc_cache {
  69	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  70	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  71	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  72	atomic_t		active_nodes;
  73	u32			latest_notif;	/* latest revocation notification */
  74};
  75
  76struct avc_callback_node {
  77	int (*callback) (u32 event);
  78	u32 events;
  79	struct avc_callback_node *next;
  80};
  81
 
 
 
  82#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  83DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  84#endif
  85
  86struct selinux_avc {
  87	unsigned int avc_cache_threshold;
  88	struct avc_cache avc_cache;
  89};
  90
  91static struct selinux_avc selinux_avc;
 
 
 
  92
  93void selinux_avc_init(struct selinux_avc **avc)
 
 
 
 
 
  94{
  95	int i;
 
  96
  97	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
  98	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  99		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 100		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 101	}
 102	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 103	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 104	*avc = &selinux_avc;
 105}
 106
 107unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 108{
 109	return avc->avc_cache_threshold;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110}
 111
 112void avc_set_cache_threshold(struct selinux_avc *avc,
 113			     unsigned int cache_threshold)
 
 
 
 
 
 114{
 115	avc->avc_cache_threshold = cache_threshold;
 116}
 
 117
 118static struct avc_callback_node *avc_callbacks;
 119static struct kmem_cache *avc_node_cachep;
 120static struct kmem_cache *avc_xperms_data_cachep;
 121static struct kmem_cache *avc_xperms_decision_cachep;
 122static struct kmem_cache *avc_xperms_cachep;
 
 
 123
 124static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 125{
 126	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 
 
 
 
 
 
 
 127}
 128
 129/**
 130 * avc_init - Initialize the AVC.
 131 *
 132 * Initialize the access vector cache.
 133 */
 134void __init avc_init(void)
 135{
 
 
 
 
 
 
 
 
 
 136	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 137					0, SLAB_PANIC, NULL);
 138	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 139					sizeof(struct avc_xperms_node),
 140					0, SLAB_PANIC, NULL);
 141	avc_xperms_decision_cachep = kmem_cache_create(
 142					"avc_xperms_decision_node",
 143					sizeof(struct avc_xperms_decision_node),
 144					0, SLAB_PANIC, NULL);
 145	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 146					sizeof(struct extended_perms_data),
 147					0, SLAB_PANIC, NULL);
 148}
 149
 150int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 151{
 152	int i, chain_len, max_chain_len, slots_used;
 153	struct avc_node *node;
 154	struct hlist_head *head;
 155
 156	rcu_read_lock();
 157
 158	slots_used = 0;
 159	max_chain_len = 0;
 160	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 161		head = &avc->avc_cache.slots[i];
 162		if (!hlist_empty(head)) {
 
 
 163			slots_used++;
 164			chain_len = 0;
 165			hlist_for_each_entry_rcu(node, head, list)
 166				chain_len++;
 167			if (chain_len > max_chain_len)
 168				max_chain_len = chain_len;
 169		}
 170	}
 171
 172	rcu_read_unlock();
 173
 174	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 175			 "longest chain: %d\n",
 176			 atomic_read(&avc->avc_cache.active_nodes),
 177			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 178}
 179
 180/*
 181 * using a linked list for extended_perms_decision lookup because the list is
 182 * always small. i.e. less than 5, typically 1
 183 */
 184static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 185					struct avc_xperms_node *xp_node)
 186{
 187	struct avc_xperms_decision_node *xpd_node;
 188
 189	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 190		if (xpd_node->xpd.driver == driver)
 191			return &xpd_node->xpd;
 192	}
 193	return NULL;
 194}
 195
 196static inline unsigned int
 197avc_xperms_has_perm(struct extended_perms_decision *xpd,
 198					u8 perm, u8 which)
 199{
 200	unsigned int rc = 0;
 201
 202	if ((which == XPERMS_ALLOWED) &&
 203			(xpd->used & XPERMS_ALLOWED))
 204		rc = security_xperm_test(xpd->allowed->p, perm);
 205	else if ((which == XPERMS_AUDITALLOW) &&
 206			(xpd->used & XPERMS_AUDITALLOW))
 207		rc = security_xperm_test(xpd->auditallow->p, perm);
 208	else if ((which == XPERMS_DONTAUDIT) &&
 209			(xpd->used & XPERMS_DONTAUDIT))
 210		rc = security_xperm_test(xpd->dontaudit->p, perm);
 211	return rc;
 212}
 213
 214static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 215				u8 driver, u8 perm)
 216{
 217	struct extended_perms_decision *xpd;
 218	security_xperm_set(xp_node->xp.drivers.p, driver);
 219	xpd = avc_xperms_decision_lookup(driver, xp_node);
 220	if (xpd && xpd->allowed)
 221		security_xperm_set(xpd->allowed->p, perm);
 222}
 223
 224static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 225{
 226	struct extended_perms_decision *xpd;
 227
 228	xpd = &xpd_node->xpd;
 229	if (xpd->allowed)
 230		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 231	if (xpd->auditallow)
 232		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 233	if (xpd->dontaudit)
 234		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 235	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 236}
 237
 238static void avc_xperms_free(struct avc_xperms_node *xp_node)
 239{
 240	struct avc_xperms_decision_node *xpd_node, *tmp;
 241
 242	if (!xp_node)
 243		return;
 244
 245	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 246		list_del(&xpd_node->xpd_list);
 247		avc_xperms_decision_free(xpd_node);
 248	}
 249	kmem_cache_free(avc_xperms_cachep, xp_node);
 250}
 251
 252static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 253					struct extended_perms_decision *src)
 254{
 255	dest->driver = src->driver;
 256	dest->used = src->used;
 257	if (dest->used & XPERMS_ALLOWED)
 258		memcpy(dest->allowed->p, src->allowed->p,
 259				sizeof(src->allowed->p));
 260	if (dest->used & XPERMS_AUDITALLOW)
 261		memcpy(dest->auditallow->p, src->auditallow->p,
 262				sizeof(src->auditallow->p));
 263	if (dest->used & XPERMS_DONTAUDIT)
 264		memcpy(dest->dontaudit->p, src->dontaudit->p,
 265				sizeof(src->dontaudit->p));
 266}
 267
 268/*
 269 * similar to avc_copy_xperms_decision, but only copy decision
 270 * information relevant to this perm
 271 */
 272static inline void avc_quick_copy_xperms_decision(u8 perm,
 273			struct extended_perms_decision *dest,
 274			struct extended_perms_decision *src)
 275{
 276	/*
 277	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 278	 * command permission
 279	 */
 280	u8 i = perm >> 5;
 281
 282	dest->used = src->used;
 283	if (dest->used & XPERMS_ALLOWED)
 284		dest->allowed->p[i] = src->allowed->p[i];
 285	if (dest->used & XPERMS_AUDITALLOW)
 286		dest->auditallow->p[i] = src->auditallow->p[i];
 287	if (dest->used & XPERMS_DONTAUDIT)
 288		dest->dontaudit->p[i] = src->dontaudit->p[i];
 289}
 290
 291static struct avc_xperms_decision_node
 292		*avc_xperms_decision_alloc(u8 which)
 293{
 294	struct avc_xperms_decision_node *xpd_node;
 295	struct extended_perms_decision *xpd;
 296
 297	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
 298	if (!xpd_node)
 299		return NULL;
 300
 301	xpd = &xpd_node->xpd;
 302	if (which & XPERMS_ALLOWED) {
 303		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 304						GFP_NOWAIT);
 305		if (!xpd->allowed)
 306			goto error;
 307	}
 308	if (which & XPERMS_AUDITALLOW) {
 309		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 310						GFP_NOWAIT);
 311		if (!xpd->auditallow)
 312			goto error;
 313	}
 314	if (which & XPERMS_DONTAUDIT) {
 315		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 316						GFP_NOWAIT);
 317		if (!xpd->dontaudit)
 318			goto error;
 319	}
 320	return xpd_node;
 321error:
 322	avc_xperms_decision_free(xpd_node);
 323	return NULL;
 324}
 325
 326static int avc_add_xperms_decision(struct avc_node *node,
 327			struct extended_perms_decision *src)
 328{
 329	struct avc_xperms_decision_node *dest_xpd;
 330
 331	node->ae.xp_node->xp.len++;
 332	dest_xpd = avc_xperms_decision_alloc(src->used);
 333	if (!dest_xpd)
 334		return -ENOMEM;
 335	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 336	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 337	return 0;
 338}
 339
 340static struct avc_xperms_node *avc_xperms_alloc(void)
 341{
 342	struct avc_xperms_node *xp_node;
 343
 344	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
 345	if (!xp_node)
 346		return xp_node;
 347	INIT_LIST_HEAD(&xp_node->xpd_head);
 348	return xp_node;
 349}
 350
 351static int avc_xperms_populate(struct avc_node *node,
 352				struct avc_xperms_node *src)
 353{
 354	struct avc_xperms_node *dest;
 355	struct avc_xperms_decision_node *dest_xpd;
 356	struct avc_xperms_decision_node *src_xpd;
 357
 358	if (src->xp.len == 0)
 359		return 0;
 360	dest = avc_xperms_alloc();
 361	if (!dest)
 362		return -ENOMEM;
 363
 364	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 365	dest->xp.len = src->xp.len;
 366
 367	/* for each source xpd allocate a destination xpd and copy */
 368	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 369		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 370		if (!dest_xpd)
 371			goto error;
 372		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 373		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 374	}
 375	node->ae.xp_node = dest;
 376	return 0;
 377error:
 378	avc_xperms_free(dest);
 379	return -ENOMEM;
 380
 381}
 382
 383static inline u32 avc_xperms_audit_required(u32 requested,
 384					struct av_decision *avd,
 385					struct extended_perms_decision *xpd,
 386					u8 perm,
 387					int result,
 388					u32 *deniedp)
 389{
 390	u32 denied, audited;
 391
 392	denied = requested & ~avd->allowed;
 393	if (unlikely(denied)) {
 394		audited = denied & avd->auditdeny;
 395		if (audited && xpd) {
 396			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 397				audited &= ~requested;
 398		}
 399	} else if (result) {
 400		audited = denied = requested;
 401	} else {
 402		audited = requested & avd->auditallow;
 403		if (audited && xpd) {
 404			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 405				audited &= ~requested;
 406		}
 407	}
 408
 409	*deniedp = denied;
 410	return audited;
 411}
 412
 413static inline int avc_xperms_audit(struct selinux_state *state,
 414				   u32 ssid, u32 tsid, u16 tclass,
 415				   u32 requested, struct av_decision *avd,
 416				   struct extended_perms_decision *xpd,
 417				   u8 perm, int result,
 418				   struct common_audit_data *ad)
 419{
 420	u32 audited, denied;
 421
 422	audited = avc_xperms_audit_required(
 423			requested, avd, xpd, perm, result, &denied);
 424	if (likely(!audited))
 425		return 0;
 426	return slow_avc_audit(state, ssid, tsid, tclass, requested,
 427			audited, denied, result, ad);
 428}
 429
 430static void avc_node_free(struct rcu_head *rhead)
 431{
 432	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 433	avc_xperms_free(node->ae.xp_node);
 434	kmem_cache_free(avc_node_cachep, node);
 435	avc_cache_stats_incr(frees);
 436}
 437
 438static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 439{
 440	hlist_del_rcu(&node->list);
 441	call_rcu(&node->rhead, avc_node_free);
 442	atomic_dec(&avc->avc_cache.active_nodes);
 443}
 444
 445static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 446{
 447	avc_xperms_free(node->ae.xp_node);
 448	kmem_cache_free(avc_node_cachep, node);
 449	avc_cache_stats_incr(frees);
 450	atomic_dec(&avc->avc_cache.active_nodes);
 451}
 452
 453static void avc_node_replace(struct selinux_avc *avc,
 454			     struct avc_node *new, struct avc_node *old)
 455{
 456	hlist_replace_rcu(&old->list, &new->list);
 457	call_rcu(&old->rhead, avc_node_free);
 458	atomic_dec(&avc->avc_cache.active_nodes);
 459}
 460
 461static inline int avc_reclaim_node(struct selinux_avc *avc)
 462{
 463	struct avc_node *node;
 464	int hvalue, try, ecx;
 465	unsigned long flags;
 466	struct hlist_head *head;
 
