Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Handle unaligned accesses by emulation.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Copyright (C) 2014 Imagination Technologies Ltd.
  11 *
  12 * This file contains exception handler for address error exception with the
  13 * special capability to execute faulting instructions in software.  The
  14 * handler does not try to handle the case when the program counter points
  15 * to an address not aligned to a word boundary.
  16 *
  17 * Putting data to unaligned addresses is a bad practice even on Intel where
  18 * only the performance is affected.  Much worse is that such code is non-
  19 * portable.  Due to several programs that die on MIPS due to alignment
  20 * problems I decided to implement this handler anyway though I originally
  21 * didn't intend to do this at all for user code.
  22 *
  23 * For now I enable fixing of address errors by default to make life easier.
  24 * I however intend to disable this somewhen in the future when the alignment
  25 * problems with user programs have been fixed.	 For programmers this is the
  26 * right way to go.
  27 *
  28 * Fixing address errors is a per process option.  The option is inherited
  29 * across fork(2) and execve(2) calls.	If you really want to use the
  30 * option in your user programs - I discourage the use of the software
  31 * emulation strongly - use the following code in your userland stuff:
  32 *
  33 * #include <sys/sysmips.h>
  34 *
  35 * ...
  36 * sysmips(MIPS_FIXADE, x);
  37 * ...
  38 *
  39 * The argument x is 0 for disabling software emulation, enabled otherwise.
  40 *
  41 * Below a little program to play around with this feature.
  42 *
  43 * #include <stdio.h>
  44 * #include <sys/sysmips.h>
  45 *
  46 * struct foo {
  47 *	   unsigned char bar[8];
  48 * };
  49 *
  50 * main(int argc, char *argv[])
  51 * {
  52 *	   struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
  53 *	   unsigned int *p = (unsigned int *) (x.bar + 3);
  54 *	   int i;
  55 *
  56 *	   if (argc > 1)
  57 *		   sysmips(MIPS_FIXADE, atoi(argv[1]));
  58 *
  59 *	   printf("*p = %08lx\n", *p);
  60 *
  61 *	   *p = 0xdeadface;
  62 *
  63 *	   for(i = 0; i <= 7; i++)
  64 *	   printf("%02x ", x.bar[i]);
  65 *	   printf("\n");
  66 * }
  67 *
  68 * Coprocessor loads are not supported; I think this case is unimportant
  69 * in the practice.
  70 *
  71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
  72 *	 exception for the R6000.
  73 *	 A store crossing a page boundary might be executed only partially.
  74 *	 Undo the partial store in this case.
  75 */
  76#include <linux/context_tracking.h>
  77#include <linux/mm.h>
  78#include <linux/signal.h>
  79#include <linux/smp.h>
  80#include <linux/sched.h>
  81#include <linux/debugfs.h>
  82#include <linux/perf_event.h>
  83
  84#include <asm/asm.h>
  85#include <asm/branch.h>
  86#include <asm/byteorder.h>
  87#include <asm/cop2.h>
  88#include <asm/debug.h>
  89#include <asm/fpu.h>
  90#include <asm/fpu_emulator.h>
  91#include <asm/inst.h>
  92#include <asm/unaligned-emul.h>
  93#include <asm/mmu_context.h>
  94#include <linux/uaccess.h>
 
 
 
  95
  96enum {
  97	UNALIGNED_ACTION_QUIET,
  98	UNALIGNED_ACTION_SIGNAL,
  99	UNALIGNED_ACTION_SHOW,
 100};
 101#ifdef CONFIG_DEBUG_FS
 102static u32 unaligned_instructions;
 103static u32 unaligned_action;
 104#else
 105#define unaligned_action UNALIGNED_ACTION_QUIET
 106#endif
 107extern void show_registers(struct pt_regs *regs);
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109static void emulate_load_store_insn(struct pt_regs *regs,
 110	void __user *addr, unsigned int __user *pc)
 111{
 112	unsigned long origpc, orig31, value;
 113	union mips_instruction insn;
 
 114	unsigned int res;
 
 
 
 115#ifdef	CONFIG_EVA
 116	mm_segment_t seg;
 117#endif
 118	origpc = (unsigned long)pc;
 119	orig31 = regs->regs[31];
 120
 121	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 122
 123	/*
 124	 * This load never faults.
 125	 */
 126	__get_user(insn.word, pc);
 127
 128	switch (insn.i_format.opcode) {
 129		/*
 130		 * These are instructions that a compiler doesn't generate.  We
 131		 * can assume therefore that the code is MIPS-aware and
 132		 * really buggy.  Emulating these instructions would break the
 133		 * semantics anyway.
 134		 */
 135	case ll_op:
 136	case lld_op:
 137	case sc_op:
 138	case scd_op:
 139
 140		/*
 141		 * For these instructions the only way to create an address
 142		 * error is an attempted access to kernel/supervisor address
 143		 * space.
 144		 */
 145	case ldl_op:
 146	case ldr_op:
 147	case lwl_op:
 148	case lwr_op:
 149	case sdl_op:
 150	case sdr_op:
 151	case swl_op:
 152	case swr_op:
 153	case lb_op:
 154	case lbu_op:
 155	case sb_op:
 156		goto sigbus;
 157
 158		/*
 159		 * The remaining opcodes are the ones that are really of
 160		 * interest.
 161		 */
 
 162	case spec3_op:
 163		if (insn.dsp_format.func == lx_op) {
 164			switch (insn.dsp_format.op) {
 165			case lwx_op:
 166				if (!access_ok(addr, 4))
 167					goto sigbus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168				LoadW(addr, value, res);
 169				if (res)
 170					goto fault;
 171				compute_return_epc(regs);
 172				regs->regs[insn.dsp_format.rd] = value;
 173				break;
 174			case lhx_op:
 175				if (!access_ok(addr, 2))
 176					goto sigbus;
 177				LoadHW(addr, value, res);
 178				if (res)
 179					goto fault;
 180				compute_return_epc(regs);
 181				regs->regs[insn.dsp_format.rd] = value;
 182				break;
 183			default:
 184				goto sigill;
 185			}
 186		}
 187#ifdef CONFIG_EVA
 188		else {
 189			/*
 190			 * we can land here only from kernel accessing user
 191			 * memory, so we need to "switch" the address limit to
 192			 * user space, so that address check can work properly.
 193			 */
 194			seg = force_uaccess_begin();
 195			switch (insn.spec3_format.func) {
 196			case lhe_op:
 197				if (!access_ok(addr, 2)) {
 198					force_uaccess_end(seg);
 199					goto sigbus;
 200				}
 201				LoadHWE(addr, value, res);
 202				if (res) {
 203					force_uaccess_end(seg);
 204					goto fault;
 205				}
 206				compute_return_epc(regs);
 207				regs->regs[insn.spec3_format.rt] = value;
 208				break;
 209			case lwe_op:
 210				if (!access_ok(addr, 4)) {
 211					force_uaccess_end(seg);
 212					goto sigbus;
 213				}
 214				LoadWE(addr, value, res);
 215				if (res) {
 216					force_uaccess_end(seg);
 217					goto fault;
 218				}
 219				compute_return_epc(regs);
 220				regs->regs[insn.spec3_format.rt] = value;
 221				break;
 222			case lhue_op:
 223				if (!access_ok(addr, 2)) {
 224					force_uaccess_end(seg);
 225					goto sigbus;
 226				}
 227				LoadHWUE(addr, value, res);
 228				if (res) {
 229					force_uaccess_end(seg);
 230					goto fault;
 231				}
 232				compute_return_epc(regs);
 233				regs->regs[insn.spec3_format.rt] = value;
 234				break;
 235			case she_op:
 236				if (!access_ok(addr, 2)) {
 237					force_uaccess_end(seg);
 238					goto sigbus;
 239				}
 240				compute_return_epc(regs);
 241				value = regs->regs[insn.spec3_format.rt];
 242				StoreHWE(addr, value, res);
 243				if (res) {
 244					force_uaccess_end(seg);
 245					goto fault;
 246				}
 247				break;
 248			case swe_op:
 249				if (!access_ok(addr, 4)) {
 250					force_uaccess_end(seg);
 251					goto sigbus;
 252				}
 253				compute_return_epc(regs);
 254				value = regs->regs[insn.spec3_format.rt];
 255				StoreWE(addr, value, res);
 256				if (res) {
 257					force_uaccess_end(seg);
 258					goto fault;
 259				}
 260				break;
 261			default:
 262				force_uaccess_end(seg);
 263				goto sigill;
 264			}
 265			force_uaccess_end(seg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266		}
 267#endif
 268		break;
 
 269	case lh_op:
 270		if (!access_ok(addr, 2))
 271			goto sigbus;
 272
 273		if (IS_ENABLED(CONFIG_EVA)) {
 274			if (uaccess_kernel())
 275				LoadHW(addr, value, res);
 276			else
 277				LoadHWE(addr, value, res);
 278		} else {
 279			LoadHW(addr, value, res);
 280		}
 281
 282		if (res)
 283			goto fault;
 284		compute_return_epc(regs);
 285		regs->regs[insn.i_format.rt] = value;
 286		break;
 287
 288	case lw_op:
 289		if (!access_ok(addr, 4))
 290			goto sigbus;
 291
 292		if (IS_ENABLED(CONFIG_EVA)) {
 293			if (uaccess_kernel())
 294				LoadW(addr, value, res);
 295			else
 296				LoadWE(addr, value, res);
 297		} else {
 298			LoadW(addr, value, res);
 299		}
 300
 301		if (res)
 302			goto fault;
 303		compute_return_epc(regs);
 304		regs->regs[insn.i_format.rt] = value;
 305		break;
 306
 307	case lhu_op:
 308		if (!access_ok(addr, 2))
 309			goto sigbus;
 310
 311		if (IS_ENABLED(CONFIG_EVA)) {
 312			if (uaccess_kernel())
 313				LoadHWU(addr, value, res);
 314			else
 315				LoadHWUE(addr, value, res);
 316		} else {
 317			LoadHWU(addr, value, res);
 318		}
 319
 320		if (res)
 321			goto fault;
 322		compute_return_epc(regs);
 323		regs->regs[insn.i_format.rt] = value;
 324		break;
 325
 326	case lwu_op:
 327#ifdef CONFIG_64BIT
 328		/*
 329		 * A 32-bit kernel might be running on a 64-bit processor.  But
 330		 * if we're on a 32-bit processor and an i-cache incoherency
 331		 * or race makes us see a 64-bit instruction here the sdl/sdr
 332		 * would blow up, so for now we don't handle unaligned 64-bit
 333		 * instructions on 32-bit kernels.
 334		 */
 335		if (!access_ok(addr, 4))
 336			goto sigbus;
 337
 338		LoadWU(addr, value, res);
 339		if (res)
 340			goto fault;
 341		compute_return_epc(regs);
 342		regs->regs[insn.i_format.rt] = value;
 343		break;
 344#endif /* CONFIG_64BIT */
 345
 346		/* Cannot handle 64-bit instructions in 32-bit kernel */
 347		goto sigill;
 348
 349	case ld_op:
 350#ifdef CONFIG_64BIT
 351		/*
 352		 * A 32-bit kernel might be running on a 64-bit processor.  But
 353		 * if we're on a 32-bit processor and an i-cache incoherency
 354		 * or race makes us see a 64-bit instruction here the sdl/sdr
 355		 * would blow up, so for now we don't handle unaligned 64-bit
 356		 * instructions on 32-bit kernels.
 357		 */
 358		if (!access_ok(addr, 8))
 359			goto sigbus;
 360
 361		LoadDW(addr, value, res);
 362		if (res)
 363			goto fault;
 364		compute_return_epc(regs);
 365		regs->regs[insn.i_format.rt] = value;
 366		break;
 367#endif /* CONFIG_64BIT */
 368
 369		/* Cannot handle 64-bit instructions in 32-bit kernel */
 370		goto sigill;
 371
 372	case sh_op:
 373		if (!access_ok(addr, 2))
 374			goto sigbus;
 375
 376		compute_return_epc(regs);
 377		value = regs->regs[insn.i_format.rt];
 378
 379		if (IS_ENABLED(CONFIG_EVA)) {
 380			if (uaccess_kernel())
 381				StoreHW(addr, value, res);
 382			else
 383				StoreHWE(addr, value, res);
 384		} else {
 385			StoreHW(addr, value, res);
 386		}
 387
 388		if (res)
 389			goto fault;
 390		break;
 391
 392	case sw_op:
 393		if (!access_ok(addr, 4))
 394			goto sigbus;
 395
 396		compute_return_epc(regs);
 397		value = regs->regs[insn.i_format.rt];
 398
 399		if (IS_ENABLED(CONFIG_EVA)) {
 400			if (uaccess_kernel())
 401				StoreW(addr, value, res);
 402			else
 403				StoreWE(addr, value, res);
 404		} else {
 405			StoreW(addr, value, res);
 406		}
 407
 408		if (res)
 409			goto fault;
 410		break;
 411
 412	case sd_op:
 413#ifdef CONFIG_64BIT
 414		/*
 415		 * A 32-bit kernel might be running on a 64-bit processor.  But
 416		 * if we're on a 32-bit processor and an i-cache incoherency
 417		 * or race makes us see a 64-bit instruction here the sdl/sdr
 418		 * would blow up, so for now we don't handle unaligned 64-bit
 419		 * instructions on 32-bit kernels.
 420		 */
 421		if (!access_ok(addr, 8))
 422			goto sigbus;
 423
 424		compute_return_epc(regs);
 425		value = regs->regs[insn.i_format.rt];
 426		StoreDW(addr, value, res);
 427		if (res)
 428			goto fault;
 429		break;
 430#endif /* CONFIG_64BIT */
 431
 432		/* Cannot handle 64-bit instructions in 32-bit kernel */
 433		goto sigill;
 434
 435#ifdef CONFIG_MIPS_FP_SUPPORT
 436
 437	case lwc1_op:
 438	case ldc1_op:
 439	case swc1_op:
 440	case sdc1_op:
 441	case cop1x_op: {
 442		void __user *fault_addr = NULL;
 443
 444		die_if_kernel("Unaligned FP access in kernel code", regs);
 445		BUG_ON(!used_math());
 
