Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_IA64_PROCESSOR_H
3#define _ASM_IA64_PROCESSOR_H
4
5/*
6 * Copyright (C) 1998-2004 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
10 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
11 *
12 * 11/24/98 S.Eranian added ia64_set_iva()
13 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API
14 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support
15 */
16
17
18#include <asm/intrinsics.h>
19#include <asm/kregs.h>
20#include <asm/ptrace.h>
21#include <asm/ustack.h>
22
23#define IA64_NUM_PHYS_STACK_REG 96
24#define IA64_NUM_DBG_REGS 8
25
26#define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000)
27#define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000)
28
29/*
30 * TASK_SIZE really is a mis-named. It really is the maximum user
31 * space address (plus one). On IA-64, there are five regions of 2TB
32 * each (assuming 8KB page size), for a total of 8TB of user virtual
33 * address space.
34 */
35#define TASK_SIZE DEFAULT_TASK_SIZE
36
37/*
38 * This decides where the kernel will search for a free chunk of vm
39 * space during mmap's.
40 */
41#define TASK_UNMAPPED_BASE (current->thread.map_base)
42
43#define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */
44#define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */
45#define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */
46#define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */
47#define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */
48#define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration
49 sync at ctx sw */
50#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */
51#define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */
52
53#define IA64_THREAD_UAC_SHIFT 3
54#define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
55#define IA64_THREAD_FPEMU_SHIFT 6
56#define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
57
58
59/*
60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good
61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
63 */
64#define IA64_NSEC_PER_CYC_SHIFT 30
65
66#ifndef __ASSEMBLY__
67
68#include <linux/cache.h>
69#include <linux/compiler.h>
70#include <linux/threads.h>
71#include <linux/types.h>
72#include <linux/bitops.h>
73
74#include <asm/fpu.h>
75#include <asm/page.h>
76#include <asm/percpu.h>
77#include <asm/rse.h>
78#include <asm/unwind.h>
79#include <linux/atomic.h>
80#ifdef CONFIG_NUMA
81#include <asm/nodedata.h>
82#endif
83
84/* like above but expressed as bitfields for more efficient access: */
85struct ia64_psr {
86 __u64 reserved0 : 1;
87 __u64 be : 1;
88 __u64 up : 1;
89 __u64 ac : 1;
90 __u64 mfl : 1;
91 __u64 mfh : 1;
92 __u64 reserved1 : 7;
93 __u64 ic : 1;
94 __u64 i : 1;
95 __u64 pk : 1;
96 __u64 reserved2 : 1;
97 __u64 dt : 1;
98 __u64 dfl : 1;
99 __u64 dfh : 1;
100 __u64 sp : 1;
101 __u64 pp : 1;
102 __u64 di : 1;
103 __u64 si : 1;
104 __u64 db : 1;
105 __u64 lp : 1;
106 __u64 tb : 1;
107 __u64 rt : 1;
108 __u64 reserved3 : 4;
109 __u64 cpl : 2;
110 __u64 is : 1;
111 __u64 mc : 1;
112 __u64 it : 1;
113 __u64 id : 1;
114 __u64 da : 1;
115 __u64 dd : 1;
116 __u64 ss : 1;
117 __u64 ri : 2;
118 __u64 ed : 1;
119 __u64 bn : 1;
120 __u64 reserved4 : 19;
121};
122
123union ia64_isr {
124 __u64 val;
125 struct {
126 __u64 code : 16;
127 __u64 vector : 8;
128 __u64 reserved1 : 8;
129 __u64 x : 1;
130 __u64 w : 1;
131 __u64 r : 1;
132 __u64 na : 1;
133 __u64 sp : 1;
134 __u64 rs : 1;
135 __u64 ir : 1;
136 __u64 ni : 1;
137 __u64 so : 1;
138 __u64 ei : 2;
139 __u64 ed : 1;
140 __u64 reserved2 : 20;
141 };
142};
143
144union ia64_lid {
145 __u64 val;
146 struct {
147 __u64 rv : 16;
148 __u64 eid : 8;
149 __u64 id : 8;
150 __u64 ig : 32;
151 };
152};
153
154union ia64_tpr {
155 __u64 val;
156 struct {
157 __u64 ig0 : 4;
158 __u64 mic : 4;
159 __u64 rsv : 8;
160 __u64 mmi : 1;
161 __u64 ig1 : 47;
162 };
163};
164
165union ia64_itir {
166 __u64 val;
167 struct {
168 __u64 rv3 : 2; /* 0-1 */
169 __u64 ps : 6; /* 2-7 */
170 __u64 key : 24; /* 8-31 */
171 __u64 rv4 : 32; /* 32-63 */
172 };
173};
174
175union ia64_rr {
176 __u64 val;
177 struct {
178 __u64 ve : 1; /* enable hw walker */
179 __u64 reserved0: 1; /* reserved */
180 __u64 ps : 6; /* log page size */
181 __u64 rid : 24; /* region id */
182 __u64 reserved1: 32; /* reserved */
183 };
184};
185
186/*
187 * CPU type, hardware bug flags, and per-CPU state. Frequently used
188 * state comes earlier:
189 */
190struct cpuinfo_ia64 {
191 unsigned int softirq_pending;
192 unsigned long itm_delta; /* # of clock cycles between clock ticks */
193 unsigned long itm_next; /* interval timer mask value to use for next clock tick */
194 unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
195 unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */
