Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Handle unaligned accesses by emulation.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Copyright (C) 2014 Imagination Technologies Ltd.
  11 *
  12 * This file contains exception handler for address error exception with the
  13 * special capability to execute faulting instructions in software.  The
  14 * handler does not try to handle the case when the program counter points
  15 * to an address not aligned to a word boundary.
  16 *
  17 * Putting data to unaligned addresses is a bad practice even on Intel where
  18 * only the performance is affected.  Much worse is that such code is non-
  19 * portable.  Due to several programs that die on MIPS due to alignment
  20 * problems I decided to implement this handler anyway though I originally
  21 * didn't intend to do this at all for user code.
  22 *
  23 * For now I enable fixing of address errors by default to make life easier.
  24 * I however intend to disable this somewhen in the future when the alignment
  25 * problems with user programs have been fixed.	 For programmers this is the
  26 * right way to go.
  27 *
  28 * Fixing address errors is a per process option.  The option is inherited
  29 * across fork(2) and execve(2) calls.	If you really want to use the
  30 * option in your user programs - I discourage the use of the software
  31 * emulation strongly - use the following code in your userland stuff:
  32 *
  33 * #include <sys/sysmips.h>
  34 *
  35 * ...
  36 * sysmips(MIPS_FIXADE, x);
  37 * ...
  38 *
  39 * The argument x is 0 for disabling software emulation, enabled otherwise.
  40 *
  41 * Below a little program to play around with this feature.
  42 *
  43 * #include <stdio.h>
  44 * #include <sys/sysmips.h>
  45 *
  46 * struct foo {
  47 *	   unsigned char bar[8];
  48 * };
  49 *
  50 * main(int argc, char *argv[])
  51 * {
  52 *	   struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
  53 *	   unsigned int *p = (unsigned int *) (x.bar + 3);
  54 *	   int i;
  55 *
  56 *	   if (argc > 1)
  57 *		   sysmips(MIPS_FIXADE, atoi(argv[1]));
  58 *
  59 *	   printf("*p = %08lx\n", *p);
  60 *
  61 *	   *p = 0xdeadface;
  62 *
  63 *	   for(i = 0; i <= 7; i++)
  64 *	   printf("%02x ", x.bar[i]);
  65 *	   printf("\n");
  66 * }
  67 *
  68 * Coprocessor loads are not supported; I think this case is unimportant
  69 * in the practice.
  70 *
  71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
  72 *	 exception for the R6000.
  73 *	 A store crossing a page boundary might be executed only partially.
  74 *	 Undo the partial store in this case.
  75 */
  76#include <linux/context_tracking.h>
  77#include <linux/mm.h>
  78#include <linux/signal.h>
  79#include <linux/smp.h>
  80#include <linux/sched.h>
  81#include <linux/debugfs.h>
  82#include <linux/perf_event.h>
  83
  84#include <asm/asm.h>
  85#include <asm/branch.h>
  86#include <asm/byteorder.h>
  87#include <asm/cop2.h>
  88#include <asm/debug.h>
  89#include <asm/fpu.h>
  90#include <asm/fpu_emulator.h>
  91#include <asm/inst.h>
  92#include <asm/unaligned-emul.h>
  93#include <asm/mmu_context.h>
 
  94#include <linux/uaccess.h>
  95
 
 
  96enum {
  97	UNALIGNED_ACTION_QUIET,
  98	UNALIGNED_ACTION_SIGNAL,
  99	UNALIGNED_ACTION_SHOW,
 100};
 101#ifdef CONFIG_DEBUG_FS
 102static u32 unaligned_instructions;
 103static u32 unaligned_action;
 104#else
 105#define unaligned_action UNALIGNED_ACTION_QUIET
 106#endif
 107extern void show_registers(struct pt_regs *regs);
 108
 109static void emulate_load_store_insn(struct pt_regs *regs,
 110	void __user *addr, unsigned int __user *pc)
 111{
 112	unsigned long origpc, orig31, value;
 113	union mips_instruction insn;
 114	unsigned int res;
 115#ifdef	CONFIG_EVA
 116	mm_segment_t seg;
 117#endif
 118	origpc = (unsigned long)pc;
 119	orig31 = regs->regs[31];
 120
 121	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 122
 123	/*
 124	 * This load never faults.
 125	 */
 126	__get_user(insn.word, pc);
 127
 128	switch (insn.i_format.opcode) {
 129		/*
 130		 * These are instructions that a compiler doesn't generate.  We
 131		 * can assume therefore that the code is MIPS-aware and
 132		 * really buggy.  Emulating these instructions would break the
 133		 * semantics anyway.
 134		 */
 135	case ll_op:
 136	case lld_op:
 137	case sc_op:
 138	case scd_op:
 139
 140		/*
 141		 * For these instructions the only way to create an address
 142		 * error is an attempted access to kernel/supervisor address
 143		 * space.
 144		 */
 145	case ldl_op:
 146	case ldr_op:
 147	case lwl_op:
 148	case lwr_op:
 149	case sdl_op:
 150	case sdr_op:
 151	case swl_op:
 152	case swr_op:
 153	case lb_op:
 154	case lbu_op:
 155	case sb_op:
 156		goto sigbus;
 157
 158		/*
 159		 * The remaining opcodes are the ones that are really of
 160		 * interest.
 161		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162	case spec3_op:
 163		if (insn.dsp_format.func == lx_op) {
 164			switch (insn.dsp_format.op) {
 165			case lwx_op:
 166				if (!access_ok(addr, 4))
 167					goto sigbus;
 168				LoadW(addr, value, res);
 169				if (res)
 170					goto fault;
 171				compute_return_epc(regs);
 172				regs->regs[insn.dsp_format.rd] = value;
 173				break;
 174			case lhx_op:
 175				if (!access_ok(addr, 2))
 176					goto sigbus;
 177				LoadHW(addr, value, res);
 178				if (res)
 179					goto fault;
 180				compute_return_epc(regs);
 181				regs->regs[insn.dsp_format.rd] = value;
 182				break;
 183			default:
 184				goto sigill;
 185			}
 186		}
 187#ifdef CONFIG_EVA
 188		else {
 189			/*
 190			 * we can land here only from kernel accessing user
 191			 * memory, so we need to "switch" the address limit to
 192			 * user space, so that address check can work properly.
 193			 */
 194			seg = force_uaccess_begin();
 195			switch (insn.spec3_format.func) {
 196			case lhe_op:
 197				if (!access_ok(addr, 2)) {
 198					force_uaccess_end(seg);
 199					goto sigbus;
 200				}
 201				LoadHWE(addr, value, res);
 202				if (res) {
 203					force_uaccess_end(seg);
 204					goto fault;
 205				}
 206				compute_return_epc(regs);
 207				regs->regs[insn.spec3_format.rt] = value;
 208				break;
 209			case lwe_op:
 210				if (!access_ok(addr, 4)) {
 211					force_uaccess_end(seg);
 212					goto sigbus;
 213				}
 214				LoadWE(addr, value, res);
 215				if (res) {
 216					force_uaccess_end(seg);
 217					goto fault;
 218				}
 219				compute_return_epc(regs);
 220				regs->regs[insn.spec3_format.rt] = value;
 221				break;
 222			case lhue_op:
 223				if (!access_ok(addr, 2)) {
 224					force_uaccess_end(seg);
 225					goto sigbus;
 226				}
 227				LoadHWUE(addr, value, res);
 228				if (res) {
 229					force_uaccess_end(seg);
 230					goto fault;
 231				}
 232				compute_return_epc(regs);
 233				regs->regs[insn.spec3_format.rt] = value;
 234				break;
 235			case she_op:
 236				if (!access_ok(addr, 2)) {
 237					force_uaccess_end(seg);
 238					goto sigbus;
 239				}
 240				compute_return_epc(regs);
 241				value = regs->regs[insn.spec3_format.rt];
 242				StoreHWE(addr, value, res);
 243				if (res) {
 244					force_uaccess_end(seg);
 245					goto fault;
 246				}
 247				break;
 248			case swe_op:
 249				if (!access_ok(addr, 4)) {
 250					force_uaccess_end(seg);
 251					goto sigbus;
 252				}
 253				compute_return_epc(regs);
 254				value = regs->regs[insn.spec3_format.rt];
 255				StoreWE(addr, value, res);
 256				if (res) {
 257					force_uaccess_end(seg);
 258					goto fault;
 259				}
 260				break;
 261			default:
 262				force_uaccess_end(seg);
 263				goto sigill;
 264			}
 265			force_uaccess_end(seg);
 266		}
 267#endif
 268		break;
 269	case lh_op:
 270		if (!access_ok(addr, 2))
 271			goto sigbus;
 272
 273		if (IS_ENABLED(CONFIG_EVA)) {
 274			if (uaccess_kernel())
 275				LoadHW(addr, value, res);
 276			else
 277				LoadHWE(addr, value, res);
 278		} else {
 279			LoadHW(addr, value, res);
 280		}
 281
 282		if (res)
 283			goto fault;
 284		compute_return_epc(regs);
 285		regs->regs[insn.i_format.rt] = value;
 286		break;
 287
 288	case lw_op:
 289		if (!access_ok(addr, 4))
 290			goto sigbus;
 291
 292		if (IS_ENABLED(CONFIG_EVA)) {
 293			if (uaccess_kernel())
 294				LoadW(addr, value, res);
 295			else
 296				LoadWE(addr, value, res);
 297		} else {
 298			LoadW(addr, value, res);
 299		}
 300
 301		if (res)
 302			goto fault;
 303		compute_return_epc(regs);
 304		regs->regs[insn.i_format.rt] = value;
 305		break;
 306
 307	case lhu_op:
 308		if (!access_ok(addr, 2))
 309			goto sigbus;
 310
 311		if (IS_ENABLED(CONFIG_EVA)) {
 312			if (uaccess_kernel())
 313				LoadHWU(addr, value, res);
 314			else
 315				LoadHWUE(addr, value, res);
 316		} else {
 317			LoadHWU(addr, value, res);
 318		}
 319
 320		if (res)
 321			goto fault;
 322		compute_return_epc(regs);
 323		regs->regs[insn.i_format.rt] = value;
 324		break;
 325
 326	case lwu_op:
 327#ifdef CONFIG_64BIT
 328		/*
 329		 * A 32-bit kernel might be running on a 64-bit processor.  But
 330		 * if we're on a 32-bit processor and an i-cache incoherency
 331		 * or race makes us see a 64-bit instruction here the sdl/sdr
 332		 * would blow up, so for now we don't handle unaligned 64-bit
 333		 * instructions on 32-bit kernels.
 334		 */
 335		if (!access_ok(addr, 4))
 336			goto sigbus;
 337
 338		LoadWU(addr, value, res);
 339		if (res)
 340			goto fault;
 341		compute_return_epc(regs);
 342		regs->regs[insn.i_format.rt] = value;
 343		break;
 344#endif /* CONFIG_64BIT */
 345
 346		/* Cannot handle 64-bit instructions in 32-bit kernel */
 347		goto sigill;
 348
 349	case ld_op:
 350#ifdef CONFIG_64BIT
 351		/*
 352		 * A 32-bit kernel might be running on a 64-bit processor.  But
 353		 * if we're on a 32-bit processor and an i-cache incoherency
 354		 * or race makes us see a 64-bit instruction here the sdl/sdr
 355		 * would blow up, so for now we don't handle unaligned 64-bit
 356		 * instructions on 32-bit kernels.
 357		 */
 358		if (!access_ok(addr, 8))
 359			goto sigbus;
 360
 361		LoadDW(addr, value, res);
 362		if (res)
 363			goto fault;
 364		compute_return_epc(regs);
 365		regs->regs[insn.i_format.rt] = value;
 366		break;
 367#endif /* CONFIG_64BIT */
 368
 369		/* Cannot handle 64-bit instructions in 32-bit kernel */
 370		goto sigill;
 371
 372	case sh_op:
 373		if (!access_ok(addr, 2))
 374			goto sigbus;
 375
 376		compute_return_epc(regs);
 377		value = regs->regs[insn.i_format.rt];
 378
 379		if (IS_ENABLED(CONFIG_EVA)) {
 380			if (uaccess_kernel())
 381				StoreHW(addr, value, res);
 382			else
 383				StoreHWE(addr, value, res);
 384		} else {
 385			StoreHW(addr, value, res);
 386		}
 387
 388		if (res)
 389			goto fault;
 390		break;
 391
 392	case sw_op:
 393		if (!access_ok(addr, 4))
 394			goto sigbus;
 395
 396		compute_return_epc(regs);
 397		value = regs->regs[insn.i_format.rt];
 398
 399		if (IS_ENABLED(CONFIG_EVA)) {
 400			if (uaccess_kernel())
 401				StoreW(addr, value, res);
 402			else
 403				StoreWE(addr, value, res);
 404		} else {
 405			StoreW(addr, value, res);
 406		}
 407
 408		if (res)
 409			goto fault;
 410		break;
 411
 412	case sd_op:
 413#ifdef CONFIG_64BIT
 414		/*
 415		 * A 32-bit kernel might be running on a 64-bit processor.  But
 416		 * if we're on a 32-bit processor and an i-cache incoherency
 417		 * or race makes us see a 64-bit instruction here the sdl/sdr
 418		 * would blow up, so for now we don't handle unaligned 64-bit
 419		 * instructions on 32-bit kernels.
 420		 */
 421		if (!access_ok(addr, 8))
 422			goto sigbus;
 423
 424		compute_return_epc(regs);
 425		value = regs->regs[insn.i_format.rt];
 426		StoreDW(addr, value, res);
 427		if (res)
 428			goto fault;
 429		break;
 430#endif /* CONFIG_64BIT */
 431
 432		/* Cannot handle 64-bit instructions in 32-bit kernel */
 433		goto sigill;
 434
 435#ifdef CONFIG_MIPS_FP_SUPPORT
 436
 437	case lwc1_op:
 438	case ldc1_op:
 439	case swc1_op:
 440	case sdc1_op:
 441	case cop1x_op: {
 442		void __user *fault_addr = NULL;
 443
 444		die_if_kernel("Unaligned FP access in kernel code", regs);
 445		BUG_ON(!used_math());
 446
 447		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 448					       &fault_addr);
 449		own_fpu(1);	/* Restore FPU state. */
 450
 451		/* Signal if something went wrong. */
 452		process_fpemu_return(res, fault_addr, 0);
 453
 454		if (res == 0)
 455			break;
 456		return;
 457	}
 458#endif /* CONFIG_MIPS_FP_SUPPORT */
 459
 460#ifdef CONFIG_CPU_HAS_MSA
 461
 462	case msa_op: {
 463		unsigned int wd, preempted;
 464		enum msa_2b_fmt df;
 465		union fpureg *fpr;
 466
 467		if (!cpu_has_msa)
 468			goto sigill;
 469
 470		/*
 471		 * If we've reached this point then userland should have taken
 472		 * the MSA disabled exception & initialised vector context at
 473		 * some point in the past.
 474		 */
 475		BUG_ON(!thread_msa_context_live());
 476
 477		df = insn.msa_mi10_format.df;
 478		wd = insn.msa_mi10_format.wd;
 479		fpr = &current->thread.fpu.fpr[wd];
 480
 481		switch (insn.msa_mi10_format.func) {
 482		case msa_ld_op:
 483			if (!access_ok(addr, sizeof(*fpr)))
 484				goto sigbus;
 485
 486			do {
 487				/*
 488				 * If we have live MSA context keep track of
 489				 * whether we get preempted in order to avoid
 490				 * the register context we load being clobbered
 491				 * by the live context as it's saved during
 492				 * preemption. If we don't have live context
 493				 * then it can't be saved to clobber the value
 494				 * we load.
 495				 */
 496				preempted = test_thread_flag(TIF_USEDMSA);
 497
 498				res = __copy_from_user_inatomic(fpr, addr,
 499								sizeof(*fpr));
 500				if (res)
 501					goto fault;
 502
 503				/*
 504				 * Update the hardware register if it is in use
 505				 * by the task in this quantum, in order to
 506				 * avoid having to save & restore the whole
 507				 * vector context.
 508				 */
 509				preempt_disable();
 510				if (test_thread_flag(TIF_USEDMSA)) {
 511					write_msa_wr(wd, fpr, df);
 512					preempted = 0;
 513				}
 514				preempt_enable();
 515			} while (preempted);
 516			break;
 517
 518		case msa_st_op:
 519			if (!access_ok(addr, sizeof(*fpr)))
 520				goto sigbus;
 521
 522			/*
 523			 * Update from the hardware register if it is in use by
 524			 * the task in this quantum, in order to avoid having to
 525			 * save & restore the whole vector context.
 526			 */
 527			preempt_disable();
 528			if (test_thread_flag(TIF_USEDMSA))
 529				read_msa_wr(wd, fpr, df);
 530			preempt_enable();
 531
 532			res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
 533			if (res)
 534				goto fault;
 535			break;
 536
 537		default:
 538			goto sigbus;
 539		}
 540
 541		compute_return_epc(regs);
 542		break;
 543	}
 544#endif /* CONFIG_CPU_HAS_MSA */
 545
 546#ifndef CONFIG_CPU_MIPSR6
 547	/*
 548	 * COP2 is available to implementor for application specific use.
 549	 * It's up to applications to register a notifier chain and do
 550	 * whatever they have to do, including possible sending of signals.
 551	 *
 552	 * This instruction has been reallocated in Release 6
 553	 */
 554	case lwc2_op:
 555		cu2_notifier_call_chain(CU2_LWC2_OP, regs);
 556		break;
 557
 558	case ldc2_op:
 559		cu2_notifier_call_chain(CU2_LDC2_OP, regs);
 560		break;
 561
 562	case swc2_op:
 563		cu2_notifier_call_chain(CU2_SWC2_OP, regs);
 564		break;
 565
 566	case sdc2_op:
 567		cu2_notifier_call_chain(CU2_SDC2_OP, regs);
 568		break;
 569#endif
 570	default:
 571		/*
 572		 * Pheeee...  We encountered an yet unknown instruction or
 573		 * cache coherence problem.  Die sucker, die ...
 574		 */
 575		goto sigill;
 576	}
 577
 578#ifdef CONFIG_DEBUG_FS
 579	unaligned_instructions++;
 580#endif
 581
 582	return;
 583
 584fault:
 585	/* roll back jump/branch */
 586	regs->cp0_epc = origpc;
 587	regs->regs[31] = orig31;
 588	/* Did we have an exception handler installed? */
 589	if (fixup_exception(regs))
 590		return;
 591
 592	die_if_kernel("Unhandled kernel unaligned access", regs);
 593	force_sig(SIGSEGV);
 594
 595	return;
 596
 597sigbus:
 598	die_if_kernel("Unhandled kernel unaligned access", regs);
 599	force_sig(SIGBUS);
 600
 601	return;
 602
 603sigill:
 604	die_if_kernel
 605	    ("Unhandled kernel unaligned access or invalid instruction", regs);
 606	force_sig(SIGILL);
 607}
 608
 609/* Recode table from 16-bit register notation to 32-bit GPR. */
 610const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
 611
 612/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
 613static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
 614
 615static void emulate_load_store_microMIPS(struct pt_regs *regs,
 616					 void __user *addr)
 617{
 618	unsigned long value;
 619	unsigned int res;
 620	int i;
 621	unsigned int reg = 0, rvar;
 622	unsigned long orig31;
 623	u16 __user *pc16;
 624	u16 halfword;
 625	unsigned int word;
 626	unsigned long origpc, contpc;
 627	union mips_instruction insn;
 628	struct mm_decoded_insn mminsn;
 
