Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RTC subsystem, interface functions
   4 *
   5 * Copyright (C) 2005 Tower Technologies
   6 * Author: Alessandro Zummo <a.zummo@towertech.it>
   7 *
   8 * based on arch/arm/common/rtctime.c
   9 */
 
 
 
 
  10
  11#include <linux/rtc.h>
  12#include <linux/sched.h>
  13#include <linux/module.h>
  14#include <linux/log2.h>
  15#include <linux/workqueue.h>
  16
  17#define CREATE_TRACE_POINTS
  18#include <trace/events/rtc.h>
  19
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
  23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25	time64_t secs;
  26
  27	if (!rtc->offset_secs)
  28		return;
  29
  30	secs = rtc_tm_to_time64(tm);
  31
  32	/*
  33	 * Since the reading time values from RTC device are always in the RTC
  34	 * original valid range, but we need to skip the overlapped region
  35	 * between expanded range and original range, which is no need to add
  36	 * the offset.
  37	 */
  38	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  39	    (rtc->start_secs < rtc->range_min &&
  40	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  41		return;
  42
  43	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  44}
  45
  46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  47{
  48	time64_t secs;
  49
  50	if (!rtc->offset_secs)
  51		return;
  52
  53	secs = rtc_tm_to_time64(tm);
  54
  55	/*
  56	 * If the setting time values are in the valid range of RTC hardware
  57	 * device, then no need to subtract the offset when setting time to RTC
  58	 * device. Otherwise we need to subtract the offset to make the time
  59	 * values are valid for RTC hardware device.
  60	 */
  61	if (secs >= rtc->range_min && secs <= rtc->range_max)
  62		return;
  63
  64	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  65}
  66
  67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  68{
  69	if (rtc->range_min != rtc->range_max) {
  70		time64_t time = rtc_tm_to_time64(tm);
  71		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  72			rtc->range_min;
  73		timeu64_t range_max = rtc->set_start_time ?
  74			(rtc->start_secs + rtc->range_max - rtc->range_min) :
  75			rtc->range_max;
  76
  77		if (time < range_min || time > range_max)
  78			return -ERANGE;
  79	}
  80
  81	return 0;
  82}
  83
  84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  85{
  86	int err;
  87
  88	if (!rtc->ops) {
  89		err = -ENODEV;
  90	} else if (!rtc->ops->read_time) {
  91		err = -EINVAL;
  92	} else {
  93		memset(tm, 0, sizeof(struct rtc_time));
  94		err = rtc->ops->read_time(rtc->dev.parent, tm);
  95		if (err < 0) {
  96			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  97				err);
  98			return err;
  99		}
 100
 101		rtc_add_offset(rtc, tm);
 102
 103		err = rtc_valid_tm(tm);
 104		if (err < 0)
 105			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 106	}
 107	return err;
 108}
 109
 110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 111{
 112	int err;
 113
 114	err = mutex_lock_interruptible(&rtc->ops_lock);
 115	if (err)
 116		return err;
 117
 118	err = __rtc_read_time(rtc, tm);
 119	mutex_unlock(&rtc->ops_lock);
 120
 121	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 122	return err;
 123}
 124EXPORT_SYMBOL_GPL(rtc_read_time);
 125
 126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 127{
 128	int err, uie;
 129
 130	err = rtc_valid_tm(tm);
 131	if (err != 0)
 132		return err;
 133
 134	err = rtc_valid_range(rtc, tm);
 135	if (err)
 136		return err;
 137
 138	rtc_subtract_offset(rtc, tm);
 
 
 
 
 
 
 
 
 
 
 139
 140#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 141	uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
 142#else
 143	uie = rtc->uie_rtctimer.enabled;
 144#endif
 145	if (uie) {
 146		err = rtc_update_irq_enable(rtc, 0);
 147		if (err)
 148			return err;
 149	}
 
 150
 151	err = mutex_lock_interruptible(&rtc->ops_lock);
 152	if (err)
 153		return err;
 154
 155	if (!rtc->ops)
 156		err = -ENODEV;
 157	else if (rtc->ops->set_time)
 158		err = rtc->ops->set_time(rtc->dev.parent, tm);
 159	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160		err = -EINVAL;
 
 161
 162	pm_stay_awake(rtc->dev.parent);
 163	mutex_unlock(&rtc->ops_lock);
 164	/* A timer might have just expired */
 165	schedule_work(&rtc->irqwork);
 166
 167	if (uie) {
 168		err = rtc_update_irq_enable(rtc, 1);
 169		if (err)
 170			return err;
 171	}
 172
 173	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 174	return err;
 175}
 176EXPORT_SYMBOL_GPL(rtc_set_time);
 177
 178static int rtc_read_alarm_internal(struct rtc_device *rtc,
 179				   struct rtc_wkalrm *alarm)
 180{
 181	int err;
 182
 183	err = mutex_lock_interruptible(&rtc->ops_lock);
 184	if (err)
 185		return err;
 186
 187	if (!rtc->ops) {
 188		err = -ENODEV;
 189	} else if (!rtc->ops->read_alarm) {
 190		err = -EINVAL;
 191	} else {
 192		alarm->enabled = 0;
 193		alarm->pending = 0;
 194		alarm->time.tm_sec = -1;
 195		alarm->time.tm_min = -1;
 196		alarm->time.tm_hour = -1;
 197		alarm->time.tm_mday = -1;
 198		alarm->time.tm_mon = -1;
 199		alarm->time.tm_year = -1;
 200		alarm->time.tm_wday = -1;
 201		alarm->time.tm_yday = -1;
 202		alarm->time.tm_isdst = -1;
 203		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 204	}
 205
 206	mutex_unlock(&rtc->ops_lock);
 207
 208	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 209	return err;
 210}
 211
 212int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 213{
 214	int err;
 215	struct rtc_time before, now;
 216	int first_time = 1;
 217	time64_t t_now, t_alm;
 218	enum { none, day, month, year } missing = none;
 219	unsigned int days;
 220
 221	/* The lower level RTC driver may return -1 in some fields,
 222	 * creating invalid alarm->time values, for reasons like:
 223	 *
 224	 *   - The hardware may not be capable of filling them in;
 225	 *     many alarms match only on time-of-day fields, not
 226	 *     day/month/year calendar data.
 227	 *
 228	 *   - Some hardware uses illegal values as "wildcard" match
 229	 *     values, which non-Linux firmware (like a BIOS) may try
 230	 *     to set up as e.g. "alarm 15 minutes after each hour".
 231	 *     Linux uses only oneshot alarms.
 232	 *
 233	 * When we see that here, we deal with it by using values from
 234	 * a current RTC timestamp for any missing (-1) values.  The
 235	 * RTC driver prevents "periodic alarm" modes.
 236	 *
 237	 * But this can be racey, because some fields of the RTC timestamp
 238	 * may have wrapped in the interval since we read the RTC alarm,
 239	 * which would lead to us inserting inconsistent values in place
 240	 * of the -1 fields.
 241	 *
 242	 * Reading the alarm and timestamp in the reverse sequence
 243	 * would have the same race condition, and not solve the issue.
 244	 *
 245	 * So, we must first read the RTC timestamp,
 246	 * then read the RTC alarm value,
 247	 * and then read a second RTC timestamp.
 248	 *
 249	 * If any fields of the second timestamp have changed
 250	 * when compared with the first timestamp, then we know
 251	 * our timestamp may be inconsistent with that used by
 252	 * the low-level rtc_read_alarm_internal() function.
 253	 *
 254	 * So, when the two timestamps disagree, we just loop and do
 255	 * the process again to get a fully consistent set of values.
 256	 *
 257	 * This could all instead be done in the lower level driver,
 258	 * but since more than one lower level RTC implementation needs it,
 259	 * then it's probably best best to do it here instead of there..
 260	 */
 261
 262	/* Get the "before" timestamp */
 263	err = rtc_read_time(rtc, &before);
 264	if (err < 0)
 265		return err;
 266	do {
 267		if (!first_time)
 268			memcpy(&before, &now, sizeof(struct rtc_time));
 269		first_time = 0;
 270
 271		/* get the RTC alarm values, which may be incomplete */
 272		err = rtc_read_alarm_internal(rtc, alarm);
 273		if (err)
 274			return err;
 275
 276		/* full-function RTCs won't have such missing fields */
 277		if (rtc_valid_tm(&alarm->time) == 0) {
 278			rtc_add_offset(rtc, &alarm->time);
 279			return 0;
 280		}
 281
 282		/* get the "after" timestamp, to detect wrapped fields */
 283		err = rtc_read_time(rtc, &now);
 284		if (err < 0)
 285			return err;
 286
 287		/* note that tm_sec is a "don't care" value here: */
 288	} while (before.tm_min  != now.tm_min ||
 289		 before.tm_hour != now.tm_hour ||
 290		 before.tm_mon  != now.tm_mon ||
 291		 before.tm_year != now.tm_year);
 292
 293	/* Fill in the missing alarm fields using the timestamp; we
 294	 * know there's at least one since alarm->time is invalid.
 295	 */
 296	if (alarm->time.tm_sec == -1)
 297		alarm->time.tm_sec = now.tm_sec;
 298	if (alarm->time.tm_min == -1)
 299		alarm->time.tm_min = now.tm_min;
 300	if (alarm->time.tm_hour == -1)
 301		alarm->time.tm_hour = now.tm_hour;
 302
 303	/* For simplicity, only support date rollover for now */
 304	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 305		alarm->time.tm_mday = now.tm_mday;
 306		missing = day;
 307	}
 308	if ((unsigned int)alarm->time.tm_mon >= 12) {
 309		alarm->time.tm_mon = now.tm_mon;
 310		if (missing == none)
 311			missing = month;
 312	}
 313	if (alarm->time.tm_year == -1) {
 314		alarm->time.tm_year = now.tm_year;
 315		if (missing == none)
 316			missing = year;
 317	}
 318
 319	/* Can't proceed if alarm is still invalid after replacing
 320	 * missing fields.
 321	 */
 322	err = rtc_valid_tm(&alarm->time);
 323	if (err)
 324		goto done;
 325
 326	/* with luck, no rollover is needed */
 327	t_now = rtc_tm_to_time64(&now);
 328	t_alm = rtc_tm_to_time64(&alarm->time);
 329	if (t_now < t_alm)
 330		goto done;
 331
 332	switch (missing) {
 