 446
 
 447		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 448					       &fault_addr);
 449		own_fpu(1);	/* Restore FPU state. */
 450
 451		/* Signal if something went wrong. */
 452		process_fpemu_return(res, fault_addr, 0);
 453
 454		if (res == 0)
 455			break;
 456		return;
 457	}
 458#endif /* CONFIG_MIPS_FP_SUPPORT */
 459
 460#ifdef CONFIG_CPU_HAS_MSA
 461
 462	case msa_op: {
 463		unsigned int wd, preempted;
 464		enum msa_2b_fmt df;
 465		union fpureg *fpr;
 466
 467		if (!cpu_has_msa)
 468			goto sigill;
 469
 470		/*
 471		 * If we've reached this point then userland should have taken
 472		 * the MSA disabled exception & initialised vector context at
 473		 * some point in the past.
 474		 */
 475		BUG_ON(!thread_msa_context_live());
 476
 477		df = insn.msa_mi10_format.df;
 478		wd = insn.msa_mi10_format.wd;
 479		fpr = &current->thread.fpu.fpr[wd];
 480
 481		switch (insn.msa_mi10_format.func) {
 482		case msa_ld_op:
 483			if (!access_ok(addr, sizeof(*fpr)))
 484				goto sigbus;
 485
 486			do {
 487				/*
 488				 * If we have live MSA context keep track of
 489				 * whether we get preempted in order to avoid
 490				 * the register context we load being clobbered
 491				 * by the live context as it's saved during
 492				 * preemption. If we don't have live context
 493				 * then it can't be saved to clobber the value
 494				 * we load.
 495				 */
 496				preempted = test_thread_flag(TIF_USEDMSA);
 497
 498				res = __copy_from_user_inatomic(fpr, addr,
 499								sizeof(*fpr));
 500				if (res)
 501					goto fault;
 502
 503				/*
 504				 * Update the hardware register if it is in use
 505				 * by the task in this quantum, in order to
 506				 * avoid having to save & restore the whole
 507				 * vector context.
 508				 */
 509				preempt_disable();
 510				if (test_thread_flag(TIF_USEDMSA)) {
 511					write_msa_wr(wd, fpr, df);
 512					preempted = 0;
 513				}
 514				preempt_enable();
 515			} while (preempted);
 516			break;
 517
 518		case msa_st_op:
 519			if (!access_ok(addr, sizeof(*fpr)))
 520				goto sigbus;
 521
 522			/*
 523			 * Update from the hardware register if it is in use by
 524			 * the task in this quantum, in order to avoid having to
 525			 * save & restore the whole vector context.
 526			 */
 527			preempt_disable();
 528			if (test_thread_flag(TIF_USEDMSA))
 529				read_msa_wr(wd, fpr, df);
 530			preempt_enable();
 531
 532			res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
 533			if (res)
 534				goto fault;
 535			break;
 536
 537		default:
 538			goto sigbus;
 539		}
 540
 541		compute_return_epc(regs);
 542		break;
 543	}
 544#endif /* CONFIG_CPU_HAS_MSA */
 545
 546#ifndef CONFIG_CPU_MIPSR6
 547	/*
 548	 * COP2 is available to implementor for application specific use.
 549	 * It's up to applications to register a notifier chain and do
 550	 * whatever they have to do, including possible sending of signals.
 551	 *
 552	 * This instruction has been reallocated in Release 6
 553	 */
 554	case lwc2_op:
 555		cu2_notifier_call_chain(CU2_LWC2_OP, regs);
 556		break;
 557
 558	case ldc2_op:
 559		cu2_notifier_call_chain(CU2_LDC2_OP, regs);
 560		break;
 561
 562	case swc2_op:
 563		cu2_notifier_call_chain(CU2_SWC2_OP, regs);
 564		break;
 565
 566	case sdc2_op:
 567		cu2_notifier_call_chain(CU2_SDC2_OP, regs);
 568		break;
 569#endif
 570	default:
 571		/*
 572		 * Pheeee...  We encountered an yet unknown instruction or
 573		 * cache coherence problem.  Die sucker, die ...
 574		 */
 575		goto sigill;
 576	}
 577
 578#ifdef CONFIG_DEBUG_FS
 579	unaligned_instructions++;
 580#endif
 581
 582	return;
 583
 584fault:
 585	/* roll back jump/branch */
 586	regs->cp0_epc = origpc;
 587	regs->regs[31] = orig31;
 588	/* Did we have an exception handler installed? */
 589	if (fixup_exception(regs))
 590		return;
 591
 592	die_if_kernel("Unhandled kernel unaligned access", regs);
 593	force_sig(SIGSEGV);
 594
 595	return;
 596
 597sigbus:
 598	die_if_kernel("Unhandled kernel unaligned access", regs);
 599	force_sig(SIGBUS);
 600
 601	return;
 602
 603sigill:
 604	die_if_kernel
 605	    ("Unhandled kernel unaligned access or invalid instruction", regs);
 606	force_sig(SIGILL);
 607}
 608
 609/* Recode table from 16-bit register notation to 32-bit GPR. */
 610const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
 611
 612/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
 613static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
 614
 615static void emulate_load_store_microMIPS(struct pt_regs *regs,
 616					 void __user *addr)
 617{
 618	unsigned long value;
 619	unsigned int res;
 620	int i;
 621	unsigned int reg = 0, rvar;
 622	unsigned long orig31;
 623	u16 __user *pc16;
 624	u16 halfword;
 625	unsigned int word;
 626	unsigned long origpc, contpc;
 627	union mips_instruction insn;
 628	struct mm_decoded_insn mminsn;
 
 629
 630	origpc = regs->cp0_epc;
 631	orig31 = regs->regs[31];
 632
 633	mminsn.micro_mips_mode = 1;
 634
 635	/*
 636	 * This load never faults.
 637	 */
 638	pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
 639	__get_user(halfword, pc16);
 640	pc16++;
 641	contpc = regs->cp0_epc + 2;
 642	word = ((unsigned int)halfword << 16);
 643	mminsn.pc_inc = 2;
 644
 645	if (!mm_insn_16bit(halfword)) {
 646		__get_user(halfword, pc16);
 647		pc16++;
 648		contpc = regs->cp0_epc + 4;
 649		mminsn.pc_inc = 4;
 650		word |= halfword;
 651	}
 652	mminsn.insn = word;
 653
 654	if (get_user(halfword, pc16))
 655		goto fault;
 656	mminsn.next_pc_inc = 2;
 657	word = ((unsigned int)halfword << 16);
 658
 659	if (!mm_insn_16bit(halfword)) {
 660		pc16++;
 661		if (get_user(halfword, pc16))
 662			goto fault;
 663		mminsn.next_pc_inc = 4;
 664		word |= halfword;
 665	}
 666	mminsn.next_insn = word;
 667
 668	insn = (union mips_instruction)(mminsn.insn);
 669	if (mm_isBranchInstr(regs, mminsn, &contpc))
 670		insn = (union mips_instruction)(mminsn.next_insn);
 671
 672	/*  Parse instruction to find what to do */
 673
 674	switch (insn.mm_i_format.opcode) {
 675
 676	case mm_pool32a_op:
 677		switch (insn.mm_x_format.func) {
 678		case mm_lwxs_op:
 679			reg = insn.mm_x_format.rd;
 680			goto loadW;
 681		}
 682
 683		goto sigbus;
 684
 685	case mm_pool32b_op:
 686		switch (insn.mm_m_format.func) {
 687		case mm_lwp_func:
 688			reg = insn.mm_m_format.rd;
 689			if (reg == 31)
 690				goto sigbus;
 691
 692			if (!access_ok(addr, 8))
 693				goto sigbus;
 694
 695			LoadW(addr, value, res);
 696			if (res)
 697				goto fault;
 698			regs->regs[reg] = value;
 699			addr += 4;
 700			LoadW(addr, value, res);
 701			if (res)
 702				goto fault;
 703			regs->regs[reg + 1] = value;
 704			goto success;
 705
 706		case mm_swp_func:
 707			reg = insn.mm_m_format.rd;
 708			if (reg == 31)
 709				goto sigbus;
 710
 711			if (!access_ok(addr, 8))
 712				goto sigbus;
 713
 714			value = regs->regs[reg];
 715			StoreW(addr, value, res);
 716			if (res)
 717				goto fault;
 718			addr += 4;
 719			value = regs->regs[reg + 1];
 720			StoreW(addr, value, res);
 721			if (res)
 722				goto fault;
 723			goto success;
 724
 725		case mm_ldp_func:
 726#ifdef CONFIG_64BIT
 727			reg = insn.mm_m_format.rd;
 728			if (reg == 31)
 729				goto sigbus;
 730
 731			if (!access_ok(addr, 16))
 732				goto sigbus;
 733
 734			LoadDW(addr, value, res);
 735			if (res)
 736				goto fault;
 737			regs->regs[reg] = value;
 738			addr += 8;
 739			LoadDW(addr, value, res);
 740			if (res)
 741				goto fault;
 742			regs->regs[reg + 1] = value;
 743			goto success;
 744#endif /* CONFIG_64BIT */
 745
 746			goto sigill;
 747
 748		case mm_sdp_func:
 749#ifdef CONFIG_64BIT
 750			reg = insn.mm_m_format.rd;
 751			if (reg == 31)
 752				goto sigbus;
 753
 754			if (!access_ok(addr, 16))
 755				goto sigbus;
 756
 757			value = regs->regs[reg];
 758			StoreDW(addr, value, res);
 759			if (res)
 760				goto fault;
 761			addr += 8;
 762			value = regs->regs[reg + 1];
 763			StoreDW(addr, value, res);
 764			if (res)
 765				goto fault;
 766			goto success;
 767#endif /* CONFIG_64BIT */
 768
 769			goto sigill;
 770
 771		case mm_lwm32_func:
 772			reg = insn.mm_m_format.rd;
 773			rvar = reg & 0xf;
 774			if ((rvar > 9) || !reg)
 775				goto sigill;
 776			if (reg & 0x10) {
 777				if (!access_ok(addr, 4 * (rvar + 1)))
 
 778					goto sigbus;
 779			} else {
 780				if (!access_ok(addr, 4 * rvar))
 781					goto sigbus;
 782			}
 783			if (rvar == 9)
 784				rvar = 8;
 785			for (i = 16; rvar; rvar--, i++) {
 786				LoadW(addr, value, res);
 787				if (res)
 788					goto fault;
 789				addr += 4;
 790				regs->regs[i] = value;
 791			}
 792			if ((reg & 0xf) == 9) {
 793				LoadW(addr, value, res);
 794				if (res)
 795					goto fault;
 796				addr += 4;
 797				regs->regs[30] = value;
 798			}
 799			if (reg & 0x10) {
 800				LoadW(addr, value, res);
 801				if (res)
 802					goto fault;
 803				regs->regs[31] = value;
 804			}
 805			goto success;
 806
 807		case mm_swm32_func:
 808			reg = insn.mm_m_format.rd;
 809			rvar = reg & 0xf;
 810			if ((rvar > 9) || !reg)
 811				goto sigill;
 812			if (reg & 0x10) {
 813				if (!access_ok(addr, 4 * (rvar + 1)))
 
 814					goto sigbus;
 815			} else {
 816				if (!access_ok(addr, 4 * rvar))
 817					goto sigbus;
 818			}
 819			if (rvar == 9)
 820				rvar = 8;
 821			for (i = 16; rvar; rvar--, i++) {
 822				value = regs->regs[i];
 823				StoreW(addr, value, res);
 824				if (res)
 825					goto fault;
 826				addr += 4;
 827			}
 828			if ((reg & 0xf) == 9) {
 829				value = regs->regs[30];
 830				StoreW(addr, value, res);
 831				if (res)
 832					goto fault;
 833				addr += 4;
 834			}
 835			if (reg & 0x10) {
 836				value = regs->regs[31];
 837				StoreW(addr, value, res);
 838				if (res)
 839					goto fault;
 840			}
 841			goto success;
 842
 843		case mm_ldm_func:
 844#ifdef CONFIG_64BIT
 845			reg = insn.mm_m_format.rd;
 846			rvar = reg & 0xf;
 847			if ((rvar > 9) || !reg)
 848				goto sigill;
 849			if (reg & 0x10) {
 850				if (!access_ok(addr, 8 * (rvar + 1)))
 
 851					goto sigbus;
 852			} else {
 853				if (!access_ok(addr, 8 * rvar))
 854					goto sigbus;
 855			}
 856			if (rvar == 9)
 857				rvar = 8;
 858
 859			for (i = 16; rvar; rvar--, i++) {
 860				LoadDW(addr, value, res);
 861				if (res)
 862					goto fault;
 863				addr += 4;
 864				regs->regs[i] = value;
 865			}
 866			if ((reg & 0xf) == 9) {
 867				LoadDW(addr, value, res);
 868				if (res)
 869					goto fault;
 870				addr += 8;
 871				regs->regs[30] = value;
 872			}
 873			if (reg & 0x10) {
 874				LoadDW(addr, value, res);
 875				if (res)
 876					goto fault;
 877				regs->regs[31] = value;
 878			}
 879			goto success;
 880#endif /* CONFIG_64BIT */
 881
 882			goto sigill;
 883
 884		case mm_sdm_func:
 885#ifdef CONFIG_64BIT
 886			reg = insn.mm_m_format.rd;
 887			rvar = reg & 0xf;
 888			if ((rvar > 9) || !reg)
 889				goto sigill;
 890			if (reg & 0x10) {
 891				if (!access_ok(addr, 8 * (rvar + 1)))
 