 467	spinlock_t *lock;
 468
 469	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 470		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 471			(AVC_CACHE_SLOTS - 1);
 472		head = &avc->avc_cache.slots[hvalue];
 473		lock = &avc->avc_cache.slots_lock[hvalue];
 474
 475		if (!spin_trylock_irqsave(lock, flags))
 476			continue;
 477
 478		rcu_read_lock();
 479		hlist_for_each_entry(node, head, list) {
 480			avc_node_delete(avc, node);
 481			avc_cache_stats_incr(reclaims);
 482			ecx++;
 483			if (ecx >= AVC_CACHE_RECLAIM) {
 484				rcu_read_unlock();
 485				spin_unlock_irqrestore(lock, flags);
 486				goto out;
 487			}
 488		}
 489		rcu_read_unlock();
 490		spin_unlock_irqrestore(lock, flags);
 491	}
 492out:
 493	return ecx;
 494}
 495
 496static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 497{
 498	struct avc_node *node;
 499
 500	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
 501	if (!node)
 502		goto out;
 503
 504	INIT_HLIST_NODE(&node->list);
 505	avc_cache_stats_incr(allocations);
 506
 507	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 508	    avc->avc_cache_threshold)
 509		avc_reclaim_node(avc);
 510
 511out:
 512	return node;
 513}
 514
 515static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 516{
 517	node->ae.ssid = ssid;
 518	node->ae.tsid = tsid;
 519	node->ae.tclass = tclass;
 520	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 521}
 522
 523static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 524					       u32 ssid, u32 tsid, u16 tclass)
 525{
 526	struct avc_node *node, *ret = NULL;
 527	int hvalue;
 528	struct hlist_head *head;
 
