Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/ima.h>
  17#include <linux/err.h>
 
  18#include "internal.h"
  19
  20struct kmem_cache *key_jar;
  21struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  22DEFINE_SPINLOCK(key_serial_lock);
  23
  24struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  25DEFINE_SPINLOCK(key_user_lock);
  26
  27unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  29unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  30unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  31
  32static LIST_HEAD(key_types_list);
  33static DECLARE_RWSEM(key_types_sem);
  34
  35/* We serialise key instantiation and link */
  36DEFINE_MUTEX(key_construction_mutex);
  37
  38#ifdef KEY_DEBUGGING
  39void __key_check(const struct key *key)
  40{
  41	printk("__key_check: key %p {%08x} should be {%08x}\n",
  42	       key, key->magic, KEY_DEBUG_MAGIC);
  43	BUG();
  44}
  45#endif
  46
  47/*
  48 * Get the key quota record for a user, allocating a new record if one doesn't
  49 * already exist.
  50 */
  51struct key_user *key_user_lookup(kuid_t uid)
  52{
  53	struct key_user *candidate = NULL, *user;
  54	struct rb_node *parent, **p;
 
  55
  56try_again:
  57	parent = NULL;
  58	p = &key_user_tree.rb_node;
  59	spin_lock(&key_user_lock);
  60
  61	/* search the tree for a user record with a matching UID */
  62	while (*p) {
  63		parent = *p;
  64		user = rb_entry(parent, struct key_user, node);
  65
  66		if (uid_lt(uid, user->uid))
  67			p = &(*p)->rb_left;
  68		else if (uid_gt(uid, user->uid))
 
 
 
 
  69			p = &(*p)->rb_right;
  70		else
  71			goto found;
  72	}
  73
  74	/* if we get here, we failed to find a match in the tree */
  75	if (!candidate) {
  76		/* allocate a candidate user record if we don't already have
  77		 * one */
  78		spin_unlock(&key_user_lock);
  79
  80		user = NULL;
  81		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  82		if (unlikely(!candidate))
  83			goto out;
  84
  85		/* the allocation may have scheduled, so we need to repeat the
  86		 * search lest someone else added the record whilst we were
  87		 * asleep */
  88		goto try_again;
  89	}
  90
  91	/* if we get here, then the user record still hadn't appeared on the
  92	 * second pass - so we use the candidate record */
  93	refcount_set(&candidate->usage, 1);
  94	atomic_set(&candidate->nkeys, 0);
  95	atomic_set(&candidate->nikeys, 0);
  96	candidate->uid = uid;
 
  97	candidate->qnkeys = 0;
  98	candidate->qnbytes = 0;
  99	spin_lock_init(&candidate->lock);
 100	mutex_init(&candidate->cons_lock);
 101
 102	rb_link_node(&candidate->node, parent, p);
 103	rb_insert_color(&candidate->node, &key_user_tree);
 104	spin_unlock(&key_user_lock);
 105	user = candidate;
 106	goto out;
 107
 108	/* okay - we found a user record for this UID */
 109found:
 110	refcount_inc(&user->usage);
 111	spin_unlock(&key_user_lock);
 112	kfree(candidate);
 113out:
 114	return user;
 115}
 116
 117/*
 118 * Dispose of a user structure
 119 */
 120void key_user_put(struct key_user *user)
 121{
 122	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 123		rb_erase(&user->node, &key_user_tree);
 124		spin_unlock(&key_user_lock);
 
 125
 126		kfree(user);
 127	}
 128}
 129
 130/*
 131 * Allocate a serial number for a key.  These are assigned randomly to avoid
 132 * security issues through covert channel problems.
 133 */
 134static inline void key_alloc_serial(struct key *key)
 135{
 136	struct rb_node *parent, **p;
 137	struct key *xkey;
 138
 139	/* propose a random serial number and look for a hole for it in the
 140	 * serial number tree */
 141	do {
 142		get_random_bytes(&key->serial, sizeof(key->serial));
 143
 144		key->serial >>= 1; /* negative numbers are not permitted */
 145	} while (key->serial < 3);
 146
 147	spin_lock(&key_serial_lock);
 148
 149attempt_insertion:
 150	parent = NULL;
 151	p = &key_serial_tree.rb_node;
 152
 153	while (*p) {
 154		parent = *p;
 155		xkey = rb_entry(parent, struct key, serial_node);
 156
 157		if (key->serial < xkey->serial)
 158			p = &(*p)->rb_left;
 159		else if (key->serial > xkey->serial)
 160			p = &(*p)->rb_right;
 161		else
 162			goto serial_exists;
 163	}
 164
 165	/* we've found a suitable hole - arrange for this key to occupy it */
 166	rb_link_node(&key->serial_node, parent, p);
 167	rb_insert_color(&key->serial_node, &key_serial_tree);
 168
 169	spin_unlock(&key_serial_lock);
 170	return;
 171
 172	/* we found a key with the proposed serial number - walk the tree from
 173	 * that point looking for the next unused serial number */
 174serial_exists:
 175	for (;;) {
 176		key->serial++;
 177		if (key->serial < 3) {
 178			key->serial = 3;
 179			goto attempt_insertion;
 180		}
 181
 182		parent = rb_next(parent);
 183		if (!parent)
 184			goto attempt_insertion;
 185
 186		xkey = rb_entry(parent, struct key, serial_node);
 187		if (key->serial < xkey->serial)
 188			goto attempt_insertion;
 189	}
 190}
 191
 192/**
 193 * key_alloc - Allocate a key of the specified type.
 194 * @type: The type of key to allocate.
 195 * @desc: The key description to allow the key to be searched out.
 196 * @uid: The owner of the new key.
 197 * @gid: The group ID for the new key's group permissions.
 198 * @cred: The credentials specifying UID namespace.
 199 * @perm: The permissions mask of the new key.
 200 * @flags: Flags specifying quota properties.
 201 * @restrict_link: Optional link restriction for new keyrings.
 202 *
 203 * Allocate a key of the specified type with the attributes given.  The key is
 204 * returned in an uninstantiated state and the caller needs to instantiate the
 205 * key before returning.
 206 *
 207 * The restrict_link structure (if not NULL) will be freed when the
 208 * keyring is destroyed, so it must be dynamically allocated.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226		      kuid_t uid, kgid_t gid, const struct cred *cred,
 227		      key_perm_t perm, unsigned long flags,
 228		      struct key_restriction *restrict_link)
 229{
 230	struct key_user *user = NULL;
 231	struct key *key;
 232	size_t desclen, quotalen;
 233	int ret;
 234
 235	key = ERR_PTR(-EINVAL);
 236	if (!desc || !*desc)
 237		goto error;
 238
 239	if (type->vet_description) {
 240		ret = type->vet_description(desc);
 241		if (ret < 0) {
 242			key = ERR_PTR(ret);
 243			goto error;
 244		}
 245	}
 246
 247	desclen = strlen(desc);
 248	quotalen = desclen + 1 + type->def_datalen;
 249
 250	/* get hold of the key tracking for this user */
 251	user = key_user_lookup(uid);
 252	if (!user)
 253		goto no_memory_1;
 254
 255	/* check that the user's quota permits allocation of another key and
 256	 * its description */
 257	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 258		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxkeys : key_quota_maxkeys;
 260		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261			key_quota_root_maxbytes : key_quota_maxbytes;
 262
 263		spin_lock(&user->lock);
 264		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 265			if (user->qnkeys + 1 > maxkeys ||
 266			    user->qnbytes + quotalen > maxbytes ||
 267			    user->qnbytes + quotalen < user->qnbytes)
 268				goto no_quota;
 269		}
 270
 271		user->qnkeys++;
 272		user->qnbytes += quotalen;
 273		spin_unlock(&user->lock);
 274	}
 275
 276	/* allocate and initialise the key and its description */
 277	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 278	if (!key)
 279		goto no_memory_2;
 280
 281	key->index_key.desc_len = desclen;
 282	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 283	if (!key->index_key.description)
 284		goto no_memory_3;
 285	key->index_key.type = type;
 286	key_set_index_key(&key->index_key);
 287
 288	refcount_set(&key->usage, 1);
 289	init_rwsem(&key->sem);
 290	lockdep_set_class(&key->sem, &type->lock_class);
 
 291	key->user = user;
 292	key->quotalen = quotalen;
 293	key->datalen = type->def_datalen;
 294	key->uid = uid;
 295	key->gid = gid;
 296	key->perm = perm;
 297	key->restrict_link = restrict_link;
 298	key->last_used_at = ktime_get_real_seconds();
 
