Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9#include <linux/kdebug.h> /* oops_begin/end, ... */
10#include <linux/extable.h> /* search_exception_tables */
11#include <linux/memblock.h> /* max_low_pfn */
12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
14#include <linux/perf_event.h> /* perf_sw_event */
15#include <linux/hugetlb.h> /* hstate_index_to_shift */
16#include <linux/prefetch.h> /* prefetchw */
17#include <linux/context_tracking.h> /* exception_enter(), ... */
18#include <linux/uaccess.h> /* faulthandler_disabled() */
19#include <linux/efi.h> /* efi_recover_from_page_fault()*/
20#include <linux/mm_types.h>
21
22#include <asm/cpufeature.h> /* boot_cpu_has, ... */
23#include <asm/traps.h> /* dotraplinkage, ... */
24#include <asm/fixmap.h> /* VSYSCALL_ADDR */
25#include <asm/vsyscall.h> /* emulate_vsyscall */
26#include <asm/vm86.h> /* struct vm86 */
27#include <asm/mmu_context.h> /* vma_pkey() */
28#include <asm/efi.h> /* efi_recover_from_page_fault()*/
29#include <asm/desc.h> /* store_idt(), ... */
30#include <asm/cpu_entry_area.h> /* exception stack */
31#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
32#include <asm/kvm_para.h> /* kvm_handle_async_pf */
33
34#define CREATE_TRACE_POINTS
35#include <asm/trace/exceptions.h>
36
37/*
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
40 */
41static nokprobe_inline int
42kmmio_fault(struct pt_regs *regs, unsigned long addr)
43{
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs, addr) == 1)
46 return -1;
47 return 0;
48}
49
50/*
51 * Prefetch quirks:
52 *
53 * 32-bit mode:
54 *
55 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56 * Check that here and ignore it.
57 *
58 * 64-bit mode:
59 *
60 * Sometimes the CPU reports invalid exceptions on prefetch.
61 * Check that here and ignore it.
62 *
63 * Opcode checker based on code by Richard Brunner.
64 */
65static inline int
66check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
67 unsigned char opcode, int *prefetch)
68{
69 unsigned char instr_hi = opcode & 0xf0;
70 unsigned char instr_lo = opcode & 0x0f;
71
72 switch (instr_hi) {
73 case 0x20:
74 case 0x30:
75 /*
76 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77 * In X86_64 long mode, the CPU will signal invalid
78 * opcode if some of these prefixes are present so
79 * X86_64 will never get here anyway
80 */
81 return ((instr_lo & 7) == 0x6);
82#ifdef CONFIG_X86_64
83 case 0x40:
84 /*
85 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
86 * Need to figure out under what instruction mode the
87 * instruction was issued. Could check the LDT for lm,
88 * but for now it's good enough to assume that long
89 * mode only uses well known segments or kernel.
90 */
91 return (!user_mode(regs) || user_64bit_mode(regs));
92#endif
93 case 0x60:
94 /* 0x64 thru 0x67 are valid prefixes in all modes. */
95 return (instr_lo & 0xC) == 0x4;
96 case 0xF0:
97 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98 return !instr_lo || (instr_lo>>1) == 1;
99 case 0x00:
100 /* Prefetch instruction is 0x0F0D or 0x0F18 */
101 if (get_kernel_nofault(opcode, instr))
102 return 0;
103
104 *prefetch = (instr_lo == 0xF) &&
105 (opcode == 0x0D || opcode == 0x18);
106 return 0;
107 default:
108 return 0;
109 }
110}
111
112static int
113is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
114{
115 unsigned char *max_instr;
116 unsigned char *instr;
117 int prefetch = 0;
118
119 /*
120 * If it was a exec (instruction fetch) fault on NX page, then
121 * do not ignore the fault:
122 */
123 if (error_code & X86_PF_INSTR)
124 return 0;
125
126 instr = (void *)convert_ip_to_linear(current, regs);
127 max_instr = instr + 15;
128
129 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
130 return 0;
131
132 while (instr < max_instr) {
133 unsigned char opcode;
134
135 if (get_kernel_nofault(opcode, instr))
136 break;
137
138 instr++;
139
140 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
141 break;
142 }
143 return prefetch;
144}
145
146DEFINE_SPINLOCK(pgd_lock);
147LIST_HEAD(pgd_list);
148
149#ifdef CONFIG_X86_32
150static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
151{
152 unsigned index = pgd_index(address);
153 pgd_t *pgd_k;
154 p4d_t *p4d, *p4d_k;
155 pud_t *pud, *pud_k;
156 pmd_t *pmd, *pmd_k;
157
158 pgd += index;
159 pgd_k = init_mm.pgd + index;
160
161 if (!pgd_present(*pgd_k))
162 return NULL;
163
164 /*
165 * set_pgd(pgd, *pgd_k); here would be useless on PAE
166 * and redundant with the set_pmd() on non-PAE. As would
167 * set_p4d/set_pud.
168 */
169 p4d = p4d_offset(pgd, address);
170 p4d_k = p4d_offset(pgd_k, address);
171 if (!p4d_present(*p4d_k))
172 return NULL;
173
174 pud = pud_offset(p4d, address);
175 pud_k = pud_offset(p4d_k, address);
176 if (!pud_present(*pud_k))
177 return NULL;
178
179 pmd = pmd_offset(pud, address);
180 pmd_k = pmd_offset(pud_k, address);
181
182 if (pmd_present(*pmd) != pmd_present(*pmd_k))
183 set_pmd(pmd, *pmd_k);
184
185 if (!pmd_present(*pmd_k))
186 return NULL;
187 else
188 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
189
190 return pmd_k;
191}
192
193/*
194 * Handle a fault on the vmalloc or module mapping area
195 *
196 * This is needed because there is a race condition between the time
197 * when the vmalloc mapping code updates the PMD to the point in time
198 * where it synchronizes this update with the other page-tables in the
199 * system.
200 *
201 * In this race window another thread/CPU can map an area on the same
202 * PMD, finds it already present and does not synchronize it with the
203 * rest of the system yet. As a result v[mz]alloc might return areas
204 * which are not mapped in every page-table in the system, causing an
205 * unhandled page-fault when they are accessed.
206 */
207static noinline int vmalloc_fault(unsigned long address)
208{
209 unsigned long pgd_paddr;
210 pmd_t *pmd_k;
211 pte_t *pte_k;
212
213 /* Make sure we are in vmalloc area: */
214 if (!(address >= VMALLOC_START && address < VMALLOC_END))
215 return -1;
216
217 /*
218 * Synchronize this task's top level page-table
219 * with the 'reference' page table.
220 *
221 * Do _not_ use "current" here. We might be inside
222 * an interrupt in the middle of a task switch..
223 */
224 pgd_paddr = read_cr3_pa();
225 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
226 if (!pmd_k)
227 return -1;
228
229 if (pmd_large(*pmd_k))
230 return 0;
231
232 pte_k = pte_offset_kernel(pmd_k, address);
233 if (!pte_present(*pte_k))
234 return -1;
235
236 return 0;
237}
238NOKPROBE_SYMBOL(vmalloc_fault);
239
240void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
241{
242 unsigned long addr;
243
244 for (addr = start & PMD_MASK;
245 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
246 addr += PMD_SIZE) {
247 struct page *page;
248
249 spin_lock(&pgd_lock);
250 list_for_each_entry(page, &pgd_list, lru) {
251 spinlock_t *pgt_lock;
252
253 /* the pgt_lock only for Xen */
254 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
255
256 spin_lock(pgt_lock);
257 vmalloc_sync_one(page_address(page), addr);
258 spin_unlock(pgt_lock);
259 }
260 spin_unlock(&pgd_lock);
261 }
262}
263
264/*
265 * Did it hit the DOS screen memory VA from vm86 mode?
266 */
267static inline void
268check_v8086_mode(struct pt_regs *regs, unsigned long address,
269 struct task_struct *tsk)
270{
271#ifdef CONFIG_VM86
272 unsigned long bit;
273
274 if (!v8086_mode(regs) || !tsk->thread.vm86)
275 return;
276
277 bit = (address - 0xA0000) >> PAGE_SHIFT;
278 if (bit < 32)
279 tsk->thread.vm86->screen_bitmap |= 1 << bit;
280#endif
281}
282
283static bool low_pfn(unsigned long pfn)
284{
285 return pfn < max_low_pfn;
286}
287
288static void dump_pagetable(unsigned long address)
289{
290 pgd_t *base = __va(read_cr3_pa());
291 pgd_t *pgd = &base[pgd_index(address)];
292 p4d_t *p4d;
293 pud_t *pud;
294 pmd_t *pmd;
295 pte_t *pte;
296
297#ifdef CONFIG_X86_PAE
298 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
299 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
300 goto out;
301#define pr_pde pr_cont
302#else
303#define pr_pde pr_info
304#endif
305 p4d = p4d_offset(pgd, address);
306 pud = pud_offset(p4d, address);
307 pmd = pmd_offset(pud, address);
308 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
309#undef pr_pde
310
311 /*
312 * We must not directly access the pte in the highpte
313 * case if the page table is located in highmem.