 529
 530	hvalue = avc_hash(ssid, tsid, tclass);
 531	head = &avc->avc_cache.slots[hvalue];
 532	hlist_for_each_entry_rcu(node, head, list) {
 533		if (ssid == node->ae.ssid &&
 534		    tclass == node->ae.tclass &&
 535		    tsid == node->ae.tsid) {
 536			ret = node;
 537			break;
 538		}
 539	}
 540
 541	return ret;
 542}
 543
 544/**
 545 * avc_lookup - Look up an AVC entry.
 546 * @ssid: source security identifier
 547 * @tsid: target security identifier
 548 * @tclass: target security class
 549 *
 550 * Look up an AVC entry that is valid for the
 551 * (@ssid, @tsid), interpreting the permissions
 552 * based on @tclass.  If a valid AVC entry exists,
 553 * then this function returns the avc_node.
 554 * Otherwise, this function returns NULL.
 555 */
 556static struct avc_node *avc_lookup(struct selinux_avc *avc,
 557				   u32 ssid, u32 tsid, u16 tclass)
 558{
 559	struct avc_node *node;
 560
 561	avc_cache_stats_incr(lookups);
 562	node = avc_search_node(avc, ssid, tsid, tclass);
 563
 564	if (node)
 565		return node;
 566
 567	avc_cache_stats_incr(misses);
 568	return NULL;
 569}
 570
 571static int avc_latest_notif_update(struct selinux_avc *avc,
 572				   int seqno, int is_insert)
 573{
 574	int ret = 0;
 575	static DEFINE_SPINLOCK(notif_lock);
 576	unsigned long flag;
 577
 578	spin_lock_irqsave(&notif_lock, flag);
 579	if (is_insert) {
 580		if (seqno < avc->avc_cache.latest_notif) {
 581			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 582			       seqno, avc->avc_cache.latest_notif);
 583			ret = -EAGAIN;
 584		}
 585	} else {
 586		if (seqno > avc->avc_cache.latest_notif)
 587			avc->avc_cache.latest_notif = seqno;
 588	}
 589	spin_unlock_irqrestore(&notif_lock, flag);
 590
 591	return ret;
 592}
 593
 594/**
 595 * avc_insert - Insert an AVC entry.
 596 * @ssid: source security identifier
 597 * @tsid: target security identifier
 598 * @tclass: target security class
 599 * @avd: resulting av decision
 600 * @xp_node: resulting extended permissions
 601 *
 602 * Insert an AVC entry for the SID pair
 603 * (@ssid, @tsid) and class @tclass.
 604 * The access vectors and the sequence number are
 605 * normally provided by the security server in
 606 * response to a security_compute_av() call.  If the
 607 * sequence number @avd->seqno is not less than the latest
 608 * revocation notification, then the function copies
 609 * the access vectors into a cache entry, returns
 610 * avc_node inserted. Otherwise, this function returns NULL.
 611 */
 612static struct avc_node *avc_insert(struct selinux_avc *avc,
 613				   u32 ssid, u32 tsid, u16 tclass,
 614				   struct av_decision *avd,
 615				   struct avc_xperms_node *xp_node)
 616{
 617	struct avc_node *pos, *node = NULL;
 618	int hvalue;
 619	unsigned long flag;
 620	spinlock_t *lock;
 621	struct hlist_head *head;
 622
 623	if (avc_latest_notif_update(avc, avd->seqno, 1))
 624		return NULL;
 
 
 
 
 
 
 625
 626	node = avc_alloc_node(avc);
 627	if (!node)
 628		return NULL;
 629
 630	avc_node_populate(node, ssid, tsid, tclass, avd);
 631	if (avc_xperms_populate(node, xp_node)) {
 632		avc_node_kill(avc, node);
 633		return NULL;
 634	}
 635
 636	hvalue = avc_hash(ssid, tsid, tclass);
 637	head = &avc->avc_cache.slots[hvalue];
 638	lock = &avc->avc_cache.slots_lock[hvalue];
 639	spin_lock_irqsave(lock, flag);
 640	hlist_for_each_entry(pos, head, list) {
 641		if (pos->ae.ssid == ssid &&
 642			pos->ae.tsid == tsid &&
 643			pos->ae.tclass == tclass) {
 644			avc_node_replace(avc, node, pos);
 645			goto found;
 646		}
 647	}
 648	hlist_add_head_rcu(&node->list, head);
 649found:
 650	spin_unlock_irqrestore(lock, flag);
 
 
 651	return node;
 652}
 653
 654/**
 655 * avc_audit_pre_callback - SELinux specific information
 656 * will be called by generic audit code
 657 * @ab: the audit buffer
 658 * @a: audit_data
 659 */
 660static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 661{
 662	struct common_audit_data *ad = a;
 663	struct selinux_audit_data *sad = ad->selinux_audit_data;
 664	u32 av = sad->audited;
 665	const char **perms;
 666	int i, perm;
 667
 668	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 669
 670	if (av == 0) {
 671		audit_log_format(ab, " null");
 672		return;
 673	}
 674
 675	perms = secclass_map[sad->tclass-1].perms;
 676
 677	audit_log_format(ab, " {");
 678	i = 0;
 679	perm = 1;
 680	while (i < (sizeof(av) * 8)) {
 681		if ((perm & av) && perms[i]) {
 682			audit_log_format(ab, " %s", perms[i]);
 683			av &= ~perm;
 684		}
 685		i++;
 686		perm <<= 1;
 687	}
 688
 689	if (av)
 690		audit_log_format(ab, " 0x%x", av);
 691
 692	audit_log_format(ab, " } for ");
 693}
 694
 695/**
 696 * avc_audit_post_callback - SELinux specific information
 697 * will be called by generic audit code
 698 * @ab: the audit buffer
 699 * @a: audit_data
 700 */
 701static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 702{
 703	struct common_audit_data *ad = a;
 704	struct selinux_audit_data *sad = ad->selinux_audit_data;
 705	char *scontext;
 706	u32 scontext_len;
 707	int rc;
 708
 709	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
 710				     &scontext_len);
 711	if (rc)
 712		audit_log_format(ab, " ssid=%d", sad->ssid);
 713	else {
 714		audit_log_format(ab, " scontext=%s", scontext);
 715		kfree(scontext);
 716	}
 717
 718	rc = security_sid_to_context(sad->state, sad->tsid, &scontext,
 719				     &scontext_len);
 720	if (rc)
 721		audit_log_format(ab, " tsid=%d", sad->tsid);
 722	else {
 723		audit_log_format(ab, " tcontext=%s", scontext);
 724		kfree(scontext);
 725	}
 726
 727	audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name);
 728
 729	if (sad->denied)
 730		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 731
 732	/* in case of invalid context report also the actual context string */
 733	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
 734					   &scontext_len);
 735	if (!rc && scontext) {
 736		if (scontext_len && scontext[scontext_len - 1] == '\0')
 737			scontext_len--;
 738		audit_log_format(ab, " srawcon=");
 739		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 740		kfree(scontext);
 741	}
 742
 743	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
 744					   &scontext_len);
 745	if (!rc && scontext) {
 746		if (scontext_len && scontext[scontext_len - 1] == '\0')
 747			scontext_len--;
 748		audit_log_format(ab, " trawcon=");
 749		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 750		kfree(scontext);
 751	}
 752}
 753
 754/* This is the slow part of avc audit with big stack footprint */
 755noinline int slow_avc_audit(struct selinux_state *state,
 756			    u32 ssid, u32 tsid, u16 tclass,
 757			    u32 requested, u32 audited, u32 denied, int result,
 758			    struct common_audit_data *a)
 759{
 760	struct common_audit_data stack_data;
 761	struct selinux_audit_data sad;
 762
 763	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 764		return -EINVAL;
 765
 766	if (!a) {
 767		a = &stack_data;
 768		a->type = LSM_AUDIT_DATA_NONE;
 769	}
 770
 
 
 
 
 
 
 
 
 
 
 
 771	sad.tclass = tclass;
 772	sad.requested = requested;
 773	sad.ssid = ssid;
 774	sad.tsid = tsid;
 775	sad.audited = audited;
 776	sad.denied = denied;
 777	sad.result = result;
 778	sad.state = state;
 779
 780	a->selinux_audit_data = &sad;
 781
 782	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 783	return 0;
 784}
 785
 786/**
 787 * avc_add_callback - Register a callback for security events.
 788 * @callback: callback function
 789 * @events: security events
 790 *
 791 * Register a callback function for events in the set @events.
 792 * Returns %0 on success or -%ENOMEM if insufficient memory
 793 * exists to add the callback.
 794 */
 795int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 796{
 797	struct avc_callback_node *c;
 798	int rc = 0;
 799
 800	c = kmalloc(sizeof(*c), GFP_KERNEL);
 801	if (!c) {
 802		rc = -ENOMEM;
 803		goto out;
 804	}
 805
 806	c->callback = callback;
 807	c->events = events;
 808	c->next = avc_callbacks;
 809	avc_callbacks = c;
 810out:
 811	return rc;
 812}
 813
 