 333	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 334	 * that will trigger at 5am will do so at 5am Tuesday, which
 335	 * could also be in the next month or year.  This is a common
 336	 * case, especially for PCs.
 337	 */
 338	case day:
 339		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 340		t_alm += 24 * 60 * 60;
 341		rtc_time64_to_tm(t_alm, &alarm->time);
 342		break;
 343
 344	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 345	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 346	 * may end up in the month after that!  Many newer PCs support
 347	 * this type of alarm.
 348	 */
 349	case month:
 350		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 351		do {
 352			if (alarm->time.tm_mon < 11) {
 353				alarm->time.tm_mon++;
 354			} else {
 355				alarm->time.tm_mon = 0;
 356				alarm->time.tm_year++;
 357			}
 358			days = rtc_month_days(alarm->time.tm_mon,
 359					      alarm->time.tm_year);
 360		} while (days < alarm->time.tm_mday);
 361		break;
 362
 363	/* Year rollover ... easy except for leap years! */
 364	case year:
 365		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 366		do {
 367			alarm->time.tm_year++;
 368		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
 369			 rtc_valid_tm(&alarm->time) != 0);
 370		break;
 371
 372	default:
 373		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 374	}
 375
 376	err = rtc_valid_tm(&alarm->time);
 377
 378done:
 379	if (err)
 380		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
 381			 &alarm->time);
 382
 383	return err;
 384}
 385
 386int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 387{
 388	int err;
 389
 390	err = mutex_lock_interruptible(&rtc->ops_lock);
 391	if (err)
 392		return err;
 393	if (!rtc->ops) {
 394		err = -ENODEV;
 395	} else if (!rtc->ops->read_alarm) {
 396		err = -EINVAL;
 397	} else {
 398		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 399		alarm->enabled = rtc->aie_timer.enabled;
 400		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 401	}
 402	mutex_unlock(&rtc->ops_lock);
 403
 404	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 405	return err;
 406}
 407EXPORT_SYMBOL_GPL(rtc_read_alarm);
 408
 409static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 410{
 411	struct rtc_time tm;
 412	time64_t now, scheduled;
 413	int err;
 414
 415	err = rtc_valid_tm(&alarm->time);
 416	if (err)
 417		return err;
 418
 419	scheduled = rtc_tm_to_time64(&alarm->time);
 420
 421	/* Make sure we're not setting alarms in the past */
 422	err = __rtc_read_time(rtc, &tm);
 423	if (err)
 424		return err;
 425	now = rtc_tm_to_time64(&tm);
 426	if (scheduled <= now)
 427		return -ETIME;
 428	/*
 429	 * XXX - We just checked to make sure the alarm time is not
 430	 * in the past, but there is still a race window where if
 431	 * the is alarm set for the next second and the second ticks
 432	 * over right here, before we set the alarm.
 433	 */
 434
 435	rtc_subtract_offset(rtc, &alarm->time);
 436
 437	if (!rtc->ops)
 438		err = -ENODEV;
 439	else if (!rtc->ops->set_alarm)
 440		err = -EINVAL;
 441	else
 442		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 443
 444	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 445	return err;
 446}
 447
 448int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 449{
 450	int err;
 451
 452	if (!rtc->ops)
 453		return -ENODEV;
 454	else if (!rtc->ops->set_alarm)
 455		return -EINVAL;
 456
 457	err = rtc_valid_tm(&alarm->time);
 458	if (err != 0)
 459		return err;
 460
 461	err = rtc_valid_range(rtc, &alarm->time);
 462	if (err)
 463		return err;
 464
 465	err = mutex_lock_interruptible(&rtc->ops_lock);
 466	if (err)
 467		return err;
 468	if (rtc->aie_timer.enabled)
 469		rtc_timer_remove(rtc, &rtc->aie_timer);
 470
 471	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 472	rtc->aie_timer.period = 0;
 473	if (alarm->enabled)
 474		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 475
 476	mutex_unlock(&rtc->ops_lock);
 477
 478	return err;
 479}
 480EXPORT_SYMBOL_GPL(rtc_set_alarm);
 481
 482/* Called once per device from rtc_device_register */
 483int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 484{
 485	int err;
 486	struct rtc_time now;
 487
 488	err = rtc_valid_tm(&alarm->time);
 489	if (err != 0)
 490		return err;
 491
 492	err = rtc_read_time(rtc, &now);
 493	if (err)
 494		return err;
 495
 496	err = mutex_lock_interruptible(&rtc->ops_lock);
 497	if (err)
 498		return err;
 499
 500	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 501	rtc->aie_timer.period = 0;
 
