Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12 */
13
14#undef DEBUG
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/task_stack.h>
20#include <linux/sched/topology.h>
21#include <linux/smp.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/init.h>
25#include <linux/spinlock.h>
26#include <linux/cache.h>
27#include <linux/err.h>
28#include <linux/device.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/profile.h>
33#include <linux/processor.h>
34#include <linux/random.h>
35#include <linux/stackprotector.h>
36#include <linux/pgtable.h>
37
38#include <asm/ptrace.h>
39#include <linux/atomic.h>
40#include <asm/irq.h>
41#include <asm/hw_irq.h>
42#include <asm/kvm_ppc.h>
43#include <asm/dbell.h>
44#include <asm/page.h>
45#include <asm/prom.h>
46#include <asm/smp.h>
47#include <asm/time.h>
48#include <asm/machdep.h>
49#include <asm/cputhreads.h>
50#include <asm/cputable.h>
51#include <asm/mpic.h>
52#include <asm/vdso_datapage.h>
53#ifdef CONFIG_PPC64
54#include <asm/paca.h>
55#endif
56#include <asm/vdso.h>
57#include <asm/debug.h>
58#include <asm/kexec.h>
59#include <asm/asm-prototypes.h>
60#include <asm/cpu_has_feature.h>
61#include <asm/ftrace.h>
62#include <asm/kup.h>
63
64#ifdef DEBUG
65#include <asm/udbg.h>
66#define DBG(fmt...) udbg_printf(fmt)
67#else
68#define DBG(fmt...)
69#endif
70
71#ifdef CONFIG_HOTPLUG_CPU
72/* State of each CPU during hotplug phases */
73static DEFINE_PER_CPU(int, cpu_state) = { 0 };
74#endif
75
76struct task_struct *secondary_current;
77bool has_big_cores;
78
79DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
80DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
81DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
82DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
83
84EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
85EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
86EXPORT_PER_CPU_SYMBOL(cpu_core_map);
87EXPORT_SYMBOL_GPL(has_big_cores);
88
89#define MAX_THREAD_LIST_SIZE 8
90#define THREAD_GROUP_SHARE_L1 1
91struct thread_groups {
92 unsigned int property;
93 unsigned int nr_groups;
94 unsigned int threads_per_group;
95 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
96};
97
98/*
99 * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
100 * the set its siblings that share the L1-cache.
101 */
102DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
103
104/* SMP operations for this machine */
105struct smp_ops_t *smp_ops;
106
107/* Can't be static due to PowerMac hackery */
108volatile unsigned int cpu_callin_map[NR_CPUS];
109
110int smt_enabled_at_boot = 1;
111
112/*
113 * Returns 1 if the specified cpu should be brought up during boot.
114 * Used to inhibit booting threads if they've been disabled or
115 * limited on the command line
116 */
117int smp_generic_cpu_bootable(unsigned int nr)
118{
119 /* Special case - we inhibit secondary thread startup
120 * during boot if the user requests it.
121 */
122 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
123 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
124 return 0;
125 if (smt_enabled_at_boot
126 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
127 return 0;
128 }
129
130 return 1;
131}
132
133
134#ifdef CONFIG_PPC64
135int smp_generic_kick_cpu(int nr)
136{
137 if (nr < 0 || nr >= nr_cpu_ids)
138 return -EINVAL;
139
140 /*
141 * The processor is currently spinning, waiting for the
142 * cpu_start field to become non-zero After we set cpu_start,
143 * the processor will continue on to secondary_start
144 */
145 if (!paca_ptrs[nr]->cpu_start) {
146 paca_ptrs[nr]->cpu_start = 1;
147 smp_mb();
148 return 0;
149 }
150
151#ifdef CONFIG_HOTPLUG_CPU
152 /*
153 * Ok it's not there, so it might be soft-unplugged, let's
154 * try to bring it back
155 */
156 generic_set_cpu_up(nr);
157 smp_wmb();
158 smp_send_reschedule(nr);
159#endif /* CONFIG_HOTPLUG_CPU */
160
161 return 0;
162}
163#endif /* CONFIG_PPC64 */
164
165static irqreturn_t call_function_action(int irq, void *data)
166{
167 generic_smp_call_function_interrupt();
168 return IRQ_HANDLED;
169}
170
171static irqreturn_t reschedule_action(int irq, void *data)
172{
173 scheduler_ipi();
174 return IRQ_HANDLED;
175}
176
177#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
178static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
179{
180 timer_broadcast_interrupt();
181 return IRQ_HANDLED;
182}
183#endif
184
185#ifdef CONFIG_NMI_IPI
186static irqreturn_t nmi_ipi_action(int irq, void *data)
187{
188 smp_handle_nmi_ipi(get_irq_regs());
189 return IRQ_HANDLED;
190}
191#endif
192
193static irq_handler_t smp_ipi_action[] = {
194 [PPC_MSG_CALL_FUNCTION] = call_function_action,
195 [PPC_MSG_RESCHEDULE] = reschedule_action,
196#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
197 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
198#endif
199#ifdef CONFIG_NMI_IPI
200 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
201#endif
202};
203
204/*
205 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
206 * than going through the call function infrastructure, and strongly
207 * serialized, so it is more appropriate for debugging.
208 */
209const char *smp_ipi_name[] = {
210 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
211 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
212#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
213 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
214#endif
215#ifdef CONFIG_NMI_IPI
216 [PPC_MSG_NMI_IPI] = "nmi ipi",
217#endif
218};
219
220/* optional function to request ipi, for controllers with >= 4 ipis */
221int smp_request_message_ipi(int virq, int msg)
222{
223 int err;
224
225 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
226 return -EINVAL;
227#ifndef CONFIG_NMI_IPI
228 if (msg == PPC_MSG_NMI_IPI)
229 return 1;
230#endif
231
232 err = request_irq(virq, smp_ipi_action[msg],
233 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
234 smp_ipi_name[msg], NULL);
235 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
236 virq, smp_ipi_name[msg], err);
237
238 return err;
239}
240
241#ifdef CONFIG_PPC_SMP_MUXED_IPI
242struct cpu_messages {
243 long messages; /* current messages */
244};
245static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
246
247void smp_muxed_ipi_set_message(int cpu, int msg)
248{
249 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
250 char *message = (char *)&info->messages;
251
252 /*
253 * Order previous accesses before accesses in the IPI handler.
254 */
255 smp_mb();
256 message[msg] = 1;
257}
258
259void smp_muxed_ipi_message_pass(int cpu, int msg)
260{
261 smp_muxed_ipi_set_message(cpu, msg);
262
263 /*
264 * cause_ipi functions are required to include a full barrier
265 * before doing whatever causes the IPI.
266 */
267 smp_ops->cause_ipi(cpu);
268}
269
270#ifdef __BIG_ENDIAN__
271#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
272#else
273#define IPI_MESSAGE(A) (1uL << (8 * (A)))
274#endif
275
276irqreturn_t smp_ipi_demux(void)
277{
278 mb(); /* order any irq clear */
279
280 return smp_ipi_demux_relaxed();
281}
282
283/* sync-free variant. Callers should ensure synchronization */
284irqreturn_t smp_ipi_demux_relaxed(void)
285{
286 struct cpu_messages *info;
287 unsigned long all;
288
289 info = this_cpu_ptr(&ipi_message);
290 do {
291 all = xchg(&info->messages, 0);
292#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
293 /*
294 * Must check for PPC_MSG_RM_HOST_ACTION messages
295 * before PPC_MSG_CALL_FUNCTION messages because when
296 * a VM is destroyed, we call kick_all_cpus_sync()
297 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
298 * messages have completed before we free any VCPUs.
299 */
300 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
301 kvmppc_xics_ipi_action();
302#endif
303 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
304 generic_smp_call_function_interrupt();
305 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
306 scheduler_ipi();
307#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
308 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
309 timer_broadcast_interrupt();
310#endif
311#ifdef CONFIG_NMI_IPI
312 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
313 nmi_ipi_action(0, NULL);
314#endif
315 } while (info->messages);
316
317 return IRQ_HANDLED;
318}
319#endif /* CONFIG_PPC_SMP_MUXED_IPI */
320
321static inline void do_message_pass(int cpu, int msg)
322{
323 if (smp_ops->message_pass)
324 smp_ops->message_pass(cpu, msg);
325#ifdef CONFIG_PPC_SMP_MUXED_IPI
326 else
327 smp_muxed_ipi_message_pass(cpu, msg);
328#endif
329}
330
331void smp_send_reschedule(int cpu)
332{
333 if (likely(smp_ops))
334 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
335}
336EXPORT_SYMBOL_GPL(smp_send_reschedule);
337
338void arch_send_call_function_single_ipi(int cpu)
339{
340 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
341}
342
343void arch_send_call_function_ipi_mask(const struct cpumask *mask)
344{
345 unsigned int cpu;
346
347 for_each_cpu(cpu, mask)
348 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
349}
350
351#ifdef CONFIG_NMI_IPI
352
353/*
354 * "NMI IPI" system.
355 *
356 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
357 * a running system. They can be used for crash, debug, halt/reboot, etc.
358 *
359 * The IPI call waits with interrupts disabled until all targets enter the
360 * NMI handler, then returns. Subsequent IPIs can be issued before targets
361 * have returned from their handlers, so there is no guarantee about
362 * concurrency or re-entrancy.
363 *
364 * A new NMI can be issued before all targets exit the handler.
365 *
366 * The IPI call may time out without all targets entering the NMI handler.
367 * In that case, there is some logic to recover (and ignore subsequent
368 * NMI interrupts that may eventually be raised), but the platform interrupt
369 * handler may not be able to distinguish this from other exception causes,
370 * which may cause a crash.
371 */
372
373static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
374static struct cpumask nmi_ipi_pending_mask;
375static bool nmi_ipi_busy = false;
376static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
377
378static void nmi_ipi_lock_start(unsigned long *flags)
379{
380 raw_local_irq_save(*flags);
381 hard_irq_disable();
382 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
383 raw_local_irq_restore(*flags);
384 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
385 raw_local_irq_save(*flags);
386 hard_irq_disable();
387 }
388}
389
390static void nmi_ipi_lock(void)
391{
392 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
393 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
394}
395
396static void nmi_ipi_unlock(void)
397{
398 smp_mb();
399 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
400 atomic_set(&__nmi_ipi_lock, 0);
401}
402
403static void nmi_ipi_unlock_end(unsigned long *flags)
404{
405 nmi_ipi_unlock();
406 raw_local_irq_restore(*flags);
407}
408
409/*
410 * Platform NMI handler calls this to ack
411 */
412int smp_handle_nmi_ipi(struct pt_regs *regs)
413{
414 void (*fn)(struct pt_regs *) = NULL;
415 unsigned long flags;
416 int me = raw_smp_processor_id();
417 int ret = 0;
418
419 /*
420 * Unexpected NMIs are possible here because the interrupt may not
421 * be able to distinguish NMI IPIs from other types of NMIs, or
422 * because the caller may have timed out.