 
 299
 300	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 301		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 302	if (flags & KEY_ALLOC_BUILT_IN)
 303		key->flags |= 1 << KEY_FLAG_BUILTIN;
 304	if (flags & KEY_ALLOC_UID_KEYRING)
 305		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 306
 307#ifdef KEY_DEBUGGING
 308	key->magic = KEY_DEBUG_MAGIC;
 309#endif
 310
 311	/* let the security module know about the key */
 312	ret = security_key_alloc(key, cred, flags);
 313	if (ret < 0)
 314		goto security_error;
 315
 316	/* publish the key by giving it a serial number */
 317	refcount_inc(&key->domain_tag->usage);
 318	atomic_inc(&user->nkeys);
 319	key_alloc_serial(key);
 320
 321error:
 322	return key;
 323
 324security_error:
 325	kfree(key->description);
 326	kmem_cache_free(key_jar, key);
 327	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 328		spin_lock(&user->lock);
 329		user->qnkeys--;
 330		user->qnbytes -= quotalen;
 331		spin_unlock(&user->lock);
 332	}
 333	key_user_put(user);
 334	key = ERR_PTR(ret);
 335	goto error;
 336
 337no_memory_3:
 338	kmem_cache_free(key_jar, key);
 339no_memory_2:
 340	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 341		spin_lock(&user->lock);
 342		user->qnkeys--;
 343		user->qnbytes -= quotalen;
 344		spin_unlock(&user->lock);
 345	}
 346	key_user_put(user);
 347no_memory_1:
 348	key = ERR_PTR(-ENOMEM);
 349	goto error;
 350
 351no_quota:
 352	spin_unlock(&user->lock);
 353	key_user_put(user);
 354	key = ERR_PTR(-EDQUOT);
 355	goto error;
 356}
 357EXPORT_SYMBOL(key_alloc);
 358
 359/**
 360 * key_payload_reserve - Adjust data quota reservation for the key's payload
 361 * @key: The key to make the reservation for.
 362 * @datalen: The amount of data payload the caller now wants.
 363 *
 364 * Adjust the amount of the owning user's key data quota that a key reserves.
 365 * If the amount is increased, then -EDQUOT may be returned if there isn't
 366 * enough free quota available.
 367 *
 368 * If successful, 0 is returned.
 369 */
 370int key_payload_reserve(struct key *key, size_t datalen)
 371{
 372	int delta = (int)datalen - key->datalen;
 373	int ret = 0;
 374
 375	key_check(key);
 376
 377	/* contemplate the quota adjustment */
 378	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 379		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 380			key_quota_root_maxbytes : key_quota_maxbytes;
 381
 382		spin_lock(&key->user->lock);
 383
 384		if (delta > 0 &&
 385		    (key->user->qnbytes + delta > maxbytes ||
 386		     key->user->qnbytes + delta < key->user->qnbytes)) {
 387			ret = -EDQUOT;
 388		}
 389		else {
 390			key->user->qnbytes += delta;
 391			key->quotalen += delta;
 392		}
 393		spin_unlock(&key->user->lock);
 394	}
 395
 396	/* change the recorded data length if that didn't generate an error */
 397	if (ret == 0)
 398		key->datalen = datalen;
 399
 400	return ret;
 401}
 402EXPORT_SYMBOL(key_payload_reserve);
 403
 404/*
 405 * Change the key state to being instantiated.
 406 */
 407static void mark_key_instantiated(struct key *key, int reject_error)
 408{
 409	/* Commit the payload before setting the state; barrier versus
 410	 * key_read_state().
 411	 */
 412	smp_store_release(&key->state,
 413			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 414}
 415
 416/*
 417 * Instantiate a key and link it into the target keyring atomically.  Must be
 418 * called with the target keyring's semaphore writelocked.  The target key's
 419 * semaphore need not be locked as instantiation is serialised by
 420 * key_construction_mutex.
 421 */
 422static int __key_instantiate_and_link(struct key *key,
 423				      struct key_preparsed_payload *prep,
 
 424				      struct key *keyring,
 425				      struct key *authkey,
 426				      struct assoc_array_edit **_edit)
 427{
 428	int ret, awaken;
 429
 430	key_check(key);
 431	key_check(keyring);
 432
 433	awaken = 0;
 434	ret = -EBUSY;
 435
 436	mutex_lock(&key_construction_mutex);
 437
 438	/* can't instantiate twice */
 439	if (key->state == KEY_IS_UNINSTANTIATED) {
 440		/* instantiate the key */
 441		ret = key->type->instantiate(key, prep);
 442
 443		if (ret == 0) {
 444			/* mark the key as being instantiated */
 445			atomic_inc(&key->user->nikeys);
 446			mark_key_instantiated(key, 0);
 447			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
 448
 449			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 450				awaken = 1;
 451
 452			/* and link it into the destination keyring */
 453			if (keyring) {
 454				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 455					set_bit(KEY_FLAG_KEEP, &key->flags);
 456
 457				__key_link(keyring, key, _edit);
 458			}
 459
 460			/* disable the authorisation key */
 461			if (authkey)
 462				key_invalidate(authkey);
 463
 464			if (prep->expiry != TIME64_MAX) {
 465				key->expiry = prep->expiry;
 466				key_schedule_gc(prep->expiry + key_gc_delay);
 467			}
 468		}
 469	}
 470
 471	mutex_unlock(&key_construction_mutex);
 472
 473	/* wake up anyone waiting for a key to be constructed */
 474	if (awaken)
 475		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 476
 477	return ret;
 478}
 479
 480/**
 481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 482 * @key: The key to instantiate.
 483 * @data: The data to use to instantiate the keyring.
 484 * @datalen: The length of @data.
 485 * @keyring: Keyring to create a link in on success (or NULL).
 486 * @authkey: The authorisation token permitting instantiation.
 487 *
 488 * Instantiate a key that's in the uninstantiated state using the provided data
 489 * and, if successful, link it in to the destination keyring if one is
 490 * supplied.
 491 *
 492 * If successful, 0 is returned, the authorisation token is revoked and anyone
 493 * waiting for the key is woken up.  If the key was already instantiated,
 494 * -EBUSY will be returned.
 495 */
 496int key_instantiate_and_link(struct key *key,
 497			     const void *data,
 498			     size_t datalen,
 499			     struct key *keyring,
 500			     struct key *authkey)
 501{
 502	struct key_preparsed_payload prep;
 503	struct assoc_array_edit *edit = NULL;
 504	int ret;
 505
 506	memset(&prep, 0, sizeof(prep));
 507	prep.data = data;
 508	prep.datalen = datalen;
 509	prep.quotalen = key->type->def_datalen;
 510	prep.expiry = TIME64_MAX;
 511	if (key->type->preparse) {
 512		ret = key->type->preparse(&prep);
 513		if (ret < 0)
 514			goto error;
 515	}
 516
 517	if (keyring) {
 518		ret = __key_link_lock(keyring, &key->index_key);
 519		if (ret < 0)
 520			goto error;
 521
 522		ret = __key_link_begin(keyring, &key->index_key, &edit);
 523		if (ret < 0)
 524			goto error_link_end;
 525
 526		if (keyring->restrict_link && keyring->restrict_link->check) {
 527			struct key_restriction *keyres = keyring->restrict_link;
 528
 529			ret = keyres->check(keyring, key->type, &prep.payload,
 530					    keyres->key);
 531			if (ret < 0)
 532				goto error_link_end;
 533		}
 534	}
 535
 536	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 
 537
 538error_link_end:
 539	if (keyring)
 540		__key_link_end(keyring, &key->index_key, edit);
 541
 542error:
 543	if (key->type->preparse)
 544		key->type->free_preparse(&prep);
 545	return ret;
 546}
 547
 548EXPORT_SYMBOL(key_instantiate_and_link);
 549
 550/**
 551 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 552 * @key: The key to instantiate.
 553 * @timeout: The timeout on the negative key.
 554 * @error: The error to return when the key is hit.
 555 * @keyring: Keyring to create a link in on success (or NULL).
 556 * @authkey: The authorisation token permitting instantiation.
 557 *
 558 * Negatively instantiate a key that's in the uninstantiated state and, if
 559 * successful, set its timeout and stored error and link it in to the
 560 * destination keyring if one is supplied.  The key and any links to the key
 561 * will be automatically garbage collected after the timeout expires.
 562 *
 563 * Negative keys are used to rate limit repeated request_key() calls by causing
 564 * them to return the stored error code (typically ENOKEY) until the negative
 565 * key expires.
 566 *
 567 * If successful, 0 is returned, the authorisation token is revoked and anyone
 568 * waiting for the key is woken up.  If the key was already instantiated,
 569 * -EBUSY will be returned.
 570 */
 571int key_reject_and_link(struct key *key,
 572			unsigned timeout,
 573			unsigned error,
 574			struct key *keyring,
 575			struct key *authkey)
 576{
 577	struct assoc_array_edit *edit = NULL;
 