 892					goto sigbus;
 893			} else {
 894				if (!access_ok(addr, 8 * rvar))
 895					goto sigbus;
 896			}
 897			if (rvar == 9)
 898				rvar = 8;
 899
 900			for (i = 16; rvar; rvar--, i++) {
 901				value = regs->regs[i];
 902				StoreDW(addr, value, res);
 903				if (res)
 904					goto fault;
 905				addr += 8;
 906			}
 907			if ((reg & 0xf) == 9) {
 908				value = regs->regs[30];
 909				StoreDW(addr, value, res);
 910				if (res)
 911					goto fault;
 912				addr += 8;
 913			}
 914			if (reg & 0x10) {
 915				value = regs->regs[31];
 916				StoreDW(addr, value, res);
 917				if (res)
 918					goto fault;
 919			}
 920			goto success;
 921#endif /* CONFIG_64BIT */
 922
 923			goto sigill;
 924
 925			/*  LWC2, SWC2, LDC2, SDC2 are not serviced */
 926		}
 927
 928		goto sigbus;
 929
 930	case mm_pool32c_op:
 931		switch (insn.mm_m_format.func) {
 932		case mm_lwu_func:
 933			reg = insn.mm_m_format.rd;
 934			goto loadWU;
 935		}
 936
 937		/*  LL,SC,LLD,SCD are not serviced */
 938		goto sigbus;
 939
 940#ifdef CONFIG_MIPS_FP_SUPPORT
 941	case mm_pool32f_op:
 942		switch (insn.mm_x_format.func) {
 943		case mm_lwxc1_func:
 944		case mm_swxc1_func:
 945		case mm_ldxc1_func:
 946		case mm_sdxc1_func:
 947			goto fpu_emul;
 948		}
 949
 950		goto sigbus;
 951
 952	case mm_ldc132_op:
 953	case mm_sdc132_op:
 954	case mm_lwc132_op:
 955	case mm_swc132_op: {
 956		void __user *fault_addr = NULL;
 957
 958fpu_emul:
 959		/* roll back jump/branch */
 960		regs->cp0_epc = origpc;
 961		regs->regs[31] = orig31;
 962
 963		die_if_kernel("Unaligned FP access in kernel code", regs);
 964		BUG_ON(!used_math());
 965		BUG_ON(!is_fpu_owner());
 966
 
 967		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 968					       &fault_addr);
 969		own_fpu(1);	/* restore FPU state */
 970
 971		/* If something went wrong, signal */
 972		process_fpemu_return(res, fault_addr, 0);
 973
 974		if (res == 0)
 975			goto success;
 976		return;
 977	}
 978#endif /* CONFIG_MIPS_FP_SUPPORT */
 979
 980	case mm_lh32_op:
 981		reg = insn.mm_i_format.rt;
 982		goto loadHW;
 983
 984	case mm_lhu32_op:
 985		reg = insn.mm_i_format.rt;
 986		goto loadHWU;
 987
 988	case mm_lw32_op:
 989		reg = insn.mm_i_format.rt;
 990		goto loadW;
 991
 992	case mm_sh32_op:
 993		reg = insn.mm_i_format.rt;
 994		goto storeHW;
 995
 996	case mm_sw32_op:
 997		reg = insn.mm_i_format.rt;
 998		goto storeW;
 999
1000	case mm_ld32_op:
1001		reg = insn.mm_i_format.rt;
1002		goto loadDW;
1003
1004	case mm_sd32_op:
1005		reg = insn.mm_i_format.rt;
1006		goto storeDW;
1007
1008	case mm_pool16c_op:
1009		switch (insn.mm16_m_format.func) {
1010		case mm_lwm16_op:
1011			reg = insn.mm16_m_format.rlist;
1012			rvar = reg + 1;
1013			if (!access_ok(addr, 4 * rvar))
1014				goto sigbus;
1015
1016			for (i = 16; rvar; rvar--, i++) {
1017				LoadW(addr, value, res);
1018				if (res)
1019					goto fault;
1020				addr += 4;
1021				regs->regs[i] = value;
1022			}
1023			LoadW(addr, value, res);
1024			if (res)
1025				goto fault;
1026			regs->regs[31] = value;
1027
1028			goto success;
1029
1030		case mm_swm16_op:
1031			reg = insn.mm16_m_format.rlist;
1032			rvar = reg + 1;
1033			if (!access_ok(addr, 4 * rvar))
1034				goto sigbus;
1035
1036			for (i = 16; rvar; rvar--, i++) {
1037				value = regs->regs[i];
1038				StoreW(addr, value, res);
1039				if (res)
1040					goto fault;
1041				addr += 4;
1042			}
1043			value = regs->regs[31];
1044			StoreW(addr, value, res);
1045			if (res)
1046				goto fault;
1047
1048			goto success;
1049
1050		}
1051
1052		goto sigbus;
1053
1054	case mm_lhu16_op:
1055		reg = reg16to32[insn.mm16_rb_format.rt];
1056		goto loadHWU;
1057
1058	case mm_lw16_op:
1059		reg = reg16to32[insn.mm16_rb_format.rt];
1060		goto loadW;
1061
1062	case mm_sh16_op:
1063		reg = reg16to32st[insn.mm16_rb_format.rt];
1064		goto storeHW;
1065
1066	case mm_sw16_op:
1067		reg = reg16to32st[insn.mm16_rb_format.rt];
1068		goto storeW;
1069
1070	case mm_lwsp16_op:
1071		reg = insn.mm16_r5_format.rt;
1072		goto loadW;
1073
1074	case mm_swsp16_op:
1075		reg = insn.mm16_r5_format.rt;
1076		goto storeW;
1077
1078	case mm_lwgp16_op:
1079		reg = reg16to32[insn.mm16_r3_format.rt];
1080		goto loadW;
1081
1082	default:
1083		goto sigill;
1084	}
1085
1086loadHW:
1087	if (!access_ok(addr, 2))
1088		goto sigbus;
1089
1090	LoadHW(addr, value, res);
1091	if (res)
1092		goto fault;
1093	regs->regs[reg] = value;
1094	goto success;
1095
1096loadHWU:
1097	if (!access_ok(addr, 2))
1098		goto sigbus;
1099
1100	LoadHWU(addr, value, res);
1101	if (res)
1102		goto fault;
1103	regs->regs[reg] = value;
1104	goto success;
1105
1106loadW:
1107	if (!access_ok(addr, 4))
1108		goto sigbus;
1109
1110	LoadW(addr, value, res);
1111	if (res)
1112		goto fault;
1113	regs->regs[reg] = value;
1114	goto success;
1115
1116loadWU:
1117#ifdef CONFIG_64BIT
1118	/*
1119	 * A 32-bit kernel might be running on a 64-bit processor.  But
1120	 * if we're on a 32-bit processor and an i-cache incoherency
1121	 * or race makes us see a 64-bit instruction here the sdl/sdr
1122	 * would blow up, so for now we don't handle unaligned 64-bit
1123	 * instructions on 32-bit kernels.
1124	 */
1125	if (!access_ok(addr, 4))
1126		goto sigbus;
1127
1128	LoadWU(addr, value, res);
1129	if (res)
1130		goto fault;
1131	regs->regs[reg] = value;
1132	goto success;
1133#endif /* CONFIG_64BIT */
1134
1135	/* Cannot handle 64-bit instructions in 32-bit kernel */
1136	goto sigill;
1137
1138loadDW:
1139#ifdef CONFIG_64BIT
1140	/*
1141	 * A 32-bit kernel might be running on a 64-bit processor.  But
1142	 * if we're on a 32-bit processor and an i-cache incoherency
1143	 * or race makes us see a 64-bit instruction here the sdl/sdr
1144	 * would blow up, so for now we don't handle unaligned 64-bit
1145	 * instructions on 32-bit kernels.
1146	 */
1147	if (!access_ok(addr, 8))
1148		goto sigbus;
1149
1150	LoadDW(addr, value, res);
1151	if (res)
1152		goto fault;
1153	regs->regs[reg] = value;
1154	goto success;
1155#endif /* CONFIG_64BIT */
1156
1157	/* Cannot handle 64-bit instructions in 32-bit kernel */
1158	goto sigill;
1159
1160storeHW:
1161	if (!access_ok(addr, 2))
1162		goto sigbus;
1163
1164	value = regs->regs[reg];
1165	StoreHW(addr, value, res);
1166	if (res)
1167		goto fault;
1168	goto success;
1169
1170storeW:
1171	if (!access_ok(addr, 4))
1172		goto sigbus;
1173
1174	value = regs->regs[reg];
1175	StoreW(addr, value, res);
1176	if (res)
1177		goto fault;
1178	goto success;
1179
1180storeDW:
1181#ifdef CONFIG_64BIT
1182	/*
1183	 * A 32-bit kernel might be running on a 64-bit processor.  But
1184	 * if we're on a 32-bit processor and an i-cache incoherency
1185	 * or race makes us see a 64-bit instruction here the sdl/sdr
1186	 * would blow up, so for now we don't handle unaligned 64-bit
1187	 * instructions on 32-bit kernels.
1188	 */
1189	if (!access_ok(addr, 8))
1190		goto sigbus;
1191
1192	value = regs->regs[reg];
1193	StoreDW(addr, value, res);
1194	if (res)
1195		goto fault;
1196	goto success;
1197#endif /* CONFIG_64BIT */
1198
1199	/* Cannot handle 64-bit instructions in 32-bit kernel */
1200	goto sigill;
1201
1202success:
1203	regs->cp0_epc = contpc;	/* advance or branch */
1204
1205#ifdef CONFIG_DEBUG_FS
1206	unaligned_instructions++;
1207#endif
1208	return;
1209
1210fault:
1211	/* roll back jump/branch */
1212	regs->cp0_epc = origpc;
1213	regs->regs[31] = orig31;
1214	/* Did we have an exception handler installed? */
1215	if (fixup_exception(regs))
1216		return;
1217
1218	die_if_kernel("Unhandled kernel unaligned access", regs);
1219	force_sig(SIGSEGV);
1220
1221	return;
1222
1223sigbus:
1224	die_if_kernel("Unhandled kernel unaligned access", regs);
1225	force_sig(SIGBUS);
1226
1227	return;
1228
1229sigill:
1230	die_if_kernel
1231	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1232	force_sig(SIGILL);
1233}
1234
1235static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1236{
1237	unsigned long value;
1238	unsigned int res;
1239	int reg;
1240	unsigned long orig31;
1241	u16 __user *pc16;
1242	unsigned long origpc;
1243	union mips16e_instruction mips16inst, oldinst;
1244	unsigned int opcode;
1245	int extended = 0;
1246
1247	origpc = regs->cp0_epc;
1248	orig31 = regs->regs[31];
1249	pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1250	/*
1251	 * This load never faults.
1252	 */
1253	__get_user(mips16inst.full, pc16);
1254	oldinst = mips16inst;
1255
1256	/* skip EXTEND instruction */
1257	if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1258		extended = 1;
1259		pc16++;
1260		__get_user(mips16inst.full, pc16);
1261	} else if (delay_slot(regs)) {
1262		/*  skip jump instructions */
1263		/*  JAL/JALX are 32 bits but have OPCODE in first short int */
1264		if (mips16inst.ri.opcode == MIPS16e_jal_op)
1265			pc16++;
1266		pc16++;
1267		if (get_user(mips16inst.full, pc16))
1268			goto sigbus;
1269	}
1270
1271	opcode = mips16inst.ri.opcode;
1272	switch (opcode) {
1273	case MIPS16e_i64_op:	/* I64 or RI64 instruction */
1274		switch (mips16inst.i64.func) {	/* I64/RI64 func field check */
1275		case MIPS16e_ldpc_func:
1276		case MIPS16e_ldsp_func:
1277			reg = reg16to32[mips16inst.ri64.ry];
1278			goto loadDW;
1279
1280		case MIPS16e_sdsp_func:
1281			reg = reg16to32[mips16inst.ri64.ry];
1282			goto writeDW;
1283
1284		case MIPS16e_sdrasp_func:
1285			reg = 29;	/* GPRSP */
1286			goto writeDW;
1287		}
1288
1289		goto sigbus;
1290
1291	case MIPS16e_swsp_op:
1292		reg = reg16to32[mips16inst.ri.rx];
1293		if (extended && cpu_has_mips16e2)
1294			switch (mips16inst.ri.imm >> 5) {
1295			case 0:		/* SWSP */
1296			case 1:		/* SWGP */
1297				break;
1298			case 2:		/* SHGP */
1299				opcode = MIPS16e_sh_op;
1300				break;
1301			default:
1302				goto sigbus;
1303			}
1304		break;
1305
1306	case MIPS16e_lwpc_op:
1307		reg = reg16to32[mips16inst.ri.rx];
1308		break;
1309
1310	case MIPS16e_lwsp_op:
1311		reg = reg16to32[mips16inst.ri.rx];
1312		if (extended && cpu_has_mips16e2)
1313			switch (mips16inst.ri.imm >> 5) {
1314			case 0:		/* LWSP */
1315			case 1:		/* LWGP */
1316				break;
1317			case 2:		/* LHGP */
1318				opcode = MIPS16e_lh_op;
1319				break;
1320			case 4:		/* LHUGP */
1321				opcode = MIPS16e_lhu_op;
1322				break;
1323			default:
1324				goto sigbus;
1325			}
1326		break;
1327
1328	case MIPS16e_i8_op:
1329		if (mips16inst.i8.func != MIPS16e_swrasp_func)
1330			goto sigbus;
1331		reg = 29;	/* GPRSP */
1332		break;
1333
1334	default:
1335		reg = reg16to32[mips16inst.rri.ry];
1336		break;
1337	}
1338
1339	switch (opcode) {
1340
1341	case MIPS16e_lb_op:
1342	case MIPS16e_lbu_op:
1343	case MIPS16e_sb_op:
1344		goto sigbus;
1345
1346	case MIPS16e_lh_op:
1347		if (!access_ok(addr, 2))
1348			goto sigbus;
1349
1350		LoadHW(addr, value, res);
1351		if (res)
1352			goto fault;
1353		MIPS16e_compute_return_epc(regs, &oldinst);
1354		regs->regs[reg] = value;
1355		break;
1356
1357	case MIPS16e_lhu_op:
1358		if (!access_ok(addr, 2))
1359			goto sigbus;
1360
1361		LoadHWU(addr, value, res);
1362		if (res)
1363			goto fault;
1364		MIPS16e_compute_return_epc(regs, &oldinst);
1365		regs->regs[reg] = value;
1366		break;
1367
1368	case MIPS16e_lw_op:
1369	case MIPS16e_lwpc_op:
1370	case MIPS16e_lwsp_op:
1371		if (!access_ok(addr, 4))
1372			goto sigbus;
1373
1374		LoadW(addr, value, res);
1375		if (res)
1376			goto fault;
1377		MIPS16e_compute_return_epc(regs, &oldinst);
1378		regs->regs[reg] = value;
1379		break;
1380
1381	case MIPS16e_lwu_op:
1382#ifdef CONFIG_64BIT
1383		/*
1384		 * A 32-bit kernel might be running on a 64-bit processor.  But
1385		 * if we're on a 32-bit processor and an i-cache incoherency
1386		 * or race makes us see a 64-bit instruction here the sdl/sdr
1387		 * would blow up, so for now we don't handle unaligned 64-bit
1388		 * instructions on 32-bit kernels.
1389		 */
1390		if (!access_ok(addr, 4))
1391			goto sigbus;
1392
1393		LoadWU(addr, value, res);
1394		if (res)
1395			goto fault;
1396		MIPS16e_compute_return_epc(regs, &oldinst);
1397		regs->regs[reg] = value;
1398		break;
1399#endif /* CONFIG_64BIT */
1400
1401		/* Cannot handle 64-bit instructions in 32-bit kernel */
1402		goto sigill;
1403
1404	case MIPS16e_ld_op:
1405loadDW:
1406#ifdef CONFIG_64BIT
1407		/*
1408		 * A 32-bit kernel might be running on a 64-bit processor.  But
1409		 * if we're on a 32-bit processor and an i-cache incoherency
1410		 * or race makes us see a 64-bit instruction here the sdl/sdr
1411		 * would blow up, so for now we don't handle unaligned 64-bit
1412		 * instructions on 32-bit kernels.
1413		 */
1414		if (!access_ok(addr, 8))
1415			goto sigbus;
1416
1417		LoadDW(addr, value, res);
1418		if (res)
1419			goto fault;
1420		MIPS16e_compute_return_epc(regs, &oldinst);
1421		regs->regs[reg] = value;
1422		break;
1423#endif /* CONFIG_64BIT */
1424
1425		/* Cannot handle 64-bit instructions in 32-bit kernel */
1426		goto sigill;
1427
1428	case MIPS16e_sh_op:
1429		if (!access_ok(addr, 2))
1430			goto sigbus;
1431
1432		MIPS16e_compute_return_epc(regs, &oldinst);
1433		value = regs->regs[reg];
1434		StoreHW(addr, value, res);
1435		if (res)
1436			goto fault;
1437		break;
1438
1439	case MIPS16e_sw_op:
1440	case MIPS16e_swsp_op:
1441	case MIPS16e_i8_op:	/* actually - MIPS16e_swrasp_func */
1442		if (!access_ok(addr, 4))
1443			goto sigbus;
1444
1445		MIPS16e_compute_return_epc(regs, &oldinst);
1446		value = regs->regs[reg];
1447		StoreW(addr, value, res);
1448		if (res)
1449			goto fault;
1450		break;
1451
1452	case MIPS16e_sd_op:
1453writeDW:
1454#ifdef CONFIG_64BIT
1455		/*
1456		 * A 32-bit kernel might be running on a 64-bit processor.  But
1457		 * if we're on a 32-bit processor and an i-cache incoherency
1458		 * or race makes us see a 64-bit instruction here the sdl/sdr
1459		 * would blow up, so for now we don't handle unaligned 64-bit
1460		 * instructions on 32-bit kernels.
1461		 */
1462		if (!access_ok(addr, 8))
1463			goto sigbus;
1464
1465		MIPS16e_compute_return_epc(regs, &oldinst);
1466		value = regs->regs[reg];
1467		StoreDW(addr, value, res);
1468		if (res)
1469			goto fault;
1470		break;
1471#endif /* CONFIG_64BIT */
1472
1473		/* Cannot handle 64-bit instructions in 32-bit kernel */
1474		goto sigill;
1475
1476	default:
1477		/*
1478		 * Pheeee...  We encountered an yet unknown instruction or
1479		 * cache coherence problem.  Die sucker, die ...
1480		 */
1481		goto sigill;
1482	}
1483
1484#ifdef CONFIG_DEBUG_FS
1485	unaligned_instructions++;
1486#endif
1487
1488	return;
1489
1490fault:
1491	/* roll back jump/branch */
1492	regs->cp0_epc = origpc;
1493	regs->regs[31] = orig31;
1494	/* Did we have an exception handler installed? */
1495	if (fixup_exception(regs))
1496		return;
1497
1498	die_if_kernel("Unhandled kernel unaligned access", regs);
1499	force_sig(SIGSEGV);
1500
1501	return;
1502
1503sigbus:
1504	die_if_kernel("Unhandled kernel unaligned access", regs);
1505	force_sig(SIGBUS);
1506
1507	return;
1508
1509sigill:
1510	die_if_kernel
1511	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1512	force_sig(SIGILL);
1513}
1514
1515asmlinkage void do_ade(struct pt_regs *regs)
1516{
1517	enum ctx_state prev_state;
1518	unsigned int __user *pc;
1519	mm_segment_t seg;
1520
1521	prev_state = exception_enter();
1522	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1523			1, regs, regs->cp0_badvaddr);
1524	/*
1525	 * Did we catch a fault trying to load an instruction?
1526	 */
1527	if (regs->cp0_badvaddr == regs->cp0_epc)
1528		goto sigbus;
1529
1530	if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1531		goto sigbus;
1532	if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1533		goto sigbus;
1534
1535	/*
1536	 * Do branch emulation only if we didn't forward the exception.
1537	 * This is all so but ugly ...
1538	 */
1539
1540	/*
1541	 * Are we running in microMIPS mode?
1542	 */
1543	if (get_isa16_mode(regs->cp0_epc)) {
1544		/*
1545		 * Did we catch a fault trying to load an instruction in
1546		 * 16-bit mode?
1547		 */
1548		if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1549			goto sigbus;
1550		if (unaligned_action == UNALIGNED_ACTION_SHOW)
1551			show_registers(regs);
1552
1553		if (cpu_has_mmips) {
1554			seg = get_fs();
1555			if (!user_mode(regs))
1556				set_fs(KERNEL_DS);
1557			emulate_load_store_microMIPS(regs,
1558				(void __user *)regs->cp0_badvaddr);
1559			set_fs(seg);
1560
1561			return;
1562		}
1563
1564		if (cpu_has_mips16) {
1565			seg = get_fs();
1566			if (!user_mode(regs))
1567				set_fs(KERNEL_DS);
1568			emulate_load_store_MIPS16e(regs,
1569				(void __user *)regs->cp0_badvaddr);
1570			set_fs(seg);
1571
1572			return;
1573		}
1574
1575		goto sigbus;
1576	}
1577
1578	if (unaligned_action == UNALIGNED_ACTION_SHOW)
1579		show_registers(regs);
1580	pc = (unsigned int __user *)exception_epc(regs);
1581
1582	seg = get_fs();
1583	if (!user_mode(regs))
1584		set_fs(KERNEL_DS);
1585	emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1586	set_fs(seg);
1587
1588	return;
1589
1590sigbus:
1591	die_if_kernel("Kernel unaligned instruction access", regs);
1592	force_sig(SIGBUS);
1593
1594	/*
1595	 * XXX On return from the signal handler we should advance the epc
1596	 */
1597	exception_exit(prev_state);
1598}
1599
1600#ifdef CONFIG_DEBUG_FS
 