196 unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */
197 unsigned long itc_freq; /* frequency of ITC counter */
198 unsigned long proc_freq; /* frequency of processor */
199 unsigned long cyc_per_usec; /* itc_freq/1000000 */
200 unsigned long ptce_base;
201 unsigned int ptce_count[2];
202 unsigned int ptce_stride[2];
203 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */
204
205#ifdef CONFIG_SMP
206 unsigned long loops_per_jiffy;
207 int cpu;
208 unsigned int socket_id; /* physical processor socket id */
209 unsigned short core_id; /* core id */
210 unsigned short thread_id; /* thread id */
211 unsigned short num_log; /* Total number of logical processors on
212 * this socket that were successfully booted */
213 unsigned char cores_per_socket; /* Cores per processor socket */
214 unsigned char threads_per_core; /* Threads per core */
215#endif
216
217 /* CPUID-derived information: */
218 unsigned long ppn;
219 unsigned long features;
220 unsigned char number;
221 unsigned char revision;
222 unsigned char model;
223 unsigned char family;
224 unsigned char archrev;
225 char vendor[16];
226 char *model_name;
227
228#ifdef CONFIG_NUMA
229 struct ia64_node_data *node_data;
230#endif
231};
232
233DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
234
235/*
236 * The "local" data variable. It refers to the per-CPU data of the currently executing
237 * CPU, much like "current" points to the per-task data of the currently executing task.
238 * Do not use the address of local_cpu_data, since it will be different from
239 * cpu_data(smp_processor_id())!
240 */
241#define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info))
242#define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu))
243
244extern void print_cpu_info (struct cpuinfo_ia64 *);
245
246typedef struct {
247 unsigned long seg;
248} mm_segment_t;
249
250#define SET_UNALIGN_CTL(task,value) \
251({ \
252 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \
253 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \
254 0; \
255})
256#define GET_UNALIGN_CTL(task,addr) \
257({ \
258 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \
259 (int __user *) (addr)); \
260})
261
262#define SET_FPEMU_CTL(task,value) \
263({ \
264 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \
265 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \
266 0; \
267})
268#define GET_FPEMU_CTL(task,addr) \
269({ \
270 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \
271 (int __user *) (addr)); \
272})
273
274struct thread_struct {
275 __u32 flags; /* various thread flags (see IA64_THREAD_*) */
276 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
277 __u8 on_ustack; /* executing on user-stacks? */
278 __u8 pad[3];
279 __u64 ksp; /* kernel stack pointer */
280 __u64 map_base; /* base address for get_unmapped_area() */
281 __u64 rbs_bot; /* the base address for the RBS */
282 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */
283
284#ifdef CONFIG_PERFMON
285 void *pfm_context; /* pointer to detailed PMU context */
286 unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */
287# define INIT_THREAD_PM .pfm_context = NULL, \
288 .pfm_needs_checking = 0UL,
289#else
290# define INIT_THREAD_PM
291#endif
292 unsigned long dbr[IA64_NUM_DBG_REGS];
293 unsigned long ibr[IA64_NUM_DBG_REGS];
294 struct ia64_fpreg fph[96]; /* saved/loaded on demand */
295};
296
297#define INIT_THREAD { \
298 .flags = 0, \
299 .on_ustack = 0, \
300 .ksp = 0, \
301 .map_base = DEFAULT_MAP_BASE, \
302 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \
303 .last_fph_cpu = -1, \
304 INIT_THREAD_PM \
305 .dbr = {0, }, \
306 .ibr = {0, }, \
307 .fph = {{{{0}}}, } \
308}
309
310#define start_thread(regs,new_ip,new_sp) do { \
311 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \
312 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \
313 regs->cr_iip = new_ip; \
314 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \
315 regs->ar_rnat = 0; \
316 regs->ar_bspstore = current->thread.rbs_bot; \
317 regs->ar_fpsr = FPSR_DEFAULT; \
318 regs->loadrs = 0; \
319 regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \
320 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \
321 if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) { \
322 /* \
323 * Zap scratch regs to avoid leaking bits between processes with different \
324 * uid/privileges. \
325 */ \
326 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \
327 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \
328 } \
329} while (0)
330
331/* Forward declarations, a strange C thing... */
332struct mm_struct;
333struct task_struct;
334
335/*
336 * Free all resources held by a thread. This is called after the
337 * parent of DEAD_TASK has collected the exit status of the task via
338 * wait().