423 */
424 nmi_ipi_lock_start(&flags);
425 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
426 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
427 fn = READ_ONCE(nmi_ipi_function);
428 WARN_ON_ONCE(!fn);
429 ret = 1;
430 }
431 nmi_ipi_unlock_end(&flags);
432
433 if (fn)
434 fn(regs);
435
436 return ret;
437}
438
439static void do_smp_send_nmi_ipi(int cpu, bool safe)
440{
441 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
442 return;
443
444 if (cpu >= 0) {
445 do_message_pass(cpu, PPC_MSG_NMI_IPI);
446 } else {
447 int c;
448
449 for_each_online_cpu(c) {
450 if (c == raw_smp_processor_id())
451 continue;
452 do_message_pass(c, PPC_MSG_NMI_IPI);
453 }
454 }
455}
456
457/*
458 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
459 * - fn is the target callback function.
460 * - delay_us > 0 is the delay before giving up waiting for targets to
461 * begin executing the handler, == 0 specifies indefinite delay.
462 */
463static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
464 u64 delay_us, bool safe)
465{
466 unsigned long flags;
467 int me = raw_smp_processor_id();
468 int ret = 1;
469
470 BUG_ON(cpu == me);
471 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
472
473 if (unlikely(!smp_ops))
474 return 0;
475
476 nmi_ipi_lock_start(&flags);
477 while (nmi_ipi_busy) {
478 nmi_ipi_unlock_end(&flags);
479 spin_until_cond(!nmi_ipi_busy);
480 nmi_ipi_lock_start(&flags);
481 }
482 nmi_ipi_busy = true;
483 nmi_ipi_function = fn;
484
485 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
486
487 if (cpu < 0) {
488 /* ALL_OTHERS */
489 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
490 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
491 } else {
492 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
493 }
494
495 nmi_ipi_unlock();
496
497 /* Interrupts remain hard disabled */
498
499 do_smp_send_nmi_ipi(cpu, safe);
500
501 nmi_ipi_lock();
502 /* nmi_ipi_busy is set here, so unlock/lock is okay */
503 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
504 nmi_ipi_unlock();
505 udelay(1);
506 nmi_ipi_lock();
507 if (delay_us) {
508 delay_us--;
509 if (!delay_us)
510 break;
511 }
512 }
513
514 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
515 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
516 ret = 0;
517 cpumask_clear(&nmi_ipi_pending_mask);
518 }
519
520 nmi_ipi_function = NULL;
521 nmi_ipi_busy = false;
522
523 nmi_ipi_unlock_end(&flags);
524
525 return ret;
526}
527
528int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
529{
530 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
531}
532
533int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
534{
535 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
536}
537#endif /* CONFIG_NMI_IPI */
538
539#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
540void tick_broadcast(const struct cpumask *mask)
541{
542 unsigned int cpu;
543
544 for_each_cpu(cpu, mask)
545 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
546}
547#endif
548
549#ifdef CONFIG_DEBUGGER
550void debugger_ipi_callback(struct pt_regs *regs)
551{
552 debugger_ipi(regs);
553}
554
555void smp_send_debugger_break(void)
556{
557 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
558}
559#endif
560
561#ifdef CONFIG_KEXEC_CORE
562void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
563{
564 int cpu;
565
566 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
567 if (kdump_in_progress() && crash_wake_offline) {
568 for_each_present_cpu(cpu) {
569 if (cpu_online(cpu))
570 continue;
571 /*
572 * crash_ipi_callback will wait for
573 * all cpus, including offline CPUs.
574 * We don't care about nmi_ipi_function.
575 * Offline cpus will jump straight into
576 * crash_ipi_callback, we can skip the
577 * entire NMI dance and waiting for
578 * cpus to clear pending mask, etc.
579 */
580 do_smp_send_nmi_ipi(cpu, false);
581 }
582 }
583}
584#endif
585
586#ifdef CONFIG_NMI_IPI
587static void nmi_stop_this_cpu(struct pt_regs *regs)
588{
589 /*
590 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
591 */
592 spin_begin();
593 while (1)
594 spin_cpu_relax();
595}
596
597void smp_send_stop(void)
598{
599 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
600}
601
602#else /* CONFIG_NMI_IPI */
603
604static void stop_this_cpu(void *dummy)
605{
606 hard_irq_disable();
607 spin_begin();
608 while (1)
609 spin_cpu_relax();
610}
611
612void smp_send_stop(void)
613{
614 static bool stopped = false;
615
616 /*
617 * Prevent waiting on csd lock from a previous smp_send_stop.
618 * This is racy, but in general callers try to do the right
619 * thing and only fire off one smp_send_stop (e.g., see
620 * kernel/panic.c)
621 */
622 if (stopped)
623 return;
624
625 stopped = true;
626
627 smp_call_function(stop_this_cpu, NULL, 0);
628}
629#endif /* CONFIG_NMI_IPI */
630
631struct task_struct *current_set[NR_CPUS];
632
633static void smp_store_cpu_info(int id)
634{
635 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
636#ifdef CONFIG_PPC_FSL_BOOK3E
637 per_cpu(next_tlbcam_idx, id)
638 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
639#endif
640}
641
642/*
643 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
644 * rather than just passing around the cpumask we pass around a function that
645 * returns the that cpumask for the given CPU.
646 */
647static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
648{
649 cpumask_set_cpu(i, get_cpumask(j));
650 cpumask_set_cpu(j, get_cpumask(i));
651}
652
653#ifdef CONFIG_HOTPLUG_CPU
654static void set_cpus_unrelated(int i, int j,
655 struct cpumask *(*get_cpumask)(int))
656{
657 cpumask_clear_cpu(i, get_cpumask(j));
658 cpumask_clear_cpu(j, get_cpumask(i));
659}
660#endif
661
662/*
663 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
664 * property for the CPU device node @dn and stores
665 * the parsed output in the thread_groups
666 * structure @tg if the ibm,thread-groups[0]
667 * matches @property.
668 *
669 * @dn: The device node of the CPU device.
670 * @tg: Pointer to a thread group structure into which the parsed
671 * output of "ibm,thread-groups" is stored.
672 * @property: The property of the thread-group that the caller is
673 * interested in.
674 *
675 * ibm,thread-groups[0..N-1] array defines which group of threads in
676 * the CPU-device node can be grouped together based on the property.
677 *
678 * ibm,thread-groups[0] tells us the property based on which the
679 * threads are being grouped together. If this value is 1, it implies
680 * that the threads in the same group share L1, translation cache.
681 *
682 * ibm,thread-groups[1] tells us how many such thread groups exist.
683 *
684 * ibm,thread-groups[2] tells us the number of threads in each such
685 * group.
686 *
687 * ibm,thread-groups[3..N-1] is the list of threads identified by
688 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
689 * the grouping.
690 *
691 * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
692 * implies that there are 2 groups of 4 threads each, where each group
693 * of threads share L1, translation cache.
694 *
695 * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
696 * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
697 * 11, 12} structure
698 *
699 * Returns 0 on success, -EINVAL if the property does not exist,
700 * -ENODATA if property does not have a value, and -EOVERFLOW if the
701 * property data isn't large enough.
702 */
703static int parse_thread_groups(struct device_node *dn,
704 struct thread_groups *tg,
705 unsigned int property)
706{
707 int i;
708 u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
709 u32 *thread_list;
710 size_t total_threads;
711 int ret;
712
713 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
714 thread_group_array, 3);
715 if (ret)
716 return ret;
717
718 tg->property = thread_group_array[0];
719 tg->nr_groups = thread_group_array[1];
720 tg->threads_per_group = thread_group_array[2];
721 if (tg->property != property ||
722 tg->nr_groups < 1 ||
723 tg->threads_per_group < 1)
724 return -ENODATA;
725
726 total_threads = tg->nr_groups * tg->threads_per_group;
727
728 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
729 thread_group_array,
730 3 + total_threads);
731 if (ret)
732 return ret;
733
734 thread_list = &thread_group_array[3];
735
736 for (i = 0 ; i < total_threads; i++)
737 tg->thread_list[i] = thread_list[i];
738
739 return 0;
740}
741
742/*
743 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
744 * that @cpu belongs to.
745 *
746 * @cpu : The logical CPU whose thread group is being searched.
747 * @tg : The thread-group structure of the CPU node which @cpu belongs
748 * to.
749 *
750 * Returns the index to tg->thread_list that points to the the start
751 * of the thread_group that @cpu belongs to.
752 *
753 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
754 * tg->thread_list.
755 */
756static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
757{
758 int hw_cpu_id = get_hard_smp_processor_id(cpu);
759 int i, j;
760
761 for (i = 0; i < tg->nr_groups; i++) {
762 int group_start = i * tg->threads_per_group;
763
764 for (j = 0; j < tg->threads_per_group; j++) {
765 int idx = group_start + j;
766
767 if (tg->thread_list[idx] == hw_cpu_id)
768 return group_start;
769 }
770 }
771
772 return -1;
773}
774
775static int init_cpu_l1_cache_map(int cpu)
776
777{
778 struct device_node *dn = of_get_cpu_node(cpu, NULL);
779 struct thread_groups tg = {.property = 0,
780 .nr_groups = 0,
781 .threads_per_group = 0};
782 int first_thread = cpu_first_thread_sibling(cpu);
783 int i, cpu_group_start = -1, err = 0;
784
785 if (!dn)
786 return -ENODATA;
787
788 err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
789 if (err)
790 goto out;
791
792 zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
793 GFP_KERNEL,
794 cpu_to_node(cpu));
795
796 cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
797
798 if (unlikely(cpu_group_start == -1)) {
799 WARN_ON_ONCE(1);
800 err = -ENODATA;
801 goto out;
802 }
803
804 for (i = first_thread; i < first_thread + threads_per_core; i++) {
805 int i_group_start = get_cpu_thread_group_start(i, &tg);
806
807 if (unlikely(i_group_start == -1)) {
808 WARN_ON_ONCE(1);
809 err = -ENODATA;
810 goto out;
811 }
812
813 if (i_group_start == cpu_group_start)
814 cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
815 }
816
817out:
818 of_node_put(dn);
819 return err;
820}
821
822static int init_big_cores(void)
823{
824 int cpu;
825
826 for_each_possible_cpu(cpu) {
827 int err = init_cpu_l1_cache_map(cpu);
828
829 if (err)
830 return err;
831
832 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
833 GFP_KERNEL,
834 cpu_to_node(cpu));
835 }
836
837 has_big_cores = true;
838 return 0;
839}
840
841void __init smp_prepare_cpus(unsigned int max_cpus)
842{
843 unsigned int cpu;
844
845 DBG("smp_prepare_cpus\n");
846
847 /*
848 * setup_cpu may need to be called on the boot cpu. We havent
849 * spun any cpus up but lets be paranoid.
