Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12 */
13
14#undef DEBUG
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/task_stack.h>
20#include <linux/sched/topology.h>
21#include <linux/smp.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/init.h>
25#include <linux/spinlock.h>
26#include <linux/cache.h>
27#include <linux/err.h>
28#include <linux/device.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/profile.h>
33#include <linux/processor.h>
34#include <linux/random.h>
35#include <linux/stackprotector.h>
36#include <linux/pgtable.h>
37
38#include <asm/ptrace.h>
39#include <linux/atomic.h>
40#include <asm/irq.h>
41#include <asm/hw_irq.h>
42#include <asm/kvm_ppc.h>
43#include <asm/dbell.h>
44#include <asm/page.h>
45#include <asm/prom.h>
46#include <asm/smp.h>
47#include <asm/time.h>
48#include <asm/machdep.h>
49#include <asm/cputhreads.h>
50#include <asm/cputable.h>
51#include <asm/mpic.h>
52#include <asm/vdso_datapage.h>
53#ifdef CONFIG_PPC64
54#include <asm/paca.h>
55#endif
56#include <asm/vdso.h>
57#include <asm/debug.h>
58#include <asm/kexec.h>
59#include <asm/asm-prototypes.h>
60#include <asm/cpu_has_feature.h>
61#include <asm/ftrace.h>
62#include <asm/kup.h>
63
64#ifdef DEBUG
65#include <asm/udbg.h>
66#define DBG(fmt...) udbg_printf(fmt)
67#else
68#define DBG(fmt...)
69#endif
70
71#ifdef CONFIG_HOTPLUG_CPU
72/* State of each CPU during hotplug phases */
73static DEFINE_PER_CPU(int, cpu_state) = { 0 };
74#endif
75
76struct task_struct *secondary_current;
77bool has_big_cores;
78
79DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
80DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
81DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
82DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
83
84EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
85EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
86EXPORT_PER_CPU_SYMBOL(cpu_core_map);
87EXPORT_SYMBOL_GPL(has_big_cores);
88
89#define MAX_THREAD_LIST_SIZE 8
90#define THREAD_GROUP_SHARE_L1 1
91struct thread_groups {
92 unsigned int property;
93 unsigned int nr_groups;
94 unsigned int threads_per_group;
95 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
96};
97
98/*
99 * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
100 * the set its siblings that share the L1-cache.
101 */
102DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
103
104/* SMP operations for this machine */
105struct smp_ops_t *smp_ops;
106
107/* Can't be static due to PowerMac hackery */
108volatile unsigned int cpu_callin_map[NR_CPUS];
109
110int smt_enabled_at_boot = 1;
111
112/*
113 * Returns 1 if the specified cpu should be brought up during boot.
114 * Used to inhibit booting threads if they've been disabled or
115 * limited on the command line
116 */
117int smp_generic_cpu_bootable(unsigned int nr)
118{
119 /* Special case - we inhibit secondary thread startup
120 * during boot if the user requests it.
121 */
122 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
123 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
124 return 0;
125 if (smt_enabled_at_boot
126 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
127 return 0;
128 }
129
130 return 1;
131}
132
133
134#ifdef CONFIG_PPC64
135int smp_generic_kick_cpu(int nr)
136{
137 if (nr < 0 || nr >= nr_cpu_ids)
138 return -EINVAL;
139
140 /*
141 * The processor is currently spinning, waiting for the
142 * cpu_start field to become non-zero After we set cpu_start,
143 * the processor will continue on to secondary_start
144 */
145 if (!paca_ptrs[nr]->cpu_start) {
146 paca_ptrs[nr]->cpu_start = 1;
147 smp_mb();
148 return 0;
149 }
150
151#ifdef CONFIG_HOTPLUG_CPU
152 /*
153 * Ok it's not there, so it might be soft-unplugged, let's
154 * try to bring it back
155 */
156 generic_set_cpu_up(nr);
157 smp_wmb();
158 smp_send_reschedule(nr);
159#endif /* CONFIG_HOTPLUG_CPU */
160
161 return 0;
162}
163#endif /* CONFIG_PPC64 */
164
165static irqreturn_t call_function_action(int irq, void *data)
166{
167 generic_smp_call_function_interrupt();
168 return IRQ_HANDLED;
169}
170
171static irqreturn_t reschedule_action(int irq, void *data)
172{
173 scheduler_ipi();
174 return IRQ_HANDLED;
175}
176
177#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
178static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
179{
180 timer_broadcast_interrupt();
181 return IRQ_HANDLED;
182}
183#endif
184
185#ifdef CONFIG_NMI_IPI
186static irqreturn_t nmi_ipi_action(int irq, void *data)
187{
188 smp_handle_nmi_ipi(get_irq_regs());
189 return IRQ_HANDLED;
190}
191#endif
192
193static irq_handler_t smp_ipi_action[] = {
194 [PPC_MSG_CALL_FUNCTION] = call_function_action,
195 [PPC_MSG_RESCHEDULE] = reschedule_action,
196#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
197 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
198#endif
199#ifdef CONFIG_NMI_IPI
200 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
201#endif
202};
203
204/*
205 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
206 * than going through the call function infrastructure, and strongly
207 * serialized, so it is more appropriate for debugging.
208 */
209const char *smp_ipi_name[] = {
210 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
211 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
212#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
213 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
214#endif
215#ifdef CONFIG_NMI_IPI
216 [PPC_MSG_NMI_IPI] = "nmi ipi",
217#endif
218};
219
220/* optional function to request ipi, for controllers with >= 4 ipis */
221int smp_request_message_ipi(int virq, int msg)
222{
223 int err;
224
225 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
226 return -EINVAL;
227#ifndef CONFIG_NMI_IPI
228 if (msg == PPC_MSG_NMI_IPI)
229 return 1;
230#endif
231
232 err = request_irq(virq, smp_ipi_action[msg],
233 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
234 smp_ipi_name[msg], NULL);
235 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
236 virq, smp_ipi_name[msg], err);
237
238 return err;
239}
240
241#ifdef CONFIG_PPC_SMP_MUXED_IPI
242struct cpu_messages {
243 long messages; /* current messages */
244};
245static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
246
247void smp_muxed_ipi_set_message(int cpu, int msg)
248{
249 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
250 char *message = (char *)&info->messages;
251
252 /*
253 * Order previous accesses before accesses in the IPI handler.
254 */
255 smp_mb();
256 message[msg] = 1;
257}
258
259void smp_muxed_ipi_message_pass(int cpu, int msg)
260{
261 smp_muxed_ipi_set_message(cpu, msg);
262
263 /*
264 * cause_ipi functions are required to include a full barrier
265 * before doing whatever causes the IPI.
266 */
267 smp_ops->cause_ipi(cpu);
268}
269
270#ifdef __BIG_ENDIAN__
271#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
272#else
273#define IPI_MESSAGE(A) (1uL << (8 * (A)))
274#endif
275
276irqreturn_t smp_ipi_demux(void)
277{
278 mb(); /* order any irq clear */
279
280 return smp_ipi_demux_relaxed();
281}
282
283/* sync-free variant. Callers should ensure synchronization */
284irqreturn_t smp_ipi_demux_relaxed(void)
285{
286 struct cpu_messages *info;
287 unsigned long all;
288
289 info = this_cpu_ptr(&ipi_message);
290 do {
291 all = xchg(&info->messages, 0);
292#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
293 /*
294 * Must check for PPC_MSG_RM_HOST_ACTION messages
295 * before PPC_MSG_CALL_FUNCTION messages because when
296 * a VM is destroyed, we call kick_all_cpus_sync()
297 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
298 * messages have completed before we free any VCPUs.