314 * And let's rather not kmap-atomic the pte, just in case
315 * it's allocated already:
316 */
317 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
318 goto out;
319
320 pte = pte_offset_kernel(pmd, address);
321 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
322out:
323 pr_cont("\n");
324}
325
326#else /* CONFIG_X86_64: */
327
328#ifdef CONFIG_CPU_SUP_AMD
329static const char errata93_warning[] =
330KERN_ERR
331"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
332"******* Working around it, but it may cause SEGVs or burn power.\n"
333"******* Please consider a BIOS update.\n"
334"******* Disabling USB legacy in the BIOS may also help.\n";
335#endif
336
337/*
338 * No vm86 mode in 64-bit mode:
339 */
340static inline void
341check_v8086_mode(struct pt_regs *regs, unsigned long address,
342 struct task_struct *tsk)
343{
344}
345
346static int bad_address(void *p)
347{
348 unsigned long dummy;
349
350 return get_kernel_nofault(dummy, (unsigned long *)p);
351}
352
353static void dump_pagetable(unsigned long address)
354{
355 pgd_t *base = __va(read_cr3_pa());
356 pgd_t *pgd = base + pgd_index(address);
357 p4d_t *p4d;
358 pud_t *pud;
359 pmd_t *pmd;
360 pte_t *pte;
361
362 if (bad_address(pgd))
363 goto bad;
364
365 pr_info("PGD %lx ", pgd_val(*pgd));
366
367 if (!pgd_present(*pgd))
368 goto out;
369
370 p4d = p4d_offset(pgd, address);
371 if (bad_address(p4d))
372 goto bad;
373
374 pr_cont("P4D %lx ", p4d_val(*p4d));
375 if (!p4d_present(*p4d) || p4d_large(*p4d))
376 goto out;
377
378 pud = pud_offset(p4d, address);
379 if (bad_address(pud))
380 goto bad;
381
382 pr_cont("PUD %lx ", pud_val(*pud));
383 if (!pud_present(*pud) || pud_large(*pud))
384 goto out;
385
386 pmd = pmd_offset(pud, address);
387 if (bad_address(pmd))
388 goto bad;
389
390 pr_cont("PMD %lx ", pmd_val(*pmd));
391 if (!pmd_present(*pmd) || pmd_large(*pmd))
392 goto out;
393
394 pte = pte_offset_kernel(pmd, address);
395 if (bad_address(pte))
396 goto bad;
397
398 pr_cont("PTE %lx", pte_val(*pte));
399out:
400 pr_cont("\n");
401 return;
402bad:
403 pr_info("BAD\n");
404}
405
406#endif /* CONFIG_X86_64 */
407
408/*
409 * Workaround for K8 erratum #93 & buggy BIOS.
410 *
411 * BIOS SMM functions are required to use a specific workaround
412 * to avoid corruption of the 64bit RIP register on C stepping K8.
413 *
414 * A lot of BIOS that didn't get tested properly miss this.
415 *
416 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
417 * Try to work around it here.
418 *
419 * Note we only handle faults in kernel here.
420 * Does nothing on 32-bit.
421 */
422static int is_errata93(struct pt_regs *regs, unsigned long address)
423{
424#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
425 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
426 || boot_cpu_data.x86 != 0xf)
427 return 0;
428
429 if (address != regs->ip)
430 return 0;
431
432 if ((address >> 32) != 0)
433 return 0;
434
435 address |= 0xffffffffUL << 32;
436 if ((address >= (u64)_stext && address <= (u64)_etext) ||
437 (address >= MODULES_VADDR && address <= MODULES_END)) {
438 printk_once(errata93_warning);
439 regs->ip = address;
440 return 1;
441 }
442#endif
443 return 0;
444}
445
446/*
447 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
448 * to illegal addresses >4GB.
449 *
450 * We catch this in the page fault handler because these addresses
451 * are not reachable. Just detect this case and return. Any code
452 * segment in LDT is compatibility mode.
453 */
454static int is_errata100(struct pt_regs *regs, unsigned long address)
455{
456#ifdef CONFIG_X86_64
457 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
458 return 1;
459#endif
460 return 0;
461}
462
463/* Pentium F0 0F C7 C8 bug workaround: */
464static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
465{
466#ifdef CONFIG_X86_F00F_BUG
467 if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) {
468 handle_invalid_op(regs);
469 return 1;
470 }
471#endif
472 return 0;
473}
474
475static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
476{
477 u32 offset = (index >> 3) * sizeof(struct desc_struct);
478 unsigned long addr;
479 struct ldttss_desc desc;
480
481 if (index == 0) {
482 pr_alert("%s: NULL\n", name);
483 return;
484 }
485
486 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
487 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
488 return;
489 }
490
491 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
492 sizeof(struct ldttss_desc))) {
493 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
494 name, index);
495 return;
496 }
497
498 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
499#ifdef CONFIG_X86_64
500 addr |= ((u64)desc.base3 << 32);
501#endif
502 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
503 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
504}
505
506static void
507show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
508{
509 if (!oops_may_print())
510 return;
511
512 if (error_code & X86_PF_INSTR) {
513 unsigned int level;
514 pgd_t *pgd;
515 pte_t *pte;
516
517 pgd = __va(read_cr3_pa());
518 pgd += pgd_index(address);
519
520 pte = lookup_address_in_pgd(pgd, address, &level);
521
522 if (pte && pte_present(*pte) && !pte_exec(*pte))
523 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
524 from_kuid(&init_user_ns, current_uid()));
525 if (pte && pte_present(*pte) && pte_exec(*pte) &&
526 (pgd_flags(*pgd) & _PAGE_USER) &&
527 (__read_cr4() & X86_CR4_SMEP))
528 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
529 from_kuid(&init_user_ns, current_uid()));
530 }
531
532 if (address < PAGE_SIZE && !user_mode(regs))
533 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
534 (void *)address);
535 else
536 pr_alert("BUG: unable to handle page fault for address: %px\n",
537 (void *)address);
538
539 pr_alert("#PF: %s %s in %s mode\n",
540 (error_code & X86_PF_USER) ? "user" : "supervisor",
541 (error_code & X86_PF_INSTR) ? "instruction fetch" :
542 (error_code & X86_PF_WRITE) ? "write access" :
543 "read access",
544 user_mode(regs) ? "user" : "kernel");
545 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
546 !(error_code & X86_PF_PROT) ? "not-present page" :
547 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
548 (error_code & X86_PF_PK) ? "protection keys violation" :
549 "permissions violation");
550
551 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
552 struct desc_ptr idt, gdt;
553 u16 ldtr, tr;
554
555 /*
556 * This can happen for quite a few reasons. The more obvious
557 * ones are faults accessing the GDT, or LDT. Perhaps
558 * surprisingly, if the CPU tries to deliver a benign or
559 * contributory exception from user code and gets a page fault
560 * during delivery, the page fault can be delivered as though
561 * it originated directly from user code. This could happen
562 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
563 * kernel or IST stack.
564 */
565 store_idt(&idt);
566
567 /* Usable even on Xen PV -- it's just slow. */
568 native_store_gdt(&gdt);
569
570 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
571 idt.address, idt.size, gdt.address, gdt.size);
572
573 store_ldt(ldtr);
574 show_ldttss(&gdt, "LDTR", ldtr);
575
576 store_tr(tr);
577 show_ldttss(&gdt, "TR", tr);
578 }
579
580 dump_pagetable(address);
581}
582
583static noinline void
584pgtable_bad(struct pt_regs *regs, unsigned long error_code,
585 unsigned long address)
586{
587 struct task_struct *tsk;
588 unsigned long flags;
589 int sig;
590
591 flags = oops_begin();
592 tsk = current;
593 sig = SIGKILL;
594
595 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
596 tsk->comm, address);
597 dump_pagetable(address);
598
599 if (__die("Bad pagetable", regs, error_code))
600 sig = 0;
601
602 oops_end(flags, regs, sig);
603}
604
605static void set_signal_archinfo(unsigned long address,
606 unsigned long error_code)
607{
608 struct task_struct *tsk = current;
609
610 /*
611 * To avoid leaking information about the kernel page
612 * table layout, pretend that user-mode accesses to
613 * kernel addresses are always protection faults.
614 *
615 * NB: This means that failed vsyscalls with vsyscall=none
616 * will have the PROT bit. This doesn't leak any
617 * information and does not appear to cause any problems.
618 */
619 if (address >= TASK_SIZE_MAX)
620 error_code |= X86_PF_PROT;
621
622 tsk->thread.trap_nr = X86_TRAP_PF;
623 tsk->thread.error_code = error_code | X86_PF_USER;
624 tsk->thread.cr2 = address;
625}
626
627static noinline void
628no_context(struct pt_regs *regs, unsigned long error_code,
629 unsigned long address, int signal, int si_code)
630{
631 struct task_struct *tsk = current;
632 unsigned long flags;
633 int sig;
634
635 if (user_mode(regs)) {
636 /*
637 * This is an implicit supervisor-mode access from user
638 * mode. Bypass all the kernel-mode recovery code and just
639 * OOPS.
640 */
641 goto oops;
642 }
643
644 /* Are we prepared to handle this kernel fault? */
645 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
646 /*
647 * Any interrupt that takes a fault gets the fixup. This makes
648 * the below recursive fault logic only apply to a faults from
649 * task context.
650 */
651 if (in_interrupt())
652 return;
653
654 /*
655 * Per the above we're !in_interrupt(), aka. task context.
656 *
657 * In this case we need to make sure we're not recursively
658 * faulting through the emulate_vsyscall() logic.
659 */
660 if (current->thread.sig_on_uaccess_err && signal) {
661 set_signal_archinfo(address, error_code);
662
663 /* XXX: hwpoison faults will set the wrong code. */
664 force_sig_fault(signal, si_code, (void __user *)address);
665 }
666
667 /*
668 * Barring that, we can do the fixup and be happy.
669 */
670 return;
671 }
672
673#ifdef CONFIG_VMAP_STACK
674 /*
675 * Stack overflow? During boot, we can fault near the initial
676 * stack in the direct map, but that's not an overflow -- check
677 * that we're in vmalloc space to avoid this.
678 */
679 if (is_vmalloc_addr((void *)address) &&
680 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
681 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
682 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
683 /*
684 * We're likely to be running with very little stack space
685 * left. It's plausible that we'd hit this condition but
686 * double-fault even before we get this far, in which case
687 * we're fine: the double-fault handler will deal with it.
688 *
689 * We don't want to make it all the way into the oops code
690 * and then double-fault, though, because we're likely to
691 * break the console driver and lose most of the stack dump.
