Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "PM: hibernation: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
 
  37#include <asm/tlbflush.h>
  38#include <asm/io.h>
  39
  40#include "power.h"
  41
  42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  43static bool hibernate_restore_protection;
  44static bool hibernate_restore_protection_active;
  45
  46void enable_restore_image_protection(void)
  47{
  48	hibernate_restore_protection = true;
  49}
  50
  51static inline void hibernate_restore_protection_begin(void)
  52{
  53	hibernate_restore_protection_active = hibernate_restore_protection;
  54}
  55
  56static inline void hibernate_restore_protection_end(void)
  57{
  58	hibernate_restore_protection_active = false;
  59}
  60
  61static inline void hibernate_restore_protect_page(void *page_address)
  62{
  63	if (hibernate_restore_protection_active)
  64		set_memory_ro((unsigned long)page_address, 1);
  65}
  66
  67static inline void hibernate_restore_unprotect_page(void *page_address)
  68{
  69	if (hibernate_restore_protection_active)
  70		set_memory_rw((unsigned long)page_address, 1);
  71}
  72#else
  73static inline void hibernate_restore_protection_begin(void) {}
  74static inline void hibernate_restore_protection_end(void) {}
  75static inline void hibernate_restore_protect_page(void *page_address) {}
  76static inline void hibernate_restore_unprotect_page(void *page_address) {}
  77#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  78
  79static int swsusp_page_is_free(struct page *);
  80static void swsusp_set_page_forbidden(struct page *);
  81static void swsusp_unset_page_forbidden(struct page *);
  82
  83/*
  84 * Number of bytes to reserve for memory allocations made by device drivers
  85 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  86 * cause image creation to fail (tunable via /sys/power/reserved_size).
  87 */
  88unsigned long reserved_size;
  89
  90void __init hibernate_reserved_size_init(void)
  91{
  92	reserved_size = SPARE_PAGES * PAGE_SIZE;
  93}
  94
  95/*
  96 * Preferred image size in bytes (tunable via /sys/power/image_size).
  97 * When it is set to N, swsusp will do its best to ensure the image
  98 * size will not exceed N bytes, but if that is impossible, it will
  99 * try to create the smallest image possible.
 100 */
 101unsigned long image_size;
 102
 103void __init hibernate_image_size_init(void)
 104{
 105	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 106}
 107
 108/*
 109 * List of PBEs needed for restoring the pages that were allocated before
 110 * the suspend and included in the suspend image, but have also been
 111 * allocated by the "resume" kernel, so their contents cannot be written
 112 * directly to their "original" page frames.
 113 */
 114struct pbe *restore_pblist;
 115
 116/* struct linked_page is used to build chains of pages */
 117
 118#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 119
 120struct linked_page {
 121	struct linked_page *next;
 122	char data[LINKED_PAGE_DATA_SIZE];
 123} __packed;
 124
 125/*
 126 * List of "safe" pages (ie. pages that were not used by the image kernel
 127 * before hibernation) that may be used as temporary storage for image kernel
 128 * memory contents.
 129 */
 130static struct linked_page *safe_pages_list;
 131
 132/* Pointer to an auxiliary buffer (1 page) */
 133static void *buffer;
 134
 
 
 
 
 
 
 
 
 
 
 135#define PG_ANY		0
 136#define PG_SAFE		1
 137#define PG_UNSAFE_CLEAR	1
 138#define PG_UNSAFE_KEEP	0
 139
 140static unsigned int allocated_unsafe_pages;
 141
 142/**
 143 * get_image_page - Allocate a page for a hibernation image.
 144 * @gfp_mask: GFP mask for the allocation.
 145 * @safe_needed: Get pages that were not used before hibernation (restore only)
 146 *
 147 * During image restoration, for storing the PBE list and the image data, we can
 148 * only use memory pages that do not conflict with the pages used before
 149 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 150 * using allocated_unsafe_pages.
 151 *
 152 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 153 * swsusp_free() can release it.
 154 */
 155static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 156{
 157	void *res;
 158
 159	res = (void *)get_zeroed_page(gfp_mask);
 160	if (safe_needed)
 161		while (res && swsusp_page_is_free(virt_to_page(res))) {
 162			/* The page is unsafe, mark it for swsusp_free() */
 163			swsusp_set_page_forbidden(virt_to_page(res));
 164			allocated_unsafe_pages++;
 165			res = (void *)get_zeroed_page(gfp_mask);
 166		}
 167	if (res) {
 168		swsusp_set_page_forbidden(virt_to_page(res));
 169		swsusp_set_page_free(virt_to_page(res));
 170	}
 171	return res;
 172}
 173
 174static void *__get_safe_page(gfp_t gfp_mask)
 175{
 176	if (safe_pages_list) {
 177		void *ret = safe_pages_list;
 178
 179		safe_pages_list = safe_pages_list->next;
 180		memset(ret, 0, PAGE_SIZE);
 181		return ret;
 182	}
 183	return get_image_page(gfp_mask, PG_SAFE);
 184}
 185
 186unsigned long get_safe_page(gfp_t gfp_mask)
 187{
 188	return (unsigned long)__get_safe_page(gfp_mask);
 189}
 190
 191static struct page *alloc_image_page(gfp_t gfp_mask)
 192{
 193	struct page *page;
 194
 195	page = alloc_page(gfp_mask);
 196	if (page) {
 197		swsusp_set_page_forbidden(page);
 198		swsusp_set_page_free(page);
 199	}
 200	return page;
 201}
 202
 203static void recycle_safe_page(void *page_address)
 204{
 205	struct linked_page *lp = page_address;
 206
 207	lp->next = safe_pages_list;
 208	safe_pages_list = lp;
 209}
 210
 211/**
 212 * free_image_page - Free a page allocated for hibernation image.
 213 * @addr: Address of the page to free.
 214 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 215 *
 216 * The page to free should have been allocated by get_image_page() (page flags
 217 * set by it are affected).
 218 */
 
 219static inline void free_image_page(void *addr, int clear_nosave_free)
 220{
 221	struct page *page;
 222
 223	BUG_ON(!virt_addr_valid(addr));
 224
 225	page = virt_to_page(addr);
 226
 227	swsusp_unset_page_forbidden(page);
 228	if (clear_nosave_free)
 229		swsusp_unset_page_free(page);
 230
 231	__free_page(page);
 232}
 233
 234static inline void free_list_of_pages(struct linked_page *list,
 235				      int clear_page_nosave)
 
 
 
 
 
 
 
 
 
 236{
 237	while (list) {
 238		struct linked_page *lp = list->next;
 239
 240		free_image_page(list, clear_page_nosave);
 241		list = lp;
 242	}
 243}
 244
 245/*
 246 * struct chain_allocator is used for allocating small objects out of
 247 * a linked list of pages called 'the chain'.
 248 *
 249 * The chain grows each time when there is no room for a new object in
 250 * the current page.  The allocated objects cannot be freed individually.
 251 * It is only possible to free them all at once, by freeing the entire
 252 * chain.
 253 *
 254 * NOTE: The chain allocator may be inefficient if the allocated objects
 255 * are not much smaller than PAGE_SIZE.
 256 */
 
 257struct chain_allocator {
 258	struct linked_page *chain;	/* the chain */
 259	unsigned int used_space;	/* total size of objects allocated out
 260					   of the current page */
 
 261	gfp_t gfp_mask;		/* mask for allocating pages */
 262	int safe_needed;	/* if set, only "safe" pages are allocated */
 263};
 264
 265static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 266		       int safe_needed)
 267{
 268	ca->chain = NULL;
 269	ca->used_space = LINKED_PAGE_DATA_SIZE;
 270	ca->gfp_mask = gfp_mask;
 271	ca->safe_needed = safe_needed;
 272}
 273
 274static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 275{
 276	void *ret;
 277
 278	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 279		struct linked_page *lp;
 280
 281		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 282					get_image_page(ca->gfp_mask, PG_ANY);
 283		if (!lp)
 284			return NULL;
 285
 286		lp->next = ca->chain;
 287		ca->chain = lp;
 288		ca->used_space = 0;
 289	}
 290	ret = ca->chain->data + ca->used_space;
 291	ca->used_space += size;
 292	return ret;
 293}
 294
 295/**
 296 * Data types related to memory bitmaps.
 297 *
 298 * Memory bitmap is a structure consiting of many linked lists of
 299 * objects.  The main list's elements are of type struct zone_bitmap
 300 * and each of them corresonds to one zone.  For each zone bitmap
 301 * object there is a list of objects of type struct bm_block that
 302 * represent each blocks of bitmap in which information is stored.
 303 *
 304 * struct memory_bitmap contains a pointer to the main list of zone
 305 * bitmap objects, a struct bm_position used for browsing the bitmap,
 306 * and a pointer to the list of pages used for allocating all of the
 307 * zone bitmap objects and bitmap block objects.
 308 *
 309 * NOTE: It has to be possible to lay out the bitmap in memory
 310 * using only allocations of order 0.  Additionally, the bitmap is
 311 * designed to work with arbitrary number of zones (this is over the
 312 * top for now, but let's avoid making unnecessary assumptions ;-).
 313 *
 314 * struct zone_bitmap contains a pointer to a list of bitmap block
 315 * objects and a pointer to the bitmap block object that has been
 316 * most recently used for setting bits.  Additionally, it contains the
 317 * PFNs that correspond to the start and end of the represented zone.
 318 *
 319 * struct bm_block contains a pointer to the memory page in which
 320 * information is stored (in the form of a block of bitmap)
 321 * It also contains the pfns that correspond to the start and end of
 322 * the represented memory area.
 323 *
 324 * The memory bitmap is organized as a radix tree to guarantee fast random
 325 * access to the bits. There is one radix tree for each zone (as returned
 326 * from create_mem_extents).
 327 *
 328 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 329 * two linked lists for the nodes of the tree, one for the inner nodes and
 330 * one for the leave nodes. The linked leave nodes are used for fast linear
 331 * access of the memory bitmap.
 332 *
 333 * The struct rtree_node represents one node of the radix tree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334 */
 335
 336#define BM_END_OF_MAP	(~0UL)
 337
 338#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 339#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 340#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 341
 342/*
 343 * struct rtree_node is a wrapper struct to link the nodes
 344 * of the rtree together for easy linear iteration over
 345 * bits and easy freeing
 346 */
 347struct rtree_node {
 348	struct list_head list;
 349	unsigned long *data;
 350};
 351
 352/*
 353 * struct mem_zone_bm_rtree represents a bitmap used for one
 354 * populated memory zone.
 355 */
 356struct mem_zone_bm_rtree {
 357	struct list_head list;		/* Link Zones together         */
 358	struct list_head nodes;		/* Radix Tree inner nodes      */
 359	struct list_head leaves;	/* Radix Tree leaves           */
 360	unsigned long start_pfn;	/* Zone start page frame       */
 361	unsigned long end_pfn;		/* Zone end page frame + 1     */
 362	struct rtree_node *rtree;	/* Radix Tree Root             */
 363	int levels;			/* Number of Radix Tree Levels */
 364	unsigned int blocks;		/* Number of Bitmap Blocks     */
 365};
 366
 367/* strcut bm_position is used for browsing memory bitmaps */
 368
 369struct bm_position {
 370	struct mem_zone_bm_rtree *zone;
 371	struct rtree_node *node;
 372	unsigned long node_pfn;
 373	int node_bit;
 374};
 375
 376struct memory_bitmap {
 377	struct list_head zones;
 378	struct linked_page *p_list;	/* list of pages used to store zone
 379					   bitmap objects and bitmap block
 380					   objects */
 
 381	struct bm_position cur;	/* most recently used bit position */
 382};
 383
 384/* Functions that operate on memory bitmaps */
 385
 386#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 387#if BITS_PER_LONG == 32
 388#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 389#else
 390#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 391#endif
 392#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 393
 394/**
 395 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 396 *
 397 * This function is used to allocate inner nodes as well as the
 398 * leave nodes of the radix tree. It also adds the node to the
 399 * corresponding linked list passed in by the *list parameter.
 400 */
 401static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 402					   struct chain_allocator *ca,
 403					   struct list_head *list)
 404{
 405	struct rtree_node *node;
 406
 407	node = chain_alloc(ca, sizeof(struct rtree_node));
 408	if (!node)
 409		return NULL;
 410
 411	node->data = get_image_page(gfp_mask, safe_needed);
 412	if (!node->data)
 413		return NULL;
 414
 415	list_add_tail(&node->list, list);
 416
 417	return node;
 418}
 419
 
 
 420/**
 421 * add_rtree_block - Add a new leave node to the radix tree.
 422 *
 423 * The leave nodes need to be allocated in order to keep the leaves
 424 * linked list in order. This is guaranteed by the zone->blocks
 425 * counter.
 426 */
 427static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 428			   int safe_needed, struct chain_allocator *ca)
 429{
 430	struct rtree_node *node, *block, **dst;
 431	unsigned int levels_needed, block_nr;
 432	int i;
 433
 434	block_nr = zone->blocks;
 435	levels_needed = 0;
 436
 437	/* How many levels do we need for this block nr? */
 438	while (block_nr) {
 439		levels_needed += 1;
 440		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 441	}
 442
 443	/* Make sure the rtree has enough levels */
 444	for (i = zone->levels; i < levels_needed; i++) {
 445		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 446					&zone->nodes);
 447		if (!node)
 448			return -ENOMEM;
 449
 450		node->data[0] = (unsigned long)zone->rtree;
 451		zone->rtree = node;
 452		zone->levels += 1;
 453	}
 454
 455	/* Allocate new block */
 456	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 457	if (!block)
 458		return -ENOMEM;
 459
 460	/* Now walk the rtree to insert the block */
 461	node = zone->rtree;
 462	dst = &zone->rtree;
 463	block_nr = zone->blocks;
 464	for (i = zone->levels; i > 0; i--) {
 465		int index;
 466
 467		if (!node) {
 468			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 469						&zone->nodes);
 470			if (!node)
 471				return -ENOMEM;
 472			*dst = node;
 473		}
 474
 475		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 476		index &= BM_RTREE_LEVEL_MASK;
 477		dst = (struct rtree_node **)&((*dst)->data[index]);
 478		node = *dst;
 479	}
 480
 481	zone->blocks += 1;
 482	*dst = block;
 483
 484	return 0;
 485}
 486
 487static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 488			       int clear_nosave_free);
 489
 490/**
 491 * create_zone_bm_rtree - Create a radix tree for one zone.
 492 *
 493 * Allocated the mem_zone_bm_rtree structure and initializes it.
 494 * This function also allocated and builds the radix tree for the
 495 * zone.
 496 */
 497static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 498						      int safe_needed,
 499						      struct chain_allocator *ca,
 500						      unsigned long start,
 501						      unsigned long end)
 502{
 503	struct mem_zone_bm_rtree *zone;
 504	unsigned int i, nr_blocks;
 505	unsigned long pages;
 506
 507	pages = end - start;
 508	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 509	if (!zone)
 510		return NULL;
 511
 512	INIT_LIST_HEAD(&zone->nodes);
 513	INIT_LIST_HEAD(&zone->leaves);
 514	zone->start_pfn = start;
 515	zone->end_pfn = end;
 516	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 517
 518	for (i = 0; i < nr_blocks; i++) {
 519		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 520			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 521			return NULL;
 522		}
 523	}
 524
 525	return zone;
 526}
 527
 528/**
 529 * free_zone_bm_rtree - Free the memory of the radix tree.
 530 *
 531 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 532 * structure itself is not freed here nor are the rtree_node
 533 * structs.
 534 */
 535static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 536			       int clear_nosave_free)
 537{
 538	struct rtree_node *node;
 539
 540	list_for_each_entry(node, &zone->nodes, list)
 541		free_image_page(node->data, clear_nosave_free);
 542
 543	list_for_each_entry(node, &zone->leaves, list)
 544		free_image_page(node->data, clear_nosave_free);
 545}
 546
 547static void memory_bm_position_reset(struct memory_bitmap *bm)
 548{
 549	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 550				  list);
 551	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 552				  struct rtree_node, list);
 553	bm->cur.node_pfn = 0;
 554	bm->cur.node_bit = 0;
 555}
 556
 557static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 558
 559struct mem_extent {
 560	struct list_head hook;
 561	unsigned long start;
 562	unsigned long end;
 563};
 564
 565/**
 566 * free_mem_extents - Free a list of memory extents.
 567 * @list: List of extents to free.
 568 */
 569static void free_mem_extents(struct list_head *list)
 570{
 571	struct mem_extent *ext, *aux;
 572
 573	list_for_each_entry_safe(ext, aux, list, hook) {
 574		list_del(&ext->hook);
 575		kfree(ext);
 576	}
 577}
 578
 579/**
 580 * create_mem_extents - Create a list of memory extents.
 581 * @list: List to put the extents into.
 582 * @gfp_mask: Mask to use for memory allocations.
 583 *
 584 * The extents represent contiguous ranges of PFNs.
 585 */
 586static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 587{
 588	struct zone *zone;
 589
 590	INIT_LIST_HEAD(list);
 591
 592	for_each_populated_zone(zone) {
 593		unsigned long zone_start, zone_end;
 594		struct mem_extent *ext, *cur, *aux;
 595
 596		zone_start = zone->zone_start_pfn;
 597		zone_end = zone_end_pfn(zone);
 598
 599		list_for_each_entry(ext, list, hook)
 600			if (zone_start <= ext->end)
 601				break;
 602
 603		if (&ext->hook == list || zone_end < ext->start) {
 604			/* New extent is necessary */
 605			struct mem_extent *new_ext;
 606
 607			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 608			if (!new_ext) {
 609				free_mem_extents(list);
 610				return -ENOMEM;
 611			}
 612			new_ext->start = zone_start;
 613			new_ext->end = zone_end;
 614			list_add_tail(&new_ext->hook, &ext->hook);
 615			continue;
 616		}
 617
 618		/* Merge this zone's range of PFNs with the existing one */
 619		if (zone_start < ext->start)
 620			ext->start = zone_start;
 621		if (zone_end > ext->end)
 622			ext->end = zone_end;
 623
 624		/* More merging may be possible */
 625		cur = ext;
 626		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 627			if (zone_end < cur->start)
 628				break;
 629			if (zone_end < cur->end)
 630				ext->end = cur->end;
 631			list_del(&cur->hook);
 632			kfree(cur);
 633		}
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 * memory_bm_create - Allocate memory for a memory bitmap.
 641 */
 642static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 643			    int safe_needed)
 644{
 645	struct chain_allocator ca;
 646	struct list_head mem_extents;
 647	struct mem_extent *ext;
 648	int error;
 649
 650	chain_init(&ca, gfp_mask, safe_needed);
 651	INIT_LIST_HEAD(&bm->zones);
 652
 653	error = create_mem_extents(&mem_extents, gfp_mask);
 654	if (error)
 655		return error;
 656
 657	list_for_each_entry(ext, &mem_extents, hook) {
 658		struct mem_zone_bm_rtree *zone;
 