299 */
300 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
301 kvmppc_xics_ipi_action();
302#endif
303 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
304 generic_smp_call_function_interrupt();
305 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
306 scheduler_ipi();
307#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
308 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
309 timer_broadcast_interrupt();
310#endif
311#ifdef CONFIG_NMI_IPI
312 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
313 nmi_ipi_action(0, NULL);
314#endif
315 } while (info->messages);
316
317 return IRQ_HANDLED;
318}
319#endif /* CONFIG_PPC_SMP_MUXED_IPI */
320
321static inline void do_message_pass(int cpu, int msg)
322{
323 if (smp_ops->message_pass)
324 smp_ops->message_pass(cpu, msg);
325#ifdef CONFIG_PPC_SMP_MUXED_IPI
326 else
327 smp_muxed_ipi_message_pass(cpu, msg);
328#endif
329}
330
331void smp_send_reschedule(int cpu)
332{
333 if (likely(smp_ops))
334 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
335}
336EXPORT_SYMBOL_GPL(smp_send_reschedule);
337
338void arch_send_call_function_single_ipi(int cpu)
339{
340 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
341}
342
343void arch_send_call_function_ipi_mask(const struct cpumask *mask)
344{
345 unsigned int cpu;
346
347 for_each_cpu(cpu, mask)
348 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
349}
350
351#ifdef CONFIG_NMI_IPI
352
353/*
354 * "NMI IPI" system.
355 *
356 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
357 * a running system. They can be used for crash, debug, halt/reboot, etc.
358 *
359 * The IPI call waits with interrupts disabled until all targets enter the
360 * NMI handler, then returns. Subsequent IPIs can be issued before targets
361 * have returned from their handlers, so there is no guarantee about
362 * concurrency or re-entrancy.
363 *
364 * A new NMI can be issued before all targets exit the handler.
365 *
366 * The IPI call may time out without all targets entering the NMI handler.
367 * In that case, there is some logic to recover (and ignore subsequent
368 * NMI interrupts that may eventually be raised), but the platform interrupt
369 * handler may not be able to distinguish this from other exception causes,
370 * which may cause a crash.
371 */
372
373static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
374static struct cpumask nmi_ipi_pending_mask;
375static bool nmi_ipi_busy = false;
376static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
377
378static void nmi_ipi_lock_start(unsigned long *flags)
379{
380 raw_local_irq_save(*flags);
381 hard_irq_disable();
382 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
383 raw_local_irq_restore(*flags);
384 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
385 raw_local_irq_save(*flags);
386 hard_irq_disable();
387 }
388}
389
390static void nmi_ipi_lock(void)
391{
392 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
393 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
394}
395
396static void nmi_ipi_unlock(void)
397{
398 smp_mb();
399 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
400 atomic_set(&__nmi_ipi_lock, 0);
401}
402
403static void nmi_ipi_unlock_end(unsigned long *flags)
404{
405 nmi_ipi_unlock();
406 raw_local_irq_restore(*flags);
407}
408
409/*
410 * Platform NMI handler calls this to ack
411 */
412int smp_handle_nmi_ipi(struct pt_regs *regs)
413{
414 void (*fn)(struct pt_regs *) = NULL;
415 unsigned long flags;
416 int me = raw_smp_processor_id();
417 int ret = 0;
418
419 /*
420 * Unexpected NMIs are possible here because the interrupt may not
421 * be able to distinguish NMI IPIs from other types of NMIs, or
422 * because the caller may have timed out.
423 */
424 nmi_ipi_lock_start(&flags);
425 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
426 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
427 fn = READ_ONCE(nmi_ipi_function);
428 WARN_ON_ONCE(!fn);
429 ret = 1;
430 }
431 nmi_ipi_unlock_end(&flags);
432
433 if (fn)
434 fn(regs);
435
436 return ret;
437}
438
439static void do_smp_send_nmi_ipi(int cpu, bool safe)
440{
441 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
442 return;
443
444 if (cpu >= 0) {
445 do_message_pass(cpu, PPC_MSG_NMI_IPI);
446 } else {
447 int c;
448
449 for_each_online_cpu(c) {
450 if (c == raw_smp_processor_id())
451 continue;
452 do_message_pass(c, PPC_MSG_NMI_IPI);
453 }
454 }
455}
456
457/*
458 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
459 * - fn is the target callback function.
460 * - delay_us > 0 is the delay before giving up waiting for targets to
461 * begin executing the handler, == 0 specifies indefinite delay.
462 */
463static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
464 u64 delay_us, bool safe)
465{
466 unsigned long flags;
467 int me = raw_smp_processor_id();
468 int ret = 1;
469
470 BUG_ON(cpu == me);
471 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
472
473 if (unlikely(!smp_ops))
474 return 0;
475
476 nmi_ipi_lock_start(&flags);
477 while (nmi_ipi_busy) {
478 nmi_ipi_unlock_end(&flags);
479 spin_until_cond(!nmi_ipi_busy);
480 nmi_ipi_lock_start(&flags);
481 }
482 nmi_ipi_busy = true;
483 nmi_ipi_function = fn;
484
485 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
486
487 if (cpu < 0) {
488 /* ALL_OTHERS */
489 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
490 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
491 } else {
492 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
493 }
494
495 nmi_ipi_unlock();
496
497 /* Interrupts remain hard disabled */
498
499 do_smp_send_nmi_ipi(cpu, safe);
500
501 nmi_ipi_lock();
502 /* nmi_ipi_busy is set here, so unlock/lock is okay */
503 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
504 nmi_ipi_unlock();
505 udelay(1);
506 nmi_ipi_lock();
507 if (delay_us) {
508 delay_us--;
509 if (!delay_us)
510 break;
511 }
512 }
513
514 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
515 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
516 ret = 0;
517 cpumask_clear(&nmi_ipi_pending_mask);
518 }
519
520 nmi_ipi_function = NULL;
521 nmi_ipi_busy = false;
522
523 nmi_ipi_unlock_end(&flags);
524
525 return ret;
526}
527
528int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
529{
530 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
531}
532
533int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
534{
535 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
536}
537#endif /* CONFIG_NMI_IPI */
538
539#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
540void tick_broadcast(const struct cpumask *mask)
541{
542 unsigned int cpu;
543
544 for_each_cpu(cpu, mask)
545 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
546}
547#endif
548
549#ifdef CONFIG_DEBUGGER
550void debugger_ipi_callback(struct pt_regs *regs)
551{
552 debugger_ipi(regs);
553}
554
555void smp_send_debugger_break(void)
556{
557 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
558}
559#endif
560
561#ifdef CONFIG_KEXEC_CORE
562void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
563{
564 int cpu;
565
566 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
567 if (kdump_in_progress() && crash_wake_offline) {
568 for_each_present_cpu(cpu) {
569 if (cpu_online(cpu))
570 continue;
571 /*
572 * crash_ipi_callback will wait for
573 * all cpus, including offline CPUs.
574 * We don't care about nmi_ipi_function.
575 * Offline cpus will jump straight into
576 * crash_ipi_callback, we can skip the
577 * entire NMI dance and waiting for
578 * cpus to clear pending mask, etc.
579 */
580 do_smp_send_nmi_ipi(cpu, false);
581 }
582 }
583}
584#endif
585
586#ifdef CONFIG_NMI_IPI
587static void nmi_stop_this_cpu(struct pt_regs *regs)
588{
589 /*
590 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
591 */
592 spin_begin();
593 while (1)
594 spin_cpu_relax();
595}
596
597void smp_send_stop(void)
598{
599 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
600}
601
602#else /* CONFIG_NMI_IPI */
603
604static void stop_this_cpu(void *dummy)
605{
606 hard_irq_disable();
607 spin_begin();
608 while (1)
609 spin_cpu_relax();
610}
611
612void smp_send_stop(void)
613{
614 static bool stopped = false;
615
616 /*
617 * Prevent waiting on csd lock from a previous smp_send_stop.