 629
 630	origpc = regs->cp0_epc;
 631	orig31 = regs->regs[31];
 632
 633	mminsn.micro_mips_mode = 1;
 634
 635	/*
 636	 * This load never faults.
 637	 */
 638	pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
 639	__get_user(halfword, pc16);
 640	pc16++;
 641	contpc = regs->cp0_epc + 2;
 642	word = ((unsigned int)halfword << 16);
 643	mminsn.pc_inc = 2;
 644
 645	if (!mm_insn_16bit(halfword)) {
 646		__get_user(halfword, pc16);
 647		pc16++;
 648		contpc = regs->cp0_epc + 4;
 649		mminsn.pc_inc = 4;
 650		word |= halfword;
 651	}
 652	mminsn.insn = word;
 653
 654	if (get_user(halfword, pc16))
 655		goto fault;
 656	mminsn.next_pc_inc = 2;
 657	word = ((unsigned int)halfword << 16);
 658
 659	if (!mm_insn_16bit(halfword)) {
 660		pc16++;
 661		if (get_user(halfword, pc16))
 662			goto fault;
 663		mminsn.next_pc_inc = 4;
 664		word |= halfword;
 665	}
 666	mminsn.next_insn = word;
 667
 668	insn = (union mips_instruction)(mminsn.insn);
 669	if (mm_isBranchInstr(regs, mminsn, &contpc))
 670		insn = (union mips_instruction)(mminsn.next_insn);
 671
 672	/*  Parse instruction to find what to do */
 673
 674	switch (insn.mm_i_format.opcode) {
 675
 676	case mm_pool32a_op:
 677		switch (insn.mm_x_format.func) {
 678		case mm_lwxs_op:
 679			reg = insn.mm_x_format.rd;
 680			goto loadW;
 681		}
 682
 683		goto sigbus;
 684
 685	case mm_pool32b_op:
 686		switch (insn.mm_m_format.func) {
 687		case mm_lwp_func:
 688			reg = insn.mm_m_format.rd;
 689			if (reg == 31)
 690				goto sigbus;
 691
 692			if (!access_ok(addr, 8))
 693				goto sigbus;
 694
 695			LoadW(addr, value, res);
 696			if (res)
 697				goto fault;
 698			regs->regs[reg] = value;
 699			addr += 4;
 700			LoadW(addr, value, res);
 701			if (res)
 702				goto fault;
 703			regs->regs[reg + 1] = value;
 704			goto success;
 705
 706		case mm_swp_func:
 707			reg = insn.mm_m_format.rd;
 708			if (reg == 31)
 709				goto sigbus;
 710
 711			if (!access_ok(addr, 8))
 712				goto sigbus;
 713
 714			value = regs->regs[reg];
 715			StoreW(addr, value, res);
 716			if (res)
 717				goto fault;
 718			addr += 4;
 719			value = regs->regs[reg + 1];
 720			StoreW(addr, value, res);
 721			if (res)
 722				goto fault;
 723			goto success;
 724
 725		case mm_ldp_func:
 726#ifdef CONFIG_64BIT
 727			reg = insn.mm_m_format.rd;
 728			if (reg == 31)
 729				goto sigbus;
 730
 731			if (!access_ok(addr, 16))
 732				goto sigbus;
 733
 734			LoadDW(addr, value, res);
 735			if (res)
 736				goto fault;
 737			regs->regs[reg] = value;
 738			addr += 8;
 739			LoadDW(addr, value, res);
 740			if (res)
 741				goto fault;
 742			regs->regs[reg + 1] = value;
 743			goto success;
 744#endif /* CONFIG_64BIT */
 745
 746			goto sigill;
 747
 748		case mm_sdp_func:
 749#ifdef CONFIG_64BIT
 750			reg = insn.mm_m_format.rd;
 751			if (reg == 31)
 752				goto sigbus;
 753
 754			if (!access_ok(addr, 16))
 755				goto sigbus;
 756
 757			value = regs->regs[reg];
 758			StoreDW(addr, value, res);
 759			if (res)
 760				goto fault;
 761			addr += 8;
 762			value = regs->regs[reg + 1];
 763			StoreDW(addr, value, res);
 764			if (res)
 765				goto fault;
 766			goto success;
 767#endif /* CONFIG_64BIT */
 768
 769			goto sigill;
 770
 771		case mm_lwm32_func:
 772			reg = insn.mm_m_format.rd;
 773			rvar = reg & 0xf;
 774			if ((rvar > 9) || !reg)
 775				goto sigill;
 776			if (reg & 0x10) {
 777				if (!access_ok(addr, 4 * (rvar + 1)))
 778					goto sigbus;
 779			} else {
 780				if (!access_ok(addr, 4 * rvar))
 781					goto sigbus;
 782			}
 783			if (rvar == 9)
 784				rvar = 8;
 785			for (i = 16; rvar; rvar--, i++) {
 786				LoadW(addr, value, res);
 787				if (res)
 788					goto fault;
 789				addr += 4;
 790				regs->regs[i] = value;
 791			}
 792			if ((reg & 0xf) == 9) {
 793				LoadW(addr, value, res);
 794				if (res)
 795					goto fault;
 796				addr += 4;
 797				regs->regs[30] = value;
 798			}
 799			if (reg & 0x10) {
 800				LoadW(addr, value, res);
 801				if (res)
 802					goto fault;
 803				regs->regs[31] = value;
 804			}
 805			goto success;
 806
 807		case mm_swm32_func:
 808			reg = insn.mm_m_format.rd;
 809			rvar = reg & 0xf;
 810			if ((rvar > 9) || !reg)
 811				goto sigill;
 812			if (reg & 0x10) {
 813				if (!access_ok(addr, 4 * (rvar + 1)))
 814					goto sigbus;
 815			} else {
 816				if (!access_ok(addr, 4 * rvar))
 817					goto sigbus;
 818			}
 819			if (rvar == 9)
 820				rvar = 8;
 821			for (i = 16; rvar; rvar--, i++) {
 822				value = regs->regs[i];
 823				StoreW(addr, value, res);
 824				if (res)
 825					goto fault;
 826				addr += 4;
 827			}
 828			if ((reg & 0xf) == 9) {
 829				value = regs->regs[30];
 830				StoreW(addr, value, res);
 831				if (res)
 832					goto fault;
 833				addr += 4;
 834			}
 835			if (reg & 0x10) {
 836				value = regs->regs[31];
 837				StoreW(addr, value, res);
 838				if (res)
 839					goto fault;
 840			}
 841			goto success;
 842
 843		case mm_ldm_func:
 844#ifdef CONFIG_64BIT
 845			reg = insn.mm_m_format.rd;
 846			rvar = reg & 0xf;
 847			if ((rvar > 9) || !reg)
 848				goto sigill;
 849			if (reg & 0x10) {
 850				if (!access_ok(addr, 8 * (rvar + 1)))
 851					goto sigbus;
 852			} else {
 853				if (!access_ok(addr, 8 * rvar))
 854					goto sigbus;
 855			}
 856			if (rvar == 9)
 857				rvar = 8;
 858
 859			for (i = 16; rvar; rvar--, i++) {
 860				LoadDW(addr, value, res);
 861				if (res)
 862					goto fault;
 863				addr += 4;
 864				regs->regs[i] = value;
 865			}
 866			if ((reg & 0xf) == 9) {
 867				LoadDW(addr, value, res);
 868				if (res)
 869					goto fault;
 870				addr += 8;
 871				regs->regs[30] = value;
 872			}
 873			if (reg & 0x10) {
 874				LoadDW(addr, value, res);
 875				if (res)
 876					goto fault;
 877				regs->regs[31] = value;
 878			}
 879			goto success;
 880#endif /* CONFIG_64BIT */
 881
 882			goto sigill;
 883
 884		case mm_sdm_func:
 885#ifdef CONFIG_64BIT
 886			reg = insn.mm_m_format.rd;
 887			rvar = reg & 0xf;
 888			if ((rvar > 9) || !reg)
 889				goto sigill;
 890			if (reg & 0x10) {
 891				if (!access_ok(addr, 8 * (rvar + 1)))
 892					goto sigbus;
 893			} else {
 894				if (!access_ok(addr, 8 * rvar))
 895					goto sigbus;
 896			}
 897			if (rvar == 9)
 898				rvar = 8;
 899
 900			for (i = 16; rvar; rvar--, i++) {
 901				value = regs->regs[i];
 902				StoreDW(addr, value, res);
 903				if (res)
 904					goto fault;
 905				addr += 8;
 906			}
 907			if ((reg & 0xf) == 9) {
 908				value = regs->regs[30];
 909				StoreDW(addr, value, res);
 910				if (res)
 911					goto fault;
 912				addr += 8;
 913			}
 914			if (reg & 0x10) {
 915				value = regs->regs[31];
 916				StoreDW(addr, value, res);
 917				if (res)
 918					goto fault;
 919			}
 920			goto success;
 921#endif /* CONFIG_64BIT */
 922
 923			goto sigill;
 924
 925			/*  LWC2, SWC2, LDC2, SDC2 are not serviced */
 926		}
 927
 928		goto sigbus;
 929
 930	case mm_pool32c_op:
 931		switch (insn.mm_m_format.func) {
 932		case mm_lwu_func:
 933			reg = insn.mm_m_format.rd;
 934			goto loadWU;
 935		}
 936
 937		/*  LL,SC,LLD,SCD are not serviced */
 938		goto sigbus;
 939
 940#ifdef CONFIG_MIPS_FP_SUPPORT
 941	case mm_pool32f_op:
 942		switch (insn.mm_x_format.func) {
 943		case mm_lwxc1_func:
 944		case mm_swxc1_func:
 945		case mm_ldxc1_func:
 946		case mm_sdxc1_func:
 947			goto fpu_emul;
 948		}
 949
 950		goto sigbus;
 951
 952	case mm_ldc132_op:
 953	case mm_sdc132_op:
 954	case mm_lwc132_op:
 955	case mm_swc132_op: {
 956		void __user *fault_addr = NULL;
 957
 958fpu_emul:
 959		/* roll back jump/branch */
 960		regs->cp0_epc = origpc;
 961		regs->regs[31] = orig31;
 962
 963		die_if_kernel("Unaligned FP access in kernel code", regs);
 964		BUG_ON(!used_math());
 965		BUG_ON(!is_fpu_owner());
 966
 967		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 968					       &fault_addr);
 969		own_fpu(1);	/* restore FPU state */
 970
 971		/* If something went wrong, signal */
 972		process_fpemu_return(res, fault_addr, 0);
 973
 974		if (res == 0)
 975			goto success;
 976		return;
 977	}
 978#endif /* CONFIG_MIPS_FP_SUPPORT */
 979
 980	case mm_lh32_op:
 981		reg = insn.mm_i_format.rt;
 982		goto loadHW;
 983
 984	case mm_lhu32_op:
 985		reg = insn.mm_i_format.rt;
 986		goto loadHWU;
 987
 988	case mm_lw32_op:
 989		reg = insn.mm_i_format.rt;
 990		goto loadW;
 991
 992	case mm_sh32_op:
 993		reg = insn.mm_i_format.rt;
 994		goto storeHW;
 995
 996	case mm_sw32_op:
 997		reg = insn.mm_i_format.rt;
 998		goto storeW;
 999
1000	case mm_ld32_op:
1001		reg = insn.mm_i_format.rt;
1002		goto loadDW;
1003
1004	case mm_sd32_op:
1005		reg = insn.mm_i_format.rt;
1006		goto storeDW;
1007
1008	case mm_pool16c_op:
1009		switch (insn.mm16_m_format.func) {
1010		case mm_lwm16_op:
1011			reg = insn.mm16_m_format.rlist;
1012			rvar = reg + 1;
1013			if (!access_ok(addr, 4 * rvar))
1014				goto sigbus;
1015
1016			for (i = 16; rvar; rvar--, i++) {
1017				LoadW(addr, value, res);
1018				if (res)
1019					goto fault;
1020				addr += 4;
1021				regs->regs[i] = value;
1022			}
1023			LoadW(addr, value, res);
1024			if (res)
1025				goto fault;
1026			regs->regs[31] = value;
1027
1028			goto success;
1029
1030		case mm_swm16_op:
1031			reg = insn.mm16_m_format.rlist;
1032			rvar = reg + 1;
1033			if (!access_ok(addr, 4 * rvar))
1034				goto sigbus;
1035
1036			for (i = 16; rvar; rvar--, i++) {
1037				value = regs->regs[i];
1038				StoreW(addr, value, res);
1039				if (res)
1040					goto fault;
1041				addr += 4;
1042			}
1043			value = regs->regs[31];
1044			StoreW(addr, value, res);
1045			if (res)
1046				goto fault;
1047
1048			goto success;
1049
1050		}
1051
1052		goto sigbus;
1053
1054	case mm_lhu16_op:
1055		reg = reg16to32[insn.mm16_rb_format.rt];
1056		goto loadHWU;
1057
1058	case mm_lw16_op:
1059		reg = reg16to32[insn.mm16_rb_format.rt];
1060		goto loadW;
1061
1062	case mm_sh16_op:
1063		reg = reg16to32st[insn.mm16_rb_format.rt];
1064		goto storeHW;
1065
1066	case mm_sw16_op:
1067		reg = reg16to32st[insn.mm16_rb_format.rt];
1068		goto storeW;
1069
1070	case mm_lwsp16_op:
1071		reg = insn.mm16_r5_format.rt;
1072		goto loadW;
1073
1074	case mm_swsp16_op:
1075		reg = insn.mm16_r5_format.rt;
1076		goto storeW;
1077
1078	case mm_lwgp16_op:
1079		reg = reg16to32[insn.mm16_r3_format.rt];
1080		goto loadW;
1081
1082	default:
1083		goto sigill;
1084	}
1085
1086loadHW:
1087	if (!access_ok(addr, 2))
1088		goto sigbus;
1089
1090	LoadHW(addr, value, res);
1091	if (res)
1092		goto fault;
1093	regs->regs[reg] = value;
1094	goto success;
1095
1096loadHWU:
1097	if (!access_ok(addr, 2))
1098		goto sigbus;
1099
1100	LoadHWU(addr, value, res);
1101	if (res)
1102		goto fault;
1103	regs->regs[reg] = value;
1104	goto success;
1105
1106loadW:
1107	if (!access_ok(addr, 4))
1108		goto sigbus;
1109
1110	LoadW(addr, value, res);
1111	if (res)
1112		goto fault;
1113	regs->regs[reg] = value;
1114	goto success;
1115
1116loadWU:
1117#ifdef CONFIG_64BIT
1118	/*
1119	 * A 32-bit kernel might be running on a 64-bit processor.  But
1120	 * if we're on a 32-bit processor and an i-cache incoherency
1121	 * or race makes us see a 64-bit instruction here the sdl/sdr
1122	 * would blow up, so for now we don't handle unaligned 64-bit
1123	 * instructions on 32-bit kernels.
1124	 */
1125	if (!access_ok(addr, 4))
1126		goto sigbus;
1127
1128	LoadWU(addr, value, res);
1129	if (res)
1130		goto fault;
1131	regs->regs[reg] = value;
1132	goto success;
1133#endif /* CONFIG_64BIT */
1134
1135	/* Cannot handle 64-bit instructions in 32-bit kernel */
1136	goto sigill;
1137
1138loadDW:
1139#ifdef CONFIG_64BIT
1140	/*
1141	 * A 32-bit kernel might be running on a 64-bit processor.  But
1142	 * if we're on a 32-bit processor and an i-cache incoherency
1143	 * or race makes us see a 64-bit instruction here the sdl/sdr
1144	 * would blow up, so for now we don't handle unaligned 64-bit
1145	 * instructions on 32-bit kernels.
1146	 */
1147	if (!access_ok(addr, 8))
1148		goto sigbus;
1149
1150	LoadDW(addr, value, res);
1151	if (res)
1152		goto fault;
1153	regs->regs[reg] = value;
1154	goto success;
1155#endif /* CONFIG_64BIT */
1156
1157	/* Cannot handle 64-bit instructions in 32-bit kernel */
1158	goto sigill;
1159
1160storeHW:
1161	if (!access_ok(addr, 2))
1162		goto sigbus;
1163
1164	value = regs->regs[reg];
1165	StoreHW(addr, value, res);
1166	if (res)
1167		goto fault;
1168	goto success;
1169
1170storeW:
1171	if (!access_ok(addr, 4))
1172		goto sigbus;
1173
1174	value = regs->regs[reg];
1175	StoreW(addr, value, res);
1176	if (res)
1177		goto fault;
1178	goto success;
1179
1180storeDW:
1181#ifdef CONFIG_64BIT
1182	/*
1183	 * A 32-bit kernel might be running on a 64-bit processor.  But
1184	 * if we're on a 32-bit processor and an i-cache incoherency
1185	 * or race makes us see a 64-bit instruction here the sdl/sdr
1186	 * would blow up, so for now we don't handle unaligned 64-bit
1187	 * instructions on 32-bit kernels.
1188	 */
1189	if (!access_ok(addr, 8))
1190		goto sigbus;
1191
1192	value = regs->regs[reg];
1193	StoreDW(addr, value, res);
1194	if (res)
1195		goto fault;
1196	goto success;
1197#endif /* CONFIG_64BIT */
1198
1199	/* Cannot handle 64-bit instructions in 32-bit kernel */
1200	goto sigill;
1201
1202success:
1203	regs->cp0_epc = contpc;	/* advance or branch */
1204
1205#ifdef CONFIG_DEBUG_FS
1206	unaligned_instructions++;
1207#endif
1208	return;
1209
1210fault:
1211	/* roll back jump/branch */
1212	regs->cp0_epc = origpc;
1213	regs->regs[31] = orig31;
1214	/* Did we have an exception handler installed? */
1215	if (fixup_exception(regs))
1216		return;
1217
1218	die_if_kernel("Unhandled kernel unaligned access", regs);
1219	force_sig(SIGSEGV);
1220
1221	return;
1222
1223sigbus:
1224	die_if_kernel("Unhandled kernel unaligned access", regs);
1225	force_sig(SIGBUS);
1226
1227	return;
1228
1229sigill:
1230	die_if_kernel
1231	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1232	force_sig(SIGILL);
1233}
1234
1235static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1236{
1237	unsigned long value;
1238	unsigned int res;
1239	int reg;
1240	unsigned long orig31;
1241	u16 __user *pc16;
1242	unsigned long origpc;
1243	union mips16e_instruction mips16inst, oldinst;
1244	unsigned int opcode;
1245	int extended = 0;
 