 
 659
 660		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 661					    ext->start, ext->end);
 662		if (!zone) {
 663			error = -ENOMEM;
 664			goto Error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665		}
 666		list_add_tail(&zone->list, &bm->zones);
 667	}
 668
 669	bm->p_list = ca.chain;
 670	memory_bm_position_reset(bm);
 671 Exit:
 672	free_mem_extents(&mem_extents);
 673	return error;
 674
 675 Error:
 676	bm->p_list = ca.chain;
 677	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 678	goto Exit;
 679}
 680
 681/**
 682 * memory_bm_free - Free memory occupied by the memory bitmap.
 683 * @bm: Memory bitmap.
 684 */
 685static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 686{
 687	struct mem_zone_bm_rtree *zone;
 688
 689	list_for_each_entry(zone, &bm->zones, list)
 690		free_zone_bm_rtree(zone, clear_nosave_free);
 
 691
 692	free_list_of_pages(bm->p_list, clear_nosave_free);
 693
 694	INIT_LIST_HEAD(&bm->zones);
 695}
 696
 697/**
 698 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 699 *
 700 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 701 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 702 *
 703 * Walk the radix tree to find the page containing the bit that represents @pfn
 704 * and return the position of the bit in @addr and @bit_nr.
 705 */
 706static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 707			      void **addr, unsigned int *bit_nr)
 708{
 709	struct mem_zone_bm_rtree *curr, *zone;
 710	struct rtree_node *node;
 711	int i, block_nr;
 712
 713	zone = bm->cur.zone;
 714
 715	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 716		goto zone_found;
 717
 718	zone = NULL;
 719
 720	/* Find the right zone */
 721	list_for_each_entry(curr, &bm->zones, list) {
 722		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 723			zone = curr;
 724			break;
 725		}
 726	}
 727
 728	if (!zone)
 729		return -EFAULT;
 730
 731zone_found:
 732	/*
 733	 * We have found the zone. Now walk the radix tree to find the leaf node
 734	 * for our PFN.
 735	 */
 
 
 
 
 
 736
 737	/*
 738	 * If the zone we wish to scan is the the current zone and the
 739	 * pfn falls into the current node then we do not need to walk
 740	 * the tree.
 741	 */
 742	node = bm->cur.node;
 743	if (zone == bm->cur.zone &&
 744	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 745		goto node_found;
 746
 747	node      = zone->rtree;
 748	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 749
 750	for (i = zone->levels; i > 0; i--) {
 751		int index;
 752
 753		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 754		index &= BM_RTREE_LEVEL_MASK;
 755		BUG_ON(node->data[index] == 0);
 756		node = (struct rtree_node *)node->data[index];
 757	}
 758
 759node_found:
 760	/* Update last position */
 761	bm->cur.zone = zone;
 762	bm->cur.node = node;
 763	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 764
 765	/* Set return values */
 766	*addr = node->data;
 767	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 768
 
 
 
 
 
 
 
 
 
 769	return 0;
 770}
 771
 772static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 773{
 774	void *addr;
 775	unsigned int bit;
 776	int error;
 777
 778	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 779	BUG_ON(error);
 780	set_bit(bit, addr);
 781}
 782
 783static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 784{
 785	void *addr;
 786	unsigned int bit;
 787	int error;
 788
 789	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 790	if (!error)
 791		set_bit(bit, addr);
 792
 793	return error;
 794}
 795
 796static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 797{
 798	void *addr;
 799	unsigned int bit;
 800	int error;
 801
 802	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 803	BUG_ON(error);
 804	clear_bit(bit, addr);
 805}
 806
 807static void memory_bm_clear_current(struct memory_bitmap *bm)
 808{
 809	int bit;
 810
 811	bit = max(bm->cur.node_bit - 1, 0);
 812	clear_bit(bit, bm->cur.node->data);
 813}
 814
 815static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 816{
 817	void *addr;
 818	unsigned int bit;
 819	int error;
 820
 821	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 822	BUG_ON(error);
 823	return test_bit(bit, addr);
 824}
 825
 826static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 827{
 828	void *addr;
 829	unsigned int bit;
 830
 831	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 832}
 833
 834/*
 835 * rtree_next_node - Jump to the next leaf node.
 836 *
 837 * Set the position to the beginning of the next node in the
 838 * memory bitmap. This is either the next node in the current
 839 * zone's radix tree or the first node in the radix tree of the
 840 * next zone.
 841 *
 842 * Return true if there is a next node, false otherwise.
 843 */
 844static bool rtree_next_node(struct memory_bitmap *bm)
 845{
 846	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 847		bm->cur.node = list_entry(bm->cur.node->list.next,
 848					  struct rtree_node, list);
 849		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 850		bm->cur.node_bit  = 0;
 851		touch_softlockup_watchdog();
 852		return true;
 853	}
 854
 855	/* No more nodes, goto next zone */
 856	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 857		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 858				  struct mem_zone_bm_rtree, list);
 859		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 860					  struct rtree_node, list);
 861		bm->cur.node_pfn = 0;
 862		bm->cur.node_bit = 0;
 863		return true;
 864	}
 865
 866	/* No more zones */
 867	return false;
 868}
 869
 870/**
 871 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 872 * @bm: Memory bitmap.
 873 *
 874 * Starting from the last returned position this function searches for the next
 875 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 876 * set, BM_END_OF_MAP is returned.
 877 *
 878 * It is required to run memory_bm_position_reset() before the first call to
 879 * this function for the given memory bitmap.
 880 */
 
 881static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 882{
 883	unsigned long bits, pfn, pages;
 884	int bit;
 885
 
 886	do {
 887		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 888		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 889		bit	  = find_next_bit(bm->cur.node->data, bits,
 890					  bm->cur.node_bit);
 891		if (bit < bits) {
 892			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 893			bm->cur.node_bit = bit + 1;
 894			return pfn;
 895		}
 896	} while (rtree_next_node(bm));
 897
 
 898	return BM_END_OF_MAP;
 
 
 
 
 899}
 900
 901/*
 902 * This structure represents a range of page frames the contents of which
 903 * should not be saved during hibernation.
 904 */
 
 905struct nosave_region {
 906	struct list_head list;
 907	unsigned long start_pfn;
 908	unsigned long end_pfn;
 909};
 910
 911static LIST_HEAD(nosave_regions);
 912
 913static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 914{
 915	struct rtree_node *node;
 916
 917	list_for_each_entry(node, &zone->nodes, list)
 918		recycle_safe_page(node->data);
 919
 920	list_for_each_entry(node, &zone->leaves, list)
 921		recycle_safe_page(node->data);
 922}
 923
 924static void memory_bm_recycle(struct memory_bitmap *bm)
 925{
 926	struct mem_zone_bm_rtree *zone;
 927	struct linked_page *p_list;
 928
 929	list_for_each_entry(zone, &bm->zones, list)
 930		recycle_zone_bm_rtree(zone);
 931
 932	p_list = bm->p_list;
 933	while (p_list) {
 934		struct linked_page *lp = p_list;
 935
 936		p_list = lp->next;
 937		recycle_safe_page(lp);
 938	}
 939}
 940
 941/**
 942 * register_nosave_region - Register a region of unsaveable memory.
 943 *
 944 * Register a range of page frames the contents of which should not be saved
 945 * during hibernation (to be used in the early initialization code).
 946 */
 947void __init __register_nosave_region(unsigned long start_pfn,
 948				     unsigned long end_pfn, int use_kmalloc)
 
 
 949{
 950	struct nosave_region *region;
 951
 952	if (start_pfn >= end_pfn)
 953		return;
 954
 955	if (!list_empty(&nosave_regions)) {
 956		/* Try to extend the previous region (they should be sorted) */
 957		region = list_entry(nosave_regions.prev,
 958					struct nosave_region, list);
 959		if (region->end_pfn == start_pfn) {
 960			region->end_pfn = end_pfn;
 961			goto Report;
 962		}
 963	}
 964	if (use_kmalloc) {
 965		/* During init, this shouldn't fail */
 966		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 967		BUG_ON(!region);
 968	} else {
 969		/* This allocation cannot fail */
 970		region = memblock_alloc(sizeof(struct nosave_region),
 971					SMP_CACHE_BYTES);
 972		if (!region)
 973			panic("%s: Failed to allocate %zu bytes\n", __func__,
 974			      sizeof(struct nosave_region));
 975	}
 976	region->start_pfn = start_pfn;
 977	region->end_pfn = end_pfn;
 978	list_add_tail(&region->list, &nosave_regions);
 979 Report:
 980	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
 981		(unsigned long long) start_pfn << PAGE_SHIFT,
 982		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 983}
 984
 985/*
 986 * Set bits in this map correspond to the page frames the contents of which
 987 * should not be saved during the suspend.
 988 */
 989static struct memory_bitmap *forbidden_pages_map;
 990
 991/* Set bits in this map correspond to free page frames. */
 992static struct memory_bitmap *free_pages_map;
 993
 994/*
 995 * Each page frame allocated for creating the image is marked by setting the
 996 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 997 */
 998
 999void swsusp_set_page_free(struct page *page)
1000{
1001	if (free_pages_map)
1002		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1003}
1004
1005static int swsusp_page_is_free(struct page *page)
1006{
1007	return free_pages_map ?
1008		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1009}
1010
1011void swsusp_unset_page_free(struct page *page)
1012{
1013	if (free_pages_map)
1014		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1015}
1016
1017static void swsusp_set_page_forbidden(struct page *page)
1018{
1019	if (forbidden_pages_map)
1020		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1021}
1022
1023int swsusp_page_is_forbidden(struct page *page)
1024{
1025	return forbidden_pages_map ?
1026		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1027}
1028
1029static void swsusp_unset_page_forbidden(struct page *page)
1030{
1031	if (forbidden_pages_map)
1032		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1033}
1034
1035/**
1036 * mark_nosave_pages - Mark pages that should not be saved.
1037 * @bm: Memory bitmap.
1038 *
1039 * Set the bits in @bm that correspond to the page frames the contents of which
1040 * should not be saved.
1041 */
 
1042static void mark_nosave_pages(struct memory_bitmap *bm)
1043{
1044	struct nosave_region *region;
1045
1046	if (list_empty(&nosave_regions))
1047		return;
1048
1049	list_for_each_entry(region, &nosave_regions, list) {
1050		unsigned long pfn;
1051
1052		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1053			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1054			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1055				- 1);
1056
1057		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1058			if (pfn_valid(pfn)) {
1059				/*
1060				 * It is safe to ignore the result of
1061				 * mem_bm_set_bit_check() here, since we won't
1062				 * touch the PFNs for which the error is
1063				 * returned anyway.
1064				 */
1065				mem_bm_set_bit_check(bm, pfn);
1066			}
1067	}
1068}
1069
1070/**
1071 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1072 *
1073 * Create bitmaps needed for marking page frames that should not be saved and
1074 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1075 * only modified if everything goes well, because we don't want the bits to be
1076 * touched before both bitmaps are set up.
1077 */
 
1078int create_basic_memory_bitmaps(void)
1079{
1080	struct memory_bitmap *bm1, *bm2;
1081	int error = 0;
1082
1083	if (forbidden_pages_map && free_pages_map)
1084		return 0;
1085	else
1086		BUG_ON(forbidden_pages_map || free_pages_map);
1087
1088	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089	if (!bm1)
1090		return -ENOMEM;
1091
1092	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1093	if (error)
1094		goto Free_first_object;
1095
1096	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1097	if (!bm2)
1098		goto Free_first_bitmap;
1099
1100	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1101	if (error)
1102		goto Free_second_object;
1103
1104	forbidden_pages_map = bm1;
1105	free_pages_map = bm2;
1106	mark_nosave_pages(forbidden_pages_map);
1107
1108	pr_debug("Basic memory bitmaps created\n");
1109
1110	return 0;
1111
1112 Free_second_object:
1113	kfree(bm2);
1114 Free_first_bitmap:
1115 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1116 Free_first_object:
1117	kfree(bm1);
1118	return -ENOMEM;
1119}
1120
1121/**
1122 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1123 *
1124 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1125 * auxiliary pointers are necessary so that the bitmaps themselves are not
1126 * referred to while they are being freed.
1127 */
 
1128void free_basic_memory_bitmaps(void)
1129{
1130	struct memory_bitmap *bm1, *bm2;
1131
1132	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1133		return;
1134
1135	bm1 = forbidden_pages_map;
1136	bm2 = free_pages_map;
1137	forbidden_pages_map = NULL;
1138	free_pages_map = NULL;
1139	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1140	kfree(bm1);
1141	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1142	kfree(bm2);
1143
1144	pr_debug("Basic memory bitmaps freed\n");
1145}
1146
1147void clear_free_pages(void)
1148{
1149	struct memory_bitmap *bm = free_pages_map;
1150	unsigned long pfn;
1151
1152	if (WARN_ON(!(free_pages_map)))
1153		return;
1154
1155	if (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) || want_init_on_free()) {
1156		memory_bm_position_reset(bm);
1157		pfn = memory_bm_next_pfn(bm);
1158		while (pfn != BM_END_OF_MAP) {
1159			if (pfn_valid(pfn))
1160				clear_highpage(pfn_to_page(pfn));
1161
1162			pfn = memory_bm_next_pfn(bm);
1163		}
1164		memory_bm_position_reset(bm);
1165		pr_info("free pages cleared after restore\n");
1166	}
1167}
1168
1169/**
1170 * snapshot_additional_pages - Estimate the number of extra pages needed.
1171 * @zone: Memory zone to carry out the computation for.
1172 *
1173 * Estimate the number of additional pages needed for setting up a hibernation
1174 * image data structures for @zone (usually, the returned value is greater than
1175 * the exact number).
1176 */
 
1177unsigned int snapshot_additional_pages(struct zone *zone)
1178{
1179	unsigned int rtree, nodes;
1180
1181	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1182	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1183			      LINKED_PAGE_DATA_SIZE);
1184	while (nodes > 1) {
1185		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1186		rtree += nodes;
1187	}
1188
1189	return 2 * rtree;
1190}
1191
1192#ifdef CONFIG_HIGHMEM
1193/**
1194 * count_free_highmem_pages - Compute the total number of free highmem pages.
1195 *
1196 * The returned number is system-wide.
1197 */
 
1198static unsigned int count_free_highmem_pages(void)
1199{
1200	struct zone *zone;
1201	unsigned int cnt = 0;
1202
1203	for_each_populated_zone(zone)
1204		if (is_highmem(zone))
1205			cnt += zone_page_state(zone, NR_FREE_PAGES);
1206
1207	return cnt;
1208}
1209
1210/**
1211 * saveable_highmem_page - Check if a highmem page is saveable.
1212 *
1213 * Determine whether a highmem page should be included in a hibernation image.
1214 *
1215 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1216 * and it isn't part of a free chunk of pages.
1217 */
1218static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1219{
1220	struct page *page;
1221
1222	if (!pfn_valid(pfn))
1223		return NULL;
1224
1225	page = pfn_to_online_page(pfn);
1226	if (!page || page_zone(page) != zone)
1227		return NULL;
1228
1229	BUG_ON(!PageHighMem(page));
1230
1231	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1232		return NULL;
1233
1234	if (PageReserved(page) || PageOffline(page))
1235		return NULL;
1236
1237	if (page_is_guard(page))
1238		return NULL;
1239
1240	return page;
1241}
1242
1243/**
1244 * count_highmem_pages - Compute the total number of saveable highmem pages.
 
1245 */
 
1246static unsigned int count_highmem_pages(void)
1247{
1248	struct zone *zone;
1249	unsigned int n = 0;
1250
1251	for_each_populated_zone(zone) {
1252		unsigned long pfn, max_zone_pfn;
1253
1254		if (!is_highmem(zone))
1255			continue;
1256
1257		mark_free_pages(zone);
1258		max_zone_pfn = zone_end_pfn(zone);
1259		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1260			if (saveable_highmem_page(zone, pfn))
1261				n++;
1262	}
1263	return n;
1264}
1265#else
1266static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1267{
1268	return NULL;
1269}
1270#endif /* CONFIG_HIGHMEM */
1271
1272/**
1273 * saveable_page - Check if the given page is saveable.
1274 *
1275 * Determine whether a non-highmem page should be included in a hibernation
1276 * image.
1277 *
1278 * We should save the page if it isn't Nosave, and is not in the range
1279 * of pages statically defined as 'unsaveable', and it isn't part of
1280 * a free chunk of pages.
1281 */
1282static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1283{
1284	struct page *page;
1285
1286	if (!pfn_valid(pfn))
1287		return NULL;
1288
1289	page = pfn_to_online_page(pfn);
1290	if (!page || page_zone(page) != zone)
1291		return NULL;
1292
1293	BUG_ON(PageHighMem(page));
1294
1295	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1296		return NULL;
1297
1298	if (PageOffline(page))
1299		return NULL;
1300
1301	if (PageReserved(page)
1302	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1303		return NULL;
1304
1305	if (page_is_guard(page))
1306		return NULL;
1307
1308	return page;
1309}
1310
1311/**
1312 * count_data_pages - Compute the total number of saveable non-highmem pages.
 
