Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "PM: hibernation: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
 
  37#include <asm/tlbflush.h>
  38#include <asm/io.h>
  39
  40#include "power.h"
  41
  42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  43static bool hibernate_restore_protection;
  44static bool hibernate_restore_protection_active;
  45
  46void enable_restore_image_protection(void)
  47{
  48	hibernate_restore_protection = true;
  49}
  50
  51static inline void hibernate_restore_protection_begin(void)
  52{
  53	hibernate_restore_protection_active = hibernate_restore_protection;
  54}
  55
  56static inline void hibernate_restore_protection_end(void)
  57{
  58	hibernate_restore_protection_active = false;
  59}
  60
  61static inline void hibernate_restore_protect_page(void *page_address)
  62{
  63	if (hibernate_restore_protection_active)
  64		set_memory_ro((unsigned long)page_address, 1);
  65}
  66
  67static inline void hibernate_restore_unprotect_page(void *page_address)
  68{
  69	if (hibernate_restore_protection_active)
  70		set_memory_rw((unsigned long)page_address, 1);
  71}
  72#else
  73static inline void hibernate_restore_protection_begin(void) {}
  74static inline void hibernate_restore_protection_end(void) {}
  75static inline void hibernate_restore_protect_page(void *page_address) {}
  76static inline void hibernate_restore_unprotect_page(void *page_address) {}
  77#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  78
  79static int swsusp_page_is_free(struct page *);
  80static void swsusp_set_page_forbidden(struct page *);
  81static void swsusp_unset_page_forbidden(struct page *);
  82
  83/*
  84 * Number of bytes to reserve for memory allocations made by device drivers
  85 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  86 * cause image creation to fail (tunable via /sys/power/reserved_size).
  87 */
  88unsigned long reserved_size;
  89
  90void __init hibernate_reserved_size_init(void)
  91{
  92	reserved_size = SPARE_PAGES * PAGE_SIZE;
  93}
  94
  95/*
  96 * Preferred image size in bytes (tunable via /sys/power/image_size).
  97 * When it is set to N, swsusp will do its best to ensure the image
  98 * size will not exceed N bytes, but if that is impossible, it will
  99 * try to create the smallest image possible.
 100 */
 101unsigned long image_size;
 102
 103void __init hibernate_image_size_init(void)
 104{
 105	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 106}
 107
 108/*
 109 * List of PBEs needed for restoring the pages that were allocated before
 110 * the suspend and included in the suspend image, but have also been
 111 * allocated by the "resume" kernel, so their contents cannot be written
 112 * directly to their "original" page frames.
 113 */
 114struct pbe *restore_pblist;
 115
 116/* struct linked_page is used to build chains of pages */
 117
 118#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 119
 120struct linked_page {
 121	struct linked_page *next;
 122	char data[LINKED_PAGE_DATA_SIZE];
 123} __packed;
 124
 125/*
 126 * List of "safe" pages (ie. pages that were not used by the image kernel
 127 * before hibernation) that may be used as temporary storage for image kernel
 128 * memory contents.
 129 */
 130static struct linked_page *safe_pages_list;
 131
 132/* Pointer to an auxiliary buffer (1 page) */
 133static void *buffer;
 134
 
 
 
 
 
 
 
 
 
 
 135#define PG_ANY		0
 136#define PG_SAFE		1
 137#define PG_UNSAFE_CLEAR	1
 138#define PG_UNSAFE_KEEP	0
 139
 140static unsigned int allocated_unsafe_pages;
 141
 142/**
 143 * get_image_page - Allocate a page for a hibernation image.
 144 * @gfp_mask: GFP mask for the allocation.
 145 * @safe_needed: Get pages that were not used before hibernation (restore only)
 146 *
 147 * During image restoration, for storing the PBE list and the image data, we can
 148 * only use memory pages that do not conflict with the pages used before
 149 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 150 * using allocated_unsafe_pages.
 151 *
 152 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 153 * swsusp_free() can release it.
 154 */
 155static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 156{
 157	void *res;
 158
 159	res = (void *)get_zeroed_page(gfp_mask);
 160	if (safe_needed)
 161		while (res && swsusp_page_is_free(virt_to_page(res))) {
 162			/* The page is unsafe, mark it for swsusp_free() */
 163			swsusp_set_page_forbidden(virt_to_page(res));
 164			allocated_unsafe_pages++;
 165			res = (void *)get_zeroed_page(gfp_mask);
 166		}
 167	if (res) {
 168		swsusp_set_page_forbidden(virt_to_page(res));
 169		swsusp_set_page_free(virt_to_page(res));
 170	}
 171	return res;
 172}
 173
 174static void *__get_safe_page(gfp_t gfp_mask)
 175{
 176	if (safe_pages_list) {
 177		void *ret = safe_pages_list;
 178
 179		safe_pages_list = safe_pages_list->next;
 180		memset(ret, 0, PAGE_SIZE);
 181		return ret;
 182	}
 183	return get_image_page(gfp_mask, PG_SAFE);
 184}
 185
 186unsigned long get_safe_page(gfp_t gfp_mask)
 187{
 188	return (unsigned long)__get_safe_page(gfp_mask);
 189}
 190
 191static struct page *alloc_image_page(gfp_t gfp_mask)
 192{
 193	struct page *page;
 194
 195	page = alloc_page(gfp_mask);
 196	if (page) {
 197		swsusp_set_page_forbidden(page);
 198		swsusp_set_page_free(page);
 199	}
 200	return page;
 201}
 202
 203static void recycle_safe_page(void *page_address)
 204{
 205	struct linked_page *lp = page_address;
 206
 207	lp->next = safe_pages_list;
 208	safe_pages_list = lp;
 209}
 210
 211/**
 212 * free_image_page - Free a page allocated for hibernation image.
 213 * @addr: Address of the page to free.
 214 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 215 *
 216 * The page to free should have been allocated by get_image_page() (page flags
 217 * set by it are affected).
 218 */
 
 219static inline void free_image_page(void *addr, int clear_nosave_free)
 220{
 221	struct page *page;
 222
 223	BUG_ON(!virt_addr_valid(addr));
 224
 225	page = virt_to_page(addr);
 226
 227	swsusp_unset_page_forbidden(page);
 228	if (clear_nosave_free)
 229		swsusp_unset_page_free(page);
 230
 231	__free_page(page);
 232}
 233
 234static inline void free_list_of_pages(struct linked_page *list,
 235				      int clear_page_nosave)
 
 
 
 
 
 
 
 
 
 236{
 237	while (list) {
 238		struct linked_page *lp = list->next;
 239
 240		free_image_page(list, clear_page_nosave);
 241		list = lp;
 242	}
 243}
 244
 245/*
 246 * struct chain_allocator is used for allocating small objects out of
 247 * a linked list of pages called 'the chain'.
 248 *
 249 * The chain grows each time when there is no room for a new object in
 250 * the current page.  The allocated objects cannot be freed individually.
 251 * It is only possible to free them all at once, by freeing the entire
 252 * chain.
 253 *
 254 * NOTE: The chain allocator may be inefficient if the allocated objects
 255 * are not much smaller than PAGE_SIZE.
 256 */
 
 257struct chain_allocator {
 258	struct linked_page *chain;	/* the chain */
 259	unsigned int used_space;	/* total size of objects allocated out
 260					   of the current page */
 
 261	gfp_t gfp_mask;		/* mask for allocating pages */
 262	int safe_needed;	/* if set, only "safe" pages are allocated */
 263};
 264
 265static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 266		       int safe_needed)
 267{
 268	ca->chain = NULL;
 269	ca->used_space = LINKED_PAGE_DATA_SIZE;
 270	ca->gfp_mask = gfp_mask;
 271	ca->safe_needed = safe_needed;
 272}
 273
 274static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 275{
 276	void *ret;
 277
 278	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 279		struct linked_page *lp;
 280
 281		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 282					get_image_page(ca->gfp_mask, PG_ANY);
 283		if (!lp)
 284			return NULL;
 285
 286		lp->next = ca->chain;
 287		ca->chain = lp;
 288		ca->used_space = 0;
 289	}
 290	ret = ca->chain->data + ca->used_space;
 291	ca->used_space += size;
 292	return ret;
 293}
 294
 295/**
 296 * Data types related to memory bitmaps.
 297 *
 298 * Memory bitmap is a structure consiting of many linked lists of
 299 * objects.  The main list's elements are of type struct zone_bitmap
 300 * and each of them corresonds to one zone.  For each zone bitmap
 301 * object there is a list of objects of type struct bm_block that
 302 * represent each blocks of bitmap in which information is stored.
 303 *
 304 * struct memory_bitmap contains a pointer to the main list of zone
 305 * bitmap objects, a struct bm_position used for browsing the bitmap,
 306 * and a pointer to the list of pages used for allocating all of the
 307 * zone bitmap objects and bitmap block objects.
 308 *
 309 * NOTE: It has to be possible to lay out the bitmap in memory
 310 * using only allocations of order 0.  Additionally, the bitmap is
 311 * designed to work with arbitrary number of zones (this is over the
 312 * top for now, but let's avoid making unnecessary assumptions ;-).
 313 *
 314 * struct zone_bitmap contains a pointer to a list of bitmap block
 315 * objects and a pointer to the bitmap block object that has been
 316 * most recently used for setting bits.  Additionally, it contains the
 317 * PFNs that correspond to the start and end of the represented zone.
 318 *
 319 * struct bm_block contains a pointer to the memory page in which
 320 * information is stored (in the form of a block of bitmap)
 321 * It also contains the pfns that correspond to the start and end of
 322 * the represented memory area.
 323 *
 324 * The memory bitmap is organized as a radix tree to guarantee fast random
 325 * access to the bits. There is one radix tree for each zone (as returned
 326 * from create_mem_extents).
 327 *
 328 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 329 * two linked lists for the nodes of the tree, one for the inner nodes and
 330 * one for the leave nodes. The linked leave nodes are used for fast linear
 331 * access of the memory bitmap.
 332 *
 333 * The struct rtree_node represents one node of the radix tree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334 */
 335
 336#define BM_END_OF_MAP	(~0UL)
 337
 338#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 339#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 340#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 341
 342/*
 343 * struct rtree_node is a wrapper struct to link the nodes
 344 * of the rtree together for easy linear iteration over
 345 * bits and easy freeing
 346 */
 347struct rtree_node {
 348	struct list_head list;
 349	unsigned long *data;
 350};
 351
 352/*
 353 * struct mem_zone_bm_rtree represents a bitmap used for one
 354 * populated memory zone.
 355 */
 356struct mem_zone_bm_rtree {
 357	struct list_head list;		/* Link Zones together         */
 358	struct list_head nodes;		/* Radix Tree inner nodes      */
 359	struct list_head leaves;	/* Radix Tree leaves           */
 360	unsigned long start_pfn;	/* Zone start page frame       */
 361	unsigned long end_pfn;		/* Zone end page frame + 1     */
 362	struct rtree_node *rtree;	/* Radix Tree Root             */
 363	int levels;			/* Number of Radix Tree Levels */
 364	unsigned int blocks;		/* Number of Bitmap Blocks     */
 365};
 366
 367/* strcut bm_position is used for browsing memory bitmaps */
 368
 369struct bm_position {
 370	struct mem_zone_bm_rtree *zone;
 371	struct rtree_node *node;
 372	unsigned long node_pfn;
 373	int node_bit;
 374};
 375
 376struct memory_bitmap {
 377	struct list_head zones;
 378	struct linked_page *p_list;	/* list of pages used to store zone
 379					   bitmap objects and bitmap block
 380					   objects */
 
 381	struct bm_position cur;	/* most recently used bit position */
 382};
 383
 384/* Functions that operate on memory bitmaps */
 385
 386#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 387#if BITS_PER_LONG == 32
 388#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 389#else
 390#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 391#endif
 392#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 393
 394/**
 395 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 396 *
 397 * This function is used to allocate inner nodes as well as the
 398 * leave nodes of the radix tree. It also adds the node to the
 399 * corresponding linked list passed in by the *list parameter.
 400 */
 401static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 402					   struct chain_allocator *ca,
 403					   struct list_head *list)
 404{
 405	struct rtree_node *node;
 406
 407	node = chain_alloc(ca, sizeof(struct rtree_node));
 408	if (!node)
 409		return NULL;
 410
 411	node->data = get_image_page(gfp_mask, safe_needed);
 412	if (!node->data)
 413		return NULL;
 414
 415	list_add_tail(&node->list, list);
 416
 417	return node;
 418}
 419
 
 
 420/**
 421 * add_rtree_block - Add a new leave node to the radix tree.
 422 *
 423 * The leave nodes need to be allocated in order to keep the leaves
 424 * linked list in order. This is guaranteed by the zone->blocks
 425 * counter.
 426 */
 427static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 428			   int safe_needed, struct chain_allocator *ca)
 429{
 430	struct rtree_node *node, *block, **dst;
 431	unsigned int levels_needed, block_nr;
 432	int i;
 433
 434	block_nr = zone->blocks;
 435	levels_needed = 0;
 436
 437	/* How many levels do we need for this block nr? */
 438	while (block_nr) {
 439		levels_needed += 1;
 440		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 441	}
 442
 443	/* Make sure the rtree has enough levels */
 444	for (i = zone->levels; i < levels_needed; i++) {
 445		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 446					&zone->nodes);
 447		if (!node)
 448			return -ENOMEM;
 449
 450		node->data[0] = (unsigned long)zone->rtree;
 451		zone->rtree = node;
 452		zone->levels += 1;
 453	}
 454
 455	/* Allocate new block */
 456	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 457	if (!block)
 458		return -ENOMEM;
 459
 460	/* Now walk the rtree to insert the block */
 461	node = zone->rtree;
 462	dst = &zone->rtree;
 463	block_nr = zone->blocks;
 464	for (i = zone->levels; i > 0; i--) {
 465		int index;
 466
 467		if (!node) {
 468			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 469						&zone->nodes);
 470			if (!node)
 471				return -ENOMEM;
 472			*dst = node;
 473		}
 474
 475		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 476		index &= BM_RTREE_LEVEL_MASK;
 477		dst = (struct rtree_node **)&((*dst)->data[index]);
 478		node = *dst;
 479	}
 480
 481	zone->blocks += 1;
 482	*dst = block;
 483
 484	return 0;
 485}
 486
 487static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 488			       int clear_nosave_free);
 489
 490/**
 491 * create_zone_bm_rtree - Create a radix tree for one zone.
 492 *
 493 * Allocated the mem_zone_bm_rtree structure and initializes it.
 494 * This function also allocated and builds the radix tree for the
 495 * zone.
 496 */
 497static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 498						      int safe_needed,
 499						      struct chain_allocator *ca,
 500						      unsigned long start,
 501						      unsigned long end)
 502{
 503	struct mem_zone_bm_rtree *zone;
 504	unsigned int i, nr_blocks;
 505	unsigned long pages;
 506
 507	pages = end - start;
 508	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 509	if (!zone)
 510		return NULL;
 511
 512	INIT_LIST_HEAD(&zone->nodes);
 513	INIT_LIST_HEAD(&zone->leaves);
 514	zone->start_pfn = start;
 515	zone->end_pfn = end;
 516	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 517
 518	for (i = 0; i < nr_blocks; i++) {
 519		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 520			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 521			return NULL;
 522		}
 523	}
 524
 525	return zone;
 526}
 527
 528/**
 529 * free_zone_bm_rtree - Free the memory of the radix tree.
 530 *
 531 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 532 * structure itself is not freed here nor are the rtree_node
 533 * structs.
 534 */
 535static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 536			       int clear_nosave_free)
 537{
 538	struct rtree_node *node;
 539
 540	list_for_each_entry(node, &zone->nodes, list)
 541		free_image_page(node->data, clear_nosave_free);
 542
 543	list_for_each_entry(node, &zone->leaves, list)
 544		free_image_page(node->data, clear_nosave_free);
 545}
 546
 547static void memory_bm_position_reset(struct memory_bitmap *bm)
 548{
 549	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 550				  list);
 551	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 552				  struct rtree_node, list);
 553	bm->cur.node_pfn = 0;
 554	bm->cur.node_bit = 0;
 555}
 556
 557static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 558
 559struct mem_extent {
 560	struct list_head hook;
 561	unsigned long start;
 562	unsigned long end;
 563};
 564
 565/**
 566 * free_mem_extents - Free a list of memory extents.
 567 * @list: List of extents to free.
 568 */
 569static void free_mem_extents(struct list_head *list)
 570{
 571	struct mem_extent *ext, *aux;
 572
 573	list_for_each_entry_safe(ext, aux, list, hook) {
 574		list_del(&ext->hook);
 575		kfree(ext);
 576	}
 577}
 578
 579/**
 580 * create_mem_extents - Create a list of memory extents.
 581 * @list: List to put the extents into.
 582 * @gfp_mask: Mask to use for memory allocations.
 583 *
 584 * The extents represent contiguous ranges of PFNs.
 585 */
 586static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 587{
 588	struct zone *zone;
 589
 590	INIT_LIST_HEAD(list);
 591
 592	for_each_populated_zone(zone) {
 593		unsigned long zone_start, zone_end;
 594		struct mem_extent *ext, *cur, *aux;
 595
 596		zone_start = zone->zone_start_pfn;
 597		zone_end = zone_end_pfn(zone);
 598
 599		list_for_each_entry(ext, list, hook)
 600			if (zone_start <= ext->end)
 601				break;
 602
 603		if (&ext->hook == list || zone_end < ext->start) {
 604			/* New extent is necessary */
 605			struct mem_extent *new_ext;
 606
 607			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 608			if (!new_ext) {
 609				free_mem_extents(list);
 610				return -ENOMEM;
 611			}
 612			new_ext->start = zone_start;
 613			new_ext->end = zone_end;
 614			list_add_tail(&new_ext->hook, &ext->hook);
 615			continue;
 616		}
 617
 618		/* Merge this zone's range of PFNs with the existing one */
 619		if (zone_start < ext->start)
 620			ext->start = zone_start;
 621		if (zone_end > ext->end)
 622			ext->end = zone_end;
 623
 624		/* More merging may be possible */
 625		cur = ext;
 626		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 627			if (zone_end < cur->start)
 628				break;
 629			if (zone_end < cur->end)
 630				ext->end = cur->end;
 631			list_del(&cur->hook);
 632			kfree(cur);
 633		}
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 * memory_bm_create - Allocate memory for a memory bitmap.
 641 */
 642static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 643			    int safe_needed)
 644{
 645	struct chain_allocator ca;
 646	struct list_head mem_extents;
 647	struct mem_extent *ext;
 648	int error;
 649
 650	chain_init(&ca, gfp_mask, safe_needed);
 651	INIT_LIST_HEAD(&bm->zones);
 652
 653	error = create_mem_extents(&mem_extents, gfp_mask);
 654	if (error)
 655		return error;
 656
 657	list_for_each_entry(ext, &mem_extents, hook) {
 658		struct mem_zone_bm_rtree *zone;
 