 
 
 
 
 814/**
 815 * avc_update_node Update an AVC entry
 816 * @event : Updating event
 817 * @perms : Permission mask bits
 818 * @ssid,@tsid,@tclass : identifier of an AVC entry
 819 * @seqno : sequence number when decision was made
 820 * @xpd: extended_perms_decision to be added to the node
 821 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
 822 *
 823 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 824 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 825 * otherwise, this function updates the AVC entry. The original AVC-entry object
 826 * will release later by RCU.
 827 */
 828static int avc_update_node(struct selinux_avc *avc,
 829			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 830			   u32 tsid, u16 tclass, u32 seqno,
 831			   struct extended_perms_decision *xpd,
 832			   u32 flags)
 833{
 834	int hvalue, rc = 0;
 835	unsigned long flag;
 836	struct avc_node *pos, *node, *orig = NULL;
 837	struct hlist_head *head;
 
 838	spinlock_t *lock;
 839
 840	/*
 841	 * If we are in a non-blocking code path, e.g. VFS RCU walk,
 842	 * then we must not add permissions to a cache entry
 843	 * because we will not audit the denial.  Otherwise,
 844	 * during the subsequent blocking retry (e.g. VFS ref walk), we
 845	 * will find the permissions already granted in the cache entry
 846	 * and won't audit anything at all, leading to silent denials in
 847	 * permissive mode that only appear when in enforcing mode.
 848	 *
 849	 * See the corresponding handling of MAY_NOT_BLOCK in avc_audit()
 850	 * and selinux_inode_permission().
 851	 */
 852	if (flags & AVC_NONBLOCKING)
 853		return 0;
 854
 855	node = avc_alloc_node(avc);
 856	if (!node) {
 857		rc = -ENOMEM;
 858		goto out;
 859	}
 860
 861	/* Lock the target slot */
 862	hvalue = avc_hash(ssid, tsid, tclass);
 863
 864	head = &avc->avc_cache.slots[hvalue];
 865	lock = &avc->avc_cache.slots_lock[hvalue];
 866
 867	spin_lock_irqsave(lock, flag);
 868
 869	hlist_for_each_entry(pos, head, list) {
 870		if (ssid == pos->ae.ssid &&
 871		    tsid == pos->ae.tsid &&
 872		    tclass == pos->ae.tclass &&
 873		    seqno == pos->ae.avd.seqno){
 874			orig = pos;
 875			break;
 876		}
 877	}
 878
 879	if (!orig) {
 880		rc = -ENOENT;
 881		avc_node_kill(avc, node);
 882		goto out_unlock;
 883	}
 884
 885	/*
 886	 * Copy and replace original node.
 887	 */
 888
 889	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 890
 891	if (orig->ae.xp_node) {
 892		rc = avc_xperms_populate(node, orig->ae.xp_node);
 893		if (rc) {
 894			avc_node_kill(avc, node);
 895			goto out_unlock;
 896		}
 897	}
 898
 899	switch (event) {
 900	case AVC_CALLBACK_GRANT:
 901		node->ae.avd.allowed |= perms;
 902		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 903			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 904		break;
 905	case AVC_CALLBACK_TRY_REVOKE:
 906	case AVC_CALLBACK_REVOKE:
 907		node->ae.avd.allowed &= ~perms;
 908		break;
 909	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 910		node->ae.avd.auditallow |= perms;
 911		break;
 912	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 913		node->ae.avd.auditallow &= ~perms;
 914		break;
 915	case AVC_CALLBACK_AUDITDENY_ENABLE:
 916		node->ae.avd.auditdeny |= perms;
 917		break;
 918	case AVC_CALLBACK_AUDITDENY_DISABLE:
 919		node->ae.avd.auditdeny &= ~perms;
 920		break;
 921	case AVC_CALLBACK_ADD_XPERMS:
 922		avc_add_xperms_decision(node, xpd);
 923		break;
 924	}
 925	avc_node_replace(avc, node, orig);
 926out_unlock:
 927	spin_unlock_irqrestore(lock, flag);
 928out:
 929	return rc;
 930}
 931
 932/**
 933 * avc_flush - Flush the cache
 934 */
 935static void avc_flush(struct selinux_avc *avc)
 936{
 937	struct hlist_head *head;
 