1313 */
 
1314static unsigned int count_data_pages(void)
1315{
1316	struct zone *zone;
1317	unsigned long pfn, max_zone_pfn;
1318	unsigned int n = 0;
1319
1320	for_each_populated_zone(zone) {
1321		if (is_highmem(zone))
1322			continue;
1323
1324		mark_free_pages(zone);
1325		max_zone_pfn = zone_end_pfn(zone);
1326		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1327			if (saveable_page(zone, pfn))
1328				n++;
1329	}
1330	return n;
1331}
1332
1333/*
1334 * This is needed, because copy_page and memcpy are not usable for copying
1335 * task structs.
1336 */
1337static inline void do_copy_page(long *dst, long *src)
1338{
1339	int n;
1340
1341	for (n = PAGE_SIZE / sizeof(long); n; n--)
1342		*dst++ = *src++;
1343}
1344
 
1345/**
1346 * safe_copy_page - Copy a page in a safe way.
1347 *
1348 * Check if the page we are going to copy is marked as present in the kernel
1349 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1350 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1351 * always returns 'true'.
1352 */
1353static void safe_copy_page(void *dst, struct page *s_page)
1354{
1355	if (kernel_page_present(s_page)) {
1356		do_copy_page(dst, page_address(s_page));
1357	} else {
1358		kernel_map_pages(s_page, 1, 1);
1359		do_copy_page(dst, page_address(s_page));
1360		kernel_map_pages(s_page, 1, 0);
1361	}
1362}
1363
 
1364#ifdef CONFIG_HIGHMEM
1365static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
 
1366{
1367	return is_highmem(zone) ?
1368		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1369}
1370
1371static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1372{
1373	struct page *s_page, *d_page;
1374	void *src, *dst;
1375
1376	s_page = pfn_to_page(src_pfn);
1377	d_page = pfn_to_page(dst_pfn);
1378	if (PageHighMem(s_page)) {
1379		src = kmap_atomic(s_page);
1380		dst = kmap_atomic(d_page);
1381		do_copy_page(dst, src);
1382		kunmap_atomic(dst);
1383		kunmap_atomic(src);
1384	} else {
1385		if (PageHighMem(d_page)) {
1386			/*
1387			 * The page pointed to by src may contain some kernel
1388			 * data modified by kmap_atomic()
1389			 */
1390			safe_copy_page(buffer, s_page);
1391			dst = kmap_atomic(d_page);
1392			copy_page(dst, buffer);
1393			kunmap_atomic(dst);
1394		} else {
1395			safe_copy_page(page_address(d_page), s_page);
1396		}
1397	}
1398}
1399#else
1400#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1401
1402static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1403{
1404	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1405				pfn_to_page(src_pfn));
1406}
1407#endif /* CONFIG_HIGHMEM */
1408
1409static void copy_data_pages(struct memory_bitmap *copy_bm,
1410			    struct memory_bitmap *orig_bm)
1411{
1412	struct zone *zone;
1413	unsigned long pfn;
1414
1415	for_each_populated_zone(zone) {
1416		unsigned long max_zone_pfn;
1417
1418		mark_free_pages(zone);
1419		max_zone_pfn = zone_end_pfn(zone);
1420		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1421			if (page_is_saveable(zone, pfn))
1422				memory_bm_set_bit(orig_bm, pfn);
1423	}
1424	memory_bm_position_reset(orig_bm);
1425	memory_bm_position_reset(copy_bm);
1426	for(;;) {
1427		pfn = memory_bm_next_pfn(orig_bm);
1428		if (unlikely(pfn == BM_END_OF_MAP))
1429			break;
1430		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1431	}
1432}
1433
1434/* Total number of image pages */
1435static unsigned int nr_copy_pages;
1436/* Number of pages needed for saving the original pfns of the image pages */
1437static unsigned int nr_meta_pages;
1438/*
1439 * Numbers of normal and highmem page frames allocated for hibernation image
1440 * before suspending devices.
1441 */
1442static unsigned int alloc_normal, alloc_highmem;
1443/*
1444 * Memory bitmap used for marking saveable pages (during hibernation) or
1445 * hibernation image pages (during restore)
1446 */
1447static struct memory_bitmap orig_bm;
1448/*
1449 * Memory bitmap used during hibernation for marking allocated page frames that
1450 * will contain copies of saveable pages.  During restore it is initially used
1451 * for marking hibernation image pages, but then the set bits from it are
1452 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1453 * used for marking "safe" highmem pages, but it has to be reinitialized for
1454 * this purpose.
1455 */
1456static struct memory_bitmap copy_bm;
1457
1458/**
1459 * swsusp_free - Free pages allocated for hibernation image.
1460 *
1461 * Image pages are alocated before snapshot creation, so they need to be
1462 * released after resume.
1463 */
 
1464void swsusp_free(void)
1465{
1466	unsigned long fb_pfn, fr_pfn;
1467
1468	if (!forbidden_pages_map || !free_pages_map)
1469		goto out;
1470
1471	memory_bm_position_reset(forbidden_pages_map);
1472	memory_bm_position_reset(free_pages_map);
1473
1474loop:
1475	fr_pfn = memory_bm_next_pfn(free_pages_map);
1476	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
 
 
1477
1478	/*
1479	 * Find the next bit set in both bitmaps. This is guaranteed to
1480	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1481	 */
1482	do {
1483		if (fb_pfn < fr_pfn)
1484			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1485		if (fr_pfn < fb_pfn)
1486			fr_pfn = memory_bm_next_pfn(free_pages_map);
1487	} while (fb_pfn != fr_pfn);
1488
1489	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1490		struct page *page = pfn_to_page(fr_pfn);
1491
1492		memory_bm_clear_current(forbidden_pages_map);
1493		memory_bm_clear_current(free_pages_map);
1494		hibernate_restore_unprotect_page(page_address(page));
1495		__free_page(page);
1496		goto loop;
1497	}
1498
1499out:
1500	nr_copy_pages = 0;
1501	nr_meta_pages = 0;
1502	restore_pblist = NULL;
1503	buffer = NULL;
1504	alloc_normal = 0;
1505	alloc_highmem = 0;
1506	hibernate_restore_protection_end();
1507}
1508
1509/* Helper functions used for the shrinking of memory. */
1510
1511#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1512
1513/**
1514 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1515 * @nr_pages: Number of page frames to allocate.
1516 * @mask: GFP flags to use for the allocation.
1517 *
1518 * Return value: Number of page frames actually allocated
1519 */
1520static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1521{
1522	unsigned long nr_alloc = 0;
1523
1524	while (nr_pages > 0) {
1525		struct page *page;
1526
1527		page = alloc_image_page(mask);
1528		if (!page)
1529			break;
1530		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1531		if (PageHighMem(page))
1532			alloc_highmem++;
1533		else
1534			alloc_normal++;
1535		nr_pages--;
1536		nr_alloc++;
1537	}
1538
1539	return nr_alloc;
1540}
1541
1542static unsigned long preallocate_image_memory(unsigned long nr_pages,
1543					      unsigned long avail_normal)
1544{
1545	unsigned long alloc;
1546
1547	if (avail_normal <= alloc_normal)
1548		return 0;
1549
1550	alloc = avail_normal - alloc_normal;
1551	if (nr_pages < alloc)
1552		alloc = nr_pages;
1553
1554	return preallocate_image_pages(alloc, GFP_IMAGE);
1555}
1556
1557#ifdef CONFIG_HIGHMEM
1558static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1559{
1560	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1561}
1562
1563/**
1564 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1565 */
1566static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1567{
1568	return div64_u64(x * multiplier, base);
 
 
1569}
1570
1571static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1572						  unsigned long highmem,
1573						  unsigned long total)
1574{
1575	unsigned long alloc = __fraction(nr_pages, highmem, total);
1576
1577	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1578}
1579#else /* CONFIG_HIGHMEM */
1580static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1581{
1582	return 0;
1583}
1584
1585static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1586							 unsigned long highmem,
1587							 unsigned long total)
1588{
1589	return 0;
1590}
1591#endif /* CONFIG_HIGHMEM */
1592
1593/**
1594 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1595 */
1596static unsigned long free_unnecessary_pages(void)
1597{
1598	unsigned long save, to_free_normal, to_free_highmem, free;
1599
1600	save = count_data_pages();
1601	if (alloc_normal >= save) {
1602		to_free_normal = alloc_normal - save;
1603		save = 0;
1604	} else {
1605		to_free_normal = 0;
1606		save -= alloc_normal;
1607	}
1608	save += count_highmem_pages();
1609	if (alloc_highmem >= save) {
1610		to_free_highmem = alloc_highmem - save;
1611	} else {
1612		to_free_highmem = 0;
1613		save -= alloc_highmem;
1614		if (to_free_normal > save)
1615			to_free_normal -= save;
1616		else
1617			to_free_normal = 0;
1618	}
1619	free = to_free_normal + to_free_highmem;
1620
1621	memory_bm_position_reset(&copy_bm);
1622
1623	while (to_free_normal > 0 || to_free_highmem > 0) {
1624		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1625		struct page *page = pfn_to_page(pfn);
1626
1627		if (PageHighMem(page)) {
1628			if (!to_free_highmem)
1629				continue;
1630			to_free_highmem--;
1631			alloc_highmem--;
1632		} else {
1633			if (!to_free_normal)
1634				continue;
1635			to_free_normal--;
1636			alloc_normal--;
1637		}
1638		memory_bm_clear_bit(&copy_bm, pfn);
1639		swsusp_unset_page_forbidden(page);
1640		swsusp_unset_page_free(page);
1641		__free_page(page);
1642	}
1643
1644	return free;
1645}
1646
1647/**
1648 * minimum_image_size - Estimate the minimum acceptable size of an image.
1649 * @saveable: Number of saveable pages in the system.
1650 *
1651 * We want to avoid attempting to free too much memory too hard, so estimate the
1652 * minimum acceptable size of a hibernation image to use as the lower limit for
1653 * preallocating memory.
1654 *
1655 * We assume that the minimum image size should be proportional to
1656 *
1657 * [number of saveable pages] - [number of pages that can be freed in theory]
1658 *
1659 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1660 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
 
1661 */
1662static unsigned long minimum_image_size(unsigned long saveable)
1663{
1664	unsigned long size;
1665
1666	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1667		+ global_node_page_state(NR_ACTIVE_ANON)
1668		+ global_node_page_state(NR_INACTIVE_ANON)
1669		+ global_node_page_state(NR_ACTIVE_FILE)
1670		+ global_node_page_state(NR_INACTIVE_FILE);
 
1671
1672	return saveable <= size ? 0 : saveable - size;
1673}
1674
1675/**
1676 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1677 *
1678 * To create a hibernation image it is necessary to make a copy of every page
1679 * frame in use.  We also need a number of page frames to be free during
1680 * hibernation for allocations made while saving the image and for device
1681 * drivers, in case they need to allocate memory from their hibernation
1682 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1683 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1684 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1685 * total number of available page frames and allocate at least
1686 *
1687 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1688 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1689 *
1690 * of them, which corresponds to the maximum size of a hibernation image.
1691 *
1692 * If image_size is set below the number following from the above formula,
1693 * the preallocation of memory is continued until the total number of saveable
1694 * pages in the system is below the requested image size or the minimum
1695 * acceptable image size returned by minimum_image_size(), whichever is greater.
1696 */
1697int hibernate_preallocate_memory(void)
1698{
1699	struct zone *zone;
1700	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1701	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1702	ktime_t start, stop;
1703	int error;
1704
1705	pr_info("Preallocating image memory\n");
1706	start = ktime_get();
1707
1708	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1709	if (error) {
1710		pr_err("Cannot allocate original bitmap\n");
1711		goto err_out;
1712	}
1713
1714	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1715	if (error) {
1716		pr_err("Cannot allocate copy bitmap\n");
1717		goto err_out;
1718	}
1719
1720	alloc_normal = 0;
1721	alloc_highmem = 0;
1722
1723	/* Count the number of saveable data pages. */
1724	save_highmem = count_highmem_pages();
1725	saveable = count_data_pages();
1726
1727	/*
1728	 * Compute the total number of page frames we can use (count) and the
1729	 * number of pages needed for image metadata (size).
1730	 */
1731	count = saveable;
1732	saveable += save_highmem;
1733	highmem = save_highmem;
1734	size = 0;
1735	for_each_populated_zone(zone) {
1736		size += snapshot_additional_pages(zone);
1737		if (is_highmem(zone))
1738			highmem += zone_page_state(zone, NR_FREE_PAGES);
1739		else
1740			count += zone_page_state(zone, NR_FREE_PAGES);
1741	}
1742	avail_normal = count;
1743	count += highmem;
1744	count -= totalreserve_pages;
1745
 
 
 
1746	/* Compute the maximum number of saveable pages to leave in memory. */
1747	max_size = (count - (size + PAGES_FOR_IO)) / 2
1748			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1749	/* Compute the desired number of image pages specified by image_size. */
1750	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1751	if (size > max_size)
1752		size = max_size;
1753	/*
1754	 * If the desired number of image pages is at least as large as the
1755	 * current number of saveable pages in memory, allocate page frames for
1756	 * the image and we're done.
1757	 */
1758	if (size >= saveable) {
1759		pages = preallocate_image_highmem(save_highmem);
1760		pages += preallocate_image_memory(saveable - pages, avail_normal);
1761		goto out;
1762	}
1763
1764	/* Estimate the minimum size of the image. */
1765	pages = minimum_image_size(saveable);
1766	/*
1767	 * To avoid excessive pressure on the normal zone, leave room in it to
1768	 * accommodate an image of the minimum size (unless it's already too
1769	 * small, in which case don't preallocate pages from it at all).
1770	 */
1771	if (avail_normal > pages)
1772		avail_normal -= pages;
1773	else
1774		avail_normal = 0;
1775	if (size < pages)
1776		size = min_t(unsigned long, pages, max_size);
1777
1778	/*
1779	 * Let the memory management subsystem know that we're going to need a
1780	 * large number of page frames to allocate and make it free some memory.
1781	 * NOTE: If this is not done, performance will be hurt badly in some
1782	 * test cases.
1783	 */
1784	shrink_all_memory(saveable - size);
1785
1786	/*
1787	 * The number of saveable pages in memory was too high, so apply some
1788	 * pressure to decrease it.  First, make room for the largest possible
1789	 * image and fail if that doesn't work.  Next, try to decrease the size
1790	 * of the image as much as indicated by 'size' using allocations from
1791	 * highmem and non-highmem zones separately.
1792	 */
1793	pages_highmem = preallocate_image_highmem(highmem / 2);
1794	alloc = count - max_size;
1795	if (alloc > pages_highmem)
1796		alloc -= pages_highmem;
1797	else
1798		alloc = 0;
1799	pages = preallocate_image_memory(alloc, avail_normal);
1800	if (pages < alloc) {
1801		/* We have exhausted non-highmem pages, try highmem. */
1802		alloc -= pages;
1803		pages += pages_highmem;
1804		pages_highmem = preallocate_image_highmem(alloc);
1805		if (pages_highmem < alloc) {
1806			pr_err("Image allocation is %lu pages short\n",
1807				alloc - pages_highmem);
1808			goto err_out;
1809		}
1810		pages += pages_highmem;
1811		/*
1812		 * size is the desired number of saveable pages to leave in
1813		 * memory, so try to preallocate (all memory - size) pages.
1814		 */
1815		alloc = (count - pages) - size;
1816		pages += preallocate_image_highmem(alloc);
1817	} else {
1818		/*
1819		 * There are approximately max_size saveable pages at this point
1820		 * and we want to reduce this number down to size.
1821		 */
1822		alloc = max_size - size;
1823		size = preallocate_highmem_fraction(alloc, highmem, count);
1824		pages_highmem += size;
1825		alloc -= size;
1826		size = preallocate_image_memory(alloc, avail_normal);
1827		pages_highmem += preallocate_image_highmem(alloc - size);
1828		pages += pages_highmem + size;
1829	}
1830
1831	/*
1832	 * We only need as many page frames for the image as there are saveable
1833	 * pages in memory, but we have allocated more.  Release the excessive
1834	 * ones now.
1835	 */
1836	pages -= free_unnecessary_pages();
1837
1838 out:
1839	stop = ktime_get();
1840	pr_info("Allocated %lu pages for snapshot\n", pages);
1841	swsusp_show_speed(start, stop, pages, "Allocated");
1842
1843	return 0;
1844
1845 err_out:
 
1846	swsusp_free();
1847	return -ENOMEM;
1848}
1849
1850#ifdef CONFIG_HIGHMEM
1851/**
1852 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1853 *
1854 * Compute the number of non-highmem pages that will be necessary for creating
1855 * copies of highmem pages.
1856 */
1857static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1858{
1859	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1860
1861	if (free_highmem >= nr_highmem)
1862		nr_highmem = 0;
1863	else
1864		nr_highmem -= free_highmem;
1865
1866	return nr_highmem;
1867}
1868#else
1869static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
 
1870#endif /* CONFIG_HIGHMEM */
1871
1872/**
1873 * enough_free_mem - Check if there is enough free memory for the image.
 
1874 */
 
1875static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1876{
1877	struct zone *zone;
1878	unsigned int free = alloc_normal;
1879
1880	for_each_populated_zone(zone)
1881		if (!is_highmem(zone))
1882			free += zone_page_state(zone, NR_FREE_PAGES);
1883
1884	nr_pages += count_pages_for_highmem(nr_highmem);
1885	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1886		 nr_pages, PAGES_FOR_IO, free);
1887
1888	return free > nr_pages + PAGES_FOR_IO;
1889}
1890
1891#ifdef CONFIG_HIGHMEM
1892/**
1893 * get_highmem_buffer - Allocate a buffer for highmem pages.
1894 *
1895 * If there are some highmem pages in the hibernation image, we may need a
1896 * buffer to copy them and/or load their data.
1897 */
 
1898static inline int get_highmem_buffer(int safe_needed)
1899{
1900	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1901	return buffer ? 0 : -ENOMEM;
1902}
1903
1904/**
1905 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1906 *
1907 * Try to allocate as many pages as needed, but if the number of free highmem
1908 * pages is less than that, allocate them all.
1909 */
1910static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1911					       unsigned int nr_highmem)
 
1912{
1913	unsigned int to_alloc = count_free_highmem_pages();
1914
1915	if (to_alloc > nr_highmem)
1916		to_alloc = nr_highmem;
1917
1918	nr_highmem -= to_alloc;
1919	while (to_alloc-- > 0) {
1920		struct page *page;
1921
1922		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1923		memory_bm_set_bit(bm, page_to_pfn(page));
1924	}
1925	return nr_highmem;
1926}
1927#else
1928static inline int get_highmem_buffer(int safe_needed) { return 0; }
1929
1930static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1931					       unsigned int n) { return 0; }
1932#endif /* CONFIG_HIGHMEM */
1933
1934/**
1935 * swsusp_alloc - Allocate memory for hibernation image.
1936 *
1937 * We first try to allocate as many highmem pages as there are
1938 * saveable highmem pages in the system.  If that fails, we allocate
1939 * non-highmem pages for the copies of the remaining highmem ones.
1940 *
1941 * In this approach it is likely that the copies of highmem pages will
1942 * also be located in the high memory, because of the way in which
1943 * copy_data_pages() works.
1944 */
1945static int swsusp_alloc(struct memory_bitmap *copy_bm,
1946			unsigned int nr_pages, unsigned int nr_highmem)
 