1601static int __init debugfs_unaligned(void)
1602{
1603	debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
1604			   &unaligned_instructions);
1605	debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1606			   mips_debugfs_dir, &unaligned_action);
 
 
 
 
 
 
 
 
1607	return 0;
1608}
1609arch_initcall(debugfs_unaligned);
1610#endif
v3.15
   1/*
   2 * Handle unaligned accesses by emulation.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Copyright (C) 2014 Imagination Technologies Ltd.
  11 *
  12 * This file contains exception handler for address error exception with the
  13 * special capability to execute faulting instructions in software.  The
  14 * handler does not try to handle the case when the program counter points
  15 * to an address not aligned to a word boundary.
  16 *
  17 * Putting data to unaligned addresses is a bad practice even on Intel where
  18 * only the performance is affected.  Much worse is that such code is non-
  19 * portable.  Due to several programs that die on MIPS due to alignment
  20 * problems I decided to implement this handler anyway though I originally
  21 * didn't intend to do this at all for user code.
  22 *
  23 * For now I enable fixing of address errors by default to make life easier.
  24 * I however intend to disable this somewhen in the future when the alignment
  25 * problems with user programs have been fixed.	 For programmers this is the
  26 * right way to go.
  27 *
  28 * Fixing address errors is a per process option.  The option is inherited
  29 * across fork(2) and execve(2) calls.	If you really want to use the
  30 * option in your user programs - I discourage the use of the software
  31 * emulation strongly - use the following code in your userland stuff:
  32 *
  33 * #include <sys/sysmips.h>
  34 *
  35 * ...
  36 * sysmips(MIPS_FIXADE, x);
  37 * ...
  38 *
  39 * The argument x is 0 for disabling software emulation, enabled otherwise.
  40 *
  41 * Below a little program to play around with this feature.
  42 *
  43 * #include <stdio.h>
  44 * #include <sys/sysmips.h>
  45 *
  46 * struct foo {
  47 *	   unsigned char bar[8];
  48 * };
  49 *
  50 * main(int argc, char *argv[])
  51 * {
  52 *	   struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
  53 *	   unsigned int *p = (unsigned int *) (x.bar + 3);
  54 *	   int i;
  55 *
  56 *	   if (argc > 1)
  57 *		   sysmips(MIPS_FIXADE, atoi(argv[1]));
  58 *
  59 *	   printf("*p = %08lx\n", *p);
  60 *
  61 *	   *p = 0xdeadface;
  62 *
  63 *	   for(i = 0; i <= 7; i++)
  64 *	   printf("%02x ", x.bar[i]);
  65 *	   printf("\n");
  66 * }
  67 *
  68 * Coprocessor loads are not supported; I think this case is unimportant
  69 * in the practice.
  70 *
  71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
  72 *	 exception for the R6000.
  73 *	 A store crossing a page boundary might be executed only partially.
  74 *	 Undo the partial store in this case.
  75 */
  76#include <linux/context_tracking.h>
  77#include <linux/mm.h>
  78#include <linux/signal.h>
  79#include <linux/smp.h>
  80#include <linux/sched.h>
  81#include <linux/debugfs.h>
  82#include <linux/perf_event.h>
  83
  84#include <asm/asm.h>
  85#include <asm/branch.h>
  86#include <asm/byteorder.h>
  87#include <asm/cop2.h>
 