 578	int ret, awaken, link_ret = 0;
 579
 580	key_check(key);
 581	key_check(keyring);
 582
 583	awaken = 0;
 584	ret = -EBUSY;
 585
 586	if (keyring) {
 587		if (keyring->restrict_link)
 588			return -EPERM;
 589
 590		link_ret = __key_link_lock(keyring, &key->index_key);
 591		if (link_ret == 0) {
 592			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 593			if (link_ret < 0)
 594				__key_link_end(keyring, &key->index_key, edit);
 595		}
 596	}
 597
 598	mutex_lock(&key_construction_mutex);
 599
 600	/* can't instantiate twice */
 601	if (key->state == KEY_IS_UNINSTANTIATED) {
 602		/* mark the key as being negatively instantiated */
 603		atomic_inc(&key->user->nikeys);
 604		mark_key_instantiated(key, -error);
 605		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
 606		key->expiry = ktime_get_real_seconds() + timeout;
 
 
 607		key_schedule_gc(key->expiry + key_gc_delay);
 608
 609		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 610			awaken = 1;
 611
 612		ret = 0;
 613
 614		/* and link it into the destination keyring */
 615		if (keyring && link_ret == 0)
 616			__key_link(keyring, key, &edit);
 617
 618		/* disable the authorisation key */
 619		if (authkey)
 620			key_invalidate(authkey);
 621	}
 622
 623	mutex_unlock(&key_construction_mutex);
 624
 625	if (keyring && link_ret == 0)
 626		__key_link_end(keyring, &key->index_key, edit);
 627
 628	/* wake up anyone waiting for a key to be constructed */
 629	if (awaken)
 630		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 631
 632	return ret == 0 ? link_ret : ret;
 633}
 634EXPORT_SYMBOL(key_reject_and_link);
 635
 636/**
 637 * key_put - Discard a reference to a key.
 638 * @key: The key to discard a reference from.
 639 *
 640 * Discard a reference to a key, and when all the references are gone, we
 641 * schedule the cleanup task to come and pull it out of the tree in process
 642 * context at some later time.
 643 */
 644void key_put(struct key *key)
 645{
 646	if (key) {
 647		key_check(key);
 648
 649		if (refcount_dec_and_test(&key->usage))
 650			schedule_work(&key_gc_work);
 651	}
 652}
 653EXPORT_SYMBOL(key_put);
 654
 655/*
 656 * Find a key by its serial number.
 657 */
 658struct key *key_lookup(key_serial_t id)
 659{
 660	struct rb_node *n;
 661	struct key *key;
 662
 663	spin_lock(&key_serial_lock);
 664
 665	/* search the tree for the specified key */
 666	n = key_serial_tree.rb_node;
 667	while (n) {
 668		key = rb_entry(n, struct key, serial_node);
 669
 670		if (id < key->serial)
 671			n = n->rb_left;
 672		else if (id > key->serial)
 673			n = n->rb_right;
 674		else
 675			goto found;
 676	}
 677
 678not_found:
 679	key = ERR_PTR(-ENOKEY);
 680	goto error;
 681
 682found:
 683	/* A key is allowed to be looked up only if someone still owns a
 684	 * reference to it - otherwise it's awaiting the gc.
 685	 */
 686	if (!refcount_inc_not_zero(&key->usage))
 687		goto not_found;
 688
 
 
 
 
 
 689error:
 690	spin_unlock(&key_serial_lock);
 691	return key;
 692}
 693
 694/*
 695 * Find and lock the specified key type against removal.
 696 *
 697 * We return with the sem read-locked if successful.  If the type wasn't
 698 * available -ENOKEY is returned instead.
 699 */
 700struct key_type *key_type_lookup(const char *type)
 701{
 702	struct key_type *ktype;
 703
 704	down_read(&key_types_sem);
 705
 706	/* look up the key type to see if it's one of the registered kernel
 707	 * types */
 708	list_for_each_entry(ktype, &key_types_list, link) {
 709		if (strcmp(ktype->name, type) == 0)
 710			goto found_kernel_type;
 711	}
 712
 713	up_read(&key_types_sem);
 714	ktype = ERR_PTR(-ENOKEY);
 715
 716found_kernel_type:
 717	return ktype;
 718}
 719
 720void key_set_timeout(struct key *key, unsigned timeout)
 721{
 722	time64_t expiry = 0;
 
 723
 724	/* make the changes with the locks held to prevent races */
 725	down_write(&key->sem);
 726
 727	if (timeout > 0)
 728		expiry = ktime_get_real_seconds() + timeout;
 
 
 729
 730	key->expiry = expiry;
 731	key_schedule_gc(key->expiry + key_gc_delay);
 732
 733	up_write(&key->sem);
 734}
 735EXPORT_SYMBOL_GPL(key_set_timeout);
 736
 737/*
 738 * Unlock a key type locked by key_type_lookup().
 739 */
 740void key_type_put(struct key_type *ktype)
 741{
 742	up_read(&key_types_sem);
 743}
 744
 745/*
 746 * Attempt to update an existing key.
 747 *
 748 * The key is given to us with an incremented refcount that we need to discard
 749 * if we get an error.
 750 */
 751static inline key_ref_t __key_update(key_ref_t key_ref,
 752				     struct key_preparsed_payload *prep)
 753{
 754	struct key *key = key_ref_to_ptr(key_ref);
 755	int ret;
 756
 757	/* need write permission on the key to update it */
 758	ret = key_permission(key_ref, KEY_NEED_WRITE);
 759	if (ret < 0)
 760		goto error;
 761
 762	ret = -EEXIST;
 763	if (!key->type->update)
 764		goto error;
 765
 766	down_write(&key->sem);
 767
 768	ret = key->type->update(key, prep);
 769	if (ret == 0) {
 770		/* Updating a negative key positively instantiates it */
 771		mark_key_instantiated(key, 0);
 772		notify_key(key, NOTIFY_KEY_UPDATED, 0);
 773	}
 774
 775	up_write(&key->sem);
 776
 777	if (ret < 0)
 778		goto error;
 779out:
 780	return key_ref;
 781
 782error:
 783	key_put(key);
 784	key_ref = ERR_PTR(ret);
 785	goto out;
 786}
 787
 788/**
 789 * key_create_or_update - Update or create and instantiate a key.
 790 * @keyring_ref: A pointer to the destination keyring with possession flag.
 791 * @type: The type of key.
 792 * @description: The searchable description for the key.
 793 * @payload: The data to use to instantiate or update the key.
 794 * @plen: The length of @payload.
 795 * @perm: The permissions mask for a new key.
 796 * @flags: The quota flags for a new key.
 797 *
 798 * Search the destination keyring for a key of the same description and if one
 799 * is found, update it, otherwise create and instantiate a new one and create a
 800 * link to it from that keyring.
 801 *
 802 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 803 * concocted.
 804 *
 805 * Returns a pointer to the new key if successful, -ENODEV if the key type
 806 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 807 * caller isn't permitted to modify the keyring or the LSM did not permit
 808 * creation of the key.
 809 *
 810 * On success, the possession flag from the keyring ref will be tacked on to
 811 * the key ref before it is returned.
 812 */
 813key_ref_t key_create_or_update(key_ref_t keyring_ref,
 814			       const char *type,
 815			       const char *description,
 816			       const void *payload,
 817			       size_t plen,
 818			       key_perm_t perm,
 819			       unsigned long flags)
 820{
 821	struct keyring_index_key index_key = {
 822		.description	= description,
 823	};
 824	struct key_preparsed_payload prep;
 825	struct assoc_array_edit *edit = NULL;
 826	const struct cred *cred = current_cred();
 