 
1947{
1948	if (nr_highmem > 0) {
1949		if (get_highmem_buffer(PG_ANY))
1950			goto err_out;
1951		if (nr_highmem > alloc_highmem) {
1952			nr_highmem -= alloc_highmem;
1953			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1954		}
1955	}
1956	if (nr_pages > alloc_normal) {
1957		nr_pages -= alloc_normal;
1958		while (nr_pages-- > 0) {
1959			struct page *page;
1960
1961			page = alloc_image_page(GFP_ATOMIC);
1962			if (!page)
1963				goto err_out;
1964			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1965		}
1966	}
1967
1968	return 0;
1969
1970 err_out:
1971	swsusp_free();
1972	return -ENOMEM;
1973}
1974
1975asmlinkage __visible int swsusp_save(void)
1976{
1977	unsigned int nr_pages, nr_highmem;
1978
1979	pr_info("Creating image:\n");
1980
1981	drain_local_pages(NULL);
1982	nr_pages = count_data_pages();
1983	nr_highmem = count_highmem_pages();
1984	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1985
1986	if (!enough_free_mem(nr_pages, nr_highmem)) {
1987		pr_err("Not enough free memory\n");
1988		return -ENOMEM;
1989	}
1990
1991	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1992		pr_err("Memory allocation failed\n");
1993		return -ENOMEM;
1994	}
1995
1996	/*
1997	 * During allocating of suspend pagedir, new cold pages may appear.
1998	 * Kill them.
1999	 */
2000	drain_local_pages(NULL);
2001	copy_data_pages(&copy_bm, &orig_bm);
2002
2003	/*
2004	 * End of critical section. From now on, we can write to memory,
2005	 * but we should not touch disk. This specially means we must _not_
2006	 * touch swap space! Except we must write out our image of course.
2007	 */
2008
2009	nr_pages += nr_highmem;
2010	nr_copy_pages = nr_pages;
2011	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2012
2013	pr_info("Image created (%d pages copied)\n", nr_pages);
 
2014
2015	return 0;
2016}
2017
2018#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2019static int init_header_complete(struct swsusp_info *info)
2020{
2021	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2022	info->version_code = LINUX_VERSION_CODE;
2023	return 0;
2024}
2025
2026static const char *check_image_kernel(struct swsusp_info *info)
2027{
2028	if (info->version_code != LINUX_VERSION_CODE)
2029		return "kernel version";
2030	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2031		return "system type";
2032	if (strcmp(info->uts.release,init_utsname()->release))
2033		return "kernel release";
2034	if (strcmp(info->uts.version,init_utsname()->version))
2035		return "version";
2036	if (strcmp(info->uts.machine,init_utsname()->machine))
2037		return "machine";
2038	return NULL;
2039}
2040#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2041
2042unsigned long snapshot_get_image_size(void)
2043{
2044	return nr_copy_pages + nr_meta_pages + 1;
2045}
2046
2047static int init_header(struct swsusp_info *info)
2048{
2049	memset(info, 0, sizeof(struct swsusp_info));
2050	info->num_physpages = get_num_physpages();
2051	info->image_pages = nr_copy_pages;
2052	info->pages = snapshot_get_image_size();
2053	info->size = info->pages;
2054	info->size <<= PAGE_SHIFT;
2055	return init_header_complete(info);
2056}
2057
2058/**
2059 * pack_pfns - Prepare PFNs for saving.
2060 * @bm: Memory bitmap.
2061 * @buf: Memory buffer to store the PFNs in.
2062 *
2063 * PFNs corresponding to set bits in @bm are stored in the area of memory
2064 * pointed to by @buf (1 page at a time).
2065 */
2066static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
 
 
2067{
2068	int j;
2069
2070	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2071		buf[j] = memory_bm_next_pfn(bm);
2072		if (unlikely(buf[j] == BM_END_OF_MAP))
2073			break;
 
 
2074	}
2075}
2076
2077/**
2078 * snapshot_read_next - Get the address to read the next image page from.
2079 * @handle: Snapshot handle to be used for the reading.
2080 *
2081 * On the first call, @handle should point to a zeroed snapshot_handle
2082 * structure.  The structure gets populated then and a pointer to it should be
2083 * passed to this function every next time.
2084 *
2085 * On success, the function returns a positive number.  Then, the caller
2086 * is allowed to read up to the returned number of bytes from the memory
2087 * location computed by the data_of() macro.
2088 *
2089 * The function returns 0 to indicate the end of the data stream condition,
2090 * and negative numbers are returned on errors.  If that happens, the structure
2091 * pointed to by @handle is not updated and should not be used any more.
 
2092 */
 
2093int snapshot_read_next(struct snapshot_handle *handle)
2094{
2095	if (handle->cur > nr_meta_pages + nr_copy_pages)
2096		return 0;
2097
2098	if (!buffer) {
2099		/* This makes the buffer be freed by swsusp_free() */
2100		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2101		if (!buffer)
2102			return -ENOMEM;
2103	}
2104	if (!handle->cur) {
2105		int error;
2106
2107		error = init_header((struct swsusp_info *)buffer);
2108		if (error)
2109			return error;
2110		handle->buffer = buffer;
2111		memory_bm_position_reset(&orig_bm);
2112		memory_bm_position_reset(&copy_bm);
2113	} else if (handle->cur <= nr_meta_pages) {
2114		clear_page(buffer);
2115		pack_pfns(buffer, &orig_bm);
2116	} else {
2117		struct page *page;
2118
2119		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2120		if (PageHighMem(page)) {
2121			/*
2122			 * Highmem pages are copied to the buffer,
2123			 * because we can't return with a kmapped
2124			 * highmem page (we may not be called again).
2125			 */
2126			void *kaddr;
2127
2128			kaddr = kmap_atomic(page);
2129			copy_page(buffer, kaddr);
2130			kunmap_atomic(kaddr);
2131			handle->buffer = buffer;
2132		} else {
2133			handle->buffer = page_address(page);
2134		}
2135	}
2136	handle->cur++;
2137	return PAGE_SIZE;
2138}
2139
2140static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2141				    struct memory_bitmap *src)
 
 
 
 
 
2142{
2143	unsigned long pfn;
 
2144
2145	memory_bm_position_reset(src);
2146	pfn = memory_bm_next_pfn(src);
2147	while (pfn != BM_END_OF_MAP) {
2148		memory_bm_set_bit(dst, pfn);
2149		pfn = memory_bm_next_pfn(src);
 
2150	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151}
2152
2153/**
2154 * mark_unsafe_pages - Mark pages that were used before hibernation.
2155 *
2156 * Mark the pages that cannot be used for storing the image during restoration,
2157 * because they conflict with the pages that had been used before hibernation.
2158 */
2159static void mark_unsafe_pages(struct memory_bitmap *bm)
2160{
2161	unsigned long pfn;
2162
2163	/* Clear the "free"/"unsafe" bit for all PFNs */
2164	memory_bm_position_reset(free_pages_map);
2165	pfn = memory_bm_next_pfn(free_pages_map);
2166	while (pfn != BM_END_OF_MAP) {
2167		memory_bm_clear_current(free_pages_map);
2168		pfn = memory_bm_next_pfn(free_pages_map);
2169	}
2170
2171	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2172	duplicate_memory_bitmap(free_pages_map, bm);
2173
2174	allocated_unsafe_pages = 0;
2175}
2176
2177static int check_header(struct swsusp_info *info)
2178{
2179	const char *reason;
2180
2181	reason = check_image_kernel(info);
2182	if (!reason && info->num_physpages != get_num_physpages())
2183		reason = "memory size";
2184	if (reason) {
2185		pr_err("Image mismatch: %s\n", reason);
2186		return -EPERM;
2187	}
2188	return 0;
2189}
2190
2191/**
2192 * load header - Check the image header and copy the data from it.
2193 */
2194static int load_header(struct swsusp_info *info)
 
 
2195{
2196	int error;
2197
2198	restore_pblist = NULL;
2199	error = check_header(info);
2200	if (!error) {
2201		nr_copy_pages = info->image_pages;
2202		nr_meta_pages = info->pages - info->image_pages - 1;
2203	}
2204	return error;
2205}
2206
2207/**
2208 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2209 * @bm: Memory bitmap.
2210 * @buf: Area of memory containing the PFNs.
2211 *
2212 * For each element of the array pointed to by @buf (1 page at a time), set the
2213 * corresponding bit in @bm.
2214 */
2215static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2216{
2217	int j;
2218
2219	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2220		if (unlikely(buf[j] == BM_END_OF_MAP))
2221			break;
2222
2223		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
 
 
 
2224			memory_bm_set_bit(bm, buf[j]);
2225		else
2226			return -EFAULT;
2227	}
2228
2229	return 0;
2230}
2231
 
 
 
 
 
2232#ifdef CONFIG_HIGHMEM
2233/*
2234 * struct highmem_pbe is used for creating the list of highmem pages that
2235 * should be restored atomically during the resume from disk, because the page
2236 * frames they have occupied before the suspend are in use.
2237 */
2238struct highmem_pbe {
2239	struct page *copy_page;	/* data is here now */
2240	struct page *orig_page;	/* data was here before the suspend */
2241	struct highmem_pbe *next;
2242};
2243
2244/*
2245 * List of highmem PBEs needed for restoring the highmem pages that were
2246 * allocated before the suspend and included in the suspend image, but have
2247 * also been allocated by the "resume" kernel, so their contents cannot be
2248 * written directly to their "original" page frames.
2249 */
2250static struct highmem_pbe *highmem_pblist;
2251
2252/**
2253 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2254 * @bm: Memory bitmap.
2255 *
2256 * The bits in @bm that correspond to image pages are assumed to be set.
2257 */
 
2258static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2259{
2260	unsigned long pfn;
2261	unsigned int cnt = 0;
2262
2263	memory_bm_position_reset(bm);
2264	pfn = memory_bm_next_pfn(bm);
2265	while (pfn != BM_END_OF_MAP) {
2266		if (PageHighMem(pfn_to_page(pfn)))
2267			cnt++;
2268
2269		pfn = memory_bm_next_pfn(bm);
2270	}
2271	return cnt;
2272}
2273
 
 
 
 
 
 
 
 
 
 
 
 
2274static unsigned int safe_highmem_pages;
2275
2276static struct memory_bitmap *safe_highmem_bm;
2277
2278/**
2279 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2280 * @bm: Pointer to an uninitialized memory bitmap structure.
2281 * @nr_highmem_p: Pointer to the number of highmem image pages.
2282 *
2283 * Try to allocate as many highmem pages as there are highmem image pages
2284 * (@nr_highmem_p points to the variable containing the number of highmem image
2285 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2286 * hibernation image is restored entirely) have the corresponding bits set in
2287 * @bm (it must be unitialized).
2288 *
2289 * NOTE: This function should not be called if there are no highmem image pages.
2290 */
2291static int prepare_highmem_image(struct memory_bitmap *bm,
2292				 unsigned int *nr_highmem_p)
2293{
2294	unsigned int to_alloc;
2295
2296	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2297		return -ENOMEM;
2298
2299	if (get_highmem_buffer(PG_SAFE))
2300		return -ENOMEM;
2301
2302	to_alloc = count_free_highmem_pages();
2303	if (to_alloc > *nr_highmem_p)
2304		to_alloc = *nr_highmem_p;
2305	else
2306		*nr_highmem_p = to_alloc;
2307
2308	safe_highmem_pages = 0;
2309	while (to_alloc-- > 0) {
2310		struct page *page;
2311
2312		page = alloc_page(__GFP_HIGHMEM);
2313		if (!swsusp_page_is_free(page)) {
2314			/* The page is "safe", set its bit the bitmap */
2315			memory_bm_set_bit(bm, page_to_pfn(page));
2316			safe_highmem_pages++;
2317		}
2318		/* Mark the page as allocated */
2319		swsusp_set_page_forbidden(page);
2320		swsusp_set_page_free(page);
2321	}
2322	memory_bm_position_reset(bm);
2323	safe_highmem_bm = bm;
2324	return 0;
2325}
2326
2327static struct page *last_highmem_page;
2328
2329/**
2330 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2331 *
2332 * For a given highmem image page get a buffer that suspend_write_next() should
2333 * return to its caller to write to.
2334 *
2335 * If the page is to be saved to its "original" page frame or a copy of
2336 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2337 * the copy of the page is to be made in normal memory, so the address of
2338 * the copy is returned.
2339 *
2340 * If @buffer is returned, the caller of suspend_write_next() will write
2341 * the page's contents to @buffer, so they will have to be copied to the
2342 * right location on the next call to suspend_write_next() and it is done
2343 * with the help of copy_last_highmem_page().  For this purpose, if
2344 * @buffer is returned, @last_highmem_page is set to the page to which
2345 * the data will have to be copied from @buffer.
2346 */
2347static void *get_highmem_page_buffer(struct page *page,
2348				     struct chain_allocator *ca)
 
 
 
2349{
2350	struct highmem_pbe *pbe;
2351	void *kaddr;
2352
2353	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2354		/*
2355		 * We have allocated the "original" page frame and we can
2356		 * use it directly to store the loaded page.
2357		 */
2358		last_highmem_page = page;
2359		return buffer;
2360	}
2361	/*
2362	 * The "original" page frame has not been allocated and we have to
2363	 * use a "safe" page frame to store the loaded page.
2364	 */
2365	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2366	if (!pbe) {
2367		swsusp_free();
2368		return ERR_PTR(-ENOMEM);
2369	}
2370	pbe->orig_page = page;
2371	if (safe_highmem_pages > 0) {
2372		struct page *tmp;
2373
2374		/* Copy of the page will be stored in high memory */
2375		kaddr = buffer;
2376		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2377		safe_highmem_pages--;
2378		last_highmem_page = tmp;
2379		pbe->copy_page = tmp;
2380	} else {
2381		/* Copy of the page will be stored in normal memory */
2382		kaddr = safe_pages_list;
2383		safe_pages_list = safe_pages_list->next;
2384		pbe->copy_page = virt_to_page(kaddr);
2385	}
2386	pbe->next = highmem_pblist;
2387	highmem_pblist = pbe;
2388	return kaddr;
2389}
2390
2391/**
2392 * copy_last_highmem_page - Copy most the most recent highmem image page.
2393 *
2394 * Copy the contents of a highmem image from @buffer, where the caller of
2395 * snapshot_write_next() has stored them, to the right location represented by
2396 * @last_highmem_page .
2397 */
 
2398static void copy_last_highmem_page(void)
2399{
2400	if (last_highmem_page) {
2401		void *dst;
2402
2403		dst = kmap_atomic(last_highmem_page);
2404		copy_page(dst, buffer);
2405		kunmap_atomic(dst);
2406		last_highmem_page = NULL;
2407	}
2408}
2409
2410static inline int last_highmem_page_copied(void)
2411{
2412	return !last_highmem_page;
2413}
2414
2415static inline void free_highmem_data(void)
2416{
2417	if (safe_highmem_bm)
2418		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2419
2420	if (buffer)
2421		free_image_page(buffer, PG_UNSAFE_CLEAR);
2422}
2423#else
2424static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2425
2426static inline int prepare_highmem_image(struct memory_bitmap *bm,
2427					unsigned int *nr_highmem_p) { return 0; }
2428
2429static inline void *get_highmem_page_buffer(struct page *page,
2430					    struct chain_allocator *ca)
 
 
 
 
 
 
2431{
2432	return ERR_PTR(-EINVAL);
2433}
2434
2435static inline void copy_last_highmem_page(void) {}
2436static inline int last_highmem_page_copied(void) { return 1; }
2437static inline void free_highmem_data(void) {}
2438#endif /* CONFIG_HIGHMEM */
2439
2440#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2441
2442/**
2443 * prepare_image - Make room for loading hibernation image.
2444 * @new_bm: Unitialized memory bitmap structure.
2445 * @bm: Memory bitmap with unsafe pages marked.
2446 *
2447 * Use @bm to mark the pages that will be overwritten in the process of
2448 * restoring the system memory state from the suspend image ("unsafe" pages)
2449 * and allocate memory for the image.
2450 *
2451 * The idea is to allocate a new memory bitmap first and then allocate
2452 * as many pages as needed for image data, but without specifying what those
2453 * pages will be used for just yet.  Instead, we mark them all as allocated and
2454 * create a lists of "safe" pages to be used later.  On systems with high
2455 * memory a list of "safe" highmem pages is created too.
2456 */
2457static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
 
 
 
 
2458{
2459	unsigned int nr_pages, nr_highmem;
2460	struct linked_page *lp;
2461	int error;
2462
2463	/* If there is no highmem, the buffer will not be necessary */
2464	free_image_page(buffer, PG_UNSAFE_CLEAR);
2465	buffer = NULL;
2466
2467	nr_highmem = count_highmem_image_pages(bm);
2468	mark_unsafe_pages(bm);
 
 
2469
2470	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2471	if (error)
2472		goto Free;
2473
2474	duplicate_memory_bitmap(new_bm, bm);
2475	memory_bm_free(bm, PG_UNSAFE_KEEP);
2476	if (nr_highmem > 0) {
2477		error = prepare_highmem_image(bm, &nr_highmem);
2478		if (error)
2479			goto Free;
2480	}
2481	/*
2482	 * Reserve some safe pages for potential later use.
2483	 *
2484	 * NOTE: This way we make sure there will be enough safe pages for the
2485	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2486	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2487	 *
2488	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2489	 */
 
 
2490	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2491	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2492	while (nr_pages > 0) {
2493		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2494		if (!lp) {
2495			error = -ENOMEM;
2496			goto Free;
2497		}
2498		lp->next = safe_pages_list;
2499		safe_pages_list = lp;
2500		nr_pages--;
2501	}
2502	/* Preallocate memory for the image */
 
2503	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2504	while (nr_pages > 0) {
2505		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2506		if (!lp) {
2507			error = -ENOMEM;
2508			goto Free;
2509		}
2510		if (!swsusp_page_is_free(virt_to_page(lp))) {
2511			/* The page is "safe", add it to the list */
2512			lp->next = safe_pages_list;
2513			safe_pages_list = lp;
2514		}
2515		/* Mark the page as allocated */
2516		swsusp_set_page_forbidden(virt_to_page(lp));
2517		swsusp_set_page_free(virt_to_page(lp));
2518		nr_pages--;
2519	}
 
 
 
 
 
 
2520	return 0;
2521
2522 Free:
2523	swsusp_free();
2524	return error;
2525}
2526
2527/**
2528 * get_buffer - Get the address to store the next image data page.
2529 *
2530 * Get the address that snapshot_write_next() should return to its caller to
2531 * write to.
2532 */
 
2533static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2534{
2535	struct pbe *pbe;
2536	struct page *page;
2537	unsigned long pfn = memory_bm_next_pfn(bm);
2538
2539	if (pfn == BM_END_OF_MAP)
2540		return ERR_PTR(-EFAULT);
2541
2542	page = pfn_to_page(pfn);
2543	if (PageHighMem(page))
2544		return get_highmem_page_buffer(page, ca);
2545
2546	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2547		/*
2548		 * We have allocated the "original" page frame and we can
2549		 * use it directly to store the loaded page.
2550		 */
2551		return page_address(page);
2552
2553	/*
2554	 * The "original" page frame has not been allocated and we have to
2555	 * use a "safe" page frame to store the loaded page.
2556	 */
2557	pbe = chain_alloc(ca, sizeof(struct pbe));
2558	if (!pbe) {
2559		swsusp_free();
2560		return ERR_PTR(-ENOMEM);
2561	}
2562	pbe->orig_address = page_address(page);
2563	pbe->address = safe_pages_list;
2564	safe_pages_list = safe_pages_list->next;
2565	pbe->next = restore_pblist;
2566	restore_pblist = pbe;
2567	return pbe->address;
2568}
2569
2570/**
2571 * snapshot_write_next - Get the address to store the next image page.
2572 * @handle: Snapshot handle structure to guide the writing.
2573 *
2574 * On the first call, @handle should point to a zeroed snapshot_handle
2575 * structure.  The structure gets populated then and a pointer to it should be
2576 * passed to this function every next time.
2577 *
2578 * On success, the function returns a positive number.  Then, the caller
2579 * is allowed to write up to the returned number of bytes to the memory
2580 * location computed by the data_of() macro.
2581 *
2582 * The function returns 0 to indicate the "end of file" condition.  Negative
2583 * numbers are returned on errors, in which cases the structure pointed to by
2584 * @handle is not updated and should not be used any more.
 