 
 659
 660		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 661					    ext->start, ext->end);
 662		if (!zone) {
 663			error = -ENOMEM;
 664			goto Error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665		}
 666		list_add_tail(&zone->list, &bm->zones);
 667	}
 668
 669	bm->p_list = ca.chain;
 670	memory_bm_position_reset(bm);
 671 Exit:
 672	free_mem_extents(&mem_extents);
 673	return error;
 674
 675 Error:
 676	bm->p_list = ca.chain;
 677	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 678	goto Exit;
 679}
 680
 681/**
 682 * memory_bm_free - Free memory occupied by the memory bitmap.
 683 * @bm: Memory bitmap.
 684 */
 685static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 686{
 687	struct mem_zone_bm_rtree *zone;
 688
 689	list_for_each_entry(zone, &bm->zones, list)
 690		free_zone_bm_rtree(zone, clear_nosave_free);
 
 691
 692	free_list_of_pages(bm->p_list, clear_nosave_free);
 693
 694	INIT_LIST_HEAD(&bm->zones);
 695}
 696
 697/**
 698 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 699 *
 700 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 701 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 702 *
 703 * Walk the radix tree to find the page containing the bit that represents @pfn
 704 * and return the position of the bit in @addr and @bit_nr.
 705 */
 706static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 707			      void **addr, unsigned int *bit_nr)
 708{
 709	struct mem_zone_bm_rtree *curr, *zone;
 710	struct rtree_node *node;
 711	int i, block_nr;
 712
 713	zone = bm->cur.zone;
 714
 715	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 716		goto zone_found;
 717
 718	zone = NULL;
 719
 720	/* Find the right zone */
 721	list_for_each_entry(curr, &bm->zones, list) {
 722		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 723			zone = curr;
 724			break;
 725		}
 726	}
 727
 728	if (!zone)
 729		return -EFAULT;
 730
 731zone_found:
 732	/*
 733	 * We have found the zone. Now walk the radix tree to find the leaf node
 734	 * for our PFN.
 735	 */
 
 
 
 
 
 736
 737	/*
 738	 * If the zone we wish to scan is the the current zone and the
 739	 * pfn falls into the current node then we do not need to walk
 740	 * the tree.
 741	 */
 742	node = bm->cur.node;
 743	if (zone == bm->cur.zone &&
 744	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 745		goto node_found;
 746
 747	node      = zone->rtree;
 748	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 749
 750	for (i = zone->levels; i > 0; i--) {
 751		int index;
 752
 753		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 754		index &= BM_RTREE_LEVEL_MASK;
 755		BUG_ON(node->data[index] == 0);
 756		node = (struct rtree_node *)node->data[index];
 757	}
 758
 759node_found:
 760	/* Update last position */
 761	bm->cur.zone = zone;
 762	bm->cur.node = node;
 763	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 764
 765	/* Set return values */
 766	*addr = node->data;
 767	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 768
 
 
 
 
 
 
 
 
 
 769	return 0;
 770}
 771
 772static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 773{
 774	void *addr;
 775	unsigned int bit;
 776	int error;
 777
 778	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 779	BUG_ON(error);
 780	set_bit(bit, addr);
 781}
 782
 783static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 784{
 785	void *addr;
 786	unsigned int bit;
 787	int error;
 788
 789	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 790	if (!error)
 791		set_bit(bit, addr);
 792
 793	return error;
 794}
 795
 796static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 797{
 798	void *addr;
 799	unsigned int bit;
 800	int error;
 801
 802	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 803	BUG_ON(error);
 804	clear_bit(bit, addr);
 805}
 806
 807static void memory_bm_clear_current(struct memory_bitmap *bm)
 808{
 809	int bit;
 810
 811	bit = max(bm->cur.node_bit - 1, 0);
 812	clear_bit(bit, bm->cur.node->data);
 813}
 814
 815static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 816{
 817	void *addr;
 818	unsigned int bit;
 819	int error;
 820
 821	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 822	BUG_ON(error);
 823	return test_bit(bit, addr);
 824}
 825
 826static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 827{
 828	void *addr;
 829	unsigned int bit;
 830
 831	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 832}
 833
 834/*
 835 * rtree_next_node - Jump to the next leaf node.
 836 *
 837 * Set the position to the beginning of the next node in the
 838 * memory bitmap. This is either the next node in the current
 839 * zone's radix tree or the first node in the radix tree of the
 840 * next zone.
 841 *
 842 * Return true if there is a next node, false otherwise.
 843 */
 844static bool rtree_next_node(struct memory_bitmap *bm)
 845{
 846	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 847		bm->cur.node = list_entry(bm->cur.node->list.next,
 848					  struct rtree_node, list);
 849		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 850		bm->cur.node_bit  = 0;
 851		touch_softlockup_watchdog();
 852		return true;
 853	}
 854
 855	/* No more nodes, goto next zone */
 856	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 857		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 858				  struct mem_zone_bm_rtree, list);
 859		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 860					  struct rtree_node, list);
 861		bm->cur.node_pfn = 0;
 862		bm->cur.node_bit = 0;
 863		return true;
 864	}
 865
 866	/* No more zones */
 867	return false;
 868}
 869
 870/**
 871 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 872 * @bm: Memory bitmap.
 
 873 *
 874 * Starting from the last returned position this function searches for the next
 875 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 876 * set, BM_END_OF_MAP is returned.
 877 *
 878 * It is required to run memory_bm_position_reset() before the first call to
 879 * this function for the given memory bitmap.
 880 */
 
 881static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 882{
 883	unsigned long bits, pfn, pages;
 884	int bit;
 885
 
 886	do {
 887		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 888		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 889		bit	  = find_next_bit(bm->cur.node->data, bits,
 890					  bm->cur.node_bit);
 891		if (bit < bits) {
 892			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 893			bm->cur.node_bit = bit + 1;
 894			return pfn;
 895		}
 896	} while (rtree_next_node(bm));
 897
 
 898	return BM_END_OF_MAP;
 
 
 
 
 899}
 900
 901/*
 902 * This structure represents a range of page frames the contents of which
 903 * should not be saved during hibernation.
 904 */
 
 905struct nosave_region {
 906	struct list_head list;
 907	unsigned long start_pfn;
 908	unsigned long end_pfn;
 909};
 910
 911static LIST_HEAD(nosave_regions);
 912
 913static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 914{
 915	struct rtree_node *node;
 916
 917	list_for_each_entry(node, &zone->nodes, list)
 918		recycle_safe_page(node->data);
 919
 920	list_for_each_entry(node, &zone->leaves, list)
 921		recycle_safe_page(node->data);
 922}
 923
 924static void memory_bm_recycle(struct memory_bitmap *bm)
 925{
 926	struct mem_zone_bm_rtree *zone;
 927	struct linked_page *p_list;
 928
 929	list_for_each_entry(zone, &bm->zones, list)
 930		recycle_zone_bm_rtree(zone);
 931
 932	p_list = bm->p_list;
 933	while (p_list) {
 934		struct linked_page *lp = p_list;
 935
 936		p_list = lp->next;
 937		recycle_safe_page(lp);
 938	}
 939}
 940
 941/**
 942 * register_nosave_region - Register a region of unsaveable memory.
 943 *
 944 * Register a range of page frames the contents of which should not be saved
 945 * during hibernation (to be used in the early initialization code).
 946 */
 947void __init __register_nosave_region(unsigned long start_pfn,
 948				     unsigned long end_pfn, int use_kmalloc)
 
 
 949{
 950	struct nosave_region *region;
 951
 952	if (start_pfn >= end_pfn)
 953		return;
 954
 955	if (!list_empty(&nosave_regions)) {
 956		/* Try to extend the previous region (they should be sorted) */
 957		region = list_entry(nosave_regions.prev,
 958					struct nosave_region, list);
 959		if (region->end_pfn == start_pfn) {
 960			region->end_pfn = end_pfn;
 961			goto Report;
 962		}
 963	}
 964	if (use_kmalloc) {
 965		/* During init, this shouldn't fail */
 966		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 967		BUG_ON(!region);
 968	} else {
 969		/* This allocation cannot fail */
 970		region = memblock_alloc(sizeof(struct nosave_region),
 971					SMP_CACHE_BYTES);
 972		if (!region)
 973			panic("%s: Failed to allocate %zu bytes\n", __func__,
 974			      sizeof(struct nosave_region));
 975	}
 976	region->start_pfn = start_pfn;
 977	region->end_pfn = end_pfn;
 978	list_add_tail(&region->list, &nosave_regions);
 979 Report:
 980	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
 981		(unsigned long long) start_pfn << PAGE_SHIFT,
 982		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 983}
 984
 985/*
 986 * Set bits in this map correspond to the page frames the contents of which
 987 * should not be saved during the suspend.
 988 */
 989static struct memory_bitmap *forbidden_pages_map;
 990
 991/* Set bits in this map correspond to free page frames. */
 992static struct memory_bitmap *free_pages_map;
 993
 994/*
 995 * Each page frame allocated for creating the image is marked by setting the
 996 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 997 */
 998
 999void swsusp_set_page_free(struct page *page)
1000{
1001	if (free_pages_map)
1002		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1003}
1004
1005static int swsusp_page_is_free(struct page *page)
1006{
1007	return free_pages_map ?
1008		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1009}
1010
1011void swsusp_unset_page_free(struct page *page)
1012{
1013	if (free_pages_map)
1014		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1015}
1016
1017static void swsusp_set_page_forbidden(struct page *page)
1018{
1019	if (forbidden_pages_map)
1020		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1021}
1022
1023int swsusp_page_is_forbidden(struct page *page)
1024{
1025	return forbidden_pages_map ?
1026		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1027}
1028
1029static void swsusp_unset_page_forbidden(struct page *page)
1030{
1031	if (forbidden_pages_map)
1032		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1033}
1034
1035/**
1036 * mark_nosave_pages - Mark pages that should not be saved.
1037 * @bm: Memory bitmap.
1038 *
1039 * Set the bits in @bm that correspond to the page frames the contents of which
1040 * should not be saved.
1041 */
 
1042static void mark_nosave_pages(struct memory_bitmap *bm)
1043{
1044	struct nosave_region *region;
1045
1046	if (list_empty(&nosave_regions))
1047		return;
1048
1049	list_for_each_entry(region, &nosave_regions, list) {
1050		unsigned long pfn;
1051
1052		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1053			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1054			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1055				- 1);
1056
1057		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1058			if (pfn_valid(pfn)) {
1059				/*
1060				 * It is safe to ignore the result of
1061				 * mem_bm_set_bit_check() here, since we won't
1062				 * touch the PFNs for which the error is
1063				 * returned anyway.
1064				 */
1065				mem_bm_set_bit_check(bm, pfn);
1066			}
1067	}
1068}
1069
1070/**
1071 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1072 *
1073 * Create bitmaps needed for marking page frames that should not be saved and
1074 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1075 * only modified if everything goes well, because we don't want the bits to be
1076 * touched before both bitmaps are set up.
1077 */
 
1078int create_basic_memory_bitmaps(void)
1079{
1080	struct memory_bitmap *bm1, *bm2;
1081	int error = 0;
1082
1083	if (forbidden_pages_map && free_pages_map)
1084		return 0;
1085	else
1086		BUG_ON(forbidden_pages_map || free_pages_map);
1087
1088	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089	if (!bm1)
1090		return -ENOMEM;
1091
1092	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1093	if (error)
1094		goto Free_first_object;
1095
1096	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1097	if (!bm2)
1098		goto Free_first_bitmap;
1099
1100	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1101	if (error)
1102		goto Free_second_object;
1103
1104	forbidden_pages_map = bm1;
1105	free_pages_map = bm2;
1106	mark_nosave_pages(forbidden_pages_map);
1107
1108	pr_debug("Basic memory bitmaps created\n");
1109
1110	return 0;
1111
1112 Free_second_object:
1113	kfree(bm2);
1114 Free_first_bitmap:
1115 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1116 Free_first_object:
1117	kfree(bm1);
1118	return -ENOMEM;
1119}
1120
1121/**
1122 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1123 *
1124 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1125 * auxiliary pointers are necessary so that the bitmaps themselves are not
1126 * referred to while they are being freed.
1127 */
 
1128void free_basic_memory_bitmaps(void)
1129{
1130	struct memory_bitmap *bm1, *bm2;
1131
1132	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1133		return;
1134
1135	bm1 = forbidden_pages_map;
1136	bm2 = free_pages_map;
1137	forbidden_pages_map = NULL;
1138	free_pages_map = NULL;
1139	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1140	kfree(bm1);
1141	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1142	kfree(bm2);
1143
1144	pr_debug("Basic memory bitmaps freed\n");
1145}
1146
1147void clear_free_pages(void)
1148{
1149	struct memory_bitmap *bm = free_pages_map;
1150	unsigned long pfn;
1151
1152	if (WARN_ON(!(free_pages_map)))
1153		return;
1154
1155	if (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) || want_init_on_free()) {
1156		memory_bm_position_reset(bm);
1157		pfn = memory_bm_next_pfn(bm);
1158		while (pfn != BM_END_OF_MAP) {
1159			if (pfn_valid(pfn))
1160				clear_highpage(pfn_to_page(pfn));
1161
1162			pfn = memory_bm_next_pfn(bm);
1163		}
1164		memory_bm_position_reset(bm);
1165		pr_info("free pages cleared after restore\n");
1166	}
1167}
1168
1169/**
1170 * snapshot_additional_pages - Estimate the number of extra pages needed.
1171 * @zone: Memory zone to carry out the computation for.
1172 *
1173 * Estimate the number of additional pages needed for setting up a hibernation
1174 * image data structures for @zone (usually, the returned value is greater than
1175 * the exact number).
1176 */
 
1177unsigned int snapshot_additional_pages(struct zone *zone)
1178{
1179	unsigned int rtree, nodes;
1180
1181	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1182	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1183			      LINKED_PAGE_DATA_SIZE);
1184	while (nodes > 1) {
1185		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1186		rtree += nodes;
1187	}
1188
1189	return 2 * rtree;
 
 
 
1190}
1191
1192#ifdef CONFIG_HIGHMEM
1193/**
1194 * count_free_highmem_pages - Compute the total number of free highmem pages.
1195 *
1196 * The returned number is system-wide.
1197 */
 
1198static unsigned int count_free_highmem_pages(void)
1199{
1200	struct zone *zone;
1201	unsigned int cnt = 0;
1202
1203	for_each_populated_zone(zone)
1204		if (is_highmem(zone))
1205			cnt += zone_page_state(zone, NR_FREE_PAGES);
1206
1207	return cnt;
1208}
1209
1210/**
1211 * saveable_highmem_page - Check if a highmem page is saveable.
1212 *
1213 * Determine whether a highmem page should be included in a hibernation image.
1214 *
1215 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1216 * and it isn't part of a free chunk of pages.
1217 */
1218static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1219{
1220	struct page *page;
1221
1222	if (!pfn_valid(pfn))
1223		return NULL;
1224
1225	page = pfn_to_online_page(pfn);
1226	if (!page || page_zone(page) != zone)
1227		return NULL;
1228
1229	BUG_ON(!PageHighMem(page));
1230
1231	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1232		return NULL;
1233
1234	if (PageReserved(page) || PageOffline(page))
1235		return NULL;
1236
1237	if (page_is_guard(page))
1238		return NULL;
1239
1240	return page;
1241}
1242
1243/**
1244 * count_highmem_pages - Compute the total number of saveable highmem pages.
 
1245 */
 
1246static unsigned int count_highmem_pages(void)
1247{
1248	struct zone *zone;
1249	unsigned int n = 0;
1250
1251	for_each_populated_zone(zone) {
1252		unsigned long pfn, max_zone_pfn;
1253
1254		if (!is_highmem(zone))
1255			continue;
1256
1257		mark_free_pages(zone);
1258		max_zone_pfn = zone_end_pfn(zone);
1259		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1260			if (saveable_highmem_page(zone, pfn))
1261				n++;
1262	}
1263	return n;
1264}
1265#else
1266static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1267{
1268	return NULL;
1269}
1270#endif /* CONFIG_HIGHMEM */
1271
1272/**
1273 * saveable_page - Check if the given page is saveable.
1274 *
1275 * Determine whether a non-highmem page should be included in a hibernation
1276 * image.
1277 *
1278 * We should save the page if it isn't Nosave, and is not in the range
1279 * of pages statically defined as 'unsaveable', and it isn't part of
1280 * a free chunk of pages.
1281 */
1282static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1283{
1284	struct page *page;
1285
1286	if (!pfn_valid(pfn))
1287		return NULL;
1288
1289	page = pfn_to_online_page(pfn);
1290	if (!page || page_zone(page) != zone)
1291		return NULL;
1292
1293	BUG_ON(PageHighMem(page));
1294
1295	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1296		return NULL;
1297
1298	if (PageOffline(page))
1299		return NULL;
1300
1301	if (PageReserved(page)
1302	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1303		return NULL;
1304
1305	if (page_is_guard(page))
1306		return NULL;
1307
1308	return page;
1309}
1310
1311/**
1312 * count_data_pages - Compute the total number of saveable non-highmem pages.
 