618 * This is racy, but in general callers try to do the right
619 * thing and only fire off one smp_send_stop (e.g., see
620 * kernel/panic.c)
621 */
622 if (stopped)
623 return;
624
625 stopped = true;
626
627 smp_call_function(stop_this_cpu, NULL, 0);
628}
629#endif /* CONFIG_NMI_IPI */
630
631struct task_struct *current_set[NR_CPUS];
632
633static void smp_store_cpu_info(int id)
634{
635 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
636#ifdef CONFIG_PPC_FSL_BOOK3E
637 per_cpu(next_tlbcam_idx, id)
638 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
639#endif
640}
641
642/*
643 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
644 * rather than just passing around the cpumask we pass around a function that
645 * returns the that cpumask for the given CPU.
646 */
647static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
648{
649 cpumask_set_cpu(i, get_cpumask(j));
650 cpumask_set_cpu(j, get_cpumask(i));
651}
652
653#ifdef CONFIG_HOTPLUG_CPU
654static void set_cpus_unrelated(int i, int j,
655 struct cpumask *(*get_cpumask)(int))
656{
657 cpumask_clear_cpu(i, get_cpumask(j));
658 cpumask_clear_cpu(j, get_cpumask(i));
659}
660#endif
661
662/*
663 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
664 * property for the CPU device node @dn and stores
665 * the parsed output in the thread_groups
666 * structure @tg if the ibm,thread-groups[0]
667 * matches @property.
668 *
669 * @dn: The device node of the CPU device.
670 * @tg: Pointer to a thread group structure into which the parsed
671 * output of "ibm,thread-groups" is stored.
672 * @property: The property of the thread-group that the caller is
673 * interested in.
674 *
675 * ibm,thread-groups[0..N-1] array defines which group of threads in
676 * the CPU-device node can be grouped together based on the property.
677 *
678 * ibm,thread-groups[0] tells us the property based on which the
679 * threads are being grouped together. If this value is 1, it implies
680 * that the threads in the same group share L1, translation cache.
681 *
682 * ibm,thread-groups[1] tells us how many such thread groups exist.
683 *
684 * ibm,thread-groups[2] tells us the number of threads in each such
685 * group.
686 *
687 * ibm,thread-groups[3..N-1] is the list of threads identified by
688 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
689 * the grouping.
690 *
691 * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
692 * implies that there are 2 groups of 4 threads each, where each group
693 * of threads share L1, translation cache.
694 *
695 * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
696 * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
697 * 11, 12} structure
698 *
699 * Returns 0 on success, -EINVAL if the property does not exist,
700 * -ENODATA if property does not have a value, and -EOVERFLOW if the
701 * property data isn't large enough.
702 */
703static int parse_thread_groups(struct device_node *dn,
704 struct thread_groups *tg,
705 unsigned int property)
706{
707 int i;
708 u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
709 u32 *thread_list;
710 size_t total_threads;
711 int ret;
712
713 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
714 thread_group_array, 3);
715 if (ret)
716 return ret;
717
718 tg->property = thread_group_array[0];
719 tg->nr_groups = thread_group_array[1];
720 tg->threads_per_group = thread_group_array[2];
721 if (tg->property != property ||
722 tg->nr_groups < 1 ||
723 tg->threads_per_group < 1)
724 return -ENODATA;
725
726 total_threads = tg->nr_groups * tg->threads_per_group;
727
728 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
729 thread_group_array,
730 3 + total_threads);
731 if (ret)
732 return ret;
733
734 thread_list = &thread_group_array[3];
735
736 for (i = 0 ; i < total_threads; i++)
737 tg->thread_list[i] = thread_list[i];
738
739 return 0;
740}
741
742/*
743 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
744 * that @cpu belongs to.
745 *
746 * @cpu : The logical CPU whose thread group is being searched.
747 * @tg : The thread-group structure of the CPU node which @cpu belongs
748 * to.
749 *
750 * Returns the index to tg->thread_list that points to the the start
751 * of the thread_group that @cpu belongs to.
752 *
753 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
754 * tg->thread_list.
755 */
756static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
757{
758 int hw_cpu_id = get_hard_smp_processor_id(cpu);
759 int i, j;
760
761 for (i = 0; i < tg->nr_groups; i++) {
762 int group_start = i * tg->threads_per_group;
763
764 for (j = 0; j < tg->threads_per_group; j++) {
765 int idx = group_start + j;
766
767 if (tg->thread_list[idx] == hw_cpu_id)
768 return group_start;
769 }
770 }
771
772 return -1;
773}
774
775static int init_cpu_l1_cache_map(int cpu)
776
777{
778 struct device_node *dn = of_get_cpu_node(cpu, NULL);
779 struct thread_groups tg = {.property = 0,
780 .nr_groups = 0,
781 .threads_per_group = 0};
782 int first_thread = cpu_first_thread_sibling(cpu);
783 int i, cpu_group_start = -1, err = 0;
784
785 if (!dn)
786 return -ENODATA;
787
788 err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
789 if (err)
790 goto out;
791
792 zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
793 GFP_KERNEL,
794 cpu_to_node(cpu));
795
796 cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
797
798 if (unlikely(cpu_group_start == -1)) {
799 WARN_ON_ONCE(1);
800 err = -ENODATA;
801 goto out;
802 }
803
804 for (i = first_thread; i < first_thread + threads_per_core; i++) {
805 int i_group_start = get_cpu_thread_group_start(i, &tg);
806
807 if (unlikely(i_group_start == -1)) {
808 WARN_ON_ONCE(1);
809 err = -ENODATA;
810 goto out;
811 }
812
813 if (i_group_start == cpu_group_start)
814 cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
815 }
816
817out:
818 of_node_put(dn);
819 return err;
820}
821
822static int init_big_cores(void)
823{
824 int cpu;
825
826 for_each_possible_cpu(cpu) {
827 int err = init_cpu_l1_cache_map(cpu);
828
829 if (err)
830 return err;
831
832 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
833 GFP_KERNEL,
834 cpu_to_node(cpu));
835 }
836
837 has_big_cores = true;
838 return 0;
839}
840
841void __init smp_prepare_cpus(unsigned int max_cpus)
842{
843 unsigned int cpu;
844
845 DBG("smp_prepare_cpus\n");
846
847 /*
848 * setup_cpu may need to be called on the boot cpu. We havent
849 * spun any cpus up but lets be paranoid.
850 */
851 BUG_ON(boot_cpuid != smp_processor_id());
852
853 /* Fixup boot cpu */
854 smp_store_cpu_info(boot_cpuid);
855 cpu_callin_map[boot_cpuid] = 1;
856
857 for_each_possible_cpu(cpu) {
858 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
859 GFP_KERNEL, cpu_to_node(cpu));
860 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
861 GFP_KERNEL, cpu_to_node(cpu));
862 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
863 GFP_KERNEL, cpu_to_node(cpu));
864 /*
865 * numa_node_id() works after this.