850 */
851 BUG_ON(boot_cpuid != smp_processor_id());
852
853 /* Fixup boot cpu */
854 smp_store_cpu_info(boot_cpuid);
855 cpu_callin_map[boot_cpuid] = 1;
856
857 for_each_possible_cpu(cpu) {
858 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
859 GFP_KERNEL, cpu_to_node(cpu));
860 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
861 GFP_KERNEL, cpu_to_node(cpu));
862 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
863 GFP_KERNEL, cpu_to_node(cpu));
864 /*
865 * numa_node_id() works after this.
866 */
867 if (cpu_present(cpu)) {
868 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
869 set_cpu_numa_mem(cpu,
870 local_memory_node(numa_cpu_lookup_table[cpu]));
871 }
872 }
873
874 /* Init the cpumasks so the boot CPU is related to itself */
875 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
876 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
877 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
878
879 init_big_cores();
880 if (has_big_cores) {
881 cpumask_set_cpu(boot_cpuid,
882 cpu_smallcore_mask(boot_cpuid));
883 }
884
885 if (smp_ops && smp_ops->probe)
886 smp_ops->probe();
887}
888
889void smp_prepare_boot_cpu(void)
890{
891 BUG_ON(smp_processor_id() != boot_cpuid);
892#ifdef CONFIG_PPC64
893 paca_ptrs[boot_cpuid]->__current = current;
894#endif
895 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
896 current_set[boot_cpuid] = current;
897}
898
899#ifdef CONFIG_HOTPLUG_CPU
900
901int generic_cpu_disable(void)
902{
903 unsigned int cpu = smp_processor_id();
904
905 if (cpu == boot_cpuid)
906 return -EBUSY;
907
908 set_cpu_online(cpu, false);
909#ifdef CONFIG_PPC64
910 vdso_data->processorCount--;
911#endif
912 /* Update affinity of all IRQs previously aimed at this CPU */
913 irq_migrate_all_off_this_cpu();
914
915 /*
916 * Depending on the details of the interrupt controller, it's possible
917 * that one of the interrupts we just migrated away from this CPU is
918 * actually already pending on this CPU. If we leave it in that state
919 * the interrupt will never be EOI'ed, and will never fire again. So
920 * temporarily enable interrupts here, to allow any pending interrupt to
921 * be received (and EOI'ed), before we take this CPU offline.
922 */
923 local_irq_enable();
924 mdelay(1);
925 local_irq_disable();
926
927 return 0;
928}
929
930void generic_cpu_die(unsigned int cpu)
931{
932 int i;
933
934 for (i = 0; i < 100; i++) {
935 smp_rmb();
936 if (is_cpu_dead(cpu))
937 return;
938 msleep(100);
939 }
940 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
941}
942
943void generic_set_cpu_dead(unsigned int cpu)
944{
945 per_cpu(cpu_state, cpu) = CPU_DEAD;
946}
947
948/*
949 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
950 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
951 * which makes the delay in generic_cpu_die() not happen.
952 */
953void generic_set_cpu_up(unsigned int cpu)
954{
955 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
956}
957
958int generic_check_cpu_restart(unsigned int cpu)
959{
960 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
961}
962
963int is_cpu_dead(unsigned int cpu)
964{
965 return per_cpu(cpu_state, cpu) == CPU_DEAD;
966}
967
968static bool secondaries_inhibited(void)
969{
970 return kvm_hv_mode_active();
971}
972
973#else /* HOTPLUG_CPU */
974
975#define secondaries_inhibited() 0
976
977#endif
978
979static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
980{
981#ifdef CONFIG_PPC64
982 paca_ptrs[cpu]->__current = idle;
983 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
984 THREAD_SIZE - STACK_FRAME_OVERHEAD;
985#endif
986 idle->cpu = cpu;
987 secondary_current = current_set[cpu] = idle;
988}
989
990int __cpu_up(unsigned int cpu, struct task_struct *tidle)
991{
992 int rc, c;
993
994 /*
995 * Don't allow secondary threads to come online if inhibited
996 */
997 if (threads_per_core > 1 && secondaries_inhibited() &&
998 cpu_thread_in_subcore(cpu))
999 return -EBUSY;
1000
1001 if (smp_ops == NULL ||
1002 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1003 return -EINVAL;
1004
1005 cpu_idle_thread_init(cpu, tidle);
1006
1007 /*
1008 * The platform might need to allocate resources prior to bringing
1009 * up the CPU
1010 */
1011 if (smp_ops->prepare_cpu) {
1012 rc = smp_ops->prepare_cpu(cpu);
1013 if (rc)
1014 return rc;
1015 }
1016
1017 /* Make sure callin-map entry is 0 (can be leftover a CPU
1018 * hotplug
1019 */
1020 cpu_callin_map[cpu] = 0;
1021
1022 /* The information for processor bringup must
1023 * be written out to main store before we release
1024 * the processor.
1025 */
1026 smp_mb();
1027
1028 /* wake up cpus */
1029 DBG("smp: kicking cpu %d\n", cpu);
1030 rc = smp_ops->kick_cpu(cpu);
1031 if (rc) {
1032 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1033 return rc;
1034 }
1035
1036 /*
1037 * wait to see if the cpu made a callin (is actually up).
1038 * use this value that I found through experimentation.
1039 * -- Cort
1040 */
1041 if (system_state < SYSTEM_RUNNING)
1042 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1043 udelay(100);
1044#ifdef CONFIG_HOTPLUG_CPU
1045 else
1046 /*
1047 * CPUs can take much longer to come up in the
1048 * hotplug case. Wait five seconds.
1049 */
1050 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1051 msleep(1);
1052#endif
1053
1054 if (!cpu_callin_map[cpu]) {
1055 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1056 return -ENOENT;
1057 }
1058
1059 DBG("Processor %u found.\n", cpu);
1060
1061 if (smp_ops->give_timebase)
1062 smp_ops->give_timebase();
1063
1064 /* Wait until cpu puts itself in the online & active maps */
1065 spin_until_cond(cpu_online(cpu));
1066
1067 return 0;
1068}
1069
1070/* Return the value of the reg property corresponding to the given
1071 * logical cpu.
1072 */
1073int cpu_to_core_id(int cpu)
1074{
1075 struct device_node *np;
1076 const __be32 *reg;
1077 int id = -1;
1078
1079 np = of_get_cpu_node(cpu, NULL);
1080 if (!np)
1081 goto out;
1082
1083 reg = of_get_property(np, "reg", NULL);
1084 if (!reg)
1085 goto out;
1086
1087 id = be32_to_cpup(reg);
1088out:
1089 of_node_put(np);
1090 return id;
1091}
1092EXPORT_SYMBOL_GPL(cpu_to_core_id);
1093
1094/* Helper routines for cpu to core mapping */
1095int cpu_core_index_of_thread(int cpu)
1096{
1097 return cpu >> threads_shift;
1098}
1099EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1100
1101int cpu_first_thread_of_core(int core)
1102{
1103 return core << threads_shift;
1104}
1105EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1106
1107/* Must be called when no change can occur to cpu_present_mask,
1108 * i.e. during cpu online or offline.
1109 */
1110static struct device_node *cpu_to_l2cache(int cpu)
1111{
1112 struct device_node *np;
1113 struct device_node *cache;
1114
1115 if (!cpu_present(cpu))
1116 return NULL;
1117
1118 np = of_get_cpu_node(cpu, NULL);
1119 if (np == NULL)
1120 return NULL;
1121
1122 cache = of_find_next_cache_node(np);
1123
1124 of_node_put(np);
1125
1126 return cache;
1127}
1128
1129static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
1130{
1131 struct device_node *l2_cache, *np;
1132 int i;
1133
1134 l2_cache = cpu_to_l2cache(cpu);
1135 if (!l2_cache)
1136 return false;
1137
1138 for_each_cpu(i, cpu_online_mask) {
1139 /*
1140 * when updating the marks the current CPU has not been marked
1141 * online, but we need to update the cache masks
1142 */
1143 np = cpu_to_l2cache(i);
1144 if (!np)
1145 continue;
1146
1147 if (np == l2_cache)
1148 set_cpus_related(cpu, i, mask_fn);
1149
1150 of_node_put(np);
1151 }
1152 of_node_put(l2_cache);
1153
1154 return true;
1155}
1156
1157#ifdef CONFIG_HOTPLUG_CPU
1158static void remove_cpu_from_masks(int cpu)
1159{
1160 int i;
1161
1162 /* NB: cpu_core_mask is a superset of the others */
1163 for_each_cpu(i, cpu_core_mask(cpu)) {
1164 set_cpus_unrelated(cpu, i, cpu_core_mask);
1165 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1166 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1167 if (has_big_cores)
1168 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1169 }
1170}
1171#endif
1172
1173static inline void add_cpu_to_smallcore_masks(int cpu)
1174{
1175 struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
1176 int i, first_thread = cpu_first_thread_sibling(cpu);
1177
1178 if (!has_big_cores)
1179 return;
1180
1181 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1182
1183 for (i = first_thread; i < first_thread + threads_per_core; i++) {
1184 if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
1185 set_cpus_related(i, cpu, cpu_smallcore_mask);
1186 }
1187}
1188
1189int get_physical_package_id(int cpu)
1190{
1191 int pkg_id = cpu_to_chip_id(cpu);
1192
1193 /*
1194 * If the platform is PowerNV or Guest on KVM, ibm,chip-id is
1195 * defined. Hence we would return the chip-id as the result of
1196 * get_physical_package_id.
1197 */
1198 if (pkg_id == -1 && firmware_has_feature(FW_FEATURE_LPAR) &&
1199 IS_ENABLED(CONFIG_PPC_SPLPAR)) {
1200 struct device_node *np = of_get_cpu_node(cpu, NULL);
1201 pkg_id = of_node_to_nid(np);
1202 of_node_put(np);
1203 }
1204
1205 return pkg_id;
1206}
1207EXPORT_SYMBOL_GPL(get_physical_package_id);
1208
1209static void add_cpu_to_masks(int cpu)
1210{
1211 int first_thread = cpu_first_thread_sibling(cpu);
1212 int pkg_id = get_physical_package_id(cpu);
1213 int i;
1214
1215 /*
1216 * This CPU will not be in the online mask yet so we need to manually
1217 * add it to it's own thread sibling mask.