1313 */
 
1314static unsigned int count_data_pages(void)
1315{
1316	struct zone *zone;
1317	unsigned long pfn, max_zone_pfn;
1318	unsigned int n = 0;
1319
1320	for_each_populated_zone(zone) {
1321		if (is_highmem(zone))
1322			continue;
1323
1324		mark_free_pages(zone);
1325		max_zone_pfn = zone_end_pfn(zone);
1326		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1327			if (saveable_page(zone, pfn))
1328				n++;
1329	}
1330	return n;
1331}
1332
1333/*
1334 * This is needed, because copy_page and memcpy are not usable for copying
1335 * task structs.
1336 */
1337static inline void do_copy_page(long *dst, long *src)
1338{
1339	int n;
1340
1341	for (n = PAGE_SIZE / sizeof(long); n; n--)
1342		*dst++ = *src++;
1343}
1344
 
1345/**
1346 * safe_copy_page - Copy a page in a safe way.
1347 *
1348 * Check if the page we are going to copy is marked as present in the kernel
1349 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1350 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1351 * always returns 'true'.
1352 */
1353static void safe_copy_page(void *dst, struct page *s_page)
1354{
1355	if (kernel_page_present(s_page)) {
1356		do_copy_page(dst, page_address(s_page));
1357	} else {
1358		kernel_map_pages(s_page, 1, 1);
1359		do_copy_page(dst, page_address(s_page));
1360		kernel_map_pages(s_page, 1, 0);
1361	}
1362}
1363
 
1364#ifdef CONFIG_HIGHMEM
1365static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
 
1366{
1367	return is_highmem(zone) ?
1368		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1369}
1370
1371static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1372{
1373	struct page *s_page, *d_page;
1374	void *src, *dst;
1375
1376	s_page = pfn_to_page(src_pfn);
1377	d_page = pfn_to_page(dst_pfn);
1378	if (PageHighMem(s_page)) {
1379		src = kmap_atomic(s_page);
1380		dst = kmap_atomic(d_page);
1381		do_copy_page(dst, src);
1382		kunmap_atomic(dst);
1383		kunmap_atomic(src);
1384	} else {
1385		if (PageHighMem(d_page)) {
1386			/*
1387			 * The page pointed to by src may contain some kernel
1388			 * data modified by kmap_atomic()
1389			 */
1390			safe_copy_page(buffer, s_page);
1391			dst = kmap_atomic(d_page);
1392			copy_page(dst, buffer);
1393			kunmap_atomic(dst);
1394		} else {
1395			safe_copy_page(page_address(d_page), s_page);
1396		}
1397	}
1398}
1399#else
1400#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1401
1402static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1403{
1404	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1405				pfn_to_page(src_pfn));
1406}
1407#endif /* CONFIG_HIGHMEM */
1408
1409static void copy_data_pages(struct memory_bitmap *copy_bm,
1410			    struct memory_bitmap *orig_bm)
1411{
1412	struct zone *zone;
1413	unsigned long pfn;
1414
1415	for_each_populated_zone(zone) {
1416		unsigned long max_zone_pfn;
1417
1418		mark_free_pages(zone);
1419		max_zone_pfn = zone_end_pfn(zone);
1420		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1421			if (page_is_saveable(zone, pfn))
1422				memory_bm_set_bit(orig_bm, pfn);
1423	}
1424	memory_bm_position_reset(orig_bm);
1425	memory_bm_position_reset(copy_bm);
1426	for(;;) {
1427		pfn = memory_bm_next_pfn(orig_bm);
1428		if (unlikely(pfn == BM_END_OF_MAP))
1429			break;
1430		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1431	}
1432}
1433
1434/* Total number of image pages */
1435static unsigned int nr_copy_pages;
1436/* Number of pages needed for saving the original pfns of the image pages */
1437static unsigned int nr_meta_pages;
1438/*
1439 * Numbers of normal and highmem page frames allocated for hibernation image
1440 * before suspending devices.
1441 */
1442static unsigned int alloc_normal, alloc_highmem;
1443/*
1444 * Memory bitmap used for marking saveable pages (during hibernation) or
1445 * hibernation image pages (during restore)
1446 */
1447static struct memory_bitmap orig_bm;
1448/*
1449 * Memory bitmap used during hibernation for marking allocated page frames that
1450 * will contain copies of saveable pages.  During restore it is initially used
1451 * for marking hibernation image pages, but then the set bits from it are
1452 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1453 * used for marking "safe" highmem pages, but it has to be reinitialized for
1454 * this purpose.
1455 */
1456static struct memory_bitmap copy_bm;
1457
1458/**
1459 * swsusp_free - Free pages allocated for hibernation image.
1460 *
1461 * Image pages are alocated before snapshot creation, so they need to be
1462 * released after resume.
1463 */
 
1464void swsusp_free(void)
1465{
1466	unsigned long fb_pfn, fr_pfn;
1467
1468	if (!forbidden_pages_map || !free_pages_map)
1469		goto out;
1470
1471	memory_bm_position_reset(forbidden_pages_map);
1472	memory_bm_position_reset(free_pages_map);
1473
1474loop:
1475	fr_pfn = memory_bm_next_pfn(free_pages_map);
1476	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
 
 
1477
1478	/*
1479	 * Find the next bit set in both bitmaps. This is guaranteed to
1480	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1481	 */
1482	do {
1483		if (fb_pfn < fr_pfn)
1484			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1485		if (fr_pfn < fb_pfn)
1486			fr_pfn = memory_bm_next_pfn(free_pages_map);
1487	} while (fb_pfn != fr_pfn);
1488
1489	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1490		struct page *page = pfn_to_page(fr_pfn);
1491
1492		memory_bm_clear_current(forbidden_pages_map);
1493		memory_bm_clear_current(free_pages_map);
1494		hibernate_restore_unprotect_page(page_address(page));
1495		__free_page(page);
1496		goto loop;
1497	}
1498
1499out:
1500	nr_copy_pages = 0;
1501	nr_meta_pages = 0;
1502	restore_pblist = NULL;
1503	buffer = NULL;
1504	alloc_normal = 0;
1505	alloc_highmem = 0;
1506	hibernate_restore_protection_end();
1507}
1508
1509/* Helper functions used for the shrinking of memory. */
1510
1511#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1512
1513/**
1514 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1515 * @nr_pages: Number of page frames to allocate.
1516 * @mask: GFP flags to use for the allocation.
1517 *
1518 * Return value: Number of page frames actually allocated
1519 */
1520static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1521{
1522	unsigned long nr_alloc = 0;
1523
1524	while (nr_pages > 0) {
1525		struct page *page;
1526
1527		page = alloc_image_page(mask);
1528		if (!page)
1529			break;
1530		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1531		if (PageHighMem(page))
1532			alloc_highmem++;
1533		else
1534			alloc_normal++;
1535		nr_pages--;
1536		nr_alloc++;
1537	}
1538
1539	return nr_alloc;
1540}
1541
1542static unsigned long preallocate_image_memory(unsigned long nr_pages,
1543					      unsigned long avail_normal)
1544{
1545	unsigned long alloc;
1546
1547	if (avail_normal <= alloc_normal)
1548		return 0;
1549
1550	alloc = avail_normal - alloc_normal;
1551	if (nr_pages < alloc)
1552		alloc = nr_pages;
1553
1554	return preallocate_image_pages(alloc, GFP_IMAGE);
1555}
1556
1557#ifdef CONFIG_HIGHMEM
1558static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1559{
1560	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1561}
1562
1563/**
1564 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1565 */
1566static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1567{
1568	return div64_u64(x * multiplier, base);
 
 
1569}
1570
1571static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1572						  unsigned long highmem,
1573						  unsigned long total)
1574{
1575	unsigned long alloc = __fraction(nr_pages, highmem, total);
1576
1577	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1578}
1579#else /* CONFIG_HIGHMEM */
1580static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1581{
1582	return 0;
1583}
1584
1585static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1586							 unsigned long highmem,
1587							 unsigned long total)
1588{
1589	return 0;
1590}
1591#endif /* CONFIG_HIGHMEM */
1592
1593/**
1594 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1595 */
1596static unsigned long free_unnecessary_pages(void)
1597{
1598	unsigned long save, to_free_normal, to_free_highmem, free;
1599
1600	save = count_data_pages();
1601	if (alloc_normal >= save) {
1602		to_free_normal = alloc_normal - save;
1603		save = 0;
1604	} else {
1605		to_free_normal = 0;
1606		save -= alloc_normal;
1607	}
1608	save += count_highmem_pages();
1609	if (alloc_highmem >= save) {
1610		to_free_highmem = alloc_highmem - save;
1611	} else {
1612		to_free_highmem = 0;
1613		save -= alloc_highmem;
1614		if (to_free_normal > save)
1615			to_free_normal -= save;
1616		else
1617			to_free_normal = 0;
1618	}
1619	free = to_free_normal + to_free_highmem;
1620
1621	memory_bm_position_reset(&copy_bm);
1622
1623	while (to_free_normal > 0 || to_free_highmem > 0) {
1624		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1625		struct page *page = pfn_to_page(pfn);
1626
1627		if (PageHighMem(page)) {
1628			if (!to_free_highmem)
1629				continue;
1630			to_free_highmem--;
1631			alloc_highmem--;
1632		} else {
1633			if (!to_free_normal)
1634				continue;
1635			to_free_normal--;
1636			alloc_normal--;
1637		}
1638		memory_bm_clear_bit(&copy_bm, pfn);
1639		swsusp_unset_page_forbidden(page);
1640		swsusp_unset_page_free(page);
1641		__free_page(page);
1642	}
1643
1644	return free;
1645}
1646
1647/**
1648 * minimum_image_size - Estimate the minimum acceptable size of an image.
1649 * @saveable: Number of saveable pages in the system.
1650 *
1651 * We want to avoid attempting to free too much memory too hard, so estimate the
1652 * minimum acceptable size of a hibernation image to use as the lower limit for
1653 * preallocating memory.
1654 *
1655 * We assume that the minimum image size should be proportional to
1656 *
1657 * [number of saveable pages] - [number of pages that can be freed in theory]
1658 *
1659 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1660 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
 
1661 */
1662static unsigned long minimum_image_size(unsigned long saveable)
1663{
1664	unsigned long size;
1665
1666	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1667		+ global_node_page_state(NR_ACTIVE_ANON)
1668		+ global_node_page_state(NR_INACTIVE_ANON)
1669		+ global_node_page_state(NR_ACTIVE_FILE)
1670		+ global_node_page_state(NR_INACTIVE_FILE);
 
1671
1672	return saveable <= size ? 0 : saveable - size;
1673}
1674
1675/**
1676 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1677 *
1678 * To create a hibernation image it is necessary to make a copy of every page
1679 * frame in use.  We also need a number of page frames to be free during
1680 * hibernation for allocations made while saving the image and for device
1681 * drivers, in case they need to allocate memory from their hibernation
1682 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1683 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1684 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1685 * total number of available page frames and allocate at least
1686 *
1687 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1688 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1689 *
1690 * of them, which corresponds to the maximum size of a hibernation image.
1691 *
1692 * If image_size is set below the number following from the above formula,
1693 * the preallocation of memory is continued until the total number of saveable
1694 * pages in the system is below the requested image size or the minimum
1695 * acceptable image size returned by minimum_image_size(), whichever is greater.
1696 */
1697int hibernate_preallocate_memory(void)
1698{
1699	struct zone *zone;
1700	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1701	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1702	ktime_t start, stop;
1703	int error;
1704
1705	pr_info("Preallocating image memory\n");
1706	start = ktime_get();
1707
1708	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1709	if (error) {
1710		pr_err("Cannot allocate original bitmap\n");
1711		goto err_out;
1712	}
1713
1714	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1715	if (error) {
1716		pr_err("Cannot allocate copy bitmap\n");
1717		goto err_out;
1718	}
1719
1720	alloc_normal = 0;
1721	alloc_highmem = 0;
1722
1723	/* Count the number of saveable data pages. */
1724	save_highmem = count_highmem_pages();
1725	saveable = count_data_pages();
1726
1727	/*
1728	 * Compute the total number of page frames we can use (count) and the
1729	 * number of pages needed for image metadata (size).
1730	 */
1731	count = saveable;
1732	saveable += save_highmem;
1733	highmem = save_highmem;
1734	size = 0;
1735	for_each_populated_zone(zone) {
1736		size += snapshot_additional_pages(zone);
1737		if (is_highmem(zone))
1738			highmem += zone_page_state(zone, NR_FREE_PAGES);
1739		else
1740			count += zone_page_state(zone, NR_FREE_PAGES);
1741	}
1742	avail_normal = count;
1743	count += highmem;
1744	count -= totalreserve_pages;
1745
 
 
 
1746	/* Compute the maximum number of saveable pages to leave in memory. */
1747	max_size = (count - (size + PAGES_FOR_IO)) / 2
1748			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1749	/* Compute the desired number of image pages specified by image_size. */
1750	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1751	if (size > max_size)
1752		size = max_size;
1753	/*
1754	 * If the desired number of image pages is at least as large as the
1755	 * current number of saveable pages in memory, allocate page frames for
1756	 * the image and we're done.
1757	 */
1758	if (size >= saveable) {
1759		pages = preallocate_image_highmem(save_highmem);
1760		pages += preallocate_image_memory(saveable - pages, avail_normal);
1761		goto out;
1762	}
1763
1764	/* Estimate the minimum size of the image. */
1765	pages = minimum_image_size(saveable);
1766	/*
1767	 * To avoid excessive pressure on the normal zone, leave room in it to
1768	 * accommodate an image of the minimum size (unless it's already too
1769	 * small, in which case don't preallocate pages from it at all).
1770	 */
1771	if (avail_normal > pages)
1772		avail_normal -= pages;
1773	else
1774		avail_normal = 0;
1775	if (size < pages)
1776		size = min_t(unsigned long, pages, max_size);
1777
1778	/*
1779	 * Let the memory management subsystem know that we're going to need a
1780	 * large number of page frames to allocate and make it free some memory.
1781	 * NOTE: If this is not done, performance will be hurt badly in some
1782	 * test cases.
1783	 */
1784	shrink_all_memory(saveable - size);
1785
1786	/*
1787	 * The number of saveable pages in memory was too high, so apply some
1788	 * pressure to decrease it.  First, make room for the largest possible
1789	 * image and fail if that doesn't work.  Next, try to decrease the size
1790	 * of the image as much as indicated by 'size' using allocations from
1791	 * highmem and non-highmem zones separately.
1792	 */
1793	pages_highmem = preallocate_image_highmem(highmem / 2);
1794	alloc = count - max_size;
1795	if (alloc > pages_highmem)
1796		alloc -= pages_highmem;
1797	else
1798		alloc = 0;
1799	pages = preallocate_image_memory(alloc, avail_normal);
1800	if (pages < alloc) {
1801		/* We have exhausted non-highmem pages, try highmem. */
1802		alloc -= pages;
1803		pages += pages_highmem;
1804		pages_highmem = preallocate_image_highmem(alloc);
1805		if (pages_highmem < alloc) {
1806			pr_err("Image allocation is %lu pages short\n",
1807				alloc - pages_highmem);
1808			goto err_out;
1809		}
1810		pages += pages_highmem;
1811		/*
1812		 * size is the desired number of saveable pages to leave in
1813		 * memory, so try to preallocate (all memory - size) pages.
1814		 */
1815		alloc = (count - pages) - size;
1816		pages += preallocate_image_highmem(alloc);
1817	} else {
1818		/*
1819		 * There are approximately max_size saveable pages at this point
1820		 * and we want to reduce this number down to size.
1821		 */
1822		alloc = max_size - size;
1823		size = preallocate_highmem_fraction(alloc, highmem, count);
1824		pages_highmem += size;
1825		alloc -= size;
1826		size = preallocate_image_memory(alloc, avail_normal);
1827		pages_highmem += preallocate_image_highmem(alloc - size);
1828		pages += pages_highmem + size;
1829	}
1830
1831	/*
1832	 * We only need as many page frames for the image as there are saveable
1833	 * pages in memory, but we have allocated more.  Release the excessive
1834	 * ones now.
1835	 */
1836	pages -= free_unnecessary_pages();
1837
1838 out:
1839	stop = ktime_get();
1840	pr_info("Allocated %lu pages for snapshot\n", pages);
1841	swsusp_show_speed(start, stop, pages, "Allocated");
1842
1843	return 0;
1844
1845 err_out:
 
1846	swsusp_free();
1847	return -ENOMEM;
1848}
1849
1850#ifdef CONFIG_HIGHMEM
1851/**
1852 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1853 *
1854 * Compute the number of non-highmem pages that will be necessary for creating
1855 * copies of highmem pages.
1856 */
1857static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1858{
1859	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1860
1861	if (free_highmem >= nr_highmem)
1862		nr_highmem = 0;
1863	else
1864		nr_highmem -= free_highmem;
1865
1866	return nr_highmem;
1867}
1868#else
1869static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
 
1870#endif /* CONFIG_HIGHMEM */
1871
1872/**
1873 * enough_free_mem - Check if there is enough free memory for the image.
 
1874 */
 
1875static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1876{
1877	struct zone *zone;
1878	unsigned int free = alloc_normal;
1879
1880	for_each_populated_zone(zone)
1881		if (!is_highmem(zone))
1882			free += zone_page_state(zone, NR_FREE_PAGES);
1883
1884	nr_pages += count_pages_for_highmem(nr_highmem);
1885	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1886		 nr_pages, PAGES_FOR_IO, free);
1887
1888	return free > nr_pages + PAGES_FOR_IO;
1889}
1890
1891#ifdef CONFIG_HIGHMEM
1892/**
1893 * get_highmem_buffer - Allocate a buffer for highmem pages.
1894 *
1895 * If there are some highmem pages in the hibernation image, we may need a
1896 * buffer to copy them and/or load their data.
1897 */
 
1898static inline int get_highmem_buffer(int safe_needed)
1899{
1900	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1901	return buffer ? 0 : -ENOMEM;
1902}
1903
1904/**
1905 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1906 *
1907 * Try to allocate as many pages as needed, but if the number of free highmem
1908 * pages is less than that, allocate them all.
1909 */
1910static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1911					       unsigned int nr_highmem)
 
1912{
1913	unsigned int to_alloc = count_free_highmem_pages();
1914
1915	if (to_alloc > nr_highmem)
1916		to_alloc = nr_highmem;
1917
1918	nr_highmem -= to_alloc;
1919	while (to_alloc-- > 0) {
1920		struct page *page;
1921
1922		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1923		memory_bm_set_bit(bm, page_to_pfn(page));
1924	}
1925	return nr_highmem;
1926}
1927#else
1928static inline int get_highmem_buffer(int safe_needed) { return 0; }
1929
1930static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1931					       unsigned int n) { return 0; }
1932#endif /* CONFIG_HIGHMEM */
1933
1934/**
1935 * swsusp_alloc - Allocate memory for hibernation image.
 