 
 
 
 502
 503	/* Alarm has to be enabled & in the future for us to enqueue it */
 504	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 505			 rtc->aie_timer.node.expires)) {
 506		rtc->aie_timer.enabled = 1;
 507		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 508		trace_rtc_timer_enqueue(&rtc->aie_timer);
 509	}
 510	mutex_unlock(&rtc->ops_lock);
 511	return err;
 512}
 513EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 514
 
 
 515int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 516{
 517	int err;
 518
 519	err = mutex_lock_interruptible(&rtc->ops_lock);
 520	if (err)
 521		return err;
 522
 523	if (rtc->aie_timer.enabled != enabled) {
 524		if (enabled)
 525			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 526		else
 527			rtc_timer_remove(rtc, &rtc->aie_timer);
 528	}
 529
 530	if (err)
 531		/* nothing */;
 532	else if (!rtc->ops)
 533		err = -ENODEV;
 534	else if (!rtc->ops->alarm_irq_enable)
 535		err = -EINVAL;
 536	else
 537		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 538
 539	mutex_unlock(&rtc->ops_lock);
 540
 541	trace_rtc_alarm_irq_enable(enabled, err);
 542	return err;
 543}
 544EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 545
 546int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 547{
 548	int rc = 0, err;
 549
 550	err = mutex_lock_interruptible(&rtc->ops_lock);
 551	if (err)
 552		return err;
 553
 554#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 555	if (enabled == 0 && rtc->uie_irq_active) {
 556		mutex_unlock(&rtc->ops_lock);
 557		return rtc_dev_update_irq_enable_emul(rtc, 0);
 558	}
 559#endif
 560	/* make sure we're changing state */
 561	if (rtc->uie_rtctimer.enabled == enabled)
 562		goto out;
 563
 564	if (rtc->uie_unsupported) {
 565		err = -EINVAL;
 566		goto out;
 567	}
 568
 569	if (enabled) {
 570		struct rtc_time tm;
 571		ktime_t now, onesec;
 572
 573		rc = __rtc_read_time(rtc, &tm);
 574		if (rc)
 575			goto out;
 576		onesec = ktime_set(1, 0);
 577		now = rtc_tm_to_ktime(tm);
 578		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 579		rtc->uie_rtctimer.period = ktime_set(1, 0);
 580		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 581	} else {
 582		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 583	}
 584
 585out:
 586	mutex_unlock(&rtc->ops_lock);
 587
 588	/*
 589	 * __rtc_read_time() failed, this probably means that the RTC time has
 590	 * never been set or less probably there is a transient error on the
 591	 * bus. In any case, avoid enabling emulation has this will fail when
 592	 * reading the time too.
 593	 */
 594	if (rc)
 595		return rc;
 596
 597#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 598	/*
 599	 * Enable emulation if the driver returned -EINVAL to signal that it has
 600	 * been configured without interrupts or they are not available at the
 601	 * moment.
 
 602	 */
 603	if (err == -EINVAL)
 604		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 605#endif
 606	return err;
 
 607}
 608EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 609
 
 610/**
 611 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 612 * @rtc: pointer to the rtc device
 613 * @num: number of occurence of the event
 614 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
 615 *
 616 * This function is called when an AIE, UIE or PIE mode interrupt
 617 * has occurred (or been emulated).
 618 *
 
 619 */
 620void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 621{
 622	unsigned long flags;
 623
 624	/* mark one irq of the appropriate mode */
 625	spin_lock_irqsave(&rtc->irq_lock, flags);
 626	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
 627	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 628
 
 
 
 
 
 
 629	wake_up_interruptible(&rtc->irq_queue);
 630	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 631}
 632
 
 633/**
 634 * rtc_aie_update_irq - AIE mode rtctimer hook
 635 * @rtc: pointer to the rtc_device
 636 *
 637 * This functions is called when the aie_timer expires.
 638 */
 639void rtc_aie_update_irq(struct rtc_device *rtc)
 640{
 
 641	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 642}
 643
 
 644/**
 645 * rtc_uie_update_irq - UIE mode rtctimer hook
 646 * @rtc: pointer to the rtc_device
 647 *
 648 * This functions is called when the uie_timer expires.
 649 */
 650void rtc_uie_update_irq(struct rtc_device *rtc)
 651{
 
 652	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 653}
 654
 
 655/**
 656 * rtc_pie_update_irq - PIE mode hrtimer hook
 657 * @timer: pointer to the pie mode hrtimer
 658 *
 659 * This function is used to emulate PIE mode interrupts
 660 * using an hrtimer. This function is called when the periodic
 661 * hrtimer expires.
 662 */
 663enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 664{
 665	struct rtc_device *rtc;
 666	ktime_t period;
 667	u64 count;
 668
 669	rtc = container_of(timer, struct rtc_device, pie_timer);
 670
 671	period = NSEC_PER_SEC / rtc->irq_freq;
 672	count = hrtimer_forward_now(timer, period);
 673
 674	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 675
 676	return HRTIMER_RESTART;
 677}
 678
 679/**
 680 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 681 * @rtc: the rtc device
 682 * @num: how many irqs are being reported (usually one)
 683 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 684 * Context: any
 685 */
 686void rtc_update_irq(struct rtc_device *rtc,
 687		    unsigned long num, unsigned long events)
 688{
 689	if (IS_ERR_OR_NULL(rtc))
 690		return;
 691
 692	pm_stay_awake(rtc->dev.parent);
 693	schedule_work(&rtc->irqwork);
 694}
 695EXPORT_SYMBOL_GPL(rtc_update_irq);
 696
 
 
 
 
 
 
 
 
 
 697struct rtc_device *rtc_class_open(const char *name)
 698{
 699	struct device *dev;
 700	struct rtc_device *rtc = NULL;
 701
 702	dev = class_find_device_by_name(rtc_class, name);
 703	if (dev)
 704		rtc = to_rtc_device(dev);
 705
 706	if (rtc) {
 707		if (!try_module_get(rtc->owner)) {
 708			put_device(dev);
 709			rtc = NULL;
 710		}
 711	}
 712
 713	return rtc;
 714}
 715EXPORT_SYMBOL_GPL(rtc_class_open);
 716
 717void rtc_class_close(struct rtc_device *rtc)
 718{
 719	module_put(rtc->owner);
 720	put_device(&rtc->dev);
 721}
 722EXPORT_SYMBOL_GPL(rtc_class_close);
 723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 725{
 726	/*
 727	 * We always cancel the timer here first, because otherwise
 728	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 729	 * when we manage to start the timer before the callback
 730	 * returns HRTIMER_RESTART.
 731	 *
 732	 * We cannot use hrtimer_cancel() here as a running callback
 733	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 734	 * would spin forever.
 735	 */
 736	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 737		return -1;
 738
 739	if (enabled) {
 740		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 741
 742		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 743	}
 744	return 0;
 745}
 746
 747/**
 748 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 749 * @rtc: the rtc device
 
 750 * @enabled: true to enable periodic IRQs
 751 * Context: any
 752 *
 753 * Note that rtc_irq_set_freq() should previously have been used to
 754 * specify the desired frequency of periodic IRQ.
 755 */
 756int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
 757{
 758	int err = 0;
 