  88#include <asm/fpu.h>
  89#include <asm/fpu_emulator.h>
  90#include <asm/inst.h>
  91#include <asm/uaccess.h>
  92#include <asm/fpu.h>
  93#include <asm/fpu_emulator.h>
  94
  95#define STR(x)	__STR(x)
  96#define __STR(x)  #x
  97
  98enum {
  99	UNALIGNED_ACTION_QUIET,
 100	UNALIGNED_ACTION_SIGNAL,
 101	UNALIGNED_ACTION_SHOW,
 102};
 103#ifdef CONFIG_DEBUG_FS
 104static u32 unaligned_instructions;
 105static u32 unaligned_action;
 106#else
 107#define unaligned_action UNALIGNED_ACTION_QUIET
 108#endif
 109extern void show_registers(struct pt_regs *regs);
 110
 111#ifdef __BIG_ENDIAN
 112#define     LoadHW(addr, value, res)  \
 113		__asm__ __volatile__ (".set\tnoat\n"        \
 114			"1:\t"user_lb("%0", "0(%2)")"\n"    \
 115			"2:\t"user_lbu("$1", "1(%2)")"\n\t" \
 116			"sll\t%0, 0x8\n\t"                  \
 117			"or\t%0, $1\n\t"                    \
 118			"li\t%1, 0\n"                       \
 119			"3:\t.set\tat\n\t"                  \
 120			".insn\n\t"                         \
 121			".section\t.fixup,\"ax\"\n\t"       \
 122			"4:\tli\t%1, %3\n\t"                \
 123			"j\t3b\n\t"                         \
 124			".previous\n\t"                     \
 125			".section\t__ex_table,\"a\"\n\t"    \
 126			STR(PTR)"\t1b, 4b\n\t"              \
 127			STR(PTR)"\t2b, 4b\n\t"              \
 128			".previous"                         \
 129			: "=&r" (value), "=r" (res)         \
 130			: "r" (addr), "i" (-EFAULT));
 131
 132#define     LoadW(addr, value, res)   \
 133		__asm__ __volatile__ (                      \
 134			"1:\t"user_lwl("%0", "(%2)")"\n"    \
 135			"2:\t"user_lwr("%0", "3(%2)")"\n\t" \
 136			"li\t%1, 0\n"                       \
 137			"3:\n\t"                            \
 138			".insn\n\t"                         \
 139			".section\t.fixup,\"ax\"\n\t"       \
 140			"4:\tli\t%1, %3\n\t"                \
 141			"j\t3b\n\t"                         \
 142			".previous\n\t"                     \
 143			".section\t__ex_table,\"a\"\n\t"    \
 144			STR(PTR)"\t1b, 4b\n\t"              \
 145			STR(PTR)"\t2b, 4b\n\t"              \
 146			".previous"                         \
 147			: "=&r" (value), "=r" (res)         \
 148			: "r" (addr), "i" (-EFAULT));
 149
 150#define     LoadHWU(addr, value, res) \
 151		__asm__ __volatile__ (                      \
 152			".set\tnoat\n"                      \
 153			"1:\t"user_lbu("%0", "0(%2)")"\n"   \
 154			"2:\t"user_lbu("$1", "1(%2)")"\n\t" \
 155			"sll\t%0, 0x8\n\t"                  \
 156			"or\t%0, $1\n\t"                    \
 157			"li\t%1, 0\n"                       \
 158			"3:\n\t"                            \
 159			".insn\n\t"                         \
 160			".set\tat\n\t"                      \
 161			".section\t.fixup,\"ax\"\n\t"       \
 162			"4:\tli\t%1, %3\n\t"                \
 163			"j\t3b\n\t"                         \
 164			".previous\n\t"                     \
 165			".section\t__ex_table,\"a\"\n\t"    \
 166			STR(PTR)"\t1b, 4b\n\t"              \
 167			STR(PTR)"\t2b, 4b\n\t"              \
 168			".previous"                         \
 169			: "=&r" (value), "=r" (res)         \
 170			: "r" (addr), "i" (-EFAULT));
 171
 172#define     LoadWU(addr, value, res)  \
 173		__asm__ __volatile__ (                      \
 174			"1:\t"user_lwl("%0", "(%2)")"\n"    \
 175			"2:\t"user_lwr("%0", "3(%2)")"\n\t" \
 176			"dsll\t%0, %0, 32\n\t"              \
 177			"dsrl\t%0, %0, 32\n\t"              \
 178			"li\t%1, 0\n"                       \
 179			"3:\n\t"                            \
 180			".insn\n\t"                         \
 181			"\t.section\t.fixup,\"ax\"\n\t"     \
 182			"4:\tli\t%1, %3\n\t"                \
 183			"j\t3b\n\t"                         \
 184			".previous\n\t"                     \
 185			".section\t__ex_table,\"a\"\n\t"    \
 186			STR(PTR)"\t1b, 4b\n\t"              \
 187			STR(PTR)"\t2b, 4b\n\t"              \
 188			".previous"                         \
 189			: "=&r" (value), "=r" (res)         \
 190			: "r" (addr), "i" (-EFAULT));
 191
 192#define     LoadDW(addr, value, res)  \
 193		__asm__ __volatile__ (                      \
 194			"1:\tldl\t%0, (%2)\n"               \
 195			"2:\tldr\t%0, 7(%2)\n\t"            \
 196			"li\t%1, 0\n"                       \
 197			"3:\n\t"                            \
 198			".insn\n\t"                         \
 199			"\t.section\t.fixup,\"ax\"\n\t"     \
 200			"4:\tli\t%1, %3\n\t"                \
 201			"j\t3b\n\t"                         \
 202			".previous\n\t"                     \
 203			".section\t__ex_table,\"a\"\n\t"    \
 204			STR(PTR)"\t1b, 4b\n\t"              \
 205			STR(PTR)"\t2b, 4b\n\t"              \
 206			".previous"                         \
 207			: "=&r" (value), "=r" (res)         \
 208			: "r" (addr), "i" (-EFAULT));
 209
 210#define     StoreHW(addr, value, res) \
 211		__asm__ __volatile__ (                      \
 212			".set\tnoat\n"                      \
 213			"1:\t"user_sb("%1", "1(%2)")"\n"    \
 214			"srl\t$1, %1, 0x8\n"                \
 215			"2:\t"user_sb("$1", "0(%2)")"\n"    \
 216			".set\tat\n\t"                      \
 217			"li\t%0, 0\n"                       \
 218			"3:\n\t"                            \
 219			".insn\n\t"                         \
 220			".section\t.fixup,\"ax\"\n\t"       \
 221			"4:\tli\t%0, %3\n\t"                \
 222			"j\t3b\n\t"                         \
 223			".previous\n\t"                     \
 224			".section\t__ex_table,\"a\"\n\t"    \
 225			STR(PTR)"\t1b, 4b\n\t"              \
 226			STR(PTR)"\t2b, 4b\n\t"              \
 227			".previous"                         \
 228			: "=r" (res)                        \
 229			: "r" (value), "r" (addr), "i" (-EFAULT));
 230
 231#define     StoreW(addr, value, res)  \
 232		__asm__ __volatile__ (                      \
 233			"1:\t"user_swl("%1", "(%2)")"\n"    \
 234			"2:\t"user_swr("%1", "3(%2)")"\n\t" \
 235			"li\t%0, 0\n"                       \
 236			"3:\n\t"                            \
 237			".insn\n\t"                         \
 238			".section\t.fixup,\"ax\"\n\t"       \
 239			"4:\tli\t%0, %3\n\t"                \
 240			"j\t3b\n\t"                         \
 241			".previous\n\t"                     \
 242			".section\t__ex_table,\"a\"\n\t"    \
 243			STR(PTR)"\t1b, 4b\n\t"              \
 244			STR(PTR)"\t2b, 4b\n\t"              \
 245			".previous"                         \
 246		: "=r" (res)                                \
 247		: "r" (value), "r" (addr), "i" (-EFAULT));
 248
 249#define     StoreDW(addr, value, res) \
 250		__asm__ __volatile__ (                      \
 251			"1:\tsdl\t%1,(%2)\n"                \
 252			"2:\tsdr\t%1, 7(%2)\n\t"            \
 253			"li\t%0, 0\n"                       \
 254			"3:\n\t"                            \
 255			".insn\n\t"                         \
 256			".section\t.fixup,\"ax\"\n\t"       \
 257			"4:\tli\t%0, %3\n\t"                \
 258			"j\t3b\n\t"                         \
 259			".previous\n\t"                     \
 260			".section\t__ex_table,\"a\"\n\t"    \
 261			STR(PTR)"\t1b, 4b\n\t"              \
 262			STR(PTR)"\t2b, 4b\n\t"              \
 263			".previous"                         \
 264		: "=r" (res)                                \
 265		: "r" (value), "r" (addr), "i" (-EFAULT));
 266#endif
 267
 268#ifdef __LITTLE_ENDIAN
 269#define     LoadHW(addr, value, res)  \
 270		__asm__ __volatile__ (".set\tnoat\n"        \
 271			"1:\t"user_lb("%0", "1(%2)")"\n"    \
 272			"2:\t"user_lbu("$1", "0(%2)")"\n\t" \
 273			"sll\t%0, 0x8\n\t"                  \
 274			"or\t%0, $1\n\t"                    \
 275			"li\t%1, 0\n"                       \
 276			"3:\t.set\tat\n\t"                  \
 277			".insn\n\t"                         \
 278			".section\t.fixup,\"ax\"\n\t"       \
 279			"4:\tli\t%1, %3\n\t"                \
 280			"j\t3b\n\t"                         \
 281			".previous\n\t"                     \
 282			".section\t__ex_table,\"a\"\n\t"    \
 283			STR(PTR)"\t1b, 4b\n\t"              \
 284			STR(PTR)"\t2b, 4b\n\t"              \
 285			".previous"                         \
 286			: "=&r" (value), "=r" (res)         \
 287			: "r" (addr), "i" (-EFAULT));
 288
 289#define     LoadW(addr, value, res)   \
 290		__asm__ __volatile__ (                      \
 291			"1:\t"user_lwl("%0", "3(%2)")"\n"   \
 292			"2:\t"user_lwr("%0", "(%2)")"\n\t"  \
 293			"li\t%1, 0\n"                       \
 294			"3:\n\t"                            \
 295			".insn\n\t"                         \
 296			".section\t.fixup,\"ax\"\n\t"       \
 297			"4:\tli\t%1, %3\n\t"                \
 298			"j\t3b\n\t"                         \
 299			".previous\n\t"                     \
 300			".section\t__ex_table,\"a\"\n\t"    \
 301			STR(PTR)"\t1b, 4b\n\t"              \
 302			STR(PTR)"\t2b, 4b\n\t"              \
 303			".previous"                         \
 304			: "=&r" (value), "=r" (res)         \
 305			: "r" (addr), "i" (-EFAULT));
 306
 307#define     LoadHWU(addr, value, res) \
 308		__asm__ __volatile__ (                      \
 309			".set\tnoat\n"                      \
 310			"1:\t"user_lbu("%0", "1(%2)")"\n"   \
 311			"2:\t"user_lbu("$1", "0(%2)")"\n\t" \
 312			"sll\t%0, 0x8\n\t"                  \
 313			"or\t%0, $1\n\t"                    \
 314			"li\t%1, 0\n"                       \
 315			"3:\n\t"                            \
 316			".insn\n\t"                         \
 317			".set\tat\n\t"                      \
 318			".section\t.fixup,\"ax\"\n\t"       \
 319			"4:\tli\t%1, %3\n\t"                \
 320			"j\t3b\n\t"                         \
 321			".previous\n\t"                     \
 322			".section\t__ex_table,\"a\"\n\t"    \
 323			STR(PTR)"\t1b, 4b\n\t"              \
 324			STR(PTR)"\t2b, 4b\n\t"              \
 325			".previous"                         \
 326			: "=&r" (value), "=r" (res)         \
 327			: "r" (addr), "i" (-EFAULT));
 328
 329#define     LoadWU(addr, value, res)  \
 330		__asm__ __volatile__ (                      \
 331			"1:\t"user_lwl("%0", "3(%2)")"\n"   \
 332			"2:\t"user_lwr("%0", "(%2)")"\n\t"  \
 333			"dsll\t%0, %0, 32\n\t"              \
 334			"dsrl\t%0, %0, 32\n\t"              \
 335			"li\t%1, 0\n"                       \
 336			"3:\n\t"                            \
 337			".insn\n\t"                         \
 338			"\t.section\t.fixup,\"ax\"\n\t"     \
 339			"4:\tli\t%1, %3\n\t"                \
 340			"j\t3b\n\t"                         \
 341			".previous\n\t"                     \
 342			".section\t__ex_table,\"a\"\n\t"    \
 343			STR(PTR)"\t1b, 4b\n\t"              \
 344			STR(PTR)"\t2b, 4b\n\t"              \
 345			".previous"                         \
 346			: "=&r" (value), "=r" (res)         \
 347			: "r" (addr), "i" (-EFAULT));
 348
 349#define     LoadDW(addr, value, res)  \
 350		__asm__ __volatile__ (                      \
 351			"1:\tldl\t%0, 7(%2)\n"              \
 352			"2:\tldr\t%0, (%2)\n\t"             \
 353			"li\t%1, 0\n"                       \
 354			"3:\n\t"                            \
 355			".insn\n\t"                         \
 356			"\t.section\t.fixup,\"ax\"\n\t"     \
 357			"4:\tli\t%1, %3\n\t"                \
 358			"j\t3b\n\t"                         \
 359			".previous\n\t"                     \
 360			".section\t__ex_table,\"a\"\n\t"    \
 361			STR(PTR)"\t1b, 4b\n\t"              \
 362			STR(PTR)"\t2b, 4b\n\t"              \
 363			".previous"                         \
 364			: "=&r" (value), "=r" (res)         \
 365			: "r" (addr), "i" (-EFAULT));
 366
 367#define     StoreHW(addr, value, res) \
 368		__asm__ __volatile__ (                      \
 369			".set\tnoat\n"                      \
 370			"1:\t"user_sb("%1", "0(%2)")"\n"    \
 371			"srl\t$1,%1, 0x8\n"                 \
 372			"2:\t"user_sb("$1", "1(%2)")"\n"    \
 373			".set\tat\n\t"                      \
 374			"li\t%0, 0\n"                       \
 375			"3:\n\t"                            \
 376			".insn\n\t"                         \
 377			".section\t.fixup,\"ax\"\n\t"       \
 378			"4:\tli\t%0, %3\n\t"                \
 379			"j\t3b\n\t"                         \
 380			".previous\n\t"                     \
 381			".section\t__ex_table,\"a\"\n\t"    \
 382			STR(PTR)"\t1b, 4b\n\t"              \
 383			STR(PTR)"\t2b, 4b\n\t"              \
 384			".previous"                         \
 385			: "=r" (res)                        \
 386			: "r" (value), "r" (addr), "i" (-EFAULT));
 387
 388#define     StoreW(addr, value, res)  \
 389		__asm__ __volatile__ (                      \
 390			"1:\t"user_swl("%1", "3(%2)")"\n"   \
 391			"2:\t"user_swr("%1", "(%2)")"\n\t"  \
 392			"li\t%0, 0\n"                       \
 393			"3:\n\t"                            \
 394			".insn\n\t"                         \
 395			".section\t.fixup,\"ax\"\n\t"       \
 396			"4:\tli\t%0, %3\n\t"                \
 397			"j\t3b\n\t"                         \
 398			".previous\n\t"                     \
 399			".section\t__ex_table,\"a\"\n\t"    \
 400			STR(PTR)"\t1b, 4b\n\t"              \
 401			STR(PTR)"\t2b, 4b\n\t"              \
 402			".previous"                         \
 403		: "=r" (res)                                \
 404		: "r" (value), "r" (addr), "i" (-EFAULT));
 405
 406#define     StoreDW(addr, value, res) \
 407		__asm__ __volatile__ (                      \
 408			"1:\tsdl\t%1, 7(%2)\n"              \
 409			"2:\tsdr\t%1, (%2)\n\t"             \
 410			"li\t%0, 0\n"                       \
 411			"3:\n\t"                            \
 412			".insn\n\t"                         \
 413			".section\t.fixup,\"ax\"\n\t"       \
 414			"4:\tli\t%0, %3\n\t"                \
 415			"j\t3b\n\t"                         \
 416			".previous\n\t"                     \
 417			".section\t__ex_table,\"a\"\n\t"    \
 418			STR(PTR)"\t1b, 4b\n\t"              \
 419			STR(PTR)"\t2b, 4b\n\t"              \
 420			".previous"                         \
 421		: "=r" (res)                                \
 422		: "r" (value), "r" (addr), "i" (-EFAULT));
 423#endif
 424
 425static void emulate_load_store_insn(struct pt_regs *regs,
 426	void __user *addr, unsigned int __user *pc)
 427{
 