1218 */
1219 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1220
1221 for (i = first_thread; i < first_thread + threads_per_core; i++)
1222 if (cpu_online(i))
1223 set_cpus_related(i, cpu, cpu_sibling_mask);
1224
1225 add_cpu_to_smallcore_masks(cpu);
1226 /*
1227 * Copy the thread sibling mask into the cache sibling mask
1228 * and mark any CPUs that share an L2 with this CPU.
1229 */
1230 for_each_cpu(i, cpu_sibling_mask(cpu))
1231 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1232 update_mask_by_l2(cpu, cpu_l2_cache_mask);
1233
1234 /*
1235 * Copy the cache sibling mask into core sibling mask and mark
1236 * any CPUs on the same chip as this CPU.
1237 */
1238 for_each_cpu(i, cpu_l2_cache_mask(cpu))
1239 set_cpus_related(cpu, i, cpu_core_mask);
1240
1241 if (pkg_id == -1)
1242 return;
1243
1244 for_each_cpu(i, cpu_online_mask)
1245 if (get_physical_package_id(i) == pkg_id)
1246 set_cpus_related(cpu, i, cpu_core_mask);
1247}
1248
1249static bool shared_caches;
1250
1251/* Activate a secondary processor. */
1252void start_secondary(void *unused)
1253{
1254 unsigned int cpu = smp_processor_id();
1255 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1256
1257 mmgrab(&init_mm);
1258 current->active_mm = &init_mm;
1259
1260 smp_store_cpu_info(cpu);
1261 set_dec(tb_ticks_per_jiffy);
1262 preempt_disable();
1263 cpu_callin_map[cpu] = 1;
1264
1265 if (smp_ops->setup_cpu)
1266 smp_ops->setup_cpu(cpu);
1267 if (smp_ops->take_timebase)
1268 smp_ops->take_timebase();
1269
1270 secondary_cpu_time_init();
1271
1272#ifdef CONFIG_PPC64
1273 if (system_state == SYSTEM_RUNNING)
1274 vdso_data->processorCount++;
1275
1276 vdso_getcpu_init();
1277#endif
1278 /* Update topology CPU masks */
1279 add_cpu_to_masks(cpu);
1280
1281 if (has_big_cores)
1282 sibling_mask = cpu_smallcore_mask;
1283 /*
1284 * Check for any shared caches. Note that this must be done on a
1285 * per-core basis because one core in the pair might be disabled.
1286 */
1287 if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
1288 shared_caches = true;
1289
1290 set_numa_node(numa_cpu_lookup_table[cpu]);
1291 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1292
1293 smp_wmb();
1294 notify_cpu_starting(cpu);
1295 set_cpu_online(cpu, true);
1296
1297 boot_init_stack_canary();
1298
1299 local_irq_enable();
1300
1301 /* We can enable ftrace for secondary cpus now */
1302 this_cpu_enable_ftrace();
1303
1304 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1305
1306 BUG();
1307}
1308
1309int setup_profiling_timer(unsigned int multiplier)
1310{
1311 return 0;
1312}
1313
1314#ifdef CONFIG_SCHED_SMT
1315/* cpumask of CPUs with asymetric SMT dependancy */
1316static int powerpc_smt_flags(void)
1317{
1318 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1319
1320 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1321 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1322 flags |= SD_ASYM_PACKING;
1323 }
1324 return flags;
1325}
1326#endif
1327
1328static struct sched_domain_topology_level powerpc_topology[] = {
1329#ifdef CONFIG_SCHED_SMT
1330 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1331#endif
1332 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1333 { NULL, },
1334};
1335
1336/*
1337 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1338 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1339 * since the migrated task remains cache hot. We want to take advantage of this
1340 * at the scheduler level so an extra topology level is required.
1341 */
1342static int powerpc_shared_cache_flags(void)
1343{
1344 return SD_SHARE_PKG_RESOURCES;
1345}
1346
1347/*
1348 * We can't just pass cpu_l2_cache_mask() directly because
1349 * returns a non-const pointer and the compiler barfs on that.
1350 */
1351static const struct cpumask *shared_cache_mask(int cpu)
1352{
1353 return cpu_l2_cache_mask(cpu);
1354}
1355
1356#ifdef CONFIG_SCHED_SMT
1357static const struct cpumask *smallcore_smt_mask(int cpu)
1358{
1359 return cpu_smallcore_mask(cpu);
1360}
1361#endif
1362
1363static struct sched_domain_topology_level power9_topology[] = {
1364#ifdef CONFIG_SCHED_SMT
1365 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1366#endif
1367 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1368 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1369 { NULL, },
1370};
1371
1372void __init smp_cpus_done(unsigned int max_cpus)
1373{
1374 /*
1375 * We are running pinned to the boot CPU, see rest_init().
1376 */
1377 if (smp_ops && smp_ops->setup_cpu)
1378 smp_ops->setup_cpu(boot_cpuid);
1379
1380 if (smp_ops && smp_ops->bringup_done)
1381 smp_ops->bringup_done();
1382
1383 dump_numa_cpu_topology();
1384
1385#ifdef CONFIG_SCHED_SMT
1386 if (has_big_cores) {
1387 pr_info("Big cores detected but using small core scheduling\n");
1388 power9_topology[0].mask = smallcore_smt_mask;
1389 powerpc_topology[0].mask = smallcore_smt_mask;
1390 }
1391#endif
1392 /*
1393 * If any CPU detects that it's sharing a cache with another CPU then
1394 * use the deeper topology that is aware of this sharing.
1395 */
1396 if (shared_caches) {
1397 pr_info("Using shared cache scheduler topology\n");
1398 set_sched_topology(power9_topology);
1399 } else {
1400 pr_info("Using standard scheduler topology\n");
1401 set_sched_topology(powerpc_topology);
1402 }
1403}
1404
1405#ifdef CONFIG_HOTPLUG_CPU
1406int __cpu_disable(void)
1407{
1408 int cpu = smp_processor_id();
1409 int err;
1410
1411 if (!smp_ops->cpu_disable)
1412 return -ENOSYS;
1413
1414 this_cpu_disable_ftrace();
1415
1416 err = smp_ops->cpu_disable();
1417 if (err)
1418 return err;
1419
1420 /* Update sibling maps */
1421 remove_cpu_from_masks(cpu);
1422
1423 return 0;
1424}
1425
1426void __cpu_die(unsigned int cpu)
1427{
1428 if (smp_ops->cpu_die)
1429 smp_ops->cpu_die(cpu);
1430}
1431
1432void cpu_die(void)
1433{
1434 /*
1435 * Disable on the down path. This will be re-enabled by
1436 * start_secondary() via start_secondary_resume() below
1437 */
1438 this_cpu_disable_ftrace();
1439
1440 if (ppc_md.cpu_die)
1441 ppc_md.cpu_die();
1442
1443 /* If we return, we re-enter start_secondary */
1444 start_secondary_resume();
1445}
1446
1447#endif
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12 */
13
14#undef DEBUG
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/task_stack.h>
20#include <linux/sched/topology.h>
21#include <linux/smp.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/init.h>
25#include <linux/spinlock.h>
26#include <linux/cache.h>
27#include <linux/err.h>
28#include <linux/device.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/profile.h>
33#include <linux/processor.h>
34#include <linux/random.h>
35#include <linux/stackprotector.h>
36#include <linux/pgtable.h>
37#include <linux/clockchips.h>
38
39#include <asm/ptrace.h>
40#include <linux/atomic.h>
41#include <asm/irq.h>
42#include <asm/hw_irq.h>
43#include <asm/kvm_ppc.h>
44#include <asm/dbell.h>
45#include <asm/page.h>
46#include <asm/prom.h>
47#include <asm/smp.h>
48#include <asm/time.h>
49#include <asm/machdep.h>
50#include <asm/cputhreads.h>
51#include <asm/cputable.h>
52#include <asm/mpic.h>
53#include <asm/vdso_datapage.h>
54#ifdef CONFIG_PPC64
55#include <asm/paca.h>
56#endif
57#include <asm/vdso.h>
58#include <asm/debug.h>
59#include <asm/kexec.h>
60#include <asm/asm-prototypes.h>
61#include <asm/cpu_has_feature.h>
62#include <asm/ftrace.h>
63#include <asm/kup.h>
64
65#ifdef DEBUG
66#include <asm/udbg.h>
67#define DBG(fmt...) udbg_printf(fmt)
68#else
69#define DBG(fmt...)
70#endif
71
72#ifdef CONFIG_HOTPLUG_CPU
73/* State of each CPU during hotplug phases */
74static DEFINE_PER_CPU(int, cpu_state) = { 0 };
75#endif
76
77struct task_struct *secondary_current;
78bool has_big_cores;
79bool coregroup_enabled;
80bool thread_group_shares_l2;
81
82DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
83DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
84DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
85DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
86static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
87
88EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
90EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91EXPORT_SYMBOL_GPL(has_big_cores);
92
93enum {
94#ifdef CONFIG_SCHED_SMT
95 smt_idx,
96#endif
97 cache_idx,
98 mc_idx,
99 die_idx,
100};
101
102#define MAX_THREAD_LIST_SIZE 8
103#define THREAD_GROUP_SHARE_L1 1
104#define THREAD_GROUP_SHARE_L2 2
105struct thread_groups {
106 unsigned int property;
107 unsigned int nr_groups;
108 unsigned int threads_per_group;
109 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
110};
111
112/* Maximum number of properties that groups of threads within a core can share */
113#define MAX_THREAD_GROUP_PROPERTIES 2
114
115struct thread_groups_list {
116 unsigned int nr_properties;
117 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
118};
119
120static struct thread_groups_list tgl[NR_CPUS] __initdata;
121/*
122 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
123 * the set its siblings that share the L1-cache.
124 */
125static DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
126
127/*
128 * On some big-cores system, thread_group_l2_cache_map for each CPU
129 * corresponds to the set its siblings within the core that share the
130 * L2-cache.
131 */
132static DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
133
134/* SMP operations for this machine */
135struct smp_ops_t *smp_ops;
136
137/* Can't be static due to PowerMac hackery */
138volatile unsigned int cpu_callin_map[NR_CPUS];
139
140int smt_enabled_at_boot = 1;
141
142/*
143 * Returns 1 if the specified cpu should be brought up during boot.
144 * Used to inhibit booting threads if they've been disabled or
145 * limited on the command line
146 */
147int smp_generic_cpu_bootable(unsigned int nr)
148{
149 /* Special case - we inhibit secondary thread startup
150 * during boot if the user requests it.