 759
 760	while (rtc_update_hrtimer(rtc, enabled) < 0)
 761		cpu_relax();
 762
 763	rtc->pie_enabled = enabled;
 764
 765	trace_rtc_irq_set_state(enabled, err);
 
 
 
 
 
 
 
 
 
 766	return err;
 767}
 
 768
 769/**
 770 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 771 * @rtc: the rtc device
 772 * @freq: positive frequency
 
 773 * Context: any
 774 *
 775 * Note that rtc_irq_set_state() is used to enable or disable the
 776 * periodic IRQs.
 777 */
 778int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
 779{
 780	int err = 0;
 
 781
 782	if (freq <= 0 || freq > RTC_MAX_FREQ)
 783		return -EINVAL;
 784
 785	rtc->irq_freq = freq;
 786	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
 787		cpu_relax();
 788
 789	trace_rtc_irq_set_freq(freq, err);
 
 
 
 
 
 
 
 
 
 790	return err;
 791}
 
 792
 793/**
 794 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 795 * @rtc: rtc device
 796 * @timer: timer being added.
 797 *
 798 * Enqueues a timer onto the rtc devices timerqueue and sets
 799 * the next alarm event appropriately.
 800 *
 801 * Sets the enabled bit on the added timer.
 802 *
 803 * Must hold ops_lock for proper serialization of timerqueue
 804 */
 805static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 806{
 807	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 808	struct rtc_time tm;
 809	ktime_t now;
 810
 811	timer->enabled = 1;
 812	__rtc_read_time(rtc, &tm);
 813	now = rtc_tm_to_ktime(tm);
 814
 815	/* Skip over expired timers */
 816	while (next) {
 817		if (next->expires >= now)
 818			break;
 819		next = timerqueue_iterate_next(next);
 820	}
 821
 822	timerqueue_add(&rtc->timerqueue, &timer->node);
 823	trace_rtc_timer_enqueue(timer);
 824	if (!next || ktime_before(timer->node.expires, next->expires)) {
 825		struct rtc_wkalrm alarm;
 826		int err;
 827
 828		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 829		alarm.enabled = 1;
 830		err = __rtc_set_alarm(rtc, &alarm);
 831		if (err == -ETIME) {
 832			pm_stay_awake(rtc->dev.parent);
 833			schedule_work(&rtc->irqwork);
 834		} else if (err) {
 835			timerqueue_del(&rtc->timerqueue, &timer->node);
 836			trace_rtc_timer_dequeue(timer);
 837			timer->enabled = 0;
 838			return err;
 839		}
 840	}
 841	return 0;
 842}
 843
 844static void rtc_alarm_disable(struct rtc_device *rtc)
 845{
 846	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 847		return;
 848
 849	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 850	trace_rtc_alarm_irq_enable(0, 0);
 851}
 852
 853/**
 854 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 855 * @rtc: rtc device
 856 * @timer: timer being removed.
 857 *
 858 * Removes a timer onto the rtc devices timerqueue and sets
 859 * the next alarm event appropriately.
 860 *
 861 * Clears the enabled bit on the removed timer.
 862 *
 863 * Must hold ops_lock for proper serialization of timerqueue
 864 */
 865static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 866{
 867	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 868
 869	timerqueue_del(&rtc->timerqueue, &timer->node);
 870	trace_rtc_timer_dequeue(timer);
 871	timer->enabled = 0;
 872	if (next == &timer->node) {
 873		struct rtc_wkalrm alarm;
 874		int err;
 875
 876		next = timerqueue_getnext(&rtc->timerqueue);
 877		if (!next) {
 878			rtc_alarm_disable(rtc);
 879			return;
 880		}
 881		alarm.time = rtc_ktime_to_tm(next->expires);
 882		alarm.enabled = 1;
 883		err = __rtc_set_alarm(rtc, &alarm);
 884		if (err == -ETIME) {
 885			pm_stay_awake(rtc->dev.parent);
 886			schedule_work(&rtc->irqwork);
 887		}
 888	}
 889}
 890
 891/**
 892 * rtc_timer_do_work - Expires rtc timers
 893 * @work: work item
 
 894 *
 895 * Expires rtc timers. Reprograms next alarm event if needed.
 896 * Called via worktask.
 897 *
 898 * Serializes access to timerqueue via ops_lock mutex
 899 */
 900void rtc_timer_do_work(struct work_struct *work)
 901{
 902	struct rtc_timer *timer;
 903	struct timerqueue_node *next;
 904	ktime_t now;
 905	struct rtc_time tm;
 906
 907	struct rtc_device *rtc =
 908		container_of(work, struct rtc_device, irqwork);
 909
 910	mutex_lock(&rtc->ops_lock);
 911again:
 912	__rtc_read_time(rtc, &tm);
 913	now = rtc_tm_to_ktime(tm);
 914	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 915		if (next->expires > now)
 916			break;
 917
 918		/* expire timer */
 919		timer = container_of(next, struct rtc_timer, node);
 920		timerqueue_del(&rtc->timerqueue, &timer->node);
 921		trace_rtc_timer_dequeue(timer);
 922		timer->enabled = 0;
 923		if (timer->func)
 924			timer->func(timer->rtc);
 925
 926		trace_rtc_timer_fired(timer);
 927		/* Re-add/fwd periodic timers */
 928		if (ktime_to_ns(timer->period)) {
 929			timer->node.expires = ktime_add(timer->node.expires,
 930							timer->period);
 931			timer->enabled = 1;
 932			timerqueue_add(&rtc->timerqueue, &timer->node);
 933			trace_rtc_timer_enqueue(timer);
 934		}
 935	}
 936
 937	/* Set next alarm */
 938	if (next) {
 939		struct rtc_wkalrm alarm;
 940		int err;
 941		int retry = 3;
 942
 943		alarm.time = rtc_ktime_to_tm(next->expires);
 944		alarm.enabled = 1;
 945reprogram:
 946		err = __rtc_set_alarm(rtc, &alarm);
 947		if (err == -ETIME) {
 948			goto again;
 949		} else if (err) {
 950			if (retry-- > 0)
 951				goto reprogram;
 952
 953			timer = container_of(next, struct rtc_timer, node);
 954			timerqueue_del(&rtc->timerqueue, &timer->node);
 955			trace_rtc_timer_dequeue(timer);
 956			timer->enabled = 0;
 957			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 958			goto again;
 959		}
 960	} else {
 961		rtc_alarm_disable(rtc);
 962	}
 963
 964	pm_relax(rtc->dev.parent);
 965	mutex_unlock(&rtc->ops_lock);
 966}
 967
 
 968/* rtc_timer_init - Initializes an rtc_timer
 969 * @timer: timer to be intiialized
 970 * @f: function pointer to be called when timer fires
 971 * @rtc: pointer to the rtc_device
 972 *
 973 * Kernel interface to initializing an rtc_timer.
 974 */
 975void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
 976		    struct rtc_device *rtc)
 977{
 978	timerqueue_init(&timer->node);
 979	timer->enabled = 0;
 980	timer->func = f;
 981	timer->rtc = rtc;
 982}
 983
 984/* rtc_timer_start - Sets an rtc_timer to fire in the future
 985 * @ rtc: rtc device to be used
 986 * @ timer: timer being set
 987 * @ expires: time at which to expire the timer
 988 * @ period: period that the timer will recur
 989 *
 990 * Kernel interface to set an rtc_timer
 991 */
 992int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 993		    ktime_t expires, ktime_t period)
 994{
 995	int ret = 0;
 996
 997	mutex_lock(&rtc->ops_lock);
 998	if (timer->enabled)
 999		rtc_timer_remove(rtc, timer);
1000
1001	timer->node.expires = expires;
1002	timer->period = period;
1003
1004	ret = rtc_timer_enqueue(rtc, timer);
1005
1006	mutex_unlock(&rtc->ops_lock);
1007	return ret;
1008}
1009
1010/* rtc_timer_cancel - Stops an rtc_timer
1011 * @ rtc: rtc device to be used
1012 * @ timer: timer being set
1013 *
1014 * Kernel interface to cancel an rtc_timer
1015 */
1016void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1017{
 