692 */
693 asm volatile ("movq %[stack], %%rsp\n\t"
694 "call handle_stack_overflow\n\t"
695 "1: jmp 1b"
696 : ASM_CALL_CONSTRAINT
697 : "D" ("kernel stack overflow (page fault)"),
698 "S" (regs), "d" (address),
699 [stack] "rm" (stack));
700 unreachable();
701 }
702#endif
703
704 /*
705 * 32-bit:
706 *
707 * Valid to do another page fault here, because if this fault
708 * had been triggered by is_prefetch fixup_exception would have
709 * handled it.
710 *
711 * 64-bit:
712 *
713 * Hall of shame of CPU/BIOS bugs.
714 */
715 if (is_prefetch(regs, error_code, address))
716 return;
717
718 if (is_errata93(regs, address))
719 return;
720
721 /*
722 * Buggy firmware could access regions which might page fault, try to
723 * recover from such faults.
724 */
725 if (IS_ENABLED(CONFIG_EFI))
726 efi_recover_from_page_fault(address);
727
728oops:
729 /*
730 * Oops. The kernel tried to access some bad page. We'll have to
731 * terminate things with extreme prejudice:
732 */
733 flags = oops_begin();
734
735 show_fault_oops(regs, error_code, address);
736
737 if (task_stack_end_corrupted(tsk))
738 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
739
740 sig = SIGKILL;
741 if (__die("Oops", regs, error_code))
742 sig = 0;
743
744 /* Executive summary in case the body of the oops scrolled away */
745 printk(KERN_DEFAULT "CR2: %016lx\n", address);
746
747 oops_end(flags, regs, sig);
748}
749
750/*
751 * Print out info about fatal segfaults, if the show_unhandled_signals
752 * sysctl is set:
753 */
754static inline void
755show_signal_msg(struct pt_regs *regs, unsigned long error_code,
756 unsigned long address, struct task_struct *tsk)
757{
758 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
759
760 if (!unhandled_signal(tsk, SIGSEGV))
761 return;
762
763 if (!printk_ratelimit())
764 return;
765
766 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
767 loglvl, tsk->comm, task_pid_nr(tsk), address,
768 (void *)regs->ip, (void *)regs->sp, error_code);
769
770 print_vma_addr(KERN_CONT " in ", regs->ip);
771
772 printk(KERN_CONT "\n");
773
774 show_opcodes(regs, loglvl);
775}
776
777/*
778 * The (legacy) vsyscall page is the long page in the kernel portion
779 * of the address space that has user-accessible permissions.
780 */
781static bool is_vsyscall_vaddr(unsigned long vaddr)
782{
783 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
784}
785
786static void
787__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
788 unsigned long address, u32 pkey, int si_code)
789{
790 struct task_struct *tsk = current;
791
792 /* User mode accesses just cause a SIGSEGV */
793 if (user_mode(regs) && (error_code & X86_PF_USER)) {
794 /*
795 * It's possible to have interrupts off here:
796 */
797 local_irq_enable();
798
799 /*
800 * Valid to do another page fault here because this one came
801 * from user space:
802 */
803 if (is_prefetch(regs, error_code, address))
804 return;
805
806 if (is_errata100(regs, address))
807 return;
808
809 /*
810 * To avoid leaking information about the kernel page table
811 * layout, pretend that user-mode accesses to kernel addresses
812 * are always protection faults.
813 */
814 if (address >= TASK_SIZE_MAX)
815 error_code |= X86_PF_PROT;
816
817 if (likely(show_unhandled_signals))
818 show_signal_msg(regs, error_code, address, tsk);
819
820 set_signal_archinfo(address, error_code);
821
822 if (si_code == SEGV_PKUERR)
823 force_sig_pkuerr((void __user *)address, pkey);
824
825 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
826
827 local_irq_disable();
828
829 return;
830 }
831
832 if (is_f00f_bug(regs, address))
833 return;
834
835 no_context(regs, error_code, address, SIGSEGV, si_code);
836}
837
838static noinline void
839bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
840 unsigned long address)
841{
842 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
843}
844
845static void
846__bad_area(struct pt_regs *regs, unsigned long error_code,
847 unsigned long address, u32 pkey, int si_code)
848{
849 struct mm_struct *mm = current->mm;
850 /*
851 * Something tried to access memory that isn't in our memory map..
852 * Fix it, but check if it's kernel or user first..
853 */
854 mmap_read_unlock(mm);
855
856 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
857}
858
859static noinline void
860bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
861{
862 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
863}
864
865static inline bool bad_area_access_from_pkeys(unsigned long error_code,
866 struct vm_area_struct *vma)
867{
868 /* This code is always called on the current mm */
869 bool foreign = false;
870
871 if (!boot_cpu_has(X86_FEATURE_OSPKE))
872 return false;
873 if (error_code & X86_PF_PK)
874 return true;
875 /* this checks permission keys on the VMA: */
876 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
877 (error_code & X86_PF_INSTR), foreign))
878 return true;
879 return false;
880}
881
882static noinline void
883bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
884 unsigned long address, struct vm_area_struct *vma)
885{
886 /*
887 * This OSPKE check is not strictly necessary at runtime.
888 * But, doing it this way allows compiler optimizations
889 * if pkeys are compiled out.
890 */
891 if (bad_area_access_from_pkeys(error_code, vma)) {
892 /*
893 * A protection key fault means that the PKRU value did not allow
894 * access to some PTE. Userspace can figure out what PKRU was
895 * from the XSAVE state. This function captures the pkey from
896 * the vma and passes it to userspace so userspace can discover
897 * which protection key was set on the PTE.
898 *
899 * If we get here, we know that the hardware signaled a X86_PF_PK
900 * fault and that there was a VMA once we got in the fault
901 * handler. It does *not* guarantee that the VMA we find here
902 * was the one that we faulted on.
903 *
904 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
905 * 2. T1 : set PKRU to deny access to pkey=4, touches page
906 * 3. T1 : faults...
907 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
908 * 5. T1 : enters fault handler, takes mmap_lock, etc...
909 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
910 * faulted on a pte with its pkey=4.
911 */
912 u32 pkey = vma_pkey(vma);
913
914 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
915 } else {
916 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
917 }
918}
919
920static void
921do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
922 vm_fault_t fault)
923{
924 /* Kernel mode? Handle exceptions or die: */
925 if (!(error_code & X86_PF_USER)) {
926 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
927 return;
928 }
929
930 /* User-space => ok to do another page fault: */
931 if (is_prefetch(regs, error_code, address))
932 return;
933
934 set_signal_archinfo(address, error_code);
935
936#ifdef CONFIG_MEMORY_FAILURE
937 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
938 struct task_struct *tsk = current;
939 unsigned lsb = 0;
940
941 pr_err(
942 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
943 tsk->comm, tsk->pid, address);
944 if (fault & VM_FAULT_HWPOISON_LARGE)
945 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
946 if (fault & VM_FAULT_HWPOISON)
947 lsb = PAGE_SHIFT;
948 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
949 return;
950 }
951#endif
952 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
953}
954
955static noinline void
956mm_fault_error(struct pt_regs *regs, unsigned long error_code,
957 unsigned long address, vm_fault_t fault)
958{
959 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
960 no_context(regs, error_code, address, 0, 0);
961 return;
962 }
963
964 if (fault & VM_FAULT_OOM) {
965 /* Kernel mode? Handle exceptions or die: */
966 if (!(error_code & X86_PF_USER)) {
967 no_context(regs, error_code, address,
968 SIGSEGV, SEGV_MAPERR);
969 return;
970 }
971
972 /*
973 * We ran out of memory, call the OOM killer, and return the
974 * userspace (which will retry the fault, or kill us if we got
975 * oom-killed):
976 */
977 pagefault_out_of_memory();
978 } else {
979 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
980 VM_FAULT_HWPOISON_LARGE))
981 do_sigbus(regs, error_code, address, fault);
982 else if (fault & VM_FAULT_SIGSEGV)
983 bad_area_nosemaphore(regs, error_code, address);
984 else
985 BUG();
986 }
987}
988
989static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
990{
991 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
992 return 0;
993
994 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
995 return 0;
996
997 return 1;
998}
999
1000/*
1001 * Handle a spurious fault caused by a stale TLB entry.
1002 *
1003 * This allows us to lazily refresh the TLB when increasing the
1004 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1005 * eagerly is very expensive since that implies doing a full
1006 * cross-processor TLB flush, even if no stale TLB entries exist
1007 * on other processors.
1008 *
1009 * Spurious faults may only occur if the TLB contains an entry with
1010 * fewer permission than the page table entry. Non-present (P = 0)
1011 * and reserved bit (R = 1) faults are never spurious.
1012 *
1013 * There are no security implications to leaving a stale TLB when
1014 * increasing the permissions on a page.
1015 *
1016 * Returns non-zero if a spurious fault was handled, zero otherwise.
1017 *
1018 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1019 * (Optional Invalidation).
1020 */
1021static noinline int
1022spurious_kernel_fault(unsigned long error_code, unsigned long address)
1023{
1024 pgd_t *pgd;
1025 p4d_t *p4d;
1026 pud_t *pud;
1027 pmd_t *pmd;
1028 pte_t *pte;
1029 int ret;
1030
1031 /*
1032 * Only writes to RO or instruction fetches from NX may cause
1033 * spurious faults.
1034 *
1035 * These could be from user or supervisor accesses but the TLB
1036 * is only lazily flushed after a kernel mapping protection
1037 * change, so user accesses are not expected to cause spurious
1038 * faults.
