Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SMP support for ppc.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
   6 * deal of code from the sparc and intel versions.
   7 *
   8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
   9 *
  10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
 
 
 
 
 
  12 */
  13
  14#undef DEBUG
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/task_stack.h>
  20#include <linux/sched/topology.h>
  21#include <linux/smp.h>
  22#include <linux/interrupt.h>
  23#include <linux/delay.h>
  24#include <linux/init.h>
  25#include <linux/spinlock.h>
  26#include <linux/cache.h>
  27#include <linux/err.h>
  28#include <linux/device.h>
  29#include <linux/cpu.h>
  30#include <linux/notifier.h>
  31#include <linux/topology.h>
  32#include <linux/profile.h>
  33#include <linux/processor.h>
  34#include <linux/random.h>
  35#include <linux/stackprotector.h>
  36#include <linux/pgtable.h>
  37
  38#include <asm/ptrace.h>
  39#include <linux/atomic.h>
  40#include <asm/irq.h>
  41#include <asm/hw_irq.h>
  42#include <asm/kvm_ppc.h>
  43#include <asm/dbell.h>
  44#include <asm/page.h>
 
  45#include <asm/prom.h>
  46#include <asm/smp.h>
  47#include <asm/time.h>
  48#include <asm/machdep.h>
  49#include <asm/cputhreads.h>
  50#include <asm/cputable.h>
  51#include <asm/mpic.h>
  52#include <asm/vdso_datapage.h>
  53#ifdef CONFIG_PPC64
  54#include <asm/paca.h>
  55#endif
  56#include <asm/vdso.h>
  57#include <asm/debug.h>
  58#include <asm/kexec.h>
  59#include <asm/asm-prototypes.h>
  60#include <asm/cpu_has_feature.h>
  61#include <asm/ftrace.h>
  62#include <asm/kup.h>
  63
  64#ifdef DEBUG
  65#include <asm/udbg.h>
  66#define DBG(fmt...) udbg_printf(fmt)
  67#else
  68#define DBG(fmt...)
  69#endif
  70
  71#ifdef CONFIG_HOTPLUG_CPU
  72/* State of each CPU during hotplug phases */
  73static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  74#endif
  75
  76struct task_struct *secondary_current;
  77bool has_big_cores;
  78
  79DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  80DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
  81DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
  82DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  83
  84EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  85EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
  86EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  87EXPORT_SYMBOL_GPL(has_big_cores);
  88
  89#define MAX_THREAD_LIST_SIZE	8
  90#define THREAD_GROUP_SHARE_L1   1
  91struct thread_groups {
  92	unsigned int property;
  93	unsigned int nr_groups;
  94	unsigned int threads_per_group;
  95	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
  96};
  97
  98/*
  99 * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
 100 * the set its siblings that share the L1-cache.
 101 */
 102DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
 103
 104/* SMP operations for this machine */
 105struct smp_ops_t *smp_ops;
 106
 107/* Can't be static due to PowerMac hackery */
 108volatile unsigned int cpu_callin_map[NR_CPUS];
 109
 110int smt_enabled_at_boot = 1;
 111
 
 
 112/*
 113 * Returns 1 if the specified cpu should be brought up during boot.
 114 * Used to inhibit booting threads if they've been disabled or
 115 * limited on the command line
 116 */
 117int smp_generic_cpu_bootable(unsigned int nr)
 118{
 119	/* Special case - we inhibit secondary thread startup
 120	 * during boot if the user requests it.
 121	 */
 122	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
 123		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
 124			return 0;
 125		if (smt_enabled_at_boot
 126		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
 127			return 0;
 128	}
 129
 130	return 1;
 131}
 132
 133
 134#ifdef CONFIG_PPC64
 135int smp_generic_kick_cpu(int nr)
 136{
 137	if (nr < 0 || nr >= nr_cpu_ids)
 138		return -EINVAL;
 139
 140	/*
 141	 * The processor is currently spinning, waiting for the
 142	 * cpu_start field to become non-zero After we set cpu_start,
 143	 * the processor will continue on to secondary_start
 144	 */
 145	if (!paca_ptrs[nr]->cpu_start) {
 146		paca_ptrs[nr]->cpu_start = 1;
 147		smp_mb();
 148		return 0;
 149	}
 150
 151#ifdef CONFIG_HOTPLUG_CPU
 152	/*
 153	 * Ok it's not there, so it might be soft-unplugged, let's
 154	 * try to bring it back
 155	 */
 156	generic_set_cpu_up(nr);
 157	smp_wmb();
 158	smp_send_reschedule(nr);
 159#endif /* CONFIG_HOTPLUG_CPU */
 160
 161	return 0;
 162}
 163#endif /* CONFIG_PPC64 */
 164
 165static irqreturn_t call_function_action(int irq, void *data)
 166{
 167	generic_smp_call_function_interrupt();
 168	return IRQ_HANDLED;
 169}
 170
 171static irqreturn_t reschedule_action(int irq, void *data)
 172{
 173	scheduler_ipi();
 174	return IRQ_HANDLED;
 175}
 176
 177#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 178static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
 179{
 180	timer_broadcast_interrupt();
 181	return IRQ_HANDLED;
 182}
 183#endif
 184
 185#ifdef CONFIG_NMI_IPI
 186static irqreturn_t nmi_ipi_action(int irq, void *data)
 187{
 188	smp_handle_nmi_ipi(get_irq_regs());
 
 
 
 
 
 
 
 
 189	return IRQ_HANDLED;
 190}
 191#endif
 192
 193static irq_handler_t smp_ipi_action[] = {
 194	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
 195	[PPC_MSG_RESCHEDULE] = reschedule_action,
 196#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 197	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
 198#endif
 199#ifdef CONFIG_NMI_IPI
 200	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
 201#endif
 202};
 203
 204/*
 205 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
 206 * than going through the call function infrastructure, and strongly
 207 * serialized, so it is more appropriate for debugging.
 208 */
 209const char *smp_ipi_name[] = {
 210	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
 211	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
 212#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 213	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
 214#endif
 215#ifdef CONFIG_NMI_IPI
 216	[PPC_MSG_NMI_IPI] = "nmi ipi",
 217#endif
 218};
 219
 220/* optional function to request ipi, for controllers with >= 4 ipis */
 221int smp_request_message_ipi(int virq, int msg)
 222{
 223	int err;
 224
 225	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
 226		return -EINVAL;
 227#ifndef CONFIG_NMI_IPI
 228	if (msg == PPC_MSG_NMI_IPI)
 
 229		return 1;
 
 230#endif
 231
 232	err = request_irq(virq, smp_ipi_action[msg],
 233			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
 234			  smp_ipi_name[msg], NULL);
 235	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
 236		virq, smp_ipi_name[msg], err);
 237
 238	return err;
 239}
 240
 241#ifdef CONFIG_PPC_SMP_MUXED_IPI
 242struct cpu_messages {
 243	long messages;			/* current messages */
 
 244};
 245static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
 246
 247void smp_muxed_ipi_set_message(int cpu, int msg)
 
 
 
 
 
 
 