 
 
 
1936 *
1937 * We first try to allocate as many highmem pages as there are
1938 * saveable highmem pages in the system.  If that fails, we allocate
1939 * non-highmem pages for the copies of the remaining highmem ones.
1940 *
1941 * In this approach it is likely that the copies of highmem pages will
1942 * also be located in the high memory, because of the way in which
1943 * copy_data_pages() works.
1944 */
1945static int swsusp_alloc(struct memory_bitmap *copy_bm,
1946			unsigned int nr_pages, unsigned int nr_highmem)
 
 
1947{
1948	if (nr_highmem > 0) {
1949		if (get_highmem_buffer(PG_ANY))
1950			goto err_out;
1951		if (nr_highmem > alloc_highmem) {
1952			nr_highmem -= alloc_highmem;
1953			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1954		}
1955	}
1956	if (nr_pages > alloc_normal) {
1957		nr_pages -= alloc_normal;
1958		while (nr_pages-- > 0) {
1959			struct page *page;
1960
1961			page = alloc_image_page(GFP_ATOMIC);
1962			if (!page)
1963				goto err_out;
1964			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1965		}
1966	}
1967
1968	return 0;
1969
1970 err_out:
1971	swsusp_free();
1972	return -ENOMEM;
1973}
1974
1975asmlinkage __visible int swsusp_save(void)
1976{
1977	unsigned int nr_pages, nr_highmem;
1978
1979	pr_info("Creating image:\n");
1980
1981	drain_local_pages(NULL);
1982	nr_pages = count_data_pages();
1983	nr_highmem = count_highmem_pages();
1984	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1985
1986	if (!enough_free_mem(nr_pages, nr_highmem)) {
1987		pr_err("Not enough free memory\n");
1988		return -ENOMEM;
1989	}
1990
1991	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1992		pr_err("Memory allocation failed\n");
1993		return -ENOMEM;
1994	}
1995
1996	/*
1997	 * During allocating of suspend pagedir, new cold pages may appear.
1998	 * Kill them.
1999	 */
2000	drain_local_pages(NULL);
2001	copy_data_pages(&copy_bm, &orig_bm);
2002
2003	/*
2004	 * End of critical section. From now on, we can write to memory,
2005	 * but we should not touch disk. This specially means we must _not_
2006	 * touch swap space! Except we must write out our image of course.
2007	 */
2008
2009	nr_pages += nr_highmem;
2010	nr_copy_pages = nr_pages;
2011	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2012
2013	pr_info("Image created (%d pages copied)\n", nr_pages);
 
2014
2015	return 0;
2016}
2017
2018#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2019static int init_header_complete(struct swsusp_info *info)
2020{
2021	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2022	info->version_code = LINUX_VERSION_CODE;
2023	return 0;
2024}
2025
2026static const char *check_image_kernel(struct swsusp_info *info)
2027{
2028	if (info->version_code != LINUX_VERSION_CODE)
2029		return "kernel version";
2030	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2031		return "system type";
2032	if (strcmp(info->uts.release,init_utsname()->release))
2033		return "kernel release";
2034	if (strcmp(info->uts.version,init_utsname()->version))
2035		return "version";
2036	if (strcmp(info->uts.machine,init_utsname()->machine))
2037		return "machine";
2038	return NULL;
2039}
2040#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2041
2042unsigned long snapshot_get_image_size(void)
2043{
2044	return nr_copy_pages + nr_meta_pages + 1;
2045}
2046
2047static int init_header(struct swsusp_info *info)
2048{
2049	memset(info, 0, sizeof(struct swsusp_info));
2050	info->num_physpages = get_num_physpages();
2051	info->image_pages = nr_copy_pages;
2052	info->pages = snapshot_get_image_size();
2053	info->size = info->pages;
2054	info->size <<= PAGE_SHIFT;
2055	return init_header_complete(info);
2056}
2057
2058/**
2059 * pack_pfns - Prepare PFNs for saving.
2060 * @bm: Memory bitmap.
2061 * @buf: Memory buffer to store the PFNs in.
2062 *
2063 * PFNs corresponding to set bits in @bm are stored in the area of memory
2064 * pointed to by @buf (1 page at a time).
2065 */
2066static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
 
 
2067{
2068	int j;
2069
2070	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2071		buf[j] = memory_bm_next_pfn(bm);
2072		if (unlikely(buf[j] == BM_END_OF_MAP))
2073			break;
 
 
2074	}
2075}
2076
2077/**
2078 * snapshot_read_next - Get the address to read the next image page from.
2079 * @handle: Snapshot handle to be used for the reading.
 
 
 
 
 
 
 
2080 *
2081 * On the first call, @handle should point to a zeroed snapshot_handle
2082 * structure.  The structure gets populated then and a pointer to it should be
2083 * passed to this function every next time.
2084 *
2085 * On success, the function returns a positive number.  Then, the caller
2086 * is allowed to read up to the returned number of bytes from the memory
2087 * location computed by the data_of() macro.
2088 *
2089 * The function returns 0 to indicate the end of the data stream condition,
2090 * and negative numbers are returned on errors.  If that happens, the structure
2091 * pointed to by @handle is not updated and should not be used any more.
2092 */
 
2093int snapshot_read_next(struct snapshot_handle *handle)
2094{
2095	if (handle->cur > nr_meta_pages + nr_copy_pages)
2096		return 0;
2097
2098	if (!buffer) {
2099		/* This makes the buffer be freed by swsusp_free() */
2100		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2101		if (!buffer)
2102			return -ENOMEM;
2103	}
2104	if (!handle->cur) {
2105		int error;
2106
2107		error = init_header((struct swsusp_info *)buffer);
2108		if (error)
2109			return error;
2110		handle->buffer = buffer;
2111		memory_bm_position_reset(&orig_bm);
2112		memory_bm_position_reset(&copy_bm);
2113	} else if (handle->cur <= nr_meta_pages) {
2114		clear_page(buffer);
2115		pack_pfns(buffer, &orig_bm);
2116	} else {
2117		struct page *page;
2118
2119		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2120		if (PageHighMem(page)) {
2121			/*
2122			 * Highmem pages are copied to the buffer,
2123			 * because we can't return with a kmapped
2124			 * highmem page (we may not be called again).
2125			 */
2126			void *kaddr;
2127
2128			kaddr = kmap_atomic(page);
2129			copy_page(buffer, kaddr);
2130			kunmap_atomic(kaddr);
2131			handle->buffer = buffer;
2132		} else {
2133			handle->buffer = page_address(page);
2134		}
2135	}
2136	handle->cur++;
2137	return PAGE_SIZE;
2138}
2139
2140static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2141				    struct memory_bitmap *src)
 
 
 
 
 
2142{
2143	unsigned long pfn;
 
2144
2145	memory_bm_position_reset(src);
2146	pfn = memory_bm_next_pfn(src);
2147	while (pfn != BM_END_OF_MAP) {
2148		memory_bm_set_bit(dst, pfn);
2149		pfn = memory_bm_next_pfn(src);
 
2150	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151}
2152
2153/**
2154 * mark_unsafe_pages - Mark pages that were used before hibernation.
2155 *
2156 * Mark the pages that cannot be used for storing the image during restoration,
2157 * because they conflict with the pages that had been used before hibernation.
2158 */
2159static void mark_unsafe_pages(struct memory_bitmap *bm)
2160{
2161	unsigned long pfn;
2162
2163	/* Clear the "free"/"unsafe" bit for all PFNs */
2164	memory_bm_position_reset(free_pages_map);
2165	pfn = memory_bm_next_pfn(free_pages_map);
2166	while (pfn != BM_END_OF_MAP) {
2167		memory_bm_clear_current(free_pages_map);
2168		pfn = memory_bm_next_pfn(free_pages_map);
2169	}
2170
2171	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2172	duplicate_memory_bitmap(free_pages_map, bm);
2173
2174	allocated_unsafe_pages = 0;
2175}
2176
2177static int check_header(struct swsusp_info *info)
2178{
2179	const char *reason;
2180
2181	reason = check_image_kernel(info);
2182	if (!reason && info->num_physpages != get_num_physpages())
2183		reason = "memory size";
2184	if (reason) {
2185		pr_err("Image mismatch: %s\n", reason);
2186		return -EPERM;
2187	}
2188	return 0;
2189}
2190
2191/**
2192 * load header - Check the image header and copy the data from it.
2193 */
2194static int load_header(struct swsusp_info *info)
 
 
2195{
2196	int error;
2197
2198	restore_pblist = NULL;
2199	error = check_header(info);
2200	if (!error) {
2201		nr_copy_pages = info->image_pages;
2202		nr_meta_pages = info->pages - info->image_pages - 1;
2203	}
2204	return error;
2205}
2206
2207/**
2208 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2209 * @bm: Memory bitmap.
2210 * @buf: Area of memory containing the PFNs.
2211 *
2212 * For each element of the array pointed to by @buf (1 page at a time), set the
2213 * corresponding bit in @bm.
2214 */
2215static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2216{
2217	int j;
2218
2219	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2220		if (unlikely(buf[j] == BM_END_OF_MAP))
2221			break;
2222
2223		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
 
 
 
2224			memory_bm_set_bit(bm, buf[j]);
2225		else
2226			return -EFAULT;
2227	}
2228
2229	return 0;
2230}
2231
 
 
 
 
 
2232#ifdef CONFIG_HIGHMEM
2233/*
2234 * struct highmem_pbe is used for creating the list of highmem pages that
2235 * should be restored atomically during the resume from disk, because the page
2236 * frames they have occupied before the suspend are in use.
2237 */
2238struct highmem_pbe {
2239	struct page *copy_page;	/* data is here now */
2240	struct page *orig_page;	/* data was here before the suspend */
2241	struct highmem_pbe *next;
2242};
2243
2244/*
2245 * List of highmem PBEs needed for restoring the highmem pages that were
2246 * allocated before the suspend and included in the suspend image, but have
2247 * also been allocated by the "resume" kernel, so their contents cannot be
2248 * written directly to their "original" page frames.
2249 */
2250static struct highmem_pbe *highmem_pblist;
2251
2252/**
2253 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2254 * @bm: Memory bitmap.
2255 *
2256 * The bits in @bm that correspond to image pages are assumed to be set.
2257 */
 
2258static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2259{
2260	unsigned long pfn;
2261	unsigned int cnt = 0;
2262
2263	memory_bm_position_reset(bm);
2264	pfn = memory_bm_next_pfn(bm);
2265	while (pfn != BM_END_OF_MAP) {
2266		if (PageHighMem(pfn_to_page(pfn)))
2267			cnt++;
2268
2269		pfn = memory_bm_next_pfn(bm);
2270	}
2271	return cnt;
2272}
2273
 
 
 
 
 
 
 
 
 
 
 
 
2274static unsigned int safe_highmem_pages;
2275
2276static struct memory_bitmap *safe_highmem_bm;
2277
2278/**
2279 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2280 * @bm: Pointer to an uninitialized memory bitmap structure.
2281 * @nr_highmem_p: Pointer to the number of highmem image pages.
2282 *
2283 * Try to allocate as many highmem pages as there are highmem image pages
2284 * (@nr_highmem_p points to the variable containing the number of highmem image
2285 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2286 * hibernation image is restored entirely) have the corresponding bits set in
2287 * @bm (it must be unitialized).
2288 *
2289 * NOTE: This function should not be called if there are no highmem image pages.
2290 */
2291static int prepare_highmem_image(struct memory_bitmap *bm,
2292				 unsigned int *nr_highmem_p)
2293{
2294	unsigned int to_alloc;
2295
2296	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2297		return -ENOMEM;
2298
2299	if (get_highmem_buffer(PG_SAFE))
2300		return -ENOMEM;
2301
2302	to_alloc = count_free_highmem_pages();
2303	if (to_alloc > *nr_highmem_p)
2304		to_alloc = *nr_highmem_p;
2305	else
2306		*nr_highmem_p = to_alloc;
2307
2308	safe_highmem_pages = 0;
2309	while (to_alloc-- > 0) {
2310		struct page *page;
2311
2312		page = alloc_page(__GFP_HIGHMEM);
2313		if (!swsusp_page_is_free(page)) {
2314			/* The page is "safe", set its bit the bitmap */
2315			memory_bm_set_bit(bm, page_to_pfn(page));
2316			safe_highmem_pages++;
2317		}
2318		/* Mark the page as allocated */
2319		swsusp_set_page_forbidden(page);
2320		swsusp_set_page_free(page);
2321	}
2322	memory_bm_position_reset(bm);
2323	safe_highmem_bm = bm;
2324	return 0;
2325}
2326
2327static struct page *last_highmem_page;
2328
2329/**
2330 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2331 *
2332 * For a given highmem image page get a buffer that suspend_write_next() should
2333 * return to its caller to write to.
2334 *
2335 * If the page is to be saved to its "original" page frame or a copy of
2336 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2337 * the copy of the page is to be made in normal memory, so the address of
2338 * the copy is returned.
2339 *
2340 * If @buffer is returned, the caller of suspend_write_next() will write
2341 * the page's contents to @buffer, so they will have to be copied to the
2342 * right location on the next call to suspend_write_next() and it is done
2343 * with the help of copy_last_highmem_page().  For this purpose, if
2344 * @buffer is returned, @last_highmem_page is set to the page to which
2345 * the data will have to be copied from @buffer.
2346 */
2347static void *get_highmem_page_buffer(struct page *page,
2348				     struct chain_allocator *ca)
 
 
 
2349{
2350	struct highmem_pbe *pbe;
2351	void *kaddr;
2352
2353	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2354		/*
2355		 * We have allocated the "original" page frame and we can
2356		 * use it directly to store the loaded page.
2357		 */
2358		last_highmem_page = page;
2359		return buffer;
2360	}
2361	/*
2362	 * The "original" page frame has not been allocated and we have to
2363	 * use a "safe" page frame to store the loaded page.
2364	 */
2365	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2366	if (!pbe) {
2367		swsusp_free();
2368		return ERR_PTR(-ENOMEM);
2369	}
2370	pbe->orig_page = page;
2371	if (safe_highmem_pages > 0) {
2372		struct page *tmp;
2373
2374		/* Copy of the page will be stored in high memory */
2375		kaddr = buffer;
2376		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2377		safe_highmem_pages--;
2378		last_highmem_page = tmp;
2379		pbe->copy_page = tmp;
2380	} else {
2381		/* Copy of the page will be stored in normal memory */
2382		kaddr = safe_pages_list;
2383		safe_pages_list = safe_pages_list->next;
2384		pbe->copy_page = virt_to_page(kaddr);
2385	}
2386	pbe->next = highmem_pblist;
2387	highmem_pblist = pbe;
2388	return kaddr;
2389}
2390
2391/**
2392 * copy_last_highmem_page - Copy most the most recent highmem image page.
2393 *
2394 * Copy the contents of a highmem image from @buffer, where the caller of
2395 * snapshot_write_next() has stored them, to the right location represented by
2396 * @last_highmem_page .
2397 */
 
2398static void copy_last_highmem_page(void)
2399{
2400	if (last_highmem_page) {
2401		void *dst;
2402
2403		dst = kmap_atomic(last_highmem_page);
2404		copy_page(dst, buffer);
2405		kunmap_atomic(dst);
2406		last_highmem_page = NULL;
2407	}
2408}
2409
2410static inline int last_highmem_page_copied(void)
2411{
2412	return !last_highmem_page;
2413}
2414
2415static inline void free_highmem_data(void)
2416{
2417	if (safe_highmem_bm)
2418		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2419
2420	if (buffer)
2421		free_image_page(buffer, PG_UNSAFE_CLEAR);
2422}
2423#else
2424static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2425
2426static inline int prepare_highmem_image(struct memory_bitmap *bm,
2427					unsigned int *nr_highmem_p) { return 0; }
2428
2429static inline void *get_highmem_page_buffer(struct page *page,
2430					    struct chain_allocator *ca)
 
 
 
 
 
 
2431{
2432	return ERR_PTR(-EINVAL);
2433}
2434
2435static inline void copy_last_highmem_page(void) {}
2436static inline int last_highmem_page_copied(void) { return 1; }
2437static inline void free_highmem_data(void) {}
2438#endif /* CONFIG_HIGHMEM */
2439
2440#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2441
2442/**
2443 * prepare_image - Make room for loading hibernation image.
2444 * @new_bm: Unitialized memory bitmap structure.
2445 * @bm: Memory bitmap with unsafe pages marked.
2446 *
2447 * Use @bm to mark the pages that will be overwritten in the process of
2448 * restoring the system memory state from the suspend image ("unsafe" pages)
2449 * and allocate memory for the image.
2450 *
2451 * The idea is to allocate a new memory bitmap first and then allocate
2452 * as many pages as needed for image data, but without specifying what those
2453 * pages will be used for just yet.  Instead, we mark them all as allocated and
2454 * create a lists of "safe" pages to be used later.  On systems with high
2455 * memory a list of "safe" highmem pages is created too.
2456 */
2457static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
 
 
 
 
2458{
2459	unsigned int nr_pages, nr_highmem;
2460	struct linked_page *lp;
2461	int error;
2462
2463	/* If there is no highmem, the buffer will not be necessary */
2464	free_image_page(buffer, PG_UNSAFE_CLEAR);
2465	buffer = NULL;
2466
2467	nr_highmem = count_highmem_image_pages(bm);
2468	mark_unsafe_pages(bm);
 
 
2469
2470	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2471	if (error)
2472		goto Free;
2473
2474	duplicate_memory_bitmap(new_bm, bm);
2475	memory_bm_free(bm, PG_UNSAFE_KEEP);
2476	if (nr_highmem > 0) {
2477		error = prepare_highmem_image(bm, &nr_highmem);
2478		if (error)
2479			goto Free;
2480	}
2481	/*
2482	 * Reserve some safe pages for potential later use.
2483	 *
2484	 * NOTE: This way we make sure there will be enough safe pages for the
2485	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2486	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2487	 *
2488	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2489	 */
 
 
2490	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2491	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2492	while (nr_pages > 0) {
2493		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2494		if (!lp) {
2495			error = -ENOMEM;
2496			goto Free;
2497		}
2498		lp->next = safe_pages_list;
2499		safe_pages_list = lp;
2500		nr_pages--;
2501	}
2502	/* Preallocate memory for the image */
 
2503	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2504	while (nr_pages > 0) {
2505		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2506		if (!lp) {
2507			error = -ENOMEM;
2508			goto Free;
2509		}
2510		if (!swsusp_page_is_free(virt_to_page(lp))) {
2511			/* The page is "safe", add it to the list */
2512			lp->next = safe_pages_list;
2513			safe_pages_list = lp;
2514		}
2515		/* Mark the page as allocated */
2516		swsusp_set_page_forbidden(virt_to_page(lp));
2517		swsusp_set_page_free(virt_to_page(lp));
2518		nr_pages--;
2519	}
 
 
 
 
 
 
2520	return 0;
2521
2522 Free:
2523	swsusp_free();
2524	return error;
2525}
2526
2527/**
2528 * get_buffer - Get the address to store the next image data page.
2529 *
2530 * Get the address that snapshot_write_next() should return to its caller to
2531 * write to.
2532 */
 
2533static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2534{
2535	struct pbe *pbe;
2536	struct page *page;
2537	unsigned long pfn = memory_bm_next_pfn(bm);
2538
2539	if (pfn == BM_END_OF_MAP)
2540		return ERR_PTR(-EFAULT);
2541
2542	page = pfn_to_page(pfn);
2543	if (PageHighMem(page))
2544		return get_highmem_page_buffer(page, ca);
2545
2546	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2547		/*
2548		 * We have allocated the "original" page frame and we can
2549		 * use it directly to store the loaded page.
2550		 */
2551		return page_address(page);
2552
2553	/*
2554	 * The "original" page frame has not been allocated and we have to
2555	 * use a "safe" page frame to store the loaded page.
2556	 */
2557	pbe = chain_alloc(ca, sizeof(struct pbe));
2558	if (!pbe) {
2559		swsusp_free();
2560		return ERR_PTR(-ENOMEM);
2561	}
2562	pbe->orig_address = page_address(page);
2563	pbe->address = safe_pages_list;
2564	safe_pages_list = safe_pages_list->next;
2565	pbe->next = restore_pblist;
2566	restore_pblist = pbe;
2567	return pbe->address;
2568}
2569
2570/**
2571 * snapshot_write_next - Get the address to store the next image page.
2572 * @handle: Snapshot handle structure to guide the writing.
2573 *
2574 * On the first call, @handle should point to a zeroed snapshot_handle
2575 * structure.  The structure gets populated then and a pointer to it should be
2576 * passed to this function every next time.
2577 *
2578 * On success, the function returns a positive number.  Then, the caller
2579 * is allowed to write up to the returned number of bytes to the memory
2580 * location computed by the data_of() macro.
2581 *
2582 * The function returns 0 to indicate the "end of file" condition.  Negative
2583 * numbers are returned on errors, in which cases the structure pointed to by
2584 * @handle is not updated and should not be used any more.
 