2585 */
 
2586int snapshot_write_next(struct snapshot_handle *handle)
2587{
2588	static struct chain_allocator ca;
2589	int error = 0;
2590
2591	/* Check if we have already loaded the entire image */
2592	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2593		return 0;
2594
2595	handle->sync_read = 1;
2596
2597	if (!handle->cur) {
2598		if (!buffer)
2599			/* This makes the buffer be freed by swsusp_free() */
2600			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2601
2602		if (!buffer)
2603			return -ENOMEM;
2604
2605		handle->buffer = buffer;
2606	} else if (handle->cur == 1) {
2607		error = load_header(buffer);
2608		if (error)
2609			return error;
2610
2611		safe_pages_list = NULL;
2612
2613		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2614		if (error)
2615			return error;
2616
2617		hibernate_restore_protection_begin();
 
 
 
 
2618	} else if (handle->cur <= nr_meta_pages + 1) {
2619		error = unpack_orig_pfns(buffer, &copy_bm);
2620		if (error)
2621			return error;
2622
2623		if (handle->cur == nr_meta_pages + 1) {
2624			error = prepare_image(&orig_bm, &copy_bm);
2625			if (error)
2626				return error;
2627
2628			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2629			memory_bm_position_reset(&orig_bm);
2630			restore_pblist = NULL;
2631			handle->buffer = get_buffer(&orig_bm, &ca);
2632			handle->sync_read = 0;
2633			if (IS_ERR(handle->buffer))
2634				return PTR_ERR(handle->buffer);
2635		}
2636	} else {
2637		copy_last_highmem_page();
2638		hibernate_restore_protect_page(handle->buffer);
 
2639		handle->buffer = get_buffer(&orig_bm, &ca);
2640		if (IS_ERR(handle->buffer))
2641			return PTR_ERR(handle->buffer);
2642		if (handle->buffer != buffer)
2643			handle->sync_read = 0;
2644	}
2645	handle->cur++;
2646	return PAGE_SIZE;
2647}
2648
2649/**
2650 * snapshot_write_finalize - Complete the loading of a hibernation image.
2651 *
2652 * Must be called after the last call to snapshot_write_next() in case the last
2653 * page in the image happens to be a highmem page and its contents should be
2654 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2655 * necessary any more.
2656 */
 
2657void snapshot_write_finalize(struct snapshot_handle *handle)
2658{
2659	copy_last_highmem_page();
2660	hibernate_restore_protect_page(handle->buffer);
2661	/* Do that only if we have loaded the image entirely */
 
 
2662	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663		memory_bm_recycle(&orig_bm);
2664		free_highmem_data();
2665	}
2666}
2667
2668int snapshot_image_loaded(struct snapshot_handle *handle)
2669{
2670	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671			handle->cur <= nr_meta_pages + nr_copy_pages);
2672}
2673
2674#ifdef CONFIG_HIGHMEM
2675/* Assumes that @buf is ready and points to a "safe" page */
2676static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677				       void *buf)
2678{
2679	void *kaddr1, *kaddr2;
2680
2681	kaddr1 = kmap_atomic(p1);
2682	kaddr2 = kmap_atomic(p2);
2683	copy_page(buf, kaddr1);
2684	copy_page(kaddr1, kaddr2);
2685	copy_page(kaddr2, buf);
2686	kunmap_atomic(kaddr2);
2687	kunmap_atomic(kaddr1);
2688}
2689
2690/**
2691 * restore_highmem - Put highmem image pages into their original locations.
 
 
 
2692 *
2693 * For each highmem page that was in use before hibernation and is included in
2694 * the image, and also has been allocated by the "restore" kernel, swap its
2695 * current contents with the previous (ie. "before hibernation") ones.
2696 *
2697 * If the restore eventually fails, we can call this function once again and
2698 * restore the highmem state as seen by the restore kernel.
2699 */
 
2700int restore_highmem(void)
2701{
2702	struct highmem_pbe *pbe = highmem_pblist;
2703	void *buf;
2704
2705	if (!pbe)
2706		return 0;
2707
2708	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709	if (!buf)
2710		return -ENOMEM;
2711
2712	while (pbe) {
2713		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714		pbe = pbe->next;
2715	}
2716	free_image_page(buf, PG_UNSAFE_CLEAR);
2717	return 0;
2718}
2719#endif /* CONFIG_HIGHMEM */
v3.15
 
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
 
 
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
 
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30#include <linux/compiler.h>
 
 
  31
  32#include <asm/uaccess.h>
  33#include <asm/mmu_context.h>
  34#include <asm/pgtable.h>
  35#include <asm/tlbflush.h>
  36#include <asm/io.h>
  37
  38#include "power.h"
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40static int swsusp_page_is_free(struct page *);
  41static void swsusp_set_page_forbidden(struct page *);
  42static void swsusp_unset_page_forbidden(struct page *);
  43
  44/*
  45 * Number of bytes to reserve for memory allocations made by device drivers
  46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  47 * cause image creation to fail (tunable via /sys/power/reserved_size).
  48 */
  49unsigned long reserved_size;
  50
  51void __init hibernate_reserved_size_init(void)
  52{
  53	reserved_size = SPARE_PAGES * PAGE_SIZE;
  54}
  55
  56/*
  57 * Preferred image size in bytes (tunable via /sys/power/image_size).
  58 * When it is set to N, swsusp will do its best to ensure the image
  59 * size will not exceed N bytes, but if that is impossible, it will
  60 * try to create the smallest image possible.
  61 */
  62unsigned long image_size;
  63
  64void __init hibernate_image_size_init(void)
  65{
  66	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  67}
  68
  69/* List of PBEs needed for restoring the pages that were allocated before
 
  70 * the suspend and included in the suspend image, but have also been
  71 * allocated by the "resume" kernel, so their contents cannot be written
  72 * directly to their "original" page frames.
  73 */
  74struct pbe *restore_pblist;
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/* Pointer to an auxiliary buffer (1 page) */
  77static void *buffer;
  78
  79/**
  80 *	@safe_needed - on resume, for storing the PBE list and the image,
  81 *	we can only use memory pages that do not conflict with the pages
  82 *	used before suspend.  The unsafe pages have PageNosaveFree set
  83 *	and we count them using unsafe_pages.
  84 *
  85 *	Each allocated image page is marked as PageNosave and PageNosaveFree
  86 *	so that swsusp_free() can release it.
  87 */
  88
  89#define PG_ANY		0
  90#define PG_SAFE		1
  91#define PG_UNSAFE_CLEAR	1
  92#define PG_UNSAFE_KEEP	0
  93
  94static unsigned int allocated_unsafe_pages;
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
  96static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  97{
  98	void *res;
  99
 100	res = (void *)get_zeroed_page(gfp_mask);
 101	if (safe_needed)
 102		while (res && swsusp_page_is_free(virt_to_page(res))) {
 103			/* The page is unsafe, mark it for swsusp_free() */
 104			swsusp_set_page_forbidden(virt_to_page(res));
 105			allocated_unsafe_pages++;
 106			res = (void *)get_zeroed_page(gfp_mask);
 107		}
 108	if (res) {
 109		swsusp_set_page_forbidden(virt_to_page(res));
 110		swsusp_set_page_free(virt_to_page(res));
 111	}
 112	return res;
 113}
 114
 
 
 
 
 
 
 
 
 
 
 
 
 115unsigned long get_safe_page(gfp_t gfp_mask)
 116{
 117	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 118}
 119
 120static struct page *alloc_image_page(gfp_t gfp_mask)
 121{
 122	struct page *page;
 123
 124	page = alloc_page(gfp_mask);
 125	if (page) {
 126		swsusp_set_page_forbidden(page);
 127		swsusp_set_page_free(page);
 128	}
 129	return page;
 130}
 131
 
 
 
 
 
 
 
 
 132/**
 133 *	free_image_page - free page represented by @addr, allocated with
 134 *	get_image_page (page flags set by it must be cleared)
 
 
 
 
 135 */
 136
 137static inline void free_image_page(void *addr, int clear_nosave_free)
 138{
 139	struct page *page;
 140
 141	BUG_ON(!virt_addr_valid(addr));
 142
 143	page = virt_to_page(addr);
 144
 145	swsusp_unset_page_forbidden(page);
 146	if (clear_nosave_free)
 147		swsusp_unset_page_free(page);
 148
 149	__free_page(page);
 150}
 151
 152/* struct linked_page is used to build chains of pages */
 153
 154#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 155
 156struct linked_page {
 157	struct linked_page *next;
 158	char data[LINKED_PAGE_DATA_SIZE];
 159} __packed;
 160
 161static inline void
 162free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 163{
 164	while (list) {
 165		struct linked_page *lp = list->next;
 166
 167		free_image_page(list, clear_page_nosave);
 168		list = lp;
 169	}
 170}
 171
 172/**
 173  *	struct chain_allocator is used for allocating small objects out of
 174  *	a linked list of pages called 'the chain'.
 175  *
 176  *	The chain grows each time when there is no room for a new object in
 177  *	the current page.  The allocated objects cannot be freed individually.
 178  *	It is only possible to free them all at once, by freeing the entire
 179  *	chain.
 180  *
 181  *	NOTE: The chain allocator may be inefficient if the allocated objects
 182  *	are not much smaller than PAGE_SIZE.
 183  */
 184
 185struct chain_allocator {
 186	struct linked_page *chain;	/* the chain */
 187	unsigned int used_space;	/* total size of objects allocated out
 188					 * of the current page
 189					 */
 190	gfp_t gfp_mask;		/* mask for allocating pages */
 191	int safe_needed;	/* if set, only "safe" pages are allocated */
 192};
 193
 194static void
 195chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 196{
 197	ca->chain = NULL;
 198	ca->used_space = LINKED_PAGE_DATA_SIZE;
 199	ca->gfp_mask = gfp_mask;
 200	ca->safe_needed = safe_needed;
 201}
 202
 203static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 204{
 205	void *ret;
 206
 207	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 208		struct linked_page *lp;
 209
 210		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 
 211		if (!lp)
 212			return NULL;
 213
 214		lp->next = ca->chain;
 215		ca->chain = lp;
 216		ca->used_space = 0;
 217	}
 218	ret = ca->chain->data + ca->used_space;
 219	ca->used_space += size;
 220	return ret;
 221}
 222
 223/**
 224 *	Data types related to memory bitmaps.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225 *
 226 *	Memory bitmap is a structure consiting of many linked lists of
 227 *	objects.  The main list's elements are of type struct zone_bitmap
 228 *	and each of them corresonds to one zone.  For each zone bitmap
 229 *	object there is a list of objects of type struct bm_block that
 230 *	represent each blocks of bitmap in which information is stored.
 231 *
 232 *	struct memory_bitmap contains a pointer to the main list of zone
 233 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 234 *	and a pointer to the list of pages used for allocating all of the
 235 *	zone bitmap objects and bitmap block objects.
 236 *
 237 *	NOTE: It has to be possible to lay out the bitmap in memory
 238 *	using only allocations of order 0.  Additionally, the bitmap is
 239 *	designed to work with arbitrary number of zones (this is over the
 240 *	top for now, but let's avoid making unnecessary assumptions ;-).
 241 *
 242 *	struct zone_bitmap contains a pointer to a list of bitmap block
 243 *	objects and a pointer to the bitmap block object that has been
 244 *	most recently used for setting bits.  Additionally, it contains the
 245 *	pfns that correspond to the start and end of the represented zone.
 246 *
 247 *	struct bm_block contains a pointer to the memory page in which
 248 *	information is stored (in the form of a block of bitmap)
 249 *	It also contains the pfns that correspond to the start and end of
 250 *	the represented memory area.
 251 */
 252
 253#define BM_END_OF_MAP	(~0UL)
 254
 255#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 
 
 256
 257struct bm_block {
 258	struct list_head hook;	/* hook into a list of bitmap blocks */
 259	unsigned long start_pfn;	/* pfn represented by the first bit */
 260	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
 261	unsigned long *data;	/* bitmap representing pages */
 
 
 
 262};
 263
 264static inline unsigned long bm_block_bits(struct bm_block *bb)
 265{
 266	return bb->end_pfn - bb->start_pfn;
 267}
 
 
 
 
 
 
 
 
 
 
 268
 269/* strcut bm_position is used for browsing memory bitmaps */
 270
 271struct bm_position {
 272	struct bm_block *block;
 273	int bit;
 
 
 274};
 275
 276struct memory_bitmap {
 277	struct list_head blocks;	/* list of bitmap blocks */
 278	struct linked_page *p_list;	/* list of pages used to store zone
 279					 * bitmap objects and bitmap block
 280					 * objects
 281					 */
 282	struct bm_position cur;	/* most recently used bit position */
 283};
 284
 285/* Functions that operate on memory bitmaps */
 286
 287static void memory_bm_position_reset(struct memory_bitmap *bm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288{
 289	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
 290	bm->cur.bit = 0;
 
 
 
 
 
 
 
 
 
 
 
 291}
 292
 293static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 294
 295/**
 296 *	create_bm_block_list - create a list of block bitmap objects
 297 *	@pages - number of pages to track
 298 *	@list - list to put the allocated blocks into
 299 *	@ca - chain allocator to be used for allocating memory
 300 */
 301static int create_bm_block_list(unsigned long pages,
 302				struct list_head *list,
 303				struct chain_allocator *ca)
 304{
 305	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 
 
 
 
 
 306
 307	while (nr_blocks-- > 0) {
 308		struct bm_block *bb;
 
 
 
 309
 310		bb = chain_alloc(ca, sizeof(struct bm_block));
 311		if (!bb)
 
 
 
 312			return -ENOMEM;
 313		list_add(&bb->hook, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314	}
 315
 
 
 
 316	return 0;
 317}
 318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319struct mem_extent {
 320	struct list_head hook;
 321	unsigned long start;
 322	unsigned long end;
 323};
 324
 325/**
 326 *	free_mem_extents - free a list of memory extents
 327 *	@list - list of extents to empty
 328 */
 329static void free_mem_extents(struct list_head *list)
 330{
 331	struct mem_extent *ext, *aux;
 332
 333	list_for_each_entry_safe(ext, aux, list, hook) {
 334		list_del(&ext->hook);
 335		kfree(ext);
 336	}
 337}
 338
 339/**
 340 *	create_mem_extents - create a list of memory extents representing
 341 *	                     contiguous ranges of PFNs
 342 *	@list - list to put the extents into
 343 *	@gfp_mask - mask to use for memory allocations
 
 344 */
 345static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 346{
 347	struct zone *zone;
 348
 349	INIT_LIST_HEAD(list);
 350
 351	for_each_populated_zone(zone) {
 352		unsigned long zone_start, zone_end;
 353		struct mem_extent *ext, *cur, *aux;
 354
 355		zone_start = zone->zone_start_pfn;
 356		zone_end = zone_end_pfn(zone);
 357
 358		list_for_each_entry(ext, list, hook)
 359			if (zone_start <= ext->end)
 360				break;
 361
 362		if (&ext->hook == list || zone_end < ext->start) {
 363			/* New extent is necessary */
 364			struct mem_extent *new_ext;
 365
 366			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 367			if (!new_ext) {
 368				free_mem_extents(list);
 369				return -ENOMEM;
 370			}
 371			new_ext->start = zone_start;
 372			new_ext->end = zone_end;
 373			list_add_tail(&new_ext->hook, &ext->hook);
 374			continue;
 375		}
 376
 377		/* Merge this zone's range of PFNs with the existing one */
 378		if (zone_start < ext->start)
 379			ext->start = zone_start;
 380		if (zone_end > ext->end)
 381			ext->end = zone_end;
 382
 383		/* More merging may be possible */
 384		cur = ext;
 385		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 386			if (zone_end < cur->start)
 387				break;
 388			if (zone_end < cur->end)
 389				ext->end = cur->end;
 390			list_del(&cur->hook);
 391			kfree(cur);
 392		}
 393	}
 394
 395	return 0;
 396}
 397
 398/**
 399  *	memory_bm_create - allocate memory for a memory bitmap
 400  */
 401static int
 402memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 403{
 404	struct chain_allocator ca;
 405	struct list_head mem_extents;
 406	struct mem_extent *ext;
 407	int error;
 408
 409	chain_init(&ca, gfp_mask, safe_needed);
 410	INIT_LIST_HEAD(&bm->blocks);
 411
 412	error = create_mem_extents(&mem_extents, gfp_mask);
 413	if (error)
 414		return error;
 415
 416	list_for_each_entry(ext, &mem_extents, hook) {
 417		struct bm_block *bb;
 418		unsigned long pfn = ext->start;
 419		unsigned long pages = ext->end - ext->start;
 420
 421		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
 422
 423		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
 424		if (error)
 425			goto Error;
 426
 427		list_for_each_entry_continue(bb, &bm->blocks, hook) {
 428			bb->data = get_image_page(gfp_mask, safe_needed);
 429			if (!bb->data) {
 430				error = -ENOMEM;
 431				goto Error;
 432			}
 433
 434			bb->start_pfn = pfn;
 435			if (pages >= BM_BITS_PER_BLOCK) {
 436				pfn += BM_BITS_PER_BLOCK;
 437				pages -= BM_BITS_PER_BLOCK;
 438			} else {
 439				/* This is executed only once in the loop */
 440				pfn += pages;
 441			}
 442			bb->end_pfn = pfn;
 443		}
 
 444	}
 445
 446	bm->p_list = ca.chain;
 447	memory_bm_position_reset(bm);
 448 Exit:
 449	free_mem_extents(&mem_extents);
 450	return error;
 451
 452 Error:
 453	bm->p_list = ca.chain;
 454	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 455	goto Exit;
 456}
 457
 458/**
 459  *	memory_bm_free - free memory occupied by the memory bitmap @bm
 460  */
 
 461static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 462{
 463	struct bm_block *bb;
 464
 465	list_for_each_entry(bb, &bm->blocks, hook)
 466		if (bb->data)
 467			free_image_page(bb->data, clear_nosave_free);
 468
 469	free_list_of_pages(bm->p_list, clear_nosave_free);
 470
 471	INIT_LIST_HEAD(&bm->blocks);
 472}
 473
 474/**
 475 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
 476 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 477 *	of @bm->cur_zone_bm are updated.
 