151 */
152 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
153 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
154 return 0;
155 if (smt_enabled_at_boot
156 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
157 return 0;
158 }
159
160 return 1;
161}
162
163
164#ifdef CONFIG_PPC64
165int smp_generic_kick_cpu(int nr)
166{
167 if (nr < 0 || nr >= nr_cpu_ids)
168 return -EINVAL;
169
170 /*
171 * The processor is currently spinning, waiting for the
172 * cpu_start field to become non-zero After we set cpu_start,
173 * the processor will continue on to secondary_start
174 */
175 if (!paca_ptrs[nr]->cpu_start) {
176 paca_ptrs[nr]->cpu_start = 1;
177 smp_mb();
178 return 0;
179 }
180
181#ifdef CONFIG_HOTPLUG_CPU
182 /*
183 * Ok it's not there, so it might be soft-unplugged, let's
184 * try to bring it back
185 */
186 generic_set_cpu_up(nr);
187 smp_wmb();
188 smp_send_reschedule(nr);
189#endif /* CONFIG_HOTPLUG_CPU */
190
191 return 0;
192}
193#endif /* CONFIG_PPC64 */
194
195static irqreturn_t call_function_action(int irq, void *data)
196{
197 generic_smp_call_function_interrupt();
198 return IRQ_HANDLED;
199}
200
201static irqreturn_t reschedule_action(int irq, void *data)
202{
203 scheduler_ipi();
204 return IRQ_HANDLED;
205}
206
207#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
208static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
209{
210 timer_broadcast_interrupt();
211 return IRQ_HANDLED;
212}
213#endif
214
215#ifdef CONFIG_NMI_IPI
216static irqreturn_t nmi_ipi_action(int irq, void *data)
217{
218 smp_handle_nmi_ipi(get_irq_regs());
219 return IRQ_HANDLED;
220}
221#endif
222
223static irq_handler_t smp_ipi_action[] = {
224 [PPC_MSG_CALL_FUNCTION] = call_function_action,
225 [PPC_MSG_RESCHEDULE] = reschedule_action,
226#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
227 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
228#endif
229#ifdef CONFIG_NMI_IPI
230 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
231#endif
232};
233
234/*
235 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
236 * than going through the call function infrastructure, and strongly
237 * serialized, so it is more appropriate for debugging.
238 */
239const char *smp_ipi_name[] = {
240 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
241 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
242#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
244#endif
245#ifdef CONFIG_NMI_IPI
246 [PPC_MSG_NMI_IPI] = "nmi ipi",
247#endif
248};
249
250/* optional function to request ipi, for controllers with >= 4 ipis */
251int smp_request_message_ipi(int virq, int msg)
252{
253 int err;
254
255 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
256 return -EINVAL;
257#ifndef CONFIG_NMI_IPI
258 if (msg == PPC_MSG_NMI_IPI)
259 return 1;
260#endif
261
262 err = request_irq(virq, smp_ipi_action[msg],
263 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
264 smp_ipi_name[msg], NULL);
265 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
266 virq, smp_ipi_name[msg], err);
267
268 return err;
269}
270
271#ifdef CONFIG_PPC_SMP_MUXED_IPI
272struct cpu_messages {
273 long messages; /* current messages */
274};
275static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
276
277void smp_muxed_ipi_set_message(int cpu, int msg)
278{
279 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
280 char *message = (char *)&info->messages;
281
282 /*
283 * Order previous accesses before accesses in the IPI handler.
284 */
285 smp_mb();
286 message[msg] = 1;
287}
288
289void smp_muxed_ipi_message_pass(int cpu, int msg)
290{
291 smp_muxed_ipi_set_message(cpu, msg);
292
293 /*
294 * cause_ipi functions are required to include a full barrier
295 * before doing whatever causes the IPI.
296 */
297 smp_ops->cause_ipi(cpu);
298}
299
300#ifdef __BIG_ENDIAN__
301#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
302#else
303#define IPI_MESSAGE(A) (1uL << (8 * (A)))
304#endif
305
306irqreturn_t smp_ipi_demux(void)
307{
308 mb(); /* order any irq clear */
309
310 return smp_ipi_demux_relaxed();
311}
312
313/* sync-free variant. Callers should ensure synchronization */
314irqreturn_t smp_ipi_demux_relaxed(void)
315{
316 struct cpu_messages *info;
317 unsigned long all;
318
319 info = this_cpu_ptr(&ipi_message);
320 do {
321 all = xchg(&info->messages, 0);
322#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
323 /*
324 * Must check for PPC_MSG_RM_HOST_ACTION messages
325 * before PPC_MSG_CALL_FUNCTION messages because when
326 * a VM is destroyed, we call kick_all_cpus_sync()
327 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
328 * messages have completed before we free any VCPUs.
329 */
330 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
331 kvmppc_xics_ipi_action();
332#endif
333 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
334 generic_smp_call_function_interrupt();
335 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
336 scheduler_ipi();
337#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
338 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
339 timer_broadcast_interrupt();
340#endif
341#ifdef CONFIG_NMI_IPI
342 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
343 nmi_ipi_action(0, NULL);
344#endif
345 } while (info->messages);
346
347 return IRQ_HANDLED;
348}
349#endif /* CONFIG_PPC_SMP_MUXED_IPI */
350
351static inline void do_message_pass(int cpu, int msg)
352{
353 if (smp_ops->message_pass)
354 smp_ops->message_pass(cpu, msg);
355#ifdef CONFIG_PPC_SMP_MUXED_IPI
356 else
357 smp_muxed_ipi_message_pass(cpu, msg);
358#endif
359}
360
361void smp_send_reschedule(int cpu)
362{
363 if (likely(smp_ops))
364 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
365}
366EXPORT_SYMBOL_GPL(smp_send_reschedule);
367
368void arch_send_call_function_single_ipi(int cpu)
369{
370 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
371}
372
373void arch_send_call_function_ipi_mask(const struct cpumask *mask)
374{
375 unsigned int cpu;
376
377 for_each_cpu(cpu, mask)
378 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
379}
380
381#ifdef CONFIG_NMI_IPI
382
383/*
384 * "NMI IPI" system.
385 *
386 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
387 * a running system. They can be used for crash, debug, halt/reboot, etc.
388 *
389 * The IPI call waits with interrupts disabled until all targets enter the
390 * NMI handler, then returns. Subsequent IPIs can be issued before targets
391 * have returned from their handlers, so there is no guarantee about
392 * concurrency or re-entrancy.
393 *
394 * A new NMI can be issued before all targets exit the handler.
395 *
396 * The IPI call may time out without all targets entering the NMI handler.
397 * In that case, there is some logic to recover (and ignore subsequent
398 * NMI interrupts that may eventually be raised), but the platform interrupt
399 * handler may not be able to distinguish this from other exception causes,
400 * which may cause a crash.
401 */
402
403static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
404static struct cpumask nmi_ipi_pending_mask;
405static bool nmi_ipi_busy = false;
406static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
407
408static void nmi_ipi_lock_start(unsigned long *flags)
409{
410 raw_local_irq_save(*flags);
411 hard_irq_disable();
412 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
413 raw_local_irq_restore(*flags);
414 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
415 raw_local_irq_save(*flags);
416 hard_irq_disable();
417 }
418}
419
420static void nmi_ipi_lock(void)
421{
422 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
423 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
424}
425
426static void nmi_ipi_unlock(void)
427{
428 smp_mb();
429 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
430 atomic_set(&__nmi_ipi_lock, 0);
431}
432
433static void nmi_ipi_unlock_end(unsigned long *flags)
434{
435 nmi_ipi_unlock();
436 raw_local_irq_restore(*flags);
437}
438
439/*
440 * Platform NMI handler calls this to ack
441 */
442int smp_handle_nmi_ipi(struct pt_regs *regs)
443{
444 void (*fn)(struct pt_regs *) = NULL;
445 unsigned long flags;
446 int me = raw_smp_processor_id();
447 int ret = 0;
448
449 /*
450 * Unexpected NMIs are possible here because the interrupt may not
451 * be able to distinguish NMI IPIs from other types of NMIs, or
452 * because the caller may have timed out.
453 */
454 nmi_ipi_lock_start(&flags);
455 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
456 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
457 fn = READ_ONCE(nmi_ipi_function);
458 WARN_ON_ONCE(!fn);
459 ret = 1;
460 }
461 nmi_ipi_unlock_end(&flags);
462
463 if (fn)
464 fn(regs);
465
466 return ret;
467}
468
469static void do_smp_send_nmi_ipi(int cpu, bool safe)
470{
471 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
472 return;
473
474 if (cpu >= 0) {
475 do_message_pass(cpu, PPC_MSG_NMI_IPI);
476 } else {
477 int c;
478
479 for_each_online_cpu(c) {
480 if (c == raw_smp_processor_id())
481 continue;
482 do_message_pass(c, PPC_MSG_NMI_IPI);
483 }
484 }
485}
486
487/*
488 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
489 * - fn is the target callback function.
490 * - delay_us > 0 is the delay before giving up waiting for targets to
491 * begin executing the handler, == 0 specifies indefinite delay.
492 */
493static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
494 u64 delay_us, bool safe)
495{
496 unsigned long flags;
497 int me = raw_smp_processor_id();
498 int ret = 1;
499
500 BUG_ON(cpu == me);
501 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
502
503 if (unlikely(!smp_ops))
504 return 0;
505
506 nmi_ipi_lock_start(&flags);
507 while (nmi_ipi_busy) {
508 nmi_ipi_unlock_end(&flags);
509 spin_until_cond(!nmi_ipi_busy);
510 nmi_ipi_lock_start(&flags);
511 }
512 nmi_ipi_busy = true;
513 nmi_ipi_function = fn;
514
515 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
516
517 if (cpu < 0) {
518 /* ALL_OTHERS */
519 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
520 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
521 } else {
522 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
523 }
524
525 nmi_ipi_unlock();
526
527 /* Interrupts remain hard disabled */
528
529 do_smp_send_nmi_ipi(cpu, safe);
530
531 nmi_ipi_lock();
532 /* nmi_ipi_busy is set here, so unlock/lock is okay */
533 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
534 nmi_ipi_unlock();
535 udelay(1);
536 nmi_ipi_lock();
537 if (delay_us) {
538 delay_us--;
539 if (!delay_us)
540 break;
541 }
542 }
543
544 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
545 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
546 ret = 0;
547 cpumask_clear(&nmi_ipi_pending_mask);
548 }
549
550 nmi_ipi_function = NULL;
551 nmi_ipi_busy = false;
552
553 nmi_ipi_unlock_end(&flags);
554
555 return ret;
556}
557
558int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
559{
560 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
561}
562
563int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
564{
565 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
566}
567#endif /* CONFIG_NMI_IPI */
568
569#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
570void tick_broadcast(const struct cpumask *mask)
571{
572 unsigned int cpu;
573
574 for_each_cpu(cpu, mask)
575 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
576}
577#endif
578
579#ifdef CONFIG_DEBUGGER
580static void debugger_ipi_callback(struct pt_regs *regs)
581{
582 debugger_ipi(regs);
583}
584
585void smp_send_debugger_break(void)
586{
587 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
588}
589#endif
590
591#ifdef CONFIG_KEXEC_CORE
592void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
593{
594 int cpu;
595
596 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
597 if (kdump_in_progress() && crash_wake_offline) {
598 for_each_present_cpu(cpu) {
599 if (cpu_online(cpu))
600 continue;
601 /*
602 * crash_ipi_callback will wait for
603 * all cpus, including offline CPUs.