866 */
867 if (cpu_present(cpu)) {
868 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
869 set_cpu_numa_mem(cpu,
870 local_memory_node(numa_cpu_lookup_table[cpu]));
871 }
872 }
873
874 /* Init the cpumasks so the boot CPU is related to itself */
875 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
876 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
877 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
878
879 init_big_cores();
880 if (has_big_cores) {
881 cpumask_set_cpu(boot_cpuid,
882 cpu_smallcore_mask(boot_cpuid));
883 }
884
885 if (smp_ops && smp_ops->probe)
886 smp_ops->probe();
887}
888
889void smp_prepare_boot_cpu(void)
890{
891 BUG_ON(smp_processor_id() != boot_cpuid);
892#ifdef CONFIG_PPC64
893 paca_ptrs[boot_cpuid]->__current = current;
894#endif
895 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
896 current_set[boot_cpuid] = current;
897}
898
899#ifdef CONFIG_HOTPLUG_CPU
900
901int generic_cpu_disable(void)
902{
903 unsigned int cpu = smp_processor_id();
904
905 if (cpu == boot_cpuid)
906 return -EBUSY;
907
908 set_cpu_online(cpu, false);
909#ifdef CONFIG_PPC64
910 vdso_data->processorCount--;
911#endif
912 /* Update affinity of all IRQs previously aimed at this CPU */
913 irq_migrate_all_off_this_cpu();
914
915 /*
916 * Depending on the details of the interrupt controller, it's possible
917 * that one of the interrupts we just migrated away from this CPU is
918 * actually already pending on this CPU. If we leave it in that state
919 * the interrupt will never be EOI'ed, and will never fire again. So
920 * temporarily enable interrupts here, to allow any pending interrupt to
921 * be received (and EOI'ed), before we take this CPU offline.
922 */
923 local_irq_enable();
924 mdelay(1);
925 local_irq_disable();
926
927 return 0;
928}
929
930void generic_cpu_die(unsigned int cpu)
931{
932 int i;
933
934 for (i = 0; i < 100; i++) {
935 smp_rmb();
936 if (is_cpu_dead(cpu))
937 return;
938 msleep(100);
939 }
940 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
941}
942
943void generic_set_cpu_dead(unsigned int cpu)
944{
945 per_cpu(cpu_state, cpu) = CPU_DEAD;
946}
947
948/*
949 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
950 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
951 * which makes the delay in generic_cpu_die() not happen.
952 */
953void generic_set_cpu_up(unsigned int cpu)
954{
955 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
956}
957
958int generic_check_cpu_restart(unsigned int cpu)
959{
960 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
961}
962
963int is_cpu_dead(unsigned int cpu)
964{
965 return per_cpu(cpu_state, cpu) == CPU_DEAD;
966}
967
968static bool secondaries_inhibited(void)
969{
970 return kvm_hv_mode_active();
971}
972
973#else /* HOTPLUG_CPU */
974
975#define secondaries_inhibited() 0
976
977#endif
978
979static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
980{
981#ifdef CONFIG_PPC64
982 paca_ptrs[cpu]->__current = idle;
983 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
984 THREAD_SIZE - STACK_FRAME_OVERHEAD;
985#endif
986 idle->cpu = cpu;
987 secondary_current = current_set[cpu] = idle;
988}
989
990int __cpu_up(unsigned int cpu, struct task_struct *tidle)
991{
992 int rc, c;
993
994 /*
995 * Don't allow secondary threads to come online if inhibited
996 */
997 if (threads_per_core > 1 && secondaries_inhibited() &&
998 cpu_thread_in_subcore(cpu))
999 return -EBUSY;
1000
1001 if (smp_ops == NULL ||
1002 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1003 return -EINVAL;
1004
1005 cpu_idle_thread_init(cpu, tidle);
1006
1007 /*
1008 * The platform might need to allocate resources prior to bringing
1009 * up the CPU
1010 */
1011 if (smp_ops->prepare_cpu) {
1012 rc = smp_ops->prepare_cpu(cpu);
1013 if (rc)
1014 return rc;
1015 }
1016
1017 /* Make sure callin-map entry is 0 (can be leftover a CPU
1018 * hotplug
1019 */
1020 cpu_callin_map[cpu] = 0;
1021
1022 /* The information for processor bringup must
1023 * be written out to main store before we release
1024 * the processor.
1025 */
1026 smp_mb();
1027
1028 /* wake up cpus */
1029 DBG("smp: kicking cpu %d\n", cpu);
1030 rc = smp_ops->kick_cpu(cpu);
1031 if (rc) {
1032 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1033 return rc;
1034 }
1035
1036 /*
1037 * wait to see if the cpu made a callin (is actually up).
1038 * use this value that I found through experimentation.
1039 * -- Cort
1040 */
1041 if (system_state < SYSTEM_RUNNING)
1042 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1043 udelay(100);
1044#ifdef CONFIG_HOTPLUG_CPU
1045 else
1046 /*
1047 * CPUs can take much longer to come up in the
1048 * hotplug case. Wait five seconds.
1049 */
1050 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1051 msleep(1);
1052#endif
1053
1054 if (!cpu_callin_map[cpu]) {
1055 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1056 return -ENOENT;
1057 }
1058
1059 DBG("Processor %u found.\n", cpu);
1060
1061 if (smp_ops->give_timebase)
1062 smp_ops->give_timebase();
1063
1064 /* Wait until cpu puts itself in the online & active maps */
1065 spin_until_cond(cpu_online(cpu));
1066
1067 return 0;
1068}
1069
1070/* Return the value of the reg property corresponding to the given
1071 * logical cpu.
1072 */
1073int cpu_to_core_id(int cpu)
1074{
1075 struct device_node *np;
1076 const __be32 *reg;
1077 int id = -1;
1078
1079 np = of_get_cpu_node(cpu, NULL);
1080 if (!np)
1081 goto out;
1082
1083 reg = of_get_property(np, "reg", NULL);
1084 if (!reg)
1085 goto out;
1086
1087 id = be32_to_cpup(reg);
1088out:
1089 of_node_put(np);
1090 return id;
1091}
1092EXPORT_SYMBOL_GPL(cpu_to_core_id);
1093
1094/* Helper routines for cpu to core mapping */
1095int cpu_core_index_of_thread(int cpu)
1096{
1097 return cpu >> threads_shift;
1098}
1099EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1100
1101int cpu_first_thread_of_core(int core)
1102{
1103 return core << threads_shift;
1104}
1105EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1106
1107/* Must be called when no change can occur to cpu_present_mask,
1108 * i.e. during cpu online or offline.
1109 */
1110static struct device_node *cpu_to_l2cache(int cpu)
1111{
1112 struct device_node *np;
1113 struct device_node *cache;
1114
1115 if (!cpu_present(cpu))
1116 return NULL;
1117
1118 np = of_get_cpu_node(cpu, NULL);
1119 if (np == NULL)
1120 return NULL;
1121
1122 cache = of_find_next_cache_node(np);
1123
1124 of_node_put(np);
1125
1126 return cache;
1127}
1128
1129static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
1130{
1131 struct device_node *l2_cache, *np;
1132 int i;
1133
1134 l2_cache = cpu_to_l2cache(cpu);
1135 if (!l2_cache)
1136 return false;
1137
1138 for_each_cpu(i, cpu_online_mask) {
1139 /*
1140 * when updating the marks the current CPU has not been marked
1141 * online, but we need to update the cache masks
1142 */
1143 np = cpu_to_l2cache(i);
1144 if (!np)
1145 continue;
1146
1147 if (np == l2_cache)
1148 set_cpus_related(cpu, i, mask_fn);
1149
1150 of_node_put(np);
1151 }
1152 of_node_put(l2_cache);
1153
1154 return true;
1155}
1156
1157#ifdef CONFIG_HOTPLUG_CPU
1158static void remove_cpu_from_masks(int cpu)
1159{
1160 int i;
1161
1162 /* NB: cpu_core_mask is a superset of the others */
1163 for_each_cpu(i, cpu_core_mask(cpu)) {
1164 set_cpus_unrelated(cpu, i, cpu_core_mask);
1165 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1166 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1167 if (has_big_cores)
1168 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1169 }
1170}
1171#endif
1172
1173static inline void add_cpu_to_smallcore_masks(int cpu)
1174{
1175 struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
1176 int i, first_thread = cpu_first_thread_sibling(cpu);
1177
1178 if (!has_big_cores)
1179 return;
1180
1181 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1182
1183 for (i = first_thread; i < first_thread + threads_per_core; i++) {
1184 if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
1185 set_cpus_related(i, cpu, cpu_smallcore_mask);
1186 }
1187}
1188
1189int get_physical_package_id(int cpu)
1190{
1191 int pkg_id = cpu_to_chip_id(cpu);
1192
1193 /*
1194 * If the platform is PowerNV or Guest on KVM, ibm,chip-id is
1195 * defined. Hence we would return the chip-id as the result of
1196 * get_physical_package_id.