1246
1247	origpc = regs->cp0_epc;
1248	orig31 = regs->regs[31];
1249	pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1250	/*
1251	 * This load never faults.
1252	 */
1253	__get_user(mips16inst.full, pc16);
1254	oldinst = mips16inst;
1255
1256	/* skip EXTEND instruction */
1257	if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1258		extended = 1;
1259		pc16++;
1260		__get_user(mips16inst.full, pc16);
1261	} else if (delay_slot(regs)) {
1262		/*  skip jump instructions */
1263		/*  JAL/JALX are 32 bits but have OPCODE in first short int */
1264		if (mips16inst.ri.opcode == MIPS16e_jal_op)
1265			pc16++;
1266		pc16++;
1267		if (get_user(mips16inst.full, pc16))
1268			goto sigbus;
1269	}
1270
1271	opcode = mips16inst.ri.opcode;
1272	switch (opcode) {
1273	case MIPS16e_i64_op:	/* I64 or RI64 instruction */
1274		switch (mips16inst.i64.func) {	/* I64/RI64 func field check */
1275		case MIPS16e_ldpc_func:
1276		case MIPS16e_ldsp_func:
1277			reg = reg16to32[mips16inst.ri64.ry];
1278			goto loadDW;
1279
1280		case MIPS16e_sdsp_func:
1281			reg = reg16to32[mips16inst.ri64.ry];
1282			goto writeDW;
1283
1284		case MIPS16e_sdrasp_func:
1285			reg = 29;	/* GPRSP */
1286			goto writeDW;
1287		}
1288
1289		goto sigbus;
1290
1291	case MIPS16e_swsp_op:
1292		reg = reg16to32[mips16inst.ri.rx];
1293		if (extended && cpu_has_mips16e2)
1294			switch (mips16inst.ri.imm >> 5) {
1295			case 0:		/* SWSP */
1296			case 1:		/* SWGP */
1297				break;
1298			case 2:		/* SHGP */
1299				opcode = MIPS16e_sh_op;
1300				break;
1301			default:
1302				goto sigbus;
1303			}
1304		break;
1305
1306	case MIPS16e_lwpc_op:
1307		reg = reg16to32[mips16inst.ri.rx];
1308		break;
1309
1310	case MIPS16e_lwsp_op:
1311		reg = reg16to32[mips16inst.ri.rx];
1312		if (extended && cpu_has_mips16e2)
1313			switch (mips16inst.ri.imm >> 5) {
1314			case 0:		/* LWSP */
1315			case 1:		/* LWGP */
1316				break;
1317			case 2:		/* LHGP */
1318				opcode = MIPS16e_lh_op;
1319				break;
1320			case 4:		/* LHUGP */
1321				opcode = MIPS16e_lhu_op;
1322				break;
1323			default:
1324				goto sigbus;
1325			}
1326		break;
1327
1328	case MIPS16e_i8_op:
1329		if (mips16inst.i8.func != MIPS16e_swrasp_func)
1330			goto sigbus;
1331		reg = 29;	/* GPRSP */
1332		break;
1333
1334	default:
1335		reg = reg16to32[mips16inst.rri.ry];
1336		break;
1337	}
1338
1339	switch (opcode) {
1340
1341	case MIPS16e_lb_op:
1342	case MIPS16e_lbu_op:
1343	case MIPS16e_sb_op:
1344		goto sigbus;
1345
1346	case MIPS16e_lh_op:
1347		if (!access_ok(addr, 2))
1348			goto sigbus;
1349
1350		LoadHW(addr, value, res);
1351		if (res)
1352			goto fault;
1353		MIPS16e_compute_return_epc(regs, &oldinst);
1354		regs->regs[reg] = value;
1355		break;
1356
1357	case MIPS16e_lhu_op:
1358		if (!access_ok(addr, 2))
1359			goto sigbus;
1360
1361		LoadHWU(addr, value, res);
1362		if (res)
1363			goto fault;
1364		MIPS16e_compute_return_epc(regs, &oldinst);
1365		regs->regs[reg] = value;
1366		break;
1367
1368	case MIPS16e_lw_op:
1369	case MIPS16e_lwpc_op:
1370	case MIPS16e_lwsp_op:
1371		if (!access_ok(addr, 4))
1372			goto sigbus;
1373
1374		LoadW(addr, value, res);
1375		if (res)
1376			goto fault;
1377		MIPS16e_compute_return_epc(regs, &oldinst);
1378		regs->regs[reg] = value;
1379		break;
1380
1381	case MIPS16e_lwu_op:
1382#ifdef CONFIG_64BIT
1383		/*
1384		 * A 32-bit kernel might be running on a 64-bit processor.  But
1385		 * if we're on a 32-bit processor and an i-cache incoherency
1386		 * or race makes us see a 64-bit instruction here the sdl/sdr
1387		 * would blow up, so for now we don't handle unaligned 64-bit
1388		 * instructions on 32-bit kernels.
1389		 */
1390		if (!access_ok(addr, 4))
1391			goto sigbus;
1392
1393		LoadWU(addr, value, res);
1394		if (res)
1395			goto fault;
1396		MIPS16e_compute_return_epc(regs, &oldinst);
1397		regs->regs[reg] = value;
1398		break;
1399#endif /* CONFIG_64BIT */
1400
1401		/* Cannot handle 64-bit instructions in 32-bit kernel */
1402		goto sigill;
1403
1404	case MIPS16e_ld_op:
1405loadDW:
1406#ifdef CONFIG_64BIT
1407		/*
1408		 * A 32-bit kernel might be running on a 64-bit processor.  But
1409		 * if we're on a 32-bit processor and an i-cache incoherency
1410		 * or race makes us see a 64-bit instruction here the sdl/sdr
1411		 * would blow up, so for now we don't handle unaligned 64-bit
1412		 * instructions on 32-bit kernels.
1413		 */
1414		if (!access_ok(addr, 8))
1415			goto sigbus;
1416
1417		LoadDW(addr, value, res);
1418		if (res)
1419			goto fault;
1420		MIPS16e_compute_return_epc(regs, &oldinst);
1421		regs->regs[reg] = value;
1422		break;
1423#endif /* CONFIG_64BIT */
1424
1425		/* Cannot handle 64-bit instructions in 32-bit kernel */
1426		goto sigill;
1427
1428	case MIPS16e_sh_op:
1429		if (!access_ok(addr, 2))
1430			goto sigbus;
1431
1432		MIPS16e_compute_return_epc(regs, &oldinst);
1433		value = regs->regs[reg];
1434		StoreHW(addr, value, res);
1435		if (res)
1436			goto fault;
1437		break;
1438
1439	case MIPS16e_sw_op:
1440	case MIPS16e_swsp_op:
1441	case MIPS16e_i8_op:	/* actually - MIPS16e_swrasp_func */
1442		if (!access_ok(addr, 4))
1443			goto sigbus;
1444
1445		MIPS16e_compute_return_epc(regs, &oldinst);
1446		value = regs->regs[reg];
1447		StoreW(addr, value, res);
1448		if (res)
1449			goto fault;
1450		break;
1451
1452	case MIPS16e_sd_op:
1453writeDW:
1454#ifdef CONFIG_64BIT
1455		/*
1456		 * A 32-bit kernel might be running on a 64-bit processor.  But
1457		 * if we're on a 32-bit processor and an i-cache incoherency
1458		 * or race makes us see a 64-bit instruction here the sdl/sdr
1459		 * would blow up, so for now we don't handle unaligned 64-bit
1460		 * instructions on 32-bit kernels.
1461		 */
1462		if (!access_ok(addr, 8))
1463			goto sigbus;
1464
1465		MIPS16e_compute_return_epc(regs, &oldinst);
1466		value = regs->regs[reg];
1467		StoreDW(addr, value, res);
1468		if (res)
1469			goto fault;
1470		break;
1471#endif /* CONFIG_64BIT */
1472
1473		/* Cannot handle 64-bit instructions in 32-bit kernel */
1474		goto sigill;
1475
1476	default:
1477		/*
1478		 * Pheeee...  We encountered an yet unknown instruction or
1479		 * cache coherence problem.  Die sucker, die ...
1480		 */
1481		goto sigill;
1482	}
1483
1484#ifdef CONFIG_DEBUG_FS
1485	unaligned_instructions++;
1486#endif
1487
1488	return;
1489
1490fault:
1491	/* roll back jump/branch */
1492	regs->cp0_epc = origpc;
1493	regs->regs[31] = orig31;
1494	/* Did we have an exception handler installed? */
1495	if (fixup_exception(regs))
1496		return;
1497
1498	die_if_kernel("Unhandled kernel unaligned access", regs);
1499	force_sig(SIGSEGV);
1500
1501	return;
1502
1503sigbus:
1504	die_if_kernel("Unhandled kernel unaligned access", regs);
1505	force_sig(SIGBUS);
1506
1507	return;
1508
1509sigill:
1510	die_if_kernel
1511	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1512	force_sig(SIGILL);
1513}
1514
1515asmlinkage void do_ade(struct pt_regs *regs)
1516{
1517	enum ctx_state prev_state;
1518	unsigned int __user *pc;
1519	mm_segment_t seg;
1520
1521	prev_state = exception_enter();
1522	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1523			1, regs, regs->cp0_badvaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524	/*
1525	 * Did we catch a fault trying to load an instruction?
1526	 */
1527	if (regs->cp0_badvaddr == regs->cp0_epc)
1528		goto sigbus;
1529
1530	if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1531		goto sigbus;
1532	if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1533		goto sigbus;
1534
1535	/*
1536	 * Do branch emulation only if we didn't forward the exception.
1537	 * This is all so but ugly ...
1538	 */
1539
1540	/*
1541	 * Are we running in microMIPS mode?
1542	 */
1543	if (get_isa16_mode(regs->cp0_epc)) {
1544		/*
1545		 * Did we catch a fault trying to load an instruction in
1546		 * 16-bit mode?
1547		 */
1548		if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1549			goto sigbus;
1550		if (unaligned_action == UNALIGNED_ACTION_SHOW)
1551			show_registers(regs);
1552
1553		if (cpu_has_mmips) {
1554			seg = get_fs();
1555			if (!user_mode(regs))
1556				set_fs(KERNEL_DS);
1557			emulate_load_store_microMIPS(regs,
1558				(void __user *)regs->cp0_badvaddr);
1559			set_fs(seg);
1560
1561			return;
1562		}
1563
1564		if (cpu_has_mips16) {
1565			seg = get_fs();
1566			if (!user_mode(regs))
1567				set_fs(KERNEL_DS);
1568			emulate_load_store_MIPS16e(regs,
1569				(void __user *)regs->cp0_badvaddr);
1570			set_fs(seg);
1571
1572			return;
1573		}
1574
1575		goto sigbus;
1576	}
1577
1578	if (unaligned_action == UNALIGNED_ACTION_SHOW)
1579		show_registers(regs);
1580	pc = (unsigned int __user *)exception_epc(regs);
1581
1582	seg = get_fs();
1583	if (!user_mode(regs))
1584		set_fs(KERNEL_DS);
1585	emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1586	set_fs(seg);
1587
1588	return;
1589
1590sigbus:
1591	die_if_kernel("Kernel unaligned instruction access", regs);
1592	force_sig(SIGBUS);
1593
1594	/*
1595	 * XXX On return from the signal handler we should advance the epc
1596	 */
1597	exception_exit(prev_state);
1598}
1599
1600#ifdef CONFIG_DEBUG_FS
1601static int __init debugfs_unaligned(void)
1602{
1603	debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
1604			   &unaligned_instructions);
1605	debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1606			   mips_debugfs_dir, &unaligned_action);
1607	return 0;
1608}
1609arch_initcall(debugfs_unaligned);
1610#endif
v6.13.7
   1/*
   2 * Handle unaligned accesses by emulation.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Copyright (C) 2014 Imagination Technologies Ltd.
  11 *
  12 * This file contains exception handler for address error exception with the
  13 * special capability to execute faulting instructions in software.  The
  14 * handler does not try to handle the case when the program counter points
  15 * to an address not aligned to a word boundary.
  16 *
  17 * Putting data to unaligned addresses is a bad practice even on Intel where
  18 * only the performance is affected.  Much worse is that such code is non-
  19 * portable.  Due to several programs that die on MIPS due to alignment
  20 * problems I decided to implement this handler anyway though I originally
  21 * didn't intend to do this at all for user code.
  22 *
  23 * For now I enable fixing of address errors by default to make life easier.
  24 * I however intend to disable this somewhen in the future when the alignment
  25 * problems with user programs have been fixed.	 For programmers this is the
  26 * right way to go.
  27 *
  28 * Fixing address errors is a per process option.  The option is inherited
  29 * across fork(2) and execve(2) calls.	If you really want to use the
  30 * option in your user programs - I discourage the use of the software
  31 * emulation strongly - use the following code in your userland stuff:
  32 *
  33 * #include <sys/sysmips.h>
  34 *
  35 * ...
  36 * sysmips(MIPS_FIXADE, x);
  37 * ...
  38 *
  39 * The argument x is 0 for disabling software emulation, enabled otherwise.
  40 *
  41 * Below a little program to play around with this feature.
  42 *
  43 * #include <stdio.h>
  44 * #include <sys/sysmips.h>
  45 *
  46 * struct foo {
  47 *	   unsigned char bar[8];
  48 * };
  49 *
  50 * main(int argc, char *argv[])
  51 * {
  52 *	   struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
  53 *	   unsigned int *p = (unsigned int *) (x.bar + 3);
  54 *	   int i;
  55 *
  56 *	   if (argc > 1)
  57 *		   sysmips(MIPS_FIXADE, atoi(argv[1]));
  58 *
  59 *	   printf("*p = %08lx\n", *p);
  60 *
  61 *	   *p = 0xdeadface;
  62 *
  63 *	   for(i = 0; i <= 7; i++)
  64 *	   printf("%02x ", x.bar[i]);
  65 *	   printf("\n");
  66 * }
  67 *
  68 * Coprocessor loads are not supported; I think this case is unimportant
  69 * in the practice.
  70 *
  71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
  72 *	 exception for the R6000.
  73 *	 A store crossing a page boundary might be executed only partially.
  74 *	 Undo the partial store in this case.
  75 */
  76#include <linux/context_tracking.h>
  77#include <linux/mm.h>
  78#include <linux/signal.h>
  79#include <linux/smp.h>
  80#include <linux/sched.h>
  81#include <linux/debugfs.h>
  82#include <linux/perf_event.h>
  83
  84#include <asm/asm.h>
  85#include <asm/branch.h>
  86#include <asm/byteorder.h>
  87#include <asm/cop2.h>
  88#include <asm/debug.h>
  89#include <asm/fpu.h>
  90#include <asm/fpu_emulator.h>
  91#include <asm/inst.h>
  92#include <asm/unaligned-emul.h>
  93#include <asm/mmu_context.h>
  94#include <asm/traps.h>
  95#include <linux/uaccess.h>
  96
  97#include "access-helper.h"
  98
  99enum {
 100	UNALIGNED_ACTION_QUIET,
 101	UNALIGNED_ACTION_SIGNAL,
 102	UNALIGNED_ACTION_SHOW,
 103};
 104#ifdef CONFIG_DEBUG_FS
 105static u32 unaligned_instructions;
 106static u32 unaligned_action;
 107#else
 108#define unaligned_action UNALIGNED_ACTION_QUIET
 109#endif
 110extern void show_registers(struct pt_regs *regs);
 111
 112static void emulate_load_store_insn(struct pt_regs *regs,
 113	void __user *addr, unsigned int *pc)
 114{
 115	unsigned long origpc, orig31, value;
 116	union mips_instruction insn;
 117	unsigned int res;
 118	bool user = user_mode(regs);
 119
 