1039 */
1040 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1041 error_code != (X86_PF_INSTR | X86_PF_PROT))
1042 return 0;
1043
1044 pgd = init_mm.pgd + pgd_index(address);
1045 if (!pgd_present(*pgd))
1046 return 0;
1047
1048 p4d = p4d_offset(pgd, address);
1049 if (!p4d_present(*p4d))
1050 return 0;
1051
1052 if (p4d_large(*p4d))
1053 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1054
1055 pud = pud_offset(p4d, address);
1056 if (!pud_present(*pud))
1057 return 0;
1058
1059 if (pud_large(*pud))
1060 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1061
1062 pmd = pmd_offset(pud, address);
1063 if (!pmd_present(*pmd))
1064 return 0;
1065
1066 if (pmd_large(*pmd))
1067 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1068
1069 pte = pte_offset_kernel(pmd, address);
1070 if (!pte_present(*pte))
1071 return 0;
1072
1073 ret = spurious_kernel_fault_check(error_code, pte);
1074 if (!ret)
1075 return 0;
1076
1077 /*
1078 * Make sure we have permissions in PMD.
1079 * If not, then there's a bug in the page tables:
1080 */
1081 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1082 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1083
1084 return ret;
1085}
1086NOKPROBE_SYMBOL(spurious_kernel_fault);
1087
1088int show_unhandled_signals = 1;
1089
1090static inline int
1091access_error(unsigned long error_code, struct vm_area_struct *vma)
1092{
1093 /* This is only called for the current mm, so: */
1094 bool foreign = false;
1095
1096 /*
1097 * Read or write was blocked by protection keys. This is
1098 * always an unconditional error and can never result in
1099 * a follow-up action to resolve the fault, like a COW.
1100 */
1101 if (error_code & X86_PF_PK)
1102 return 1;
1103
1104 /*
1105 * Make sure to check the VMA so that we do not perform
1106 * faults just to hit a X86_PF_PK as soon as we fill in a
1107 * page.
1108 */
1109 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1110 (error_code & X86_PF_INSTR), foreign))
1111 return 1;
1112
1113 if (error_code & X86_PF_WRITE) {
1114 /* write, present and write, not present: */
1115 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1116 return 1;
1117 return 0;
1118 }
1119
1120 /* read, present: */
1121 if (unlikely(error_code & X86_PF_PROT))
1122 return 1;
1123
1124 /* read, not present: */
1125 if (unlikely(!vma_is_accessible(vma)))
1126 return 1;
1127
1128 return 0;
1129}
1130
1131static int fault_in_kernel_space(unsigned long address)
1132{
1133 /*
1134 * On 64-bit systems, the vsyscall page is at an address above
1135 * TASK_SIZE_MAX, but is not considered part of the kernel
1136 * address space.
1137 */
1138 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1139 return false;
1140
1141 return address >= TASK_SIZE_MAX;
1142}
1143
1144/*
1145 * Called for all faults where 'address' is part of the kernel address
1146 * space. Might get called for faults that originate from *code* that
1147 * ran in userspace or the kernel.
1148 */
1149static void
1150do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1151 unsigned long address)
1152{
1153 /*
1154 * Protection keys exceptions only happen on user pages. We
1155 * have no user pages in the kernel portion of the address
1156 * space, so do not expect them here.
1157 */
1158 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1159
1160#ifdef CONFIG_X86_32
1161 /*
1162 * We can fault-in kernel-space virtual memory on-demand. The
1163 * 'reference' page table is init_mm.pgd.
1164 *
1165 * NOTE! We MUST NOT take any locks for this case. We may
1166 * be in an interrupt or a critical region, and should
1167 * only copy the information from the master page table,
1168 * nothing more.
1169 *
1170 * Before doing this on-demand faulting, ensure that the
1171 * fault is not any of the following:
1172 * 1. A fault on a PTE with a reserved bit set.
1173 * 2. A fault caused by a user-mode access. (Do not demand-
1174 * fault kernel memory due to user-mode accesses).
1175 * 3. A fault caused by a page-level protection violation.
1176 * (A demand fault would be on a non-present page which
1177 * would have X86_PF_PROT==0).
1178 *
1179 * This is only needed to close a race condition on x86-32 in
1180 * the vmalloc mapping/unmapping code. See the comment above
1181 * vmalloc_fault() for details. On x86-64 the race does not
1182 * exist as the vmalloc mappings don't need to be synchronized
1183 * there.
1184 */
1185 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1186 if (vmalloc_fault(address) >= 0)
1187 return;
1188 }
1189#endif
1190
1191 /* Was the fault spurious, caused by lazy TLB invalidation? */
1192 if (spurious_kernel_fault(hw_error_code, address))
1193 return;
1194
1195 /* kprobes don't want to hook the spurious faults: */
1196 if (kprobe_page_fault(regs, X86_TRAP_PF))
1197 return;
1198
1199 /*
1200 * Note, despite being a "bad area", there are quite a few
1201 * acceptable reasons to get here, such as erratum fixups
1202 * and handling kernel code that can fault, like get_user().
1203 *
1204 * Don't take the mm semaphore here. If we fixup a prefetch
1205 * fault we could otherwise deadlock:
1206 */
1207 bad_area_nosemaphore(regs, hw_error_code, address);
1208}
1209NOKPROBE_SYMBOL(do_kern_addr_fault);
1210
1211/* Handle faults in the user portion of the address space */
1212static inline
1213void do_user_addr_fault(struct pt_regs *regs,
1214 unsigned long hw_error_code,
1215 unsigned long address)
1216{
1217 struct vm_area_struct *vma;
1218 struct task_struct *tsk;
1219 struct mm_struct *mm;
1220 vm_fault_t fault;
1221 unsigned int flags = FAULT_FLAG_DEFAULT;
1222
1223 tsk = current;
1224 mm = tsk->mm;
1225
1226 /* kprobes don't want to hook the spurious faults: */
1227 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1228 return;
1229
1230 /*
1231 * Reserved bits are never expected to be set on
1232 * entries in the user portion of the page tables.
1233 */
1234 if (unlikely(hw_error_code & X86_PF_RSVD))
1235 pgtable_bad(regs, hw_error_code, address);
1236
1237 /*
1238 * If SMAP is on, check for invalid kernel (supervisor) access to user
1239 * pages in the user address space. The odd case here is WRUSS,
1240 * which, according to the preliminary documentation, does not respect
1241 * SMAP and will have the USER bit set so, in all cases, SMAP
1242 * enforcement appears to be consistent with the USER bit.
1243 */
1244 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1245 !(hw_error_code & X86_PF_USER) &&
1246 !(regs->flags & X86_EFLAGS_AC)))
1247 {
1248 bad_area_nosemaphore(regs, hw_error_code, address);
1249 return;
1250 }
1251
1252 /*
1253 * If we're in an interrupt, have no user context or are running
1254 * in a region with pagefaults disabled then we must not take the fault
1255 */
1256 if (unlikely(faulthandler_disabled() || !mm)) {
1257 bad_area_nosemaphore(regs, hw_error_code, address);
1258 return;
1259 }
1260
1261 /*
1262 * It's safe to allow irq's after cr2 has been saved and the
1263 * vmalloc fault has been handled.
1264 *
1265 * User-mode registers count as a user access even for any
1266 * potential system fault or CPU buglet:
1267 */
1268 if (user_mode(regs)) {
1269 local_irq_enable();
1270 flags |= FAULT_FLAG_USER;
1271 } else {
1272 if (regs->flags & X86_EFLAGS_IF)
1273 local_irq_enable();
1274 }
1275
1276 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1277
1278 if (hw_error_code & X86_PF_WRITE)
1279 flags |= FAULT_FLAG_WRITE;
1280 if (hw_error_code & X86_PF_INSTR)
1281 flags |= FAULT_FLAG_INSTRUCTION;
1282
1283#ifdef CONFIG_X86_64
1284 /*
1285 * Faults in the vsyscall page might need emulation. The
1286 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1287 * considered to be part of the user address space.
1288 *
1289 * The vsyscall page does not have a "real" VMA, so do this
1290 * emulation before we go searching for VMAs.
1291 *
1292 * PKRU never rejects instruction fetches, so we don't need
1293 * to consider the PF_PK bit.
1294 */
1295 if (is_vsyscall_vaddr(address)) {
1296 if (emulate_vsyscall(hw_error_code, regs, address))
1297 return;
1298 }
1299#endif
1300
1301 /*
1302 * Kernel-mode access to the user address space should only occur
1303 * on well-defined single instructions listed in the exception
1304 * tables. But, an erroneous kernel fault occurring outside one of
1305 * those areas which also holds mmap_lock might deadlock attempting
1306 * to validate the fault against the address space.
1307 *
1308 * Only do the expensive exception table search when we might be at
1309 * risk of a deadlock. This happens if we
1310 * 1. Failed to acquire mmap_lock, and
1311 * 2. The access did not originate in userspace.
1312 */
1313 if (unlikely(!mmap_read_trylock(mm))) {
1314 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1315 /*
1316 * Fault from code in kernel from
1317 * which we do not expect faults.
1318 */
1319 bad_area_nosemaphore(regs, hw_error_code, address);
1320 return;
1321 }
1322retry:
1323 mmap_read_lock(mm);
1324 } else {
1325 /*
1326 * The above down_read_trylock() might have succeeded in
1327 * which case we'll have missed the might_sleep() from
1328 * down_read():
1329 */
1330 might_sleep();
1331 }
1332
1333 vma = find_vma(mm, address);
1334 if (unlikely(!vma)) {
1335 bad_area(regs, hw_error_code, address);
1336 return;
1337 }
1338 if (likely(vma->vm_start <= address))
1339 goto good_area;
1340 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1341 bad_area(regs, hw_error_code, address);
1342 return;
1343 }
1344 if (unlikely(expand_stack(vma, address))) {
1345 bad_area(regs, hw_error_code, address);
1346 return;
1347 }
1348
1349 /*
1350 * Ok, we have a good vm_area for this memory access, so
1351 * we can handle it..