 248{
 249	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
 250	char *message = (char *)&info->messages;
 251
 252	/*
 253	 * Order previous accesses before accesses in the IPI handler.
 254	 */
 255	smp_mb();
 256	message[msg] = 1;
 257}
 258
 259void smp_muxed_ipi_message_pass(int cpu, int msg)
 260{
 261	smp_muxed_ipi_set_message(cpu, msg);
 262
 263	/*
 264	 * cause_ipi functions are required to include a full barrier
 265	 * before doing whatever causes the IPI.
 266	 */
 267	smp_ops->cause_ipi(cpu);
 268}
 269
 270#ifdef __BIG_ENDIAN__
 271#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
 272#else
 273#define IPI_MESSAGE(A) (1uL << (8 * (A)))
 274#endif
 275
 276irqreturn_t smp_ipi_demux(void)
 277{
 278	mb();	/* order any irq clear */
 279
 280	return smp_ipi_demux_relaxed();
 281}
 282
 283/* sync-free variant. Callers should ensure synchronization */
 284irqreturn_t smp_ipi_demux_relaxed(void)
 285{
 286	struct cpu_messages *info;
 287	unsigned long all;
 288
 289	info = this_cpu_ptr(&ipi_message);
 290	do {
 291		all = xchg(&info->messages, 0);
 292#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
 293		/*
 294		 * Must check for PPC_MSG_RM_HOST_ACTION messages
 295		 * before PPC_MSG_CALL_FUNCTION messages because when
 296		 * a VM is destroyed, we call kick_all_cpus_sync()
 297		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
 298		 * messages have completed before we free any VCPUs.
 299		 */
 300		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
 301			kvmppc_xics_ipi_action();
 302#endif
 303		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
 304			generic_smp_call_function_interrupt();
 305		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
 306			scheduler_ipi();
 307#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 308		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
 309			timer_broadcast_interrupt();
 310#endif
 311#ifdef CONFIG_NMI_IPI
 312		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
 313			nmi_ipi_action(0, NULL);
 314#endif
 315	} while (info->messages);
 316
 317	return IRQ_HANDLED;
 318}
 319#endif /* CONFIG_PPC_SMP_MUXED_IPI */
 320
 321static inline void do_message_pass(int cpu, int msg)
 322{
 323	if (smp_ops->message_pass)
 324		smp_ops->message_pass(cpu, msg);
 325#ifdef CONFIG_PPC_SMP_MUXED_IPI
 326	else
 327		smp_muxed_ipi_message_pass(cpu, msg);
 328#endif
 329}
 330
 331void smp_send_reschedule(int cpu)
 332{
 333	if (likely(smp_ops))
 334		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
 335}
 336EXPORT_SYMBOL_GPL(smp_send_reschedule);
 337
 338void arch_send_call_function_single_ipi(int cpu)
 339{
 340	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 341}
 342
 343void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 344{
 345	unsigned int cpu;
 346
 347	for_each_cpu(cpu, mask)
 348		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 349}
 350
 351#ifdef CONFIG_NMI_IPI
 352
 353/*
 354 * "NMI IPI" system.
 355 *
 356 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
 357 * a running system. They can be used for crash, debug, halt/reboot, etc.
 358 *
 359 * The IPI call waits with interrupts disabled until all targets enter the
 360 * NMI handler, then returns. Subsequent IPIs can be issued before targets
 361 * have returned from their handlers, so there is no guarantee about
 362 * concurrency or re-entrancy.
 363 *
 364 * A new NMI can be issued before all targets exit the handler.
 365 *
 366 * The IPI call may time out without all targets entering the NMI handler.
 367 * In that case, there is some logic to recover (and ignore subsequent
 368 * NMI interrupts that may eventually be raised), but the platform interrupt
 369 * handler may not be able to distinguish this from other exception causes,
 370 * which may cause a crash.
 371 */
 372
 373static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
 374static struct cpumask nmi_ipi_pending_mask;
 375static bool nmi_ipi_busy = false;
 376static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
 377
 378static void nmi_ipi_lock_start(unsigned long *flags)
 379{
 380	raw_local_irq_save(*flags);
 381	hard_irq_disable();
 382	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
 383		raw_local_irq_restore(*flags);
 384		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 385		raw_local_irq_save(*flags);
 386		hard_irq_disable();
 387	}
 388}
 389
 390static void nmi_ipi_lock(void)
 391{
 392	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
 393		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 394}
 395
 396static void nmi_ipi_unlock(void)
 397{
 398	smp_mb();
 399	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
 400	atomic_set(&__nmi_ipi_lock, 0);
 401}
 402
 403static void nmi_ipi_unlock_end(unsigned long *flags)
 404{
 405	nmi_ipi_unlock();
 406	raw_local_irq_restore(*flags);
 407}
 408
 409/*
 410 * Platform NMI handler calls this to ack
 411 */
 412int smp_handle_nmi_ipi(struct pt_regs *regs)
 413{
 414	void (*fn)(struct pt_regs *) = NULL;
 415	unsigned long flags;
 416	int me = raw_smp_processor_id();
 417	int ret = 0;
 418
 419	/*
 420	 * Unexpected NMIs are possible here because the interrupt may not
 421	 * be able to distinguish NMI IPIs from other types of NMIs, or
 422	 * because the caller may have timed out.
 423	 */
 424	nmi_ipi_lock_start(&flags);
 425	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
 426		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 427		fn = READ_ONCE(nmi_ipi_function);
 428		WARN_ON_ONCE(!fn);
 429		ret = 1;
 430	}
 431	nmi_ipi_unlock_end(&flags);
 432
 433	if (fn)
 434		fn(regs);
 435
 436	return ret;
 437}
 438
 439static void do_smp_send_nmi_ipi(int cpu, bool safe)
 440{
 441	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
 442		return;
 443
 444	if (cpu >= 0) {
 445		do_message_pass(cpu, PPC_MSG_NMI_IPI);
 446	} else {
 447		int c;
 448
 449		for_each_online_cpu(c) {
 450			if (c == raw_smp_processor_id())
 451				continue;
 452			do_message_pass(c, PPC_MSG_NMI_IPI);
 453		}
 454	}
 455}
 456
 457/*
 458 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
 459 * - fn is the target callback function.
 460 * - delay_us > 0 is the delay before giving up waiting for targets to
 461 *   begin executing the handler, == 0 specifies indefinite delay.
 462 */
 463static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
 464				u64 delay_us, bool safe)
 465{
 466	unsigned long flags;
 467	int me = raw_smp_processor_id();
 468	int ret = 1;
 469
 470	BUG_ON(cpu == me);
 471	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
 472
 473	if (unlikely(!smp_ops))
 474		return 0;
 475
 476	nmi_ipi_lock_start(&flags);
 477	while (nmi_ipi_busy) {
 478		nmi_ipi_unlock_end(&flags);
 479		spin_until_cond(!nmi_ipi_busy);
 480		nmi_ipi_lock_start(&flags);
 481	}
 482	nmi_ipi_busy = true;
 483	nmi_ipi_function = fn;
 484
 485	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
 486
 487	if (cpu < 0) {
 488		/* ALL_OTHERS */
 489		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
 490		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 491	} else {
 492		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
 493	}
 494
 495	nmi_ipi_unlock();
 496
 497	/* Interrupts remain hard disabled */
 498
 499	do_smp_send_nmi_ipi(cpu, safe);
 500
 501	nmi_ipi_lock();
 502	/* nmi_ipi_busy is set here, so unlock/lock is okay */
 503	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
 504		nmi_ipi_unlock();
 505		udelay(1);
 506		nmi_ipi_lock();
 507		if (delay_us) {
 508			delay_us--;
 509			if (!delay_us)
 510				break;
 511		}
 512	}
 513
 514	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
 515		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
 516		ret = 0;
 517		cpumask_clear(&nmi_ipi_pending_mask);
 518	}
 519
 520	nmi_ipi_function = NULL;
 521	nmi_ipi_busy = false;
 522
 523	nmi_ipi_unlock_end(&flags);
 524
 525	return ret;
 526}
 527
 528int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 529{
 530	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
 531}
 532
 533int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 534{
 535	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
 536}
 537#endif /* CONFIG_NMI_IPI */
 538
 539#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 540void tick_broadcast(const struct cpumask *mask)
 541{
 542	unsigned int cpu;
 543
 544	for_each_cpu(cpu, mask)
 545		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
 546}
 547#endif
 548
 549#ifdef CONFIG_DEBUGGER
 550void debugger_ipi_callback(struct pt_regs *regs)
 551{
 552	debugger_ipi(regs);
 553}
 554
 555void smp_send_debugger_break(void)
 556{
 557	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
 
 
 
 
 
 
 
 
 558}
 559#endif
 560
 561#ifdef CONFIG_KEXEC_CORE
 562void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
 563{
 564	int cpu;
 565
 566	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
 567	if (kdump_in_progress() && crash_wake_offline) {
 568		for_each_present_cpu(cpu) {
 569			if (cpu_online(cpu))
 570				continue;
 571			/*
 572			 * crash_ipi_callback will wait for
 573			 * all cpus, including offline CPUs.
 574			 * We don't care about nmi_ipi_function.
 575			 * Offline cpus will jump straight into
 576			 * crash_ipi_callback, we can skip the
 577			 * entire NMI dance and waiting for
 578			 * cpus to clear pending mask, etc.
 579			 */
 580			do_smp_send_nmi_ipi(cpu, false);
 581		}
 582	}
 583}
 584#endif
 585
 586#ifdef CONFIG_NMI_IPI
 587static void nmi_stop_this_cpu(struct pt_regs *regs)
 588{
 589	/*
 590	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
 591	 */
 592	spin_begin();
 593	while (1)
 594		spin_cpu_relax();
 595}
 596
 597void smp_send_stop(void)
 598{
 599	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
 600}
 601
 602#else /* CONFIG_NMI_IPI */
 603
 604static void stop_this_cpu(void *dummy)
 605{
 606	hard_irq_disable();
 607	spin_begin();
 