1197 */
1198 if (pkg_id == -1 && firmware_has_feature(FW_FEATURE_LPAR) &&
1199 IS_ENABLED(CONFIG_PPC_SPLPAR)) {
1200 struct device_node *np = of_get_cpu_node(cpu, NULL);
1201 pkg_id = of_node_to_nid(np);
1202 of_node_put(np);
1203 }
1204
1205 return pkg_id;
1206}
1207EXPORT_SYMBOL_GPL(get_physical_package_id);
1208
1209static void add_cpu_to_masks(int cpu)
1210{
1211 int first_thread = cpu_first_thread_sibling(cpu);
1212 int pkg_id = get_physical_package_id(cpu);
1213 int i;
1214
1215 /*
1216 * This CPU will not be in the online mask yet so we need to manually
1217 * add it to it's own thread sibling mask.
1218 */
1219 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1220
1221 for (i = first_thread; i < first_thread + threads_per_core; i++)
1222 if (cpu_online(i))
1223 set_cpus_related(i, cpu, cpu_sibling_mask);
1224
1225 add_cpu_to_smallcore_masks(cpu);
1226 /*
1227 * Copy the thread sibling mask into the cache sibling mask
1228 * and mark any CPUs that share an L2 with this CPU.
1229 */
1230 for_each_cpu(i, cpu_sibling_mask(cpu))
1231 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1232 update_mask_by_l2(cpu, cpu_l2_cache_mask);
1233
1234 /*
1235 * Copy the cache sibling mask into core sibling mask and mark
1236 * any CPUs on the same chip as this CPU.
1237 */
1238 for_each_cpu(i, cpu_l2_cache_mask(cpu))
1239 set_cpus_related(cpu, i, cpu_core_mask);
1240
1241 if (pkg_id == -1)
1242 return;
1243
1244 for_each_cpu(i, cpu_online_mask)
1245 if (get_physical_package_id(i) == pkg_id)
1246 set_cpus_related(cpu, i, cpu_core_mask);
1247}
1248
1249static bool shared_caches;
1250
1251/* Activate a secondary processor. */
1252void start_secondary(void *unused)
1253{
1254 unsigned int cpu = smp_processor_id();
1255 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1256
1257 mmgrab(&init_mm);
1258 current->active_mm = &init_mm;
1259
1260 smp_store_cpu_info(cpu);
1261 set_dec(tb_ticks_per_jiffy);
1262 preempt_disable();
1263 cpu_callin_map[cpu] = 1;
1264
1265 if (smp_ops->setup_cpu)
1266 smp_ops->setup_cpu(cpu);
1267 if (smp_ops->take_timebase)
1268 smp_ops->take_timebase();
1269
1270 secondary_cpu_time_init();
1271
1272#ifdef CONFIG_PPC64
1273 if (system_state == SYSTEM_RUNNING)
1274 vdso_data->processorCount++;
1275
1276 vdso_getcpu_init();
1277#endif
1278 /* Update topology CPU masks */
1279 add_cpu_to_masks(cpu);
1280
1281 if (has_big_cores)
1282 sibling_mask = cpu_smallcore_mask;
1283 /*
1284 * Check for any shared caches. Note that this must be done on a
1285 * per-core basis because one core in the pair might be disabled.
1286 */
1287 if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
1288 shared_caches = true;
1289
1290 set_numa_node(numa_cpu_lookup_table[cpu]);
1291 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1292
1293 smp_wmb();
1294 notify_cpu_starting(cpu);
1295 set_cpu_online(cpu, true);
1296
1297 boot_init_stack_canary();
1298
1299 local_irq_enable();
1300
1301 /* We can enable ftrace for secondary cpus now */
1302 this_cpu_enable_ftrace();
1303
1304 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1305
1306 BUG();
1307}
1308
1309int setup_profiling_timer(unsigned int multiplier)
1310{
1311 return 0;
1312}
1313
1314#ifdef CONFIG_SCHED_SMT
1315/* cpumask of CPUs with asymetric SMT dependancy */
1316static int powerpc_smt_flags(void)
1317{
1318 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1319
1320 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1321 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1322 flags |= SD_ASYM_PACKING;
1323 }
1324 return flags;
1325}
1326#endif
1327
1328static struct sched_domain_topology_level powerpc_topology[] = {
1329#ifdef CONFIG_SCHED_SMT
1330 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1331#endif
1332 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1333 { NULL, },
1334};
1335
1336/*
1337 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1338 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1339 * since the migrated task remains cache hot. We want to take advantage of this
1340 * at the scheduler level so an extra topology level is required.
1341 */
1342static int powerpc_shared_cache_flags(void)
1343{
1344 return SD_SHARE_PKG_RESOURCES;
1345}
1346
1347/*
1348 * We can't just pass cpu_l2_cache_mask() directly because
1349 * returns a non-const pointer and the compiler barfs on that.
1350 */
1351static const struct cpumask *shared_cache_mask(int cpu)
1352{
1353 return cpu_l2_cache_mask(cpu);
1354}
1355
1356#ifdef CONFIG_SCHED_SMT
1357static const struct cpumask *smallcore_smt_mask(int cpu)
1358{
1359 return cpu_smallcore_mask(cpu);
1360}
1361#endif
1362
1363static struct sched_domain_topology_level power9_topology[] = {
1364#ifdef CONFIG_SCHED_SMT
1365 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1366#endif
1367 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1368 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1369 { NULL, },
1370};
1371
1372void __init smp_cpus_done(unsigned int max_cpus)
1373{
1374 /*
1375 * We are running pinned to the boot CPU, see rest_init().
1376 */
1377 if (smp_ops && smp_ops->setup_cpu)
1378 smp_ops->setup_cpu(boot_cpuid);
1379
1380 if (smp_ops && smp_ops->bringup_done)
1381 smp_ops->bringup_done();
1382
1383 dump_numa_cpu_topology();
1384
1385#ifdef CONFIG_SCHED_SMT
1386 if (has_big_cores) {
1387 pr_info("Big cores detected but using small core scheduling\n");
1388 power9_topology[0].mask = smallcore_smt_mask;
1389 powerpc_topology[0].mask = smallcore_smt_mask;
1390 }
1391#endif
1392 /*
1393 * If any CPU detects that it's sharing a cache with another CPU then
1394 * use the deeper topology that is aware of this sharing.