2585 */
 
2586int snapshot_write_next(struct snapshot_handle *handle)
2587{
2588	static struct chain_allocator ca;
2589	int error = 0;
2590
2591	/* Check if we have already loaded the entire image */
2592	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2593		return 0;
2594
2595	handle->sync_read = 1;
2596
2597	if (!handle->cur) {
2598		if (!buffer)
2599			/* This makes the buffer be freed by swsusp_free() */
2600			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2601
2602		if (!buffer)
2603			return -ENOMEM;
2604
2605		handle->buffer = buffer;
2606	} else if (handle->cur == 1) {
2607		error = load_header(buffer);
2608		if (error)
2609			return error;
2610
2611		safe_pages_list = NULL;
2612
2613		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2614		if (error)
2615			return error;
2616
2617		hibernate_restore_protection_begin();
 
 
 
 
2618	} else if (handle->cur <= nr_meta_pages + 1) {
2619		error = unpack_orig_pfns(buffer, &copy_bm);
2620		if (error)
2621			return error;
2622
2623		if (handle->cur == nr_meta_pages + 1) {
2624			error = prepare_image(&orig_bm, &copy_bm);
2625			if (error)
2626				return error;
2627
2628			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2629			memory_bm_position_reset(&orig_bm);
2630			restore_pblist = NULL;
2631			handle->buffer = get_buffer(&orig_bm, &ca);
2632			handle->sync_read = 0;
2633			if (IS_ERR(handle->buffer))
2634				return PTR_ERR(handle->buffer);
2635		}
2636	} else {
2637		copy_last_highmem_page();
2638		hibernate_restore_protect_page(handle->buffer);
 
2639		handle->buffer = get_buffer(&orig_bm, &ca);
2640		if (IS_ERR(handle->buffer))
2641			return PTR_ERR(handle->buffer);
2642		if (handle->buffer != buffer)
2643			handle->sync_read = 0;
2644	}
2645	handle->cur++;
2646	return PAGE_SIZE;
2647}
2648
2649/**
2650 * snapshot_write_finalize - Complete the loading of a hibernation image.
2651 *
2652 * Must be called after the last call to snapshot_write_next() in case the last
2653 * page in the image happens to be a highmem page and its contents should be
2654 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2655 * necessary any more.
2656 */
 
2657void snapshot_write_finalize(struct snapshot_handle *handle)
2658{
2659	copy_last_highmem_page();
2660	hibernate_restore_protect_page(handle->buffer);
2661	/* Do that only if we have loaded the image entirely */
 
 
2662	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663		memory_bm_recycle(&orig_bm);
2664		free_highmem_data();
2665	}
2666}
2667
2668int snapshot_image_loaded(struct snapshot_handle *handle)
2669{
2670	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671			handle->cur <= nr_meta_pages + nr_copy_pages);
2672}
2673
2674#ifdef CONFIG_HIGHMEM
2675/* Assumes that @buf is ready and points to a "safe" page */
2676static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677				       void *buf)
2678{
2679	void *kaddr1, *kaddr2;
2680
2681	kaddr1 = kmap_atomic(p1);
2682	kaddr2 = kmap_atomic(p2);
2683	copy_page(buf, kaddr1);
2684	copy_page(kaddr1, kaddr2);
2685	copy_page(kaddr2, buf);
2686	kunmap_atomic(kaddr2);
2687	kunmap_atomic(kaddr1);
2688}
2689
2690/**
2691 * restore_highmem - Put highmem image pages into their original locations.
 
 
 
2692 *
2693 * For each highmem page that was in use before hibernation and is included in
2694 * the image, and also has been allocated by the "restore" kernel, swap its
2695 * current contents with the previous (ie. "before hibernation") ones.
2696 *
2697 * If the restore eventually fails, we can call this function once again and
2698 * restore the highmem state as seen by the restore kernel.
2699 */
 
2700int restore_highmem(void)
2701{
2702	struct highmem_pbe *pbe = highmem_pblist;
2703	void *buf;
2704
2705	if (!pbe)
2706		return 0;
2707
2708	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709	if (!buf)
2710		return -ENOMEM;
2711
2712	while (pbe) {
2713		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714		pbe = pbe->next;
2715	}
2716	free_image_page(buf, PG_UNSAFE_CLEAR);
2717	return 0;
2718}
2719#endif /* CONFIG_HIGHMEM */
v3.5.6
 
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
 
 
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
 
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
 
 
 
  30
  31#include <asm/uaccess.h>
  32#include <asm/mmu_context.h>
  33#include <asm/pgtable.h>
  34#include <asm/tlbflush.h>
  35#include <asm/io.h>
  36
  37#include "power.h"
  38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39static int swsusp_page_is_free(struct page *);
  40static void swsusp_set_page_forbidden(struct page *);
  41static void swsusp_unset_page_forbidden(struct page *);
  42
  43/*
  44 * Number of bytes to reserve for memory allocations made by device drivers
  45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  46 * cause image creation to fail (tunable via /sys/power/reserved_size).
  47 */
  48unsigned long reserved_size;
  49
  50void __init hibernate_reserved_size_init(void)
  51{
  52	reserved_size = SPARE_PAGES * PAGE_SIZE;
  53}
  54
  55/*
  56 * Preferred image size in bytes (tunable via /sys/power/image_size).
  57 * When it is set to N, swsusp will do its best to ensure the image
  58 * size will not exceed N bytes, but if that is impossible, it will
  59 * try to create the smallest image possible.
  60 */
  61unsigned long image_size;
  62
  63void __init hibernate_image_size_init(void)
  64{
  65	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  66}
  67
  68/* List of PBEs needed for restoring the pages that were allocated before
 
  69 * the suspend and included in the suspend image, but have also been
  70 * allocated by the "resume" kernel, so their contents cannot be written
  71 * directly to their "original" page frames.
  72 */
  73struct pbe *restore_pblist;
  74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75/* Pointer to an auxiliary buffer (1 page) */
  76static void *buffer;
  77
  78/**
  79 *	@safe_needed - on resume, for storing the PBE list and the image,
  80 *	we can only use memory pages that do not conflict with the pages
  81 *	used before suspend.  The unsafe pages have PageNosaveFree set
  82 *	and we count them using unsafe_pages.
  83 *
  84 *	Each allocated image page is marked as PageNosave and PageNosaveFree
  85 *	so that swsusp_free() can release it.
  86 */
  87
  88#define PG_ANY		0
  89#define PG_SAFE		1
  90#define PG_UNSAFE_CLEAR	1
  91#define PG_UNSAFE_KEEP	0
  92
  93static unsigned int allocated_unsafe_pages;
  94
 
 
 
 
 
 
 
 
 
 
 
 
 
  95static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  96{
  97	void *res;
  98
  99	res = (void *)get_zeroed_page(gfp_mask);
 100	if (safe_needed)
 101		while (res && swsusp_page_is_free(virt_to_page(res))) {
 102			/* The page is unsafe, mark it for swsusp_free() */
 103			swsusp_set_page_forbidden(virt_to_page(res));
 104			allocated_unsafe_pages++;
 105			res = (void *)get_zeroed_page(gfp_mask);
 106		}
 107	if (res) {
 108		swsusp_set_page_forbidden(virt_to_page(res));
 109		swsusp_set_page_free(virt_to_page(res));
 110	}
 111	return res;
 112}
 113
 
 
 
 
 
 
 
 
 
 
 
 
 114unsigned long get_safe_page(gfp_t gfp_mask)
 115{
 116	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 117}
 118
 119static struct page *alloc_image_page(gfp_t gfp_mask)
 120{
 121	struct page *page;
 122
 123	page = alloc_page(gfp_mask);
 124	if (page) {
 125		swsusp_set_page_forbidden(page);
 126		swsusp_set_page_free(page);
 127	}
 128	return page;
 129}
 130
 
 
 
 
 
 
 
 
 131/**
 132 *	free_image_page - free page represented by @addr, allocated with
 133 *	get_image_page (page flags set by it must be cleared)
 
 
 
 
 134 */
 135
 136static inline void free_image_page(void *addr, int clear_nosave_free)
 137{
 138	struct page *page;
 139
 140	BUG_ON(!virt_addr_valid(addr));
 141
 142	page = virt_to_page(addr);
 143
 144	swsusp_unset_page_forbidden(page);
 145	if (clear_nosave_free)
 146		swsusp_unset_page_free(page);
 147
 148	__free_page(page);
 149}
 150
 151/* struct linked_page is used to build chains of pages */
 152
 153#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 154
 155struct linked_page {
 156	struct linked_page *next;
 157	char data[LINKED_PAGE_DATA_SIZE];
 158} __attribute__((packed));
 159
 160static inline void
 161free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 162{
 163	while (list) {
 164		struct linked_page *lp = list->next;
 165
 166		free_image_page(list, clear_page_nosave);
 167		list = lp;
 168	}
 169}
 170
 171/**
 172  *	struct chain_allocator is used for allocating small objects out of
 173  *	a linked list of pages called 'the chain'.
 174  *
 175  *	The chain grows each time when there is no room for a new object in
 176  *	the current page.  The allocated objects cannot be freed individually.
 177  *	It is only possible to free them all at once, by freeing the entire
 178  *	chain.
 179  *
 180  *	NOTE: The chain allocator may be inefficient if the allocated objects
 181  *	are not much smaller than PAGE_SIZE.
 182  */
 183
 184struct chain_allocator {
 185	struct linked_page *chain;	/* the chain */
 186	unsigned int used_space;	/* total size of objects allocated out
 187					 * of the current page
 188					 */
 189	gfp_t gfp_mask;		/* mask for allocating pages */
 190	int safe_needed;	/* if set, only "safe" pages are allocated */
 191};
 192
 193static void
 194chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 195{
 196	ca->chain = NULL;
 197	ca->used_space = LINKED_PAGE_DATA_SIZE;
 198	ca->gfp_mask = gfp_mask;
 199	ca->safe_needed = safe_needed;
 200}
 201
 202static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 203{
 204	void *ret;
 205
 206	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 207		struct linked_page *lp;
 208
 209		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 
 210		if (!lp)
 211			return NULL;
 212
 213		lp->next = ca->chain;
 214		ca->chain = lp;
 215		ca->used_space = 0;
 216	}
 217	ret = ca->chain->data + ca->used_space;
 218	ca->used_space += size;
 219	return ret;
 220}
 221
 222/**
 223 *	Data types related to memory bitmaps.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224 *
 225 *	Memory bitmap is a structure consiting of many linked lists of
 226 *	objects.  The main list's elements are of type struct zone_bitmap
 227 *	and each of them corresonds to one zone.  For each zone bitmap
 228 *	object there is a list of objects of type struct bm_block that
 229 *	represent each blocks of bitmap in which information is stored.
 230 *
 231 *	struct memory_bitmap contains a pointer to the main list of zone
 232 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 233 *	and a pointer to the list of pages used for allocating all of the
 234 *	zone bitmap objects and bitmap block objects.
 235 *
 236 *	NOTE: It has to be possible to lay out the bitmap in memory
 237 *	using only allocations of order 0.  Additionally, the bitmap is
 238 *	designed to work with arbitrary number of zones (this is over the
 239 *	top for now, but let's avoid making unnecessary assumptions ;-).
 240 *
 241 *	struct zone_bitmap contains a pointer to a list of bitmap block
 242 *	objects and a pointer to the bitmap block object that has been
 243 *	most recently used for setting bits.  Additionally, it contains the
 244 *	pfns that correspond to the start and end of the represented zone.
 245 *
 246 *	struct bm_block contains a pointer to the memory page in which
 247 *	information is stored (in the form of a block of bitmap)
 248 *	It also contains the pfns that correspond to the start and end of
 249 *	the represented memory area.
 250 */
 251
 252#define BM_END_OF_MAP	(~0UL)
 253
 254#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 
 
 255
 256struct bm_block {
 257	struct list_head hook;	/* hook into a list of bitmap blocks */
 258	unsigned long start_pfn;	/* pfn represented by the first bit */
 259	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
 260	unsigned long *data;	/* bitmap representing pages */
 
 
 
 261};
 262
 263static inline unsigned long bm_block_bits(struct bm_block *bb)
 264{
 265	return bb->end_pfn - bb->start_pfn;
 266}
 
 
 
 
 
 
 
 
 
 
 267
 268/* strcut bm_position is used for browsing memory bitmaps */
 269
 270struct bm_position {
 271	struct bm_block *block;
 272	int bit;
 
 
 273};
 274
 275struct memory_bitmap {
 276	struct list_head blocks;	/* list of bitmap blocks */
 277	struct linked_page *p_list;	/* list of pages used to store zone
 278					 * bitmap objects and bitmap block
 279					 * objects
 280					 */
 281	struct bm_position cur;	/* most recently used bit position */
 282};
 283
 284/* Functions that operate on memory bitmaps */
 285
 286static void memory_bm_position_reset(struct memory_bitmap *bm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287{
 288	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
 289	bm->cur.bit = 0;
 
 
 
 
 
 
 
 
 
 
 
 290}
 291
 292static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 293
 294/**
 295 *	create_bm_block_list - create a list of block bitmap objects
 296 *	@pages - number of pages to track
 297 *	@list - list to put the allocated blocks into
 298 *	@ca - chain allocator to be used for allocating memory
 299 */
 300static int create_bm_block_list(unsigned long pages,
 301				struct list_head *list,
 302				struct chain_allocator *ca)
 303{
 304	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 
 
 305
 306	while (nr_blocks-- > 0) {
 307		struct bm_block *bb;
 308
 309		bb = chain_alloc(ca, sizeof(struct bm_block));
 310		if (!bb)
 
 
 
 
 
 
 
 
 
 311			return -ENOMEM;
 312		list_add(&bb->hook, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313	}
 314
 
 
 
 315	return 0;
 316}
 317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318struct mem_extent {
 319	struct list_head hook;
 320	unsigned long start;
 321	unsigned long end;
 322};
 323
 324/**
 325 *	free_mem_extents - free a list of memory extents
 326 *	@list - list of extents to empty
 327 */
 328static void free_mem_extents(struct list_head *list)
 329{
 330	struct mem_extent *ext, *aux;
 331
 332	list_for_each_entry_safe(ext, aux, list, hook) {
 333		list_del(&ext->hook);
 334		kfree(ext);
 335	}
 336}
 337
 338/**
 339 *	create_mem_extents - create a list of memory extents representing
 340 *	                     contiguous ranges of PFNs
 341 *	@list - list to put the extents into
 342 *	@gfp_mask - mask to use for memory allocations
 
 343 */
 344static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 345{
 346	struct zone *zone;
 347
 348	INIT_LIST_HEAD(list);
 349
 350	for_each_populated_zone(zone) {
 351		unsigned long zone_start, zone_end;
 352		struct mem_extent *ext, *cur, *aux;
 353
 354		zone_start = zone->zone_start_pfn;
 355		zone_end = zone->zone_start_pfn + zone->spanned_pages;
 356
 357		list_for_each_entry(ext, list, hook)
 358			if (zone_start <= ext->end)
 359				break;
 360
 361		if (&ext->hook == list || zone_end < ext->start) {
 362			/* New extent is necessary */
 363			struct mem_extent *new_ext;
 364
 365			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 366			if (!new_ext) {
 367				free_mem_extents(list);
 368				return -ENOMEM;
 369			}
 370			new_ext->start = zone_start;
 371			new_ext->end = zone_end;
 372			list_add_tail(&new_ext->hook, &ext->hook);
 373			continue;
 374		}
 375
 376		/* Merge this zone's range of PFNs with the existing one */
 377		if (zone_start < ext->start)
 378			ext->start = zone_start;
 379		if (zone_end > ext->end)
 380			ext->end = zone_end;
 381
 382		/* More merging may be possible */
 383		cur = ext;
 384		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 385			if (zone_end < cur->start)
 386				break;
 387			if (zone_end < cur->end)
 388				ext->end = cur->end;
 389			list_del(&cur->hook);
 390			kfree(cur);
 391		}
 392	}
 393
 394	return 0;
 395}
 396
 397/**
 398  *	memory_bm_create - allocate memory for a memory bitmap
 399  */
 400static int
 401memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 402{
 403	struct chain_allocator ca;
 404	struct list_head mem_extents;
 405	struct mem_extent *ext;
 406	int error;
 407
 408	chain_init(&ca, gfp_mask, safe_needed);
 409	INIT_LIST_HEAD(&bm->blocks);
 410
 411	error = create_mem_extents(&mem_extents, gfp_mask);
 412	if (error)
 413		return error;
 414
 415	list_for_each_entry(ext, &mem_extents, hook) {
 416		struct bm_block *bb;
 417		unsigned long pfn = ext->start;
 418		unsigned long pages = ext->end - ext->start;
 419
 420		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
 421
 422		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
 423		if (error)
 424			goto Error;
 425
 426		list_for_each_entry_continue(bb, &bm->blocks, hook) {
 427			bb->data = get_image_page(gfp_mask, safe_needed);
 428			if (!bb->data) {
 429				error = -ENOMEM;
 430				goto Error;
 431			}
 432
 433			bb->start_pfn = pfn;
 434			if (pages >= BM_BITS_PER_BLOCK) {
 435				pfn += BM_BITS_PER_BLOCK;
 436				pages -= BM_BITS_PER_BLOCK;
 437			} else {
 438				/* This is executed only once in the loop */
 439				pfn += pages;
 440			}
 441			bb->end_pfn = pfn;
 442		}
 
 443	}
 444
 445	bm->p_list = ca.chain;
 446	memory_bm_position_reset(bm);
 447 Exit:
 448	free_mem_extents(&mem_extents);
 449	return error;
 450
 451 Error:
 452	bm->p_list = ca.chain;
 453	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 454	goto Exit;
 455}
 456
 457/**
 458  *	memory_bm_free - free memory occupied by the memory bitmap @bm
 459  */
 
 460static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 461{
 462	struct bm_block *bb;
 463
 464	list_for_each_entry(bb, &bm->blocks, hook)
 465		if (bb->data)
 466			free_image_page(bb->data, clear_nosave_free);
 467
 468	free_list_of_pages(bm->p_list, clear_nosave_free);
 469
 470	INIT_LIST_HEAD(&bm->blocks);
 471}
 472
 473/**
 474 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
 475 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 476 *	of @bm->cur_zone_bm are updated.
 