 827	struct key *keyring, *key = NULL;
 828	key_ref_t key_ref;
 829	int ret;
 830	struct key_restriction *restrict_link = NULL;
 831
 832	/* look up the key type to see if it's one of the registered kernel
 833	 * types */
 834	index_key.type = key_type_lookup(type);
 835	if (IS_ERR(index_key.type)) {
 836		key_ref = ERR_PTR(-ENODEV);
 837		goto error;
 838	}
 839
 840	key_ref = ERR_PTR(-EINVAL);
 841	if (!index_key.type->instantiate ||
 842	    (!index_key.description && !index_key.type->preparse))
 843		goto error_put_type;
 844
 845	keyring = key_ref_to_ptr(keyring_ref);
 846
 847	key_check(keyring);
 848
 849	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 850		restrict_link = keyring->restrict_link;
 851
 852	key_ref = ERR_PTR(-ENOTDIR);
 853	if (keyring->type != &key_type_keyring)
 854		goto error_put_type;
 855
 856	memset(&prep, 0, sizeof(prep));
 857	prep.data = payload;
 858	prep.datalen = plen;
 859	prep.quotalen = index_key.type->def_datalen;
 860	prep.expiry = TIME64_MAX;
 861	if (index_key.type->preparse) {
 862		ret = index_key.type->preparse(&prep);
 863		if (ret < 0) {
 864			key_ref = ERR_PTR(ret);
 865			goto error_free_prep;
 866		}
 867		if (!index_key.description)
 868			index_key.description = prep.description;
 869		key_ref = ERR_PTR(-EINVAL);
 870		if (!index_key.description)
 871			goto error_free_prep;
 872	}
 873	index_key.desc_len = strlen(index_key.description);
 874	key_set_index_key(&index_key);
 875
 876	ret = __key_link_lock(keyring, &index_key);
 877	if (ret < 0) {
 878		key_ref = ERR_PTR(ret);
 879		goto error_free_prep;
 880	}
 881
 882	ret = __key_link_begin(keyring, &index_key, &edit);
 883	if (ret < 0) {
 884		key_ref = ERR_PTR(ret);
 885		goto error_link_end;
 886	}
 887
 888	if (restrict_link && restrict_link->check) {
 889		ret = restrict_link->check(keyring, index_key.type,
 890					   &prep.payload, restrict_link->key);
 891		if (ret < 0) {
 892			key_ref = ERR_PTR(ret);
 893			goto error_link_end;
 894		}
 895	}
 896
 897	/* if we're going to allocate a new key, we're going to have
 898	 * to modify the keyring */
 899	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 900	if (ret < 0) {
 901		key_ref = ERR_PTR(ret);
 902		goto error_link_end;
 903	}
 904
 905	/* if it's possible to update this type of key, search for an existing
 906	 * key of the same type and description in the destination keyring and
 907	 * update that instead if possible
 908	 */
 909	if (index_key.type->update) {
 910		key_ref = find_key_to_update(keyring_ref, &index_key);
 911		if (key_ref)
 
 912			goto found_matching_key;
 913	}
 914
 915	/* if the client doesn't provide, decide on the permissions we want */
 916	if (perm == KEY_PERM_UNDEF) {
 917		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 918		perm |= KEY_USR_VIEW;
 919
 920		if (index_key.type->read)
 921			perm |= KEY_POS_READ;
 922
 923		if (index_key.type == &key_type_keyring ||
 924		    index_key.type->update)
 925			perm |= KEY_POS_WRITE;
 926	}
 927
 928	/* allocate a new key */
 929	key = key_alloc(index_key.type, index_key.description,
 930			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 931	if (IS_ERR(key)) {
 932		key_ref = ERR_CAST(key);
 933		goto error_link_end;
 934	}
 935
 936	/* instantiate it and link it into the target keyring */
 937	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 
 938	if (ret < 0) {
 939		key_put(key);
 940		key_ref = ERR_PTR(ret);
 941		goto error_link_end;
 942	}
 943
 944	ima_post_key_create_or_update(keyring, key, payload, plen,
 945				      flags, true);
 946
 947	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 948
 949error_link_end:
 950	__key_link_end(keyring, &index_key, edit);
 951error_free_prep:
 952	if (index_key.type->preparse)
 953		index_key.type->free_preparse(&prep);
 954error_put_type:
 955	key_type_put(index_key.type);
 956error:
 957	return key_ref;
 958
 959 found_matching_key:
 960	/* we found a matching key, so we're going to try to update it
 961	 * - we can drop the locks first as we have the key pinned
 962	 */
 963	__key_link_end(keyring, &index_key, edit);
 964
 965	key = key_ref_to_ptr(key_ref);
 966	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 967		ret = wait_for_key_construction(key, true);
 968		if (ret < 0) {
 969			key_ref_put(key_ref);
 970			key_ref = ERR_PTR(ret);
 971			goto error_free_prep;
 972		}
 973	}
 974
 975	key_ref = __key_update(key_ref, &prep);
 976
 977	if (!IS_ERR(key_ref))
 978		ima_post_key_create_or_update(keyring, key,
 979					      payload, plen,
 980					      flags, false);
 981
 982	goto error_free_prep;
 983}
 984EXPORT_SYMBOL(key_create_or_update);
 985
 986/**
 987 * key_update - Update a key's contents.
 988 * @key_ref: The pointer (plus possession flag) to the key.
 989 * @payload: The data to be used to update the key.
 990 * @plen: The length of @payload.
 991 *
 992 * Attempt to update the contents of a key with the given payload data.  The
 993 * caller must be granted Write permission on the key.  Negative keys can be
 994 * instantiated by this method.
 995 *
 996 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 997 * type does not support updating.  The key type may return other errors.
 998 */
 999int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1000{
1001	struct key_preparsed_payload prep;
1002	struct key *key = key_ref_to_ptr(key_ref);
1003	int ret;
1004
1005	key_check(key);
1006
1007	/* the key must be writable */
1008	ret = key_permission(key_ref, KEY_NEED_WRITE);
1009	if (ret < 0)
1010		return ret;
1011
1012	/* attempt to update it if supported */
1013	if (!key->type->update)
1014		return -EOPNOTSUPP;
1015
1016	memset(&prep, 0, sizeof(prep));
1017	prep.data = payload;
1018	prep.datalen = plen;
1019	prep.quotalen = key->type->def_datalen;
1020	prep.expiry = TIME64_MAX;
1021	if (key->type->preparse) {
1022		ret = key->type->preparse(&prep);
1023		if (ret < 0)
1024			goto error;
1025	}
1026
1027	down_write(&key->sem);
1028
1029	ret = key->type->update(key, &prep);
1030	if (ret == 0) {
1031		/* Updating a negative key positively instantiates it */
1032		mark_key_instantiated(key, 0);
1033		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1034	}
1035
1036	up_write(&key->sem);
1037
1038error:
1039	if (key->type->preparse)
1040		key->type->free_preparse(&prep);
1041	return ret;
1042}
1043EXPORT_SYMBOL(key_update);
1044
1045/**
1046 * key_revoke - Revoke a key.
1047 * @key: The key to be revoked.
1048 *
1049 * Mark a key as being revoked and ask the type to free up its resources.  The
1050 * revocation timeout is set and the key and all its links will be
1051 * automatically garbage collected after key_gc_delay amount of time if they
1052 * are not manually dealt with first.
1053 */
1054void key_revoke(struct key *key)
1055{
1056	time64_t time;
 
1057
1058	key_check(key);
1059
1060	/* make sure no one's trying to change or use the key when we mark it
1061	 * - we tell lockdep that we might nest because we might be revoking an
1062	 *   authorisation key whilst holding the sem on a key we've just
1063	 *   instantiated
1064	 */
1065	down_write_nested(&key->sem, 1);
1066	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1067		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1068		if (key->type->revoke)
1069			key->type->revoke(key);
1070
1071		/* set the death time to no more than the expiry time */
1072		time = ktime_get_real_seconds();
1073		if (key->revoked_at == 0 || key->revoked_at > time) {
1074			key->revoked_at = time;
1075			key_schedule_gc(key->revoked_at + key_gc_delay);
1076		}
1077	}
1078
1079	up_write(&key->sem);
1080}
1081EXPORT_SYMBOL(key_revoke);
1082
1083/**
1084 * key_invalidate - Invalidate a key.
1085 * @key: The key to be invalidated.
1086 *
1087 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1088 * is ignored by all searches and other operations from this point.
1089 */
1090void key_invalidate(struct key *key)
1091{
1092	kenter("%d", key_serial(key));
1093
1094	key_check(key);
1095
1096	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1097		down_write_nested(&key->sem, 1);
1098		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1099			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1100			key_schedule_gc_links();
1101		}
1102		up_write(&key->sem);
1103	}
1104}
1105EXPORT_SYMBOL(key_invalidate);
1106
1107/**
1108 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1109 * @key: The key to be instantiated
1110 * @prep: The preparsed data to load.
1111 *
1112 * Instantiate a key from preparsed data.  We assume we can just copy the data
1113 * in directly and clear the old pointers.
1114 *
1115 * This can be pointed to directly by the key type instantiate op pointer.
1116 */
1117int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1118{
1119	int ret;
1120
1121	pr_devel("==>%s()\n", __func__);
1122
1123	ret = key_payload_reserve(key, prep->quotalen);
1124	if (ret == 0) {
1125		rcu_assign_keypointer(key, prep->payload.data[0]);
1126		key->payload.data[1] = prep->payload.data[1];
1127		key->payload.data[2] = prep->payload.data[2];
1128		key->payload.data[3] = prep->payload.data[3];
1129		prep->payload.data[0] = NULL;
1130		prep->payload.data[1] = NULL;
1131		prep->payload.data[2] = NULL;
1132		prep->payload.data[3] = NULL;
1133	}
1134	pr_devel("<==%s() = %d\n", __func__, ret);
1135	return ret;
1136}
1137EXPORT_SYMBOL(generic_key_instantiate);
1138
1139/**
1140 * register_key_type - Register a type of key.
1141 * @ktype: The new key type.
1142 *
1143 * Register a new key type.
1144 *
1145 * Returns 0 on success or -EEXIST if a type of this name already exists.
1146 */
1147int register_key_type(struct key_type *ktype)
1148{
1149	struct key_type *p;
1150	int ret;
1151
1152	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1153
1154	ret = -EEXIST;
1155	down_write(&key_types_sem);
1156
1157	/* disallow key types with the same name */
1158	list_for_each_entry(p, &key_types_list, link) {
1159		if (strcmp(p->name, ktype->name) == 0)
1160			goto out;
1161	}
1162
1163	/* store the type */
1164	list_add(&ktype->link, &key_types_list);
1165
1166	pr_notice("Key type %s registered\n", ktype->name);
1167	ret = 0;
1168
1169out:
1170	up_write(&key_types_sem);
1171	return ret;
1172}
1173EXPORT_SYMBOL(register_key_type);
1174
1175/**
1176 * unregister_key_type - Unregister a type of key.
1177 * @ktype: The key type.
1178 *
1179 * Unregister a key type and mark all the extant keys of this type as dead.
1180 * Those keys of this type are then destroyed to get rid of their payloads and
1181 * they and their links will be garbage collected as soon as possible.
1182 */
1183void unregister_key_type(struct key_type *ktype)
1184{
1185	down_write(&key_types_sem);
1186	list_del_init(&ktype->link);
1187	downgrade_write(&key_types_sem);
1188	key_gc_keytype(ktype);
1189	pr_notice("Key type %s unregistered\n", ktype->name);
1190	up_read(&key_types_sem);
1191}
1192EXPORT_SYMBOL(unregister_key_type);
1193
1194/*
1195 * Initialise the key management state.
1196 */
1197void __init key_init(void)
1198{
1199	/* allocate a slab in which we can store keys */
1200	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1201			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1202
1203	/* add the special key types */
1204	list_add_tail(&key_type_keyring.link, &key_types_list);
1205	list_add_tail(&key_type_dead.link, &key_types_list);
1206	list_add_tail(&key_type_user.link, &key_types_list);
1207	list_add_tail(&key_type_logon.link, &key_types_list);
1208
1209	/* record the root user tracking */
1210	rb_link_node(&root_key_user.node,
1211		     NULL,
1212		     &key_user_tree.rb_node);
1213
1214	rb_insert_color(&root_key_user.node,
1215			&key_user_tree);
1216}
v3.5.6
 