 
 608	while (1)
 609		spin_cpu_relax();
 610}
 611
 612void smp_send_stop(void)
 613{
 614	static bool stopped = false;
 615
 616	/*
 617	 * Prevent waiting on csd lock from a previous smp_send_stop.
 618	 * This is racy, but in general callers try to do the right
 619	 * thing and only fire off one smp_send_stop (e.g., see
 620	 * kernel/panic.c)
 621	 */
 622	if (stopped)
 623		return;
 624
 625	stopped = true;
 626
 627	smp_call_function(stop_this_cpu, NULL, 0);
 628}
 629#endif /* CONFIG_NMI_IPI */
 630
 631struct task_struct *current_set[NR_CPUS];
 632
 633static void smp_store_cpu_info(int id)
 634{
 635	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
 636#ifdef CONFIG_PPC_FSL_BOOK3E
 637	per_cpu(next_tlbcam_idx, id)
 638		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
 639#endif
 640}
 641
 642/*
 643 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
 644 * rather than just passing around the cpumask we pass around a function that
 645 * returns the that cpumask for the given CPU.
 646 */
 647static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
 648{
 649	cpumask_set_cpu(i, get_cpumask(j));
 650	cpumask_set_cpu(j, get_cpumask(i));
 651}
 652
 653#ifdef CONFIG_HOTPLUG_CPU
 654static void set_cpus_unrelated(int i, int j,
 655		struct cpumask *(*get_cpumask)(int))
 656{
 657	cpumask_clear_cpu(i, get_cpumask(j));
 658	cpumask_clear_cpu(j, get_cpumask(i));
 659}
 660#endif
 661
 662/*
 663 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
 664 *                      property for the CPU device node @dn and stores
 665 *                      the parsed output in the thread_groups
 666 *                      structure @tg if the ibm,thread-groups[0]
 667 *                      matches @property.
 668 *
 669 * @dn: The device node of the CPU device.
 670 * @tg: Pointer to a thread group structure into which the parsed
 671 *      output of "ibm,thread-groups" is stored.
 672 * @property: The property of the thread-group that the caller is
 673 *            interested in.
 674 *
 675 * ibm,thread-groups[0..N-1] array defines which group of threads in
 676 * the CPU-device node can be grouped together based on the property.
 677 *
 678 * ibm,thread-groups[0] tells us the property based on which the
 679 * threads are being grouped together. If this value is 1, it implies
 680 * that the threads in the same group share L1, translation cache.
 681 *
 682 * ibm,thread-groups[1] tells us how many such thread groups exist.
 683 *
 684 * ibm,thread-groups[2] tells us the number of threads in each such
 685 * group.
 686 *
 687 * ibm,thread-groups[3..N-1] is the list of threads identified by
 688 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
 689 * the grouping.
 690 *
 691 * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
 692 * implies that there are 2 groups of 4 threads each, where each group
 693 * of threads share L1, translation cache.
 694 *
 695 * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
 696 * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
 697 * 11, 12} structure
 698 *
 699 * Returns 0 on success, -EINVAL if the property does not exist,
 700 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 701 * property data isn't large enough.
 702 */
 703static int parse_thread_groups(struct device_node *dn,
 704			       struct thread_groups *tg,
 705			       unsigned int property)
 706{
 707	int i;
 708	u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
 709	u32 *thread_list;
 710	size_t total_threads;
 711	int ret;
 712
 713	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
 714					 thread_group_array, 3);
 715	if (ret)
 716		return ret;
 717
 718	tg->property = thread_group_array[0];
 719	tg->nr_groups = thread_group_array[1];
 720	tg->threads_per_group = thread_group_array[2];
 721	if (tg->property != property ||
 722	    tg->nr_groups < 1 ||
 723	    tg->threads_per_group < 1)
 724		return -ENODATA;
 725
 726	total_threads = tg->nr_groups * tg->threads_per_group;
 727
 728	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
 729					 thread_group_array,
 730					 3 + total_threads);
 731	if (ret)
 732		return ret;
 733
 734	thread_list = &thread_group_array[3];
 735
 736	for (i = 0 ; i < total_threads; i++)
 737		tg->thread_list[i] = thread_list[i];
 738
 739	return 0;
 740}
 741
 742/*
 743 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
 744 *                              that @cpu belongs to.
 745 *
 746 * @cpu : The logical CPU whose thread group is being searched.
 747 * @tg : The thread-group structure of the CPU node which @cpu belongs
 748 *       to.
 749 *
 750 * Returns the index to tg->thread_list that points to the the start
 751 * of the thread_group that @cpu belongs to.
 752 *
 753 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
 754 * tg->thread_list.
 755 */
 756static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
 757{
 758	int hw_cpu_id = get_hard_smp_processor_id(cpu);
 759	int i, j;
 760
 761	for (i = 0; i < tg->nr_groups; i++) {
 762		int group_start = i * tg->threads_per_group;
 763
 764		for (j = 0; j < tg->threads_per_group; j++) {
 765			int idx = group_start + j;
 766
 767			if (tg->thread_list[idx] == hw_cpu_id)
 768				return group_start;
 769		}
 770	}
 771
 772	return -1;
 773}
 774
 775static int init_cpu_l1_cache_map(int cpu)
 776
 777{
 778	struct device_node *dn = of_get_cpu_node(cpu, NULL);
 779	struct thread_groups tg = {.property = 0,
 780				   .nr_groups = 0,
 781				   .threads_per_group = 0};
 782	int first_thread = cpu_first_thread_sibling(cpu);
 783	int i, cpu_group_start = -1, err = 0;
 784
 785	if (!dn)
 786		return -ENODATA;
 787
 788	err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
 789	if (err)
 790		goto out;
 791
 792	zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
 793				GFP_KERNEL,
 794				cpu_to_node(cpu));
 795
 796	cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
 797
 798	if (unlikely(cpu_group_start == -1)) {
 799		WARN_ON_ONCE(1);
 800		err = -ENODATA;
 801		goto out;
 802	}
 803
 804	for (i = first_thread; i < first_thread + threads_per_core; i++) {
 805		int i_group_start = get_cpu_thread_group_start(i, &tg);
 806
 807		if (unlikely(i_group_start == -1)) {
 808			WARN_ON_ONCE(1);
 809			err = -ENODATA;
 810			goto out;
 811		}
 812
 813		if (i_group_start == cpu_group_start)
 814			cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
 815	}
 816
 817out:
 818	of_node_put(dn);
 819	return err;
 820}
 821
 822static int init_big_cores(void)
 823{
 824	int cpu;
 825
 826	for_each_possible_cpu(cpu) {
 827		int err = init_cpu_l1_cache_map(cpu);
 828
 829		if (err)
 830			return err;
 831
 832		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
 833					GFP_KERNEL,
 834					cpu_to_node(cpu));
 835	}
 836
 837	has_big_cores = true;
 838	return 0;
 839}
 840
 841void __init smp_prepare_cpus(unsigned int max_cpus)
 842{
 843	unsigned int cpu;
 844
 845	DBG("smp_prepare_cpus\n");
 846
 847	/* 
 848	 * setup_cpu may need to be called on the boot cpu. We havent
 849	 * spun any cpus up but lets be paranoid.
 850	 */
 851	BUG_ON(boot_cpuid != smp_processor_id());
 852
 853	/* Fixup boot cpu */
 854	smp_store_cpu_info(boot_cpuid);
 855	cpu_callin_map[boot_cpuid] = 1;
 856
 857	for_each_possible_cpu(cpu) {
 858		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
 859					GFP_KERNEL, cpu_to_node(cpu));
 860		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
 861					GFP_KERNEL, cpu_to_node(cpu));
 862		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
 863					GFP_KERNEL, cpu_to_node(cpu));
 864		/*
 865		 * numa_node_id() works after this.
 866		 */
 867		if (cpu_present(cpu)) {
 868			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
 869			set_cpu_numa_mem(cpu,
 870				local_memory_node(numa_cpu_lookup_table[cpu]));
 871		}
 872	}
 873
 874	/* Init the cpumasks so the boot CPU is related to itself */
 875	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
 876	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
 877	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
 878
 879	init_big_cores();
 880	if (has_big_cores) {
 881		cpumask_set_cpu(boot_cpuid,
 882				cpu_smallcore_mask(boot_cpuid));
 883	}
 884
 885	if (smp_ops && smp_ops->probe)
 886		smp_ops->probe();
 887}
 888
 889void smp_prepare_boot_cpu(void)
 890{
 891	BUG_ON(smp_processor_id() != boot_cpuid);
 892#ifdef CONFIG_PPC64
 893	paca_ptrs[boot_cpuid]->__current = current;
 894#endif
 895	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
 896	current_set[boot_cpuid] = current;
 897}
 898
 899#ifdef CONFIG_HOTPLUG_CPU
 900
 901int generic_cpu_disable(void)
 902{
 903	unsigned int cpu = smp_processor_id();
 904
 905	if (cpu == boot_cpuid)
 906		return -EBUSY;
 907
 908	set_cpu_online(cpu, false);
 909#ifdef CONFIG_PPC64
 910	vdso_data->processorCount--;
 911#endif
 912	/* Update affinity of all IRQs previously aimed at this CPU */
 913	irq_migrate_all_off_this_cpu();
 914
 915	/*
 916	 * Depending on the details of the interrupt controller, it's possible
 917	 * that one of the interrupts we just migrated away from this CPU is
 918	 * actually already pending on this CPU. If we leave it in that state
 919	 * the interrupt will never be EOI'ed, and will never fire again. So
 920	 * temporarily enable interrupts here, to allow any pending interrupt to
 921	 * be received (and EOI'ed), before we take this CPU offline.
 922	 */
 923	local_irq_enable();
 924	mdelay(1);
 925	local_irq_disable();
 926
 927	return 0;
 928}
 929
 930void generic_cpu_die(unsigned int cpu)
 931{
 932	int i;
 933
 934	for (i = 0; i < 100; i++) {
 935		smp_rmb();
 936		if (is_cpu_dead(cpu))
 937			return;
 938		msleep(100);
 939	}
 940	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
 941}
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943void generic_set_cpu_dead(unsigned int cpu)
 944{
 945	per_cpu(cpu_state, cpu) = CPU_DEAD;
 946}
 947
 948/*
 949 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
 950 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
 951 * which makes the delay in generic_cpu_die() not happen.
 952 */
 953void generic_set_cpu_up(unsigned int cpu)
 954{
 955	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 956}
 957
 958int generic_check_cpu_restart(unsigned int cpu)
 959{
 960	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
 961}
 962
 963int is_cpu_dead(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964{
 965	return per_cpu(cpu_state, cpu) == CPU_DEAD;
 