 120	origpc = (unsigned long)pc;
 121	orig31 = regs->regs[31];
 122
 123	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 124
 125	/*
 126	 * This load never faults.
 127	 */
 128	__get_inst32(&insn.word, pc, user);
 129
 130	switch (insn.i_format.opcode) {
 131		/*
 132		 * These are instructions that a compiler doesn't generate.  We
 133		 * can assume therefore that the code is MIPS-aware and
 134		 * really buggy.  Emulating these instructions would break the
 135		 * semantics anyway.
 136		 */
 137	case ll_op:
 138	case lld_op:
 139	case sc_op:
 140	case scd_op:
 141
 142		/*
 143		 * For these instructions the only way to create an address
 144		 * error is an attempted access to kernel/supervisor address
 145		 * space.
 146		 */
 147	case ldl_op:
 148	case ldr_op:
 149	case lwl_op:
 150	case lwr_op:
 151	case sdl_op:
 152	case sdr_op:
 153	case swl_op:
 154	case swr_op:
 155	case lb_op:
 156	case lbu_op:
 157	case sb_op:
 158		goto sigbus;
 159
 160		/*
 161		 * The remaining opcodes are the ones that are really of
 162		 * interest.
 163		 */
 164#ifdef CONFIG_MACH_INGENIC
 165	case spec2_op:
 166		if (insn.mxu_lx_format.func != mxu_lx_op)
 167			goto sigbus; /* other MXU instructions we don't care */
 168
 169		switch (insn.mxu_lx_format.op) {
 170		case mxu_lxw_op:
 171			if (user && !access_ok(addr, 4))
 172				goto sigbus;
 173			LoadW(addr, value, res);
 174			if (res)
 175				goto fault;
 176			compute_return_epc(regs);
 177			regs->regs[insn.mxu_lx_format.rd] = value;
 178			break;
 179		case mxu_lxh_op:
 180			if (user && !access_ok(addr, 2))
 181				goto sigbus;
 182			LoadHW(addr, value, res);
 183			if (res)
 184				goto fault;
 185			compute_return_epc(regs);
 186			regs->regs[insn.dsp_format.rd] = value;
 187			break;
 188		case mxu_lxhu_op:
 189			if (user && !access_ok(addr, 2))
 190				goto sigbus;
 191			LoadHWU(addr, value, res);
 192			if (res)
 193				goto fault;
 194			compute_return_epc(regs);
 195			regs->regs[insn.dsp_format.rd] = value;
 196			break;
 197		case mxu_lxb_op:
 198		case mxu_lxbu_op:
 199			goto sigbus;
 200		default:
 201			goto sigill;
 202		}
 203		break;
 204#endif
 205	case spec3_op:
 206		if (insn.dsp_format.func == lx_op) {
 207			switch (insn.dsp_format.op) {
 208			case lwx_op:
 209				if (user && !access_ok(addr, 4))
 210					goto sigbus;
 211				LoadW(addr, value, res);
 212				if (res)
 213					goto fault;
 214				compute_return_epc(regs);
 215				regs->regs[insn.dsp_format.rd] = value;
 216				break;
 217			case lhx_op:
 218				if (user && !access_ok(addr, 2))
 219					goto sigbus;
 220				LoadHW(addr, value, res);
 221				if (res)
 222					goto fault;
 223				compute_return_epc(regs);
 224				regs->regs[insn.dsp_format.rd] = value;
 225				break;
 226			default:
 227				goto sigill;
 228			}
 229		}
 230#ifdef CONFIG_EVA
 231		else {
 232			/*
 233			 * we can land here only from kernel accessing user
 234			 * memory, so we need to "switch" the address limit to
 235			 * user space, so that address check can work properly.
 236			 */
 