 938	struct avc_node *node;
 939	spinlock_t *lock;
 940	unsigned long flag;
 941	int i;
 942
 943	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 944		head = &avc->avc_cache.slots[i];
 945		lock = &avc->avc_cache.slots_lock[i];
 946
 947		spin_lock_irqsave(lock, flag);
 948		/*
 949		 * With preemptable RCU, the outer spinlock does not
 950		 * prevent RCU grace periods from ending.
 951		 */
 952		rcu_read_lock();
 953		hlist_for_each_entry(node, head, list)
 954			avc_node_delete(avc, node);
 955		rcu_read_unlock();
 956		spin_unlock_irqrestore(lock, flag);
 957	}
 958}
 959
 960/**
 961 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 962 * @seqno: policy sequence number
 963 */
 964int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 965{
 966	struct avc_callback_node *c;
 967	int rc = 0, tmprc;
 968
 969	avc_flush(avc);
 970
 971	for (c = avc_callbacks; c; c = c->next) {
 972		if (c->events & AVC_CALLBACK_RESET) {
 973			tmprc = c->callback(AVC_CALLBACK_RESET);
 974			/* save the first error encountered for the return
 975			   value and continue processing the callbacks */
 976			if (!rc)
 977				rc = tmprc;
 978		}
 979	}
 980
 981	avc_latest_notif_update(avc, seqno, 0);
 982	return rc;
 983}
 984
 985/*
 986 * Slow-path helper function for avc_has_perm_noaudit,
 987 * when the avc_node lookup fails. We get called with
 988 * the RCU read lock held, and need to return with it
 989 * still held, but drop if for the security compute.
 990 *
 991 * Don't inline this, since it's the slow-path and just
 992 * results in a bigger stack frame.
 993 */
 994static noinline
 995struct avc_node *avc_compute_av(struct selinux_state *state,
 996				u32 ssid, u32 tsid,
 997				u16 tclass, struct av_decision *avd,
 998				struct avc_xperms_node *xp_node)
 999{
1000	rcu_read_unlock();
1001	INIT_LIST_HEAD(&xp_node->xpd_head);
1002	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1003	rcu_read_lock();
1004	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1005}
1006
1007static noinline int avc_denied(struct selinux_state *state,
1008			       u32 ssid, u32 tsid,
1009			       u16 tclass, u32 requested,
1010			       u8 driver, u8 xperm, unsigned int flags,
1011			       struct av_decision *avd)
1012{
1013	if (flags & AVC_STRICT)
1014		return -EACCES;
1015
1016	if (enforcing_enabled(state) &&
1017	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1018		return -EACCES;
1019
1020	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1021			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1022	return 0;
1023}
1024
1025/*
1026 * The avc extended permissions logic adds an additional 256 bits of
1027 * permissions to an avc node when extended permissions for that node are
1028 * specified in the avtab. If the additional 256 permissions is not adequate,
1029 * as-is the case with ioctls, then multiple may be chained together and the
1030 * driver field is used to specify which set contains the permission.
1031 */
1032int avc_has_extended_perms(struct selinux_state *state,
1033			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1034			   u8 driver, u8 xperm, struct common_audit_data *ad)
1035{
1036	struct avc_node *node;
1037	struct av_decision avd;
1038	u32 denied;
1039	struct extended_perms_decision local_xpd;
1040	struct extended_perms_decision *xpd = NULL;
1041	struct extended_perms_data allowed;
1042	struct extended_perms_data auditallow;
1043	struct extended_perms_data dontaudit;
1044	struct avc_xperms_node local_xp_node;
1045	struct avc_xperms_node *xp_node;
1046	int rc = 0, rc2;
1047
1048	xp_node = &local_xp_node;
1049	if (WARN_ON(!requested))
1050		return -EACCES;
1051
1052	rcu_read_lock();
1053
1054	node = avc_lookup(state->avc, ssid, tsid, tclass);
1055	if (unlikely(!node)) {
1056		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1057	} else {
1058		memcpy(&avd, &node->ae.avd, sizeof(avd));
1059		xp_node = node->ae.xp_node;
1060	}
1061	/* if extended permissions are not defined, only consider av_decision */
1062	if (!xp_node || !xp_node->xp.len)
1063		goto decision;
1064
1065	local_xpd.allowed = &allowed;
1066	local_xpd.auditallow = &auditallow;
1067	local_xpd.dontaudit = &dontaudit;
1068
1069	xpd = avc_xperms_decision_lookup(driver, xp_node);
1070	if (unlikely(!xpd)) {
1071		/*
1072		 * Compute the extended_perms_decision only if the driver
1073		 * is flagged
1074		 */
1075		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1076			avd.allowed &= ~requested;
1077			goto decision;
1078		}
1079		rcu_read_unlock();
1080		security_compute_xperms_decision(state, ssid, tsid, tclass,
1081						 driver, &local_xpd);
1082		rcu_read_lock();
1083		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1084				driver, xperm, ssid, tsid, tclass, avd.seqno,
1085				&local_xpd, 0);
1086	} else {
1087		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1088	}
1089	xpd = &local_xpd;
1090
1091	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1092		avd.allowed &= ~requested;
1093
1094decision:
1095	denied = requested & ~(avd.allowed);
1096	if (unlikely(denied))
1097		rc = avc_denied(state, ssid, tsid, tclass, requested,
1098				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1099
1100	rcu_read_unlock();
1101
1102	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1103			&avd, xpd, xperm, rc, ad);
1104	if (rc2)
1105		return rc2;
1106	return rc;
1107}
1108
1109/**
1110 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1111 * @ssid: source security identifier
1112 * @tsid: target security identifier
1113 * @tclass: target security class
1114 * @requested: requested permissions, interpreted based on @tclass
1115 * @flags:  AVC_STRICT, AVC_NONBLOCKING, or 0
1116 * @avd: access vector decisions
1117 *
1118 * Check the AVC to determine whether the @requested permissions are granted
1119 * for the SID pair (@ssid, @tsid), interpreting the permissions
1120 * based on @tclass, and call the security server on a cache miss to obtain
1121 * a new decision and add it to the cache.  Return a copy of the decisions
1122 * in @avd.  Return %0 if all @requested permissions are granted,
1123 * -%EACCES if any permissions are denied, or another -errno upon
1124 * other errors.  This function is typically called by avc_has_perm(),
1125 * but may also be called directly to separate permission checking from
1126 * auditing, e.g. in cases where a lock must be held for the check but
1127 * should be released for the auditing.
1128 */
1129inline int avc_has_perm_noaudit(struct selinux_state *state,
1130				u32 ssid, u32 tsid,
1131				u16 tclass, u32 requested,
1132				unsigned int flags,
1133				struct av_decision *avd)
1134{
1135	struct avc_node *node;
1136	struct avc_xperms_node xp_node;
1137	int rc = 0;
1138	u32 denied;
1139
1140	if (WARN_ON(!requested))
1141		return -EACCES;
1142
1143	rcu_read_lock();
1144
1145	node = avc_lookup(state->avc, ssid, tsid, tclass);
1146	if (unlikely(!node))
1147		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1148	else
1149		memcpy(avd, &node->ae.avd, sizeof(*avd));
 
 
1150
1151	denied = requested & ~(avd->allowed);
1152	if (unlikely(denied))
1153		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1154				flags, avd);
1155
1156	rcu_read_unlock();
1157	return rc;
1158}
1159
1160/**
1161 * avc_has_perm - Check permissions and perform any appropriate auditing.
1162 * @ssid: source security identifier
1163 * @tsid: target security identifier
1164 * @tclass: target security class
1165 * @requested: requested permissions, interpreted based on @tclass
1166 * @auditdata: auxiliary audit data
 
1167 *
1168 * Check the AVC to determine whether the @requested permissions are granted
1169 * for the SID pair (@ssid, @tsid), interpreting the permissions
1170 * based on @tclass, and call the security server on a cache miss to obtain
1171 * a new decision and add it to the cache.  Audit the granting or denial of
1172 * permissions in accordance with the policy.  Return %0 if all @requested
1173 * permissions are granted, -%EACCES if any permissions are denied, or
1174 * another -errno upon other errors.
1175 */
1176int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1177		 u32 requested, struct common_audit_data *auditdata)
1178{
1179	struct av_decision avd;
1180	int rc, rc2;
1181
1182	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1183				  &avd);
1184
1185	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1186			auditdata, 0);
1187	if (rc2)
1188		return rc2;
1189	return rc;
1190}
1191
1192int avc_has_perm_flags(struct selinux_state *state,
1193		       u32 ssid, u32 tsid, u16 tclass, u32 requested,
1194		       struct common_audit_data *auditdata,
1195		       int flags)
1196{
1197	struct av_decision avd;
1198	int rc, rc2;
1199
1200	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested,
1201				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
1202				  &avd);
1203
1204	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1205			auditdata, flags);
1206	if (rc2)
1207		return rc2;
1208	return rc;
1209}
1210
1211u32 avc_policy_seqno(struct selinux_state *state)
1212{
1213	return state->avc->avc_cache.latest_notif;
1214}
1215
1216void avc_disable(void)
1217{
1218	/*
1219	 * If you are looking at this because you have realized that we are
1220	 * not destroying the avc_node_cachep it might be easy to fix, but
1221	 * I don't know the memory barrier semantics well enough to know.  It's
1222	 * possible that some other task dereferenced security_ops when
1223	 * it still pointed to selinux operations.  If that is the case it's
1224	 * possible that it is about to use the avc and is about to need the
1225	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1226	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1227	 * the cache and get that memory back.
1228	 */
1229	if (avc_node_cachep) {
1230		avc_flush(selinux_state.avc);
1231		/* kmem_cache_destroy(avc_node_cachep); */
1232	}
1233}
v3.5.6
 
  1/*
  2 * Implementation of the kernel access vector cache (AVC).
  3 *
  4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
  5 *	     James Morris <jmorris@redhat.com>
  6 *
  7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8 *	Replaced the avc_lock spinlock by RCU.
  9 *
 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 11 *
 12 *	This program is free software; you can redistribute it and/or modify
 13 *	it under the terms of the GNU General Public License version 2,
 14 *	as published by the Free Software Foundation.
 15 */
 16#include <linux/types.h>
 17#include <linux/stddef.h>
 18#include <linux/kernel.h>
 19#include <linux/slab.h>
 20#include <linux/fs.h>
 21#include <linux/dcache.h>
 22#include <linux/init.h>
 23#include <linux/skbuff.h>
 24#include <linux/percpu.h>
 