1395 */
1396 if (shared_caches) {
1397 pr_info("Using shared cache scheduler topology\n");
1398 set_sched_topology(power9_topology);
1399 } else {
1400 pr_info("Using standard scheduler topology\n");
1401 set_sched_topology(powerpc_topology);
1402 }
1403}
1404
1405#ifdef CONFIG_HOTPLUG_CPU
1406int __cpu_disable(void)
1407{
1408 int cpu = smp_processor_id();
1409 int err;
1410
1411 if (!smp_ops->cpu_disable)
1412 return -ENOSYS;
1413
1414 this_cpu_disable_ftrace();
1415
1416 err = smp_ops->cpu_disable();
1417 if (err)
1418 return err;
1419
1420 /* Update sibling maps */
1421 remove_cpu_from_masks(cpu);
1422
1423 return 0;
1424}
1425
1426void __cpu_die(unsigned int cpu)
1427{
1428 if (smp_ops->cpu_die)
1429 smp_ops->cpu_die(cpu);
1430}
1431
1432void cpu_die(void)
1433{
1434 /*
1435 * Disable on the down path. This will be re-enabled by
1436 * start_secondary() via start_secondary_resume() below
1437 */
1438 this_cpu_disable_ftrace();
1439
1440 if (ppc_md.cpu_die)
1441 ppc_md.cpu_die();
1442
1443 /* If we return, we re-enter start_secondary */
1444 start_secondary_resume();
1445}
1446
1447#endif
1/*
2 * SMP support for ppc.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5 * deal of code from the sparc and intel versions.
6 *
7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8 *
9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#undef DEBUG
19
20#include <linux/kernel.h>
21#include <linux/export.h>
22#include <linux/sched.h>
23#include <linux/smp.h>
24#include <linux/interrupt.h>
25#include <linux/delay.h>
26#include <linux/init.h>
27#include <linux/spinlock.h>
28#include <linux/cache.h>
29#include <linux/err.h>
30#include <linux/device.h>
31#include <linux/cpu.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34
35#include <asm/ptrace.h>
36#include <linux/atomic.h>
37#include <asm/irq.h>
38#include <asm/hw_irq.h>
39#include <asm/page.h>
40#include <asm/pgtable.h>
41#include <asm/prom.h>
42#include <asm/smp.h>
43#include <asm/time.h>
44#include <asm/machdep.h>
45#include <asm/cputhreads.h>
46#include <asm/cputable.h>
47#include <asm/mpic.h>
48#include <asm/vdso_datapage.h>
49#ifdef CONFIG_PPC64
50#include <asm/paca.h>
51#endif
52#include <asm/vdso.h>
53#include <asm/debug.h>
54
55#ifdef DEBUG
56#include <asm/udbg.h>
57#define DBG(fmt...) udbg_printf(fmt)
58#else
59#define DBG(fmt...)
60#endif
61
62#ifdef CONFIG_HOTPLUG_CPU
63/* State of each CPU during hotplug phases */
64static DEFINE_PER_CPU(int, cpu_state) = { 0 };
65#endif
66
67struct thread_info *secondary_ti;
68
69DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
70DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
71
72EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
73EXPORT_PER_CPU_SYMBOL(cpu_core_map);
74
75/* SMP operations for this machine */
76struct smp_ops_t *smp_ops;
77
78/* Can't be static due to PowerMac hackery */
79volatile unsigned int cpu_callin_map[NR_CPUS];
80
81int smt_enabled_at_boot = 1;
82
83static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
84
85/*
86 * Returns 1 if the specified cpu should be brought up during boot.
87 * Used to inhibit booting threads if they've been disabled or
88 * limited on the command line
89 */
90int smp_generic_cpu_bootable(unsigned int nr)
91{
92 /* Special case - we inhibit secondary thread startup
93 * during boot if the user requests it.
94 */
95 if (system_state == SYSTEM_BOOTING && cpu_has_feature(CPU_FTR_SMT)) {
96 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
97 return 0;
98 if (smt_enabled_at_boot
99 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
100 return 0;
101 }
102
103 return 1;
104}
105
106
107#ifdef CONFIG_PPC64
108int smp_generic_kick_cpu(int nr)
109{
110 BUG_ON(nr < 0 || nr >= NR_CPUS);
111
112 /*
113 * The processor is currently spinning, waiting for the
114 * cpu_start field to become non-zero After we set cpu_start,
115 * the processor will continue on to secondary_start
116 */
117 if (!paca[nr].cpu_start) {
118 paca[nr].cpu_start = 1;
119 smp_mb();
120 return 0;
121 }
122
123#ifdef CONFIG_HOTPLUG_CPU
124 /*
125 * Ok it's not there, so it might be soft-unplugged, let's
126 * try to bring it back
127 */
128 generic_set_cpu_up(nr);
129 smp_wmb();
130 smp_send_reschedule(nr);
131#endif /* CONFIG_HOTPLUG_CPU */
132
133 return 0;
134}
135#endif /* CONFIG_PPC64 */
136
137static irqreturn_t call_function_action(int irq, void *data)
138{
139 generic_smp_call_function_interrupt();
140 return IRQ_HANDLED;
141}
142
143static irqreturn_t reschedule_action(int irq, void *data)
144{
145 scheduler_ipi();
146 return IRQ_HANDLED;
147}
148
149static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
150{
151 tick_broadcast_ipi_handler();
152 return IRQ_HANDLED;
153}
154
155static irqreturn_t debug_ipi_action(int irq, void *data)
156{
157 if (crash_ipi_function_ptr) {
158 crash_ipi_function_ptr(get_irq_regs());
159 return IRQ_HANDLED;
160 }
161
162#ifdef CONFIG_DEBUGGER
163 debugger_ipi(get_irq_regs());
164#endif /* CONFIG_DEBUGGER */
165
166 return IRQ_HANDLED;
167}
168
169static irq_handler_t smp_ipi_action[] = {
170 [PPC_MSG_CALL_FUNCTION] = call_function_action,
171 [PPC_MSG_RESCHEDULE] = reschedule_action,
172 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
173 [PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
174};
175
176const char *smp_ipi_name[] = {
177 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
178 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
179 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
180 [PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
181};
182
183/* optional function to request ipi, for controllers with >= 4 ipis */
184int smp_request_message_ipi(int virq, int msg)
185{
186 int err;
187
188 if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
189 return -EINVAL;
190 }
191#if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
192 if (msg == PPC_MSG_DEBUGGER_BREAK) {
193 return 1;
194 }
195#endif
196 err = request_irq(virq, smp_ipi_action[msg],
197 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
198 smp_ipi_name[msg], NULL);
199 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
200 virq, smp_ipi_name[msg], err);
201
202 return err;
203}
204
205#ifdef CONFIG_PPC_SMP_MUXED_IPI
206struct cpu_messages {
207 int messages; /* current messages */
208 unsigned long data; /* data for cause ipi */
209};
210static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
211
212void smp_muxed_ipi_set_data(int cpu, unsigned long data)
213{
214 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
215
216 info->data = data;
217}
218
219void smp_muxed_ipi_message_pass(int cpu, int msg)
220{
221 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
222 char *message = (char *)&info->messages;
223
224 /*
225 * Order previous accesses before accesses in the IPI handler.
226 */
227 smp_mb();
228 message[msg] = 1;
229 /*
230 * cause_ipi functions are required to include a full barrier
231 * before doing whatever causes the IPI.