 237			switch (insn.spec3_format.func) {
 238			case lhe_op:
 239				if (!access_ok(addr, 2))
 
 240					goto sigbus;
 
 241				LoadHWE(addr, value, res);
 242				if (res)
 
 243					goto fault;
 
 244				compute_return_epc(regs);
 245				regs->regs[insn.spec3_format.rt] = value;
 246				break;
 247			case lwe_op:
 248				if (!access_ok(addr, 4))
 
 249					goto sigbus;
 
 250				LoadWE(addr, value, res);
 251				if (res)
 
 252					goto fault;
 
 253				compute_return_epc(regs);
 254				regs->regs[insn.spec3_format.rt] = value;
 255				break;
 256			case lhue_op:
 257				if (!access_ok(addr, 2))
 
 258					goto sigbus;
 
 259				LoadHWUE(addr, value, res);
 260				if (res)
 
 261					goto fault;
 
 262				compute_return_epc(regs);
 263				regs->regs[insn.spec3_format.rt] = value;
 264				break;
 265			case she_op:
 266				if (!access_ok(addr, 2))
 
 267					goto sigbus;
 
 268				compute_return_epc(regs);
 269				value = regs->regs[insn.spec3_format.rt];
 270				StoreHWE(addr, value, res);
 271				if (res)
 
 272					goto fault;
 
 273				break;
 274			case swe_op:
 275				if (!access_ok(addr, 4))
 
 276					goto sigbus;
 
 277				compute_return_epc(regs);
 278				value = regs->regs[insn.spec3_format.rt];
 279				StoreWE(addr, value, res);
 280				if (res)
 
 281					goto fault;
 
 282				break;
 283			default:
 
 284				goto sigill;
 285			}
 
 286		}
 287#endif
 288		break;
 289	case lh_op:
 290		if (user && !access_ok(addr, 2))
 291			goto sigbus;
 292
 293		if (IS_ENABLED(CONFIG_EVA) && user)
 294			LoadHWE(addr, value, res);
 295		else
 
 
 
 296			LoadHW(addr, value, res);
 
 297
 298		if (res)
 299			goto fault;
 300		compute_return_epc(regs);
 301		regs->regs[insn.i_format.rt] = value;
 302		break;
 303
 304	case lw_op:
 305		if (user && !access_ok(addr, 4))
 306			goto sigbus;
 307
 308		if (IS_ENABLED(CONFIG_EVA) && user)
 309			LoadWE(addr, value, res);
 310		else
 
 
 
 311			LoadW(addr, value, res);
 
 312
 313		if (res)
 314			goto fault;
 315		compute_return_epc(regs);
 316		regs->regs[insn.i_format.rt] = value;
 317		break;
 318
 319	case lhu_op:
 320		if (user && !access_ok(addr, 2))
 321			goto sigbus;
 322
 323		if (IS_ENABLED(CONFIG_EVA) && user)
 324			LoadHWUE(addr, value, res);
 325		else
 
 
 