339 */
340#define release_thread(dead_task)
341
342/* Get wait channel for task P. */
343extern unsigned long get_wchan (struct task_struct *p);
344
345/* Return instruction pointer of blocked task TSK. */
346#define KSTK_EIP(tsk) \
347 ({ \
348 struct pt_regs *_regs = task_pt_regs(tsk); \
349 _regs->cr_iip + ia64_psr(_regs)->ri; \
350 })
351
352/* Return stack pointer of blocked task TSK. */
353#define KSTK_ESP(tsk) ((tsk)->thread.ksp)
354
355extern void ia64_getreg_unknown_kr (void);
356extern void ia64_setreg_unknown_kr (void);
357
358#define ia64_get_kr(regnum) \
359({ \
360 unsigned long r = 0; \
361 \
362 switch (regnum) { \
363 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \
364 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \
365 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \
366 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \
367 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \
368 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \
369 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \
370 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \
371 default: ia64_getreg_unknown_kr(); break; \
372 } \
373 r; \
374})
375
376#define ia64_set_kr(regnum, r) \
377({ \
378 switch (regnum) { \
379 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \
380 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \
381 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \
382 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \
383 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \
384 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \
385 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \
386 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \
387 default: ia64_setreg_unknown_kr(); break; \
388 } \
389})
390
391/*
392 * The following three macros can't be inline functions because we don't have struct
393 * task_struct at this point.
394 */
395
396/*
397 * Return TRUE if task T owns the fph partition of the CPU we're running on.
398 * Must be called from code that has preemption disabled.
399 */
400#define ia64_is_local_fpu_owner(t) \
401({ \
402 struct task_struct *__ia64_islfo_task = (t); \
403 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \
404 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \
405})
406
407/*
408 * Mark task T as owning the fph partition of the CPU we're running on.
409 * Must be called from code that has preemption disabled.
410 */
411#define ia64_set_local_fpu_owner(t) do { \
412 struct task_struct *__ia64_slfo_task = (t); \
413 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \
414 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \
415} while (0)
416
417/* Mark the fph partition of task T as being invalid on all CPUs. */
418#define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1)
419
420extern void __ia64_init_fpu (void);
421extern void __ia64_save_fpu (struct ia64_fpreg *fph);
422extern void __ia64_load_fpu (struct ia64_fpreg *fph);
423extern void ia64_save_debug_regs (unsigned long *save_area);
424extern void ia64_load_debug_regs (unsigned long *save_area);
425
426#define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
427#define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
428
429/* load fp 0.0 into fph */
430static inline void
431ia64_init_fpu (void) {
432 ia64_fph_enable();
433 __ia64_init_fpu();
434 ia64_fph_disable();
435}
436
437/* save f32-f127 at FPH */
438static inline void
439ia64_save_fpu (struct ia64_fpreg *fph) {
440 ia64_fph_enable();
441 __ia64_save_fpu(fph);
442 ia64_fph_disable();
443}
444
445/* load f32-f127 from FPH */
446static inline void
447ia64_load_fpu (struct ia64_fpreg *fph) {
448 ia64_fph_enable();
449 __ia64_load_fpu(fph);
450 ia64_fph_disable();
451}
452
453static inline __u64
454ia64_clear_ic (void)
455{
456 __u64 psr;
457 psr = ia64_getreg(_IA64_REG_PSR);
458 ia64_stop();
459 ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
460 ia64_srlz_i();
461 return psr;
462}
463
464/*
465 * Restore the psr.
466 */
467static inline void
468ia64_set_psr (__u64 psr)
469{
470 ia64_stop();
471 ia64_setreg(_IA64_REG_PSR_L, psr);
472 ia64_srlz_i();
473}
474
475/*
476 * Insert a translation into an instruction and/or data translation
477 * register.
478 */
479static inline void
480ia64_itr (__u64 target_mask, __u64 tr_num,
481 __u64 vmaddr, __u64 pte,
482 __u64 log_page_size)
483{
484 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
485 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
486 ia64_stop();
487 if (target_mask & 0x1)
488 ia64_itri(tr_num, pte);
489 if (target_mask & 0x2)
490 ia64_itrd(tr_num, pte);
491}
492
493/*
494 * Insert a translation into the instruction and/or data translation
495 * cache.
496 */
497static inline void
498ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
499 __u64 log_page_size)
500{
501 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
502 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
503 ia64_stop();
504 /* as per EAS2.6, itc must be the last instruction in an instruction group */
505 if (target_mask & 0x1)
506 ia64_itci(pte);
507 if (target_mask & 0x2)
508 ia64_itcd(pte);
509}
510
511/*
512 * Purge a range of addresses from instruction and/or data translation
513 * register(s).