 
 966}
 
 967
 968static bool secondaries_inhibited(void)
 969{
 970	return kvm_hv_mode_active();
 971}
 972
 973#else /* HOTPLUG_CPU */
 974
 975#define secondaries_inhibited()		0
 976
 977#endif
 978
 979static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
 980{
 
 
 981#ifdef CONFIG_PPC64
 982	paca_ptrs[cpu]->__current = idle;
 983	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
 984				 THREAD_SIZE - STACK_FRAME_OVERHEAD;
 985#endif
 986	idle->cpu = cpu;
 987	secondary_current = current_set[cpu] = idle;
 988}
 989
 990int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 991{
 992	int rc, c;
 993
 994	/*
 995	 * Don't allow secondary threads to come online if inhibited
 996	 */
 997	if (threads_per_core > 1 && secondaries_inhibited() &&
 998	    cpu_thread_in_subcore(cpu))
 999		return -EBUSY;
1000
1001	if (smp_ops == NULL ||
1002	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1003		return -EINVAL;
1004
1005	cpu_idle_thread_init(cpu, tidle);
1006
1007	/*
1008	 * The platform might need to allocate resources prior to bringing
1009	 * up the CPU
1010	 */
1011	if (smp_ops->prepare_cpu) {
1012		rc = smp_ops->prepare_cpu(cpu);
1013		if (rc)
1014			return rc;
1015	}
1016
1017	/* Make sure callin-map entry is 0 (can be leftover a CPU
1018	 * hotplug
1019	 */
1020	cpu_callin_map[cpu] = 0;
1021
1022	/* The information for processor bringup must
1023	 * be written out to main store before we release
1024	 * the processor.
1025	 */
1026	smp_mb();
1027
1028	/* wake up cpus */
1029	DBG("smp: kicking cpu %d\n", cpu);
1030	rc = smp_ops->kick_cpu(cpu);
1031	if (rc) {
1032		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1033		return rc;
1034	}
1035
1036	/*
1037	 * wait to see if the cpu made a callin (is actually up).
1038	 * use this value that I found through experimentation.
1039	 * -- Cort
1040	 */
1041	if (system_state < SYSTEM_RUNNING)
1042		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1043			udelay(100);
1044#ifdef CONFIG_HOTPLUG_CPU
1045	else
1046		/*
1047		 * CPUs can take much longer to come up in the
1048		 * hotplug case.  Wait five seconds.
1049		 */
1050		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1051			msleep(1);
1052#endif
1053
1054	if (!cpu_callin_map[cpu]) {
1055		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1056		return -ENOENT;
1057	}
1058
1059	DBG("Processor %u found.\n", cpu);
1060
1061	if (smp_ops->give_timebase)
1062		smp_ops->give_timebase();
1063
1064	/* Wait until cpu puts itself in the online & active maps */
1065	spin_until_cond(cpu_online(cpu));
 
1066
1067	return 0;
1068}
1069
1070/* Return the value of the reg property corresponding to the given
1071 * logical cpu.
1072 */
1073int cpu_to_core_id(int cpu)
1074{
1075	struct device_node *np;
1076	const __be32 *reg;
1077	int id = -1;
1078
1079	np = of_get_cpu_node(cpu, NULL);
1080	if (!np)
1081		goto out;
1082
1083	reg = of_get_property(np, "reg", NULL);
1084	if (!reg)
1085		goto out;
1086
1087	id = be32_to_cpup(reg);
1088out:
1089	of_node_put(np);
1090	return id;
1091}
1092EXPORT_SYMBOL_GPL(cpu_to_core_id);
1093
1094/* Helper routines for cpu to core mapping */
1095int cpu_core_index_of_thread(int cpu)
1096{
1097	return cpu >> threads_shift;
1098}
1099EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1100
1101int cpu_first_thread_of_core(int core)
1102{
1103	return core << threads_shift;
1104}
1105EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107/* Must be called when no change can occur to cpu_present_mask,
1108 * i.e. during cpu online or offline.
1109 */
1110static struct device_node *cpu_to_l2cache(int cpu)
1111{
1112	struct device_node *np;
1113	struct device_node *cache;
1114
1115	if (!cpu_present(cpu))
1116		return NULL;
1117
1118	np = of_get_cpu_node(cpu, NULL);
1119	if (np == NULL)
1120		return NULL;
1121
1122	cache = of_find_next_cache_node(np);
1123
1124	of_node_put(np);
1125
1126	return cache;
1127}
1128
1129static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
1130{
1131	struct device_node *l2_cache, *np;
1132	int i;
 
 
1133
1134	l2_cache = cpu_to_l2cache(cpu);
1135	if (!l2_cache)
1136		return false;
 
 
 
 
 
 
 
 
 
 
1137
1138	for_each_cpu(i, cpu_online_mask) {
1139		/*
1140		 * when updating the marks the current CPU has not been marked
1141		 * online, but we need to update the cache masks
1142		 */
1143		np = cpu_to_l2cache(i);
1144		if (!np)
1145			continue;
1146
1147		if (np == l2_cache)
1148			set_cpus_related(cpu, i, mask_fn);
1149
 
 
 
 
 