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
 
  20#include <linux/err.h>
  21#include <linux/user_namespace.h>
  22#include "internal.h"
  23
  24struct kmem_cache *key_jar;
  25struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  26DEFINE_SPINLOCK(key_serial_lock);
  27
  28struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  29DEFINE_SPINLOCK(key_user_lock);
  30
  31unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
  32unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
  33unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  34unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  35
  36static LIST_HEAD(key_types_list);
  37static DECLARE_RWSEM(key_types_sem);
  38
  39/* We serialise key instantiation and link */
  40DEFINE_MUTEX(key_construction_mutex);
  41
  42#ifdef KEY_DEBUGGING
  43void __key_check(const struct key *key)
  44{
  45	printk("__key_check: key %p {%08x} should be {%08x}\n",
  46	       key, key->magic, KEY_DEBUG_MAGIC);
  47	BUG();
  48}
  49#endif
  50
  51/*
  52 * Get the key quota record for a user, allocating a new record if one doesn't
  53 * already exist.
  54 */
  55struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
  56{
  57	struct key_user *candidate = NULL, *user;
  58	struct rb_node *parent = NULL;
  59	struct rb_node **p;
  60
  61try_again:
 
  62	p = &key_user_tree.rb_node;
  63	spin_lock(&key_user_lock);
  64
  65	/* search the tree for a user record with a matching UID */
  66	while (*p) {
  67		parent = *p;
  68		user = rb_entry(parent, struct key_user, node);
  69
  70		if (uid < user->uid)
  71			p = &(*p)->rb_left;
  72		else if (uid > user->uid)
  73			p = &(*p)->rb_right;
  74		else if (user_ns < user->user_ns)
  75			p = &(*p)->rb_left;
  76		else if (user_ns > user->user_ns)
  77			p = &(*p)->rb_right;
  78		else
  79			goto found;
  80	}
  81
  82	/* if we get here, we failed to find a match in the tree */
  83	if (!candidate) {
  84		/* allocate a candidate user record if we don't already have
  85		 * one */
  86		spin_unlock(&key_user_lock);
  87
  88		user = NULL;
  89		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  90		if (unlikely(!candidate))
  91			goto out;
  92
  93		/* the allocation may have scheduled, so we need to repeat the
  94		 * search lest someone else added the record whilst we were
  95		 * asleep */
  96		goto try_again;
  97	}
  98
  99	/* if we get here, then the user record still hadn't appeared on the
 100	 * second pass - so we use the candidate record */
 101	atomic_set(&candidate->usage, 1);
 102	atomic_set(&candidate->nkeys, 0);
 103	atomic_set(&candidate->nikeys, 0);
 104	candidate->uid = uid;
 105	candidate->user_ns = get_user_ns(user_ns);
 106	candidate->qnkeys = 0;
 107	candidate->qnbytes = 0;
 108	spin_lock_init(&candidate->lock);
 109	mutex_init(&candidate->cons_lock);
 110
 111	rb_link_node(&candidate->node, parent, p);
 112	rb_insert_color(&candidate->node, &key_user_tree);
 113	spin_unlock(&key_user_lock);
 114	user = candidate;
 115	goto out;
 116
 117	/* okay - we found a user record for this UID */
 118found:
 119	atomic_inc(&user->usage);
 120	spin_unlock(&key_user_lock);
 121	kfree(candidate);
 122out:
 123	return user;
 124}
 125
 126/*
 127 * Dispose of a user structure
 128 */
 129void key_user_put(struct key_user *user)
 130{
 131	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 132		rb_erase(&user->node, &key_user_tree);
 133		spin_unlock(&key_user_lock);
 134		put_user_ns(user->user_ns);
 135
 136		kfree(user);
 137	}
 138}
 139
 140/*
 141 * Allocate a serial number for a key.  These are assigned randomly to avoid
 142 * security issues through covert channel problems.
 143 */
 144static inline void key_alloc_serial(struct key *key)
 145{
 146	struct rb_node *parent, **p;
 147	struct key *xkey;
 148
 149	/* propose a random serial number and look for a hole for it in the
 150	 * serial number tree */
 151	do {
 152		get_random_bytes(&key->serial, sizeof(key->serial));
 153
 154		key->serial >>= 1; /* negative numbers are not permitted */
 155	} while (key->serial < 3);
 156
 157	spin_lock(&key_serial_lock);
 158
 159attempt_insertion:
 160	parent = NULL;
 161	p = &key_serial_tree.rb_node;
 162
 163	while (*p) {
 164		parent = *p;
 165		xkey = rb_entry(parent, struct key, serial_node);
 166
 167		if (key->serial < xkey->serial)
 168			p = &(*p)->rb_left;
 169		else if (key->serial > xkey->serial)
 170			p = &(*p)->rb_right;
 171		else
 172			goto serial_exists;
 173	}
 174
 175	/* we've found a suitable hole - arrange for this key to occupy it */
 176	rb_link_node(&key->serial_node, parent, p);
 177	rb_insert_color(&key->serial_node, &key_serial_tree);
 178
 179	spin_unlock(&key_serial_lock);
 180	return;
 181
 182	/* we found a key with the proposed serial number - walk the tree from
 183	 * that point looking for the next unused serial number */
 184serial_exists:
 185	for (;;) {
 186		key->serial++;
 187		if (key->serial < 3) {
 188			key->serial = 3;
 189			goto attempt_insertion;
 190		}
 191
 192		parent = rb_next(parent);
 193		if (!parent)
 194			goto attempt_insertion;
 195
 196		xkey = rb_entry(parent, struct key, serial_node);
 197		if (key->serial < xkey->serial)
 198			goto attempt_insertion;
 199	}
 200}
 201
 202/**
 203 * key_alloc - Allocate a key of the specified type.
 204 * @type: The type of key to allocate.
 205 * @desc: The key description to allow the key to be searched out.
 206 * @uid: The owner of the new key.
 207 * @gid: The group ID for the new key's group permissions.
 208 * @cred: The credentials specifying UID namespace.
 209 * @perm: The permissions mask of the new key.
 210 * @flags: Flags specifying quota properties.
 