 
 
 
 477 */
 478static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 479				void **addr, unsigned int *bit_nr)
 480{
 481	struct bm_block *bb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482
 
 
 
 
 483	/*
 484	 * Check if the pfn corresponds to the current bitmap block and find
 485	 * the block where it fits if this is not the case.
 486	 */
 487	bb = bm->cur.block;
 488	if (pfn < bb->start_pfn)
 489		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
 490			if (pfn >= bb->start_pfn)
 491				break;
 492
 493	if (pfn >= bb->end_pfn)
 494		list_for_each_entry_continue(bb, &bm->blocks, hook)
 495			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
 496				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497
 498	if (&bb->hook == &bm->blocks)
 499		return -EFAULT;
 500
 501	/* The block has been found */
 502	bm->cur.block = bb;
 503	pfn -= bb->start_pfn;
 504	bm->cur.bit = pfn + 1;
 505	*bit_nr = pfn;
 506	*addr = bb->data;
 507	return 0;
 508}
 509
 510static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 511{
 512	void *addr;
 513	unsigned int bit;
 514	int error;
 515
 516	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 517	BUG_ON(error);
 518	set_bit(bit, addr);
 519}
 520
 521static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 522{
 523	void *addr;
 524	unsigned int bit;
 525	int error;
 526
 527	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 528	if (!error)
 529		set_bit(bit, addr);
 
 530	return error;
 531}
 532
 533static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 534{
 535	void *addr;
 536	unsigned int bit;
 537	int error;
 538
 539	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 540	BUG_ON(error);
 541	clear_bit(bit, addr);
 542}
 543
 
 
 
 
 
 
 
 
 544static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 545{
 546	void *addr;
 547	unsigned int bit;
 548	int error;
 549
 550	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 551	BUG_ON(error);
 552	return test_bit(bit, addr);
 553}
 554
 555static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 556{
 557	void *addr;
 558	unsigned int bit;
 559
 560	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 561}
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563/**
 564 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 565 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 566 *	returned.
 567 *
 568 *	It is required to run memory_bm_position_reset() before the first call to
 569 *	this function.
 
 
 
 
 570 */
 571
 572static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 573{
 574	struct bm_block *bb;
 575	int bit;
 576
 577	bb = bm->cur.block;
 578	do {
 579		bit = bm->cur.bit;
 580		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
 581		if (bit < bm_block_bits(bb))
 582			goto Return_pfn;
 583
 584		bb = list_entry(bb->hook.next, struct bm_block, hook);
 585		bm->cur.block = bb;
 586		bm->cur.bit = 0;
 587	} while (&bb->hook != &bm->blocks);
 
 588
 589	memory_bm_position_reset(bm);
 590	return BM_END_OF_MAP;
 591
 592 Return_pfn:
 593	bm->cur.bit = bit + 1;
 594	return bb->start_pfn + bit;
 595}
 596
 597/**
 598 *	This structure represents a range of page frames the contents of which
 599 *	should not be saved during the suspend.
 600 */
 601
 602struct nosave_region {
 603	struct list_head list;
 604	unsigned long start_pfn;
 605	unsigned long end_pfn;
 606};
 607
 608static LIST_HEAD(nosave_regions);
 609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610/**
 611 *	register_nosave_region - register a range of page frames the contents
 612 *	of which should not be saved during the suspend (to be used in the early
 613 *	initialization code)
 
 614 */
 615
 616void __init
 617__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 618			 int use_kmalloc)
 619{
 620	struct nosave_region *region;
 621
 622	if (start_pfn >= end_pfn)
 623		return;
 624
 625	if (!list_empty(&nosave_regions)) {
 626		/* Try to extend the previous region (they should be sorted) */
 627		region = list_entry(nosave_regions.prev,
 628					struct nosave_region, list);
 629		if (region->end_pfn == start_pfn) {
 630			region->end_pfn = end_pfn;
 631			goto Report;
 632		}
 633	}
 634	if (use_kmalloc) {
 635		/* during init, this shouldn't fail */
 636		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 637		BUG_ON(!region);
 638	} else
 639		/* This allocation cannot fail */
 640		region = alloc_bootmem(sizeof(struct nosave_region));
 
 
 
 
 
 641	region->start_pfn = start_pfn;
 642	region->end_pfn = end_pfn;
 643	list_add_tail(&region->list, &nosave_regions);
 644 Report:
 645	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
 646		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
 
 647}
 648
 649/*
 650 * Set bits in this map correspond to the page frames the contents of which
 651 * should not be saved during the suspend.
 652 */
 653static struct memory_bitmap *forbidden_pages_map;
 654
 655/* Set bits in this map correspond to free page frames. */
 656static struct memory_bitmap *free_pages_map;
 657
 658/*
 659 * Each page frame allocated for creating the image is marked by setting the
 660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 661 */
 662
 663void swsusp_set_page_free(struct page *page)
 664{
 665	if (free_pages_map)
 666		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 667}
 668
 669static int swsusp_page_is_free(struct page *page)
 670{
 671	return free_pages_map ?
 672		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 673}
 674
 675void swsusp_unset_page_free(struct page *page)
 676{
 677	if (free_pages_map)
 678		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 679}
 680
 681static void swsusp_set_page_forbidden(struct page *page)
 682{
 683	if (forbidden_pages_map)
 684		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 685}
 686
 687int swsusp_page_is_forbidden(struct page *page)
 688{
 689	return forbidden_pages_map ?
 690		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 691}
 692
 693static void swsusp_unset_page_forbidden(struct page *page)
 694{
 695	if (forbidden_pages_map)
 696		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 697}
 698
 699/**
 700 *	mark_nosave_pages - set bits corresponding to the page frames the
 701 *	contents of which should not be saved in a given bitmap.
 
 
 
 702 */
 703
 704static void mark_nosave_pages(struct memory_bitmap *bm)
 705{
 706	struct nosave_region *region;
 707
 708	if (list_empty(&nosave_regions))
 709		return;
 710
 711	list_for_each_entry(region, &nosave_regions, list) {
 712		unsigned long pfn;
 713
 714		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
 715			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
 716			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 717				- 1);
 718
 719		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 720			if (pfn_valid(pfn)) {
 721				/*
 722				 * It is safe to ignore the result of
 723				 * mem_bm_set_bit_check() here, since we won't
 724				 * touch the PFNs for which the error is
 725				 * returned anyway.
 726				 */
 727				mem_bm_set_bit_check(bm, pfn);
 728			}
 729	}
 730}
 731
 732/**
 733 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 734 *	frames that should not be saved and free page frames.  The pointers
 735 *	forbidden_pages_map and free_pages_map are only modified if everything
 736 *	goes well, because we don't want the bits to be used before both bitmaps
 737 *	are set up.
 
 738 */
 739
 740int create_basic_memory_bitmaps(void)
 741{
 742	struct memory_bitmap *bm1, *bm2;
 743	int error = 0;
 744
 745	BUG_ON(forbidden_pages_map || free_pages_map);
 
 
 
 746
 747	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 748	if (!bm1)
 749		return -ENOMEM;
 750
 751	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 752	if (error)
 753		goto Free_first_object;
 754
 755	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 756	if (!bm2)
 757		goto Free_first_bitmap;
 758
 759	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 760	if (error)
 761		goto Free_second_object;
 762
 763	forbidden_pages_map = bm1;
 764	free_pages_map = bm2;
 765	mark_nosave_pages(forbidden_pages_map);
 766
 767	pr_debug("PM: Basic memory bitmaps created\n");
 768
 769	return 0;
 770
 771 Free_second_object:
 772	kfree(bm2);
 773 Free_first_bitmap:
 774 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 775 Free_first_object:
 776	kfree(bm1);
 777	return -ENOMEM;
 778}
 779
 780/**
 781 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 782 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 783 *	so that the bitmaps themselves are not referred to while they are being
 784 *	freed.
 
 785 */
 786
 787void free_basic_memory_bitmaps(void)
 788{
 789	struct memory_bitmap *bm1, *bm2;
 790
 791	BUG_ON(!(forbidden_pages_map && free_pages_map));
 
 792
 793	bm1 = forbidden_pages_map;
 794	bm2 = free_pages_map;
 795	forbidden_pages_map = NULL;
 796	free_pages_map = NULL;
 797	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 798	kfree(bm1);
 799	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
 800	kfree(bm2);
 801
 802	pr_debug("PM: Basic memory bitmaps freed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803}
 804
 805/**
 806 *	snapshot_additional_pages - estimate the number of additional pages
 807 *	be needed for setting up the suspend image data structures for given
 808 *	zone (usually the returned value is greater than the exact number)
 
 
 
 809 */
 810
 811unsigned int snapshot_additional_pages(struct zone *zone)
 812{
 813	unsigned int res;
 
 
 
 
 
 
 
 
 814
 815	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
 816	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
 817			    LINKED_PAGE_DATA_SIZE);
 818	return 2 * res;
 819}
 820
 821#ifdef CONFIG_HIGHMEM
 822/**
 823 *	count_free_highmem_pages - compute the total number of free highmem
 824 *	pages, system-wide.
 
 825 */
 826
 827static unsigned int count_free_highmem_pages(void)
 828{
 829	struct zone *zone;
 830	unsigned int cnt = 0;
 831
 832	for_each_populated_zone(zone)
 833		if (is_highmem(zone))
 834			cnt += zone_page_state(zone, NR_FREE_PAGES);
 835
 836	return cnt;
 837}
 838
 839/**
 840 *	saveable_highmem_page - Determine whether a highmem page should be
 841 *	included in the suspend image.
 
 842 *
 843 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 844 *	and it isn't a part of a free chunk of pages.
 845 */
 846static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
 847{
 848	struct page *page;
 849
 850	if (!pfn_valid(pfn))
 851		return NULL;
 852
 853	page = pfn_to_page(pfn);
 854	if (page_zone(page) != zone)
 855		return NULL;
 856
 857	BUG_ON(!PageHighMem(page));
 858
 859	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
 860	    PageReserved(page))
 
 
 861		return NULL;
 862
 863	if (page_is_guard(page))
 864		return NULL;
 865
 866	return page;
 867}
 868
 869/**
 870 *	count_highmem_pages - compute the total number of saveable highmem
 871 *	pages.
 872 */
 873
 874static unsigned int count_highmem_pages(void)
 875{
 876	struct zone *zone;
 877	unsigned int n = 0;
 878
 879	for_each_populated_zone(zone) {
 880		unsigned long pfn, max_zone_pfn;
 881
 882		if (!is_highmem(zone))
 883			continue;
 884
 885		mark_free_pages(zone);
 886		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
 887		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 888			if (saveable_highmem_page(zone, pfn))
 889				n++;
 890	}
 891	return n;
 892}
 893#else
 894static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
 895{
 896	return NULL;
 897}
 898#endif /* CONFIG_HIGHMEM */
 899
 900/**
 901 *	saveable_page - Determine whether a non-highmem page should be included
 902 *	in the suspend image.
 
 
 903 *
 904 *	We should save the page if it isn't Nosave, and is not in the range
 905 *	of pages statically defined as 'unsaveable', and it isn't a part of
 906 *	a free chunk of pages.
 907 */
 908static struct page *saveable_page(struct zone *zone, unsigned long pfn)
 909{
 910	struct page *page;
 911
 912	if (!pfn_valid(pfn))
 913		return NULL;
 914
 915	page = pfn_to_page(pfn);
 916	if (page_zone(page) != zone)
 917		return NULL;
 918
 919	BUG_ON(PageHighMem(page));
 920
 921	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
 922		return NULL;
 923
 
 
 
 924	if (PageReserved(page)
 925	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
 926		return NULL;
 927
 928	if (page_is_guard(page))
 929		return NULL;
 930
 931	return page;
 932}
 933
 934/**
 935 *	count_data_pages - compute the total number of saveable non-highmem
 936 *	pages.
 937 */
 938
 939static unsigned int count_data_pages(void)
 940{
 941	struct zone *zone;
 942	unsigned long pfn, max_zone_pfn;
 943	unsigned int n = 0;
 944
 945	for_each_populated_zone(zone) {
 946		if (is_highmem(zone))
 947			continue;
 948
 949		mark_free_pages(zone);
 950		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
 951		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 952			if (saveable_page(zone, pfn))
 953				n++;
 954	}
 955	return n;
 956}
 957
 958/* This is needed, because copy_page and memcpy are not usable for copying
 
 959 * task structs.
 960 */
 961static inline void do_copy_page(long *dst, long *src)
 962{
 963	int n;
 964
 965	for (n = PAGE_SIZE / sizeof(long); n; n--)
 966		*dst++ = *src++;
 967}
 968
 969
 970/**
 971 *	safe_copy_page - check if the page we are going to copy is marked as
 972 *		present in the kernel page tables (this always is the case if
 973 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 974 *		kernel_page_present() always returns 'true').
 
 
 975 */
 976static void safe_copy_page(void *dst, struct page *s_page)
 977{
 978	if (kernel_page_present(s_page)) {
 979		do_copy_page(dst, page_address(s_page));
 980	} else {
 981		kernel_map_pages(s_page, 1, 1);
 982		do_copy_page(dst, page_address(s_page));
 983		kernel_map_pages(s_page, 1, 0);
 984	}
 985}
 986
 987
 988#ifdef CONFIG_HIGHMEM
 989static inline struct page *
 990page_is_saveable(struct zone *zone, unsigned long pfn)
 991{
 992	return is_highmem(zone) ?
 993		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
 994}
 995
 996static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
 997{
 998	struct page *s_page, *d_page;
 999	void *src, *dst;
1000
1001	s_page = pfn_to_page(src_pfn);
1002	d_page = pfn_to_page(dst_pfn);
1003	if (PageHighMem(s_page)) {
1004		src = kmap_atomic(s_page);
1005		dst = kmap_atomic(d_page);
1006		do_copy_page(dst, src);
1007		kunmap_atomic(dst);
1008		kunmap_atomic(src);
1009	} else {
1010		if (PageHighMem(d_page)) {
1011			/* Page pointed to by src may contain some kernel
 
1012			 * data modified by kmap_atomic()
1013			 */
1014			safe_copy_page(buffer, s_page);
1015			dst = kmap_atomic(d_page);
1016			copy_page(dst, buffer);
1017			kunmap_atomic(dst);
1018		} else {
1019			safe_copy_page(page_address(d_page), s_page);
1020		}
1021	}
1022}
1023#else
1024#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1025
1026static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1027{
1028	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1029				pfn_to_page(src_pfn));
1030}
1031#endif /* CONFIG_HIGHMEM */
1032
1033static void
1034copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1035{
1036	struct zone *zone;
1037	unsigned long pfn;
1038
1039	for_each_populated_zone(zone) {
1040		unsigned long max_zone_pfn;
1041
1042		mark_free_pages(zone);
1043		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1044		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1045			if (page_is_saveable(zone, pfn))
1046				memory_bm_set_bit(orig_bm, pfn);
1047	}
1048	memory_bm_position_reset(orig_bm);
1049	memory_bm_position_reset(copy_bm);
1050	for(;;) {
1051		pfn = memory_bm_next_pfn(orig_bm);
1052		if (unlikely(pfn == BM_END_OF_MAP))
1053			break;
1054		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1055	}
1056}
1057
1058/* Total number of image pages */
1059static unsigned int nr_copy_pages;
1060/* Number of pages needed for saving the original pfns of the image pages */
1061static unsigned int nr_meta_pages;
1062/*
1063 * Numbers of normal and highmem page frames allocated for hibernation image
1064 * before suspending devices.
1065 */
1066unsigned int alloc_normal, alloc_highmem;
1067/*
1068 * Memory bitmap used for marking saveable pages (during hibernation) or
1069 * hibernation image pages (during restore)
1070 */
1071static struct memory_bitmap orig_bm;
1072/*
1073 * Memory bitmap used during hibernation for marking allocated page frames that
1074 * will contain copies of saveable pages.  During restore it is initially used
1075 * for marking hibernation image pages, but then the set bits from it are
1076 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1077 * used for marking "safe" highmem pages, but it has to be reinitialized for
1078 * this purpose.
1079 */
1080static struct memory_bitmap copy_bm;
1081
1082/**
1083 *	swsusp_free - free pages allocated for the suspend.
1084 *
1085 *	Suspend pages are alocated before the atomic copy is made, so we
1086 *	need to release them after the resume.
1087 */
1088
1089void swsusp_free(void)
1090{
1091	struct zone *zone;
1092	unsigned long pfn, max_zone_pfn;
 
 
 
 
 
1093
1094	for_each_populated_zone(zone) {
1095		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1096		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1097			if (pfn_valid(pfn)) {
1098				struct page *page = pfn_to_page(pfn);
1099
1100				if (swsusp_page_is_forbidden(page) &&
1101				    swsusp_page_is_free(page)) {
1102					swsusp_unset_page_forbidden(page);
1103					swsusp_unset_page_free(page);
1104					__free_page(page);
1105				}
1106			}
 
 
 
 
 
 
 
 
 
 
 
 
1107	}
 
 
1108	nr_copy_pages = 0;
1109	nr_meta_pages = 0;
1110	restore_pblist = NULL;
1111	buffer = NULL;
1112	alloc_normal = 0;
1113	alloc_highmem = 0;
 