1150		of_node_put(np);
1151	}
1152	of_node_put(l2_cache);
1153
1154	return true;
1155}
1156
1157#ifdef CONFIG_HOTPLUG_CPU
1158static void remove_cpu_from_masks(int cpu)
1159{
1160	int i;
1161
1162	/* NB: cpu_core_mask is a superset of the others */
1163	for_each_cpu(i, cpu_core_mask(cpu)) {
1164		set_cpus_unrelated(cpu, i, cpu_core_mask);
1165		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1166		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1167		if (has_big_cores)
1168			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1169	}
1170}
1171#endif
1172
1173static inline void add_cpu_to_smallcore_masks(int cpu)
1174{
1175	struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
1176	int i, first_thread = cpu_first_thread_sibling(cpu);
1177
1178	if (!has_big_cores)
1179		return;
1180
1181	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1182
1183	for (i = first_thread; i < first_thread + threads_per_core; i++) {
1184		if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
1185			set_cpus_related(i, cpu, cpu_smallcore_mask);
1186	}
1187}
1188
1189int get_physical_package_id(int cpu)
1190{
1191	int pkg_id = cpu_to_chip_id(cpu);
1192
1193	/*
1194	 * If the platform is PowerNV or Guest on KVM, ibm,chip-id is
1195	 * defined. Hence we would return the chip-id as the result of
1196	 * get_physical_package_id.
1197	 */
1198	if (pkg_id == -1 && firmware_has_feature(FW_FEATURE_LPAR) &&
1199	    IS_ENABLED(CONFIG_PPC_SPLPAR)) {
1200		struct device_node *np = of_get_cpu_node(cpu, NULL);
1201		pkg_id = of_node_to_nid(np);
1202		of_node_put(np);
1203	}
1204
1205	return pkg_id;
1206}
1207EXPORT_SYMBOL_GPL(get_physical_package_id);
1208
1209static void add_cpu_to_masks(int cpu)
1210{
1211	int first_thread = cpu_first_thread_sibling(cpu);
1212	int pkg_id = get_physical_package_id(cpu);
1213	int i;
1214
1215	/*
1216	 * This CPU will not be in the online mask yet so we need to manually
1217	 * add it to it's own thread sibling mask.
1218	 */
1219	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1220
1221	for (i = first_thread; i < first_thread + threads_per_core; i++)
1222		if (cpu_online(i))
1223			set_cpus_related(i, cpu, cpu_sibling_mask);
1224
1225	add_cpu_to_smallcore_masks(cpu);
1226	/*
1227	 * Copy the thread sibling mask into the cache sibling mask
1228	 * and mark any CPUs that share an L2 with this CPU.
1229	 */
1230	for_each_cpu(i, cpu_sibling_mask(cpu))
1231		set_cpus_related(cpu, i, cpu_l2_cache_mask);
1232	update_mask_by_l2(cpu, cpu_l2_cache_mask);
1233
1234	/*
1235	 * Copy the cache sibling mask into core sibling mask and mark
1236	 * any CPUs on the same chip as this CPU.
1237	 */
1238	for_each_cpu(i, cpu_l2_cache_mask(cpu))
1239		set_cpus_related(cpu, i, cpu_core_mask);
1240
1241	if (pkg_id == -1)
1242		return;
1243
1244	for_each_cpu(i, cpu_online_mask)
1245		if (get_physical_package_id(i) == pkg_id)
1246			set_cpus_related(cpu, i, cpu_core_mask);
1247}
1248
1249static bool shared_caches;
1250
1251/* Activate a secondary processor. */
1252void start_secondary(void *unused)
1253{
1254	unsigned int cpu = smp_processor_id();
1255	struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1256
1257	mmgrab(&init_mm);
1258	current->active_mm = &init_mm;
1259
1260	smp_store_cpu_info(cpu);
1261	set_dec(tb_ticks_per_jiffy);
1262	preempt_disable();
1263	cpu_callin_map[cpu] = 1;
1264
1265	if (smp_ops->setup_cpu)
1266		smp_ops->setup_cpu(cpu);
1267	if (smp_ops->take_timebase)
1268		smp_ops->take_timebase();
1269
1270	secondary_cpu_time_init();
1271
1272#ifdef CONFIG_PPC64
1273	if (system_state == SYSTEM_RUNNING)
1274		vdso_data->processorCount++;
1275
1276	vdso_getcpu_init();
1277#endif
1278	/* Update topology CPU masks */
1279	add_cpu_to_masks(cpu);
1280
1281	if (has_big_cores)
1282		sibling_mask = cpu_smallcore_mask;
1283	/*
1284	 * Check for any shared caches. Note that this must be done on a
1285	 * per-core basis because one core in the pair might be disabled.
1286	 */
1287	if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
1288		shared_caches = true;
1289
1290	set_numa_node(numa_cpu_lookup_table[cpu]);
1291	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
 
 
 
 
 
 
1292
1293	smp_wmb();
1294	notify_cpu_starting(cpu);
1295	set_cpu_online(cpu, true);
1296
1297	boot_init_stack_canary();
1298
1299	local_irq_enable();
1300
1301	/* We can enable ftrace for secondary cpus now */
1302	this_cpu_enable_ftrace();
1303
1304	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1305
1306	BUG();
1307}
1308
1309int setup_profiling_timer(unsigned int multiplier)
1310{
1311	return 0;
1312}
1313
1314#ifdef CONFIG_SCHED_SMT
1315/* cpumask of CPUs with asymetric SMT dependancy */
1316static int powerpc_smt_flags(void)
1317{
1318	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1319
1320	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1321		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1322		flags |= SD_ASYM_PACKING;
1323	}
1324	return flags;
1325}
1326#endif
1327
1328static struct sched_domain_topology_level powerpc_topology[] = {
1329#ifdef CONFIG_SCHED_SMT
1330	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1331#endif
1332	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1333	{ NULL, },
1334};
1335
1336/*
1337 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1338 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1339 * since the migrated task remains cache hot. We want to take advantage of this
1340 * at the scheduler level so an extra topology level is required.
1341 */
1342static int powerpc_shared_cache_flags(void)
1343{
1344	return SD_SHARE_PKG_RESOURCES;
1345}
1346
1347/*
1348 * We can't just pass cpu_l2_cache_mask() directly because
1349 * returns a non-const pointer and the compiler barfs on that.
1350 */
1351static const struct cpumask *shared_cache_mask(int cpu)
1352{
1353	return cpu_l2_cache_mask(cpu);
1354}
1355
1356#ifdef CONFIG_SCHED_SMT
1357static const struct cpumask *smallcore_smt_mask(int cpu)
1358{
1359	return cpu_smallcore_mask(cpu);
1360}
1361#endif
1362
1363static struct sched_domain_topology_level power9_topology[] = {
1364#ifdef CONFIG_SCHED_SMT
1365	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1366#endif
1367	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1368	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1369	{ NULL, },
1370};
1371
1372void __init smp_cpus_done(unsigned int max_cpus)
1373{
1374	/*
1375	 * We are running pinned to the boot CPU, see rest_init().
1376	 */
 
 
 
 
 
 
 
1377	if (smp_ops && smp_ops->setup_cpu)
1378		smp_ops->setup_cpu(boot_cpuid);
1379
 
 
 
 
1380	if (smp_ops && smp_ops->bringup_done)
1381		smp_ops->bringup_done();
1382
1383	dump_numa_cpu_topology();
1384
1385#ifdef CONFIG_SCHED_SMT
1386	if (has_big_cores) {
1387		pr_info("Big cores detected but using small core scheduling\n");
1388		power9_topology[0].mask = smallcore_smt_mask;
1389		powerpc_topology[0].mask = smallcore_smt_mask;
1390	}
1391#endif
1392	/*
1393	 * If any CPU detects that it's sharing a cache with another CPU then
1394	 * use the deeper topology that is aware of this sharing.
1395	 */
1396	if (shared_caches) {
1397		pr_info("Using shared cache scheduler topology\n");
1398		set_sched_topology(power9_topology);
1399	} else {
1400		pr_info("Using standard scheduler topology\n");
1401		set_sched_topology(powerpc_topology);
1402	}
 
1403}
1404
1405#ifdef CONFIG_HOTPLUG_CPU
1406int __cpu_disable(void)
1407{
1408	int cpu = smp_processor_id();
 