514 */
515static inline void
516ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
517{
518 if (target_mask & 0x1)
519 ia64_ptri(vmaddr, (log_size << 2));
520 if (target_mask & 0x2)
521 ia64_ptrd(vmaddr, (log_size << 2));
522}
523
524/* Set the interrupt vector address. The address must be suitably aligned (32KB). */
525static inline void
526ia64_set_iva (void *ivt_addr)
527{
528 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
529 ia64_srlz_i();
530}
531
532/* Set the page table address and control bits. */
533static inline void
534ia64_set_pta (__u64 pta)
535{
536 /* Note: srlz.i implies srlz.d */
537 ia64_setreg(_IA64_REG_CR_PTA, pta);
538 ia64_srlz_i();
539}
540
541static inline void
542ia64_eoi (void)
543{
544 ia64_setreg(_IA64_REG_CR_EOI, 0);
545 ia64_srlz_d();
546}
547
548#define cpu_relax() ia64_hint(ia64_hint_pause)
549
550static inline int
551ia64_get_irr(unsigned int vector)
552{
553 unsigned int reg = vector / 64;
554 unsigned int bit = vector % 64;
555 u64 irr;
556
557 switch (reg) {
558 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
559 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
560 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
561 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
562 }
563
564 return test_bit(bit, &irr);
565}
566
567static inline void
568ia64_set_lrr0 (unsigned long val)
569{
570 ia64_setreg(_IA64_REG_CR_LRR0, val);
571 ia64_srlz_d();
572}
573
574static inline void
575ia64_set_lrr1 (unsigned long val)
576{
577 ia64_setreg(_IA64_REG_CR_LRR1, val);
578 ia64_srlz_d();
579}
580
581
582/*
583 * Given the address to which a spill occurred, return the unat bit
584 * number that corresponds to this address.
585 */
586static inline __u64
587ia64_unat_pos (void *spill_addr)
588{
589 return ((__u64) spill_addr >> 3) & 0x3f;
590}
591
592/*
593 * Set the NaT bit of an integer register which was spilled at address
594 * SPILL_ADDR. UNAT is the mask to be updated.
595 */
596static inline void
597ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
598{
599 __u64 bit = ia64_unat_pos(spill_addr);
600 __u64 mask = 1UL << bit;
601
602 *unat = (*unat & ~mask) | (nat << bit);
603}
604
605static inline __u64
606ia64_get_ivr (void)
607{
608 __u64 r;
609 ia64_srlz_d();
610 r = ia64_getreg(_IA64_REG_CR_IVR);
611 ia64_srlz_d();
612 return r;
613}
614
615static inline void
616ia64_set_dbr (__u64 regnum, __u64 value)
617{
618 __ia64_set_dbr(regnum, value);
619#ifdef CONFIG_ITANIUM
620 ia64_srlz_d();
621#endif
622}
623
624static inline __u64
625ia64_get_dbr (__u64 regnum)
626{
627 __u64 retval;
628
629 retval = __ia64_get_dbr(regnum);
630#ifdef CONFIG_ITANIUM
631 ia64_srlz_d();
632#endif
633 return retval;
634}
635
636static inline __u64
637ia64_rotr (__u64 w, __u64 n)
638{
639 return (w >> n) | (w << (64 - n));
640}
641
642#define ia64_rotl(w,n) ia64_rotr((w), (64) - (n))
643
644/*
645 * Take a mapped kernel address and return the equivalent address
646 * in the region 7 identity mapped virtual area.
647 */
648static inline void *
649ia64_imva (void *addr)
650{
651 void *result;
652 result = (void *) ia64_tpa(addr);
653 return __va(result);
654}
655
656#define ARCH_HAS_PREFETCH
657#define ARCH_HAS_PREFETCHW
658#define ARCH_HAS_SPINLOCK_PREFETCH
659#define PREFETCH_STRIDE L1_CACHE_BYTES
660
661static inline void
662prefetch (const void *x)
663{
664 ia64_lfetch(ia64_lfhint_none, x);
665}
666
667static inline void
668prefetchw (const void *x)
669{
670 ia64_lfetch_excl(ia64_lfhint_none, x);
671}
672
673#define spin_lock_prefetch(x) prefetchw(x)
674
675extern unsigned long boot_option_idle_override;
676
677enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
678 IDLE_NOMWAIT, IDLE_POLL};
679
680void default_idle(void);
681
682#endif /* !__ASSEMBLY__ */
683
684#endif /* _ASM_IA64_PROCESSOR_H */
1#ifndef _ASM_IA64_PROCESSOR_H
2#define _ASM_IA64_PROCESSOR_H
3
4/*
5 * Copyright (C) 1998-2004 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Stephane Eranian <eranian@hpl.hp.com>
8 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
9 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
10 *
11 * 11/24/98 S.Eranian added ia64_set_iva()
12 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API
13 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support
14 */
15
16
17#include <asm/intrinsics.h>
18#include <asm/kregs.h>
19#include <asm/ptrace.h>
20#include <asm/ustack.h>
21
22#define __ARCH_WANT_UNLOCKED_CTXSW
23#define ARCH_HAS_PREFETCH_SWITCH_STACK
24
25#define IA64_NUM_PHYS_STACK_REG 96
26#define IA64_NUM_DBG_REGS 8
27
28#define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000)
29#define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000)
30
31/*
32 * TASK_SIZE really is a mis-named. It really is the maximum user
33 * space address (plus one). On IA-64, there are five regions of 2TB
34 * each (assuming 8KB page size), for a total of 8TB of user virtual
35 * address space.