 326			LoadHWU(addr, value, res);
 
 327
 328		if (res)
 329			goto fault;
 330		compute_return_epc(regs);
 331		regs->regs[insn.i_format.rt] = value;
 332		break;
 333
 334	case lwu_op:
 335#ifdef CONFIG_64BIT
 336		/*
 337		 * A 32-bit kernel might be running on a 64-bit processor.  But
 338		 * if we're on a 32-bit processor and an i-cache incoherency
 339		 * or race makes us see a 64-bit instruction here the sdl/sdr
 340		 * would blow up, so for now we don't handle unaligned 64-bit
 341		 * instructions on 32-bit kernels.
 342		 */
 343		if (user && !access_ok(addr, 4))
 344			goto sigbus;
 345
 346		LoadWU(addr, value, res);
 347		if (res)
 348			goto fault;
 349		compute_return_epc(regs);
 350		regs->regs[insn.i_format.rt] = value;
 351		break;
 352#endif /* CONFIG_64BIT */
 353
 354		/* Cannot handle 64-bit instructions in 32-bit kernel */
 355		goto sigill;
 356
 357	case ld_op:
 358#ifdef CONFIG_64BIT
 359		/*
 360		 * A 32-bit kernel might be running on a 64-bit processor.  But
 361		 * if we're on a 32-bit processor and an i-cache incoherency
 362		 * or race makes us see a 64-bit instruction here the sdl/sdr
 363		 * would blow up, so for now we don't handle unaligned 64-bit
 364		 * instructions on 32-bit kernels.
 365		 */
 366		if (user && !access_ok(addr, 8))
 367			goto sigbus;
 368
 369		LoadDW(addr, value, res);
 370		if (res)
 371			goto fault;
 372		compute_return_epc(regs);
 373		regs->regs[insn.i_format.rt] = value;
 374		break;
 375#endif /* CONFIG_64BIT */
 376
 377		/* Cannot handle 64-bit instructions in 32-bit kernel */
 378		goto sigill;
 379
 380	case sh_op:
 381		if (user && !access_ok(addr, 2))
 382			goto sigbus;
 383
 384		compute_return_epc(regs);
 385		value = regs->regs[insn.i_format.rt];
 386
 387		if (IS_ENABLED(CONFIG_EVA) && user)
 388			StoreHWE(addr, value, res);
 389		else
 
 
 
 390			StoreHW(addr, value, res);
 
 391
 392		if (res)
 393			goto fault;
 394		break;
 395
 396	case sw_op:
 397		if (user && !access_ok(addr, 4))
 398			goto sigbus;
 399
 400		compute_return_epc(regs);
 401		value = regs->regs[insn.i_format.rt];
 402
 403		if (IS_ENABLED(CONFIG_EVA) && user)
 404			StoreWE(addr, value, res);
 405		else
 
 
 