1409	int err;
1410
1411	if (!smp_ops->cpu_disable)
1412		return -ENOSYS;
1413
1414	this_cpu_disable_ftrace();
1415
1416	err = smp_ops->cpu_disable();
1417	if (err)
1418		return err;
1419
1420	/* Update sibling maps */
1421	remove_cpu_from_masks(cpu);
 
 
 
 
 
 
 
1422
1423	return 0;
1424}
1425
1426void __cpu_die(unsigned int cpu)
1427{
1428	if (smp_ops->cpu_die)
1429		smp_ops->cpu_die(cpu);
1430}
1431
1432void cpu_die(void)
1433{
1434	/*
1435	 * Disable on the down path. This will be re-enabled by
1436	 * start_secondary() via start_secondary_resume() below
1437	 */
1438	this_cpu_disable_ftrace();
1439
1440	if (ppc_md.cpu_die)
1441		ppc_md.cpu_die();
1442
1443	/* If we return, we re-enter start_secondary */
1444	start_secondary_resume();
1445}
1446
1447#endif
v3.15
 
  1/*
  2 * SMP support for ppc.
  3 *
  4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
  5 * deal of code from the sparc and intel versions.
  6 *
  7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
  8 *
  9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
 10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
 11 *
 12 *      This program is free software; you can redistribute it and/or
 13 *      modify it under the terms of the GNU General Public License
 14 *      as published by the Free Software Foundation; either version
 15 *      2 of the License, or (at your option) any later version.
 16 */
 17
 18#undef DEBUG
 19
 20#include <linux/kernel.h>
 21#include <linux/export.h>
 22#include <linux/sched.h>
 
 
 23#include <linux/smp.h>
 24#include <linux/interrupt.h>
 25#include <linux/delay.h>
 26#include <linux/init.h>
 27#include <linux/spinlock.h>
 28#include <linux/cache.h>
 29#include <linux/err.h>
 30#include <linux/device.h>
 31#include <linux/cpu.h>
 32#include <linux/notifier.h>
 33#include <linux/topology.h>
 
 
 
 
 
 34
 35#include <asm/ptrace.h>
 36#include <linux/atomic.h>
 37#include <asm/irq.h>
 38#include <asm/hw_irq.h>
 
 
 39#include <asm/page.h>
 40#include <asm/pgtable.h>
 41#include <asm/prom.h>
 42#include <asm/smp.h>
 43#include <asm/time.h>
 44#include <asm/machdep.h>
 45#include <asm/cputhreads.h>
 46#include <asm/cputable.h>
 47#include <asm/mpic.h>
 48#include <asm/vdso_datapage.h>
 49#ifdef CONFIG_PPC64
 50#include <asm/paca.h>
 51#endif
 52#include <asm/vdso.h>
 53#include <asm/debug.h>
 
 
 
 
 
 54
 55#ifdef DEBUG
 56#include <asm/udbg.h>
 57#define DBG(fmt...) udbg_printf(fmt)
 58#else
 59#define DBG(fmt...)
 60#endif
 61
 62#ifdef CONFIG_HOTPLUG_CPU
 63/* State of each CPU during hotplug phases */
 64static DEFINE_PER_CPU(int, cpu_state) = { 0 };
 65#endif
 66
 67struct thread_info *secondary_ti;
 
 68
 69DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
 
 
 70DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
 71
 72EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
 
 73EXPORT_PER_CPU_SYMBOL(cpu_core_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74
 75/* SMP operations for this machine */
 76struct smp_ops_t *smp_ops;
 77
 78/* Can't be static due to PowerMac hackery */
 79volatile unsigned int cpu_callin_map[NR_CPUS];
 80
 81int smt_enabled_at_boot = 1;
 82
 83static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
 84
 85/*
 86 * Returns 1 if the specified cpu should be brought up during boot.
 87 * Used to inhibit booting threads if they've been disabled or
 88 * limited on the command line
 89 */
 90int smp_generic_cpu_bootable(unsigned int nr)
 91{
 92	/* Special case - we inhibit secondary thread startup
 93	 * during boot if the user requests it.
 94	 */
 95	if (system_state == SYSTEM_BOOTING && cpu_has_feature(CPU_FTR_SMT)) {
 96		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
 97			return 0;
 98		if (smt_enabled_at_boot
 99		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
100			return 0;
101	}
102
103	return 1;
104}
105
106
107#ifdef CONFIG_PPC64
108int smp_generic_kick_cpu(int nr)
109{
110	BUG_ON(nr < 0 || nr >= NR_CPUS);
 
111
112	/*
113	 * The processor is currently spinning, waiting for the
114	 * cpu_start field to become non-zero After we set cpu_start,
115	 * the processor will continue on to secondary_start
116	 */
117	if (!paca[nr].cpu_start) {
118		paca[nr].cpu_start = 1;
119		smp_mb();
120		return 0;
121	}
122
123#ifdef CONFIG_HOTPLUG_CPU
124	/*
125	 * Ok it's not there, so it might be soft-unplugged, let's
126	 * try to bring it back
127	 */
128	generic_set_cpu_up(nr);
129	smp_wmb();
130	smp_send_reschedule(nr);
131#endif /* CONFIG_HOTPLUG_CPU */
132
133	return 0;
134}
135#endif /* CONFIG_PPC64 */
136
137static irqreturn_t call_function_action(int irq, void *data)
138{
139	generic_smp_call_function_interrupt();
140	return IRQ_HANDLED;
141}
142
143static irqreturn_t reschedule_action(int irq, void *data)
144{
145	scheduler_ipi();
146	return IRQ_HANDLED;
147}
148
 
149static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
150{
151	tick_broadcast_ipi_handler();
152	return IRQ_HANDLED;
153}
 
154
155static irqreturn_t debug_ipi_action(int irq, void *data)
 
156{
157	if (crash_ipi_function_ptr) {
158		crash_ipi_function_ptr(get_irq_regs());
159		return IRQ_HANDLED;
160	}
161
162#ifdef CONFIG_DEBUGGER
163	debugger_ipi(get_irq_regs());
164#endif /* CONFIG_DEBUGGER */
165
166	return IRQ_HANDLED;
167}
 
168
169static irq_handler_t smp_ipi_action[] = {
170	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
171	[PPC_MSG_RESCHEDULE] = reschedule_action,
 
172	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
173	[PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
 
 
 
174};
175
 
 
 
 
 
176const char *smp_ipi_name[] = {
177	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
178	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
 
179	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
180	[PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
 
 
 
181};
182
183/* optional function to request ipi, for controllers with >= 4 ipis */
184int smp_request_message_ipi(int virq, int msg)
185{
186	int err;
187
188	if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
189		return -EINVAL;
190	}
191#if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
192	if (msg == PPC_MSG_DEBUGGER_BREAK) {
193		return 1;
194	}
195#endif
 
196	err = request_irq(virq, smp_ipi_action[msg],
197			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
198			  smp_ipi_name[msg], NULL);
199	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
200		virq, smp_ipi_name[msg], err);
201
202	return err;
203}
204
205#ifdef CONFIG_PPC_SMP_MUXED_IPI
206struct cpu_messages {
207	int messages;			/* current messages */
208	unsigned long data;		/* data for cause ipi */
209};
210static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
211
212void smp_muxed_ipi_set_data(int cpu, unsigned long data)
213{
214	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
215
216	info->data = data;
217}
218
219void smp_muxed_ipi_message_pass(int cpu, int msg)
220{
221	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
222	char *message = (char *)&info->messages;
223
224	/*
225	 * Order previous accesses before accesses in the IPI handler.
226	 */
227	smp_mb();
228	message[msg] = 1;
 
 
 
 
 
 
229	/*
230	 * cause_ipi functions are required to include a full barrier
231	 * before doing whatever causes the IPI.
232	 */
233	smp_ops->cause_ipi(cpu, info->data);
234}
235
236#ifdef __BIG_ENDIAN__
237#define IPI_MESSAGE(A) (1 << (24 - 8 * (A)))
238#else
239#define IPI_MESSAGE(A) (1 << (8 * (A)))
240#endif
241
242irqreturn_t smp_ipi_demux(void)
243{
244	struct cpu_messages *info = &__get_cpu_var(ipi_message);
245	unsigned int all;
 
 
246
247	mb();	/* order any irq clear */
 
 
 