 211 *
 212 * Allocate a key of the specified type with the attributes given.  The key is
 213 * returned in an uninstantiated state and the caller needs to instantiate the
 214 * key before returning.
 215 *
 
 
 
 216 * The user's key count quota is updated to reflect the creation of the key and
 217 * the user's key data quota has the default for the key type reserved.  The
 218 * instantiation function should amend this as necessary.  If insufficient
 219 * quota is available, -EDQUOT will be returned.
 220 *
 221 * The LSM security modules can prevent a key being created, in which case
 222 * -EACCES will be returned.
 223 *
 224 * Returns a pointer to the new key if successful and an error code otherwise.
 225 *
 226 * Note that the caller needs to ensure the key type isn't uninstantiated.
 227 * Internally this can be done by locking key_types_sem.  Externally, this can
 228 * be done by either never unregistering the key type, or making sure
 229 * key_alloc() calls don't race with module unloading.
 230 */
 231struct key *key_alloc(struct key_type *type, const char *desc,
 232		      uid_t uid, gid_t gid, const struct cred *cred,
 233		      key_perm_t perm, unsigned long flags)
 
 234{
 235	struct key_user *user = NULL;
 236	struct key *key;
 237	size_t desclen, quotalen;
 238	int ret;
 239
 240	key = ERR_PTR(-EINVAL);
 241	if (!desc || !*desc)
 242		goto error;
 243
 244	if (type->vet_description) {
 245		ret = type->vet_description(desc);
 246		if (ret < 0) {
 247			key = ERR_PTR(ret);
 248			goto error;
 249		}
 250	}
 251
 252	desclen = strlen(desc) + 1;
 253	quotalen = desclen + type->def_datalen;
 254
 255	/* get hold of the key tracking for this user */
 256	user = key_user_lookup(uid, cred->user_ns);
 257	if (!user)
 258		goto no_memory_1;
 259
 260	/* check that the user's quota permits allocation of another key and
 261	 * its description */
 262	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 263		unsigned maxkeys = (uid == 0) ?
 264			key_quota_root_maxkeys : key_quota_maxkeys;
 265		unsigned maxbytes = (uid == 0) ?
 266			key_quota_root_maxbytes : key_quota_maxbytes;
 267
 268		spin_lock(&user->lock);
 269		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 270			if (user->qnkeys + 1 >= maxkeys ||
 271			    user->qnbytes + quotalen >= maxbytes ||
 272			    user->qnbytes + quotalen < user->qnbytes)
 273				goto no_quota;
 274		}
 275
 276		user->qnkeys++;
 277		user->qnbytes += quotalen;
 278		spin_unlock(&user->lock);
 279	}
 280
 281	/* allocate and initialise the key and its description */
 282	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
 283	if (!key)
 284		goto no_memory_2;
 285
 286	if (desc) {
 287		key->description = kmemdup(desc, desclen, GFP_KERNEL);
 288		if (!key->description)
 289			goto no_memory_3;
 290	}
 
 291
 292	atomic_set(&key->usage, 1);
 293	init_rwsem(&key->sem);
 294	lockdep_set_class(&key->sem, &type->lock_class);
 295	key->type = type;
 296	key->user = user;
 297	key->quotalen = quotalen;
 298	key->datalen = type->def_datalen;
 299	key->uid = uid;
 300	key->gid = gid;
 301	key->perm = perm;
 302	key->flags = 0;
 303	key->expiry = 0;
 304	key->payload.data = NULL;
 305	key->security = NULL;
 306
 307	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 308		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 309
 310	memset(&key->type_data, 0, sizeof(key->type_data));
 
 
 311
 312#ifdef KEY_DEBUGGING
 313	key->magic = KEY_DEBUG_MAGIC;
 314#endif
 315
 316	/* let the security module know about the key */
 317	ret = security_key_alloc(key, cred, flags);
 318	if (ret < 0)
 319		goto security_error;
 320
 321	/* publish the key by giving it a serial number */
 
 322	atomic_inc(&user->nkeys);
 323	key_alloc_serial(key);
 324
 325error:
 326	return key;
 327
 328security_error:
 329	kfree(key->description);
 330	kmem_cache_free(key_jar, key);
 331	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 332		spin_lock(&user->lock);
 333		user->qnkeys--;
 334		user->qnbytes -= quotalen;
 335		spin_unlock(&user->lock);
 336	}
 337	key_user_put(user);
 338	key = ERR_PTR(ret);
 339	goto error;
 340
 341no_memory_3:
 342	kmem_cache_free(key_jar, key);
 343no_memory_2:
 344	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 345		spin_lock(&user->lock);
 346		user->qnkeys--;
 347		user->qnbytes -= quotalen;
 348		spin_unlock(&user->lock);
 349	}
 350	key_user_put(user);
 351no_memory_1:
 352	key = ERR_PTR(-ENOMEM);
 353	goto error;
 354
 355no_quota:
 356	spin_unlock(&user->lock);
 357	key_user_put(user);
 358	key = ERR_PTR(-EDQUOT);
 359	goto error;
 360}
 361EXPORT_SYMBOL(key_alloc);
 362
 363/**
 364 * key_payload_reserve - Adjust data quota reservation for the key's payload
 365 * @key: The key to make the reservation for.
 366 * @datalen: The amount of data payload the caller now wants.
 367 *
 368 * Adjust the amount of the owning user's key data quota that a key reserves.
 369 * If the amount is increased, then -EDQUOT may be returned if there isn't
 370 * enough free quota available.
 371 *
 372 * If successful, 0 is returned.
 373 */
 374int key_payload_reserve(struct key *key, size_t datalen)
 375{
 376	int delta = (int)datalen - key->datalen;
 377	int ret = 0;
 378
 379	key_check(key);
 380
 381	/* contemplate the quota adjustment */
 382	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 383		unsigned maxbytes = (key->user->uid == 0) ?
 384			key_quota_root_maxbytes : key_quota_maxbytes;
 385
 386		spin_lock(&key->user->lock);
 387
 388		if (delta > 0 &&
 389		    (key->user->qnbytes + delta >= maxbytes ||
 390		     key->user->qnbytes + delta < key->user->qnbytes)) {
 391			ret = -EDQUOT;
 392		}
 393		else {
 394			key->user->qnbytes += delta;
 395			key->quotalen += delta;
 396		}
 397		spin_unlock(&key->user->lock);
 398	}
 399
 400	/* change the recorded data length if that didn't generate an error */
 401	if (ret == 0)
 402		key->datalen = datalen;
 403
 404	return ret;
 405}
 406EXPORT_SYMBOL(key_payload_reserve);
 407
 408/*
 
 
 
 
 
 
 
 
 
 
 
 
 409 * Instantiate a key and link it into the target keyring atomically.  Must be
 410 * called with the target keyring's semaphore writelocked.  The target key's
 411 * semaphore need not be locked as instantiation is serialised by
 412 * key_construction_mutex.
 413 */
 414static int __key_instantiate_and_link(struct key *key,
 415				      const void *data,
 416				      size_t datalen,
 417				      struct key *keyring,
 418				      struct key *authkey,
 419				      unsigned long *_prealloc)
 420{
 421	int ret, awaken;
 422
 423	key_check(key);
 424	key_check(keyring);
 425
 426	awaken = 0;
 427	ret = -EBUSY;
 428
 429	mutex_lock(&key_construction_mutex);
 430
 431	/* can't instantiate twice */
 432	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 433		/* instantiate the key */
 434		ret = key->type->instantiate(key, data, datalen);
 435
 436		if (ret == 0) {
 437			/* mark the key as being instantiated */
 438			atomic_inc(&key->user->nikeys);
 439			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 
 440
 441			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 442				awaken = 1;
 443
 444			/* and link it into the destination keyring */
 445			if (keyring)
 446				__key_link(keyring, key, _prealloc);
 
 
 
 
 447
 448			/* disable the authorisation key */
 449			if (authkey)
 450				key_revoke(authkey);
 
 
 
 
 
 451		}
 452	}
 453
 454	mutex_unlock(&key_construction_mutex);
 455
 456	/* wake up anyone waiting for a key to be constructed */
 457	if (awaken)
 458		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 459
 460	return ret;
 461}
 462
 463/**
 464 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 465 * @key: The key to instantiate.
 466 * @data: The data to use to instantiate the keyring.
 467 * @datalen: The length of @data.
 468 * @keyring: Keyring to create a link in on success (or NULL).
 469 * @authkey: The authorisation token permitting instantiation.
 470 *
 471 * Instantiate a key that's in the uninstantiated state using the provided data
 472 * and, if successful, link it in to the destination keyring if one is
 473 * supplied.
 474 *
 475 * If successful, 0 is returned, the authorisation token is revoked and anyone
 476 * waiting for the key is woken up.  If the key was already instantiated,
 477 * -EBUSY will be returned.
 478 */
 479int key_instantiate_and_link(struct key *key,
 480			     const void *data,
 481			     size_t datalen,
 482			     struct key *keyring,
 483			     struct key *authkey)
 484{
 485	unsigned long prealloc;
 
 486	int ret;
 487
 
 
 
 
 
 
 
 
 
 
 
 488	if (keyring) {
 489		ret = __key_link_begin(keyring, key->type, key->description,
 490				       &prealloc);
 
 
 
 491		if (ret < 0)
 492			return ret;
 