604 * We don't care about nmi_ipi_function.
605 * Offline cpus will jump straight into
606 * crash_ipi_callback, we can skip the
607 * entire NMI dance and waiting for
608 * cpus to clear pending mask, etc.
609 */
610 do_smp_send_nmi_ipi(cpu, false);
611 }
612 }
613}
614#endif
615
616#ifdef CONFIG_NMI_IPI
617static void nmi_stop_this_cpu(struct pt_regs *regs)
618{
619 /*
620 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
621 */
622 set_cpu_online(smp_processor_id(), false);
623
624 spin_begin();
625 while (1)
626 spin_cpu_relax();
627}
628
629void smp_send_stop(void)
630{
631 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
632}
633
634#else /* CONFIG_NMI_IPI */
635
636static void stop_this_cpu(void *dummy)
637{
638 hard_irq_disable();
639
640 /*
641 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
642 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
643 * to know other CPUs are offline before it breaks locks to flush
644 * printk buffers, in case we panic()ed while holding the lock.
645 */
646 set_cpu_online(smp_processor_id(), false);
647
648 spin_begin();
649 while (1)
650 spin_cpu_relax();
651}
652
653void smp_send_stop(void)
654{
655 static bool stopped = false;
656
657 /*
658 * Prevent waiting on csd lock from a previous smp_send_stop.
659 * This is racy, but in general callers try to do the right
660 * thing and only fire off one smp_send_stop (e.g., see
661 * kernel/panic.c)
662 */
663 if (stopped)
664 return;
665
666 stopped = true;
667
668 smp_call_function(stop_this_cpu, NULL, 0);
669}
670#endif /* CONFIG_NMI_IPI */
671
672struct task_struct *current_set[NR_CPUS];
673
674static void smp_store_cpu_info(int id)
675{
676 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
677#ifdef CONFIG_PPC_FSL_BOOK3E
678 per_cpu(next_tlbcam_idx, id)
679 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
680#endif
681}
682
683/*
684 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
685 * rather than just passing around the cpumask we pass around a function that
686 * returns the that cpumask for the given CPU.
687 */
688static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
689{
690 cpumask_set_cpu(i, get_cpumask(j));
691 cpumask_set_cpu(j, get_cpumask(i));
692}
693
694#ifdef CONFIG_HOTPLUG_CPU
695static void set_cpus_unrelated(int i, int j,
696 struct cpumask *(*get_cpumask)(int))
697{
698 cpumask_clear_cpu(i, get_cpumask(j));
699 cpumask_clear_cpu(j, get_cpumask(i));
700}
701#endif
702
703/*
704 * Extends set_cpus_related. Instead of setting one CPU at a time in
705 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
706 */
707static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
708 struct cpumask *(*dstmask)(int))
709{
710 struct cpumask *mask;
711 int k;
712
713 mask = srcmask(j);
714 for_each_cpu(k, srcmask(i))
715 cpumask_or(dstmask(k), dstmask(k), mask);
716
717 if (i == j)
718 return;
719
720 mask = srcmask(i);
721 for_each_cpu(k, srcmask(j))
722 cpumask_or(dstmask(k), dstmask(k), mask);
723}
724
725/*
726 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
727 * property for the CPU device node @dn and stores
728 * the parsed output in the thread_groups_list
729 * structure @tglp.
730 *
731 * @dn: The device node of the CPU device.
732 * @tglp: Pointer to a thread group list structure into which the parsed
733 * output of "ibm,thread-groups" is stored.
734 *
735 * ibm,thread-groups[0..N-1] array defines which group of threads in
736 * the CPU-device node can be grouped together based on the property.
737 *
738 * This array can represent thread groupings for multiple properties.
739 *
740 * ibm,thread-groups[i + 0] tells us the property based on which the
741 * threads are being grouped together. If this value is 1, it implies
742 * that the threads in the same group share L1, translation cache. If
743 * the value is 2, it implies that the threads in the same group share
744 * the same L2 cache.
745 *
746 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
747 * property ibm,thread-groups[i]
748 *
749 * ibm,thread-groups[i+2] tells us the number of threads in each such
750 * group.
751 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
752 *
753 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
754 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
755 * the grouping.
756 *
757 * Example:
758 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
759 * This can be decomposed up into two consecutive arrays:
760 * a) [1,2,4,8,10,12,14,9,11,13,15]
761 * b) [2,2,4,8,10,12,14,9,11,13,15]
762 *
763 * where in,
764 *
765 * a) provides information of Property "1" being shared by "2" groups,
766 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
767 * the first group is {8,10,12,14} and the
768 * "ibm,ppc-interrupt-server#s" of the second group is
769 * {9,11,13,15}. Property "1" is indicative of the thread in the
770 * group sharing L1 cache, translation cache and Instruction Data
771 * flow.
772 *
773 * b) provides information of Property "2" being shared by "2" groups,
774 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
775 * the first group is {8,10,12,14} and the
776 * "ibm,ppc-interrupt-server#s" of the second group is
777 * {9,11,13,15}. Property "2" indicates that the threads in each
778 * group share the L2-cache.
779 *
780 * Returns 0 on success, -EINVAL if the property does not exist,
781 * -ENODATA if property does not have a value, and -EOVERFLOW if the
782 * property data isn't large enough.
783 */
784static int parse_thread_groups(struct device_node *dn,
785 struct thread_groups_list *tglp)
786{
787 unsigned int property_idx = 0;
788 u32 *thread_group_array;
789 size_t total_threads;
790 int ret = 0, count;
791 u32 *thread_list;
792 int i = 0;
793
794 count = of_property_count_u32_elems(dn, "ibm,thread-groups");
795 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
796 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
797 thread_group_array, count);
798 if (ret)
799 goto out_free;
800
801 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
802 int j;
803 struct thread_groups *tg = &tglp->property_tgs[property_idx++];
804
805 tg->property = thread_group_array[i];
806 tg->nr_groups = thread_group_array[i + 1];
807 tg->threads_per_group = thread_group_array[i + 2];
808 total_threads = tg->nr_groups * tg->threads_per_group;
809
810 thread_list = &thread_group_array[i + 3];
811
812 for (j = 0; j < total_threads; j++)
813 tg->thread_list[j] = thread_list[j];
814 i = i + 3 + total_threads;
815 }
816
817 tglp->nr_properties = property_idx;
818
819out_free:
820 kfree(thread_group_array);
821 return ret;
822}
823
824/*
825 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
826 * that @cpu belongs to.
827 *
828 * @cpu : The logical CPU whose thread group is being searched.
829 * @tg : The thread-group structure of the CPU node which @cpu belongs
830 * to.
831 *
832 * Returns the index to tg->thread_list that points to the the start
833 * of the thread_group that @cpu belongs to.
834 *
835 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
836 * tg->thread_list.
837 */
838static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
839{
840 int hw_cpu_id = get_hard_smp_processor_id(cpu);
841 int i, j;
842
843 for (i = 0; i < tg->nr_groups; i++) {
844 int group_start = i * tg->threads_per_group;
845
846 for (j = 0; j < tg->threads_per_group; j++) {
847 int idx = group_start + j;
848
849 if (tg->thread_list[idx] == hw_cpu_id)
850 return group_start;
851 }
852 }
853
854 return -1;
855}
856
857static struct thread_groups *__init get_thread_groups(int cpu,
858 int group_property,
859 int *err)
860{
861 struct device_node *dn = of_get_cpu_node(cpu, NULL);
862 struct thread_groups_list *cpu_tgl = &tgl[cpu];
863 struct thread_groups *tg = NULL;
864 int i;
865 *err = 0;
866
867 if (!dn) {
868 *err = -ENODATA;
869 return NULL;
870 }
871
872 if (!cpu_tgl->nr_properties) {
873 *err = parse_thread_groups(dn, cpu_tgl);
874 if (*err)
875 goto out;
876 }
877
878 for (i = 0; i < cpu_tgl->nr_properties; i++) {
879 if (cpu_tgl->property_tgs[i].property == group_property) {
880 tg = &cpu_tgl->property_tgs[i];
881 break;
882 }
883 }
884
885 if (!tg)
886 *err = -EINVAL;
887out:
888 of_node_put(dn);
889 return tg;
890}
891
892static int __init init_thread_group_cache_map(int cpu, int cache_property)
893
894{
895 int first_thread = cpu_first_thread_sibling(cpu);
896 int i, cpu_group_start = -1, err = 0;
897 struct thread_groups *tg = NULL;
898 cpumask_var_t *mask = NULL;
899
900 if (cache_property != THREAD_GROUP_SHARE_L1 &&
901 cache_property != THREAD_GROUP_SHARE_L2)
902 return -EINVAL;
903
904 tg = get_thread_groups(cpu, cache_property, &err);
905 if (!tg)
906 return err;
907
908 cpu_group_start = get_cpu_thread_group_start(cpu, tg);
909
910 if (unlikely(cpu_group_start == -1)) {
911 WARN_ON_ONCE(1);
912 return -ENODATA;
913 }
914
915 if (cache_property == THREAD_GROUP_SHARE_L1)
916 mask = &per_cpu(thread_group_l1_cache_map, cpu);
917 else if (cache_property == THREAD_GROUP_SHARE_L2)
918 mask = &per_cpu(thread_group_l2_cache_map, cpu);
919
920 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
921
922 for (i = first_thread; i < first_thread + threads_per_core; i++) {
923 int i_group_start = get_cpu_thread_group_start(i, tg);
924
925 if (unlikely(i_group_start == -1)) {
926 WARN_ON_ONCE(1);
927 return -ENODATA;
928 }
929
930 if (i_group_start == cpu_group_start)
931 cpumask_set_cpu(i, *mask);
932 }
933
934 return 0;
935}
936
937static bool shared_caches;
938
939#ifdef CONFIG_SCHED_SMT
940/* cpumask of CPUs with asymmetric SMT dependency */
941static int powerpc_smt_flags(void)
942{
943 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
944
945 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
946 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
947 flags |= SD_ASYM_PACKING;
948 }
949 return flags;
950}
951#endif
952
953/*
954 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
955 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
956 * since the migrated task remains cache hot. We want to take advantage of this
957 * at the scheduler level so an extra topology level is required.