 
248
 
249	do {
250		all = xchg(&info->messages, 0);
 
 
 
 
 
 
 
 
 
 
 
251		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
252			generic_smp_call_function_interrupt();
253		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
254			scheduler_ipi();
 
255		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
256			tick_broadcast_ipi_handler();
257		if (all & IPI_MESSAGE(PPC_MSG_DEBUGGER_BREAK))
258			debug_ipi_action(0, NULL);
 
 
 
259	} while (info->messages);
260
261	return IRQ_HANDLED;
262}
263#endif /* CONFIG_PPC_SMP_MUXED_IPI */
264
265static inline void do_message_pass(int cpu, int msg)
266{
267	if (smp_ops->message_pass)
268		smp_ops->message_pass(cpu, msg);
269#ifdef CONFIG_PPC_SMP_MUXED_IPI
270	else
271		smp_muxed_ipi_message_pass(cpu, msg);
272#endif
273}
274
275void smp_send_reschedule(int cpu)
276{
277	if (likely(smp_ops))
278		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
279}
280EXPORT_SYMBOL_GPL(smp_send_reschedule);
281
282void arch_send_call_function_single_ipi(int cpu)
283{
284	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
285}
286
287void arch_send_call_function_ipi_mask(const struct cpumask *mask)
288{
289	unsigned int cpu;
290
291	for_each_cpu(cpu, mask)
292		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
293}
294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
296void tick_broadcast(const struct cpumask *mask)
297{
298	unsigned int cpu;
299
300	for_each_cpu(cpu, mask)
301		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
302}
303#endif
304
305#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
 
 
 
 
 
306void smp_send_debugger_break(void)
307{
308	int cpu;
309	int me = raw_smp_processor_id();
310
311	if (unlikely(!smp_ops))
312		return;
313
314	for_each_online_cpu(cpu)
315		if (cpu != me)
316			do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
317}
318#endif
319
320#ifdef CONFIG_KEXEC
321void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
322{
323	crash_ipi_function_ptr = crash_ipi_callback;
324	if (crash_ipi_callback) {
325		mb();
326		smp_send_debugger_break();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327	}
328}
329#endif
330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331static void stop_this_cpu(void *dummy)
332{
333	/* Remove this CPU */
334	set_cpu_online(smp_processor_id(), false);
335
336	local_irq_disable();
337	while (1)
338		;
339}
340
341void smp_send_stop(void)
342{
 
 
 
 
 
 
 
 
 
 
 
 
 
343	smp_call_function(stop_this_cpu, NULL, 0);
344}
 
345
346struct thread_info *current_set[NR_CPUS];
347
348static void smp_store_cpu_info(int id)
349{
350	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
351#ifdef CONFIG_PPC_FSL_BOOK3E
352	per_cpu(next_tlbcam_idx, id)
353		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
354#endif
355}
356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357void __init smp_prepare_cpus(unsigned int max_cpus)
358{
359	unsigned int cpu;
360
361	DBG("smp_prepare_cpus\n");
362
363	/* 
364	 * setup_cpu may need to be called on the boot cpu. We havent
365	 * spun any cpus up but lets be paranoid.
366	 */
367	BUG_ON(boot_cpuid != smp_processor_id());
368
369	/* Fixup boot cpu */
370	smp_store_cpu_info(boot_cpuid);
371	cpu_callin_map[boot_cpuid] = 1;
372
373	for_each_possible_cpu(cpu) {
374		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
375					GFP_KERNEL, cpu_to_node(cpu));
 
 
376		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
377					GFP_KERNEL, cpu_to_node(cpu));
 
 
 
 
 
 
 
 
378	}
379
 
380	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
 
381	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
382
 
 
 
 
 
 
383	if (smp_ops && smp_ops->probe)
384		smp_ops->probe();
385}
386
387void smp_prepare_boot_cpu(void)
388{
389	BUG_ON(smp_processor_id() != boot_cpuid);
390#ifdef CONFIG_PPC64
391	paca[boot_cpuid].__current = current;
392#endif
393	current_set[boot_cpuid] = task_thread_info(current);
 
394}
395
396#ifdef CONFIG_HOTPLUG_CPU
397
398int generic_cpu_disable(void)
399{
400	unsigned int cpu = smp_processor_id();
401
402	if (cpu == boot_cpuid)
403		return -EBUSY;
404
405	set_cpu_online(cpu, false);
406#ifdef CONFIG_PPC64
407	vdso_data->processorCount--;
408#endif
409	migrate_irqs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410	return 0;
411}
412
413void generic_cpu_die(unsigned int cpu)
414{
415	int i;
416
417	for (i = 0; i < 100; i++) {
418		smp_rmb();
419		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
420			return;
421		msleep(100);
422	}
423	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
424}
425
426void generic_mach_cpu_die(void)
427{
428	unsigned int cpu;
429
430	local_irq_disable();
431	idle_task_exit();
432	cpu = smp_processor_id();
433	printk(KERN_DEBUG "CPU%d offline\n", cpu);
434	__get_cpu_var(cpu_state) = CPU_DEAD;
435	smp_wmb();
436	while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
437		cpu_relax();
438}
439
440void generic_set_cpu_dead(unsigned int cpu)
441{
442	per_cpu(cpu_state, cpu) = CPU_DEAD;
443}
444
445/*
446 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
447 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
448 * which makes the delay in generic_cpu_die() not happen.
449 */
450void generic_set_cpu_up(unsigned int cpu)
451{
452	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
453}
454
455int generic_check_cpu_restart(unsigned int cpu)
456{
457	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
458}
459
460static atomic_t secondary_inhibit_count;
461
462/*
463 * Don't allow secondary CPU threads to come online
464 */
465void inhibit_secondary_onlining(void)
466{
467	/*
468	 * This makes secondary_inhibit_count stable during cpu
469	 * online/offline operations.
470	 */
471	get_online_cpus();
472
473	atomic_inc(&secondary_inhibit_count);
474	put_online_cpus();
475}
476EXPORT_SYMBOL_GPL(inhibit_secondary_onlining);
477
478/*
479 * Allow secondary CPU threads to come online again
480 */
481void uninhibit_secondary_onlining(void)
482{
483	get_online_cpus();
484	atomic_dec(&secondary_inhibit_count);
485	put_online_cpus();
486}
487EXPORT_SYMBOL_GPL(uninhibit_secondary_onlining);
488
489static int secondaries_inhibited(void)
490{
491	return atomic_read(&secondary_inhibit_count);
492}
493
494#else /* HOTPLUG_CPU */
495
496#define secondaries_inhibited()		0
497
498#endif
499
500static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
501{
502	struct thread_info *ti = task_thread_info(idle);
503
504#ifdef CONFIG_PPC64
505	paca[cpu].__current = idle;
506	paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
 
507#endif
508	ti->cpu = cpu;
509	secondary_ti = current_set[cpu] = ti;
510}
511
512int __cpu_up(unsigned int cpu, struct task_struct *tidle)
513{
514	int rc, c;
515
516	/*
517	 * Don't allow secondary threads to come online if inhibited
518	 */
519	if (threads_per_core > 1 && secondaries_inhibited() &&
520	    cpu % threads_per_core != 0)
521		return -EBUSY;
522
523	if (smp_ops == NULL ||
524	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
525		return -EINVAL;
526
527	cpu_idle_thread_init(cpu, tidle);
528
 
 
 
 
 
 
 
 
 