 
 
 
 
 
 
 
 
 493	}
 494
 495	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
 496					 &prealloc);
 497
 
 498	if (keyring)
 499		__key_link_end(keyring, key->type, prealloc);
 500
 
 
 
 501	return ret;
 502}
 503
 504EXPORT_SYMBOL(key_instantiate_and_link);
 505
 506/**
 507 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 508 * @key: The key to instantiate.
 509 * @timeout: The timeout on the negative key.
 510 * @error: The error to return when the key is hit.
 511 * @keyring: Keyring to create a link in on success (or NULL).
 512 * @authkey: The authorisation token permitting instantiation.
 513 *
 514 * Negatively instantiate a key that's in the uninstantiated state and, if
 515 * successful, set its timeout and stored error and link it in to the
 516 * destination keyring if one is supplied.  The key and any links to the key
 517 * will be automatically garbage collected after the timeout expires.
 518 *
 519 * Negative keys are used to rate limit repeated request_key() calls by causing
 520 * them to return the stored error code (typically ENOKEY) until the negative
 521 * key expires.
 522 *
 523 * If successful, 0 is returned, the authorisation token is revoked and anyone
 524 * waiting for the key is woken up.  If the key was already instantiated,
 525 * -EBUSY will be returned.
 526 */
 527int key_reject_and_link(struct key *key,
 528			unsigned timeout,
 529			unsigned error,
 530			struct key *keyring,
 531			struct key *authkey)
 532{
 533	unsigned long prealloc;
 534	struct timespec now;
 535	int ret, awaken, link_ret = 0;
 536
 537	key_check(key);
 538	key_check(keyring);
 539
 540	awaken = 0;
 541	ret = -EBUSY;
 542
 543	if (keyring)
 544		link_ret = __key_link_begin(keyring, key->type,
 545					    key->description, &prealloc);
 
 
 
 
 
 
 
 
 546
 547	mutex_lock(&key_construction_mutex);
 548
 549	/* can't instantiate twice */
 550	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 551		/* mark the key as being negatively instantiated */
 552		atomic_inc(&key->user->nikeys);
 553		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 554		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 555		key->type_data.reject_error = -error;
 556		now = current_kernel_time();
 557		key->expiry = now.tv_sec + timeout;
 558		key_schedule_gc(key->expiry + key_gc_delay);
 559
 560		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 561			awaken = 1;
 562
 563		ret = 0;
 564
 565		/* and link it into the destination keyring */
 566		if (keyring && link_ret == 0)
 567			__key_link(keyring, key, &prealloc);
 568
 569		/* disable the authorisation key */
 570		if (authkey)
 571			key_revoke(authkey);
 572	}
 573
 574	mutex_unlock(&key_construction_mutex);
 575
 576	if (keyring)
 577		__key_link_end(keyring, key->type, prealloc);
 578
 579	/* wake up anyone waiting for a key to be constructed */
 580	if (awaken)
 581		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 582
 583	return ret == 0 ? link_ret : ret;
 584}
 585EXPORT_SYMBOL(key_reject_and_link);
 586
 587/**
 588 * key_put - Discard a reference to a key.
 589 * @key: The key to discard a reference from.
 590 *
 591 * Discard a reference to a key, and when all the references are gone, we
 592 * schedule the cleanup task to come and pull it out of the tree in process
 593 * context at some later time.
 594 */
 595void key_put(struct key *key)
 596{
 597	if (key) {
 598		key_check(key);
 599
 600		if (atomic_dec_and_test(&key->usage))
 601			queue_work(system_nrt_wq, &key_gc_work);
 602	}
 603}
 604EXPORT_SYMBOL(key_put);
 605
 606/*
 607 * Find a key by its serial number.
 608 */
 609struct key *key_lookup(key_serial_t id)
 610{
 611	struct rb_node *n;
 612	struct key *key;
 613
 614	spin_lock(&key_serial_lock);
 615
 616	/* search the tree for the specified key */
 617	n = key_serial_tree.rb_node;
 618	while (n) {
 619		key = rb_entry(n, struct key, serial_node);
 620
 621		if (id < key->serial)
 622			n = n->rb_left;
 623		else if (id > key->serial)
 624			n = n->rb_right;
 625		else
 626			goto found;
 627	}
 628
 629not_found:
 630	key = ERR_PTR(-ENOKEY);
 631	goto error;
 632
 633found:
 634	/* pretend it doesn't exist if it is awaiting deletion */
 635	if (atomic_read(&key->usage) == 0)
 
 
 636		goto not_found;
 637
 638	/* this races with key_put(), but that doesn't matter since key_put()
 639	 * doesn't actually change the key
 640	 */
 641	atomic_inc(&key->usage);
 642
 643error:
 644	spin_unlock(&key_serial_lock);
 645	return key;
 646}
 647
 648/*
 649 * Find and lock the specified key type against removal.
 650 *
 651 * We return with the sem read-locked if successful.  If the type wasn't
 652 * available -ENOKEY is returned instead.
 653 */
 654struct key_type *key_type_lookup(const char *type)
 655{
 656	struct key_type *ktype;
 657
 658	down_read(&key_types_sem);
 659
 660	/* look up the key type to see if it's one of the registered kernel
 661	 * types */
 662	list_for_each_entry(ktype, &key_types_list, link) {
 663		if (strcmp(ktype->name, type) == 0)
 664			goto found_kernel_type;
 665	}
 666
 667	up_read(&key_types_sem);
 668	ktype = ERR_PTR(-ENOKEY);
 669
 670found_kernel_type:
 671	return ktype;
 672}
 673
 674void key_set_timeout(struct key *key, unsigned timeout)
 675{
 676	struct timespec now;
 677	time_t expiry = 0;
 678
 679	/* make the changes with the locks held to prevent races */
 680	down_write(&key->sem);
 681
 682	if (timeout > 0) {
 683		now = current_kernel_time();
 684		expiry = now.tv_sec + timeout;
 685	}
 686
 687	key->expiry = expiry;
 688	key_schedule_gc(key->expiry + key_gc_delay);
 689
 690	up_write(&key->sem);
 691}
 692EXPORT_SYMBOL_GPL(key_set_timeout);
 693
 694/*
 695 * Unlock a key type locked by key_type_lookup().
 696 */
 697void key_type_put(struct key_type *ktype)
 698{
 699	up_read(&key_types_sem);
 700}
 701
 702/*
 703 * Attempt to update an existing key.
 704 *
 705 * The key is given to us with an incremented refcount that we need to discard
 706 * if we get an error.
 707 */
 708static inline key_ref_t __key_update(key_ref_t key_ref,
 709				     const void *payload, size_t plen)
 710{
 711	struct key *key = key_ref_to_ptr(key_ref);
 712	int ret;
 713
 714	/* need write permission on the key to update it */
 715	ret = key_permission(key_ref, KEY_WRITE);
 716	if (ret < 0)
 717		goto error;
 718
 719	ret = -EEXIST;
 720	if (!key->type->update)
 721		goto error;
 722
 723	down_write(&key->sem);
 724
 725	ret = key->type->update(key, payload, plen);
 726	if (ret == 0)
 727		/* updating a negative key instantiates it */
 728		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 729
 730	up_write(&key->sem);
 731
 732	if (ret < 0)
 733		goto error;
 734out:
 735	return key_ref;
 736
 737error:
 738	key_put(key);
 739	key_ref = ERR_PTR(ret);
 740	goto out;
 741}
 742
 743/**
 744 * key_create_or_update - Update or create and instantiate a key.
 745 * @keyring_ref: A pointer to the destination keyring with possession flag.
 746 * @type: The type of key.
 747 * @description: The searchable description for the key.
 748 * @payload: The data to use to instantiate or update the key.
 749 * @plen: The length of @payload.
 750 * @perm: The permissions mask for a new key.
 751 * @flags: The quota flags for a new key.
 752 *
 753 * Search the destination keyring for a key of the same description and if one
 754 * is found, update it, otherwise create and instantiate a new one and create a
 755 * link to it from that keyring.
 756 *
 757 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 758 * concocted.
 759 *
 760 * Returns a pointer to the new key if successful, -ENODEV if the key type
 761 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 762 * caller isn't permitted to modify the keyring or the LSM did not permit
 763 * creation of the key.
 764 *
 765 * On success, the possession flag from the keyring ref will be tacked on to
 766 * the key ref before it is returned.
 767 */
 768key_ref_t key_create_or_update(key_ref_t keyring_ref,
 769			       const char *type,
 770			       const char *description,
 771			       const void *payload,
 772			       size_t plen,
 773			       key_perm_t perm,
 774			       unsigned long flags)
 775{
 776	unsigned long prealloc;
 
 
 
 
 777	const struct cred *cred = current_cred();
 778	struct key_type *ktype;
 779	struct key *keyring, *key = NULL;
 780	key_ref_t key_ref;
 781	int ret;
 