 
 
 
 478 */
 479static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 480				void **addr, unsigned int *bit_nr)
 481{
 482	struct bm_block *bb;
 
 
 
 
 
 
 
 483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	/*
 485	 * Check if the pfn corresponds to the current bitmap block and find
 486	 * the block where it fits if this is not the case.
 487	 */
 488	bb = bm->cur.block;
 489	if (pfn < bb->start_pfn)
 490		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
 491			if (pfn >= bb->start_pfn)
 492				break;
 493
 494	if (pfn >= bb->end_pfn)
 495		list_for_each_entry_continue(bb, &bm->blocks, hook)
 496			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
 497				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498
 499	if (&bb->hook == &bm->blocks)
 500		return -EFAULT;
 501
 502	/* The block has been found */
 503	bm->cur.block = bb;
 504	pfn -= bb->start_pfn;
 505	bm->cur.bit = pfn + 1;
 506	*bit_nr = pfn;
 507	*addr = bb->data;
 508	return 0;
 509}
 510
 511static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 512{
 513	void *addr;
 514	unsigned int bit;
 515	int error;
 516
 517	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 518	BUG_ON(error);
 519	set_bit(bit, addr);
 520}
 521
 522static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 523{
 524	void *addr;
 525	unsigned int bit;
 526	int error;
 527
 528	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 529	if (!error)
 530		set_bit(bit, addr);
 
 531	return error;
 532}
 533
 534static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 535{
 536	void *addr;
 537	unsigned int bit;
 538	int error;
 539
 540	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 541	BUG_ON(error);
 542	clear_bit(bit, addr);
 543}
 544
 
 
 
 
 
 
 
 
 545static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 546{
 547	void *addr;
 548	unsigned int bit;
 549	int error;
 550
 551	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 552	BUG_ON(error);
 553	return test_bit(bit, addr);
 554}
 555
 556static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 557{
 558	void *addr;
 559	unsigned int bit;
 560
 561	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 562}
 563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564/**
 565 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 566 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 567 *	returned.
 
 
 
 568 *
 569 *	It is required to run memory_bm_position_reset() before the first call to
 570 *	this function.
 571 */
 572
 573static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 574{
 575	struct bm_block *bb;
 576	int bit;
 577
 578	bb = bm->cur.block;
 579	do {
 580		bit = bm->cur.bit;
 581		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
 582		if (bit < bm_block_bits(bb))
 583			goto Return_pfn;
 584
 585		bb = list_entry(bb->hook.next, struct bm_block, hook);
 586		bm->cur.block = bb;
 587		bm->cur.bit = 0;
 588	} while (&bb->hook != &bm->blocks);
 
 589
 590	memory_bm_position_reset(bm);
 591	return BM_END_OF_MAP;
 592
 593 Return_pfn:
 594	bm->cur.bit = bit + 1;
 595	return bb->start_pfn + bit;
 596}
 597
 598/**
 599 *	This structure represents a range of page frames the contents of which
 600 *	should not be saved during the suspend.
 601 */
 602
 603struct nosave_region {
 604	struct list_head list;
 605	unsigned long start_pfn;
 606	unsigned long end_pfn;
 607};
 608
 609static LIST_HEAD(nosave_regions);
 610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611/**
 612 *	register_nosave_region - register a range of page frames the contents
 613 *	of which should not be saved during the suspend (to be used in the early
 614 *	initialization code)
 
 615 */
 616
 617void __init
 618__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 619			 int use_kmalloc)
 620{
 621	struct nosave_region *region;
 622
 623	if (start_pfn >= end_pfn)
 624		return;
 625
 626	if (!list_empty(&nosave_regions)) {
 627		/* Try to extend the previous region (they should be sorted) */
 628		region = list_entry(nosave_regions.prev,
 629					struct nosave_region, list);
 630		if (region->end_pfn == start_pfn) {
 631			region->end_pfn = end_pfn;
 632			goto Report;
 633		}
 634	}
 635	if (use_kmalloc) {
 636		/* during init, this shouldn't fail */
 637		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 638		BUG_ON(!region);
 639	} else
 640		/* This allocation cannot fail */
 641		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 
 
 
 
 
 642	region->start_pfn = start_pfn;
 643	region->end_pfn = end_pfn;
 644	list_add_tail(&region->list, &nosave_regions);
 645 Report:
 646	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
 647		(unsigned long long) start_pfn << PAGE_SHIFT,
 648		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 649}
 650
 651/*
 652 * Set bits in this map correspond to the page frames the contents of which
 653 * should not be saved during the suspend.
 654 */
 655static struct memory_bitmap *forbidden_pages_map;
 656
 657/* Set bits in this map correspond to free page frames. */
 658static struct memory_bitmap *free_pages_map;
 659
 660/*
 661 * Each page frame allocated for creating the image is marked by setting the
 662 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 663 */
 664
 665void swsusp_set_page_free(struct page *page)
 666{
 667	if (free_pages_map)
 668		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 669}
 670
 671static int swsusp_page_is_free(struct page *page)
 672{
 673	return free_pages_map ?
 674		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 675}
 676
 677void swsusp_unset_page_free(struct page *page)
 678{
 679	if (free_pages_map)
 680		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 681}
 682
 683static void swsusp_set_page_forbidden(struct page *page)
 684{
 685	if (forbidden_pages_map)
 686		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 687}
 688
 689int swsusp_page_is_forbidden(struct page *page)
 690{
 691	return forbidden_pages_map ?
 692		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 693}
 694
 695static void swsusp_unset_page_forbidden(struct page *page)
 696{
 697	if (forbidden_pages_map)
 698		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 699}
 700
 701/**
 702 *	mark_nosave_pages - set bits corresponding to the page frames the
 703 *	contents of which should not be saved in a given bitmap.
 
 
 
 704 */
 705
 706static void mark_nosave_pages(struct memory_bitmap *bm)
 707{
 708	struct nosave_region *region;
 709
 710	if (list_empty(&nosave_regions))
 711		return;
 712
 713	list_for_each_entry(region, &nosave_regions, list) {
 714		unsigned long pfn;
 715
 716		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
 717			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
 718			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 719				- 1);
 720
 721		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 722			if (pfn_valid(pfn)) {
 723				/*
 724				 * It is safe to ignore the result of
 725				 * mem_bm_set_bit_check() here, since we won't
 726				 * touch the PFNs for which the error is
 727				 * returned anyway.
 728				 */
 729				mem_bm_set_bit_check(bm, pfn);
 730			}
 731	}
 732}
 733
 734/**
 735 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 736 *	frames that should not be saved and free page frames.  The pointers
 737 *	forbidden_pages_map and free_pages_map are only modified if everything
 738 *	goes well, because we don't want the bits to be used before both bitmaps
 739 *	are set up.
 
 740 */
 741
 742int create_basic_memory_bitmaps(void)
 743{
 744	struct memory_bitmap *bm1, *bm2;
 745	int error = 0;
 746
 747	if (forbidden_pages_map && free_pages_map)
 748		return 0;
 749	else
 750		BUG_ON(forbidden_pages_map || free_pages_map);
 751
 752	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 753	if (!bm1)
 754		return -ENOMEM;
 755
 756	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 757	if (error)
 758		goto Free_first_object;
 759
 760	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 761	if (!bm2)
 762		goto Free_first_bitmap;
 763
 764	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 765	if (error)
 766		goto Free_second_object;
 767
 768	forbidden_pages_map = bm1;
 769	free_pages_map = bm2;
 770	mark_nosave_pages(forbidden_pages_map);
 771
 772	pr_debug("PM: Basic memory bitmaps created\n");
 773
 774	return 0;
 775
 776 Free_second_object:
 777	kfree(bm2);
 778 Free_first_bitmap:
 779 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 780 Free_first_object:
 781	kfree(bm1);
 782	return -ENOMEM;
 783}
 784
 785/**
 786 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 787 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 788 *	so that the bitmaps themselves are not referred to while they are being
 789 *	freed.
 
 790 */
 791
 792void free_basic_memory_bitmaps(void)
 793{
 794	struct memory_bitmap *bm1, *bm2;
 795
 796	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
 797		return;
 798
 799	bm1 = forbidden_pages_map;
 800	bm2 = free_pages_map;
 801	forbidden_pages_map = NULL;
 802	free_pages_map = NULL;
 803	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 804	kfree(bm1);
 805	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
 806	kfree(bm2);
 807
 808	pr_debug("PM: Basic memory bitmaps freed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809}
 810
 811/**
 812 *	snapshot_additional_pages - estimate the number of additional pages
 813 *	be needed for setting up the suspend image data structures for given
 814 *	zone (usually the returned value is greater than the exact number)
 
 
 
 815 */
 816
 817unsigned int snapshot_additional_pages(struct zone *zone)
 818{
 819	unsigned int res;
 820
 821	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
 822	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
 823			    LINKED_PAGE_DATA_SIZE);
 824	return 2 * res;
 
 
 
 
 
 825}
 826
 827#ifdef CONFIG_HIGHMEM
 828/**
 829 *	count_free_highmem_pages - compute the total number of free highmem
 830 *	pages, system-wide.
 
 831 */
 832
 833static unsigned int count_free_highmem_pages(void)
 834{
 835	struct zone *zone;
 836	unsigned int cnt = 0;
 837
 838	for_each_populated_zone(zone)
 839		if (is_highmem(zone))
 840			cnt += zone_page_state(zone, NR_FREE_PAGES);
 841
 842	return cnt;
 843}
 844
 845/**
 846 *	saveable_highmem_page - Determine whether a highmem page should be
 847 *	included in the suspend image.
 
 848 *
 849 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 850 *	and it isn't a part of a free chunk of pages.
 851 */
 852static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
 853{
 854	struct page *page;
 855
 856	if (!pfn_valid(pfn))
 857		return NULL;
 858
 859	page = pfn_to_page(pfn);
 860	if (page_zone(page) != zone)
 861		return NULL;
 862
 863	BUG_ON(!PageHighMem(page));
 864
 865	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
 866	    PageReserved(page))
 
 
 867		return NULL;
 868
 869	if (page_is_guard(page))
 870		return NULL;
 871
 872	return page;
 873}
 874
 875/**
 876 *	count_highmem_pages - compute the total number of saveable highmem
 877 *	pages.
 878 */
 879
 880static unsigned int count_highmem_pages(void)
 881{
 882	struct zone *zone;
 883	unsigned int n = 0;
 884
 885	for_each_populated_zone(zone) {
 886		unsigned long pfn, max_zone_pfn;
 887
 888		if (!is_highmem(zone))
 889			continue;
 890
 891		mark_free_pages(zone);
 892		max_zone_pfn = zone_end_pfn(zone);
 893		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 894			if (saveable_highmem_page(zone, pfn))
 895				n++;
 896	}
 897	return n;
 898}
 899#else
 900static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
 901{
 902	return NULL;
 903}
 904#endif /* CONFIG_HIGHMEM */
 905
 906/**
 907 *	saveable_page - Determine whether a non-highmem page should be included
 908 *	in the suspend image.
 
 
 909 *
 910 *	We should save the page if it isn't Nosave, and is not in the range
 911 *	of pages statically defined as 'unsaveable', and it isn't a part of
 912 *	a free chunk of pages.
 913 */
 914static struct page *saveable_page(struct zone *zone, unsigned long pfn)
 915{
 916	struct page *page;
 917
 918	if (!pfn_valid(pfn))
 919		return NULL;
 920
 921	page = pfn_to_page(pfn);
 922	if (page_zone(page) != zone)
 923		return NULL;
 924
 925	BUG_ON(PageHighMem(page));
 926
 927	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
 928		return NULL;
 929
 
 
 
 930	if (PageReserved(page)
 931	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
 932		return NULL;
 933
 934	if (page_is_guard(page))
 935		return NULL;
 936
 937	return page;
 938}
 939
 940/**
 941 *	count_data_pages - compute the total number of saveable non-highmem
 942 *	pages.
 943 */
 944
 945static unsigned int count_data_pages(void)
 946{
 947	struct zone *zone;
 948	unsigned long pfn, max_zone_pfn;
 949	unsigned int n = 0;
 950
 951	for_each_populated_zone(zone) {
 952		if (is_highmem(zone))
 953			continue;
 954
 955		mark_free_pages(zone);
 956		max_zone_pfn = zone_end_pfn(zone);
 957		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 958			if (saveable_page(zone, pfn))
 959				n++;
 960	}
 961	return n;
 962}
 963
 964/* This is needed, because copy_page and memcpy are not usable for copying
 
 965 * task structs.
 966 */
 967static inline void do_copy_page(long *dst, long *src)
 968{
 969	int n;
 970
 971	for (n = PAGE_SIZE / sizeof(long); n; n--)
 972		*dst++ = *src++;
 973}
 974
 975
 976/**
 977 *	safe_copy_page - check if the page we are going to copy is marked as
 978 *		present in the kernel page tables (this always is the case if
 979 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 980 *		kernel_page_present() always returns 'true').
 
 
 981 */
 982static void safe_copy_page(void *dst, struct page *s_page)
 983{
 984	if (kernel_page_present(s_page)) {
 985		do_copy_page(dst, page_address(s_page));
 986	} else {
 987		kernel_map_pages(s_page, 1, 1);
 988		do_copy_page(dst, page_address(s_page));
 989		kernel_map_pages(s_page, 1, 0);
 990	}
 991}
 992
 993
 994#ifdef CONFIG_HIGHMEM
 995static inline struct page *
 996page_is_saveable(struct zone *zone, unsigned long pfn)
 997{
 998	return is_highmem(zone) ?
 999		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1000}
1001
1002static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1003{
1004	struct page *s_page, *d_page;
1005	void *src, *dst;
1006
1007	s_page = pfn_to_page(src_pfn);
1008	d_page = pfn_to_page(dst_pfn);
1009	if (PageHighMem(s_page)) {
1010		src = kmap_atomic(s_page);
1011		dst = kmap_atomic(d_page);
1012		do_copy_page(dst, src);
1013		kunmap_atomic(dst);
1014		kunmap_atomic(src);
1015	} else {
1016		if (PageHighMem(d_page)) {
1017			/* Page pointed to by src may contain some kernel
 
1018			 * data modified by kmap_atomic()
1019			 */
1020			safe_copy_page(buffer, s_page);
1021			dst = kmap_atomic(d_page);
1022			copy_page(dst, buffer);
1023			kunmap_atomic(dst);
1024		} else {
1025			safe_copy_page(page_address(d_page), s_page);
1026		}
1027	}
1028}
1029#else
1030#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1031
1032static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1033{
1034	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1035				pfn_to_page(src_pfn));
1036}
1037#endif /* CONFIG_HIGHMEM */
1038
1039static void
1040copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1041{
1042	struct zone *zone;
1043	unsigned long pfn;
1044
1045	for_each_populated_zone(zone) {
1046		unsigned long max_zone_pfn;
1047
1048		mark_free_pages(zone);
1049		max_zone_pfn = zone_end_pfn(zone);
1050		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1051			if (page_is_saveable(zone, pfn))
1052				memory_bm_set_bit(orig_bm, pfn);
1053	}
1054	memory_bm_position_reset(orig_bm);
1055	memory_bm_position_reset(copy_bm);
1056	for(;;) {
1057		pfn = memory_bm_next_pfn(orig_bm);
1058		if (unlikely(pfn == BM_END_OF_MAP))
1059			break;
1060		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1061	}
1062}
1063
1064/* Total number of image pages */
1065static unsigned int nr_copy_pages;
1066/* Number of pages needed for saving the original pfns of the image pages */
1067static unsigned int nr_meta_pages;
1068/*
1069 * Numbers of normal and highmem page frames allocated for hibernation image
1070 * before suspending devices.
1071 */
1072unsigned int alloc_normal, alloc_highmem;
1073/*
1074 * Memory bitmap used for marking saveable pages (during hibernation) or
1075 * hibernation image pages (during restore)
1076 */
1077static struct memory_bitmap orig_bm;
1078/*
1079 * Memory bitmap used during hibernation for marking allocated page frames that
1080 * will contain copies of saveable pages.  During restore it is initially used
1081 * for marking hibernation image pages, but then the set bits from it are
1082 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1083 * used for marking "safe" highmem pages, but it has to be reinitialized for
1084 * this purpose.
1085 */
1086static struct memory_bitmap copy_bm;
1087
1088/**
1089 *	swsusp_free - free pages allocated for the suspend.
1090 *
1091 *	Suspend pages are alocated before the atomic copy is made, so we
1092 *	need to release them after the resume.
1093 */
1094
1095void swsusp_free(void)
1096{
1097	struct zone *zone;
1098	unsigned long pfn, max_zone_pfn;
 
 
 
 
 
1099
1100	for_each_populated_zone(zone) {
1101		max_zone_pfn = zone_end_pfn(zone);
1102		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1103			if (pfn_valid(pfn)) {
1104				struct page *page = pfn_to_page(pfn);
1105
1106				if (swsusp_page_is_forbidden(page) &&
1107				    swsusp_page_is_free(page)) {
1108					swsusp_unset_page_forbidden(page);
1109					swsusp_unset_page_free(page);
1110					__free_page(page);
1111				}
1112			}
 
 
 
 
 
 
 
 
 
 
 
 
1113	}
 
 
1114	nr_copy_pages = 0;
1115	nr_meta_pages = 0;
1116	restore_pblist = NULL;
1117	buffer = NULL;
1118	alloc_normal = 0;
1119	alloc_highmem = 0;
 