 25#include <net/sock.h>
 26#include <linux/un.h>
 27#include <net/af_unix.h>
 28#include <linux/ip.h>
 29#include <linux/audit.h>
 30#include <linux/ipv6.h>
 31#include <net/ipv6.h>
 32#include "avc.h"
 33#include "avc_ss.h"
 34#include "classmap.h"
 35
 36#define AVC_CACHE_SLOTS			512
 37#define AVC_DEF_CACHE_THRESHOLD		512
 38#define AVC_CACHE_RECLAIM		16
 39
 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
 42#else
 43#define avc_cache_stats_incr(field)	do {} while (0)
 44#endif
 45
 46struct avc_entry {
 47	u32			ssid;
 48	u32			tsid;
 49	u16			tclass;
 50	struct av_decision	avd;
 
 51};
 52
 53struct avc_node {
 54	struct avc_entry	ae;
 55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
 56	struct rcu_head		rhead;
 57};
 58
 
 
 
 
 
 
 
 
 
 
 59struct avc_cache {
 60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
 61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
 62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
 63	atomic_t		active_nodes;
 64	u32			latest_notif;	/* latest revocation notification */
 65};
 66
 67struct avc_callback_node {
 68	int (*callback) (u32 event);
 69	u32 events;
 70	struct avc_callback_node *next;
 71};
 72
 73/* Exported via selinufs */
 74unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 75
 76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 77DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
 78#endif
 79
 80static struct avc_cache avc_cache;
 81static struct avc_callback_node *avc_callbacks;
 82static struct kmem_cache *avc_node_cachep;
 
 83
 84static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 85{
 86	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 87}
 88
 89/**
 90 * avc_dump_av - Display an access vector in human-readable form.
 91 * @tclass: target security class
 92 * @av: access vector
 93 */
 94static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 95{
 96	const char **perms;
 97	int i, perm;
 98
 99	if (av == 0) {
100		audit_log_format(ab, " null");
101		return;
 
102	}
 
 
 
 
103
104	perms = secclass_map[tclass-1].perms;
105
106	audit_log_format(ab, " {");
107	i = 0;
108	perm = 1;
109	while (i < (sizeof(av) * 8)) {
110		if ((perm & av) && perms[i]) {
111			audit_log_format(ab, " %s", perms[i]);
112			av &= ~perm;
113		}
114		i++;
115		perm <<= 1;
116	}
117
118	if (av)
119		audit_log_format(ab, " 0x%x", av);
120
121	audit_log_format(ab, " }");
122}
123
124/**
125 * avc_dump_query - Display a SID pair and a class in human-readable form.
126 * @ssid: source security identifier
127 * @tsid: target security identifier
128 * @tclass: target security class
129 */
130static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131{
132	int rc;
133	char *scontext;
134	u32 scontext_len;
135
136	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137	if (rc)
138		audit_log_format(ab, "ssid=%d", ssid);
139	else {
140		audit_log_format(ab, "scontext=%s", scontext);
141		kfree(scontext);
142	}
143
144	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145	if (rc)
146		audit_log_format(ab, " tsid=%d", tsid);
147	else {
148		audit_log_format(ab, " tcontext=%s", scontext);
149		kfree(scontext);
150	}
151
152	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154}
155
156/**
157 * avc_init - Initialize the AVC.
158 *
159 * Initialize the access vector cache.
160 */
161void __init avc_init(void)
162{
163	int i;
164
165	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166		INIT_HLIST_HEAD(&avc_cache.slots[i]);
167		spin_lock_init(&avc_cache.slots_lock[i]);
168	}
169	atomic_set(&avc_cache.active_nodes, 0);
170	atomic_set(&avc_cache.lru_hint, 0);
171
172	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173					     0, SLAB_PANIC, NULL);
174
175	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
 
 
 
 
 
 
 
 
176}
177
178int avc_get_hash_stats(char *page)
179{
180	int i, chain_len, max_chain_len, slots_used;
181	struct avc_node *node;
182	struct hlist_head *head;
183
184	rcu_read_lock();
185
186	slots_used = 0;
187	max_chain_len = 0;
188	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189		head = &avc_cache.slots[i];
190		if (!hlist_empty(head)) {
191			struct hlist_node *next;
192
193			slots_used++;
194			chain_len = 0;
195			hlist_for_each_entry_rcu(node, next, head, list)
196				chain_len++;
197			if (chain_len > max_chain_len)
198				max_chain_len = chain_len;
199		}
200	}
201
202	rcu_read_unlock();
203
204	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
205			 "longest chain: %d\n",
206			 atomic_read(&avc_cache.active_nodes),
207			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
208}
209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210static void avc_node_free(struct rcu_head *rhead)
211{
212	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 
213	kmem_cache_free(avc_node_cachep, node);
214	avc_cache_stats_incr(frees);
215}
216
217static void avc_node_delete(struct avc_node *node)
218{
219	hlist_del_rcu(&node->list);
220	call_rcu(&node->rhead, avc_node_free);
221	atomic_dec(&avc_cache.active_nodes);
222}
223
224static void avc_node_kill(struct avc_node *node)
225{
 
226	kmem_cache_free(avc_node_cachep, node);
227	avc_cache_stats_incr(frees);
228	atomic_dec(&avc_cache.active_nodes);
229}
230
231static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 
232{
233	hlist_replace_rcu(&old->list, &new->list);
234	call_rcu(&old->rhead, avc_node_free);
235	atomic_dec(&avc_cache.active_nodes);
236}
237
238static inline int avc_reclaim_node(void)
239{
240	struct avc_node *node;
241	int hvalue, try, ecx;
242	unsigned long flags;
243	struct hlist_head *head;
244	struct hlist_node *next;
245	spinlock_t *lock;
246
247	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
248		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
249		head = &avc_cache.slots[hvalue];
250		lock = &avc_cache.slots_lock[hvalue];
 
251
252		if (!spin_trylock_irqsave(lock, flags))
253			continue;
254
255		rcu_read_lock();
256		hlist_for_each_entry(node, next, head, list) {
257			avc_node_delete(node);
258			avc_cache_stats_incr(reclaims);
259			ecx++;
260			if (ecx >= AVC_CACHE_RECLAIM) {
261				rcu_read_unlock();
262				spin_unlock_irqrestore(lock, flags);
263				goto out;
264			}
265		}
266		rcu_read_unlock();
267		spin_unlock_irqrestore(lock, flags);
268	}
269out:
270	return ecx;
271}
272
273static struct avc_node *avc_alloc_node(void)
274{
275	struct avc_node *node;
276
277	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
278	if (!node)
279		goto out;
280
281	INIT_HLIST_NODE(&node->list);
282	avc_cache_stats_incr(allocations);
283
284	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
285		avc_reclaim_node();
 