1018	mutex_lock(&rtc->ops_lock);
1019	if (timer->enabled)
1020		rtc_timer_remove(rtc, timer);
1021	mutex_unlock(&rtc->ops_lock);
1022}
1023
1024/**
1025 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1026 * @rtc: rtc device to be used
1027 * @offset: the offset in parts per billion
1028 *
1029 * see below for details.
1030 *
1031 * Kernel interface to read rtc clock offset
1032 * Returns 0 on success, or a negative number on error.
1033 * If read_offset() is not implemented for the rtc, return -EINVAL
1034 */
1035int rtc_read_offset(struct rtc_device *rtc, long *offset)
1036{
1037	int ret;
1038
1039	if (!rtc->ops)
1040		return -ENODEV;
1041
1042	if (!rtc->ops->read_offset)
1043		return -EINVAL;
1044
1045	mutex_lock(&rtc->ops_lock);
1046	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1047	mutex_unlock(&rtc->ops_lock);
1048
1049	trace_rtc_read_offset(*offset, ret);
1050	return ret;
1051}
1052
1053/**
1054 * rtc_set_offset - Adjusts the duration of the average second
1055 * @rtc: rtc device to be used
1056 * @offset: the offset in parts per billion
1057 *
1058 * Some rtc's allow an adjustment to the average duration of a second
1059 * to compensate for differences in the actual clock rate due to temperature,
1060 * the crystal, capacitor, etc.
1061 *
1062 * The adjustment applied is as follows:
1063 *   t = t0 * (1 + offset * 1e-9)
1064 * where t0 is the measured length of 1 RTC second with offset = 0
1065 *
1066 * Kernel interface to adjust an rtc clock offset.
1067 * Return 0 on success, or a negative number on error.
1068 * If the rtc offset is not setable (or not implemented), return -EINVAL
1069 */
1070int rtc_set_offset(struct rtc_device *rtc, long offset)
1071{
1072	int ret;
1073
1074	if (!rtc->ops)
1075		return -ENODEV;
1076
1077	if (!rtc->ops->set_offset)
1078		return -EINVAL;
1079
1080	mutex_lock(&rtc->ops_lock);
1081	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1082	mutex_unlock(&rtc->ops_lock);
1083
1084	trace_rtc_set_offset(offset, ret);
1085	return ret;
1086}
v3.15
 
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 
 
 
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 
 
 
 
 
 
 
 
 
 
 
 33	}
 34	return err;
 35}
 36
 37int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 38{
 39	int err;
 40
 41	err = mutex_lock_interruptible(&rtc->ops_lock);
 42	if (err)
 43		return err;
 44
 45	err = __rtc_read_time(rtc, tm);
 46	mutex_unlock(&rtc->ops_lock);
 
 
 47	return err;
 48}
 49EXPORT_SYMBOL_GPL(rtc_read_time);
 50
 51int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 52{
 53	int err;
 54
 55	err = rtc_valid_tm(tm);
 56	if (err != 0)
 57		return err;
 58
 59	err = mutex_lock_interruptible(&rtc->ops_lock);
 60	if (err)
 61		return err;
 62
 63	if (!rtc->ops)
 64		err = -ENODEV;
 65	else if (rtc->ops->set_time)
 66		err = rtc->ops->set_time(rtc->dev.parent, tm);
 67	else if (rtc->ops->set_mmss) {
 68		unsigned long secs;
 69		err = rtc_tm_to_time(tm, &secs);
 70		if (err == 0)
 71			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 72	} else
 73		err = -EINVAL;
 74
 75	pm_stay_awake(rtc->dev.parent);
 76	mutex_unlock(&rtc->ops_lock);
 77	/* A timer might have just expired */
 78	schedule_work(&rtc->irqwork);
 79	return err;
 80}
 81EXPORT_SYMBOL_GPL(rtc_set_time);
 82
 83int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 84{
 85	int err;
 86
 87	err = mutex_lock_interruptible(&rtc->ops_lock);
 88	if (err)
 89		return err;
 90
 91	if (!rtc->ops)
 92		err = -ENODEV;
 93	else if (rtc->ops->set_mmss)
 94		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 95	else if (rtc->ops->read_time && rtc->ops->set_time) {
 96		struct rtc_time new, old;
 97
 98		err = rtc->ops->read_time(rtc->dev.parent, &old);
 99		if (err == 0) {
100			rtc_time_to_tm(secs, &new);
101
102			/*
103			 * avoid writing when we're going to change the day of
104			 * the month. We will retry in the next minute. This
105			 * basically means that if the RTC must not drift
106			 * by more than 1 minute in 11 minutes.
107			 */
108			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
109				(new.tm_hour == 23 && new.tm_min == 59)))
110				err = rtc->ops->set_time(rtc->dev.parent,
111						&new);
112		}
113	} else {
114		err = -EINVAL;
115	}
116
117	pm_stay_awake(rtc->dev.parent);
118	mutex_unlock(&rtc->ops_lock);
119	/* A timer might have just expired */
120	schedule_work(&rtc->irqwork);
121
 
 
 
 
 
 
 
122	return err;
123}
124EXPORT_SYMBOL_GPL(rtc_set_mmss);
125
126static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 
127{
128	int err;
129
130	err = mutex_lock_interruptible(&rtc->ops_lock);
131	if (err)
132		return err;
133
134	if (rtc->ops == NULL)
135		err = -ENODEV;
136	else if (!rtc->ops->read_alarm)
137		err = -EINVAL;
138	else {
139		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 
 
 
 
 
 
 
 
 
 
140		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
141	}
142
143	mutex_unlock(&rtc->ops_lock);
 