 428	union mips_instruction insn;
 429	unsigned long value;
 430	unsigned int res;
 431	unsigned long origpc;
 432	unsigned long orig31;
 433	void __user *fault_addr = NULL;
 434#ifdef	CONFIG_EVA
 435	mm_segment_t seg;
 436#endif
 437	origpc = (unsigned long)pc;
 438	orig31 = regs->regs[31];
 439
 440	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 441
 442	/*
 443	 * This load never faults.
 444	 */
 445	__get_user(insn.word, pc);
 446
 447	switch (insn.i_format.opcode) {
 448		/*
 449		 * These are instructions that a compiler doesn't generate.  We
 450		 * can assume therefore that the code is MIPS-aware and
 451		 * really buggy.  Emulating these instructions would break the
 452		 * semantics anyway.
 453		 */
 454	case ll_op:
 455	case lld_op:
 456	case sc_op:
 457	case scd_op:
 458
 459		/*
 460		 * For these instructions the only way to create an address
 461		 * error is an attempted access to kernel/supervisor address
 462		 * space.
 463		 */
 464	case ldl_op:
 465	case ldr_op:
 466	case lwl_op:
 467	case lwr_op:
 468	case sdl_op:
 469	case sdr_op:
 470	case swl_op:
 471	case swr_op:
 472	case lb_op:
 473	case lbu_op:
 474	case sb_op:
 475		goto sigbus;
 476
 477		/*
 478		 * The remaining opcodes are the ones that are really of
 479		 * interest.
 480		 */
 481#ifdef CONFIG_EVA
 482	case spec3_op:
 483		/*
 484		 * we can land here only from kernel accessing user memory,
 485		 * so we need to "switch" the address limit to user space, so
 486		 * address check can work properly.
 487		 */
 488		seg = get_fs();
 489		set_fs(USER_DS);
 490		switch (insn.spec3_format.func) {
 491		case lhe_op:
 492			if (!access_ok(VERIFY_READ, addr, 2)) {
 493				set_fs(seg);
 494				goto sigbus;
 495			}
 496			LoadHW(addr, value, res);
 497			if (res) {
 498				set_fs(seg);
 499				goto fault;
 500			}
 501			compute_return_epc(regs);
 502			regs->regs[insn.spec3_format.rt] = value;
 503			break;
 504		case lwe_op:
 505			if (!access_ok(VERIFY_READ, addr, 4)) {
 506				set_fs(seg);
 507				goto sigbus;
 508			}
 509				LoadW(addr, value, res);
 510			if (res) {
 511				set_fs(seg);
 512				goto fault;
 
 
 
 
 
 
 
 
 
 
 
 
 
 513			}
 514			compute_return_epc(regs);
 515			regs->regs[insn.spec3_format.rt] = value;
 516			break;
 517		case lhue_op:
 518			if (!access_ok(VERIFY_READ, addr, 2)) {
 519				set_fs(seg);
 520				goto sigbus;
 521			}
 522			LoadHWU(addr, value, res);
 523			if (res) {
 524				set_fs(seg);
 525				goto fault;
 526			}
 527			compute_return_epc(regs);
 528			regs->regs[insn.spec3_format.rt] = value;
 529			break;
 530		case she_op:
 531			if (!access_ok(VERIFY_WRITE, addr, 2)) {
 532				set_fs(seg);
 533				goto sigbus;
 534			}
 535			compute_return_epc(regs);
 536			value = regs->regs[insn.spec3_format.rt];
 537			StoreHW(addr, value, res);
 538			if (res) {
 539				set_fs(seg);
 540				goto fault;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541			}
 542			break;
 543		case swe_op:
 544			if (!access_ok(VERIFY_WRITE, addr, 4)) {
 545				set_fs(seg);
 546				goto sigbus;
 547			}
 548			compute_return_epc(regs);
 549			value = regs->regs[insn.spec3_format.rt];
 550			StoreW(addr, value, res);
 551			if (res) {
 552				set_fs(seg);
 553				goto fault;
 554			}
 555			break;
 556		default:
 557			set_fs(seg);
 558			goto sigill;
 559		}
 560		set_fs(seg);
 561		break;
 562#endif
 563	case lh_op:
 564		if (!access_ok(VERIFY_READ, addr, 2))
 565			goto sigbus;
 566
 567		LoadHW(addr, value, res);
 
 
 
 
 
 
 
 
 568		if (res)
 569			goto fault;
 570		compute_return_epc(regs);
 571		regs->regs[insn.i_format.rt] = value;
 572		break;
 573
 574	case lw_op:
 575		if (!access_ok(VERIFY_READ, addr, 4))
 576			goto sigbus;
 577
 578		LoadW(addr, value, res);
 
 
 
 
 
 
 
 
 579		if (res)
 580			goto fault;
 581		compute_return_epc(regs);
 582		regs->regs[insn.i_format.rt] = value;
 583		break;
 584
 585	case lhu_op:
 586		if (!access_ok(VERIFY_READ, addr, 2))
 587			goto sigbus;
 588
 589		LoadHWU(addr, value, res);
 
 
 
 
 
 
 
 
 590		if (res)
 591			goto fault;
 592		compute_return_epc(regs);
 593		regs->regs[insn.i_format.rt] = value;
 594		break;
 595
 596	case lwu_op:
 597#ifdef CONFIG_64BIT
 598		/*
 599		 * A 32-bit kernel might be running on a 64-bit processor.  But
 600		 * if we're on a 32-bit processor and an i-cache incoherency
 601		 * or race makes us see a 64-bit instruction here the sdl/sdr
 602		 * would blow up, so for now we don't handle unaligned 64-bit
 603		 * instructions on 32-bit kernels.
 604		 */
 605		if (!access_ok(VERIFY_READ, addr, 4))
 606			goto sigbus;
 607
 608		LoadWU(addr, value, res);
 609		if (res)
 610			goto fault;
 611		compute_return_epc(regs);
 612		regs->regs[insn.i_format.rt] = value;
 613		break;
 614#endif /* CONFIG_64BIT */
 615
 616		/* Cannot handle 64-bit instructions in 32-bit kernel */
 617		goto sigill;
 618
 619	case ld_op:
 620#ifdef CONFIG_64BIT
 621		/*
 622		 * A 32-bit kernel might be running on a 64-bit processor.  But
 623		 * if we're on a 32-bit processor and an i-cache incoherency
 624		 * or race makes us see a 64-bit instruction here the sdl/sdr
 625		 * would blow up, so for now we don't handle unaligned 64-bit
 626		 * instructions on 32-bit kernels.
 627		 */
 628		if (!access_ok(VERIFY_READ, addr, 8))
 629			goto sigbus;
 630
 631		LoadDW(addr, value, res);
 632		if (res)
 633			goto fault;
 634		compute_return_epc(regs);
 635		regs->regs[insn.i_format.rt] = value;
 636		break;
 637#endif /* CONFIG_64BIT */
 638
 639		/* Cannot handle 64-bit instructions in 32-bit kernel */
 640		goto sigill;
 641
 642	case sh_op:
 643		if (!access_ok(VERIFY_WRITE, addr, 2))
 644			goto sigbus;
 645
 646		compute_return_epc(regs);
 647		value = regs->regs[insn.i_format.rt];
 648		StoreHW(addr, value, res);
 
 
 
 
 
 
 
 
 
 649		if (res)
 650			goto fault;
 651		break;
 652
 653	case sw_op:
 654		if (!access_ok(VERIFY_WRITE, addr, 4))
 655			goto sigbus;
 656
 657		compute_return_epc(regs);
 658		value = regs->regs[insn.i_format.rt];
 659		StoreW(addr, value, res);
 
 
 
 
 
 
 
 
 
 660		if (res)
 661			goto fault;
 662		break;
 663
 664	case sd_op:
 665#ifdef CONFIG_64BIT
 666		/*
 667		 * A 32-bit kernel might be running on a 64-bit processor.  But
 668		 * if we're on a 32-bit processor and an i-cache incoherency
 669		 * or race makes us see a 64-bit instruction here the sdl/sdr
 670		 * would blow up, so for now we don't handle unaligned 64-bit
 671		 * instructions on 32-bit kernels.
 672		 */
 673		if (!access_ok(VERIFY_WRITE, addr, 8))
 674			goto sigbus;
 675
 676		compute_return_epc(regs);
 677		value = regs->regs[insn.i_format.rt];
 678		StoreDW(addr, value, res);
 679		if (res)
 680			goto fault;
 681		break;
 682#endif /* CONFIG_64BIT */
 683
 684		/* Cannot handle 64-bit instructions in 32-bit kernel */
 685		goto sigill;
 686
 
 
 687	case lwc1_op:
 688	case ldc1_op:
 689	case swc1_op:
 690	case sdc1_op:
 
 
 
 691		die_if_kernel("Unaligned FP access in kernel code", regs);
 692		BUG_ON(!used_math());
 693		BUG_ON(!is_fpu_owner());
 694
 695		lose_fpu(1);	/* Save FPU state for the emulator. */
 696		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 697					       &fault_addr);
 698		own_fpu(1);	/* Restore FPU state. */
 699
 700		/* Signal if something went wrong. */
 701		process_fpemu_return(res, fault_addr);
 702
 703		if (res == 0)
 704			break;
 705		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706
 
 707	/*
 708	 * COP2 is available to implementor for application specific use.
 709	 * It's up to applications to register a notifier chain and do
 710	 * whatever they have to do, including possible sending of signals.
 