 
529	/* Make sure callin-map entry is 0 (can be leftover a CPU
530	 * hotplug
531	 */
532	cpu_callin_map[cpu] = 0;
533
534	/* The information for processor bringup must
535	 * be written out to main store before we release
536	 * the processor.
537	 */
538	smp_mb();
539
540	/* wake up cpus */
541	DBG("smp: kicking cpu %d\n", cpu);
542	rc = smp_ops->kick_cpu(cpu);
543	if (rc) {
544		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
545		return rc;
546	}
547
548	/*
549	 * wait to see if the cpu made a callin (is actually up).
550	 * use this value that I found through experimentation.
551	 * -- Cort
552	 */
553	if (system_state < SYSTEM_RUNNING)
554		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
555			udelay(100);
556#ifdef CONFIG_HOTPLUG_CPU
557	else
558		/*
559		 * CPUs can take much longer to come up in the
560		 * hotplug case.  Wait five seconds.
561		 */
562		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
563			msleep(1);
564#endif
565
566	if (!cpu_callin_map[cpu]) {
567		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
568		return -ENOENT;
569	}
570
571	DBG("Processor %u found.\n", cpu);
572
573	if (smp_ops->give_timebase)
574		smp_ops->give_timebase();
575
576	/* Wait until cpu puts itself in the online map */
577	while (!cpu_online(cpu))
578		cpu_relax();
579
580	return 0;
581}
582
583/* Return the value of the reg property corresponding to the given
584 * logical cpu.
585 */
586int cpu_to_core_id(int cpu)
587{
588	struct device_node *np;
589	const __be32 *reg;
590	int id = -1;
591
592	np = of_get_cpu_node(cpu, NULL);
593	if (!np)
594		goto out;
595
596	reg = of_get_property(np, "reg", NULL);
597	if (!reg)
598		goto out;
599
600	id = be32_to_cpup(reg);
601out:
602	of_node_put(np);
603	return id;
604}
 
605
606/* Helper routines for cpu to core mapping */
607int cpu_core_index_of_thread(int cpu)
608{
609	return cpu >> threads_shift;
610}
611EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
612
613int cpu_first_thread_of_core(int core)
614{
615	return core << threads_shift;
616}
617EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
618
619static void traverse_siblings_chip_id(int cpu, bool add, int chipid)
620{
621	const struct cpumask *mask;
622	struct device_node *np;
623	int i, plen;
624	const __be32 *prop;
625
626	mask = add ? cpu_online_mask : cpu_present_mask;
627	for_each_cpu(i, mask) {
628		np = of_get_cpu_node(i, NULL);
629		if (!np)
630			continue;
631		prop = of_get_property(np, "ibm,chip-id", &plen);
632		if (prop && plen == sizeof(int) &&
633		    of_read_number(prop, 1) == chipid) {
634			if (add) {
635				cpumask_set_cpu(cpu, cpu_core_mask(i));
636				cpumask_set_cpu(i, cpu_core_mask(cpu));
637			} else {
638				cpumask_clear_cpu(cpu, cpu_core_mask(i));
639				cpumask_clear_cpu(i, cpu_core_mask(cpu));
640			}
641		}
642		of_node_put(np);
643	}
644}
645
646/* Must be called when no change can occur to cpu_present_mask,
647 * i.e. during cpu online or offline.
648 */
649static struct device_node *cpu_to_l2cache(int cpu)
650{
651	struct device_node *np;
652	struct device_node *cache;
653
654	if (!cpu_present(cpu))
655		return NULL;
656
657	np = of_get_cpu_node(cpu, NULL);
658	if (np == NULL)
659		return NULL;
660
661	cache = of_find_next_cache_node(np);
662
663	of_node_put(np);
664
665	return cache;
666}
667
668static void traverse_core_siblings(int cpu, bool add)
669{
670	struct device_node *l2_cache, *np;
671	const struct cpumask *mask;
672	int i, chip, plen;
673	const __be32 *prop;
674
675	/* First see if we have ibm,chip-id properties in cpu nodes */
676	np = of_get_cpu_node(cpu, NULL);
677	if (np) {
678		chip = -1;
679		prop = of_get_property(np, "ibm,chip-id", &plen);
680		if (prop && plen == sizeof(int))
681			chip = of_read_number(prop, 1);
682		of_node_put(np);
683		if (chip >= 0) {
684			traverse_siblings_chip_id(cpu, add, chip);
685			return;
686		}
687	}
688
689	l2_cache = cpu_to_l2cache(cpu);
690	mask = add ? cpu_online_mask : cpu_present_mask;
691	for_each_cpu(i, mask) {
 
 
692		np = cpu_to_l2cache(i);
693		if (!np)
694			continue;
695		if (np == l2_cache) {
696			if (add) {
697				cpumask_set_cpu(cpu, cpu_core_mask(i));
698				cpumask_set_cpu(i, cpu_core_mask(cpu));
699			} else {
700				cpumask_clear_cpu(cpu, cpu_core_mask(i));
701				cpumask_clear_cpu(i, cpu_core_mask(cpu));
702			}
703		}
704		of_node_put(np);
705	}
706	of_node_put(l2_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707}
708
 
 
709/* Activate a secondary processor. */
710void start_secondary(void *unused)
711{
712	unsigned int cpu = smp_processor_id();
713	int i, base;
714
715	atomic_inc(&init_mm.mm_count);
716	current->active_mm = &init_mm;
717
718	smp_store_cpu_info(cpu);
719	set_dec(tb_ticks_per_jiffy);
720	preempt_disable();
721	cpu_callin_map[cpu] = 1;
722
723	if (smp_ops->setup_cpu)
724		smp_ops->setup_cpu(cpu);
725	if (smp_ops->take_timebase)
726		smp_ops->take_timebase();
727
728	secondary_cpu_time_init();
729
730#ifdef CONFIG_PPC64
731	if (system_state == SYSTEM_RUNNING)
732		vdso_data->processorCount++;
733
734	vdso_getcpu_init();
735#endif
736	/* Update sibling maps */
737	base = cpu_first_thread_sibling(cpu);
738	for (i = 0; i < threads_per_core; i++) {
739		if (cpu_is_offline(base + i) && (cpu != base + i))
740			continue;
741		cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
742		cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
 
 
 
 
743
744		/* cpu_core_map should be a superset of
745		 * cpu_sibling_map even if we don't have cache
746		 * information, so update the former here, too.
747		 */
748		cpumask_set_cpu(cpu, cpu_core_mask(base + i));
749		cpumask_set_cpu(base + i, cpu_core_mask(cpu));
750	}
751	traverse_core_siblings(cpu, true);
752
753	smp_wmb();
754	notify_cpu_starting(cpu);
755	set_cpu_online(cpu, true);
756
 
 
757	local_irq_enable();
758
759	cpu_startup_entry(CPUHP_ONLINE);
 
 
 
760
761	BUG();
762}
763
764int setup_profiling_timer(unsigned int multiplier)
765{
766	return 0;
767}
768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769void __init smp_cpus_done(unsigned int max_cpus)
770{
771	cpumask_var_t old_mask;
772
773	/* We want the setup_cpu() here to be called from CPU 0, but our
774	 * init thread may have been "borrowed" by another CPU in the meantime
775	 * se we pin us down to CPU 0 for a short while
776	 */
777	alloc_cpumask_var(&old_mask, GFP_NOWAIT);
778	cpumask_copy(old_mask, tsk_cpus_allowed(current));
779	set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
780	
781	if (smp_ops && smp_ops->setup_cpu)
782		smp_ops->setup_cpu(boot_cpuid);
783
784	set_cpus_allowed_ptr(current, old_mask);
785
786	free_cpumask_var(old_mask);
787
788	if (smp_ops && smp_ops->bringup_done)
789		smp_ops->bringup_done();
790
791	dump_numa_cpu_topology();
792
793}
794
795int arch_sd_sibling_asym_packing(void)
796{
797	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
798		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
799		return SD_ASYM_PACKING;
 
 
 
 
 
 
 
 
 
 
800	}
801	return 0;
802}
803
804#ifdef CONFIG_HOTPLUG_CPU
805int __cpu_disable(void)
806{
807	int cpu = smp_processor_id();
808	int base, i;
809	int err;
810
811	if (!smp_ops->cpu_disable)
812		return -ENOSYS;
813
 
 
814	err = smp_ops->cpu_disable();
815	if (err)
816		return err;
817
818	/* Update sibling maps */
819	base = cpu_first_thread_sibling(cpu);
820	for (i = 0; i < threads_per_core; i++) {
821		cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
822		cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
823		cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
824		cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
825	}
826	traverse_core_siblings(cpu, false);
827
828	return 0;
829}
830
831void __cpu_die(unsigned int cpu)
832{
833	if (smp_ops->cpu_die)
834		smp_ops->cpu_die(cpu);
835}
836
837void cpu_die(void)
838{
 
 
 
 
 
 
839	if (ppc_md.cpu_die)
840		ppc_md.cpu_die();
841
842	/* If we return, we re-enter start_secondary */
843	start_secondary_resume();
844}
845
846#endif