 
144	return err;
145}
146
147int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
148{
149	int err;
150	struct rtc_time before, now;
151	int first_time = 1;
152	unsigned long t_now, t_alm;
153	enum { none, day, month, year } missing = none;
154	unsigned days;
155
156	/* The lower level RTC driver may return -1 in some fields,
157	 * creating invalid alarm->time values, for reasons like:
158	 *
159	 *   - The hardware may not be capable of filling them in;
160	 *     many alarms match only on time-of-day fields, not
161	 *     day/month/year calendar data.
162	 *
163	 *   - Some hardware uses illegal values as "wildcard" match
164	 *     values, which non-Linux firmware (like a BIOS) may try
165	 *     to set up as e.g. "alarm 15 minutes after each hour".
166	 *     Linux uses only oneshot alarms.
167	 *
168	 * When we see that here, we deal with it by using values from
169	 * a current RTC timestamp for any missing (-1) values.  The
170	 * RTC driver prevents "periodic alarm" modes.
171	 *
172	 * But this can be racey, because some fields of the RTC timestamp
173	 * may have wrapped in the interval since we read the RTC alarm,
174	 * which would lead to us inserting inconsistent values in place
175	 * of the -1 fields.
176	 *
177	 * Reading the alarm and timestamp in the reverse sequence
178	 * would have the same race condition, and not solve the issue.
179	 *
180	 * So, we must first read the RTC timestamp,
181	 * then read the RTC alarm value,
182	 * and then read a second RTC timestamp.
183	 *
184	 * If any fields of the second timestamp have changed
185	 * when compared with the first timestamp, then we know
186	 * our timestamp may be inconsistent with that used by
187	 * the low-level rtc_read_alarm_internal() function.
188	 *
189	 * So, when the two timestamps disagree, we just loop and do
190	 * the process again to get a fully consistent set of values.
191	 *
192	 * This could all instead be done in the lower level driver,
193	 * but since more than one lower level RTC implementation needs it,
194	 * then it's probably best best to do it here instead of there..
195	 */
196
197	/* Get the "before" timestamp */
198	err = rtc_read_time(rtc, &before);
199	if (err < 0)
200		return err;
201	do {
202		if (!first_time)
203			memcpy(&before, &now, sizeof(struct rtc_time));
204		first_time = 0;
205
206		/* get the RTC alarm values, which may be incomplete */
207		err = rtc_read_alarm_internal(rtc, alarm);
208		if (err)
209			return err;
210
211		/* full-function RTCs won't have such missing fields */
212		if (rtc_valid_tm(&alarm->time) == 0)
 
213			return 0;
 
214
215		/* get the "after" timestamp, to detect wrapped fields */
216		err = rtc_read_time(rtc, &now);
217		if (err < 0)
218			return err;
219
220		/* note that tm_sec is a "don't care" value here: */
221	} while (   before.tm_min   != now.tm_min
222		 || before.tm_hour  != now.tm_hour
223		 || before.tm_mon   != now.tm_mon
224		 || before.tm_year  != now.tm_year);
225
226	/* Fill in the missing alarm fields using the timestamp; we
227	 * know there's at least one since alarm->time is invalid.
228	 */
229	if (alarm->time.tm_sec == -1)
230		alarm->time.tm_sec = now.tm_sec;
231	if (alarm->time.tm_min == -1)
232		alarm->time.tm_min = now.tm_min;
233	if (alarm->time.tm_hour == -1)
234		alarm->time.tm_hour = now.tm_hour;
235
236	/* For simplicity, only support date rollover for now */
237	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
238		alarm->time.tm_mday = now.tm_mday;
239		missing = day;
240	}
241	if ((unsigned)alarm->time.tm_mon >= 12) {
242		alarm->time.tm_mon = now.tm_mon;
243		if (missing == none)
244			missing = month;
245	}
246	if (alarm->time.tm_year == -1) {
247		alarm->time.tm_year = now.tm_year;
248		if (missing == none)
249			missing = year;
250	}
251
 
 
 
 
 
 
 
252	/* with luck, no rollover is needed */
253	rtc_tm_to_time(&now, &t_now);
254	rtc_tm_to_time(&alarm->time, &t_alm);
255	if (t_now < t_alm)
256		goto done;
257
258	switch (missing) {
259
260	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
261	 * that will trigger at 5am will do so at 5am Tuesday, which
262	 * could also be in the next month or year.  This is a common
263	 * case, especially for PCs.
264	 */
265	case day:
266		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
267		t_alm += 24 * 60 * 60;
268		rtc_time_to_tm(t_alm, &alarm->time);
269		break;
270
271	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
272	 * be next month.  An alarm matching on the 30th, 29th, or 28th
273	 * may end up in the month after that!  Many newer PCs support
274	 * this type of alarm.
275	 */
276	case month:
277		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
278		do {
279			if (alarm->time.tm_mon < 11)
280				alarm->time.tm_mon++;
281			else {
282				alarm->time.tm_mon = 0;
283				alarm->time.tm_year++;
284			}
285			days = rtc_month_days(alarm->time.tm_mon,
286					alarm->time.tm_year);
287		} while (days < alarm->time.tm_mday);
288		break;
289
290	/* Year rollover ... easy except for leap years! */
291	case year:
292		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
293		do {
294			alarm->time.tm_year++;
295		} while (rtc_valid_tm(&alarm->time) != 0);
 
296		break;
297
298	default:
299		dev_warn(&rtc->dev, "alarm rollover not handled\n");
300	}
301
 
 
302done:
303	return 0;
 
 
 
 
304}
305
306int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
307{
308	int err;
309
310	err = mutex_lock_interruptible(&rtc->ops_lock);
311	if (err)
312		return err;
313	if (rtc->ops == NULL)
314		err = -ENODEV;
315	else if (!rtc->ops->read_alarm)
316		err = -EINVAL;
317	else {
318		memset(alarm, 0, sizeof(struct rtc_wkalrm));
319		alarm->enabled = rtc->aie_timer.enabled;
320		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
321	}
322	mutex_unlock(&rtc->ops_lock);
323
 
324	return err;
325}
326EXPORT_SYMBOL_GPL(rtc_read_alarm);
327
328static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
329{
330	struct rtc_time tm;
331	long now, scheduled;
332	int err;
333
334	err = rtc_valid_tm(&alarm->time);
335	if (err)
336		return err;
337	rtc_tm_to_time(&alarm->time, &scheduled);
 
338
339	/* Make sure we're not setting alarms in the past */
340	err = __rtc_read_time(rtc, &tm);
341	rtc_tm_to_time(&tm, &now);
 
 
342	if (scheduled <= now)
343		return -ETIME;
344	/*
345	 * XXX - We just checked to make sure the alarm time is not
346	 * in the past, but there is still a race window where if
347	 * the is alarm set for the next second and the second ticks
348	 * over right here, before we set the alarm.
349	 */
350
 
 
351	if (!rtc->ops)
352		err = -ENODEV;
353	else if (!rtc->ops->set_alarm)
354		err = -EINVAL;
355	else
356		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
357
 
358	return err;
359}
360
361int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
362{
363	int err;
364
 
 
 
 
 
365	err = rtc_valid_tm(&alarm->time);
366	if (err != 0)
367		return err;
368
 
 
 
 
369	err = mutex_lock_interruptible(&rtc->ops_lock);
370	if (err)
371		return err;
372	if (rtc->aie_timer.enabled)
373		rtc_timer_remove(rtc, &rtc->aie_timer);
374
375	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
376	rtc->aie_timer.period = ktime_set(0, 0);
377	if (alarm->enabled)
378		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
379
380	mutex_unlock(&rtc->ops_lock);
 
381	return err;
382}
383EXPORT_SYMBOL_GPL(rtc_set_alarm);
384
385/* Called once per device from rtc_device_register */
386int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
387{
388	int err;
389	struct rtc_time now;
390
391	err = rtc_valid_tm(&alarm->time);
392	if (err != 0)
393		return err;
394
395	err = rtc_read_time(rtc, &now);
396	if (err)
397		return err;
398
399	err = mutex_lock_interruptible(&rtc->ops_lock);
400	if (err)
401		return err;
402
403	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
404	rtc->aie_timer.period = ktime_set(0, 0);
405
406	/* Alarm has to be enabled & in the futrure for us to enqueue it */
407	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
408			 rtc->aie_timer.node.expires.tv64)) {
409
 
 
 