 782
 783	/* look up the key type to see if it's one of the registered kernel
 784	 * types */
 785	ktype = key_type_lookup(type);
 786	if (IS_ERR(ktype)) {
 787		key_ref = ERR_PTR(-ENODEV);
 788		goto error;
 789	}
 790
 791	key_ref = ERR_PTR(-EINVAL);
 792	if (!ktype->match || !ktype->instantiate)
 793		goto error_2;
 
 794
 795	keyring = key_ref_to_ptr(keyring_ref);
 796
 797	key_check(keyring);
 798
 
 
 
 799	key_ref = ERR_PTR(-ENOTDIR);
 800	if (keyring->type != &key_type_keyring)
 801		goto error_2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803	ret = __key_link_begin(keyring, ktype, description, &prealloc);
 804	if (ret < 0)
 805		goto error_2;
 
 
 
 
 
 806
 807	/* if we're going to allocate a new key, we're going to have
 808	 * to modify the keyring */
 809	ret = key_permission(keyring_ref, KEY_WRITE);
 810	if (ret < 0) {
 811		key_ref = ERR_PTR(ret);
 812		goto error_3;
 813	}
 814
 815	/* if it's possible to update this type of key, search for an existing
 816	 * key of the same type and description in the destination keyring and
 817	 * update that instead if possible
 818	 */
 819	if (ktype->update) {
 820		key_ref = __keyring_search_one(keyring_ref, ktype, description,
 821					       0);
 822		if (!IS_ERR(key_ref))
 823			goto found_matching_key;
 824	}
 825
 826	/* if the client doesn't provide, decide on the permissions we want */
 827	if (perm == KEY_PERM_UNDEF) {
 828		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 829		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
 830
 831		if (ktype->read)
 832			perm |= KEY_POS_READ | KEY_USR_READ;
 833
 834		if (ktype == &key_type_keyring || ktype->update)
 835			perm |= KEY_USR_WRITE;
 
 836	}
 837
 838	/* allocate a new key */
 839	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
 840			perm, flags);
 841	if (IS_ERR(key)) {
 842		key_ref = ERR_CAST(key);
 843		goto error_3;
 844	}
 845
 846	/* instantiate it and link it into the target keyring */
 847	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
 848					 &prealloc);
 849	if (ret < 0) {
 850		key_put(key);
 851		key_ref = ERR_PTR(ret);
 852		goto error_3;
 853	}
 854
 
 
 
 855	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 856
 857 error_3:
 858	__key_link_end(keyring, ktype, prealloc);
 859 error_2:
 860	key_type_put(ktype);
 861 error:
 
 
 
 862	return key_ref;
 863
 864 found_matching_key:
 865	/* we found a matching key, so we're going to try to update it
 866	 * - we can drop the locks first as we have the key pinned
 867	 */
 868	__key_link_end(keyring, ktype, prealloc);
 869	key_type_put(ktype);
 
 
 
 
 
 
 
 
 
 
 
 870
 871	key_ref = __key_update(key_ref, payload, plen);
 872	goto error;
 
 
 
 
 873}
 874EXPORT_SYMBOL(key_create_or_update);
 875
 876/**
 877 * key_update - Update a key's contents.
 878 * @key_ref: The pointer (plus possession flag) to the key.
 879 * @payload: The data to be used to update the key.
 880 * @plen: The length of @payload.
 881 *
 882 * Attempt to update the contents of a key with the given payload data.  The
 883 * caller must be granted Write permission on the key.  Negative keys can be
 884 * instantiated by this method.
 885 *
 886 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 887 * type does not support updating.  The key type may return other errors.
 888 */
 889int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 890{
 
 891	struct key *key = key_ref_to_ptr(key_ref);
 892	int ret;
 893
 894	key_check(key);
 895
 896	/* the key must be writable */
 897	ret = key_permission(key_ref, KEY_WRITE);
 898	if (ret < 0)
 899		goto error;
 900
 901	/* attempt to update it if supported */
 902	ret = -EOPNOTSUPP;
 903	if (key->type->update) {
 904		down_write(&key->sem);
 905
 906		ret = key->type->update(key, payload, plen);
 907		if (ret == 0)
 908			/* updating a negative key instantiates it */
 909			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 
 
 
 910
 911		up_write(&key->sem);
 
 
 
 
 
 
 912	}
 913
 914 error:
 
 
 
 
 915	return ret;
 916}
 917EXPORT_SYMBOL(key_update);
 918
 919/**
 920 * key_revoke - Revoke a key.
 921 * @key: The key to be revoked.
 922 *
 923 * Mark a key as being revoked and ask the type to free up its resources.  The
 924 * revocation timeout is set and the key and all its links will be
 925 * automatically garbage collected after key_gc_delay amount of time if they
 926 * are not manually dealt with first.
 927 */
 928void key_revoke(struct key *key)
 929{
 930	struct timespec now;
 931	time_t time;
 932
 933	key_check(key);
 934
 935	/* make sure no one's trying to change or use the key when we mark it
 936	 * - we tell lockdep that we might nest because we might be revoking an
 937	 *   authorisation key whilst holding the sem on a key we've just
 938	 *   instantiated
 939	 */
 940	down_write_nested(&key->sem, 1);
 941	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 942	    key->type->revoke)
 943		key->type->revoke(key);
 944
 945	/* set the death time to no more than the expiry time */
 946	now = current_kernel_time();
 947	time = now.tv_sec;
 948	if (key->revoked_at == 0 || key->revoked_at > time) {
 949		key->revoked_at = time;
 950		key_schedule_gc(key->revoked_at + key_gc_delay);
 
 951	}
 952
 953	up_write(&key->sem);
 954}
 955EXPORT_SYMBOL(key_revoke);
 956
 957/**
 958 * key_invalidate - Invalidate a key.
 959 * @key: The key to be invalidated.
 960 *
 961 * Mark a key as being invalidated and have it cleaned up immediately.  The key
 962 * is ignored by all searches and other operations from this point.
 963 */
 964void key_invalidate(struct key *key)
 965{
 966	kenter("%d", key_serial(key));
 967
 968	key_check(key);
 969
 970	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
 971		down_write_nested(&key->sem, 1);
 972		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
 
 973			key_schedule_gc_links();
 
 974		up_write(&key->sem);
 975	}
 976}
 977EXPORT_SYMBOL(key_invalidate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978
 979/**
 980 * register_key_type - Register a type of key.
 981 * @ktype: The new key type.
 982 *
 983 * Register a new key type.
 984 *
 985 * Returns 0 on success or -EEXIST if a type of this name already exists.
 986 */
 987int register_key_type(struct key_type *ktype)
 988{
 989	struct key_type *p;
 990	int ret;
 991
 992	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
 993
 994	ret = -EEXIST;
 995	down_write(&key_types_sem);
 996
 997	/* disallow key types with the same name */
 998	list_for_each_entry(p, &key_types_list, link) {
 999		if (strcmp(p->name, ktype->name) == 0)
1000			goto out;
1001	}
1002
1003	/* store the type */
1004	list_add(&ktype->link, &key_types_list);
1005
1006	pr_notice("Key type %s registered\n", ktype->name);
1007	ret = 0;
1008
1009out:
1010	up_write(&key_types_sem);
1011	return ret;
1012}
1013EXPORT_SYMBOL(register_key_type);
1014
1015/**
1016 * unregister_key_type - Unregister a type of key.
1017 * @ktype: The key type.
1018 *
1019 * Unregister a key type and mark all the extant keys of this type as dead.
1020 * Those keys of this type are then destroyed to get rid of their payloads and
1021 * they and their links will be garbage collected as soon as possible.
1022 */
1023void unregister_key_type(struct key_type *ktype)
1024{
1025	down_write(&key_types_sem);
1026	list_del_init(&ktype->link);
1027	downgrade_write(&key_types_sem);
1028	key_gc_keytype(ktype);
1029	pr_notice("Key type %s unregistered\n", ktype->name);
1030	up_read(&key_types_sem);
1031}
1032EXPORT_SYMBOL(unregister_key_type);
1033
1034/*
1035 * Initialise the key management state.
1036 */
1037void __init key_init(void)
1038{
1039	/* allocate a slab in which we can store keys */
1040	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1041			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1042
1043	/* add the special key types */
1044	list_add_tail(&key_type_keyring.link, &key_types_list);
1045	list_add_tail(&key_type_dead.link, &key_types_list);
1046	list_add_tail(&key_type_user.link, &key_types_list);
1047	list_add_tail(&key_type_logon.link, &key_types_list);
1048
1049	/* record the root user tracking */
1050	rb_link_node(&root_key_user.node,
1051		     NULL,
1052		     &key_user_tree.rb_node);
1053
1054	rb_insert_color(&root_key_user.node,
1055			&key_user_tree);
1056}