286
287out:
288	return node;
289}
290
291static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
292{
293	node->ae.ssid = ssid;
294	node->ae.tsid = tsid;
295	node->ae.tclass = tclass;
296	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
297}
298
299static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 
300{
301	struct avc_node *node, *ret = NULL;
302	int hvalue;
303	struct hlist_head *head;
304	struct hlist_node *next;
305
306	hvalue = avc_hash(ssid, tsid, tclass);
307	head = &avc_cache.slots[hvalue];
308	hlist_for_each_entry_rcu(node, next, head, list) {
309		if (ssid == node->ae.ssid &&
310		    tclass == node->ae.tclass &&
311		    tsid == node->ae.tsid) {
312			ret = node;
313			break;
314		}
315	}
316
317	return ret;
318}
319
320/**
321 * avc_lookup - Look up an AVC entry.
322 * @ssid: source security identifier
323 * @tsid: target security identifier
324 * @tclass: target security class
325 *
326 * Look up an AVC entry that is valid for the
327 * (@ssid, @tsid), interpreting the permissions
328 * based on @tclass.  If a valid AVC entry exists,
329 * then this function returns the avc_node.
330 * Otherwise, this function returns NULL.
331 */
332static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 
333{
334	struct avc_node *node;
335
336	avc_cache_stats_incr(lookups);
337	node = avc_search_node(ssid, tsid, tclass);
338
339	if (node)
340		return node;
341
342	avc_cache_stats_incr(misses);
343	return NULL;
344}
345
346static int avc_latest_notif_update(int seqno, int is_insert)
 
347{
348	int ret = 0;
349	static DEFINE_SPINLOCK(notif_lock);
350	unsigned long flag;
351
352	spin_lock_irqsave(&notif_lock, flag);
353	if (is_insert) {
354		if (seqno < avc_cache.latest_notif) {
355			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
356			       seqno, avc_cache.latest_notif);
357			ret = -EAGAIN;
358		}
359	} else {
360		if (seqno > avc_cache.latest_notif)
361			avc_cache.latest_notif = seqno;
362	}
363	spin_unlock_irqrestore(&notif_lock, flag);
364
365	return ret;
366}
367
368/**
369 * avc_insert - Insert an AVC entry.
370 * @ssid: source security identifier
371 * @tsid: target security identifier
372 * @tclass: target security class
373 * @avd: resulting av decision
 
374 *
375 * Insert an AVC entry for the SID pair
376 * (@ssid, @tsid) and class @tclass.
377 * The access vectors and the sequence number are
378 * normally provided by the security server in
379 * response to a security_compute_av() call.  If the
380 * sequence number @avd->seqno is not less than the latest
381 * revocation notification, then the function copies
382 * the access vectors into a cache entry, returns
383 * avc_node inserted. Otherwise, this function returns NULL.
384 */
385static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 
 
 
386{
387	struct avc_node *pos, *node = NULL;
388	int hvalue;
389	unsigned long flag;
 
 
390
391	if (avc_latest_notif_update(avd->seqno, 1))
392		goto out;
393
394	node = avc_alloc_node();
395	if (node) {
396		struct hlist_head *head;
397		struct hlist_node *next;
398		spinlock_t *lock;
399
400		hvalue = avc_hash(ssid, tsid, tclass);
401		avc_node_populate(node, ssid, tsid, tclass, avd);
 
402
403		head = &avc_cache.slots[hvalue];
404		lock = &avc_cache.slots_lock[hvalue];
 
 
 
405
406		spin_lock_irqsave(lock, flag);
407		hlist_for_each_entry(pos, next, head, list) {
408			if (pos->ae.ssid == ssid &&
409			    pos->ae.tsid == tsid &&
410			    pos->ae.tclass == tclass) {
411				avc_node_replace(node, pos);
412				goto found;
413			}
 
 
414		}
415		hlist_add_head_rcu(&node->list, head);
 
416found:
417		spin_unlock_irqrestore(lock, flag);
418	}
419out:
420	return node;
421}
422
423/**
424 * avc_audit_pre_callback - SELinux specific information
425 * will be called by generic audit code
426 * @ab: the audit buffer
427 * @a: audit_data
428 */
429static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
430{
431	struct common_audit_data *ad = a;
432	audit_log_format(ab, "avc:  %s ",
433			 ad->selinux_audit_data->denied ? "denied" : "granted");
434	avc_dump_av(ab, ad->selinux_audit_data->tclass,
435			ad->selinux_audit_data->audited);
436	audit_log_format(ab, " for ");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437}
438
439/**
440 * avc_audit_post_callback - SELinux specific information
441 * will be called by generic audit code
442 * @ab: the audit buffer
443 * @a: audit_data
444 */
445static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
446{
447	struct common_audit_data *ad = a;
448	audit_log_format(ab, " ");
449	avc_dump_query(ab, ad->selinux_audit_data->ssid,
450			   ad->selinux_audit_data->tsid,
451			   ad->selinux_audit_data->tclass);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452}
453
454/* This is the slow part of avc audit with big stack footprint */
455noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
456		u32 requested, u32 audited, u32 denied,
457		struct common_audit_data *a,
458		unsigned flags)
459{
460	struct common_audit_data stack_data;
461	struct selinux_audit_data sad;
462
 
 
 
463	if (!a) {
464		a = &stack_data;
465		a->type = LSM_AUDIT_DATA_NONE;
466	}
467
468	/*
469	 * When in a RCU walk do the audit on the RCU retry.  This is because
470	 * the collection of the dname in an inode audit message is not RCU
471	 * safe.  Note this may drop some audits when the situation changes
472	 * during retry. However this is logically just as if the operation
473	 * happened a little later.
474	 */
475	if ((a->type == LSM_AUDIT_DATA_INODE) &&
476	    (flags & MAY_NOT_BLOCK))
477		return -ECHILD;
478
479	sad.tclass = tclass;
480	sad.requested = requested;
481	sad.ssid = ssid;
482	sad.tsid = tsid;
483	sad.audited = audited;
484	sad.denied = denied;
 
 
485
486	a->selinux_audit_data = &sad;
487
488	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
489	return 0;
490}
491
492/**
493 * avc_add_callback - Register a callback for security events.
494 * @callback: callback function
495 * @events: security events
496 *
497 * Register a callback function for events in the set @events.
498 * Returns %0 on success or -%ENOMEM if insufficient memory
499 * exists to add the callback.
500 */
501int __init avc_add_callback(int (*callback)(u32 event), u32 events)
502{
503	struct avc_callback_node *c;
504	int rc = 0;
505
506	c = kmalloc(sizeof(*c), GFP_KERNEL);
507	if (!c) {
508		rc = -ENOMEM;
509		goto out;
510	}
511
512	c->callback = callback;
513	c->events = events;
514	c->next = avc_callbacks;
515	avc_callbacks = c;
516out:
517	return rc;
518}
519
520static inline int avc_sidcmp(u32 x, u32 y)
521{
522	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
523}
524
525/**
526 * avc_update_node Update an AVC entry
527 * @event : Updating event
528 * @perms : Permission mask bits
529 * @ssid,@tsid,@tclass : identifier of an AVC entry
530 * @seqno : sequence number when decision was made
 
 
531 *
532 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
533 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
534 * otherwise, this function updates the AVC entry. The original AVC-entry object
535 * will release later by RCU.
536 */
537static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
538			   u32 seqno)
 
 
 
539{
540	int hvalue, rc = 0;
541	unsigned long flag;
542	struct avc_node *pos, *node, *orig = NULL;
543	struct hlist_head *head;
544	struct hlist_node *next;
545	spinlock_t *lock;
546
547	node = avc_alloc_node();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548	if (!node) {
549		rc = -ENOMEM;
550		goto out;
551	}
552
553	/* Lock the target slot */
554	hvalue = avc_hash(ssid, tsid, tclass);
555
556	head = &avc_cache.slots[hvalue];
557	lock = &avc_cache.slots_lock[hvalue];
558
559	spin_lock_irqsave(lock, flag);
560
561	hlist_for_each_entry(pos, next, head, list) {
562		if (ssid == pos->ae.ssid &&
563		    tsid == pos->ae.tsid &&
564		    tclass == pos->ae.tclass &&
565		    seqno == pos->ae.avd.seqno){
566			orig = pos;
567			break;
568		}
569	}
570
571	if (!orig) {
572		rc = -ENOENT;
573		avc_node_kill(node);
574		goto out_unlock;
575	}
576
577	/*
578	 * Copy and replace original node.
579	 */
580
581	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
582
 