958 */
959static int powerpc_shared_cache_flags(void)
960{
961 return SD_SHARE_PKG_RESOURCES;
962}
963
964/*
965 * We can't just pass cpu_l2_cache_mask() directly because
966 * returns a non-const pointer and the compiler barfs on that.
967 */
968static const struct cpumask *shared_cache_mask(int cpu)
969{
970 return per_cpu(cpu_l2_cache_map, cpu);
971}
972
973#ifdef CONFIG_SCHED_SMT
974static const struct cpumask *smallcore_smt_mask(int cpu)
975{
976 return cpu_smallcore_mask(cpu);
977}
978#endif
979
980static struct cpumask *cpu_coregroup_mask(int cpu)
981{
982 return per_cpu(cpu_coregroup_map, cpu);
983}
984
985static bool has_coregroup_support(void)
986{
987 return coregroup_enabled;
988}
989
990static const struct cpumask *cpu_mc_mask(int cpu)
991{
992 return cpu_coregroup_mask(cpu);
993}
994
995static struct sched_domain_topology_level powerpc_topology[] = {
996#ifdef CONFIG_SCHED_SMT
997 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
998#endif
999 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1000 { cpu_mc_mask, SD_INIT_NAME(MC) },
1001 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1002 { NULL, },
1003};
1004
1005static int __init init_big_cores(void)
1006{
1007 int cpu;
1008
1009 for_each_possible_cpu(cpu) {
1010 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1011
1012 if (err)
1013 return err;
1014
1015 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1016 GFP_KERNEL,
1017 cpu_to_node(cpu));
1018 }
1019
1020 has_big_cores = true;
1021
1022 for_each_possible_cpu(cpu) {
1023 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2);
1024
1025 if (err)
1026 return err;
1027 }
1028
1029 thread_group_shares_l2 = true;
1030 pr_debug("L2 cache only shared by the threads in the small core\n");
1031 return 0;
1032}
1033
1034void __init smp_prepare_cpus(unsigned int max_cpus)
1035{
1036 unsigned int cpu;
1037
1038 DBG("smp_prepare_cpus\n");
1039
1040 /*
1041 * setup_cpu may need to be called on the boot cpu. We havent
1042 * spun any cpus up but lets be paranoid.
1043 */
1044 BUG_ON(boot_cpuid != smp_processor_id());
1045
1046 /* Fixup boot cpu */
1047 smp_store_cpu_info(boot_cpuid);
1048 cpu_callin_map[boot_cpuid] = 1;
1049
1050 for_each_possible_cpu(cpu) {
1051 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1052 GFP_KERNEL, cpu_to_node(cpu));
1053 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1054 GFP_KERNEL, cpu_to_node(cpu));
1055 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1056 GFP_KERNEL, cpu_to_node(cpu));
1057 if (has_coregroup_support())
1058 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1059 GFP_KERNEL, cpu_to_node(cpu));
1060
1061#ifdef CONFIG_NUMA
1062 /*
1063 * numa_node_id() works after this.
1064 */
1065 if (cpu_present(cpu)) {
1066 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1067 set_cpu_numa_mem(cpu,
1068 local_memory_node(numa_cpu_lookup_table[cpu]));
1069 }
1070#endif
1071 }
1072
1073 /* Init the cpumasks so the boot CPU is related to itself */
1074 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1075 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1076 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1077
1078 if (has_coregroup_support())
1079 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1080
1081 init_big_cores();
1082 if (has_big_cores) {
1083 cpumask_set_cpu(boot_cpuid,
1084 cpu_smallcore_mask(boot_cpuid));
1085 }
1086
1087 if (cpu_to_chip_id(boot_cpuid) != -1) {
1088 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1089
1090 /*
1091 * All threads of a core will all belong to the same core,
1092 * chip_id_lookup_table will have one entry per core.
1093 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1094 * other CPUs, will also not have chip-id.
1095 */
1096 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1097 if (chip_id_lookup_table)
1098 memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1099 }
1100
1101 if (smp_ops && smp_ops->probe)
1102 smp_ops->probe();
1103}
1104
1105void smp_prepare_boot_cpu(void)
1106{
1107 BUG_ON(smp_processor_id() != boot_cpuid);
1108#ifdef CONFIG_PPC64
1109 paca_ptrs[boot_cpuid]->__current = current;
1110#endif
1111 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1112 current_set[boot_cpuid] = current;
1113}
1114
1115#ifdef CONFIG_HOTPLUG_CPU
1116
1117int generic_cpu_disable(void)
1118{
1119 unsigned int cpu = smp_processor_id();
1120
1121 if (cpu == boot_cpuid)
1122 return -EBUSY;
1123
1124 set_cpu_online(cpu, false);
1125#ifdef CONFIG_PPC64
1126 vdso_data->processorCount--;
1127#endif
1128 /* Update affinity of all IRQs previously aimed at this CPU */
1129 irq_migrate_all_off_this_cpu();
1130
1131 /*
1132 * Depending on the details of the interrupt controller, it's possible
1133 * that one of the interrupts we just migrated away from this CPU is
1134 * actually already pending on this CPU. If we leave it in that state
1135 * the interrupt will never be EOI'ed, and will never fire again. So
1136 * temporarily enable interrupts here, to allow any pending interrupt to
1137 * be received (and EOI'ed), before we take this CPU offline.
1138 */
1139 local_irq_enable();
1140 mdelay(1);
1141 local_irq_disable();
1142
1143 return 0;
1144}
1145
1146void generic_cpu_die(unsigned int cpu)
1147{
1148 int i;
1149
1150 for (i = 0; i < 100; i++) {
1151 smp_rmb();
1152 if (is_cpu_dead(cpu))
1153 return;
1154 msleep(100);
1155 }
1156 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1157}
1158
1159void generic_set_cpu_dead(unsigned int cpu)
1160{
1161 per_cpu(cpu_state, cpu) = CPU_DEAD;
1162}
1163
1164/*
1165 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1166 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1167 * which makes the delay in generic_cpu_die() not happen.
1168 */
1169void generic_set_cpu_up(unsigned int cpu)
1170{
1171 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1172}
1173
1174int generic_check_cpu_restart(unsigned int cpu)
1175{
1176 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1177}
1178
1179int is_cpu_dead(unsigned int cpu)
1180{
1181 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1182}
1183
1184static bool secondaries_inhibited(void)
1185{
1186 return kvm_hv_mode_active();
1187}
1188
1189#else /* HOTPLUG_CPU */
1190
1191#define secondaries_inhibited() 0
1192
1193#endif
1194
1195static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1196{
1197#ifdef CONFIG_PPC64
1198 paca_ptrs[cpu]->__current = idle;
1199 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1200 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1201#endif
1202 idle->cpu = cpu;
1203 secondary_current = current_set[cpu] = idle;
1204}
1205
1206int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1207{
1208 int rc, c;
1209
1210 /*
1211 * Don't allow secondary threads to come online if inhibited
1212 */
1213 if (threads_per_core > 1 && secondaries_inhibited() &&
1214 cpu_thread_in_subcore(cpu))
1215 return -EBUSY;
1216
1217 if (smp_ops == NULL ||
1218 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1219 return -EINVAL;
1220
1221 cpu_idle_thread_init(cpu, tidle);
1222
1223 /*
1224 * The platform might need to allocate resources prior to bringing
1225 * up the CPU
1226 */
1227 if (smp_ops->prepare_cpu) {
1228 rc = smp_ops->prepare_cpu(cpu);
1229 if (rc)
1230 return rc;
1231 }
1232
1233 /* Make sure callin-map entry is 0 (can be leftover a CPU
1234 * hotplug
1235 */
1236 cpu_callin_map[cpu] = 0;
1237
1238 /* The information for processor bringup must
1239 * be written out to main store before we release
1240 * the processor.
1241 */
1242 smp_mb();
1243
1244 /* wake up cpus */
1245 DBG("smp: kicking cpu %d\n", cpu);
1246 rc = smp_ops->kick_cpu(cpu);
1247 if (rc) {
1248 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1249 return rc;
1250 }
1251
1252 /*
1253 * wait to see if the cpu made a callin (is actually up).
1254 * use this value that I found through experimentation.
1255 * -- Cort
1256 */
1257 if (system_state < SYSTEM_RUNNING)
1258 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1259 udelay(100);
1260#ifdef CONFIG_HOTPLUG_CPU
1261 else
1262 /*
1263 * CPUs can take much longer to come up in the
1264 * hotplug case. Wait five seconds.
1265 */
1266 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1267 msleep(1);
1268#endif
1269
1270 if (!cpu_callin_map[cpu]) {
1271 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1272 return -ENOENT;
1273 }
1274
1275 DBG("Processor %u found.\n", cpu);
1276
1277 if (smp_ops->give_timebase)
1278 smp_ops->give_timebase();
1279
1280 /* Wait until cpu puts itself in the online & active maps */
1281 spin_until_cond(cpu_online(cpu));
1282
1283 return 0;
1284}
1285
1286/* Return the value of the reg property corresponding to the given
1287 * logical cpu.
1288 */
1289int cpu_to_core_id(int cpu)
1290{
1291 struct device_node *np;
1292 const __be32 *reg;
1293 int id = -1;
1294
1295 np = of_get_cpu_node(cpu, NULL);
1296 if (!np)
1297 goto out;
1298
1299 reg = of_get_property(np, "reg", NULL);
1300 if (!reg)
1301 goto out;
1302
1303 id = be32_to_cpup(reg);
1304out:
1305 of_node_put(np);
1306 return id;
1307}
1308EXPORT_SYMBOL_GPL(cpu_to_core_id);
1309
1310/* Helper routines for cpu to core mapping */
1311int cpu_core_index_of_thread(int cpu)
1312{
1313 return cpu >> threads_shift;
1314}
1315EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1316
1317int cpu_first_thread_of_core(int core)
1318{
1319 return core << threads_shift;
1320}
1321EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1322
1323/* Must be called when no change can occur to cpu_present_mask,
1324 * i.e. during cpu online or offline.