36 */
37#define TASK_SIZE DEFAULT_TASK_SIZE
38
39/*
40 * This decides where the kernel will search for a free chunk of vm
41 * space during mmap's.
42 */
43#define TASK_UNMAPPED_BASE (current->thread.map_base)
44
45#define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */
46#define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */
47#define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */
48#define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */
49#define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */
50#define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration
51 sync at ctx sw */
52#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */
53#define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */
54
55#define IA64_THREAD_UAC_SHIFT 3
56#define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
57#define IA64_THREAD_FPEMU_SHIFT 6
58#define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
59
60
61/*
62 * This shift should be large enough to be able to represent 1000000000/itc_freq with good
63 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
64 * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
65 */
66#define IA64_NSEC_PER_CYC_SHIFT 30
67
68#ifndef __ASSEMBLY__
69
70#include <linux/cache.h>
71#include <linux/compiler.h>
72#include <linux/threads.h>
73#include <linux/types.h>
74
75#include <asm/fpu.h>
76#include <asm/page.h>
77#include <asm/percpu.h>
78#include <asm/rse.h>
79#include <asm/unwind.h>
80#include <linux/atomic.h>
81#ifdef CONFIG_NUMA
82#include <asm/nodedata.h>
83#endif
84
85/* like above but expressed as bitfields for more efficient access: */
86struct ia64_psr {
87 __u64 reserved0 : 1;
88 __u64 be : 1;
89 __u64 up : 1;
90 __u64 ac : 1;
91 __u64 mfl : 1;
92 __u64 mfh : 1;
93 __u64 reserved1 : 7;
94 __u64 ic : 1;
95 __u64 i : 1;
96 __u64 pk : 1;
97 __u64 reserved2 : 1;
98 __u64 dt : 1;
99 __u64 dfl : 1;
100 __u64 dfh : 1;
101 __u64 sp : 1;
102 __u64 pp : 1;
103 __u64 di : 1;
104 __u64 si : 1;
105 __u64 db : 1;
106 __u64 lp : 1;
107 __u64 tb : 1;
108 __u64 rt : 1;
109 __u64 reserved3 : 4;
110 __u64 cpl : 2;
111 __u64 is : 1;
112 __u64 mc : 1;
113 __u64 it : 1;
114 __u64 id : 1;
115 __u64 da : 1;
116 __u64 dd : 1;
117 __u64 ss : 1;
118 __u64 ri : 2;
119 __u64 ed : 1;
120 __u64 bn : 1;
121 __u64 reserved4 : 19;
122};
123
124union ia64_isr {
125 __u64 val;
126 struct {
127 __u64 code : 16;
128 __u64 vector : 8;
129 __u64 reserved1 : 8;
130 __u64 x : 1;
131 __u64 w : 1;
132 __u64 r : 1;
133 __u64 na : 1;
134 __u64 sp : 1;
135 __u64 rs : 1;
136 __u64 ir : 1;
137 __u64 ni : 1;
138 __u64 so : 1;
139 __u64 ei : 2;
140 __u64 ed : 1;
141 __u64 reserved2 : 20;
142 };
143};
144
145union ia64_lid {
146 __u64 val;
147 struct {
148 __u64 rv : 16;
149 __u64 eid : 8;
150 __u64 id : 8;
151 __u64 ig : 32;
152 };
153};
154
155union ia64_tpr {
156 __u64 val;
157 struct {
158 __u64 ig0 : 4;
159 __u64 mic : 4;
160 __u64 rsv : 8;
161 __u64 mmi : 1;
162 __u64 ig1 : 47;
163 };
164};
165
166union ia64_itir {
167 __u64 val;
168 struct {
169 __u64 rv3 : 2; /* 0-1 */
170 __u64 ps : 6; /* 2-7 */
171 __u64 key : 24; /* 8-31 */
172 __u64 rv4 : 32; /* 32-63 */
173 };
174};
175
176union ia64_rr {
177 __u64 val;
178 struct {
179 __u64 ve : 1; /* enable hw walker */
180 __u64 reserved0: 1; /* reserved */
181 __u64 ps : 6; /* log page size */
182 __u64 rid : 24; /* region id */
183 __u64 reserved1: 32; /* reserved */
184 };
185};
186
187/*
188 * CPU type, hardware bug flags, and per-CPU state. Frequently used
189 * state comes earlier:
190 */
191struct cpuinfo_ia64 {
192 unsigned int softirq_pending;
193 unsigned long itm_delta; /* # of clock cycles between clock ticks */
194 unsigned long itm_next; /* interval timer mask value to use for next clock tick */
195 unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
196 unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */
197 unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */
198 unsigned long itc_freq; /* frequency of ITC counter */
199 unsigned long proc_freq; /* frequency of processor */
200 unsigned long cyc_per_usec; /* itc_freq/1000000 */
201 unsigned long ptce_base;
202 unsigned int ptce_count[2];
203 unsigned int ptce_stride[2];
204 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */
205
206#ifdef CONFIG_SMP
207 unsigned long loops_per_jiffy;
208 int cpu;
209 unsigned int socket_id; /* physical processor socket id */
210 unsigned short core_id; /* core id */
211 unsigned short thread_id; /* thread id */
212 unsigned short num_log; /* Total number of logical processors on
213 * this socket that were successfully booted */
214 unsigned char cores_per_socket; /* Cores per processor socket */
215 unsigned char threads_per_core; /* Threads per core */
216#endif
217
218 /* CPUID-derived information: */
219 unsigned long ppn;
220 unsigned long features;
221 unsigned char number;
222 unsigned char revision;
223 unsigned char model;
224 unsigned char family;
225 unsigned char archrev;
226 char vendor[16];
227 char *model_name;
228
229#ifdef CONFIG_NUMA
230 struct ia64_node_data *node_data;
231#endif
232};
233
234DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
235
236/*
237 * The "local" data variable. It refers to the per-CPU data of the currently executing
238 * CPU, much like "current" points to the per-task data of the currently executing task.