 
 711	 */
 712	case lwc2_op:
 713		cu2_notifier_call_chain(CU2_LWC2_OP, regs);
 714		break;
 715
 716	case ldc2_op:
 717		cu2_notifier_call_chain(CU2_LDC2_OP, regs);
 718		break;
 719
 720	case swc2_op:
 721		cu2_notifier_call_chain(CU2_SWC2_OP, regs);
 722		break;
 723
 724	case sdc2_op:
 725		cu2_notifier_call_chain(CU2_SDC2_OP, regs);
 726		break;
 727
 728	default:
 729		/*
 730		 * Pheeee...  We encountered an yet unknown instruction or
 731		 * cache coherence problem.  Die sucker, die ...
 732		 */
 733		goto sigill;
 734	}
 735
 736#ifdef CONFIG_DEBUG_FS
 737	unaligned_instructions++;
 738#endif
 739
 740	return;
 741
 742fault:
 743	/* roll back jump/branch */
 744	regs->cp0_epc = origpc;
 745	regs->regs[31] = orig31;
 746	/* Did we have an exception handler installed? */
 747	if (fixup_exception(regs))
 748		return;
 749
 750	die_if_kernel("Unhandled kernel unaligned access", regs);
 751	force_sig(SIGSEGV, current);
 752
 753	return;
 754
 755sigbus:
 756	die_if_kernel("Unhandled kernel unaligned access", regs);
 757	force_sig(SIGBUS, current);
 758
 759	return;
 760
 761sigill:
 762	die_if_kernel
 763	    ("Unhandled kernel unaligned access or invalid instruction", regs);
 764	force_sig(SIGILL, current);
 765}
 766
 767/* Recode table from 16-bit register notation to 32-bit GPR. */
 768const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
 769
 770/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
 771const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
 772
 773static void emulate_load_store_microMIPS(struct pt_regs *regs,
 774					 void __user *addr)
 775{
 776	unsigned long value;
 777	unsigned int res;
 778	int i;
 779	unsigned int reg = 0, rvar;
 780	unsigned long orig31;
 781	u16 __user *pc16;
 782	u16 halfword;
 783	unsigned int word;
 784	unsigned long origpc, contpc;
 785	union mips_instruction insn;
 786	struct mm_decoded_insn mminsn;
 787	void __user *fault_addr = NULL;
 788
 789	origpc = regs->cp0_epc;
 790	orig31 = regs->regs[31];
 791
 792	mminsn.micro_mips_mode = 1;
 793
 794	/*
 795	 * This load never faults.
 796	 */
 797	pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
 798	__get_user(halfword, pc16);
 799	pc16++;
 800	contpc = regs->cp0_epc + 2;
 801	word = ((unsigned int)halfword << 16);
 802	mminsn.pc_inc = 2;
 803
 804	if (!mm_insn_16bit(halfword)) {
 805		__get_user(halfword, pc16);
 806		pc16++;
 807		contpc = regs->cp0_epc + 4;
 808		mminsn.pc_inc = 4;
 809		word |= halfword;
 810	}
 811	mminsn.insn = word;
 812
 813	if (get_user(halfword, pc16))
 814		goto fault;
 815	mminsn.next_pc_inc = 2;
 816	word = ((unsigned int)halfword << 16);
 817
 818	if (!mm_insn_16bit(halfword)) {
 819		pc16++;
 820		if (get_user(halfword, pc16))
 821			goto fault;
 822		mminsn.next_pc_inc = 4;
 823		word |= halfword;
 824	}
 825	mminsn.next_insn = word;
 826
 827	insn = (union mips_instruction)(mminsn.insn);
 828	if (mm_isBranchInstr(regs, mminsn, &contpc))
 829		insn = (union mips_instruction)(mminsn.next_insn);
 830
 831	/*  Parse instruction to find what to do */
 832
 833	switch (insn.mm_i_format.opcode) {
 834
 835	case mm_pool32a_op:
 836		switch (insn.mm_x_format.func) {
 837		case mm_lwxs_op:
 838			reg = insn.mm_x_format.rd;
 839			goto loadW;
 840		}
 841
 842		goto sigbus;
 843
 844	case mm_pool32b_op:
 845		switch (insn.mm_m_format.func) {
 846		case mm_lwp_func:
 847			reg = insn.mm_m_format.rd;
 848			if (reg == 31)
 849				goto sigbus;
 850
 851			if (!access_ok(VERIFY_READ, addr, 8))
 852				goto sigbus;
 853
 854			LoadW(addr, value, res);
 855			if (res)
 856				goto fault;
 857			regs->regs[reg] = value;
 858			addr += 4;
 859			LoadW(addr, value, res);
 860			if (res)
 861				goto fault;
 862			regs->regs[reg + 1] = value;
 863			goto success;
 864
 865		case mm_swp_func:
 866			reg = insn.mm_m_format.rd;
 867			if (reg == 31)
 868				goto sigbus;
 869
 870			if (!access_ok(VERIFY_WRITE, addr, 8))
 871				goto sigbus;
 872
 873			value = regs->regs[reg];
 874			StoreW(addr, value, res);
 875			if (res)
 876				goto fault;
 877			addr += 4;
 878			value = regs->regs[reg + 1];
 879			StoreW(addr, value, res);
 880			if (res)
 881				goto fault;
 882			goto success;
 883
 884		case mm_ldp_func:
 885#ifdef CONFIG_64BIT
 886			reg = insn.mm_m_format.rd;
 887			if (reg == 31)
 888				goto sigbus;
 889
 890			if (!access_ok(VERIFY_READ, addr, 16))
 891				goto sigbus;
 892
 893			LoadDW(addr, value, res);
 894			if (res)
 895				goto fault;
 896			regs->regs[reg] = value;
 897			addr += 8;
 898			LoadDW(addr, value, res);
 899			if (res)
 900				goto fault;
 901			regs->regs[reg + 1] = value;
 902			goto success;
 903#endif /* CONFIG_64BIT */
 904
 905			goto sigill;
 906
 907		case mm_sdp_func:
 908#ifdef CONFIG_64BIT
 909			reg = insn.mm_m_format.rd;
 910			if (reg == 31)
 911				goto sigbus;
 912
 913			if (!access_ok(VERIFY_WRITE, addr, 16))
 914				goto sigbus;
 915
 916			value = regs->regs[reg];
 917			StoreDW(addr, value, res);
 918			if (res)
 919				goto fault;
 920			addr += 8;
 921			value = regs->regs[reg + 1];
 922			StoreDW(addr, value, res);
 923			if (res)
 924				goto fault;
 925			goto success;
 926#endif /* CONFIG_64BIT */
 927
 928			goto sigill;
 929
 930		case mm_lwm32_func:
 931			reg = insn.mm_m_format.rd;
 932			rvar = reg & 0xf;
 933			if ((rvar > 9) || !reg)
 934				goto sigill;
 935			if (reg & 0x10) {
 936				if (!access_ok
 937				    (VERIFY_READ, addr, 4 * (rvar + 1)))
 938					goto sigbus;
 939			} else {
 940				if (!access_ok(VERIFY_READ, addr, 4 * rvar))
 941					goto sigbus;
 942			}
 943			if (rvar == 9)
 944				rvar = 8;
 945			for (i = 16; rvar; rvar--, i++) {
 946				LoadW(addr, value, res);
 947				if (res)
 948					goto fault;
 949				addr += 4;
 950				regs->regs[i] = value;
 951			}
 952			if ((reg & 0xf) == 9) {
 953				LoadW(addr, value, res);
 954				if (res)
 955					goto fault;
 956				addr += 4;
 957				regs->regs[30] = value;
 958			}
 959			if (reg & 0x10) {
 960				LoadW(addr, value, res);
 961				if (res)
 962					goto fault;
 963				regs->regs[31] = value;
 964			}
 965			goto success;
 966
 967		case mm_swm32_func:
 968			reg = insn.mm_m_format.rd;
 969			rvar = reg & 0xf;
 970			if ((rvar > 9) || !reg)
 971				goto sigill;
 972			if (reg & 0x10) {
 973				if (!access_ok
 974				    (VERIFY_WRITE, addr, 4 * (rvar + 1)))
 975					goto sigbus;
 976			} else {
 977				if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
 978					goto sigbus;
 979			}
 980			if (rvar == 9)
 981				rvar = 8;
 982			for (i = 16; rvar; rvar--, i++) {
 983				value = regs->regs[i];
 984				StoreW(addr, value, res);
 985				if (res)
 986					goto fault;
 987				addr += 4;
 988			}
 989			if ((reg & 0xf) == 9) {
 990				value = regs->regs[30];
 991				StoreW(addr, value, res);
 992				if (res)
 993					goto fault;
 994				addr += 4;
 995			}
 996			if (reg & 0x10) {
 997				value = regs->regs[31];
 998				StoreW(addr, value, res);
 999				if (res)
1000					goto fault;
1001			}
1002			goto success;
1003
1004		case mm_ldm_func:
1005#ifdef CONFIG_64BIT
1006			reg = insn.mm_m_format.rd;
1007			rvar = reg & 0xf;
1008			if ((rvar > 9) || !reg)
1009				goto sigill;
1010			if (reg & 0x10) {
1011				if (!access_ok
1012				    (VERIFY_READ, addr, 8 * (rvar + 1)))
1013					goto sigbus;
1014			} else {
1015				if (!access_ok(VERIFY_READ, addr, 8 * rvar))
1016					goto sigbus;
1017			}
1018			if (rvar == 9)
1019				rvar = 8;
1020
1021			for (i = 16; rvar; rvar--, i++) {
1022				LoadDW(addr, value, res);
1023				if (res)
1024					goto fault;
1025				addr += 4;
1026				regs->regs[i] = value;
1027			}
1028			if ((reg & 0xf) == 9) {
1029				LoadDW(addr, value, res);
1030				if (res)
1031					goto fault;
1032				addr += 8;
1033				regs->regs[30] = value;
1034			}
1035			if (reg & 0x10) {
1036				LoadDW(addr, value, res);
1037				if (res)
1038					goto fault;
1039				regs->regs[31] = value;
1040			}
1041			goto success;
1042#endif /* CONFIG_64BIT */
1043
1044			goto sigill;
1045
1046		case mm_sdm_func:
1047#ifdef CONFIG_64BIT
1048			reg = insn.mm_m_format.rd;
1049			rvar = reg & 0xf;
1050			if ((rvar > 9) || !reg)
1051				goto sigill;
1052			if (reg & 0x10) {
1053				if (!access_ok
1054				    (VERIFY_WRITE, addr, 8 * (rvar + 1)))
1055					goto sigbus;
1056			} else {
1057				if (!access_ok(VERIFY_WRITE, addr, 8 * rvar))
1058					goto sigbus;
1059			}
1060			if (rvar == 9)
1061				rvar = 8;
1062
1063			for (i = 16; rvar; rvar--, i++) {
1064				value = regs->regs[i];
1065				StoreDW(addr, value, res);
1066				if (res)
1067					goto fault;
1068				addr += 8;
1069			}
1070			if ((reg & 0xf) == 9) {
1071				value = regs->regs[30];
1072				StoreDW(addr, value, res);
1073				if (res)
1074					goto fault;
1075				addr += 8;
1076			}
1077			if (reg & 0x10) {
1078				value = regs->regs[31];
1079				StoreDW(addr, value, res);
1080				if (res)
1081					goto fault;
1082			}
1083			goto success;
1084#endif /* CONFIG_64BIT */
1085
1086			goto sigill;
1087
1088			/*  LWC2, SWC2, LDC2, SDC2 are not serviced */
1089		}
1090
1091		goto sigbus;
1092
1093	case mm_pool32c_op:
1094		switch (insn.mm_m_format.func) {
1095		case mm_lwu_func:
1096			reg = insn.mm_m_format.rd;
1097			goto loadWU;
1098		}
1099
1100		/*  LL,SC,LLD,SCD are not serviced */
1101		goto sigbus;
1102
 
1103	case mm_pool32f_op:
1104		switch (insn.mm_x_format.func) {
1105		case mm_lwxc1_func:
1106		case mm_swxc1_func:
1107		case mm_ldxc1_func:
1108		case mm_sdxc1_func:
1109			goto fpu_emul;
1110		}
1111
1112		goto sigbus;
1113
1114	case mm_ldc132_op:
1115	case mm_sdc132_op:
1116	case mm_lwc132_op:
1117	case mm_swc132_op:
 
 
1118fpu_emul:
1119		/* roll back jump/branch */
1120		regs->cp0_epc = origpc;
1121		regs->regs[31] = orig31;
1122
1123		die_if_kernel("Unaligned FP access in kernel code", regs);
1124		BUG_ON(!used_math());
1125		BUG_ON(!is_fpu_owner());
1126
1127		lose_fpu(1);	/* save the FPU state for the emulator */
1128		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
1129					       &fault_addr);
1130		own_fpu(1);	/* restore FPU state */
1131
1132		/* If something went wrong, signal */
1133		process_fpemu_return(res, fault_addr);
1134
1135		if (res == 0)
1136			goto success;
1137		return;
 
 
1138
1139	case mm_lh32_op:
1140		reg = insn.mm_i_format.rt;
1141		goto loadHW;
1142
1143	case mm_lhu32_op:
1144		reg = insn.mm_i_format.rt;
1145		goto loadHWU;
1146
1147	case mm_lw32_op:
1148		reg = insn.mm_i_format.rt;
1149		goto loadW;
1150
1151	case mm_sh32_op:
1152		reg = insn.mm_i_format.rt;
1153		goto storeHW;
1154
1155	case mm_sw32_op:
1156		reg = insn.mm_i_format.rt;
1157		goto storeW;
1158
1159	case mm_ld32_op:
1160		reg = insn.mm_i_format.rt;
1161		goto loadDW;
1162
1163	case mm_sd32_op:
1164		reg = insn.mm_i_format.rt;
1165		goto storeDW;
1166
1167	case mm_pool16c_op:
1168		switch (insn.mm16_m_format.func) {
1169		case mm_lwm16_op:
1170			reg = insn.mm16_m_format.rlist;
1171			rvar = reg + 1;
1172			if (!access_ok(VERIFY_READ, addr, 4 * rvar))
1173				goto sigbus;
1174
1175			for (i = 16; rvar; rvar--, i++) {
1176				LoadW(addr, value, res);
1177				if (res)
1178					goto fault;
1179				addr += 4;
1180				regs->regs[i] = value;
1181			}
1182			LoadW(addr, value, res);
1183			if (res)
1184				goto fault;
1185			regs->regs[31] = value;
1186
1187			goto success;
1188
1189		case mm_swm16_op:
1190			reg = insn.mm16_m_format.rlist;
1191			rvar = reg + 1;
1192			if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
1193				goto sigbus;
1194
1195			for (i = 16; rvar; rvar--, i++) {
1196				value = regs->regs[i];
1197				StoreW(addr, value, res);
1198				if (res)
1199					goto fault;
1200				addr += 4;
1201			}
1202			value = regs->regs[31];
1203			StoreW(addr, value, res);
1204			if (res)
1205				goto fault;
1206
1207			goto success;
1208
1209		}
1210
1211		goto sigbus;
1212
1213	case mm_lhu16_op:
1214		reg = reg16to32[insn.mm16_rb_format.rt];
1215		goto loadHWU;
1216
1217	case mm_lw16_op:
1218		reg = reg16to32[insn.mm16_rb_format.rt];
1219		goto loadW;
1220
1221	case mm_sh16_op:
1222		reg = reg16to32st[insn.mm16_rb_format.rt];
1223		goto storeHW;
1224
1225	case mm_sw16_op:
1226		reg = reg16to32st[insn.mm16_rb_format.rt];
1227		goto storeW;
1228
1229	case mm_lwsp16_op:
1230		reg = insn.mm16_r5_format.rt;
1231		goto loadW;
1232
1233	case mm_swsp16_op:
1234		reg = insn.mm16_r5_format.rt;
1235		goto storeW;
1236
1237	case mm_lwgp16_op:
1238		reg = reg16to32[insn.mm16_r3_format.rt];
1239		goto loadW;
1240
1241	default:
1242		goto sigill;
1243	}
1244
1245loadHW:
1246	if (!access_ok(VERIFY_READ, addr, 2))
1247		goto sigbus;
1248
1249	LoadHW(addr, value, res);
1250	if (res)
1251		goto fault;
1252	regs->regs[reg] = value;
1253	goto success;
1254
1255loadHWU:
1256	if (!access_ok(VERIFY_READ, addr, 2))
1257		goto sigbus;
1258
1259	LoadHWU(addr, value, res);
1260	if (res)
1261		goto fault;
1262	regs->regs[reg] = value;
1263	goto success;
1264
1265loadW:
1266	if (!access_ok(VERIFY_READ, addr, 4))
1267		goto sigbus;
1268
1269	LoadW(addr, value, res);
1270	if (res)
1271		goto fault;
1272	regs->regs[reg] = value;
1273	goto success;
1274
1275loadWU:
1276#ifdef CONFIG_64BIT
1277	/*
1278	 * A 32-bit kernel might be running on a 64-bit processor.  But
1279	 * if we're on a 32-bit processor and an i-cache incoherency
1280	 * or race makes us see a 64-bit instruction here the sdl/sdr
1281	 * would blow up, so for now we don't handle unaligned 64-bit
1282	 * instructions on 32-bit kernels.
1283	 */
1284	if (!access_ok(VERIFY_READ, addr, 4))
1285		goto sigbus;
1286
1287	LoadWU(addr, value, res);
1288	if (res)
1289		goto fault;
1290	regs->regs[reg] = value;
1291	goto success;
1292#endif /* CONFIG_64BIT */
1293
1294	/* Cannot handle 64-bit instructions in 32-bit kernel */
1295	goto sigill;
1296
1297loadDW:
1298#ifdef CONFIG_64BIT
1299	/*
1300	 * A 32-bit kernel might be running on a 64-bit processor.  But
1301	 * if we're on a 32-bit processor and an i-cache incoherency
1302	 * or race makes us see a 64-bit instruction here the sdl/sdr
1303	 * would blow up, so for now we don't handle unaligned 64-bit
1304	 * instructions on 32-bit kernels.
1305	 */
1306	if (!access_ok(VERIFY_READ, addr, 8))
1307		goto sigbus;
1308
1309	LoadDW(addr, value, res);
1310	if (res)
1311		goto fault;
1312	regs->regs[reg] = value;
1313	goto success;
1314#endif /* CONFIG_64BIT */
1315
1316	/* Cannot handle 64-bit instructions in 32-bit kernel */
1317	goto sigill;
1318
1319storeHW:
1320	if (!access_ok(VERIFY_WRITE, addr, 2))
1321		goto sigbus;
1322
1323	value = regs->regs[reg];
1324	StoreHW(addr, value, res);
1325	if (res)
1326		goto fault;
1327	goto success;
1328
1329storeW:
1330	if (!access_ok(VERIFY_WRITE, addr, 4))
1331		goto sigbus;
1332
1333	value = regs->regs[reg];
1334	StoreW(addr, value, res);
1335	if (res)
1336		goto fault;
1337	goto success;
1338
1339storeDW:
1340#ifdef CONFIG_64BIT
1341	/*
1342	 * A 32-bit kernel might be running on a 64-bit processor.  But
1343	 * if we're on a 32-bit processor and an i-cache incoherency
1344	 * or race makes us see a 64-bit instruction here the sdl/sdr
1345	 * would blow up, so for now we don't handle unaligned 64-bit
1346	 * instructions on 32-bit kernels.
1347	 */
1348	if (!access_ok(VERIFY_WRITE, addr, 8))
1349		goto sigbus;
1350
1351	value = regs->regs[reg];
1352	StoreDW(addr, value, res);
1353	if (res)
1354		goto fault;
1355	goto success;
1356#endif /* CONFIG_64BIT */
1357
1358	/* Cannot handle 64-bit instructions in 32-bit kernel */
1359	goto sigill;
1360
1361success:
1362	regs->cp0_epc = contpc;	/* advance or branch */
1363
1364#ifdef CONFIG_DEBUG_FS
1365	unaligned_instructions++;
1366#endif
1367	return;
1368
1369fault:
1370	/* roll back jump/branch */
1371	regs->cp0_epc = origpc;
1372	regs->regs[31] = orig31;
1373	/* Did we have an exception handler installed? */
1374	if (fixup_exception(regs))
1375		return;
1376
1377	die_if_kernel("Unhandled kernel unaligned access", regs);
1378	force_sig(SIGSEGV, current);
1379
1380	return;
1381
1382sigbus:
1383	die_if_kernel("Unhandled kernel unaligned access", regs);
1384	force_sig(SIGBUS, current);
1385
1386	return;
1387
1388sigill:
1389	die_if_kernel
1390	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1391	force_sig(SIGILL, current);
1392}
1393
1394static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1395{
1396	unsigned long value;
1397	unsigned int res;
1398	int reg;
1399	unsigned long orig31;
1400	u16 __user *pc16;
1401	unsigned long origpc;
1402	union mips16e_instruction mips16inst, oldinst;
 