 
 
 
 
 
 
 
583	switch (event) {
584	case AVC_CALLBACK_GRANT:
585		node->ae.avd.allowed |= perms;
 
 
586		break;
587	case AVC_CALLBACK_TRY_REVOKE:
588	case AVC_CALLBACK_REVOKE:
589		node->ae.avd.allowed &= ~perms;
590		break;
591	case AVC_CALLBACK_AUDITALLOW_ENABLE:
592		node->ae.avd.auditallow |= perms;
593		break;
594	case AVC_CALLBACK_AUDITALLOW_DISABLE:
595		node->ae.avd.auditallow &= ~perms;
596		break;
597	case AVC_CALLBACK_AUDITDENY_ENABLE:
598		node->ae.avd.auditdeny |= perms;
599		break;
600	case AVC_CALLBACK_AUDITDENY_DISABLE:
601		node->ae.avd.auditdeny &= ~perms;
602		break;
 
 
 
603	}
604	avc_node_replace(node, orig);
605out_unlock:
606	spin_unlock_irqrestore(lock, flag);
607out:
608	return rc;
609}
610
611/**
612 * avc_flush - Flush the cache
613 */
614static void avc_flush(void)
615{
616	struct hlist_head *head;
617	struct hlist_node *next;
618	struct avc_node *node;
619	spinlock_t *lock;
620	unsigned long flag;
621	int i;
622
623	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
624		head = &avc_cache.slots[i];
625		lock = &avc_cache.slots_lock[i];
626
627		spin_lock_irqsave(lock, flag);
628		/*
629		 * With preemptable RCU, the outer spinlock does not
630		 * prevent RCU grace periods from ending.
631		 */
632		rcu_read_lock();
633		hlist_for_each_entry(node, next, head, list)
634			avc_node_delete(node);
635		rcu_read_unlock();
636		spin_unlock_irqrestore(lock, flag);
637	}
638}
639
640/**
641 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
642 * @seqno: policy sequence number
643 */
644int avc_ss_reset(u32 seqno)
645{
646	struct avc_callback_node *c;
647	int rc = 0, tmprc;
648
649	avc_flush();
650
651	for (c = avc_callbacks; c; c = c->next) {
652		if (c->events & AVC_CALLBACK_RESET) {
653			tmprc = c->callback(AVC_CALLBACK_RESET);
654			/* save the first error encountered for the return
655			   value and continue processing the callbacks */
656			if (!rc)
657				rc = tmprc;
658		}
659	}
660
661	avc_latest_notif_update(seqno, 0);
662	return rc;
663}
664
665/*
666 * Slow-path helper function for avc_has_perm_noaudit,
667 * when the avc_node lookup fails. We get called with
668 * the RCU read lock held, and need to return with it
669 * still held, but drop if for the security compute.
670 *
671 * Don't inline this, since it's the slow-path and just
672 * results in a bigger stack frame.
673 */
674static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
675			 u16 tclass, struct av_decision *avd)
 
 
 
676{
677	rcu_read_unlock();
678	security_compute_av(ssid, tsid, tclass, avd);
 
679	rcu_read_lock();
680	return avc_insert(ssid, tsid, tclass, avd);
681}
682
683static noinline int avc_denied(u32 ssid, u32 tsid,
684			 u16 tclass, u32 requested,
685			 unsigned flags,
686			 struct av_decision *avd)
 
687{
688	if (flags & AVC_STRICT)
689		return -EACCES;
690
691	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
 
692		return -EACCES;
693
694	avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
695				tsid, tclass, avd->seqno);
696	return 0;
697}
698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699
700/**
701 * avc_has_perm_noaudit - Check permissions but perform no auditing.
702 * @ssid: source security identifier
703 * @tsid: target security identifier
704 * @tclass: target security class
705 * @requested: requested permissions, interpreted based on @tclass
706 * @flags:  AVC_STRICT or 0
707 * @avd: access vector decisions
708 *
709 * Check the AVC to determine whether the @requested permissions are granted
710 * for the SID pair (@ssid, @tsid), interpreting the permissions
711 * based on @tclass, and call the security server on a cache miss to obtain
712 * a new decision and add it to the cache.  Return a copy of the decisions
713 * in @avd.  Return %0 if all @requested permissions are granted,
714 * -%EACCES if any permissions are denied, or another -errno upon
715 * other errors.  This function is typically called by avc_has_perm(),
716 * but may also be called directly to separate permission checking from
717 * auditing, e.g. in cases where a lock must be held for the check but
718 * should be released for the auditing.
719 */
720inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
721			 u16 tclass, u32 requested,
722			 unsigned flags,
723			 struct av_decision *avd)
 
724{
725	struct avc_node *node;
 
726	int rc = 0;
727	u32 denied;
728
729	BUG_ON(!requested);
 
730
731	rcu_read_lock();
732
733	node = avc_lookup(ssid, tsid, tclass);
734	if (unlikely(!node)) {
735		node = avc_compute_av(ssid, tsid, tclass, avd);
736	} else {
737		memcpy(avd, &node->ae.avd, sizeof(*avd));
738		avd = &node->ae.avd;
739	}
740
741	denied = requested & ~(avd->allowed);
742	if (unlikely(denied))
743		rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
 
744
745	rcu_read_unlock();
746	return rc;
747}
748
749/**
750 * avc_has_perm - Check permissions and perform any appropriate auditing.
751 * @ssid: source security identifier
752 * @tsid: target security identifier
753 * @tclass: target security class
754 * @requested: requested permissions, interpreted based on @tclass
755 * @auditdata: auxiliary audit data
756 * @flags: VFS walk flags
757 *
758 * Check the AVC to determine whether the @requested permissions are granted
759 * for the SID pair (@ssid, @tsid), interpreting the permissions
760 * based on @tclass, and call the security server on a cache miss to obtain
761 * a new decision and add it to the cache.  Audit the granting or denial of
762 * permissions in accordance with the policy.  Return %0 if all @requested
763 * permissions are granted, -%EACCES if any permissions are denied, or
764 * another -errno upon other errors.
765 */
766int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
767		       u32 requested, struct common_audit_data *auditdata,
768		       unsigned flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769{
770	struct av_decision avd;
771	int rc, rc2;
772
773	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
 
774
775	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
776			flags);
777	if (rc2)
778		return rc2;
779	return rc;
780}
781
782u32 avc_policy_seqno(void)
783{
784	return avc_cache.latest_notif;
785}
786
787void avc_disable(void)
788{
789	/*
790	 * If you are looking at this because you have realized that we are
791	 * not destroying the avc_node_cachep it might be easy to fix, but
792	 * I don't know the memory barrier semantics well enough to know.  It's
793	 * possible that some other task dereferenced security_ops when
794	 * it still pointed to selinux operations.  If that is the case it's
795	 * possible that it is about to use the avc and is about to need the
796	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
797	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
798	 * the cache and get that memory back.
799	 */
800	if (avc_node_cachep) {
801		avc_flush();
802		/* kmem_cache_destroy(avc_node_cachep); */
803	}
804}