239 * Do not use the address of local_cpu_data, since it will be different from
240 * cpu_data(smp_processor_id())!
241 */
242#define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info))
243#define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu))
244
245extern void print_cpu_info (struct cpuinfo_ia64 *);
246
247typedef struct {
248 unsigned long seg;
249} mm_segment_t;
250
251#define SET_UNALIGN_CTL(task,value) \
252({ \
253 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \
254 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \
255 0; \
256})
257#define GET_UNALIGN_CTL(task,addr) \
258({ \
259 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \
260 (int __user *) (addr)); \
261})
262
263#define SET_FPEMU_CTL(task,value) \
264({ \
265 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \
266 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \
267 0; \
268})
269#define GET_FPEMU_CTL(task,addr) \
270({ \
271 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \
272 (int __user *) (addr)); \
273})
274
275struct thread_struct {
276 __u32 flags; /* various thread flags (see IA64_THREAD_*) */
277 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
278 __u8 on_ustack; /* executing on user-stacks? */
279 __u8 pad[3];
280 __u64 ksp; /* kernel stack pointer */
281 __u64 map_base; /* base address for get_unmapped_area() */
282 __u64 rbs_bot; /* the base address for the RBS */
283 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */
284
285#ifdef CONFIG_PERFMON
286 void *pfm_context; /* pointer to detailed PMU context */
287 unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */
288# define INIT_THREAD_PM .pfm_context = NULL, \
289 .pfm_needs_checking = 0UL,
290#else
291# define INIT_THREAD_PM
292#endif
293 unsigned long dbr[IA64_NUM_DBG_REGS];
294 unsigned long ibr[IA64_NUM_DBG_REGS];
295 struct ia64_fpreg fph[96]; /* saved/loaded on demand */
296};
297
298#define INIT_THREAD { \
299 .flags = 0, \
300 .on_ustack = 0, \
301 .ksp = 0, \
302 .map_base = DEFAULT_MAP_BASE, \
303 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \
304 .last_fph_cpu = -1, \
305 INIT_THREAD_PM \
306 .dbr = {0, }, \
307 .ibr = {0, }, \
308 .fph = {{{{0}}}, } \
309}
310
311#define start_thread(regs,new_ip,new_sp) do { \
312 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \
313 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \
314 regs->cr_iip = new_ip; \
315 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \
316 regs->ar_rnat = 0; \
317 regs->ar_bspstore = current->thread.rbs_bot; \
318 regs->ar_fpsr = FPSR_DEFAULT; \
319 regs->loadrs = 0; \
320 regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \
321 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \
322 if (unlikely(!get_dumpable(current->mm))) { \
323 /* \
324 * Zap scratch regs to avoid leaking bits between processes with different \
325 * uid/privileges. \
326 */ \
327 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \
328 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \
329 } \
330} while (0)
331
332/* Forward declarations, a strange C thing... */
333struct mm_struct;
334struct task_struct;
335
336/*
337 * Free all resources held by a thread. This is called after the
338 * parent of DEAD_TASK has collected the exit status of the task via
339 * wait().
340 */
341#define release_thread(dead_task)
342
343/*
344 * This is the mechanism for creating a new kernel thread.
345 *
346 * NOTE 1: Only a kernel-only process (ie the swapper or direct
347 * descendants who haven't done an "execve()") should use this: it
348 * will work within a system call from a "real" process, but the
349 * process memory space will not be free'd until both the parent and
350 * the child have exited.
351 *
352 * NOTE 2: This MUST NOT be an inlined function. Otherwise, we get
353 * into trouble in init/main.c when the child thread returns to
354 * do_basic_setup() and the timing is such that free_initmem() has
355 * been called already.