1352 */
1353good_area:
1354 if (unlikely(access_error(hw_error_code, vma))) {
1355 bad_area_access_error(regs, hw_error_code, address, vma);
1356 return;
1357 }
1358
1359 /*
1360 * If for any reason at all we couldn't handle the fault,
1361 * make sure we exit gracefully rather than endlessly redo
1362 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1363 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1364 *
1365 * Note that handle_userfault() may also release and reacquire mmap_lock
1366 * (and not return with VM_FAULT_RETRY), when returning to userland to
1367 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1368 * (potentially after handling any pending signal during the return to
1369 * userland). The return to userland is identified whenever
1370 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1371 */
1372 fault = handle_mm_fault(vma, address, flags, regs);
1373
1374 /* Quick path to respond to signals */
1375 if (fault_signal_pending(fault, regs)) {
1376 if (!user_mode(regs))
1377 no_context(regs, hw_error_code, address, SIGBUS,
1378 BUS_ADRERR);
1379 return;
1380 }
1381
1382 /*
1383 * If we need to retry the mmap_lock has already been released,
1384 * and if there is a fatal signal pending there is no guarantee
1385 * that we made any progress. Handle this case first.
1386 */
1387 if (unlikely((fault & VM_FAULT_RETRY) &&
1388 (flags & FAULT_FLAG_ALLOW_RETRY))) {
1389 flags |= FAULT_FLAG_TRIED;
1390 goto retry;
1391 }
1392
1393 mmap_read_unlock(mm);
1394 if (unlikely(fault & VM_FAULT_ERROR)) {
1395 mm_fault_error(regs, hw_error_code, address, fault);
1396 return;
1397 }
1398
1399 check_v8086_mode(regs, address, tsk);
1400}
1401NOKPROBE_SYMBOL(do_user_addr_fault);
1402
1403static __always_inline void
1404trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1405 unsigned long address)
1406{
1407 if (!trace_pagefault_enabled())
1408 return;
1409
1410 if (user_mode(regs))
1411 trace_page_fault_user(address, regs, error_code);
1412 else
1413 trace_page_fault_kernel(address, regs, error_code);
1414}
1415
1416static __always_inline void
1417handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1418 unsigned long address)
1419{
1420 trace_page_fault_entries(regs, error_code, address);
1421
1422 if (unlikely(kmmio_fault(regs, address)))
1423 return;
1424
1425 /* Was the fault on kernel-controlled part of the address space? */
1426 if (unlikely(fault_in_kernel_space(address))) {
1427 do_kern_addr_fault(regs, error_code, address);
1428 } else {
1429 do_user_addr_fault(regs, error_code, address);
1430 /*
1431 * User address page fault handling might have reenabled
1432 * interrupts. Fixing up all potential exit points of
1433 * do_user_addr_fault() and its leaf functions is just not
1434 * doable w/o creating an unholy mess or turning the code
1435 * upside down.
1436 */
1437 local_irq_disable();
1438 }
1439}
1440
1441DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1442{
1443 unsigned long address = read_cr2();
1444 irqentry_state_t state;
1445
1446 prefetchw(¤t->mm->mmap_lock);
1447
1448 /*
1449 * KVM has two types of events that are, logically, interrupts, but
1450 * are unfortunately delivered using the #PF vector. These events are
1451 * "you just accessed valid memory, but the host doesn't have it right
1452 * now, so I'll put you to sleep if you continue" and "that memory
1453 * you tried to access earlier is available now."
1454 *
1455 * We are relying on the interrupted context being sane (valid RSP,
1456 * relevant locks not held, etc.), which is fine as long as the
1457 * interrupted context had IF=1. We are also relying on the KVM
1458 * async pf type field and CR2 being read consistently instead of
1459 * getting values from real and async page faults mixed up.
1460 *
1461 * Fingers crossed.
1462 *
1463 * The async #PF handling code takes care of idtentry handling
1464 * itself.
1465 */
1466 if (kvm_handle_async_pf(regs, (u32)address))
1467 return;
1468
1469 /*
1470 * Entry handling for valid #PF from kernel mode is slightly
1471 * different: RCU is already watching and rcu_irq_enter() must not
1472 * be invoked because a kernel fault on a user space address might
1473 * sleep.
1474 *
1475 * In case the fault hit a RCU idle region the conditional entry
1476 * code reenabled RCU to avoid subsequent wreckage which helps
1477 * debugability.
1478 */
1479 state = irqentry_enter(regs);
1480
1481 instrumentation_begin();
1482 handle_page_fault(regs, error_code, address);
1483 instrumentation_end();
1484
1485 irqentry_exit(regs, state);
1486}
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
13#include <linux/perf_event.h> /* perf_sw_event */
14#include <linux/hugetlb.h> /* hstate_index_to_shift */
15#include <linux/prefetch.h> /* prefetchw */
16#include <linux/context_tracking.h> /* exception_enter(), ... */
17
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21#include <asm/fixmap.h> /* VSYSCALL_START */
22
23#define CREATE_TRACE_POINTS
24#include <asm/trace/exceptions.h>
25
26/*
27 * Page fault error code bits:
28 *
29 * bit 0 == 0: no page found 1: protection fault
30 * bit 1 == 0: read access 1: write access
31 * bit 2 == 0: kernel-mode access 1: user-mode access
32 * bit 3 == 1: use of reserved bit detected
33 * bit 4 == 1: fault was an instruction fetch
34 */
35enum x86_pf_error_code {
36
37 PF_PROT = 1 << 0,
38 PF_WRITE = 1 << 1,
39 PF_USER = 1 << 2,
40 PF_RSVD = 1 << 3,
41 PF_INSTR = 1 << 4,
42};
43
44/*
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
47 */
48static inline int __kprobes
49kmmio_fault(struct pt_regs *regs, unsigned long addr)
50{
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs, addr) == 1)
53 return -1;
54 return 0;
55}
56
57static inline int __kprobes kprobes_fault(struct pt_regs *regs)
58{
59 int ret = 0;
60
61 /* kprobe_running() needs smp_processor_id() */
62 if (kprobes_built_in() && !user_mode_vm(regs)) {
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
68
69 return ret;
70}
71
72/*
73 * Prefetch quirks:
74 *
75 * 32-bit mode:
76 *
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
79 *
80 * 64-bit mode:
81 *
82 * Sometimes the CPU reports invalid exceptions on prefetch.
83 * Check that here and ignore it.
84 *
85 * Opcode checker based on code by Richard Brunner.
86 */
87static inline int
88check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
89 unsigned char opcode, int *prefetch)
90{
91 unsigned char instr_hi = opcode & 0xf0;
92 unsigned char instr_lo = opcode & 0x0f;
93
94 switch (instr_hi) {
95 case 0x20:
96 case 0x30:
97 /*
98 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
99 * In X86_64 long mode, the CPU will signal invalid
100 * opcode if some of these prefixes are present so
101 * X86_64 will never get here anyway
102 */
103 return ((instr_lo & 7) == 0x6);
104#ifdef CONFIG_X86_64
105 case 0x40:
106 /*
107 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
108 * Need to figure out under what instruction mode the
109 * instruction was issued. Could check the LDT for lm,
110 * but for now it's good enough to assume that long
111 * mode only uses well known segments or kernel.
112 */
113 return (!user_mode(regs) || user_64bit_mode(regs));
114#endif
115 case 0x60:
116 /* 0x64 thru 0x67 are valid prefixes in all modes. */
117 return (instr_lo & 0xC) == 0x4;
118 case 0xF0:
119 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
120 return !instr_lo || (instr_lo>>1) == 1;
121 case 0x00:
122 /* Prefetch instruction is 0x0F0D or 0x0F18 */
123 if (probe_kernel_address(instr, opcode))
124 return 0;
125
126 *prefetch = (instr_lo == 0xF) &&
127 (opcode == 0x0D || opcode == 0x18);
128 return 0;
129 default:
130 return 0;
131 }
132}
133
134static int
135is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
136{
137 unsigned char *max_instr;
138 unsigned char *instr;
139 int prefetch = 0;
140
141 /*
142 * If it was a exec (instruction fetch) fault on NX page, then
143 * do not ignore the fault:
144 */
145 if (error_code & PF_INSTR)
146 return 0;
147
148 instr = (void *)convert_ip_to_linear(current, regs);
149 max_instr = instr + 15;
150
151 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
152 return 0;
153
154 while (instr < max_instr) {
155 unsigned char opcode;
156
157 if (probe_kernel_address(instr, opcode))
158 break;
159
160 instr++;
161
162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
163 break;
164 }
165 return prefetch;
166}
167
168static void
169force_sig_info_fault(int si_signo, int si_code, unsigned long address,
170 struct task_struct *tsk, int fault)
171{
172 unsigned lsb = 0;
173 siginfo_t info;
174
175 info.si_signo = si_signo;
176 info.si_errno = 0;
177 info.si_code = si_code;
178 info.si_addr = (void __user *)address;
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183 info.si_addr_lsb = lsb;
184
185 force_sig_info(si_signo, &info, tsk);
186}
187
188DEFINE_SPINLOCK(pgd_lock);
189LIST_HEAD(pgd_list);
190
191#ifdef CONFIG_X86_32
192static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
193{
194 unsigned index = pgd_index(address);
195 pgd_t *pgd_k;
196 pud_t *pud, *pud_k;
197 pmd_t *pmd, *pmd_k;
198
199 pgd += index;
200 pgd_k = init_mm.pgd + index;
201
202 if (!pgd_present(*pgd_k))
203 return NULL;
204
205 /*
206 * set_pgd(pgd, *pgd_k); here would be useless on PAE
207 * and redundant with the set_pmd() on non-PAE. As would
208 * set_pud.