1114}
1115
1116/* Helper functions used for the shrinking of memory. */
1117
1118#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1119
1120/**
1121 * preallocate_image_pages - Allocate a number of pages for hibernation image
1122 * @nr_pages: Number of page frames to allocate.
1123 * @mask: GFP flags to use for the allocation.
1124 *
1125 * Return value: Number of page frames actually allocated
1126 */
1127static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1128{
1129	unsigned long nr_alloc = 0;
1130
1131	while (nr_pages > 0) {
1132		struct page *page;
1133
1134		page = alloc_image_page(mask);
1135		if (!page)
1136			break;
1137		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1138		if (PageHighMem(page))
1139			alloc_highmem++;
1140		else
1141			alloc_normal++;
1142		nr_pages--;
1143		nr_alloc++;
1144	}
1145
1146	return nr_alloc;
1147}
1148
1149static unsigned long preallocate_image_memory(unsigned long nr_pages,
1150					      unsigned long avail_normal)
1151{
1152	unsigned long alloc;
1153
1154	if (avail_normal <= alloc_normal)
1155		return 0;
1156
1157	alloc = avail_normal - alloc_normal;
1158	if (nr_pages < alloc)
1159		alloc = nr_pages;
1160
1161	return preallocate_image_pages(alloc, GFP_IMAGE);
1162}
1163
1164#ifdef CONFIG_HIGHMEM
1165static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1166{
1167	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1168}
1169
1170/**
1171 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1172 */
1173static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1174{
1175	x *= multiplier;
1176	do_div(x, base);
1177	return (unsigned long)x;
1178}
1179
1180static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1181						unsigned long highmem,
1182						unsigned long total)
1183{
1184	unsigned long alloc = __fraction(nr_pages, highmem, total);
1185
1186	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1187}
1188#else /* CONFIG_HIGHMEM */
1189static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1190{
1191	return 0;
1192}
1193
1194static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1195						unsigned long highmem,
1196						unsigned long total)
1197{
1198	return 0;
1199}
1200#endif /* CONFIG_HIGHMEM */
1201
1202/**
1203 * free_unnecessary_pages - Release preallocated pages not needed for the image
1204 */
1205static void free_unnecessary_pages(void)
1206{
1207	unsigned long save, to_free_normal, to_free_highmem;
1208
1209	save = count_data_pages();
1210	if (alloc_normal >= save) {
1211		to_free_normal = alloc_normal - save;
1212		save = 0;
1213	} else {
1214		to_free_normal = 0;
1215		save -= alloc_normal;
1216	}
1217	save += count_highmem_pages();
1218	if (alloc_highmem >= save) {
1219		to_free_highmem = alloc_highmem - save;
1220	} else {
1221		to_free_highmem = 0;
1222		save -= alloc_highmem;
1223		if (to_free_normal > save)
1224			to_free_normal -= save;
1225		else
1226			to_free_normal = 0;
1227	}
 
1228
1229	memory_bm_position_reset(&copy_bm);
1230
1231	while (to_free_normal > 0 || to_free_highmem > 0) {
1232		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1233		struct page *page = pfn_to_page(pfn);
1234
1235		if (PageHighMem(page)) {
1236			if (!to_free_highmem)
1237				continue;
1238			to_free_highmem--;
1239			alloc_highmem--;
1240		} else {
1241			if (!to_free_normal)
1242				continue;
1243			to_free_normal--;
1244			alloc_normal--;
1245		}
1246		memory_bm_clear_bit(&copy_bm, pfn);
1247		swsusp_unset_page_forbidden(page);
1248		swsusp_unset_page_free(page);
1249		__free_page(page);
1250	}
 
 
1251}
1252
1253/**
1254 * minimum_image_size - Estimate the minimum acceptable size of an image
1255 * @saveable: Number of saveable pages in the system.
1256 *
1257 * We want to avoid attempting to free too much memory too hard, so estimate the
1258 * minimum acceptable size of a hibernation image to use as the lower limit for
1259 * preallocating memory.
1260 *
1261 * We assume that the minimum image size should be proportional to
1262 *
1263 * [number of saveable pages] - [number of pages that can be freed in theory]
1264 *
1265 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1266 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1267 * minus mapped file pages.
1268 */
1269static unsigned long minimum_image_size(unsigned long saveable)
1270{
1271	unsigned long size;
1272
1273	size = global_page_state(NR_SLAB_RECLAIMABLE)
1274		+ global_page_state(NR_ACTIVE_ANON)
1275		+ global_page_state(NR_INACTIVE_ANON)
1276		+ global_page_state(NR_ACTIVE_FILE)
1277		+ global_page_state(NR_INACTIVE_FILE)
1278		- global_page_state(NR_FILE_MAPPED);
1279
1280	return saveable <= size ? 0 : saveable - size;
1281}
1282
1283/**
1284 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1285 *
1286 * To create a hibernation image it is necessary to make a copy of every page
1287 * frame in use.  We also need a number of page frames to be free during
1288 * hibernation for allocations made while saving the image and for device
1289 * drivers, in case they need to allocate memory from their hibernation
1290 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1291 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1292 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1293 * total number of available page frames and allocate at least
1294 *
1295 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1296 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1297 *
1298 * of them, which corresponds to the maximum size of a hibernation image.
1299 *
1300 * If image_size is set below the number following from the above formula,
1301 * the preallocation of memory is continued until the total number of saveable
1302 * pages in the system is below the requested image size or the minimum
1303 * acceptable image size returned by minimum_image_size(), whichever is greater.
1304 */
1305int hibernate_preallocate_memory(void)
1306{
1307	struct zone *zone;
1308	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1309	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1310	struct timeval start, stop;
1311	int error;
1312
1313	printk(KERN_INFO "PM: Preallocating image memory... ");
1314	do_gettimeofday(&start);
1315
1316	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1317	if (error)
 
1318		goto err_out;
 
1319
1320	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1321	if (error)
 
1322		goto err_out;
 
1323
1324	alloc_normal = 0;
1325	alloc_highmem = 0;
1326
1327	/* Count the number of saveable data pages. */
1328	save_highmem = count_highmem_pages();
1329	saveable = count_data_pages();
1330
1331	/*
1332	 * Compute the total number of page frames we can use (count) and the
1333	 * number of pages needed for image metadata (size).
1334	 */
1335	count = saveable;
1336	saveable += save_highmem;
1337	highmem = save_highmem;
1338	size = 0;
1339	for_each_populated_zone(zone) {
1340		size += snapshot_additional_pages(zone);
1341		if (is_highmem(zone))
1342			highmem += zone_page_state(zone, NR_FREE_PAGES);
1343		else
1344			count += zone_page_state(zone, NR_FREE_PAGES);
1345	}
1346	avail_normal = count;
1347	count += highmem;
1348	count -= totalreserve_pages;
1349
1350	/* Add number of pages required for page keys (s390 only). */
1351	size += page_key_additional_pages(saveable);
1352
1353	/* Compute the maximum number of saveable pages to leave in memory. */
1354	max_size = (count - (size + PAGES_FOR_IO)) / 2
1355			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1356	/* Compute the desired number of image pages specified by image_size. */
1357	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1358	if (size > max_size)
1359		size = max_size;
1360	/*
1361	 * If the desired number of image pages is at least as large as the
1362	 * current number of saveable pages in memory, allocate page frames for
1363	 * the image and we're done.
1364	 */
1365	if (size >= saveable) {
1366		pages = preallocate_image_highmem(save_highmem);
1367		pages += preallocate_image_memory(saveable - pages, avail_normal);
1368		goto out;
1369	}
1370
1371	/* Estimate the minimum size of the image. */
1372	pages = minimum_image_size(saveable);
1373	/*
1374	 * To avoid excessive pressure on the normal zone, leave room in it to
1375	 * accommodate an image of the minimum size (unless it's already too
1376	 * small, in which case don't preallocate pages from it at all).
1377	 */
1378	if (avail_normal > pages)
1379		avail_normal -= pages;
1380	else
1381		avail_normal = 0;
1382	if (size < pages)
1383		size = min_t(unsigned long, pages, max_size);
1384
1385	/*
1386	 * Let the memory management subsystem know that we're going to need a
1387	 * large number of page frames to allocate and make it free some memory.
1388	 * NOTE: If this is not done, performance will be hurt badly in some
1389	 * test cases.
1390	 */
1391	shrink_all_memory(saveable - size);
1392
1393	/*
1394	 * The number of saveable pages in memory was too high, so apply some
1395	 * pressure to decrease it.  First, make room for the largest possible
1396	 * image and fail if that doesn't work.  Next, try to decrease the size
1397	 * of the image as much as indicated by 'size' using allocations from
1398	 * highmem and non-highmem zones separately.
1399	 */
1400	pages_highmem = preallocate_image_highmem(highmem / 2);
1401	alloc = (count - max_size) - pages_highmem;
 
 
 
 
1402	pages = preallocate_image_memory(alloc, avail_normal);
1403	if (pages < alloc) {
1404		/* We have exhausted non-highmem pages, try highmem. */
1405		alloc -= pages;
1406		pages += pages_highmem;
1407		pages_highmem = preallocate_image_highmem(alloc);
1408		if (pages_highmem < alloc)
 
 
1409			goto err_out;
 
1410		pages += pages_highmem;
1411		/*
1412		 * size is the desired number of saveable pages to leave in
1413		 * memory, so try to preallocate (all memory - size) pages.
1414		 */
1415		alloc = (count - pages) - size;
1416		pages += preallocate_image_highmem(alloc);
1417	} else {
1418		/*
1419		 * There are approximately max_size saveable pages at this point
1420		 * and we want to reduce this number down to size.
1421		 */
1422		alloc = max_size - size;
1423		size = preallocate_highmem_fraction(alloc, highmem, count);
1424		pages_highmem += size;
1425		alloc -= size;
1426		size = preallocate_image_memory(alloc, avail_normal);
1427		pages_highmem += preallocate_image_highmem(alloc - size);
1428		pages += pages_highmem + size;
1429	}
1430
1431	/*
1432	 * We only need as many page frames for the image as there are saveable
1433	 * pages in memory, but we have allocated more.  Release the excessive
1434	 * ones now.
1435	 */
1436	free_unnecessary_pages();
1437
1438 out:
1439	do_gettimeofday(&stop);
1440	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1441	swsusp_show_speed(&start, &stop, pages, "Allocated");
1442
1443	return 0;
1444
1445 err_out:
1446	printk(KERN_CONT "\n");
1447	swsusp_free();
1448	return -ENOMEM;
1449}
1450
1451#ifdef CONFIG_HIGHMEM
1452/**
1453  *	count_pages_for_highmem - compute the number of non-highmem pages
1454  *	that will be necessary for creating copies of highmem pages.
1455  */
1456
 
1457static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1458{
1459	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1460
1461	if (free_highmem >= nr_highmem)
1462		nr_highmem = 0;
1463	else
1464		nr_highmem -= free_highmem;
1465
1466	return nr_highmem;
1467}
1468#else
1469static unsigned int
1470count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1471#endif /* CONFIG_HIGHMEM */
1472
1473/**
1474 *	enough_free_mem - Make sure we have enough free memory for the
1475 *	snapshot image.
1476 */
1477
1478static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1479{
1480	struct zone *zone;
1481	unsigned int free = alloc_normal;
1482
1483	for_each_populated_zone(zone)
1484		if (!is_highmem(zone))
1485			free += zone_page_state(zone, NR_FREE_PAGES);
1486
1487	nr_pages += count_pages_for_highmem(nr_highmem);
1488	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1489		nr_pages, PAGES_FOR_IO, free);
1490
1491	return free > nr_pages + PAGES_FOR_IO;
1492}
1493
1494#ifdef CONFIG_HIGHMEM
1495/**
1496 *	get_highmem_buffer - if there are some highmem pages in the suspend
1497 *	image, we may need the buffer to copy them and/or load their data.
 
 
1498 */
1499
1500static inline int get_highmem_buffer(int safe_needed)
1501{
1502	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1503	return buffer ? 0 : -ENOMEM;
1504}
1505
1506/**
1507 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1508 *	Try to allocate as many pages as needed, but if the number of free
1509 *	highmem pages is lesser than that, allocate them all.
 
1510 */
1511
1512static inline unsigned int
1513alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1514{
1515	unsigned int to_alloc = count_free_highmem_pages();
1516
1517	if (to_alloc > nr_highmem)
1518		to_alloc = nr_highmem;
1519
1520	nr_highmem -= to_alloc;
1521	while (to_alloc-- > 0) {
1522		struct page *page;
1523
1524		page = alloc_image_page(__GFP_HIGHMEM);
1525		memory_bm_set_bit(bm, page_to_pfn(page));
1526	}
1527	return nr_highmem;
1528}
1529#else
1530static inline int get_highmem_buffer(int safe_needed) { return 0; }
1531
1532static inline unsigned int
1533alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1534#endif /* CONFIG_HIGHMEM */
1535
1536/**
1537 *	swsusp_alloc - allocate memory for the suspend image
1538 *
1539 *	We first try to allocate as many highmem pages as there are
1540 *	saveable highmem pages in the system.  If that fails, we allocate
1541 *	non-highmem pages for the copies of the remaining highmem ones.
1542 *
1543 *	In this approach it is likely that the copies of highmem pages will
1544 *	also be located in the high memory, because of the way in which
1545 *	copy_data_pages() works.
 
 
 
 
1546 */
1547
1548static int
1549swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1550		unsigned int nr_pages, unsigned int nr_highmem)
1551{
1552	if (nr_highmem > 0) {
1553		if (get_highmem_buffer(PG_ANY))
1554			goto err_out;
1555		if (nr_highmem > alloc_highmem) {
1556			nr_highmem -= alloc_highmem;
1557			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1558		}
1559	}
1560	if (nr_pages > alloc_normal) {
1561		nr_pages -= alloc_normal;
1562		while (nr_pages-- > 0) {
1563			struct page *page;
1564
1565			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1566			if (!page)
1567				goto err_out;
1568			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1569		}
1570	}
1571
1572	return 0;
1573
1574 err_out:
1575	swsusp_free();
1576	return -ENOMEM;
1577}
1578
1579asmlinkage int swsusp_save(void)
1580{
1581	unsigned int nr_pages, nr_highmem;
1582
1583	printk(KERN_INFO "PM: Creating hibernation image:\n");
1584
1585	drain_local_pages(NULL);
1586	nr_pages = count_data_pages();
1587	nr_highmem = count_highmem_pages();
1588	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1589
1590	if (!enough_free_mem(nr_pages, nr_highmem)) {
1591		printk(KERN_ERR "PM: Not enough free memory\n");
1592		return -ENOMEM;
1593	}
1594
1595	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1596		printk(KERN_ERR "PM: Memory allocation failed\n");
1597		return -ENOMEM;
1598	}
1599
1600	/* During allocating of suspend pagedir, new cold pages may appear.
 
1601	 * Kill them.
1602	 */
1603	drain_local_pages(NULL);
1604	copy_data_pages(&copy_bm, &orig_bm);
1605
1606	/*
1607	 * End of critical section. From now on, we can write to memory,
1608	 * but we should not touch disk. This specially means we must _not_
1609	 * touch swap space! Except we must write out our image of course.
1610	 */
1611
1612	nr_pages += nr_highmem;
1613	nr_copy_pages = nr_pages;
1614	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1615
1616	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1617		nr_pages);
1618
1619	return 0;
1620}
1621
1622#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1623static int init_header_complete(struct swsusp_info *info)
1624{
1625	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1626	info->version_code = LINUX_VERSION_CODE;
1627	return 0;
1628}
1629
1630static char *check_image_kernel(struct swsusp_info *info)
1631{
1632	if (info->version_code != LINUX_VERSION_CODE)
1633		return "kernel version";
1634	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1635		return "system type";
1636	if (strcmp(info->uts.release,init_utsname()->release))
1637		return "kernel release";
1638	if (strcmp(info->uts.version,init_utsname()->version))
1639		return "version";
1640	if (strcmp(info->uts.machine,init_utsname()->machine))
1641		return "machine";
1642	return NULL;
1643}
1644#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1645
1646unsigned long snapshot_get_image_size(void)
1647{
1648	return nr_copy_pages + nr_meta_pages + 1;
1649}
1650
1651static int init_header(struct swsusp_info *info)
1652{
1653	memset(info, 0, sizeof(struct swsusp_info));
1654	info->num_physpages = num_physpages;
1655	info->image_pages = nr_copy_pages;
1656	info->pages = snapshot_get_image_size();
1657	info->size = info->pages;
1658	info->size <<= PAGE_SHIFT;
1659	return init_header_complete(info);
1660}
1661
1662/**
1663 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1664 *	are stored in the array @buf[] (1 page at a time)
 
 
 
 
1665 */
1666
1667static inline void
1668pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1669{
1670	int j;
1671
1672	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1673		buf[j] = memory_bm_next_pfn(bm);
1674		if (unlikely(buf[j] == BM_END_OF_MAP))
1675			break;
1676		/* Save page key for data page (s390 only). */
1677		page_key_read(buf + j);
1678	}
1679}
1680
1681/**
1682 *	snapshot_read_next - used for reading the system memory snapshot.
1683 *
1684 *	On the first call to it @handle should point to a zeroed
1685 *	snapshot_handle structure.  The structure gets updated and a pointer
1686 *	to it should be passed to this function every next time.
1687 *
1688 *	On success the function returns a positive number.  Then, the caller
1689 *	is allowed to read up to the returned number of bytes from the memory
1690 *	location computed by the data_of() macro.
1691 *
1692 *	The function returns 0 to indicate the end of data stream condition,
1693 *	and a negative number is returned on error.  In such cases the
1694 *	structure pointed to by @handle is not updated and should not be used
1695 *	any more.
 