356 */
357extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags);
358
359/* Get wait channel for task P. */
360extern unsigned long get_wchan (struct task_struct *p);
361
362/* Return instruction pointer of blocked task TSK. */
363#define KSTK_EIP(tsk) \
364 ({ \
365 struct pt_regs *_regs = task_pt_regs(tsk); \
366 _regs->cr_iip + ia64_psr(_regs)->ri; \
367 })
368
369/* Return stack pointer of blocked task TSK. */
370#define KSTK_ESP(tsk) ((tsk)->thread.ksp)
371
372extern void ia64_getreg_unknown_kr (void);
373extern void ia64_setreg_unknown_kr (void);
374
375#define ia64_get_kr(regnum) \
376({ \
377 unsigned long r = 0; \
378 \
379 switch (regnum) { \
380 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \
381 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \
382 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \
383 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \
384 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \
385 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \
386 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \
387 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \
388 default: ia64_getreg_unknown_kr(); break; \
389 } \
390 r; \
391})
392
393#define ia64_set_kr(regnum, r) \
394({ \
395 switch (regnum) { \
396 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \
397 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \
398 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \
399 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \
400 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \
401 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \
402 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \
403 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \
404 default: ia64_setreg_unknown_kr(); break; \
405 } \
406})
407
408/*
409 * The following three macros can't be inline functions because we don't have struct
410 * task_struct at this point.
411 */
412
413/*
414 * Return TRUE if task T owns the fph partition of the CPU we're running on.
415 * Must be called from code that has preemption disabled.
416 */
417#define ia64_is_local_fpu_owner(t) \
418({ \
419 struct task_struct *__ia64_islfo_task = (t); \
420 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \
421 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \
422})
423
424/*
425 * Mark task T as owning the fph partition of the CPU we're running on.
426 * Must be called from code that has preemption disabled.
427 */
428#define ia64_set_local_fpu_owner(t) do { \
429 struct task_struct *__ia64_slfo_task = (t); \
430 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \
431 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \
432} while (0)
433
434/* Mark the fph partition of task T as being invalid on all CPUs. */
435#define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1)
436
437extern void __ia64_init_fpu (void);
438extern void __ia64_save_fpu (struct ia64_fpreg *fph);
439extern void __ia64_load_fpu (struct ia64_fpreg *fph);
440extern void ia64_save_debug_regs (unsigned long *save_area);
441extern void ia64_load_debug_regs (unsigned long *save_area);
442
443#define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
444#define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
445
446/* load fp 0.0 into fph */
447static inline void
448ia64_init_fpu (void) {
449 ia64_fph_enable();
450 __ia64_init_fpu();
451 ia64_fph_disable();
452}
453
454/* save f32-f127 at FPH */
455static inline void
456ia64_save_fpu (struct ia64_fpreg *fph) {
457 ia64_fph_enable();
458 __ia64_save_fpu(fph);
459 ia64_fph_disable();
460}
461
462/* load f32-f127 from FPH */
463static inline void
464ia64_load_fpu (struct ia64_fpreg *fph) {
465 ia64_fph_enable();
466 __ia64_load_fpu(fph);
467 ia64_fph_disable();
468}
469
470static inline __u64
471ia64_clear_ic (void)
472{
473 __u64 psr;
474 psr = ia64_getreg(_IA64_REG_PSR);
475 ia64_stop();
476 ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
477 ia64_srlz_i();
478 return psr;
479}
480
481/*
482 * Restore the psr.
483 */
484static inline void
485ia64_set_psr (__u64 psr)
486{
487 ia64_stop();
488 ia64_setreg(_IA64_REG_PSR_L, psr);
489 ia64_srlz_i();
490}
491
492/*
493 * Insert a translation into an instruction and/or data translation
494 * register.
495 */
496static inline void
497ia64_itr (__u64 target_mask, __u64 tr_num,
498 __u64 vmaddr, __u64 pte,
499 __u64 log_page_size)
500{
501 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
502 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
503 ia64_stop();
504 if (target_mask & 0x1)
505 ia64_itri(tr_num, pte);
506 if (target_mask & 0x2)
507 ia64_itrd(tr_num, pte);
508}
509
510/*
511 * Insert a translation into the instruction and/or data translation
512 * cache.
513 */
514static inline void
515ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
516 __u64 log_page_size)
517{
518 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
519 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
520 ia64_stop();
521 /* as per EAS2.6, itc must be the last instruction in an instruction group */
522 if (target_mask & 0x1)
523 ia64_itci(pte);
524 if (target_mask & 0x2)
525 ia64_itcd(pte);
526}
527
528/*
529 * Purge a range of addresses from instruction and/or data translation
530 * register(s).