209 */
210 pud = pud_offset(pgd, address);
211 pud_k = pud_offset(pgd_k, address);
212 if (!pud_present(*pud_k))
213 return NULL;
214
215 pmd = pmd_offset(pud, address);
216 pmd_k = pmd_offset(pud_k, address);
217 if (!pmd_present(*pmd_k))
218 return NULL;
219
220 if (!pmd_present(*pmd))
221 set_pmd(pmd, *pmd_k);
222 else
223 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
224
225 return pmd_k;
226}
227
228void vmalloc_sync_all(void)
229{
230 unsigned long address;
231
232 if (SHARED_KERNEL_PMD)
233 return;
234
235 for (address = VMALLOC_START & PMD_MASK;
236 address >= TASK_SIZE && address < FIXADDR_TOP;
237 address += PMD_SIZE) {
238 struct page *page;
239
240 spin_lock(&pgd_lock);
241 list_for_each_entry(page, &pgd_list, lru) {
242 spinlock_t *pgt_lock;
243 pmd_t *ret;
244
245 /* the pgt_lock only for Xen */
246 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
247
248 spin_lock(pgt_lock);
249 ret = vmalloc_sync_one(page_address(page), address);
250 spin_unlock(pgt_lock);
251
252 if (!ret)
253 break;
254 }
255 spin_unlock(&pgd_lock);
256 }
257}
258
259/*
260 * 32-bit:
261 *
262 * Handle a fault on the vmalloc or module mapping area
263 */
264static noinline __kprobes int vmalloc_fault(unsigned long address)
265{
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269
270 /* Make sure we are in vmalloc area: */
271 if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 return -1;
273
274 WARN_ON_ONCE(in_nmi());
275
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
291
292 return 0;
293}
294
295/*
296 * Did it hit the DOS screen memory VA from vm86 mode?
297 */
298static inline void
299check_v8086_mode(struct pt_regs *regs, unsigned long address,
300 struct task_struct *tsk)
301{
302 unsigned long bit;
303
304 if (!v8086_mode(regs))
305 return;
306
307 bit = (address - 0xA0000) >> PAGE_SHIFT;
308 if (bit < 32)
309 tsk->thread.screen_bitmap |= 1 << bit;
310}
311
312static bool low_pfn(unsigned long pfn)
313{
314 return pfn < max_low_pfn;
315}
316
317static void dump_pagetable(unsigned long address)
318{
319 pgd_t *base = __va(read_cr3());
320 pgd_t *pgd = &base[pgd_index(address)];
321 pmd_t *pmd;
322 pte_t *pte;
323
324#ifdef CONFIG_X86_PAE
325 printk("*pdpt = %016Lx ", pgd_val(*pgd));
326 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
327 goto out;
328#endif
329 pmd = pmd_offset(pud_offset(pgd, address), address);
330 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
331
332 /*
333 * We must not directly access the pte in the highpte
334 * case if the page table is located in highmem.
335 * And let's rather not kmap-atomic the pte, just in case
336 * it's allocated already:
337 */
338 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
339 goto out;
340
341 pte = pte_offset_kernel(pmd, address);
342 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
343out:
344 printk("\n");
345}
346
347#else /* CONFIG_X86_64: */
348
349void vmalloc_sync_all(void)
350{
351 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
352}
353
354/*
355 * 64-bit:
356 *
357 * Handle a fault on the vmalloc area
358 *
359 * This assumes no large pages in there.
360 */
361static noinline __kprobes int vmalloc_fault(unsigned long address)
362{
363 pgd_t *pgd, *pgd_ref;
364 pud_t *pud, *pud_ref;
365 pmd_t *pmd, *pmd_ref;
366 pte_t *pte, *pte_ref;
367
368 /* Make sure we are in vmalloc area: */
369 if (!(address >= VMALLOC_START && address < VMALLOC_END))
370 return -1;
371
372 WARN_ON_ONCE(in_nmi());
373
374 /*
375 * Copy kernel mappings over when needed. This can also
376 * happen within a race in page table update. In the later
377 * case just flush:
378 */
379 pgd = pgd_offset(current->active_mm, address);
380 pgd_ref = pgd_offset_k(address);
381 if (pgd_none(*pgd_ref))
382 return -1;
383
384 if (pgd_none(*pgd)) {
385 set_pgd(pgd, *pgd_ref);
386 arch_flush_lazy_mmu_mode();
387 } else {
388 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
389 }
390
391 /*
392 * Below here mismatches are bugs because these lower tables
393 * are shared:
394 */
395
396 pud = pud_offset(pgd, address);
397 pud_ref = pud_offset(pgd_ref, address);
398 if (pud_none(*pud_ref))
399 return -1;
400
401 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
402 BUG();
403
404 pmd = pmd_offset(pud, address);
405 pmd_ref = pmd_offset(pud_ref, address);
406 if (pmd_none(*pmd_ref))
407 return -1;
408
409 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
410 BUG();
411
412 pte_ref = pte_offset_kernel(pmd_ref, address);
413 if (!pte_present(*pte_ref))
414 return -1;
415
416 pte = pte_offset_kernel(pmd, address);
417
418 /*
419 * Don't use pte_page here, because the mappings can point
420 * outside mem_map, and the NUMA hash lookup cannot handle
421 * that:
422 */
423 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
424 BUG();
425
426 return 0;
427}
428
429#ifdef CONFIG_CPU_SUP_AMD
430static const char errata93_warning[] =
431KERN_ERR
432"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
433"******* Working around it, but it may cause SEGVs or burn power.\n"
434"******* Please consider a BIOS update.\n"
435"******* Disabling USB legacy in the BIOS may also help.\n";
436#endif
437
438/*
439 * No vm86 mode in 64-bit mode:
440 */
441static inline void
442check_v8086_mode(struct pt_regs *regs, unsigned long address,
443 struct task_struct *tsk)
444{
445}
446
447static int bad_address(void *p)
448{
449 unsigned long dummy;
450
451 return probe_kernel_address((unsigned long *)p, dummy);
452}
453
454static void dump_pagetable(unsigned long address)
455{
456 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
457 pgd_t *pgd = base + pgd_index(address);
458 pud_t *pud;
459 pmd_t *pmd;
460 pte_t *pte;
461
462 if (bad_address(pgd))
463 goto bad;
464
465 printk("PGD %lx ", pgd_val(*pgd));
466
467 if (!pgd_present(*pgd))
468 goto out;
469
470 pud = pud_offset(pgd, address);
471 if (bad_address(pud))
472 goto bad;
473
474 printk("PUD %lx ", pud_val(*pud));
475 if (!pud_present(*pud) || pud_large(*pud))
476 goto out;
477
478 pmd = pmd_offset(pud, address);
479 if (bad_address(pmd))
480 goto bad;
481
482 printk("PMD %lx ", pmd_val(*pmd));
483 if (!pmd_present(*pmd) || pmd_large(*pmd))
484 goto out;
485
486 pte = pte_offset_kernel(pmd, address);
487 if (bad_address(pte))
488 goto bad;
489
490 printk("PTE %lx", pte_val(*pte));
491out:
492 printk("\n");
493 return;
494bad:
495 printk("BAD\n");
496}
497
498#endif /* CONFIG_X86_64 */
499
500/*
501 * Workaround for K8 erratum #93 & buggy BIOS.
502 *
503 * BIOS SMM functions are required to use a specific workaround
504 * to avoid corruption of the 64bit RIP register on C stepping K8.
505 *
506 * A lot of BIOS that didn't get tested properly miss this.
507 *
508 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
509 * Try to work around it here.
510 *
511 * Note we only handle faults in kernel here.
512 * Does nothing on 32-bit.
513 */
514static int is_errata93(struct pt_regs *regs, unsigned long address)
515{
516#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
517 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
518 || boot_cpu_data.x86 != 0xf)
519 return 0;
520
521 if (address != regs->ip)
522 return 0;
523
524 if ((address >> 32) != 0)
525 return 0;
526
527 address |= 0xffffffffUL << 32;
528 if ((address >= (u64)_stext && address <= (u64)_etext) ||
529 (address >= MODULES_VADDR && address <= MODULES_END)) {
530 printk_once(errata93_warning);
531 regs->ip = address;
532 return 1;
533 }
534#endif
535 return 0;
536}
537
538/*
539 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
540 * to illegal addresses >4GB.
541 *
542 * We catch this in the page fault handler because these addresses
543 * are not reachable. Just detect this case and return. Any code
544 * segment in LDT is compatibility mode.
545 */
546static int is_errata100(struct pt_regs *regs, unsigned long address)
547{
548#ifdef CONFIG_X86_64
549 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
550 return 1;
551#endif
552 return 0;
553}
554
555static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
556{
557#ifdef CONFIG_X86_F00F_BUG
558 unsigned long nr;
559
560 /*
561 * Pentium F0 0F C7 C8 bug workaround:
562 */
563 if (boot_cpu_has_bug(X86_BUG_F00F)) {
564 nr = (address - idt_descr.address) >> 3;
565
566 if (nr == 6) {
567 do_invalid_op(regs, 0);
568 return 1;
569 }
570 }
571#endif
572 return 0;
573}
574
575static const char nx_warning[] = KERN_CRIT
576"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
577
578static void
579show_fault_oops(struct pt_regs *regs, unsigned long error_code,
580 unsigned long address)
581{
582 if (!oops_may_print())
583 return;
584
585 if (error_code & PF_INSTR) {
586 unsigned int level;
587 pgd_t *pgd;
588 pte_t *pte;
589
590 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
591 pgd += pgd_index(address);
592
593 pte = lookup_address_in_pgd(pgd, address, &level);
594
595 if (pte && pte_present(*pte) && !pte_exec(*pte))
596 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
597 }
598
599 printk(KERN_ALERT "BUG: unable to handle kernel ");
600 if (address < PAGE_SIZE)
601 printk(KERN_CONT "NULL pointer dereference");
602 else
603 printk(KERN_CONT "paging request");
604
605 printk(KERN_CONT " at %p\n", (void *) address);
606 printk(KERN_ALERT "IP:");
607 printk_address(regs->ip);
608
609 dump_pagetable(address);
610}
611
612static noinline void
613pgtable_bad(struct pt_regs *regs, unsigned long error_code,
614 unsigned long address)
615{
616 struct task_struct *tsk;
617 unsigned long flags;
618 int sig;
619
620 flags = oops_begin();
621 tsk = current;
622 sig = SIGKILL;
623
624 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
625 tsk->comm, address);
626 dump_pagetable(address);
627
628 tsk->thread.cr2 = address;
629 tsk->thread.trap_nr = X86_TRAP_PF;
630 tsk->thread.error_code = error_code;
631
632 if (__die("Bad pagetable", regs, error_code))
633 sig = 0;
634
635 oops_end(flags, regs, sig);
636}
637
638static noinline void
639no_context(struct pt_regs *regs, unsigned long error_code,
640 unsigned long address, int signal, int si_code)
641{
642 struct task_struct *tsk = current;
643 unsigned long *stackend;
644 unsigned long flags;
645 int sig;
646
647 /* Are we prepared to handle this kernel fault? */
648 if (fixup_exception(regs)) {
649 /*
650 * Any interrupt that takes a fault gets the fixup. This makes
651 * the below recursive fault logic only apply to a faults from
652 * task context.