1120}
1121
1122/* Helper functions used for the shrinking of memory. */
1123
1124#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1125
1126/**
1127 * preallocate_image_pages - Allocate a number of pages for hibernation image
1128 * @nr_pages: Number of page frames to allocate.
1129 * @mask: GFP flags to use for the allocation.
1130 *
1131 * Return value: Number of page frames actually allocated
1132 */
1133static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1134{
1135	unsigned long nr_alloc = 0;
1136
1137	while (nr_pages > 0) {
1138		struct page *page;
1139
1140		page = alloc_image_page(mask);
1141		if (!page)
1142			break;
1143		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1144		if (PageHighMem(page))
1145			alloc_highmem++;
1146		else
1147			alloc_normal++;
1148		nr_pages--;
1149		nr_alloc++;
1150	}
1151
1152	return nr_alloc;
1153}
1154
1155static unsigned long preallocate_image_memory(unsigned long nr_pages,
1156					      unsigned long avail_normal)
1157{
1158	unsigned long alloc;
1159
1160	if (avail_normal <= alloc_normal)
1161		return 0;
1162
1163	alloc = avail_normal - alloc_normal;
1164	if (nr_pages < alloc)
1165		alloc = nr_pages;
1166
1167	return preallocate_image_pages(alloc, GFP_IMAGE);
1168}
1169
1170#ifdef CONFIG_HIGHMEM
1171static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1172{
1173	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1174}
1175
1176/**
1177 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1178 */
1179static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1180{
1181	x *= multiplier;
1182	do_div(x, base);
1183	return (unsigned long)x;
1184}
1185
1186static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187						unsigned long highmem,
1188						unsigned long total)
1189{
1190	unsigned long alloc = __fraction(nr_pages, highmem, total);
1191
1192	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1193}
1194#else /* CONFIG_HIGHMEM */
1195static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1196{
1197	return 0;
1198}
1199
1200static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1201						unsigned long highmem,
1202						unsigned long total)
1203{
1204	return 0;
1205}
1206#endif /* CONFIG_HIGHMEM */
1207
1208/**
1209 * free_unnecessary_pages - Release preallocated pages not needed for the image
1210 */
1211static void free_unnecessary_pages(void)
1212{
1213	unsigned long save, to_free_normal, to_free_highmem;
1214
1215	save = count_data_pages();
1216	if (alloc_normal >= save) {
1217		to_free_normal = alloc_normal - save;
1218		save = 0;
1219	} else {
1220		to_free_normal = 0;
1221		save -= alloc_normal;
1222	}
1223	save += count_highmem_pages();
1224	if (alloc_highmem >= save) {
1225		to_free_highmem = alloc_highmem - save;
1226	} else {
1227		to_free_highmem = 0;
1228		save -= alloc_highmem;
1229		if (to_free_normal > save)
1230			to_free_normal -= save;
1231		else
1232			to_free_normal = 0;
1233	}
 
1234
1235	memory_bm_position_reset(&copy_bm);
1236
1237	while (to_free_normal > 0 || to_free_highmem > 0) {
1238		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1239		struct page *page = pfn_to_page(pfn);
1240
1241		if (PageHighMem(page)) {
1242			if (!to_free_highmem)
1243				continue;
1244			to_free_highmem--;
1245			alloc_highmem--;
1246		} else {
1247			if (!to_free_normal)
1248				continue;
1249			to_free_normal--;
1250			alloc_normal--;
1251		}
1252		memory_bm_clear_bit(&copy_bm, pfn);
1253		swsusp_unset_page_forbidden(page);
1254		swsusp_unset_page_free(page);
1255		__free_page(page);
1256	}
 
 
1257}
1258
1259/**
1260 * minimum_image_size - Estimate the minimum acceptable size of an image
1261 * @saveable: Number of saveable pages in the system.
1262 *
1263 * We want to avoid attempting to free too much memory too hard, so estimate the
1264 * minimum acceptable size of a hibernation image to use as the lower limit for
1265 * preallocating memory.
1266 *
1267 * We assume that the minimum image size should be proportional to
1268 *
1269 * [number of saveable pages] - [number of pages that can be freed in theory]
1270 *
1271 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1272 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1273 * minus mapped file pages.
1274 */
1275static unsigned long minimum_image_size(unsigned long saveable)
1276{
1277	unsigned long size;
1278
1279	size = global_page_state(NR_SLAB_RECLAIMABLE)
1280		+ global_page_state(NR_ACTIVE_ANON)
1281		+ global_page_state(NR_INACTIVE_ANON)
1282		+ global_page_state(NR_ACTIVE_FILE)
1283		+ global_page_state(NR_INACTIVE_FILE)
1284		- global_page_state(NR_FILE_MAPPED);
1285
1286	return saveable <= size ? 0 : saveable - size;
1287}
1288
1289/**
1290 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1291 *
1292 * To create a hibernation image it is necessary to make a copy of every page
1293 * frame in use.  We also need a number of page frames to be free during
1294 * hibernation for allocations made while saving the image and for device
1295 * drivers, in case they need to allocate memory from their hibernation
1296 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1297 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1298 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1299 * total number of available page frames and allocate at least
1300 *
1301 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1302 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1303 *
1304 * of them, which corresponds to the maximum size of a hibernation image.
1305 *
1306 * If image_size is set below the number following from the above formula,
1307 * the preallocation of memory is continued until the total number of saveable
1308 * pages in the system is below the requested image size or the minimum
1309 * acceptable image size returned by minimum_image_size(), whichever is greater.
1310 */
1311int hibernate_preallocate_memory(void)
1312{
1313	struct zone *zone;
1314	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1315	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1316	struct timeval start, stop;
1317	int error;
1318
1319	printk(KERN_INFO "PM: Preallocating image memory... ");
1320	do_gettimeofday(&start);
1321
1322	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1323	if (error)
 
1324		goto err_out;
 
1325
1326	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1327	if (error)
 
1328		goto err_out;
 
1329
1330	alloc_normal = 0;
1331	alloc_highmem = 0;
1332
1333	/* Count the number of saveable data pages. */
1334	save_highmem = count_highmem_pages();
1335	saveable = count_data_pages();
1336
1337	/*
1338	 * Compute the total number of page frames we can use (count) and the
1339	 * number of pages needed for image metadata (size).
1340	 */
1341	count = saveable;
1342	saveable += save_highmem;
1343	highmem = save_highmem;
1344	size = 0;
1345	for_each_populated_zone(zone) {
1346		size += snapshot_additional_pages(zone);
1347		if (is_highmem(zone))
1348			highmem += zone_page_state(zone, NR_FREE_PAGES);
1349		else
1350			count += zone_page_state(zone, NR_FREE_PAGES);
1351	}
1352	avail_normal = count;
1353	count += highmem;
1354	count -= totalreserve_pages;
1355
1356	/* Add number of pages required for page keys (s390 only). */
1357	size += page_key_additional_pages(saveable);
1358
1359	/* Compute the maximum number of saveable pages to leave in memory. */
1360	max_size = (count - (size + PAGES_FOR_IO)) / 2
1361			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1362	/* Compute the desired number of image pages specified by image_size. */
1363	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1364	if (size > max_size)
1365		size = max_size;
1366	/*
1367	 * If the desired number of image pages is at least as large as the
1368	 * current number of saveable pages in memory, allocate page frames for
1369	 * the image and we're done.
1370	 */
1371	if (size >= saveable) {
1372		pages = preallocate_image_highmem(save_highmem);
1373		pages += preallocate_image_memory(saveable - pages, avail_normal);
1374		goto out;
1375	}
1376
1377	/* Estimate the minimum size of the image. */
1378	pages = minimum_image_size(saveable);
1379	/*
1380	 * To avoid excessive pressure on the normal zone, leave room in it to
1381	 * accommodate an image of the minimum size (unless it's already too
1382	 * small, in which case don't preallocate pages from it at all).
1383	 */
1384	if (avail_normal > pages)
1385		avail_normal -= pages;
1386	else
1387		avail_normal = 0;
1388	if (size < pages)
1389		size = min_t(unsigned long, pages, max_size);
1390
1391	/*
1392	 * Let the memory management subsystem know that we're going to need a
1393	 * large number of page frames to allocate and make it free some memory.
1394	 * NOTE: If this is not done, performance will be hurt badly in some
1395	 * test cases.
1396	 */
1397	shrink_all_memory(saveable - size);
1398
1399	/*
1400	 * The number of saveable pages in memory was too high, so apply some
1401	 * pressure to decrease it.  First, make room for the largest possible
1402	 * image and fail if that doesn't work.  Next, try to decrease the size
1403	 * of the image as much as indicated by 'size' using allocations from
1404	 * highmem and non-highmem zones separately.
1405	 */
1406	pages_highmem = preallocate_image_highmem(highmem / 2);
1407	alloc = count - max_size;
1408	if (alloc > pages_highmem)
1409		alloc -= pages_highmem;
1410	else
1411		alloc = 0;
1412	pages = preallocate_image_memory(alloc, avail_normal);
1413	if (pages < alloc) {
1414		/* We have exhausted non-highmem pages, try highmem. */
1415		alloc -= pages;
1416		pages += pages_highmem;
1417		pages_highmem = preallocate_image_highmem(alloc);
1418		if (pages_highmem < alloc)
 
 
1419			goto err_out;
 
1420		pages += pages_highmem;
1421		/*
1422		 * size is the desired number of saveable pages to leave in
1423		 * memory, so try to preallocate (all memory - size) pages.
1424		 */
1425		alloc = (count - pages) - size;
1426		pages += preallocate_image_highmem(alloc);
1427	} else {
1428		/*
1429		 * There are approximately max_size saveable pages at this point
1430		 * and we want to reduce this number down to size.
1431		 */
1432		alloc = max_size - size;
1433		size = preallocate_highmem_fraction(alloc, highmem, count);
1434		pages_highmem += size;
1435		alloc -= size;
1436		size = preallocate_image_memory(alloc, avail_normal);
1437		pages_highmem += preallocate_image_highmem(alloc - size);
1438		pages += pages_highmem + size;
1439	}
1440
1441	/*
1442	 * We only need as many page frames for the image as there are saveable
1443	 * pages in memory, but we have allocated more.  Release the excessive
1444	 * ones now.
1445	 */
1446	free_unnecessary_pages();
1447
1448 out:
1449	do_gettimeofday(&stop);
1450	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1451	swsusp_show_speed(&start, &stop, pages, "Allocated");
1452
1453	return 0;
1454
1455 err_out:
1456	printk(KERN_CONT "\n");
1457	swsusp_free();
1458	return -ENOMEM;
1459}
1460
1461#ifdef CONFIG_HIGHMEM
1462/**
1463  *	count_pages_for_highmem - compute the number of non-highmem pages
1464  *	that will be necessary for creating copies of highmem pages.
1465  */
1466
 
1467static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1468{
1469	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1470
1471	if (free_highmem >= nr_highmem)
1472		nr_highmem = 0;
1473	else
1474		nr_highmem -= free_highmem;
1475
1476	return nr_highmem;
1477}
1478#else
1479static unsigned int
1480count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1481#endif /* CONFIG_HIGHMEM */
1482
1483/**
1484 *	enough_free_mem - Make sure we have enough free memory for the
1485 *	snapshot image.
1486 */
1487
1488static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1489{
1490	struct zone *zone;
1491	unsigned int free = alloc_normal;
1492
1493	for_each_populated_zone(zone)
1494		if (!is_highmem(zone))
1495			free += zone_page_state(zone, NR_FREE_PAGES);
1496
1497	nr_pages += count_pages_for_highmem(nr_highmem);
1498	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1499		nr_pages, PAGES_FOR_IO, free);
1500
1501	return free > nr_pages + PAGES_FOR_IO;
1502}
1503
1504#ifdef CONFIG_HIGHMEM
1505/**
1506 *	get_highmem_buffer - if there are some highmem pages in the suspend
1507 *	image, we may need the buffer to copy them and/or load their data.
 
 
1508 */
1509
1510static inline int get_highmem_buffer(int safe_needed)
1511{
1512	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1513	return buffer ? 0 : -ENOMEM;
1514}
1515
1516/**
1517 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1518 *	Try to allocate as many pages as needed, but if the number of free
1519 *	highmem pages is lesser than that, allocate them all.
 
1520 */
1521
1522static inline unsigned int
1523alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1524{
1525	unsigned int to_alloc = count_free_highmem_pages();
1526
1527	if (to_alloc > nr_highmem)
1528		to_alloc = nr_highmem;
1529
1530	nr_highmem -= to_alloc;
1531	while (to_alloc-- > 0) {
1532		struct page *page;
1533
1534		page = alloc_image_page(__GFP_HIGHMEM);
1535		memory_bm_set_bit(bm, page_to_pfn(page));
1536	}
1537	return nr_highmem;
1538}
1539#else
1540static inline int get_highmem_buffer(int safe_needed) { return 0; }
1541
1542static inline unsigned int
1543alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1544#endif /* CONFIG_HIGHMEM */
1545
1546/**
1547 *	swsusp_alloc - allocate memory for the suspend image
1548 *
1549 *	We first try to allocate as many highmem pages as there are
1550 *	saveable highmem pages in the system.  If that fails, we allocate
1551 *	non-highmem pages for the copies of the remaining highmem ones.
1552 *
1553 *	In this approach it is likely that the copies of highmem pages will
1554 *	also be located in the high memory, because of the way in which
1555 *	copy_data_pages() works.
1556 */
1557
1558static int
1559swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1560		unsigned int nr_pages, unsigned int nr_highmem)
1561{
1562	if (nr_highmem > 0) {
1563		if (get_highmem_buffer(PG_ANY))
1564			goto err_out;
1565		if (nr_highmem > alloc_highmem) {
1566			nr_highmem -= alloc_highmem;
1567			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1568		}
1569	}
1570	if (nr_pages > alloc_normal) {
1571		nr_pages -= alloc_normal;
1572		while (nr_pages-- > 0) {
1573			struct page *page;
1574
1575			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1576			if (!page)
1577				goto err_out;
1578			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1579		}
1580	}
1581
1582	return 0;
1583
1584 err_out:
1585	swsusp_free();
1586	return -ENOMEM;
1587}
1588
1589asmlinkage __visible int swsusp_save(void)
1590{
1591	unsigned int nr_pages, nr_highmem;
1592
1593	printk(KERN_INFO "PM: Creating hibernation image:\n");
1594
1595	drain_local_pages(NULL);
1596	nr_pages = count_data_pages();
1597	nr_highmem = count_highmem_pages();
1598	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1599
1600	if (!enough_free_mem(nr_pages, nr_highmem)) {
1601		printk(KERN_ERR "PM: Not enough free memory\n");
1602		return -ENOMEM;
1603	}
1604
1605	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1606		printk(KERN_ERR "PM: Memory allocation failed\n");
1607		return -ENOMEM;
1608	}
1609
1610	/* During allocating of suspend pagedir, new cold pages may appear.
 
1611	 * Kill them.
1612	 */
1613	drain_local_pages(NULL);
1614	copy_data_pages(&copy_bm, &orig_bm);
1615
1616	/*
1617	 * End of critical section. From now on, we can write to memory,
1618	 * but we should not touch disk. This specially means we must _not_
1619	 * touch swap space! Except we must write out our image of course.
1620	 */
1621
1622	nr_pages += nr_highmem;
1623	nr_copy_pages = nr_pages;
1624	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1625
1626	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1627		nr_pages);
1628
1629	return 0;
1630}
1631
1632#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1633static int init_header_complete(struct swsusp_info *info)
1634{
1635	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1636	info->version_code = LINUX_VERSION_CODE;
1637	return 0;
1638}
1639
1640static char *check_image_kernel(struct swsusp_info *info)
1641{
1642	if (info->version_code != LINUX_VERSION_CODE)
1643		return "kernel version";
1644	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1645		return "system type";
1646	if (strcmp(info->uts.release,init_utsname()->release))
1647		return "kernel release";
1648	if (strcmp(info->uts.version,init_utsname()->version))
1649		return "version";
1650	if (strcmp(info->uts.machine,init_utsname()->machine))
1651		return "machine";
1652	return NULL;
1653}
1654#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1655
1656unsigned long snapshot_get_image_size(void)
1657{
1658	return nr_copy_pages + nr_meta_pages + 1;
1659}
1660
1661static int init_header(struct swsusp_info *info)
1662{
1663	memset(info, 0, sizeof(struct swsusp_info));
1664	info->num_physpages = get_num_physpages();
1665	info->image_pages = nr_copy_pages;
1666	info->pages = snapshot_get_image_size();
1667	info->size = info->pages;
1668	info->size <<= PAGE_SHIFT;
1669	return init_header_complete(info);
1670}
1671
1672/**
1673 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1674 *	are stored in the array @buf[] (1 page at a time)
 
 
 
 
1675 */
1676
1677static inline void
1678pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1679{
1680	int j;
1681
1682	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1683		buf[j] = memory_bm_next_pfn(bm);
1684		if (unlikely(buf[j] == BM_END_OF_MAP))
1685			break;
1686		/* Save page key for data page (s390 only). */
1687		page_key_read(buf + j);
1688	}
1689}
1690
1691/**
1692 *	snapshot_read_next - used for reading the system memory snapshot.
 