232 */
233 smp_ops->cause_ipi(cpu, info->data);
234}
235
236#ifdef __BIG_ENDIAN__
237#define IPI_MESSAGE(A) (1 << (24 - 8 * (A)))
238#else
239#define IPI_MESSAGE(A) (1 << (8 * (A)))
240#endif
241
242irqreturn_t smp_ipi_demux(void)
243{
244 struct cpu_messages *info = &__get_cpu_var(ipi_message);
245 unsigned int all;
246
247 mb(); /* order any irq clear */
248
249 do {
250 all = xchg(&info->messages, 0);
251 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
252 generic_smp_call_function_interrupt();
253 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
254 scheduler_ipi();
255 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
256 tick_broadcast_ipi_handler();
257 if (all & IPI_MESSAGE(PPC_MSG_DEBUGGER_BREAK))
258 debug_ipi_action(0, NULL);
259 } while (info->messages);
260
261 return IRQ_HANDLED;
262}
263#endif /* CONFIG_PPC_SMP_MUXED_IPI */
264
265static inline void do_message_pass(int cpu, int msg)
266{
267 if (smp_ops->message_pass)
268 smp_ops->message_pass(cpu, msg);
269#ifdef CONFIG_PPC_SMP_MUXED_IPI
270 else
271 smp_muxed_ipi_message_pass(cpu, msg);
272#endif
273}
274
275void smp_send_reschedule(int cpu)
276{
277 if (likely(smp_ops))
278 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
279}
280EXPORT_SYMBOL_GPL(smp_send_reschedule);
281
282void arch_send_call_function_single_ipi(int cpu)
283{
284 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
285}
286
287void arch_send_call_function_ipi_mask(const struct cpumask *mask)
288{
289 unsigned int cpu;
290
291 for_each_cpu(cpu, mask)
292 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
293}
294
295#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
296void tick_broadcast(const struct cpumask *mask)
297{
298 unsigned int cpu;
299
300 for_each_cpu(cpu, mask)
301 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
302}
303#endif
304
305#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
306void smp_send_debugger_break(void)
307{
308 int cpu;
309 int me = raw_smp_processor_id();
310
311 if (unlikely(!smp_ops))
312 return;
313
314 for_each_online_cpu(cpu)
315 if (cpu != me)
316 do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
317}
318#endif
319
320#ifdef CONFIG_KEXEC
321void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
322{
323 crash_ipi_function_ptr = crash_ipi_callback;
324 if (crash_ipi_callback) {
325 mb();
326 smp_send_debugger_break();
327 }
328}
329#endif
330
331static void stop_this_cpu(void *dummy)
332{
333 /* Remove this CPU */
334 set_cpu_online(smp_processor_id(), false);
335
336 local_irq_disable();
337 while (1)
338 ;
339}
340
341void smp_send_stop(void)
342{
343 smp_call_function(stop_this_cpu, NULL, 0);
344}
345
346struct thread_info *current_set[NR_CPUS];
347
348static void smp_store_cpu_info(int id)
349{
350 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
351#ifdef CONFIG_PPC_FSL_BOOK3E
352 per_cpu(next_tlbcam_idx, id)
353 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
354#endif
355}
356
357void __init smp_prepare_cpus(unsigned int max_cpus)
358{
359 unsigned int cpu;
360
361 DBG("smp_prepare_cpus\n");
362
363 /*
364 * setup_cpu may need to be called on the boot cpu. We havent
365 * spun any cpus up but lets be paranoid.
366 */
367 BUG_ON(boot_cpuid != smp_processor_id());
368
369 /* Fixup boot cpu */
370 smp_store_cpu_info(boot_cpuid);
371 cpu_callin_map[boot_cpuid] = 1;
372
373 for_each_possible_cpu(cpu) {
374 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
375 GFP_KERNEL, cpu_to_node(cpu));
376 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
377 GFP_KERNEL, cpu_to_node(cpu));
378 }
379
380 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
381 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
382
383 if (smp_ops && smp_ops->probe)
384 smp_ops->probe();
385}
386
387void smp_prepare_boot_cpu(void)
388{
389 BUG_ON(smp_processor_id() != boot_cpuid);
390#ifdef CONFIG_PPC64
391 paca[boot_cpuid].__current = current;
392#endif
393 current_set[boot_cpuid] = task_thread_info(current);
394}
395
396#ifdef CONFIG_HOTPLUG_CPU
397
398int generic_cpu_disable(void)
399{
400 unsigned int cpu = smp_processor_id();
401
402 if (cpu == boot_cpuid)
403 return -EBUSY;
404
405 set_cpu_online(cpu, false);
406#ifdef CONFIG_PPC64
407 vdso_data->processorCount--;
408#endif
409 migrate_irqs();
410 return 0;
411}
412
413void generic_cpu_die(unsigned int cpu)
414{
415 int i;
416
417 for (i = 0; i < 100; i++) {
418 smp_rmb();
419 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
420 return;
421 msleep(100);
422 }
423 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
424}
425
426void generic_mach_cpu_die(void)
427{
428 unsigned int cpu;
429
430 local_irq_disable();
431 idle_task_exit();
432 cpu = smp_processor_id();
433 printk(KERN_DEBUG "CPU%d offline\n", cpu);
434 __get_cpu_var(cpu_state) = CPU_DEAD;
435 smp_wmb();
436 while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
437 cpu_relax();
438}
439
440void generic_set_cpu_dead(unsigned int cpu)
441{
442 per_cpu(cpu_state, cpu) = CPU_DEAD;
443}
444
445/*
446 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
447 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
448 * which makes the delay in generic_cpu_die() not happen.
449 */
450void generic_set_cpu_up(unsigned int cpu)
451{
452 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
453}
454
455int generic_check_cpu_restart(unsigned int cpu)
456{
457 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
458}
459
460static atomic_t secondary_inhibit_count;
461
462/*
463 * Don't allow secondary CPU threads to come online
464 */
465void inhibit_secondary_onlining(void)
466{
467 /*
468 * This makes secondary_inhibit_count stable during cpu
469 * online/offline operations.
470 */
471 get_online_cpus();
472
473 atomic_inc(&secondary_inhibit_count);
474 put_online_cpus();
475}
476EXPORT_SYMBOL_GPL(inhibit_secondary_onlining);
477
478/*
479 * Allow secondary CPU threads to come online again
480 */
481void uninhibit_secondary_onlining(void)
482{
483 get_online_cpus();
484 atomic_dec(&secondary_inhibit_count);
485 put_online_cpus();
486}
487EXPORT_SYMBOL_GPL(uninhibit_secondary_onlining);
488
489static int secondaries_inhibited(void)
490{
491 return atomic_read(&secondary_inhibit_count);
492}
493
494#else /* HOTPLUG_CPU */
495
496#define secondaries_inhibited() 0
497
498#endif
499
500static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
501{
502 struct thread_info *ti = task_thread_info(idle);
503
504#ifdef CONFIG_PPC64
505 paca[cpu].__current = idle;
506 paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
507#endif
508 ti->cpu = cpu;
509 secondary_ti = current_set[cpu] = ti;
510}
511
512int __cpu_up(unsigned int cpu, struct task_struct *tidle)
513{
514 int rc, c;
515
516 /*
517 * Don't allow secondary threads to come online if inhibited
518 */
519 if (threads_per_core > 1 && secondaries_inhibited() &&
520 cpu % threads_per_core != 0)
521 return -EBUSY;
522
523 if (smp_ops == NULL ||
524 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
525 return -EINVAL;
526
527 cpu_idle_thread_init(cpu, tidle);
528
529 /* Make sure callin-map entry is 0 (can be leftover a CPU
530 * hotplug
531 */
532 cpu_callin_map[cpu] = 0;
533
534 /* The information for processor bringup must
535 * be written out to main store before we release
536 * the processor.
537 */
538 smp_mb();
539
540 /* wake up cpus */
541 DBG("smp: kicking cpu %d\n", cpu);
542 rc = smp_ops->kick_cpu(cpu);
543 if (rc) {
544 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
545 return rc;
546 }
547
548 /*
549 * wait to see if the cpu made a callin (is actually up).
550 * use this value that I found through experimentation.
551 * -- Cort
552 */
553 if (system_state < SYSTEM_RUNNING)
554 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
555 udelay(100);
556#ifdef CONFIG_HOTPLUG_CPU
557 else
558 /*
559 * CPUs can take much longer to come up in the
560 * hotplug case. Wait five seconds.
561 */
562 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
563 msleep(1);
564#endif
565
566 if (!cpu_callin_map[cpu]) {
567 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
568 return -ENOENT;
569 }
570
571 DBG("Processor %u found.\n", cpu);
572
573 if (smp_ops->give_timebase)
574 smp_ops->give_timebase();
575
576 /* Wait until cpu puts itself in the online map */
577 while (!cpu_online(cpu))
578 cpu_relax();
579
580 return 0;
581}
582
583/* Return the value of the reg property corresponding to the given
584 * logical cpu.