653 */
654 if (in_interrupt())
655 return;
656
657 /*
658 * Per the above we're !in_interrupt(), aka. task context.
659 *
660 * In this case we need to make sure we're not recursively
661 * faulting through the emulate_vsyscall() logic.
662 */
663 if (current_thread_info()->sig_on_uaccess_error && signal) {
664 tsk->thread.trap_nr = X86_TRAP_PF;
665 tsk->thread.error_code = error_code | PF_USER;
666 tsk->thread.cr2 = address;
667
668 /* XXX: hwpoison faults will set the wrong code. */
669 force_sig_info_fault(signal, si_code, address, tsk, 0);
670 }
671
672 /*
673 * Barring that, we can do the fixup and be happy.
674 */
675 return;
676 }
677
678 /*
679 * 32-bit:
680 *
681 * Valid to do another page fault here, because if this fault
682 * had been triggered by is_prefetch fixup_exception would have
683 * handled it.
684 *
685 * 64-bit:
686 *
687 * Hall of shame of CPU/BIOS bugs.
688 */
689 if (is_prefetch(regs, error_code, address))
690 return;
691
692 if (is_errata93(regs, address))
693 return;
694
695 /*
696 * Oops. The kernel tried to access some bad page. We'll have to
697 * terminate things with extreme prejudice:
698 */
699 flags = oops_begin();
700
701 show_fault_oops(regs, error_code, address);
702
703 stackend = end_of_stack(tsk);
704 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
705 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
706
707 tsk->thread.cr2 = address;
708 tsk->thread.trap_nr = X86_TRAP_PF;
709 tsk->thread.error_code = error_code;
710
711 sig = SIGKILL;
712 if (__die("Oops", regs, error_code))
713 sig = 0;
714
715 /* Executive summary in case the body of the oops scrolled away */
716 printk(KERN_DEFAULT "CR2: %016lx\n", address);
717
718 oops_end(flags, regs, sig);
719}
720
721/*
722 * Print out info about fatal segfaults, if the show_unhandled_signals
723 * sysctl is set:
724 */
725static inline void
726show_signal_msg(struct pt_regs *regs, unsigned long error_code,
727 unsigned long address, struct task_struct *tsk)
728{
729 if (!unhandled_signal(tsk, SIGSEGV))
730 return;
731
732 if (!printk_ratelimit())
733 return;
734
735 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
736 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
737 tsk->comm, task_pid_nr(tsk), address,
738 (void *)regs->ip, (void *)regs->sp, error_code);
739
740 print_vma_addr(KERN_CONT " in ", regs->ip);
741
742 printk(KERN_CONT "\n");
743}
744
745static void
746__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
747 unsigned long address, int si_code)
748{
749 struct task_struct *tsk = current;
750
751 /* User mode accesses just cause a SIGSEGV */
752 if (error_code & PF_USER) {
753 /*
754 * It's possible to have interrupts off here:
755 */
756 local_irq_enable();
757
758 /*
759 * Valid to do another page fault here because this one came
760 * from user space:
761 */
762 if (is_prefetch(regs, error_code, address))
763 return;
764
765 if (is_errata100(regs, address))
766 return;
767
768#ifdef CONFIG_X86_64
769 /*
770 * Instruction fetch faults in the vsyscall page might need
771 * emulation.
772 */
773 if (unlikely((error_code & PF_INSTR) &&
774 ((address & ~0xfff) == VSYSCALL_START))) {
775 if (emulate_vsyscall(regs, address))
776 return;
777 }
778#endif
779 /* Kernel addresses are always protection faults: */
780 if (address >= TASK_SIZE)
781 error_code |= PF_PROT;
782
783 if (likely(show_unhandled_signals))
784 show_signal_msg(regs, error_code, address, tsk);
785
786 tsk->thread.cr2 = address;
787 tsk->thread.error_code = error_code;
788 tsk->thread.trap_nr = X86_TRAP_PF;
789
790 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
791
792 return;
793 }
794
795 if (is_f00f_bug(regs, address))
796 return;
797
798 no_context(regs, error_code, address, SIGSEGV, si_code);
799}
800
801static noinline void
802bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
803 unsigned long address)
804{
805 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
806}
807
808static void
809__bad_area(struct pt_regs *regs, unsigned long error_code,
810 unsigned long address, int si_code)
811{
812 struct mm_struct *mm = current->mm;
813
814 /*
815 * Something tried to access memory that isn't in our memory map..
816 * Fix it, but check if it's kernel or user first..
817 */
818 up_read(&mm->mmap_sem);
819
820 __bad_area_nosemaphore(regs, error_code, address, si_code);
821}
822
823static noinline void
824bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
825{
826 __bad_area(regs, error_code, address, SEGV_MAPERR);
827}
828
829static noinline void
830bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
831 unsigned long address)
832{
833 __bad_area(regs, error_code, address, SEGV_ACCERR);
834}
835
836static void
837do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
838 unsigned int fault)
839{
840 struct task_struct *tsk = current;
841 struct mm_struct *mm = tsk->mm;
842 int code = BUS_ADRERR;
843
844 up_read(&mm->mmap_sem);
845
846 /* Kernel mode? Handle exceptions or die: */
847 if (!(error_code & PF_USER)) {
848 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
849 return;
850 }
851
852 /* User-space => ok to do another page fault: */
853 if (is_prefetch(regs, error_code, address))
854 return;
855
856 tsk->thread.cr2 = address;
857 tsk->thread.error_code = error_code;
858 tsk->thread.trap_nr = X86_TRAP_PF;
859
860#ifdef CONFIG_MEMORY_FAILURE
861 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
862 printk(KERN_ERR
863 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
864 tsk->comm, tsk->pid, address);
865 code = BUS_MCEERR_AR;
866 }
867#endif
868 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
869}
870
871static noinline void
872mm_fault_error(struct pt_regs *regs, unsigned long error_code,
873 unsigned long address, unsigned int fault)
874{
875 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
876 up_read(¤t->mm->mmap_sem);
877 no_context(regs, error_code, address, 0, 0);
878 return;
879 }
880
881 if (fault & VM_FAULT_OOM) {
882 /* Kernel mode? Handle exceptions or die: */
883 if (!(error_code & PF_USER)) {
884 up_read(¤t->mm->mmap_sem);
885 no_context(regs, error_code, address,
886 SIGSEGV, SEGV_MAPERR);
887 return;
888 }
889
890 up_read(¤t->mm->mmap_sem);
891
892 /*
893 * We ran out of memory, call the OOM killer, and return the
894 * userspace (which will retry the fault, or kill us if we got
895 * oom-killed):
896 */
897 pagefault_out_of_memory();
898 } else {
899 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
900 VM_FAULT_HWPOISON_LARGE))
901 do_sigbus(regs, error_code, address, fault);
902 else
903 BUG();
904 }
905}
906
907static int spurious_fault_check(unsigned long error_code, pte_t *pte)
908{
909 if ((error_code & PF_WRITE) && !pte_write(*pte))
910 return 0;
911
912 if ((error_code & PF_INSTR) && !pte_exec(*pte))
913 return 0;
914
915 return 1;
916}
917
918/*
919 * Handle a spurious fault caused by a stale TLB entry.
920 *
921 * This allows us to lazily refresh the TLB when increasing the
922 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
923 * eagerly is very expensive since that implies doing a full
924 * cross-processor TLB flush, even if no stale TLB entries exist
925 * on other processors.
926 *
927 * There are no security implications to leaving a stale TLB when
928 * increasing the permissions on a page.
929 */
930static noinline __kprobes int
931spurious_fault(unsigned long error_code, unsigned long address)
932{
933 pgd_t *pgd;
934 pud_t *pud;
935 pmd_t *pmd;
936 pte_t *pte;
937 int ret;
938
939 /* Reserved-bit violation or user access to kernel space? */
940 if (error_code & (PF_USER | PF_RSVD))
941 return 0;
942
943 pgd = init_mm.pgd + pgd_index(address);
944 if (!pgd_present(*pgd))
945 return 0;
946
947 pud = pud_offset(pgd, address);
948 if (!pud_present(*pud))
949 return 0;
950
951 if (pud_large(*pud))
952 return spurious_fault_check(error_code, (pte_t *) pud);
953
954 pmd = pmd_offset(pud, address);
955 if (!pmd_present(*pmd))
956 return 0;
957
958 if (pmd_large(*pmd))
959 return spurious_fault_check(error_code, (pte_t *) pmd);
960
961 pte = pte_offset_kernel(pmd, address);
962 if (!pte_present(*pte))
963 return 0;
964
965 ret = spurious_fault_check(error_code, pte);
966 if (!ret)
967 return 0;
968
969 /*
970 * Make sure we have permissions in PMD.