531 */
532static inline void
533ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
534{
535 if (target_mask & 0x1)
536 ia64_ptri(vmaddr, (log_size << 2));
537 if (target_mask & 0x2)
538 ia64_ptrd(vmaddr, (log_size << 2));
539}
540
541/* Set the interrupt vector address. The address must be suitably aligned (32KB). */
542static inline void
543ia64_set_iva (void *ivt_addr)
544{
545 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
546 ia64_srlz_i();
547}
548
549/* Set the page table address and control bits. */
550static inline void
551ia64_set_pta (__u64 pta)
552{
553 /* Note: srlz.i implies srlz.d */
554 ia64_setreg(_IA64_REG_CR_PTA, pta);
555 ia64_srlz_i();
556}
557
558static inline void
559ia64_eoi (void)
560{
561 ia64_setreg(_IA64_REG_CR_EOI, 0);
562 ia64_srlz_d();
563}
564
565#define cpu_relax() ia64_hint(ia64_hint_pause)
566
567static inline int
568ia64_get_irr(unsigned int vector)
569{
570 unsigned int reg = vector / 64;
571 unsigned int bit = vector % 64;
572 u64 irr;
573
574 switch (reg) {
575 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
576 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
577 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
578 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
579 }
580
581 return test_bit(bit, &irr);
582}
583
584static inline void
585ia64_set_lrr0 (unsigned long val)
586{
587 ia64_setreg(_IA64_REG_CR_LRR0, val);
588 ia64_srlz_d();
589}
590
591static inline void
592ia64_set_lrr1 (unsigned long val)
593{
594 ia64_setreg(_IA64_REG_CR_LRR1, val);
595 ia64_srlz_d();
596}
597
598
599/*
600 * Given the address to which a spill occurred, return the unat bit
601 * number that corresponds to this address.
602 */
603static inline __u64
604ia64_unat_pos (void *spill_addr)
605{
606 return ((__u64) spill_addr >> 3) & 0x3f;
607}
608
609/*
610 * Set the NaT bit of an integer register which was spilled at address
611 * SPILL_ADDR. UNAT is the mask to be updated.
612 */
613static inline void
614ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
615{
616 __u64 bit = ia64_unat_pos(spill_addr);
617 __u64 mask = 1UL << bit;
618
619 *unat = (*unat & ~mask) | (nat << bit);
620}
621
622/*
623 * Return saved PC of a blocked thread.
624 * Note that the only way T can block is through a call to schedule() -> switch_to().
625 */
626static inline unsigned long
627thread_saved_pc (struct task_struct *t)
628{
629 struct unw_frame_info info;
630 unsigned long ip;
631
632 unw_init_from_blocked_task(&info, t);
633 if (unw_unwind(&info) < 0)
634 return 0;
635 unw_get_ip(&info, &ip);
636 return ip;
637}
638
639/*
640 * Get the current instruction/program counter value.
641 */
642#define current_text_addr() \
643 ({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; })
644
645static inline __u64
646ia64_get_ivr (void)
647{
648 __u64 r;
649 ia64_srlz_d();
650 r = ia64_getreg(_IA64_REG_CR_IVR);
651 ia64_srlz_d();
652 return r;
653}
654
655static inline void
656ia64_set_dbr (__u64 regnum, __u64 value)
657{
658 __ia64_set_dbr(regnum, value);
659#ifdef CONFIG_ITANIUM
660 ia64_srlz_d();
661#endif
662}
663
664static inline __u64
665ia64_get_dbr (__u64 regnum)
666{
667 __u64 retval;
668
669 retval = __ia64_get_dbr(regnum);
670#ifdef CONFIG_ITANIUM
671 ia64_srlz_d();
672#endif
673 return retval;
674}
675
676static inline __u64
677ia64_rotr (__u64 w, __u64 n)
678{
679 return (w >> n) | (w << (64 - n));
680}
681
682#define ia64_rotl(w,n) ia64_rotr((w), (64) - (n))
683
684/*
685 * Take a mapped kernel address and return the equivalent address
686 * in the region 7 identity mapped virtual area.
687 */
688static inline void *
689ia64_imva (void *addr)
690{
691 void *result;
692 result = (void *) ia64_tpa(addr);
693 return __va(result);
694}
695
696#define ARCH_HAS_PREFETCH
697#define ARCH_HAS_PREFETCHW
698#define ARCH_HAS_SPINLOCK_PREFETCH
699#define PREFETCH_STRIDE L1_CACHE_BYTES
700
701static inline void
702prefetch (const void *x)
703{
704 ia64_lfetch(ia64_lfhint_none, x);
705}
706
707static inline void
708prefetchw (const void *x)
709{
710 ia64_lfetch_excl(ia64_lfhint_none, x);
711}
712
713#define spin_lock_prefetch(x) prefetchw(x)
714
715extern unsigned long boot_option_idle_override;
716
717enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
718 IDLE_NOMWAIT, IDLE_POLL};
719
720void default_idle(void);
721
722#define ia64_platform_is(x) (strcmp(x, platform_name) == 0)
723
724#endif /* !__ASSEMBLY__ */
725
726#endif /* _ASM_IA64_PROCESSOR_H */