1325 */
1326static struct device_node *cpu_to_l2cache(int cpu)
1327{
1328 struct device_node *np;
1329 struct device_node *cache;
1330
1331 if (!cpu_present(cpu))
1332 return NULL;
1333
1334 np = of_get_cpu_node(cpu, NULL);
1335 if (np == NULL)
1336 return NULL;
1337
1338 cache = of_find_next_cache_node(np);
1339
1340 of_node_put(np);
1341
1342 return cache;
1343}
1344
1345static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1346{
1347 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1348 struct device_node *l2_cache, *np;
1349 int i;
1350
1351 if (has_big_cores)
1352 submask_fn = cpu_smallcore_mask;
1353
1354 /*
1355 * If the threads in a thread-group share L2 cache, then the
1356 * L2-mask can be obtained from thread_group_l2_cache_map.
1357 */
1358 if (thread_group_shares_l2) {
1359 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1360
1361 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1362 if (cpu_online(i))
1363 set_cpus_related(i, cpu, cpu_l2_cache_mask);
1364 }
1365
1366 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1367 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1368 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1369 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1370 cpu);
1371 }
1372
1373 return true;
1374 }
1375
1376 l2_cache = cpu_to_l2cache(cpu);
1377 if (!l2_cache || !*mask) {
1378 /* Assume only core siblings share cache with this CPU */
1379 for_each_cpu(i, submask_fn(cpu))
1380 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1381
1382 return false;
1383 }
1384
1385 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1386
1387 /* Update l2-cache mask with all the CPUs that are part of submask */
1388 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1389
1390 /* Skip all CPUs already part of current CPU l2-cache mask */
1391 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1392
1393 for_each_cpu(i, *mask) {
1394 /*
1395 * when updating the marks the current CPU has not been marked
1396 * online, but we need to update the cache masks
1397 */
1398 np = cpu_to_l2cache(i);
1399
1400 /* Skip all CPUs already part of current CPU l2-cache */
1401 if (np == l2_cache) {
1402 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1403 cpumask_andnot(*mask, *mask, submask_fn(i));
1404 } else {
1405 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1406 }
1407
1408 of_node_put(np);
1409 }
1410 of_node_put(l2_cache);
1411
1412 return true;
1413}
1414
1415#ifdef CONFIG_HOTPLUG_CPU
1416static void remove_cpu_from_masks(int cpu)
1417{
1418 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1419 int i;
1420
1421 if (shared_caches)
1422 mask_fn = cpu_l2_cache_mask;
1423
1424 for_each_cpu(i, mask_fn(cpu)) {
1425 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1426 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1427 if (has_big_cores)
1428 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1429 }
1430
1431 for_each_cpu(i, cpu_core_mask(cpu))
1432 set_cpus_unrelated(cpu, i, cpu_core_mask);
1433
1434 if (has_coregroup_support()) {
1435 for_each_cpu(i, cpu_coregroup_mask(cpu))
1436 set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1437 }
1438}
1439#endif
1440
1441static inline void add_cpu_to_smallcore_masks(int cpu)
1442{
1443 int i;
1444
1445 if (!has_big_cores)
1446 return;
1447
1448 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1449
1450 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1451 if (cpu_online(i))
1452 set_cpus_related(i, cpu, cpu_smallcore_mask);
1453 }
1454}
1455
1456static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1457{
1458 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1459 int coregroup_id = cpu_to_coregroup_id(cpu);
1460 int i;
1461
1462 if (shared_caches)
1463 submask_fn = cpu_l2_cache_mask;
1464
1465 if (!*mask) {
1466 /* Assume only siblings are part of this CPU's coregroup */
1467 for_each_cpu(i, submask_fn(cpu))
1468 set_cpus_related(cpu, i, cpu_coregroup_mask);
1469
1470 return;
1471 }
1472
1473 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1474
1475 /* Update coregroup mask with all the CPUs that are part of submask */
1476 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1477
1478 /* Skip all CPUs already part of coregroup mask */
1479 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1480
1481 for_each_cpu(i, *mask) {
1482 /* Skip all CPUs not part of this coregroup */
1483 if (coregroup_id == cpu_to_coregroup_id(i)) {
1484 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1485 cpumask_andnot(*mask, *mask, submask_fn(i));
1486 } else {
1487 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1488 }
1489 }
1490}
1491
1492static void add_cpu_to_masks(int cpu)
1493{
1494 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1495 int first_thread = cpu_first_thread_sibling(cpu);
1496 cpumask_var_t mask;
1497 int chip_id = -1;
1498 bool ret;
1499 int i;
1500
1501 /*
1502 * This CPU will not be in the online mask yet so we need to manually
1503 * add it to it's own thread sibling mask.
1504 */
1505 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1506 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1507
1508 for (i = first_thread; i < first_thread + threads_per_core; i++)
1509 if (cpu_online(i))
1510 set_cpus_related(i, cpu, cpu_sibling_mask);
1511
1512 add_cpu_to_smallcore_masks(cpu);
1513
1514 /* In CPU-hotplug path, hence use GFP_ATOMIC */
1515 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1516 update_mask_by_l2(cpu, &mask);
1517
1518 if (has_coregroup_support())
1519 update_coregroup_mask(cpu, &mask);
1520
1521 if (chip_id_lookup_table && ret)
1522 chip_id = cpu_to_chip_id(cpu);
1523
1524 if (shared_caches)
1525 submask_fn = cpu_l2_cache_mask;
1526
1527 /* Update core_mask with all the CPUs that are part of submask */
1528 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1529
1530 /* Skip all CPUs already part of current CPU core mask */
1531 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1532
1533 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1534 if (chip_id == -1)
1535 cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1536
1537 for_each_cpu(i, mask) {
1538 if (chip_id == cpu_to_chip_id(i)) {
1539 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1540 cpumask_andnot(mask, mask, submask_fn(i));
1541 } else {
1542 cpumask_andnot(mask, mask, cpu_core_mask(i));
1543 }
1544 }
1545
1546 free_cpumask_var(mask);
1547}
1548
1549/* Activate a secondary processor. */
1550void start_secondary(void *unused)
1551{
1552 unsigned int cpu = raw_smp_processor_id();
1553
1554 /* PPC64 calls setup_kup() in early_setup_secondary() */
1555 if (IS_ENABLED(CONFIG_PPC32))
1556 setup_kup();
1557
1558 mmgrab(&init_mm);
1559 current->active_mm = &init_mm;
1560
1561 smp_store_cpu_info(cpu);
1562 set_dec(tb_ticks_per_jiffy);
1563 rcu_cpu_starting(cpu);
1564 cpu_callin_map[cpu] = 1;
1565
1566 if (smp_ops->setup_cpu)
1567 smp_ops->setup_cpu(cpu);
1568 if (smp_ops->take_timebase)
1569 smp_ops->take_timebase();
1570
1571 secondary_cpu_time_init();
1572
1573#ifdef CONFIG_PPC64
1574 if (system_state == SYSTEM_RUNNING)
1575 vdso_data->processorCount++;
1576
1577 vdso_getcpu_init();
1578#endif
1579 set_numa_node(numa_cpu_lookup_table[cpu]);
1580 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1581
1582 /* Update topology CPU masks */
1583 add_cpu_to_masks(cpu);
1584
1585 /*
1586 * Check for any shared caches. Note that this must be done on a
1587 * per-core basis because one core in the pair might be disabled.
1588 */
1589 if (!shared_caches) {
1590 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1591 struct cpumask *mask = cpu_l2_cache_mask(cpu);
1592
1593 if (has_big_cores)
1594 sibling_mask = cpu_smallcore_mask;
1595
1596 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1597 shared_caches = true;
1598 }
1599
1600 smp_wmb();
1601 notify_cpu_starting(cpu);
1602 set_cpu_online(cpu, true);
1603
1604 boot_init_stack_canary();
1605
1606 local_irq_enable();
1607
1608 /* We can enable ftrace for secondary cpus now */
1609 this_cpu_enable_ftrace();
1610
1611 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1612
1613 BUG();
1614}
1615
1616int setup_profiling_timer(unsigned int multiplier)
1617{
1618 return 0;
1619}
1620
1621static void fixup_topology(void)
1622{
1623 int i;
1624
1625#ifdef CONFIG_SCHED_SMT
1626 if (has_big_cores) {
1627 pr_info("Big cores detected but using small core scheduling\n");
1628 powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1629 }
1630#endif
1631
1632 if (!has_coregroup_support())
1633 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1634
1635 /*
1636 * Try to consolidate topology levels here instead of
1637 * allowing scheduler to degenerate.
1638 * - Dont consolidate if masks are different.
1639 * - Dont consolidate if sd_flags exists and are different.
1640 */
1641 for (i = 1; i <= die_idx; i++) {
1642 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1643 continue;
1644
1645 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1646 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1647 continue;
1648
1649 if (!powerpc_topology[i - 1].sd_flags)
1650 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1651
1652 powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1653 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1654#ifdef CONFIG_SCHED_DEBUG
1655 powerpc_topology[i].name = powerpc_topology[i + 1].name;
1656#endif
1657 }
1658}
1659
1660void __init smp_cpus_done(unsigned int max_cpus)
1661{
1662 /*
1663 * We are running pinned to the boot CPU, see rest_init().
1664 */
1665 if (smp_ops && smp_ops->setup_cpu)
1666 smp_ops->setup_cpu(boot_cpuid);
1667
1668 if (smp_ops && smp_ops->bringup_done)
1669 smp_ops->bringup_done();
1670
1671 dump_numa_cpu_topology();
1672
1673 fixup_topology();
1674 set_sched_topology(powerpc_topology);
1675}
1676
1677#ifdef CONFIG_HOTPLUG_CPU
1678int __cpu_disable(void)
1679{
1680 int cpu = smp_processor_id();
1681 int err;
1682
1683 if (!smp_ops->cpu_disable)
1684 return -ENOSYS;
1685
1686 this_cpu_disable_ftrace();
1687
1688 err = smp_ops->cpu_disable();
1689 if (err)
1690 return err;
1691
1692 /* Update sibling maps */
1693 remove_cpu_from_masks(cpu);
1694
1695 return 0;
1696}
1697
1698void __cpu_die(unsigned int cpu)
1699{
1700 if (smp_ops->cpu_die)
1701 smp_ops->cpu_die(cpu);
1702}
1703
1704void arch_cpu_idle_dead(void)
1705{
1706 /*
1707 * Disable on the down path. This will be re-enabled by
1708 * start_secondary() via start_secondary_resume() below
1709 */
1710 this_cpu_disable_ftrace();
1711
1712 if (smp_ops->cpu_offline_self)
1713 smp_ops->cpu_offline_self();
1714
1715 /* If we return, we re-enter start_secondary */
1716 start_secondary_resume();
1717}
1718
1719#endif