 
 
 
 
 
 
1696 */
1697
1698int snapshot_read_next(struct snapshot_handle *handle)
1699{
1700	if (handle->cur > nr_meta_pages + nr_copy_pages)
1701		return 0;
1702
1703	if (!buffer) {
1704		/* This makes the buffer be freed by swsusp_free() */
1705		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1706		if (!buffer)
1707			return -ENOMEM;
1708	}
1709	if (!handle->cur) {
1710		int error;
1711
1712		error = init_header((struct swsusp_info *)buffer);
1713		if (error)
1714			return error;
1715		handle->buffer = buffer;
1716		memory_bm_position_reset(&orig_bm);
1717		memory_bm_position_reset(&copy_bm);
1718	} else if (handle->cur <= nr_meta_pages) {
1719		clear_page(buffer);
1720		pack_pfns(buffer, &orig_bm);
1721	} else {
1722		struct page *page;
1723
1724		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1725		if (PageHighMem(page)) {
1726			/* Highmem pages are copied to the buffer,
 
1727			 * because we can't return with a kmapped
1728			 * highmem page (we may not be called again).
1729			 */
1730			void *kaddr;
1731
1732			kaddr = kmap_atomic(page);
1733			copy_page(buffer, kaddr);
1734			kunmap_atomic(kaddr);
1735			handle->buffer = buffer;
1736		} else {
1737			handle->buffer = page_address(page);
1738		}
1739	}
1740	handle->cur++;
1741	return PAGE_SIZE;
1742}
1743
1744/**
1745 *	mark_unsafe_pages - mark the pages that cannot be used for storing
1746 *	the image during resume, because they conflict with the pages that
1747 *	had been used before suspend
1748 */
1749
1750static int mark_unsafe_pages(struct memory_bitmap *bm)
1751{
1752	struct zone *zone;
1753	unsigned long pfn, max_zone_pfn;
1754
1755	/* Clear page flags */
1756	for_each_populated_zone(zone) {
1757		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1758		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1759			if (pfn_valid(pfn))
1760				swsusp_unset_page_free(pfn_to_page(pfn));
1761	}
1762
1763	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1764	memory_bm_position_reset(bm);
1765	do {
1766		pfn = memory_bm_next_pfn(bm);
1767		if (likely(pfn != BM_END_OF_MAP)) {
1768			if (likely(pfn_valid(pfn)))
1769				swsusp_set_page_free(pfn_to_page(pfn));
1770			else
1771				return -EFAULT;
1772		}
1773	} while (pfn != BM_END_OF_MAP);
1774
1775	allocated_unsafe_pages = 0;
1776
1777	return 0;
1778}
1779
1780static void
1781duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
 
 
 
 
 
1782{
1783	unsigned long pfn;
1784
1785	memory_bm_position_reset(src);
1786	pfn = memory_bm_next_pfn(src);
 
1787	while (pfn != BM_END_OF_MAP) {
1788		memory_bm_set_bit(dst, pfn);
1789		pfn = memory_bm_next_pfn(src);
1790	}
 
 
 
 
 
1791}
1792
1793static int check_header(struct swsusp_info *info)
1794{
1795	char *reason;
1796
1797	reason = check_image_kernel(info);
1798	if (!reason && info->num_physpages != num_physpages)
1799		reason = "memory size";
1800	if (reason) {
1801		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1802		return -EPERM;
1803	}
1804	return 0;
1805}
1806
1807/**
1808 *	load header - check the image header and copy data from it
1809 */
1810
1811static int
1812load_header(struct swsusp_info *info)
1813{
1814	int error;
1815
1816	restore_pblist = NULL;
1817	error = check_header(info);
1818	if (!error) {
1819		nr_copy_pages = info->image_pages;
1820		nr_meta_pages = info->pages - info->image_pages - 1;
1821	}
1822	return error;
1823}
1824
1825/**
1826 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1827 *	the corresponding bit in the memory bitmap @bm
 
 
 
 
1828 */
1829static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1830{
1831	int j;
1832
1833	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1834		if (unlikely(buf[j] == BM_END_OF_MAP))
1835			break;
1836
1837		/* Extract and buffer page key for data page (s390 only). */
1838		page_key_memorize(buf + j);
1839
1840		if (memory_bm_pfn_present(bm, buf[j]))
1841			memory_bm_set_bit(bm, buf[j]);
1842		else
1843			return -EFAULT;
1844	}
1845
1846	return 0;
1847}
1848
1849/* List of "safe" pages that may be used to store data loaded from the suspend
1850 * image
1851 */
1852static struct linked_page *safe_pages_list;
1853
1854#ifdef CONFIG_HIGHMEM
1855/* struct highmem_pbe is used for creating the list of highmem pages that
 
1856 * should be restored atomically during the resume from disk, because the page
1857 * frames they have occupied before the suspend are in use.
1858 */
1859struct highmem_pbe {
1860	struct page *copy_page;	/* data is here now */
1861	struct page *orig_page;	/* data was here before the suspend */
1862	struct highmem_pbe *next;
1863};
1864
1865/* List of highmem PBEs needed for restoring the highmem pages that were
 
1866 * allocated before the suspend and included in the suspend image, but have
1867 * also been allocated by the "resume" kernel, so their contents cannot be
1868 * written directly to their "original" page frames.
1869 */
1870static struct highmem_pbe *highmem_pblist;
1871
1872/**
1873 *	count_highmem_image_pages - compute the number of highmem pages in the
1874 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1875 *	image pages are assumed to be set.
 
1876 */
1877
1878static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1879{
1880	unsigned long pfn;
1881	unsigned int cnt = 0;
1882
1883	memory_bm_position_reset(bm);
1884	pfn = memory_bm_next_pfn(bm);
1885	while (pfn != BM_END_OF_MAP) {
1886		if (PageHighMem(pfn_to_page(pfn)))
1887			cnt++;
1888
1889		pfn = memory_bm_next_pfn(bm);
1890	}
1891	return cnt;
1892}
1893
1894/**
1895 *	prepare_highmem_image - try to allocate as many highmem pages as
1896 *	there are highmem image pages (@nr_highmem_p points to the variable
1897 *	containing the number of highmem image pages).  The pages that are
1898 *	"safe" (ie. will not be overwritten when the suspend image is
1899 *	restored) have the corresponding bits set in @bm (it must be
1900 *	unitialized).
1901 *
1902 *	NOTE: This function should not be called if there are no highmem
1903 *	image pages.
1904 */
1905
1906static unsigned int safe_highmem_pages;
1907
1908static struct memory_bitmap *safe_highmem_bm;
1909
1910static int
1911prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
1912{
1913	unsigned int to_alloc;
1914
1915	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1916		return -ENOMEM;
1917
1918	if (get_highmem_buffer(PG_SAFE))
1919		return -ENOMEM;
1920
1921	to_alloc = count_free_highmem_pages();
1922	if (to_alloc > *nr_highmem_p)
1923		to_alloc = *nr_highmem_p;
1924	else
1925		*nr_highmem_p = to_alloc;
1926
1927	safe_highmem_pages = 0;
1928	while (to_alloc-- > 0) {
1929		struct page *page;
1930
1931		page = alloc_page(__GFP_HIGHMEM);
1932		if (!swsusp_page_is_free(page)) {
1933			/* The page is "safe", set its bit the bitmap */
1934			memory_bm_set_bit(bm, page_to_pfn(page));
1935			safe_highmem_pages++;
1936		}
1937		/* Mark the page as allocated */
1938		swsusp_set_page_forbidden(page);
1939		swsusp_set_page_free(page);
1940	}
1941	memory_bm_position_reset(bm);
1942	safe_highmem_bm = bm;
1943	return 0;
1944}
1945
 
 
1946/**
1947 *	get_highmem_page_buffer - for given highmem image page find the buffer
1948 *	that suspend_write_next() should set for its caller to write to.
 
 
1949 *
1950 *	If the page is to be saved to its "original" page frame or a copy of
1951 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1952 *	the copy of the page is to be made in normal memory, so the address of
1953 *	the copy is returned.
1954 *
1955 *	If @buffer is returned, the caller of suspend_write_next() will write
1956 *	the page's contents to @buffer, so they will have to be copied to the
1957 *	right location on the next call to suspend_write_next() and it is done
1958 *	with the help of copy_last_highmem_page().  For this purpose, if
1959 *	@buffer is returned, @last_highmem page is set to the page to which
1960 *	the data will have to be copied from @buffer.
1961 */
1962
1963static struct page *last_highmem_page;
1964
1965static void *
1966get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1967{
1968	struct highmem_pbe *pbe;
1969	void *kaddr;
1970
1971	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1972		/* We have allocated the "original" page frame and we can
 
1973		 * use it directly to store the loaded page.
1974		 */
1975		last_highmem_page = page;
1976		return buffer;
1977	}
1978	/* The "original" page frame has not been allocated and we have to
 
1979	 * use a "safe" page frame to store the loaded page.
1980	 */
1981	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1982	if (!pbe) {
1983		swsusp_free();
1984		return ERR_PTR(-ENOMEM);
1985	}
1986	pbe->orig_page = page;
1987	if (safe_highmem_pages > 0) {
1988		struct page *tmp;
1989
1990		/* Copy of the page will be stored in high memory */
1991		kaddr = buffer;
1992		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1993		safe_highmem_pages--;
1994		last_highmem_page = tmp;
1995		pbe->copy_page = tmp;
1996	} else {
1997		/* Copy of the page will be stored in normal memory */
1998		kaddr = safe_pages_list;
1999		safe_pages_list = safe_pages_list->next;
2000		pbe->copy_page = virt_to_page(kaddr);
2001	}
2002	pbe->next = highmem_pblist;
2003	highmem_pblist = pbe;
2004	return kaddr;
2005}
2006
2007/**
2008 *	copy_last_highmem_page - copy the contents of a highmem image from
2009 *	@buffer, where the caller of snapshot_write_next() has place them,
2010 *	to the right location represented by @last_highmem_page .
 
 
2011 */
2012
2013static void copy_last_highmem_page(void)
2014{
2015	if (last_highmem_page) {
2016		void *dst;
2017
2018		dst = kmap_atomic(last_highmem_page);
2019		copy_page(dst, buffer);
2020		kunmap_atomic(dst);
2021		last_highmem_page = NULL;
2022	}
2023}
2024
2025static inline int last_highmem_page_copied(void)
2026{
2027	return !last_highmem_page;
2028}
2029
2030static inline void free_highmem_data(void)
2031{
2032	if (safe_highmem_bm)
2033		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2034
2035	if (buffer)
2036		free_image_page(buffer, PG_UNSAFE_CLEAR);
2037}
2038#else
2039static inline int get_safe_write_buffer(void) { return 0; }
2040
2041static unsigned int
2042count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2043
2044static inline int
2045prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2046{
2047	return 0;
2048}
2049
2050static inline void *
2051get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2052{
2053	return ERR_PTR(-EINVAL);
2054}
2055
2056static inline void copy_last_highmem_page(void) {}
2057static inline int last_highmem_page_copied(void) { return 1; }
2058static inline void free_highmem_data(void) {}
2059#endif /* CONFIG_HIGHMEM */
2060
 
 
2061/**
2062 *	prepare_image - use the memory bitmap @bm to mark the pages that will
2063 *	be overwritten in the process of restoring the system memory state
2064 *	from the suspend image ("unsafe" pages) and allocate memory for the
2065 *	image.
2066 *
2067 *	The idea is to allocate a new memory bitmap first and then allocate
2068 *	as many pages as needed for the image data, but not to assign these
2069 *	pages to specific tasks initially.  Instead, we just mark them as
2070 *	allocated and create a lists of "safe" pages that will be used
2071 *	later.  On systems with high memory a list of "safe" highmem pages is
2072 *	also created.
 
 
2073 */
2074
2075#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2076
2077static int
2078prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2079{
2080	unsigned int nr_pages, nr_highmem;
2081	struct linked_page *sp_list, *lp;
2082	int error;
2083
2084	/* If there is no highmem, the buffer will not be necessary */
2085	free_image_page(buffer, PG_UNSAFE_CLEAR);
2086	buffer = NULL;
2087
2088	nr_highmem = count_highmem_image_pages(bm);
2089	error = mark_unsafe_pages(bm);
2090	if (error)
2091		goto Free;
2092
2093	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2094	if (error)
2095		goto Free;
2096
2097	duplicate_memory_bitmap(new_bm, bm);
2098	memory_bm_free(bm, PG_UNSAFE_KEEP);
2099	if (nr_highmem > 0) {
2100		error = prepare_highmem_image(bm, &nr_highmem);
2101		if (error)
2102			goto Free;
2103	}
2104	/* Reserve some safe pages for potential later use.
 
2105	 *
2106	 * NOTE: This way we make sure there will be enough safe pages for the
2107	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2108	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
 
 
2109	 */
2110	sp_list = NULL;
2111	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2112	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2113	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2114	while (nr_pages > 0) {
2115		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2116		if (!lp) {
2117			error = -ENOMEM;
2118			goto Free;
2119		}
2120		lp->next = sp_list;
2121		sp_list = lp;
2122		nr_pages--;
2123	}
2124	/* Preallocate memory for the image */
2125	safe_pages_list = NULL;
2126	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2127	while (nr_pages > 0) {
2128		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2129		if (!lp) {
2130			error = -ENOMEM;
2131			goto Free;
2132		}
2133		if (!swsusp_page_is_free(virt_to_page(lp))) {
2134			/* The page is "safe", add it to the list */
2135			lp->next = safe_pages_list;
2136			safe_pages_list = lp;
2137		}
2138		/* Mark the page as allocated */
2139		swsusp_set_page_forbidden(virt_to_page(lp));
2140		swsusp_set_page_free(virt_to_page(lp));
2141		nr_pages--;
2142	}
2143	/* Free the reserved safe pages so that chain_alloc() can use them */
2144	while (sp_list) {
2145		lp = sp_list->next;
2146		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2147		sp_list = lp;
2148	}
2149	return 0;
2150
2151 Free:
2152	swsusp_free();
2153	return error;
2154}
2155
2156/**
2157 *	get_buffer - compute the address that snapshot_write_next() should
2158 *	set for its caller to write to.
 
 
2159 */
2160
2161static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2162{
2163	struct pbe *pbe;
2164	struct page *page;
2165	unsigned long pfn = memory_bm_next_pfn(bm);
2166
2167	if (pfn == BM_END_OF_MAP)
2168		return ERR_PTR(-EFAULT);
2169
2170	page = pfn_to_page(pfn);
2171	if (PageHighMem(page))
2172		return get_highmem_page_buffer(page, ca);
2173
2174	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2175		/* We have allocated the "original" page frame and we can
 
2176		 * use it directly to store the loaded page.
2177		 */
2178		return page_address(page);
2179
2180	/* The "original" page frame has not been allocated and we have to
 
2181	 * use a "safe" page frame to store the loaded page.
2182	 */
2183	pbe = chain_alloc(ca, sizeof(struct pbe));
2184	if (!pbe) {
2185		swsusp_free();
2186		return ERR_PTR(-ENOMEM);
2187	}
2188	pbe->orig_address = page_address(page);
2189	pbe->address = safe_pages_list;
2190	safe_pages_list = safe_pages_list->next;
2191	pbe->next = restore_pblist;
2192	restore_pblist = pbe;
2193	return pbe->address;
2194}
2195
2196/**
2197 *	snapshot_write_next - used for writing the system memory snapshot.
 
2198 *
2199 *	On the first call to it @handle should point to a zeroed
2200 *	snapshot_handle structure.  The structure gets updated and a pointer
2201 *	to it should be passed to this function every next time.
2202 *
2203 *	On success the function returns a positive number.  Then, the caller
2204 *	is allowed to write up to the returned number of bytes to the memory
2205 *	location computed by the data_of() macro.
2206 *
2207 *	The function returns 0 to indicate the "end of file" condition,
2208 *	and a negative number is returned on error.  In such cases the
2209 *	structure pointed to by @handle is not updated and should not be used
2210 *	any more.
2211 */
2212
2213int snapshot_write_next(struct snapshot_handle *handle)
2214{
2215	static struct chain_allocator ca;
2216	int error = 0;
2217
2218	/* Check if we have already loaded the entire image */
2219	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2220		return 0;
2221
2222	handle->sync_read = 1;
2223
2224	if (!handle->cur) {
2225		if (!buffer)
2226			/* This makes the buffer be freed by swsusp_free() */
2227			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2228
2229		if (!buffer)
2230			return -ENOMEM;
2231
2232		handle->buffer = buffer;
2233	} else if (handle->cur == 1) {
2234		error = load_header(buffer);
2235		if (error)
2236			return error;
2237
 
 
2238		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2239		if (error)
2240			return error;
2241
2242		/* Allocate buffer for page keys. */
2243		error = page_key_alloc(nr_copy_pages);
2244		if (error)
2245			return error;
2246
2247	} else if (handle->cur <= nr_meta_pages + 1) {
2248		error = unpack_orig_pfns(buffer, &copy_bm);
2249		if (error)
2250			return error;
2251
2252		if (handle->cur == nr_meta_pages + 1) {
2253			error = prepare_image(&orig_bm, &copy_bm);
2254			if (error)
2255				return error;
2256
2257			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2258			memory_bm_position_reset(&orig_bm);
2259			restore_pblist = NULL;
2260			handle->buffer = get_buffer(&orig_bm, &ca);
2261			handle->sync_read = 0;
2262			if (IS_ERR(handle->buffer))
2263				return PTR_ERR(handle->buffer);
2264		}
2265	} else {
2266		copy_last_highmem_page();
2267		/* Restore page key for data page (s390 only). */
2268		page_key_write(handle->buffer);
2269		handle->buffer = get_buffer(&orig_bm, &ca);
2270		if (IS_ERR(handle->buffer))
2271			return PTR_ERR(handle->buffer);
2272		if (handle->buffer != buffer)
2273			handle->sync_read = 0;
2274	}
2275	handle->cur++;
2276	return PAGE_SIZE;
2277}
2278
2279/**
2280 *	snapshot_write_finalize - must be called after the last call to
2281 *	snapshot_write_next() in case the last page in the image happens
2282 *	to be a highmem page and its contents should be stored in the
2283 *	highmem.  Additionally, it releases the memory that will not be
2284 *	used any more.
 
2285 */
2286
2287void snapshot_write_finalize(struct snapshot_handle *handle)
2288{
2289	copy_last_highmem_page();
2290	/* Restore page key for data page (s390 only). */
2291	page_key_write(handle->buffer);
2292	page_key_free();
2293	/* Free only if we have loaded the image entirely */
2294	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2295		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2296		free_highmem_data();
2297	}
2298}
2299
2300int snapshot_image_loaded(struct snapshot_handle *handle)
2301{
2302	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2303			handle->cur <= nr_meta_pages + nr_copy_pages);
2304}
2305
2306#ifdef CONFIG_HIGHMEM
2307/* Assumes that @buf is ready and points to a "safe" page */
2308static inline void
2309swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2310{
2311	void *kaddr1, *kaddr2;
2312
2313	kaddr1 = kmap_atomic(p1);
2314	kaddr2 = kmap_atomic(p2);
2315	copy_page(buf, kaddr1);
2316	copy_page(kaddr1, kaddr2);
2317	copy_page(kaddr2, buf);
2318	kunmap_atomic(kaddr2);
2319	kunmap_atomic(kaddr1);
2320}
2321
2322/**
2323 *	restore_highmem - for each highmem page that was allocated before
2324 *	the suspend and included in the suspend image, and also has been
2325 *	allocated by the "resume" kernel swap its current (ie. "before
2326 *	resume") contents with the previous (ie. "before suspend") one.
2327 *
2328 *	If the resume eventually fails, we can call this function once
2329 *	again and restore the "before resume" highmem state.
 
 
 
 
2330 */
2331
2332int restore_highmem(void)
2333{
2334	struct highmem_pbe *pbe = highmem_pblist;
2335	void *buf;
2336
2337	if (!pbe)
2338		return 0;
2339
2340	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2341	if (!buf)
2342		return -ENOMEM;
2343
2344	while (pbe) {
2345		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2346		pbe = pbe->next;
2347	}
2348	free_image_page(buf, PG_UNSAFE_CLEAR);
2349	return 0;
2350}
2351#endif /* CONFIG_HIGHMEM */