410		rtc->aie_timer.enabled = 1;
411		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 
412	}
413	mutex_unlock(&rtc->ops_lock);
414	return err;
415}
416EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
417
418
419
420int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
421{
422	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
423	if (err)
424		return err;
425
426	if (rtc->aie_timer.enabled != enabled) {
427		if (enabled)
428			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
429		else
430			rtc_timer_remove(rtc, &rtc->aie_timer);
431	}
432
433	if (err)
434		/* nothing */;
435	else if (!rtc->ops)
436		err = -ENODEV;
437	else if (!rtc->ops->alarm_irq_enable)
438		err = -EINVAL;
439	else
440		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
441
442	mutex_unlock(&rtc->ops_lock);
 
 
443	return err;
444}
445EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
446
447int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
448{
449	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
450	if (err)
451		return err;
452
453#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
454	if (enabled == 0 && rtc->uie_irq_active) {
455		mutex_unlock(&rtc->ops_lock);
456		return rtc_dev_update_irq_enable_emul(rtc, 0);
457	}
458#endif
459	/* make sure we're changing state */
460	if (rtc->uie_rtctimer.enabled == enabled)
461		goto out;
462
463	if (rtc->uie_unsupported) {
464		err = -EINVAL;
465		goto out;
466	}
467
468	if (enabled) {
469		struct rtc_time tm;
470		ktime_t now, onesec;
471
472		__rtc_read_time(rtc, &tm);
 
 
473		onesec = ktime_set(1, 0);
474		now = rtc_tm_to_ktime(tm);
475		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
476		rtc->uie_rtctimer.period = ktime_set(1, 0);
477		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
478	} else
479		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 
480
481out:
482	mutex_unlock(&rtc->ops_lock);
 
 
 
 
 
 
 
 
 
 
483#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
484	/*
485	 * Enable emulation if the driver did not provide
486	 * the update_irq_enable function pointer or if returned
487	 * -EINVAL to signal that it has been configured without
488	 * interrupts or that are not available at the moment.
489	 */
490	if (err == -EINVAL)
491		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
492#endif
493	return err;
494
495}
496EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
497
498
499/**
500 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
501 * @rtc: pointer to the rtc device
 
 
502 *
503 * This function is called when an AIE, UIE or PIE mode interrupt
504 * has occurred (or been emulated).
505 *
506 * Triggers the registered irq_task function callback.
507 */
508void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
509{
510	unsigned long flags;
511
512	/* mark one irq of the appropriate mode */
513	spin_lock_irqsave(&rtc->irq_lock, flags);
514	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
515	spin_unlock_irqrestore(&rtc->irq_lock, flags);
516
517	/* call the task func */
518	spin_lock_irqsave(&rtc->irq_task_lock, flags);
519	if (rtc->irq_task)
520		rtc->irq_task->func(rtc->irq_task->private_data);
521	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
522
523	wake_up_interruptible(&rtc->irq_queue);
524	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
525}
526
527
528/**
529 * rtc_aie_update_irq - AIE mode rtctimer hook
530 * @private: pointer to the rtc_device
531 *
532 * This functions is called when the aie_timer expires.
533 */
534void rtc_aie_update_irq(void *private)
535{
536	struct rtc_device *rtc = (struct rtc_device *)private;
537	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
538}
539
540
541/**
542 * rtc_uie_update_irq - UIE mode rtctimer hook
543 * @private: pointer to the rtc_device
544 *
545 * This functions is called when the uie_timer expires.
546 */
547void rtc_uie_update_irq(void *private)
548{
549	struct rtc_device *rtc = (struct rtc_device *)private;
550	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
551}
552
553
554/**
555 * rtc_pie_update_irq - PIE mode hrtimer hook
556 * @timer: pointer to the pie mode hrtimer
557 *
558 * This function is used to emulate PIE mode interrupts
559 * using an hrtimer. This function is called when the periodic
560 * hrtimer expires.
561 */
562enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
563{
564	struct rtc_device *rtc;
565	ktime_t period;
566	int count;
 
567	rtc = container_of(timer, struct rtc_device, pie_timer);
568
569	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
570	count = hrtimer_forward_now(timer, period);
571
572	rtc_handle_legacy_irq(rtc, count, RTC_PF);
573
574	return HRTIMER_RESTART;
575}
576
577/**
578 * rtc_update_irq - Triggered when a RTC interrupt occurs.
579 * @rtc: the rtc device
580 * @num: how many irqs are being reported (usually one)
581 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
582 * Context: any
583 */
584void rtc_update_irq(struct rtc_device *rtc,
585		unsigned long num, unsigned long events)
586{
587	if (unlikely(IS_ERR_OR_NULL(rtc)))
588		return;
589
590	pm_stay_awake(rtc->dev.parent);
591	schedule_work(&rtc->irqwork);
592}
593EXPORT_SYMBOL_GPL(rtc_update_irq);
594
595static int __rtc_match(struct device *dev, const void *data)
596{
597	const char *name = data;
598
599	if (strcmp(dev_name(dev), name) == 0)
600		return 1;
601	return 0;
602}
603
604struct rtc_device *rtc_class_open(const char *name)
605{
606	struct device *dev;
607	struct rtc_device *rtc = NULL;
608
609	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
610	if (dev)
611		rtc = to_rtc_device(dev);
612
613	if (rtc) {
614		if (!try_module_get(rtc->owner)) {
615			put_device(dev);
616			rtc = NULL;
617		}
618	}
619
620	return rtc;
621}
622EXPORT_SYMBOL_GPL(rtc_class_open);
623
624void rtc_class_close(struct rtc_device *rtc)
625{
626	module_put(rtc->owner);
627	put_device(&rtc->dev);
628}
629EXPORT_SYMBOL_GPL(rtc_class_close);
630
631int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
632{
633	int retval = -EBUSY;
634
635	if (task == NULL || task->func == NULL)
636		return -EINVAL;
637
638	/* Cannot register while the char dev is in use */
639	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
640		return -EBUSY;
641
642	spin_lock_irq(&rtc->irq_task_lock);
643	if (rtc->irq_task == NULL) {
644		rtc->irq_task = task;
645		retval = 0;
646	}
647	spin_unlock_irq(&rtc->irq_task_lock);
648
649	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
650
651	return retval;
652}
653EXPORT_SYMBOL_GPL(rtc_irq_register);
654
655void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
656{
657	spin_lock_irq(&rtc->irq_task_lock);
658	if (rtc->irq_task == task)
659		rtc->irq_task = NULL;
660	spin_unlock_irq(&rtc->irq_task_lock);
661}
662EXPORT_SYMBOL_GPL(rtc_irq_unregister);
663
664static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
665{
666	/*
667	 * We always cancel the timer here first, because otherwise
668	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
669	 * when we manage to start the timer before the callback
670	 * returns HRTIMER_RESTART.
671	 *
672	 * We cannot use hrtimer_cancel() here as a running callback
673	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
674	 * would spin forever.
675	 */
676	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
677		return -1;
678
679	if (enabled) {
680		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
681
682		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
683	}
684	return 0;
685}
686
687/**
688 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
689 * @rtc: the rtc device
690 * @task: currently registered with rtc_irq_register()
691 * @enabled: true to enable periodic IRQs
692 * Context: any
693 *
694 * Note that rtc_irq_set_freq() should previously have been used to
695 * specify the desired frequency of periodic IRQ task->func() callbacks.
696 */
697int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
698{
699	int err = 0;
700	unsigned long flags;
701
702retry:
703	spin_lock_irqsave(&rtc->irq_task_lock, flags);
704	if (rtc->irq_task != NULL && task == NULL)
705		err = -EBUSY;
706	else if (rtc->irq_task != task)
707		err = -EACCES;
708	else {
709		if (rtc_update_hrtimer(rtc, enabled) < 0) {
710			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
711			cpu_relax();
712			goto retry;
713		}
714		rtc->pie_enabled = enabled;
715	}
716	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
717	return err;
718}
719EXPORT_SYMBOL_GPL(rtc_irq_set_state);
720
721/**
722 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
723 * @rtc: the rtc device
724 * @task: currently registered with rtc_irq_register()
725 * @freq: positive frequency with which task->func() will be called
726 * Context: any
727 *
728 * Note that rtc_irq_set_state() is used to enable or disable the
729 * periodic IRQs.
730 */
731int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
732{
733	int err = 0;
734	unsigned long flags;
735
736	if (freq <= 0 || freq > RTC_MAX_FREQ)
737		return -EINVAL;
738retry:
739	spin_lock_irqsave(&rtc->irq_task_lock, flags);
740	if (rtc->irq_task != NULL && task == NULL)
741		err = -EBUSY;
742	else if (rtc->irq_task != task)
743		err = -EACCES;
744	else {
745		rtc->irq_freq = freq;
746		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
747			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
748			cpu_relax();
749			goto retry;
750		}
751	}
752	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
753	return err;
754}
755EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
756
757/**
758 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
759 * @rtc rtc device
760 * @timer timer being added.
761 *
762 * Enqueues a timer onto the rtc devices timerqueue and sets
763 * the next alarm event appropriately.
764 *
765 * Sets the enabled bit on the added timer.
766 *
767 * Must hold ops_lock for proper serialization of timerqueue
768 */
769static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
770{
 