971 * If not, then there's a bug in the page tables:
972 */
973 ret = spurious_fault_check(error_code, (pte_t *) pmd);
974 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
975
976 return ret;
977}
978
979int show_unhandled_signals = 1;
980
981static inline int
982access_error(unsigned long error_code, struct vm_area_struct *vma)
983{
984 if (error_code & PF_WRITE) {
985 /* write, present and write, not present: */
986 if (unlikely(!(vma->vm_flags & VM_WRITE)))
987 return 1;
988 return 0;
989 }
990
991 /* read, present: */
992 if (unlikely(error_code & PF_PROT))
993 return 1;
994
995 /* read, not present: */
996 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
997 return 1;
998
999 return 0;
1000}
1001
1002static int fault_in_kernel_space(unsigned long address)
1003{
1004 return address >= TASK_SIZE_MAX;
1005}
1006
1007static inline bool smap_violation(int error_code, struct pt_regs *regs)
1008{
1009 if (!IS_ENABLED(CONFIG_X86_SMAP))
1010 return false;
1011
1012 if (!static_cpu_has(X86_FEATURE_SMAP))
1013 return false;
1014
1015 if (error_code & PF_USER)
1016 return false;
1017
1018 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1019 return false;
1020
1021 return true;
1022}
1023
1024/*
1025 * This routine handles page faults. It determines the address,
1026 * and the problem, and then passes it off to one of the appropriate
1027 * routines.
1028 *
1029 * This function must have noinline because both callers
1030 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1031 * guarantees there's a function trace entry.
1032 */
1033static void __kprobes noinline
1034__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1035 unsigned long address)
1036{
1037 struct vm_area_struct *vma;
1038 struct task_struct *tsk;
1039 struct mm_struct *mm;
1040 int fault;
1041 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1042
1043 tsk = current;
1044 mm = tsk->mm;
1045
1046 /*
1047 * Detect and handle instructions that would cause a page fault for
1048 * both a tracked kernel page and a userspace page.
1049 */
1050 if (kmemcheck_active(regs))
1051 kmemcheck_hide(regs);
1052 prefetchw(&mm->mmap_sem);
1053
1054 if (unlikely(kmmio_fault(regs, address)))
1055 return;
1056
1057 /*
1058 * We fault-in kernel-space virtual memory on-demand. The
1059 * 'reference' page table is init_mm.pgd.
1060 *
1061 * NOTE! We MUST NOT take any locks for this case. We may
1062 * be in an interrupt or a critical region, and should
1063 * only copy the information from the master page table,
1064 * nothing more.
1065 *
1066 * This verifies that the fault happens in kernel space
1067 * (error_code & 4) == 0, and that the fault was not a
1068 * protection error (error_code & 9) == 0.
1069 */
1070 if (unlikely(fault_in_kernel_space(address))) {
1071 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1072 if (vmalloc_fault(address) >= 0)
1073 return;
1074
1075 if (kmemcheck_fault(regs, address, error_code))
1076 return;
1077 }
1078
1079 /* Can handle a stale RO->RW TLB: */
1080 if (spurious_fault(error_code, address))
1081 return;
1082
1083 /* kprobes don't want to hook the spurious faults: */
1084 if (kprobes_fault(regs))
1085 return;
1086 /*
1087 * Don't take the mm semaphore here. If we fixup a prefetch
1088 * fault we could otherwise deadlock:
1089 */
1090 bad_area_nosemaphore(regs, error_code, address);
1091
1092 return;
1093 }
1094
1095 /* kprobes don't want to hook the spurious faults: */
1096 if (unlikely(kprobes_fault(regs)))
1097 return;
1098
1099 if (unlikely(error_code & PF_RSVD))
1100 pgtable_bad(regs, error_code, address);
1101
1102 if (unlikely(smap_violation(error_code, regs))) {
1103 bad_area_nosemaphore(regs, error_code, address);
1104 return;
1105 }
1106
1107 /*
1108 * If we're in an interrupt, have no user context or are running
1109 * in an atomic region then we must not take the fault:
1110 */
1111 if (unlikely(in_atomic() || !mm)) {
1112 bad_area_nosemaphore(regs, error_code, address);
1113 return;
1114 }
1115
1116 /*
1117 * It's safe to allow irq's after cr2 has been saved and the
1118 * vmalloc fault has been handled.
1119 *
1120 * User-mode registers count as a user access even for any
1121 * potential system fault or CPU buglet:
1122 */
1123 if (user_mode_vm(regs)) {
1124 local_irq_enable();
1125 error_code |= PF_USER;
1126 flags |= FAULT_FLAG_USER;
1127 } else {
1128 if (regs->flags & X86_EFLAGS_IF)
1129 local_irq_enable();
1130 }
1131
1132 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1133
1134 if (error_code & PF_WRITE)
1135 flags |= FAULT_FLAG_WRITE;
1136
1137 /*
1138 * When running in the kernel we expect faults to occur only to
1139 * addresses in user space. All other faults represent errors in
1140 * the kernel and should generate an OOPS. Unfortunately, in the
1141 * case of an erroneous fault occurring in a code path which already
1142 * holds mmap_sem we will deadlock attempting to validate the fault
1143 * against the address space. Luckily the kernel only validly
1144 * references user space from well defined areas of code, which are
1145 * listed in the exceptions table.
1146 *
1147 * As the vast majority of faults will be valid we will only perform
1148 * the source reference check when there is a possibility of a
1149 * deadlock. Attempt to lock the address space, if we cannot we then
1150 * validate the source. If this is invalid we can skip the address
1151 * space check, thus avoiding the deadlock:
1152 */
1153 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1154 if ((error_code & PF_USER) == 0 &&
1155 !search_exception_tables(regs->ip)) {
1156 bad_area_nosemaphore(regs, error_code, address);
1157 return;
1158 }
1159retry:
1160 down_read(&mm->mmap_sem);
1161 } else {
1162 /*
1163 * The above down_read_trylock() might have succeeded in
1164 * which case we'll have missed the might_sleep() from
1165 * down_read():
1166 */
1167 might_sleep();
1168 }
1169
1170 vma = find_vma(mm, address);
1171 if (unlikely(!vma)) {
1172 bad_area(regs, error_code, address);
1173 return;
1174 }
1175 if (likely(vma->vm_start <= address))
1176 goto good_area;
1177 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1178 bad_area(regs, error_code, address);
1179 return;
1180 }
1181 if (error_code & PF_USER) {
1182 /*
1183 * Accessing the stack below %sp is always a bug.
1184 * The large cushion allows instructions like enter
1185 * and pusha to work. ("enter $65535, $31" pushes
1186 * 32 pointers and then decrements %sp by 65535.)
1187 */
1188 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1189 bad_area(regs, error_code, address);
1190 return;
1191 }
1192 }
1193 if (unlikely(expand_stack(vma, address))) {
1194 bad_area(regs, error_code, address);
1195 return;
1196 }
1197
1198 /*
1199 * Ok, we have a good vm_area for this memory access, so
1200 * we can handle it..
1201 */
1202good_area:
1203 if (unlikely(access_error(error_code, vma))) {
1204 bad_area_access_error(regs, error_code, address);
1205 return;
1206 }
1207
1208 /*
1209 * If for any reason at all we couldn't handle the fault,
1210 * make sure we exit gracefully rather than endlessly redo
1211 * the fault:
1212 */
1213 fault = handle_mm_fault(mm, vma, address, flags);
1214
1215 /*
1216 * If we need to retry but a fatal signal is pending, handle the
1217 * signal first. We do not need to release the mmap_sem because it
1218 * would already be released in __lock_page_or_retry in mm/filemap.c.
1219 */
1220 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1221 return;
1222
1223 if (unlikely(fault & VM_FAULT_ERROR)) {
1224 mm_fault_error(regs, error_code, address, fault);
1225 return;
1226 }
1227
1228 /*
1229 * Major/minor page fault accounting is only done on the
1230 * initial attempt. If we go through a retry, it is extremely
1231 * likely that the page will be found in page cache at that point.
1232 */
1233 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1234 if (fault & VM_FAULT_MAJOR) {
1235 tsk->maj_flt++;
1236 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1237 regs, address);
1238 } else {
1239 tsk->min_flt++;
1240 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1241 regs, address);
1242 }
1243 if (fault & VM_FAULT_RETRY) {
1244 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1245 * of starvation. */
1246 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1247 flags |= FAULT_FLAG_TRIED;
1248 goto retry;
1249 }
1250 }
1251
1252 check_v8086_mode(regs, address, tsk);
1253
1254 up_read(&mm->mmap_sem);
1255}
1256
1257dotraplinkage void __kprobes notrace
1258do_page_fault(struct pt_regs *regs, unsigned long error_code)
1259{
1260 unsigned long address = read_cr2(); /* Get the faulting address */
1261 enum ctx_state prev_state;
1262
1263 /*
1264 * We must have this function tagged with __kprobes, notrace and call
1265 * read_cr2() before calling anything else. To avoid calling any kind
1266 * of tracing machinery before we've observed the CR2 value.
1267 *
1268 * exception_{enter,exit}() contain all sorts of tracepoints.
1269 */
1270
1271 prev_state = exception_enter();
1272 __do_page_fault(regs, error_code, address);
1273 exception_exit(prev_state);
1274}
1275
1276#ifdef CONFIG_TRACING
1277static void trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1278 unsigned long error_code)
1279{
1280 if (user_mode(regs))
1281 trace_page_fault_user(address, regs, error_code);
1282 else
1283 trace_page_fault_kernel(address, regs, error_code);
1284}
1285
1286dotraplinkage void __kprobes notrace
1287trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1288{
1289 /*
1290 * The exception_enter and tracepoint processing could
1291 * trigger another page faults (user space callchain
1292 * reading) and destroy the original cr2 value, so read
1293 * the faulting address now.
1294 */
1295 unsigned long address = read_cr2();
1296 enum ctx_state prev_state;
1297
1298 prev_state = exception_enter();
1299 trace_page_fault_entries(address, regs, error_code);
1300 __do_page_fault(regs, error_code, address);
1301 exception_exit(prev_state);
1302}
1303#endif /* CONFIG_TRACING */