1693 *
1694 *	On the first call to it @handle should point to a zeroed
1695 *	snapshot_handle structure.  The structure gets updated and a pointer
1696 *	to it should be passed to this function every next time.
1697 *
1698 *	On success the function returns a positive number.  Then, the caller
1699 *	is allowed to read up to the returned number of bytes from the memory
1700 *	location computed by the data_of() macro.
1701 *
1702 *	The function returns 0 to indicate the end of data stream condition,
1703 *	and a negative number is returned on error.  In such cases the
1704 *	structure pointed to by @handle is not updated and should not be used
1705 *	any more.
1706 */
1707
1708int snapshot_read_next(struct snapshot_handle *handle)
1709{
1710	if (handle->cur > nr_meta_pages + nr_copy_pages)
1711		return 0;
1712
1713	if (!buffer) {
1714		/* This makes the buffer be freed by swsusp_free() */
1715		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1716		if (!buffer)
1717			return -ENOMEM;
1718	}
1719	if (!handle->cur) {
1720		int error;
1721
1722		error = init_header((struct swsusp_info *)buffer);
1723		if (error)
1724			return error;
1725		handle->buffer = buffer;
1726		memory_bm_position_reset(&orig_bm);
1727		memory_bm_position_reset(&copy_bm);
1728	} else if (handle->cur <= nr_meta_pages) {
1729		clear_page(buffer);
1730		pack_pfns(buffer, &orig_bm);
1731	} else {
1732		struct page *page;
1733
1734		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1735		if (PageHighMem(page)) {
1736			/* Highmem pages are copied to the buffer,
 
1737			 * because we can't return with a kmapped
1738			 * highmem page (we may not be called again).
1739			 */
1740			void *kaddr;
1741
1742			kaddr = kmap_atomic(page);
1743			copy_page(buffer, kaddr);
1744			kunmap_atomic(kaddr);
1745			handle->buffer = buffer;
1746		} else {
1747			handle->buffer = page_address(page);
1748		}
1749	}
1750	handle->cur++;
1751	return PAGE_SIZE;
1752}
1753
1754/**
1755 *	mark_unsafe_pages - mark the pages that cannot be used for storing
1756 *	the image during resume, because they conflict with the pages that
1757 *	had been used before suspend
1758 */
1759
1760static int mark_unsafe_pages(struct memory_bitmap *bm)
1761{
1762	struct zone *zone;
1763	unsigned long pfn, max_zone_pfn;
1764
1765	/* Clear page flags */
1766	for_each_populated_zone(zone) {
1767		max_zone_pfn = zone_end_pfn(zone);
1768		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1769			if (pfn_valid(pfn))
1770				swsusp_unset_page_free(pfn_to_page(pfn));
1771	}
1772
1773	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1774	memory_bm_position_reset(bm);
1775	do {
1776		pfn = memory_bm_next_pfn(bm);
1777		if (likely(pfn != BM_END_OF_MAP)) {
1778			if (likely(pfn_valid(pfn)))
1779				swsusp_set_page_free(pfn_to_page(pfn));
1780			else
1781				return -EFAULT;
1782		}
1783	} while (pfn != BM_END_OF_MAP);
1784
1785	allocated_unsafe_pages = 0;
1786
1787	return 0;
1788}
1789
1790static void
1791duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
 
 
 
 
 
1792{
1793	unsigned long pfn;
1794
1795	memory_bm_position_reset(src);
1796	pfn = memory_bm_next_pfn(src);
 
1797	while (pfn != BM_END_OF_MAP) {
1798		memory_bm_set_bit(dst, pfn);
1799		pfn = memory_bm_next_pfn(src);
1800	}
 
 
 
 
 
1801}
1802
1803static int check_header(struct swsusp_info *info)
1804{
1805	char *reason;
1806
1807	reason = check_image_kernel(info);
1808	if (!reason && info->num_physpages != get_num_physpages())
1809		reason = "memory size";
1810	if (reason) {
1811		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1812		return -EPERM;
1813	}
1814	return 0;
1815}
1816
1817/**
1818 *	load header - check the image header and copy data from it
1819 */
1820
1821static int
1822load_header(struct swsusp_info *info)
1823{
1824	int error;
1825
1826	restore_pblist = NULL;
1827	error = check_header(info);
1828	if (!error) {
1829		nr_copy_pages = info->image_pages;
1830		nr_meta_pages = info->pages - info->image_pages - 1;
1831	}
1832	return error;
1833}
1834
1835/**
1836 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1837 *	the corresponding bit in the memory bitmap @bm
 
 
 
 
1838 */
1839static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1840{
1841	int j;
1842
1843	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1844		if (unlikely(buf[j] == BM_END_OF_MAP))
1845			break;
1846
1847		/* Extract and buffer page key for data page (s390 only). */
1848		page_key_memorize(buf + j);
1849
1850		if (memory_bm_pfn_present(bm, buf[j]))
1851			memory_bm_set_bit(bm, buf[j]);
1852		else
1853			return -EFAULT;
1854	}
1855
1856	return 0;
1857}
1858
1859/* List of "safe" pages that may be used to store data loaded from the suspend
1860 * image
1861 */
1862static struct linked_page *safe_pages_list;
1863
1864#ifdef CONFIG_HIGHMEM
1865/* struct highmem_pbe is used for creating the list of highmem pages that
 
1866 * should be restored atomically during the resume from disk, because the page
1867 * frames they have occupied before the suspend are in use.
1868 */
1869struct highmem_pbe {
1870	struct page *copy_page;	/* data is here now */
1871	struct page *orig_page;	/* data was here before the suspend */
1872	struct highmem_pbe *next;
1873};
1874
1875/* List of highmem PBEs needed for restoring the highmem pages that were
 
1876 * allocated before the suspend and included in the suspend image, but have
1877 * also been allocated by the "resume" kernel, so their contents cannot be
1878 * written directly to their "original" page frames.
1879 */
1880static struct highmem_pbe *highmem_pblist;
1881
1882/**
1883 *	count_highmem_image_pages - compute the number of highmem pages in the
1884 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1885 *	image pages are assumed to be set.
 
1886 */
1887
1888static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1889{
1890	unsigned long pfn;
1891	unsigned int cnt = 0;
1892
1893	memory_bm_position_reset(bm);
1894	pfn = memory_bm_next_pfn(bm);
1895	while (pfn != BM_END_OF_MAP) {
1896		if (PageHighMem(pfn_to_page(pfn)))
1897			cnt++;
1898
1899		pfn = memory_bm_next_pfn(bm);
1900	}
1901	return cnt;
1902}
1903
1904/**
1905 *	prepare_highmem_image - try to allocate as many highmem pages as
1906 *	there are highmem image pages (@nr_highmem_p points to the variable
1907 *	containing the number of highmem image pages).  The pages that are
1908 *	"safe" (ie. will not be overwritten when the suspend image is
1909 *	restored) have the corresponding bits set in @bm (it must be
1910 *	unitialized).
1911 *
1912 *	NOTE: This function should not be called if there are no highmem
1913 *	image pages.
1914 */
1915
1916static unsigned int safe_highmem_pages;
1917
1918static struct memory_bitmap *safe_highmem_bm;
1919
1920static int
1921prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
1922{
1923	unsigned int to_alloc;
1924
1925	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1926		return -ENOMEM;
1927
1928	if (get_highmem_buffer(PG_SAFE))
1929		return -ENOMEM;
1930
1931	to_alloc = count_free_highmem_pages();
1932	if (to_alloc > *nr_highmem_p)
1933		to_alloc = *nr_highmem_p;
1934	else
1935		*nr_highmem_p = to_alloc;
1936
1937	safe_highmem_pages = 0;
1938	while (to_alloc-- > 0) {
1939		struct page *page;
1940
1941		page = alloc_page(__GFP_HIGHMEM);
1942		if (!swsusp_page_is_free(page)) {
1943			/* The page is "safe", set its bit the bitmap */
1944			memory_bm_set_bit(bm, page_to_pfn(page));
1945			safe_highmem_pages++;
1946		}
1947		/* Mark the page as allocated */
1948		swsusp_set_page_forbidden(page);
1949		swsusp_set_page_free(page);
1950	}
1951	memory_bm_position_reset(bm);
1952	safe_highmem_bm = bm;
1953	return 0;
1954}
1955
 
 
1956/**
1957 *	get_highmem_page_buffer - for given highmem image page find the buffer
1958 *	that suspend_write_next() should set for its caller to write to.
 
 
1959 *
1960 *	If the page is to be saved to its "original" page frame or a copy of
1961 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1962 *	the copy of the page is to be made in normal memory, so the address of
1963 *	the copy is returned.
1964 *
1965 *	If @buffer is returned, the caller of suspend_write_next() will write
1966 *	the page's contents to @buffer, so they will have to be copied to the
1967 *	right location on the next call to suspend_write_next() and it is done
1968 *	with the help of copy_last_highmem_page().  For this purpose, if
1969 *	@buffer is returned, @last_highmem page is set to the page to which
1970 *	the data will have to be copied from @buffer.
1971 */
1972
1973static struct page *last_highmem_page;
1974
1975static void *
1976get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1977{
1978	struct highmem_pbe *pbe;
1979	void *kaddr;
1980
1981	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1982		/* We have allocated the "original" page frame and we can
 
1983		 * use it directly to store the loaded page.
1984		 */
1985		last_highmem_page = page;
1986		return buffer;
1987	}
1988	/* The "original" page frame has not been allocated and we have to
 
1989	 * use a "safe" page frame to store the loaded page.
1990	 */
1991	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1992	if (!pbe) {
1993		swsusp_free();
1994		return ERR_PTR(-ENOMEM);
1995	}
1996	pbe->orig_page = page;
1997	if (safe_highmem_pages > 0) {
1998		struct page *tmp;
1999
2000		/* Copy of the page will be stored in high memory */
2001		kaddr = buffer;
2002		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2003		safe_highmem_pages--;
2004		last_highmem_page = tmp;
2005		pbe->copy_page = tmp;
2006	} else {
2007		/* Copy of the page will be stored in normal memory */
2008		kaddr = safe_pages_list;
2009		safe_pages_list = safe_pages_list->next;
2010		pbe->copy_page = virt_to_page(kaddr);
2011	}
2012	pbe->next = highmem_pblist;
2013	highmem_pblist = pbe;
2014	return kaddr;
2015}
2016
2017/**
2018 *	copy_last_highmem_page - copy the contents of a highmem image from
2019 *	@buffer, where the caller of snapshot_write_next() has place them,
2020 *	to the right location represented by @last_highmem_page .
 
 
2021 */
2022
2023static void copy_last_highmem_page(void)
2024{
2025	if (last_highmem_page) {
2026		void *dst;
2027
2028		dst = kmap_atomic(last_highmem_page);
2029		copy_page(dst, buffer);
2030		kunmap_atomic(dst);
2031		last_highmem_page = NULL;
2032	}
2033}
2034
2035static inline int last_highmem_page_copied(void)
2036{
2037	return !last_highmem_page;
2038}
2039
2040static inline void free_highmem_data(void)
2041{
2042	if (safe_highmem_bm)
2043		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2044
2045	if (buffer)
2046		free_image_page(buffer, PG_UNSAFE_CLEAR);
2047}
2048#else
2049static inline int get_safe_write_buffer(void) { return 0; }
2050
2051static unsigned int
2052count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2053
2054static inline int
2055prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2056{
2057	return 0;
2058}
2059
2060static inline void *
2061get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2062{
2063	return ERR_PTR(-EINVAL);
2064}
2065
2066static inline void copy_last_highmem_page(void) {}
2067static inline int last_highmem_page_copied(void) { return 1; }
2068static inline void free_highmem_data(void) {}
2069#endif /* CONFIG_HIGHMEM */
2070
 
 
2071/**
2072 *	prepare_image - use the memory bitmap @bm to mark the pages that will
2073 *	be overwritten in the process of restoring the system memory state
2074 *	from the suspend image ("unsafe" pages) and allocate memory for the
2075 *	image.
2076 *
2077 *	The idea is to allocate a new memory bitmap first and then allocate
2078 *	as many pages as needed for the image data, but not to assign these
2079 *	pages to specific tasks initially.  Instead, we just mark them as
2080 *	allocated and create a lists of "safe" pages that will be used
2081 *	later.  On systems with high memory a list of "safe" highmem pages is
2082 *	also created.
 
 
2083 */
2084
2085#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2086
2087static int
2088prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2089{
2090	unsigned int nr_pages, nr_highmem;
2091	struct linked_page *sp_list, *lp;
2092	int error;
2093
2094	/* If there is no highmem, the buffer will not be necessary */
2095	free_image_page(buffer, PG_UNSAFE_CLEAR);
2096	buffer = NULL;
2097
2098	nr_highmem = count_highmem_image_pages(bm);
2099	error = mark_unsafe_pages(bm);
2100	if (error)
2101		goto Free;
2102
2103	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2104	if (error)
2105		goto Free;
2106
2107	duplicate_memory_bitmap(new_bm, bm);
2108	memory_bm_free(bm, PG_UNSAFE_KEEP);
2109	if (nr_highmem > 0) {
2110		error = prepare_highmem_image(bm, &nr_highmem);
2111		if (error)
2112			goto Free;
2113	}
2114	/* Reserve some safe pages for potential later use.
 
2115	 *
2116	 * NOTE: This way we make sure there will be enough safe pages for the
2117	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2118	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
 
 
2119	 */
2120	sp_list = NULL;
2121	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2122	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2123	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2124	while (nr_pages > 0) {
2125		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2126		if (!lp) {
2127			error = -ENOMEM;
2128			goto Free;
2129		}
2130		lp->next = sp_list;
2131		sp_list = lp;
2132		nr_pages--;
2133	}
2134	/* Preallocate memory for the image */
2135	safe_pages_list = NULL;
2136	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2137	while (nr_pages > 0) {
2138		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2139		if (!lp) {
2140			error = -ENOMEM;
2141			goto Free;
2142		}
2143		if (!swsusp_page_is_free(virt_to_page(lp))) {
2144			/* The page is "safe", add it to the list */
2145			lp->next = safe_pages_list;
2146			safe_pages_list = lp;
2147		}
2148		/* Mark the page as allocated */
2149		swsusp_set_page_forbidden(virt_to_page(lp));
2150		swsusp_set_page_free(virt_to_page(lp));
2151		nr_pages--;
2152	}
2153	/* Free the reserved safe pages so that chain_alloc() can use them */
2154	while (sp_list) {
2155		lp = sp_list->next;
2156		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2157		sp_list = lp;
2158	}
2159	return 0;
2160
2161 Free:
2162	swsusp_free();
2163	return error;
2164}
2165
2166/**
2167 *	get_buffer - compute the address that snapshot_write_next() should
2168 *	set for its caller to write to.
 
 
2169 */
2170
2171static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2172{
2173	struct pbe *pbe;
2174	struct page *page;
2175	unsigned long pfn = memory_bm_next_pfn(bm);
2176
2177	if (pfn == BM_END_OF_MAP)
2178		return ERR_PTR(-EFAULT);
2179
2180	page = pfn_to_page(pfn);
2181	if (PageHighMem(page))
2182		return get_highmem_page_buffer(page, ca);
2183
2184	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2185		/* We have allocated the "original" page frame and we can
 
2186		 * use it directly to store the loaded page.
2187		 */
2188		return page_address(page);
2189
2190	/* The "original" page frame has not been allocated and we have to
 
2191	 * use a "safe" page frame to store the loaded page.
2192	 */
2193	pbe = chain_alloc(ca, sizeof(struct pbe));
2194	if (!pbe) {
2195		swsusp_free();
2196		return ERR_PTR(-ENOMEM);
2197	}
2198	pbe->orig_address = page_address(page);
2199	pbe->address = safe_pages_list;
2200	safe_pages_list = safe_pages_list->next;
2201	pbe->next = restore_pblist;
2202	restore_pblist = pbe;
2203	return pbe->address;
2204}
2205
2206/**
2207 *	snapshot_write_next - used for writing the system memory snapshot.
 
2208 *
2209 *	On the first call to it @handle should point to a zeroed
2210 *	snapshot_handle structure.  The structure gets updated and a pointer
2211 *	to it should be passed to this function every next time.
2212 *
2213 *	On success the function returns a positive number.  Then, the caller
2214 *	is allowed to write up to the returned number of bytes to the memory
2215 *	location computed by the data_of() macro.
2216 *
2217 *	The function returns 0 to indicate the "end of file" condition,
2218 *	and a negative number is returned on error.  In such cases the
2219 *	structure pointed to by @handle is not updated and should not be used
2220 *	any more.
2221 */
2222
2223int snapshot_write_next(struct snapshot_handle *handle)
2224{
2225	static struct chain_allocator ca;
2226	int error = 0;
2227
2228	/* Check if we have already loaded the entire image */
2229	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2230		return 0;
2231
2232	handle->sync_read = 1;
2233
2234	if (!handle->cur) {
2235		if (!buffer)
2236			/* This makes the buffer be freed by swsusp_free() */
2237			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2238
2239		if (!buffer)
2240			return -ENOMEM;
2241
2242		handle->buffer = buffer;
2243	} else if (handle->cur == 1) {
2244		error = load_header(buffer);
2245		if (error)
2246			return error;
2247
 
 
2248		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2249		if (error)
2250			return error;
2251
2252		/* Allocate buffer for page keys. */
2253		error = page_key_alloc(nr_copy_pages);
2254		if (error)
2255			return error;
2256
2257	} else if (handle->cur <= nr_meta_pages + 1) {
2258		error = unpack_orig_pfns(buffer, &copy_bm);
2259		if (error)
2260			return error;
2261
2262		if (handle->cur == nr_meta_pages + 1) {
2263			error = prepare_image(&orig_bm, &copy_bm);
2264			if (error)
2265				return error;
2266
2267			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2268			memory_bm_position_reset(&orig_bm);
2269			restore_pblist = NULL;
2270			handle->buffer = get_buffer(&orig_bm, &ca);
2271			handle->sync_read = 0;
2272			if (IS_ERR(handle->buffer))
2273				return PTR_ERR(handle->buffer);
2274		}
2275	} else {
2276		copy_last_highmem_page();
2277		/* Restore page key for data page (s390 only). */
2278		page_key_write(handle->buffer);
2279		handle->buffer = get_buffer(&orig_bm, &ca);
2280		if (IS_ERR(handle->buffer))
2281			return PTR_ERR(handle->buffer);
2282		if (handle->buffer != buffer)
2283			handle->sync_read = 0;
2284	}
2285	handle->cur++;
2286	return PAGE_SIZE;
2287}
2288
2289/**
2290 *	snapshot_write_finalize - must be called after the last call to
2291 *	snapshot_write_next() in case the last page in the image happens
2292 *	to be a highmem page and its contents should be stored in the
2293 *	highmem.  Additionally, it releases the memory that will not be
2294 *	used any more.
 
2295 */
2296
2297void snapshot_write_finalize(struct snapshot_handle *handle)
2298{
2299	copy_last_highmem_page();
2300	/* Restore page key for data page (s390 only). */
2301	page_key_write(handle->buffer);
2302	page_key_free();
2303	/* Free only if we have loaded the image entirely */
2304	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2305		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2306		free_highmem_data();
2307	}
2308}
2309
2310int snapshot_image_loaded(struct snapshot_handle *handle)
2311{
2312	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2313			handle->cur <= nr_meta_pages + nr_copy_pages);
2314}
2315
2316#ifdef CONFIG_HIGHMEM
2317/* Assumes that @buf is ready and points to a "safe" page */
2318static inline void
2319swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2320{
2321	void *kaddr1, *kaddr2;
2322
2323	kaddr1 = kmap_atomic(p1);
2324	kaddr2 = kmap_atomic(p2);
2325	copy_page(buf, kaddr1);
2326	copy_page(kaddr1, kaddr2);
2327	copy_page(kaddr2, buf);
2328	kunmap_atomic(kaddr2);
2329	kunmap_atomic(kaddr1);
2330}
2331
2332/**
2333 *	restore_highmem - for each highmem page that was allocated before
2334 *	the suspend and included in the suspend image, and also has been
2335 *	allocated by the "resume" kernel swap its current (ie. "before
2336 *	resume") contents with the previous (ie. "before suspend") one.
2337 *
2338 *	If the resume eventually fails, we can call this function once
2339 *	again and restore the "before resume" highmem state.
 
 
 
 
2340 */
2341
2342int restore_highmem(void)
2343{
2344	struct highmem_pbe *pbe = highmem_pblist;
2345	void *buf;
2346
2347	if (!pbe)
2348		return 0;
2349
2350	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2351	if (!buf)
2352		return -ENOMEM;
2353
2354	while (pbe) {
2355		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2356		pbe = pbe->next;
2357	}
2358	free_image_page(buf, PG_UNSAFE_CLEAR);
2359	return 0;
2360}
2361#endif /* CONFIG_HIGHMEM */