 
 
 
771	timer->enabled = 1;
 
 
 
 
 
 
 
 
 
 
772	timerqueue_add(&rtc->timerqueue, &timer->node);
773	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
 
774		struct rtc_wkalrm alarm;
775		int err;
 
776		alarm.time = rtc_ktime_to_tm(timer->node.expires);
777		alarm.enabled = 1;
778		err = __rtc_set_alarm(rtc, &alarm);
779		if (err == -ETIME) {
780			pm_stay_awake(rtc->dev.parent);
781			schedule_work(&rtc->irqwork);
782		} else if (err) {
783			timerqueue_del(&rtc->timerqueue, &timer->node);
 
784			timer->enabled = 0;
785			return err;
786		}
787	}
788	return 0;
789}
790
791static void rtc_alarm_disable(struct rtc_device *rtc)
792{
793	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
794		return;
795
796	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 
797}
798
799/**
800 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
801 * @rtc rtc device
802 * @timer timer being removed.
803 *
804 * Removes a timer onto the rtc devices timerqueue and sets
805 * the next alarm event appropriately.
806 *
807 * Clears the enabled bit on the removed timer.
808 *
809 * Must hold ops_lock for proper serialization of timerqueue
810 */
811static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
812{
813	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 
814	timerqueue_del(&rtc->timerqueue, &timer->node);
 
815	timer->enabled = 0;
816	if (next == &timer->node) {
817		struct rtc_wkalrm alarm;
818		int err;
 
819		next = timerqueue_getnext(&rtc->timerqueue);
820		if (!next) {
821			rtc_alarm_disable(rtc);
822			return;
823		}
824		alarm.time = rtc_ktime_to_tm(next->expires);
825		alarm.enabled = 1;
826		err = __rtc_set_alarm(rtc, &alarm);
827		if (err == -ETIME) {
828			pm_stay_awake(rtc->dev.parent);
829			schedule_work(&rtc->irqwork);
830		}
831	}
832}
833
834/**
835 * rtc_timer_do_work - Expires rtc timers
836 * @rtc rtc device
837 * @timer timer being removed.
838 *
839 * Expires rtc timers. Reprograms next alarm event if needed.
840 * Called via worktask.
841 *
842 * Serializes access to timerqueue via ops_lock mutex
843 */
844void rtc_timer_do_work(struct work_struct *work)
845{
846	struct rtc_timer *timer;
847	struct timerqueue_node *next;
848	ktime_t now;
849	struct rtc_time tm;
850
851	struct rtc_device *rtc =
852		container_of(work, struct rtc_device, irqwork);
853
854	mutex_lock(&rtc->ops_lock);
855again:
856	__rtc_read_time(rtc, &tm);
857	now = rtc_tm_to_ktime(tm);
858	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
859		if (next->expires.tv64 > now.tv64)
860			break;
861
862		/* expire timer */
863		timer = container_of(next, struct rtc_timer, node);
864		timerqueue_del(&rtc->timerqueue, &timer->node);
 
865		timer->enabled = 0;
866		if (timer->task.func)
867			timer->task.func(timer->task.private_data);
868
 
869		/* Re-add/fwd periodic timers */
870		if (ktime_to_ns(timer->period)) {
871			timer->node.expires = ktime_add(timer->node.expires,
872							timer->period);
873			timer->enabled = 1;
874			timerqueue_add(&rtc->timerqueue, &timer->node);
 
875		}
876	}
877
878	/* Set next alarm */
879	if (next) {
880		struct rtc_wkalrm alarm;
881		int err;
 
 
882		alarm.time = rtc_ktime_to_tm(next->expires);
883		alarm.enabled = 1;
 
884		err = __rtc_set_alarm(rtc, &alarm);
885		if (err == -ETIME)
 
 
 
 
 
 
 
 
 
 
886			goto again;
887	} else
 
888		rtc_alarm_disable(rtc);
 
889
890	pm_relax(rtc->dev.parent);
891	mutex_unlock(&rtc->ops_lock);
892}
893
894
895/* rtc_timer_init - Initializes an rtc_timer
896 * @timer: timer to be intiialized
897 * @f: function pointer to be called when timer fires
898 * @data: private data passed to function pointer
899 *
900 * Kernel interface to initializing an rtc_timer.
901 */
902void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
 
903{
904	timerqueue_init(&timer->node);
905	timer->enabled = 0;
906	timer->task.func = f;
907	timer->task.private_data = data;
908}
909
910/* rtc_timer_start - Sets an rtc_timer to fire in the future
911 * @ rtc: rtc device to be used
912 * @ timer: timer being set
913 * @ expires: time at which to expire the timer
914 * @ period: period that the timer will recur
915 *
916 * Kernel interface to set an rtc_timer
917 */
918int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
919			ktime_t expires, ktime_t period)
920{
921	int ret = 0;
 
922	mutex_lock(&rtc->ops_lock);
923	if (timer->enabled)
924		rtc_timer_remove(rtc, timer);
925
926	timer->node.expires = expires;
927	timer->period = period;
928
929	ret = rtc_timer_enqueue(rtc, timer);
930
931	mutex_unlock(&rtc->ops_lock);
932	return ret;
933}
934
935/* rtc_timer_cancel - Stops an rtc_timer
936 * @ rtc: rtc device to be used
937 * @ timer: timer being set
938 *
939 * Kernel interface to cancel an rtc_timer
940 */
941int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
942{
943	int ret = 0;
944	mutex_lock(&rtc->ops_lock);
945	if (timer->enabled)
946		rtc_timer_remove(rtc, timer);
947	mutex_unlock(&rtc->ops_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948	return ret;
949}
950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
951