 
1403
1404	origpc = regs->cp0_epc;
1405	orig31 = regs->regs[31];
1406	pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1407	/*
1408	 * This load never faults.
1409	 */
1410	__get_user(mips16inst.full, pc16);
1411	oldinst = mips16inst;
1412
1413	/* skip EXTEND instruction */
1414	if (mips16inst.ri.opcode == MIPS16e_extend_op) {
 
1415		pc16++;
1416		__get_user(mips16inst.full, pc16);
1417	} else if (delay_slot(regs)) {
1418		/*  skip jump instructions */
1419		/*  JAL/JALX are 32 bits but have OPCODE in first short int */
1420		if (mips16inst.ri.opcode == MIPS16e_jal_op)
1421			pc16++;
1422		pc16++;
1423		if (get_user(mips16inst.full, pc16))
1424			goto sigbus;
1425	}
1426
1427	switch (mips16inst.ri.opcode) {
 
1428	case MIPS16e_i64_op:	/* I64 or RI64 instruction */
1429		switch (mips16inst.i64.func) {	/* I64/RI64 func field check */
1430		case MIPS16e_ldpc_func:
1431		case MIPS16e_ldsp_func:
1432			reg = reg16to32[mips16inst.ri64.ry];
1433			goto loadDW;
1434
1435		case MIPS16e_sdsp_func:
1436			reg = reg16to32[mips16inst.ri64.ry];
1437			goto writeDW;
1438
1439		case MIPS16e_sdrasp_func:
1440			reg = 29;	/* GPRSP */
1441			goto writeDW;
1442		}
1443
1444		goto sigbus;
1445
1446	case MIPS16e_swsp_op:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447	case MIPS16e_lwpc_op:
 
 
 
1448	case MIPS16e_lwsp_op:
1449		reg = reg16to32[mips16inst.ri.rx];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450		break;
1451
1452	case MIPS16e_i8_op:
1453		if (mips16inst.i8.func != MIPS16e_swrasp_func)
1454			goto sigbus;
1455		reg = 29;	/* GPRSP */
1456		break;
1457
1458	default:
1459		reg = reg16to32[mips16inst.rri.ry];
1460		break;
1461	}
1462
1463	switch (mips16inst.ri.opcode) {
1464
1465	case MIPS16e_lb_op:
1466	case MIPS16e_lbu_op:
1467	case MIPS16e_sb_op:
1468		goto sigbus;
1469
1470	case MIPS16e_lh_op:
1471		if (!access_ok(VERIFY_READ, addr, 2))
1472			goto sigbus;
1473
1474		LoadHW(addr, value, res);
1475		if (res)
1476			goto fault;
1477		MIPS16e_compute_return_epc(regs, &oldinst);
1478		regs->regs[reg] = value;
1479		break;
1480
1481	case MIPS16e_lhu_op:
1482		if (!access_ok(VERIFY_READ, addr, 2))
1483			goto sigbus;
1484
1485		LoadHWU(addr, value, res);
1486		if (res)
1487			goto fault;
1488		MIPS16e_compute_return_epc(regs, &oldinst);
1489		regs->regs[reg] = value;
1490		break;
1491
1492	case MIPS16e_lw_op:
1493	case MIPS16e_lwpc_op:
1494	case MIPS16e_lwsp_op:
1495		if (!access_ok(VERIFY_READ, addr, 4))
1496			goto sigbus;
1497
1498		LoadW(addr, value, res);
1499		if (res)
1500			goto fault;
1501		MIPS16e_compute_return_epc(regs, &oldinst);
1502		regs->regs[reg] = value;
1503		break;
1504
1505	case MIPS16e_lwu_op:
1506#ifdef CONFIG_64BIT
1507		/*
1508		 * A 32-bit kernel might be running on a 64-bit processor.  But
1509		 * if we're on a 32-bit processor and an i-cache incoherency
1510		 * or race makes us see a 64-bit instruction here the sdl/sdr
1511		 * would blow up, so for now we don't handle unaligned 64-bit
1512		 * instructions on 32-bit kernels.
1513		 */
1514		if (!access_ok(VERIFY_READ, addr, 4))
1515			goto sigbus;
1516
1517		LoadWU(addr, value, res);
1518		if (res)
1519			goto fault;
1520		MIPS16e_compute_return_epc(regs, &oldinst);
1521		regs->regs[reg] = value;
1522		break;
1523#endif /* CONFIG_64BIT */
1524
1525		/* Cannot handle 64-bit instructions in 32-bit kernel */
1526		goto sigill;
1527
1528	case MIPS16e_ld_op:
1529loadDW:
1530#ifdef CONFIG_64BIT
1531		/*
1532		 * A 32-bit kernel might be running on a 64-bit processor.  But
1533		 * if we're on a 32-bit processor and an i-cache incoherency
1534		 * or race makes us see a 64-bit instruction here the sdl/sdr
1535		 * would blow up, so for now we don't handle unaligned 64-bit
1536		 * instructions on 32-bit kernels.
1537		 */
1538		if (!access_ok(VERIFY_READ, addr, 8))
1539			goto sigbus;
1540
1541		LoadDW(addr, value, res);
1542		if (res)
1543			goto fault;
1544		MIPS16e_compute_return_epc(regs, &oldinst);
1545		regs->regs[reg] = value;
1546		break;
1547#endif /* CONFIG_64BIT */
1548
1549		/* Cannot handle 64-bit instructions in 32-bit kernel */
1550		goto sigill;
1551
1552	case MIPS16e_sh_op:
1553		if (!access_ok(VERIFY_WRITE, addr, 2))
1554			goto sigbus;
1555
1556		MIPS16e_compute_return_epc(regs, &oldinst);
1557		value = regs->regs[reg];
1558		StoreHW(addr, value, res);
1559		if (res)
1560			goto fault;
1561		break;
1562
1563	case MIPS16e_sw_op:
1564	case MIPS16e_swsp_op:
1565	case MIPS16e_i8_op:	/* actually - MIPS16e_swrasp_func */
1566		if (!access_ok(VERIFY_WRITE, addr, 4))
1567			goto sigbus;
1568
1569		MIPS16e_compute_return_epc(regs, &oldinst);
1570		value = regs->regs[reg];
1571		StoreW(addr, value, res);
1572		if (res)
1573			goto fault;
1574		break;
1575
1576	case MIPS16e_sd_op:
1577writeDW:
1578#ifdef CONFIG_64BIT
1579		/*
1580		 * A 32-bit kernel might be running on a 64-bit processor.  But
1581		 * if we're on a 32-bit processor and an i-cache incoherency
1582		 * or race makes us see a 64-bit instruction here the sdl/sdr
1583		 * would blow up, so for now we don't handle unaligned 64-bit
1584		 * instructions on 32-bit kernels.
1585		 */
1586		if (!access_ok(VERIFY_WRITE, addr, 8))
1587			goto sigbus;
1588
1589		MIPS16e_compute_return_epc(regs, &oldinst);
1590		value = regs->regs[reg];
1591		StoreDW(addr, value, res);
1592		if (res)
1593			goto fault;
1594		break;
1595#endif /* CONFIG_64BIT */
1596
1597		/* Cannot handle 64-bit instructions in 32-bit kernel */
1598		goto sigill;
1599
1600	default:
1601		/*
1602		 * Pheeee...  We encountered an yet unknown instruction or
1603		 * cache coherence problem.  Die sucker, die ...
1604		 */
1605		goto sigill;
1606	}
1607
1608#ifdef CONFIG_DEBUG_FS
1609	unaligned_instructions++;
1610#endif
1611
1612	return;
1613
1614fault:
1615	/* roll back jump/branch */
1616	regs->cp0_epc = origpc;
1617	regs->regs[31] = orig31;
1618	/* Did we have an exception handler installed? */
1619	if (fixup_exception(regs))
1620		return;
1621
1622	die_if_kernel("Unhandled kernel unaligned access", regs);
1623	force_sig(SIGSEGV, current);
1624
1625	return;
1626
1627sigbus:
1628	die_if_kernel("Unhandled kernel unaligned access", regs);
1629	force_sig(SIGBUS, current);
1630
1631	return;
1632
1633sigill:
1634	die_if_kernel
1635	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1636	force_sig(SIGILL, current);
1637}
1638
1639asmlinkage void do_ade(struct pt_regs *regs)
1640{
1641	enum ctx_state prev_state;
1642	unsigned int __user *pc;
1643	mm_segment_t seg;
1644
1645	prev_state = exception_enter();
1646	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1647			1, regs, regs->cp0_badvaddr);
1648	/*
1649	 * Did we catch a fault trying to load an instruction?
1650	 */
1651	if (regs->cp0_badvaddr == regs->cp0_epc)
1652		goto sigbus;
1653
1654	if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1655		goto sigbus;
1656	if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1657		goto sigbus;
1658
1659	/*
1660	 * Do branch emulation only if we didn't forward the exception.
1661	 * This is all so but ugly ...
1662	 */
1663
1664	/*
1665	 * Are we running in microMIPS mode?
1666	 */
1667	if (get_isa16_mode(regs->cp0_epc)) {
1668		/*
1669		 * Did we catch a fault trying to load an instruction in
1670		 * 16-bit mode?
1671		 */
1672		if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1673			goto sigbus;
1674		if (unaligned_action == UNALIGNED_ACTION_SHOW)
1675			show_registers(regs);
1676
1677		if (cpu_has_mmips) {
1678			seg = get_fs();
1679			if (!user_mode(regs))
1680				set_fs(KERNEL_DS);
1681			emulate_load_store_microMIPS(regs,
1682				(void __user *)regs->cp0_badvaddr);
1683			set_fs(seg);
1684
1685			return;
1686		}
1687
1688		if (cpu_has_mips16) {
1689			seg = get_fs();
1690			if (!user_mode(regs))
1691				set_fs(KERNEL_DS);
1692			emulate_load_store_MIPS16e(regs,
1693				(void __user *)regs->cp0_badvaddr);
1694			set_fs(seg);
1695
1696			return;
1697	}
1698
1699		goto sigbus;
1700	}
1701
1702	if (unaligned_action == UNALIGNED_ACTION_SHOW)
1703		show_registers(regs);
1704	pc = (unsigned int __user *)exception_epc(regs);
1705
1706	seg = get_fs();
1707	if (!user_mode(regs))
1708		set_fs(KERNEL_DS);
1709	emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1710	set_fs(seg);
1711
1712	return;
1713
1714sigbus:
1715	die_if_kernel("Kernel unaligned instruction access", regs);
1716	force_sig(SIGBUS, current);
1717
1718	/*
1719	 * XXX On return from the signal handler we should advance the epc
1720	 */
1721	exception_exit(prev_state);
1722}
1723
1724#ifdef CONFIG_DEBUG_FS
1725extern struct dentry *mips_debugfs_dir;
1726static int __init debugfs_unaligned(void)
1727{
1728	struct dentry *d;
1729
1730	if (!mips_debugfs_dir)
1731		return -ENODEV;
1732	d = debugfs_create_u32("unaligned_instructions", S_IRUGO,
1733			       mips_debugfs_dir, &unaligned_instructions);
1734	if (!d)
1735		return -ENOMEM;
1736	d = debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1737			       mips_debugfs_dir, &unaligned_action);
1738	if (!d)
1739		return -ENOMEM;
1740	return 0;
1741}
1742__initcall(debugfs_unaligned);
1743#endif