585 */
586int cpu_to_core_id(int cpu)
587{
588 struct device_node *np;
589 const __be32 *reg;
590 int id = -1;
591
592 np = of_get_cpu_node(cpu, NULL);
593 if (!np)
594 goto out;
595
596 reg = of_get_property(np, "reg", NULL);
597 if (!reg)
598 goto out;
599
600 id = be32_to_cpup(reg);
601out:
602 of_node_put(np);
603 return id;
604}
605
606/* Helper routines for cpu to core mapping */
607int cpu_core_index_of_thread(int cpu)
608{
609 return cpu >> threads_shift;
610}
611EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
612
613int cpu_first_thread_of_core(int core)
614{
615 return core << threads_shift;
616}
617EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
618
619static void traverse_siblings_chip_id(int cpu, bool add, int chipid)
620{
621 const struct cpumask *mask;
622 struct device_node *np;
623 int i, plen;
624 const __be32 *prop;
625
626 mask = add ? cpu_online_mask : cpu_present_mask;
627 for_each_cpu(i, mask) {
628 np = of_get_cpu_node(i, NULL);
629 if (!np)
630 continue;
631 prop = of_get_property(np, "ibm,chip-id", &plen);
632 if (prop && plen == sizeof(int) &&
633 of_read_number(prop, 1) == chipid) {
634 if (add) {
635 cpumask_set_cpu(cpu, cpu_core_mask(i));
636 cpumask_set_cpu(i, cpu_core_mask(cpu));
637 } else {
638 cpumask_clear_cpu(cpu, cpu_core_mask(i));
639 cpumask_clear_cpu(i, cpu_core_mask(cpu));
640 }
641 }
642 of_node_put(np);
643 }
644}
645
646/* Must be called when no change can occur to cpu_present_mask,
647 * i.e. during cpu online or offline.
648 */
649static struct device_node *cpu_to_l2cache(int cpu)
650{
651 struct device_node *np;
652 struct device_node *cache;
653
654 if (!cpu_present(cpu))
655 return NULL;
656
657 np = of_get_cpu_node(cpu, NULL);
658 if (np == NULL)
659 return NULL;
660
661 cache = of_find_next_cache_node(np);
662
663 of_node_put(np);
664
665 return cache;
666}
667
668static void traverse_core_siblings(int cpu, bool add)
669{
670 struct device_node *l2_cache, *np;
671 const struct cpumask *mask;
672 int i, chip, plen;
673 const __be32 *prop;
674
675 /* First see if we have ibm,chip-id properties in cpu nodes */
676 np = of_get_cpu_node(cpu, NULL);
677 if (np) {
678 chip = -1;
679 prop = of_get_property(np, "ibm,chip-id", &plen);
680 if (prop && plen == sizeof(int))
681 chip = of_read_number(prop, 1);
682 of_node_put(np);
683 if (chip >= 0) {
684 traverse_siblings_chip_id(cpu, add, chip);
685 return;
686 }
687 }
688
689 l2_cache = cpu_to_l2cache(cpu);
690 mask = add ? cpu_online_mask : cpu_present_mask;
691 for_each_cpu(i, mask) {
692 np = cpu_to_l2cache(i);
693 if (!np)
694 continue;
695 if (np == l2_cache) {
696 if (add) {
697 cpumask_set_cpu(cpu, cpu_core_mask(i));
698 cpumask_set_cpu(i, cpu_core_mask(cpu));
699 } else {
700 cpumask_clear_cpu(cpu, cpu_core_mask(i));
701 cpumask_clear_cpu(i, cpu_core_mask(cpu));
702 }
703 }
704 of_node_put(np);
705 }
706 of_node_put(l2_cache);
707}
708
709/* Activate a secondary processor. */
710void start_secondary(void *unused)
711{
712 unsigned int cpu = smp_processor_id();
713 int i, base;
714
715 atomic_inc(&init_mm.mm_count);
716 current->active_mm = &init_mm;
717
718 smp_store_cpu_info(cpu);
719 set_dec(tb_ticks_per_jiffy);
720 preempt_disable();
721 cpu_callin_map[cpu] = 1;
722
723 if (smp_ops->setup_cpu)
724 smp_ops->setup_cpu(cpu);
725 if (smp_ops->take_timebase)
726 smp_ops->take_timebase();
727
728 secondary_cpu_time_init();
729
730#ifdef CONFIG_PPC64
731 if (system_state == SYSTEM_RUNNING)
732 vdso_data->processorCount++;
733
734 vdso_getcpu_init();
735#endif
736 /* Update sibling maps */
737 base = cpu_first_thread_sibling(cpu);
738 for (i = 0; i < threads_per_core; i++) {
739 if (cpu_is_offline(base + i) && (cpu != base + i))
740 continue;
741 cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
742 cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
743
744 /* cpu_core_map should be a superset of
745 * cpu_sibling_map even if we don't have cache
746 * information, so update the former here, too.
747 */
748 cpumask_set_cpu(cpu, cpu_core_mask(base + i));
749 cpumask_set_cpu(base + i, cpu_core_mask(cpu));
750 }
751 traverse_core_siblings(cpu, true);
752
753 smp_wmb();
754 notify_cpu_starting(cpu);
755 set_cpu_online(cpu, true);
756
757 local_irq_enable();
758
759 cpu_startup_entry(CPUHP_ONLINE);
760
761 BUG();
762}
763
764int setup_profiling_timer(unsigned int multiplier)
765{
766 return 0;
767}
768
769void __init smp_cpus_done(unsigned int max_cpus)
770{
771 cpumask_var_t old_mask;
772
773 /* We want the setup_cpu() here to be called from CPU 0, but our
774 * init thread may have been "borrowed" by another CPU in the meantime
775 * se we pin us down to CPU 0 for a short while
776 */
777 alloc_cpumask_var(&old_mask, GFP_NOWAIT);
778 cpumask_copy(old_mask, tsk_cpus_allowed(current));
779 set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
780
781 if (smp_ops && smp_ops->setup_cpu)
782 smp_ops->setup_cpu(boot_cpuid);
783
784 set_cpus_allowed_ptr(current, old_mask);
785
786 free_cpumask_var(old_mask);
787
788 if (smp_ops && smp_ops->bringup_done)
789 smp_ops->bringup_done();
790
791 dump_numa_cpu_topology();
792
793}
794
795int arch_sd_sibling_asym_packing(void)
796{
797 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
798 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
799 return SD_ASYM_PACKING;
800 }
801 return 0;
802}
803
804#ifdef CONFIG_HOTPLUG_CPU
805int __cpu_disable(void)
806{
807 int cpu = smp_processor_id();
808 int base, i;
809 int err;
810
811 if (!smp_ops->cpu_disable)
812 return -ENOSYS;
813
814 err = smp_ops->cpu_disable();
815 if (err)
816 return err;
817
818 /* Update sibling maps */
819 base = cpu_first_thread_sibling(cpu);
820 for (i = 0; i < threads_per_core; i++) {
821 cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
822 cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
823 cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
824 cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
825 }
826 traverse_core_siblings(cpu, false);
827
828 return 0;
829}
830
831void __cpu_die(unsigned int cpu)
832{
833 if (smp_ops->cpu_die)
834 smp_ops->cpu_die(cpu);
835}
836
837void cpu_die(void)
838{
839 if (ppc_md.cpu_die)
840 ppc_md.cpu_die();
841
842 /* If we return, we re-enter start_secondary */
843 start_secondary_resume();
844}
845
846#endif