 406			StoreW(addr, value, res);
 
 407
 408		if (res)
 409			goto fault;
 410		break;
 411
 412	case sd_op:
 413#ifdef CONFIG_64BIT
 414		/*
 415		 * A 32-bit kernel might be running on a 64-bit processor.  But
 416		 * if we're on a 32-bit processor and an i-cache incoherency
 417		 * or race makes us see a 64-bit instruction here the sdl/sdr
 418		 * would blow up, so for now we don't handle unaligned 64-bit
 419		 * instructions on 32-bit kernels.
 420		 */
 421		if (user && !access_ok(addr, 8))
 422			goto sigbus;
 423
 424		compute_return_epc(regs);
 425		value = regs->regs[insn.i_format.rt];
 426		StoreDW(addr, value, res);
 427		if (res)
 428			goto fault;
 429		break;
 430#endif /* CONFIG_64BIT */
 431
 432		/* Cannot handle 64-bit instructions in 32-bit kernel */
 433		goto sigill;
 434
 435#ifdef CONFIG_MIPS_FP_SUPPORT
 436
 437	case lwc1_op:
 438	case ldc1_op:
 439	case swc1_op:
 440	case sdc1_op:
 441	case cop1x_op: {
 442		void __user *fault_addr = NULL;
 443
 444		die_if_kernel("Unaligned FP access in kernel code", regs);
 445		BUG_ON(!used_math());
 446
 447		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 448					       &fault_addr);
 449		own_fpu(1);	/* Restore FPU state. */
 450
 451		/* Signal if something went wrong. */
 452		process_fpemu_return(res, fault_addr, 0);
 453
 454		if (res == 0)
 455			break;
 456		return;
 457	}
 458#endif /* CONFIG_MIPS_FP_SUPPORT */
 459
 460#ifdef CONFIG_CPU_HAS_MSA
 461
 462	case msa_op: {
 463		unsigned int wd, preempted;
 464		enum msa_2b_fmt df;
 465		union fpureg *fpr;
 466
 467		if (!cpu_has_msa)
 468			goto sigill;
 469
 470		/*
 471		 * If we've reached this point then userland should have taken
 472		 * the MSA disabled exception & initialised vector context at
 473		 * some point in the past.
 474		 */
 475		BUG_ON(!thread_msa_context_live());
 476
 477		df = insn.msa_mi10_format.df;
 478		wd = insn.msa_mi10_format.wd;
 479		fpr = &current->thread.fpu.fpr[wd];
 480
 481		switch (insn.msa_mi10_format.func) {
 482		case msa_ld_op:
 483			if (!access_ok(addr, sizeof(*fpr)))
 484				goto sigbus;
 485
 486			do {
 487				/*
 488				 * If we have live MSA context keep track of
 489				 * whether we get preempted in order to avoid
 490				 * the register context we load being clobbered
 491				 * by the live context as it's saved during
 492				 * preemption. If we don't have live context
 493				 * then it can't be saved to clobber the value
 494				 * we load.
 495				 */
 496				preempted = test_thread_flag(TIF_USEDMSA);
 497
 498				res = __copy_from_user_inatomic(fpr, addr,
 499								sizeof(*fpr));
 500				if (res)
 501					goto fault;
 502
 503				/*
 504				 * Update the hardware register if it is in use
 505				 * by the task in this quantum, in order to
 506				 * avoid having to save & restore the whole
 507				 * vector context.
 508				 */
 509				preempt_disable();
 510				if (test_thread_flag(TIF_USEDMSA)) {
 511					write_msa_wr(wd, fpr, df);
 512					preempted = 0;
 513				}
 514				preempt_enable();
 515			} while (preempted);
 516			break;
 517
 518		case msa_st_op:
 519			if (!access_ok(addr, sizeof(*fpr)))
 520				goto sigbus;
 521
 522			/*
 523			 * Update from the hardware register if it is in use by
 524			 * the task in this quantum, in order to avoid having to
 525			 * save & restore the whole vector context.
 526			 */
 527			preempt_disable();
 528			if (test_thread_flag(TIF_USEDMSA))
 529				read_msa_wr(wd, fpr, df);
 530			preempt_enable();
 531
 532			res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
 533			if (res)
 534				goto fault;
 535			break;
 536
 537		default:
 538			goto sigbus;
 539		}
 540
 541		compute_return_epc(regs);
 542		break;
 543	}
 544#endif /* CONFIG_CPU_HAS_MSA */
 545
 546#ifndef CONFIG_CPU_MIPSR6
 547	/*
 548	 * COP2 is available to implementor for application specific use.
 549	 * It's up to applications to register a notifier chain and do
 550	 * whatever they have to do, including possible sending of signals.
 551	 *
 552	 * This instruction has been reallocated in Release 6
 553	 */
 554	case lwc2_op:
 555		cu2_notifier_call_chain(CU2_LWC2_OP, regs);
 556		break;
 557
 558	case ldc2_op:
 559		cu2_notifier_call_chain(CU2_LDC2_OP, regs);
 560		break;
 561
 562	case swc2_op:
 563		cu2_notifier_call_chain(CU2_SWC2_OP, regs);
 564		break;
 565
 566	case sdc2_op:
 567		cu2_notifier_call_chain(CU2_SDC2_OP, regs);
 568		break;
 569#endif
 570	default:
 571		/*
 572		 * Pheeee...  We encountered an yet unknown instruction or
 573		 * cache coherence problem.  Die sucker, die ...
 574		 */
 575		goto sigill;
 576	}
 577
 578#ifdef CONFIG_DEBUG_FS
 579	unaligned_instructions++;
 580#endif
 581
 582	return;
 583
 584fault:
 585	/* roll back jump/branch */
 586	regs->cp0_epc = origpc;
 587	regs->regs[31] = orig31;
 588	/* Did we have an exception handler installed? */
 589	if (fixup_exception(regs))
 590		return;
 591
 592	die_if_kernel("Unhandled kernel unaligned access", regs);
 593	force_sig(SIGSEGV);
 594
 595	return;
 596
 597sigbus:
 598	die_if_kernel("Unhandled kernel unaligned access", regs);
 599	force_sig(SIGBUS);
 600
 601	return;
 602
 603sigill:
 604	die_if_kernel
 605	    ("Unhandled kernel unaligned access or invalid instruction", regs);
 606	force_sig(SIGILL);
 607}
 608
 609/* Recode table from 16-bit register notation to 32-bit GPR. */
 610const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
 611
 612/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
 613static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
 614
 615static void emulate_load_store_microMIPS(struct pt_regs *regs,
 616					 void __user *addr)
 617{
 618	unsigned long value;
 619	unsigned int res;
 620	int i;
 621	unsigned int reg = 0, rvar;
 622	unsigned long orig31;
 623	u16 __user *pc16;
 624	u16 halfword;
 625	unsigned int word;
 626	unsigned long origpc, contpc;
 627	union mips_instruction insn;
 628	struct mm_decoded_insn mminsn;
 629	bool user = user_mode(regs);
 630
 631	origpc = regs->cp0_epc;
 632	orig31 = regs->regs[31];
 633
 634	mminsn.micro_mips_mode = 1;
 635
 636	/*
 637	 * This load never faults.
 638	 */
 639	pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
 640	__get_user(halfword, pc16);
 641	pc16++;
 642	contpc = regs->cp0_epc + 2;
 643	word = ((unsigned int)halfword << 16);
 644	mminsn.pc_inc = 2;
 645
 646	if (!mm_insn_16bit(halfword)) {
 647		__get_user(halfword, pc16);
 648		pc16++;
 649		contpc = regs->cp0_epc + 4;
 650		mminsn.pc_inc = 4;
 651		word |= halfword;
 652	}
 653	mminsn.insn = word;
 654
 655	if (get_user(halfword, pc16))
 656		goto fault;
 657	mminsn.next_pc_inc = 2;
 658	word = ((unsigned int)halfword << 16);
 659
 660	if (!mm_insn_16bit(halfword)) {
 661		pc16++;
 662		if (get_user(halfword, pc16))
 663			goto fault;
 664		mminsn.next_pc_inc = 4;
 665		word |= halfword;
 666	}
 667	mminsn.next_insn = word;
 668
 669	insn = (union mips_instruction)(mminsn.insn);
 670	if (mm_isBranchInstr(regs, mminsn, &contpc))
 671		insn = (union mips_instruction)(mminsn.next_insn);
 672
 673	/*  Parse instruction to find what to do */
 674
 675	switch (insn.mm_i_format.opcode) {
 676
 677	case mm_pool32a_op:
 678		switch (insn.mm_x_format.func) {
 679		case mm_lwxs_op:
 680			reg = insn.mm_x_format.rd;
 681			goto loadW;
 682		}
 683
 684		goto sigbus;
 685
 686	case mm_pool32b_op:
 687		switch (insn.mm_m_format.func) {
 688		case mm_lwp_func:
 689			reg = insn.mm_m_format.rd;
 690			if (reg == 31)
 691				goto sigbus;
 692
 693			if (user && !access_ok(addr, 8))
 694				goto sigbus;
 695
 696			LoadW(addr, value, res);
 697			if (res)
 698				goto fault;
 699			regs->regs[reg] = value;
 700			addr += 4;
 701			LoadW(addr, value, res);
 702			if (res)
 703				goto fault;
 704			regs->regs[reg + 1] = value;
 705			goto success;
 706
 707		case mm_swp_func:
 708			reg = insn.mm_m_format.rd;
 709			if (reg == 31)
 710				goto sigbus;
 711
 712			if (user && !access_ok(addr, 8))
 713				goto sigbus;
 714
 715			value = regs->regs[reg];
 716			StoreW(addr, value, res);
 717			if (res)
 718				goto fault;
 719			addr += 4;
 720			value = regs->regs[reg + 1];
 721			StoreW(addr, value, res);
 722			if (res)
 723				goto fault;
 724			goto success;
 725
 726		case mm_ldp_func:
 727#ifdef CONFIG_64BIT
 728			reg = insn.mm_m_format.rd;
 729			if (reg == 31)
 730				goto sigbus;
 731
 732			if (user && !access_ok(addr, 16))
 733				goto sigbus;
 734
 735			LoadDW(addr, value, res);
 736			if (res)
 737				goto fault;
 738			regs->regs[reg] = value;
 739			addr += 8;
 740			LoadDW(addr, value, res);
 741			if (res)
 742				goto fault;
 743			regs->regs[reg + 1] = value;
 744			goto success;
 745#endif /* CONFIG_64BIT */
 746
 747			goto sigill;
 748
 749		case mm_sdp_func:
 750#ifdef CONFIG_64BIT
 751			reg = insn.mm_m_format.rd;
 752			if (reg == 31)
 753				goto sigbus;
 754
 755			if (user && !access_ok(addr, 16))
 756				goto sigbus;
 757
 758			value = regs->regs[reg];
 759			StoreDW(addr, value, res);
 760			if (res)
 761				goto fault;
 762			addr += 8;
 763			value = regs->regs[reg + 1];
 764			StoreDW(addr, value, res);
 765			if (res)
 766				goto fault;
 767			goto success;
 768#endif /* CONFIG_64BIT */
 769
 770			goto sigill;
 771
 772		case mm_lwm32_func:
 773			reg = insn.mm_m_format.rd;
 774			rvar = reg & 0xf;
 775			if ((rvar > 9) || !reg)
 776				goto sigill;
 777			if (reg & 0x10) {
 778				if (user && !access_ok(addr, 4 * (rvar + 1)))
 779					goto sigbus;
 780			} else {
 781				if (user && !access_ok(addr, 4 * rvar))
 782					goto sigbus;
 783			}
 784			if (rvar == 9)
 785				rvar = 8;
 786			for (i = 16; rvar; rvar--, i++) {
 787				LoadW(addr, value, res);
 788				if (res)
 789					goto fault;
 790				addr += 4;
 791				regs->regs[i] = value;
 792			}
 793			if ((reg & 0xf) == 9) {
 794				LoadW(addr, value, res);
 795				if (res)
 796					goto fault;
 797				addr += 4;
 798				regs->regs[30] = value;
 799			}
 800			if (reg & 0x10) {
 801				LoadW(addr, value, res);
 802				if (res)
 803					goto fault;
 804				regs->regs[31] = value;
 805			}
 806			goto success;
 807
 808		case mm_swm32_func:
 809			reg = insn.mm_m_format.rd;
 810			rvar = reg & 0xf;
 811			if ((rvar > 9) || !reg)
 812				goto sigill;
 813			if (reg & 0x10) {
 814				if (user && !access_ok(addr, 4 * (rvar + 1)))
 815					goto sigbus;
 816			} else {
 817				if (user && !access_ok(addr, 4 * rvar))
 818					goto sigbus;
 819			}
 820			if (rvar == 9)
 821				rvar = 8;
 822			for (i = 16; rvar; rvar--, i++) {
 823				value = regs->regs[i];
 824				StoreW(addr, value, res);
 825				if (res)
 826					goto fault;
 827				addr += 4;
 828			}
 829			if ((reg & 0xf) == 9) {
 830				value = regs->regs[30];
 831				StoreW(addr, value, res);
 832				if (res)
 833					goto fault;
 834				addr += 4;
 835			}
 836			if (reg & 0x10) {
 837				value = regs->regs[31];
 838				StoreW(addr, value, res);
 839				if (res)
 840					goto fault;
 841			}
 842			goto success;
 843
 844		case mm_ldm_func:
 845#ifdef CONFIG_64BIT
 846			reg = insn.mm_m_format.rd;
 847			rvar = reg & 0xf;
 848			if ((rvar > 9) || !reg)
 849				goto sigill;
 850			if (reg & 0x10) {
 851				if (user && !access_ok(addr, 8 * (rvar + 1)))
 852					goto sigbus;
 853			} else {
 854				if (user && !access_ok(addr, 8 * rvar))
 855					goto sigbus;
 856			}
 857			if (rvar == 9)
 858				rvar = 8;
 859
 860			for (i = 16; rvar; rvar--, i++) {
 861				LoadDW(addr, value, res);
 862				if (res)
 863					goto fault;
 864				addr += 4;
 865				regs->regs[i] = value;
 866			}
 867			if ((reg & 0xf) == 9) {
 868				LoadDW(addr, value, res);
 869				if (res)
 870					goto fault;
 871				addr += 8;
 872				regs->regs[30] = value;
 873			}
 874			if (reg & 0x10) {
 875				LoadDW(addr, value, res);
 876				if (res)
 877					goto fault;
 878				regs->regs[31] = value;
 879			}
 880			goto success;
 881#endif /* CONFIG_64BIT */
 882
 883			goto sigill;
 884
 885		case mm_sdm_func:
 886#ifdef CONFIG_64BIT
 887			reg = insn.mm_m_format.rd;
 888			rvar = reg & 0xf;
 889			if ((rvar > 9) || !reg)
 890				goto sigill;
 891			if (reg & 0x10) {
 892				if (user && !access_ok(addr, 8 * (rvar + 1)))
 893					goto sigbus;
 894			} else {
 895				if (user && !access_ok(addr, 8 * rvar))
 896					goto sigbus;
 897			}
 898			if (rvar == 9)
 899				rvar = 8;
 900
 901			for (i = 16; rvar; rvar--, i++) {
 902				value = regs->regs[i];
 903				StoreDW(addr, value, res);
 904				if (res)
 905					goto fault;
 906				addr += 8;
 907			}
 908			if ((reg & 0xf) == 9) {
 909				value = regs->regs[30];
 910				StoreDW(addr, value, res);
 911				if (res)
 912					goto fault;
 913				addr += 8;
 914			}
 915			if (reg & 0x10) {
 916				value = regs->regs[31];
 917				StoreDW(addr, value, res);
 918				if (res)
 919					goto fault;
 920			}
 921			goto success;
 922#endif /* CONFIG_64BIT */
 923
 924			goto sigill;
 925
 926			/*  LWC2, SWC2, LDC2, SDC2 are not serviced */
 927		}
 928
 929		goto sigbus;
 930
 931	case mm_pool32c_op:
 932		switch (insn.mm_m_format.func) {
 933		case mm_lwu_func:
 934			reg = insn.mm_m_format.rd;
 935			goto loadWU;
 936		}
 937
 938		/*  LL,SC,LLD,SCD are not serviced */
 939		goto sigbus;
 940
 941#ifdef CONFIG_MIPS_FP_SUPPORT
 942	case mm_pool32f_op:
 943		switch (insn.mm_x_format.func) {
 944		case mm_lwxc1_func:
 945		case mm_swxc1_func:
 946		case mm_ldxc1_func:
 947		case mm_sdxc1_func:
 948			goto fpu_emul;
 949		}
 950
 951		goto sigbus;
 952
 953	case mm_ldc132_op:
 954	case mm_sdc132_op:
 955	case mm_lwc132_op:
 956	case mm_swc132_op: {
 957		void __user *fault_addr = NULL;
 958
 959fpu_emul:
 960		/* roll back jump/branch */
 961		regs->cp0_epc = origpc;
 962		regs->regs[31] = orig31;
 963
 964		die_if_kernel("Unaligned FP access in kernel code", regs);
 965		BUG_ON(!used_math());
 966		BUG_ON(!is_fpu_owner());
 967
 968		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 969					       &fault_addr);
 970		own_fpu(1);	/* restore FPU state */
 971
 972		/* If something went wrong, signal */
 973		process_fpemu_return(res, fault_addr, 0);
 974
 975		if (res == 0)
 976			goto success;
 977		return;
 978	}
 979#endif /* CONFIG_MIPS_FP_SUPPORT */
 980
 981	case mm_lh32_op:
 982		reg = insn.mm_i_format.rt;
 983		goto loadHW;
 984
 985	case mm_lhu32_op:
 986		reg = insn.mm_i_format.rt;
 987		goto loadHWU;
 988
 989	case mm_lw32_op:
 990		reg = insn.mm_i_format.rt;
 991		goto loadW;
 992
 993	case mm_sh32_op:
 994		reg = insn.mm_i_format.rt;
 995		goto storeHW;
 996
 997	case mm_sw32_op:
 998		reg = insn.mm_i_format.rt;
 999		goto storeW;
1000
1001	case mm_ld32_op:
1002		reg = insn.mm_i_format.rt;
1003		goto loadDW;
1004
1005	case mm_sd32_op:
1006		reg = insn.mm_i_format.rt;
1007		goto storeDW;
1008
1009	case mm_pool16c_op:
1010		switch (insn.mm16_m_format.func) {
1011		case mm_lwm16_op:
1012			reg = insn.mm16_m_format.rlist;
1013			rvar = reg + 1;
1014			if (user && !access_ok(addr, 4 * rvar))
1015				goto sigbus;
1016
1017			for (i = 16; rvar; rvar--, i++) {
1018				LoadW(addr, value, res);
1019				if (res)
1020					goto fault;
1021				addr += 4;
1022				regs->regs[i] = value;
1023			}
1024			LoadW(addr, value, res);
1025			if (res)
1026				goto fault;
1027			regs->regs[31] = value;
1028
1029			goto success;
1030
1031		case mm_swm16_op:
1032			reg = insn.mm16_m_format.rlist;
1033			rvar = reg + 1;
1034			if (user && !access_ok(addr, 4 * rvar))
1035				goto sigbus;
1036
1037			for (i = 16; rvar; rvar--, i++) {
1038				value = regs->regs[i];
1039				StoreW(addr, value, res);
1040				if (res)
1041					goto fault;
1042				addr += 4;
1043			}
1044			value = regs->regs[31];
1045			StoreW(addr, value, res);
1046			if (res)
1047				goto fault;
1048
1049			goto success;
1050
1051		}
1052
1053		goto sigbus;
1054
1055	case mm_lhu16_op:
1056		reg = reg16to32[insn.mm16_rb_format.rt];
1057		goto loadHWU;
1058
1059	case mm_lw16_op:
1060		reg = reg16to32[insn.mm16_rb_format.rt];
1061		goto loadW;
1062
1063	case mm_sh16_op:
1064		reg = reg16to32st[insn.mm16_rb_format.rt];
1065		goto storeHW;
1066
1067	case mm_sw16_op:
1068		reg = reg16to32st[insn.mm16_rb_format.rt];
1069		goto storeW;
1070
1071	case mm_lwsp16_op:
1072		reg = insn.mm16_r5_format.rt;
1073		goto loadW;
1074
1075	case mm_swsp16_op:
1076		reg = insn.mm16_r5_format.rt;
1077		goto storeW;
1078
1079	case mm_lwgp16_op:
1080		reg = reg16to32[insn.mm16_r3_format.rt];
1081		goto loadW;
1082
1083	default:
1084		goto sigill;
1085	}
1086
1087loadHW:
1088	if (user && !access_ok(addr, 2))
1089		goto sigbus;
1090
1091	LoadHW(addr, value, res);
1092	if (res)
1093		goto fault;
1094	regs->regs[reg] = value;
1095	goto success;
1096
1097loadHWU:
1098	if (user && !access_ok(addr, 2))
1099		goto sigbus;
1100
1101	LoadHWU(addr, value, res);
1102	if (res)
1103		goto fault;
1104	regs->regs[reg] = value;
1105	goto success;
1106
1107loadW:
1108	if (user && !access_ok(addr, 4))
1109		goto sigbus;
1110
1111	LoadW(addr, value, res);
1112	if (res)
1113		goto fault;
1114	regs->regs[reg] = value;
1115	goto success;
1116
1117loadWU:
1118#ifdef CONFIG_64BIT
1119	/*
1120	 * A 32-bit kernel might be running on a 64-bit processor.  But
1121	 * if we're on a 32-bit processor and an i-cache incoherency
1122	 * or race makes us see a 64-bit instruction here the sdl/sdr
1123	 * would blow up, so for now we don't handle unaligned 64-bit
1124	 * instructions on 32-bit kernels.
1125	 */
1126	if (user && !access_ok(addr, 4))
1127		goto sigbus;
1128
1129	LoadWU(addr, value, res);
1130	if (res)
1131		goto fault;
1132	regs->regs[reg] = value;
1133	goto success;
1134#endif /* CONFIG_64BIT */
1135
1136	/* Cannot handle 64-bit instructions in 32-bit kernel */
1137	goto sigill;
1138
1139loadDW:
1140#ifdef CONFIG_64BIT
1141	/*
1142	 * A 32-bit kernel might be running on a 64-bit processor.  But
1143	 * if we're on a 32-bit processor and an i-cache incoherency
1144	 * or race makes us see a 64-bit instruction here the sdl/sdr
1145	 * would blow up, so for now we don't handle unaligned 64-bit
1146	 * instructions on 32-bit kernels.
1147	 */
1148	if (user && !access_ok(addr, 8))
1149		goto sigbus;
1150
1151	LoadDW(addr, value, res);
1152	if (res)
1153		goto fault;
1154	regs->regs[reg] = value;
1155	goto success;
1156#endif /* CONFIG_64BIT */
1157
1158	/* Cannot handle 64-bit instructions in 32-bit kernel */
1159	goto sigill;
1160
1161storeHW:
1162	if (user && !access_ok(addr, 2))
1163		goto sigbus;
1164
1165	value = regs->regs[reg];
1166	StoreHW(addr, value, res);
1167	if (res)
1168		goto fault;
1169	goto success;
1170
1171storeW:
1172	if (user && !access_ok(addr, 4))
1173		goto sigbus;
1174
1175	value = regs->regs[reg];
1176	StoreW(addr, value, res);
1177	if (res)
1178		goto fault;
1179	goto success;
1180
1181storeDW:
1182#ifdef CONFIG_64BIT
1183	/*
1184	 * A 32-bit kernel might be running on a 64-bit processor.  But
1185	 * if we're on a 32-bit processor and an i-cache incoherency
1186	 * or race makes us see a 64-bit instruction here the sdl/sdr
1187	 * would blow up, so for now we don't handle unaligned 64-bit
1188	 * instructions on 32-bit kernels.
1189	 */
1190	if (user && !access_ok(addr, 8))
1191		goto sigbus;
1192
1193	value = regs->regs[reg];
1194	StoreDW(addr, value, res);
1195	if (res)
1196		goto fault;
1197	goto success;
1198#endif /* CONFIG_64BIT */
1199
1200	/* Cannot handle 64-bit instructions in 32-bit kernel */
1201	goto sigill;
1202
1203success:
1204	regs->cp0_epc = contpc;	/* advance or branch */
1205
1206#ifdef CONFIG_DEBUG_FS
1207	unaligned_instructions++;
1208#endif
1209	return;
1210
1211fault:
1212	/* roll back jump/branch */
1213	regs->cp0_epc = origpc;
1214	regs->regs[31] = orig31;
1215	/* Did we have an exception handler installed? */
1216	if (fixup_exception(regs))
1217		return;
1218
1219	die_if_kernel("Unhandled kernel unaligned access", regs);
1220	force_sig(SIGSEGV);
1221
1222	return;
1223
1224sigbus:
1225	die_if_kernel("Unhandled kernel unaligned access", regs);
1226	force_sig(SIGBUS);
1227
1228	return;
1229
1230sigill:
1231	die_if_kernel
1232	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1233	force_sig(SIGILL);
1234}
1235
1236static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1237{
1238	unsigned long value;
1239	unsigned int res;
1240	int reg;
1241	unsigned long orig31;
1242	u16 __user *pc16;
1243	unsigned long origpc;
1244	union mips16e_instruction mips16inst, oldinst;
1245	unsigned int opcode;
1246	int extended = 0;
1247	bool user = user_mode(regs);
1248
1249	origpc = regs->cp0_epc;
1250	orig31 = regs->regs[31];
1251	pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1252	/*
1253	 * This load never faults.
1254	 */
1255	__get_user(mips16inst.full, pc16);
1256	oldinst = mips16inst;
1257
1258	/* skip EXTEND instruction */
1259	if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1260		extended = 1;
1261		pc16++;
1262		__get_user(mips16inst.full, pc16);
1263	} else if (delay_slot(regs)) {
1264		/*  skip jump instructions */
1265		/*  JAL/JALX are 32 bits but have OPCODE in first short int */
1266		if (mips16inst.ri.opcode == MIPS16e_jal_op)
1267			pc16++;
1268		pc16++;
1269		if (get_user(mips16inst.full, pc16))
1270			goto sigbus;
1271	}
1272
1273	opcode = mips16inst.ri.opcode;
1274	switch (opcode) {
1275	case MIPS16e_i64_op:	/* I64 or RI64 instruction */
1276		switch (mips16inst.i64.func) {	/* I64/RI64 func field check */
1277		case MIPS16e_ldpc_func:
1278		case MIPS16e_ldsp_func:
1279			reg = reg16to32[mips16inst.ri64.ry];
1280			goto loadDW;
1281
1282		case MIPS16e_sdsp_func:
1283			reg = reg16to32[mips16inst.ri64.ry];
1284			goto writeDW;
1285
1286		case MIPS16e_sdrasp_func:
1287			reg = 29;	/* GPRSP */
1288			goto writeDW;
1289		}
1290
1291		goto sigbus;
1292
1293	case MIPS16e_swsp_op:
1294		reg = reg16to32[mips16inst.ri.rx];
1295		if (extended && cpu_has_mips16e2)
1296			switch (mips16inst.ri.imm >> 5) {
1297			case 0:		/* SWSP */
1298			case 1:		/* SWGP */
1299				break;
1300			case 2:		/* SHGP */
1301				opcode = MIPS16e_sh_op;
1302				break;
1303			default:
1304				goto sigbus;
1305			}
1306		break;
1307
1308	case MIPS16e_lwpc_op:
1309		reg = reg16to32[mips16inst.ri.rx];
1310		break;
1311
1312	case MIPS16e_lwsp_op:
1313		reg = reg16to32[mips16inst.ri.rx];
1314		if (extended && cpu_has_mips16e2)
1315			switch (mips16inst.ri.imm >> 5) {
1316			case 0:		/* LWSP */
1317			case 1:		/* LWGP */
1318				break;
1319			case 2:		/* LHGP */
1320				opcode = MIPS16e_lh_op;
1321				break;
1322			case 4:		/* LHUGP */
1323				opcode = MIPS16e_lhu_op;
1324				break;
1325			default:
1326				goto sigbus;
1327			}
1328		break;
1329
1330	case MIPS16e_i8_op:
1331		if (mips16inst.i8.func != MIPS16e_swrasp_func)
1332			goto sigbus;
1333		reg = 29;	/* GPRSP */
1334		break;
1335
1336	default:
1337		reg = reg16to32[mips16inst.rri.ry];
1338		break;
1339	}
1340
1341	switch (opcode) {
1342
1343	case MIPS16e_lb_op:
1344	case MIPS16e_lbu_op:
1345	case MIPS16e_sb_op:
1346		goto sigbus;
1347
1348	case MIPS16e_lh_op:
1349		if (user && !access_ok(addr, 2))
1350			goto sigbus;
1351
1352		LoadHW(addr, value, res);
1353		if (res)
1354			goto fault;
1355		MIPS16e_compute_return_epc(regs, &oldinst);
1356		regs->regs[reg] = value;
1357		break;
1358
1359	case MIPS16e_lhu_op:
1360		if (user && !access_ok(addr, 2))
1361			goto sigbus;
1362
1363		LoadHWU(addr, value, res);
1364		if (res)
1365			goto fault;
1366		MIPS16e_compute_return_epc(regs, &oldinst);
1367		regs->regs[reg] = value;
1368		break;
1369
1370	case MIPS16e_lw_op:
1371	case MIPS16e_lwpc_op:
1372	case MIPS16e_lwsp_op:
1373		if (user && !access_ok(addr, 4))
1374			goto sigbus;
1375
1376		LoadW(addr, value, res);
1377		if (res)
1378			goto fault;
1379		MIPS16e_compute_return_epc(regs, &oldinst);
1380		regs->regs[reg] = value;
1381		break;
1382
1383	case MIPS16e_lwu_op:
1384#ifdef CONFIG_64BIT
1385		/*
1386		 * A 32-bit kernel might be running on a 64-bit processor.  But
1387		 * if we're on a 32-bit processor and an i-cache incoherency
1388		 * or race makes us see a 64-bit instruction here the sdl/sdr
1389		 * would blow up, so for now we don't handle unaligned 64-bit
1390		 * instructions on 32-bit kernels.
1391		 */
1392		if (user && !access_ok(addr, 4))
1393			goto sigbus;
1394
1395		LoadWU(addr, value, res);
1396		if (res)
1397			goto fault;
1398		MIPS16e_compute_return_epc(regs, &oldinst);
1399		regs->regs[reg] = value;
1400		break;
1401#endif /* CONFIG_64BIT */
1402
1403		/* Cannot handle 64-bit instructions in 32-bit kernel */
1404		goto sigill;
1405
1406	case MIPS16e_ld_op:
1407loadDW:
1408#ifdef CONFIG_64BIT
1409		/*
1410		 * A 32-bit kernel might be running on a 64-bit processor.  But
1411		 * if we're on a 32-bit processor and an i-cache incoherency
1412		 * or race makes us see a 64-bit instruction here the sdl/sdr
1413		 * would blow up, so for now we don't handle unaligned 64-bit
1414		 * instructions on 32-bit kernels.
1415		 */
1416		if (user && !access_ok(addr, 8))
1417			goto sigbus;
1418
1419		LoadDW(addr, value, res);
1420		if (res)
1421			goto fault;
1422		MIPS16e_compute_return_epc(regs, &oldinst);
1423		regs->regs[reg] = value;
1424		break;
1425#endif /* CONFIG_64BIT */
1426
1427		/* Cannot handle 64-bit instructions in 32-bit kernel */
1428		goto sigill;
1429
1430	case MIPS16e_sh_op:
1431		if (user && !access_ok(addr, 2))
1432			goto sigbus;
1433
1434		MIPS16e_compute_return_epc(regs, &oldinst);
1435		value = regs->regs[reg];
1436		StoreHW(addr, value, res);
1437		if (res)
1438			goto fault;
1439		break;
1440
1441	case MIPS16e_sw_op:
1442	case MIPS16e_swsp_op:
1443	case MIPS16e_i8_op:	/* actually - MIPS16e_swrasp_func */
1444		if (user && !access_ok(addr, 4))
1445			goto sigbus;
1446
1447		MIPS16e_compute_return_epc(regs, &oldinst);
1448		value = regs->regs[reg];
1449		StoreW(addr, value, res);
1450		if (res)
1451			goto fault;
1452		break;
1453
1454	case MIPS16e_sd_op:
1455writeDW:
1456#ifdef CONFIG_64BIT
1457		/*
1458		 * A 32-bit kernel might be running on a 64-bit processor.  But
1459		 * if we're on a 32-bit processor and an i-cache incoherency
1460		 * or race makes us see a 64-bit instruction here the sdl/sdr
1461		 * would blow up, so for now we don't handle unaligned 64-bit
1462		 * instructions on 32-bit kernels.
1463		 */
1464		if (user && !access_ok(addr, 8))
1465			goto sigbus;
1466
1467		MIPS16e_compute_return_epc(regs, &oldinst);
1468		value = regs->regs[reg];
1469		StoreDW(addr, value, res);
1470		if (res)
1471			goto fault;
1472		break;
1473#endif /* CONFIG_64BIT */
1474
1475		/* Cannot handle 64-bit instructions in 32-bit kernel */
1476		goto sigill;
1477
1478	default:
1479		/*
1480		 * Pheeee...  We encountered an yet unknown instruction or
1481		 * cache coherence problem.  Die sucker, die ...
1482		 */
1483		goto sigill;
1484	}
1485
1486#ifdef CONFIG_DEBUG_FS
1487	unaligned_instructions++;
1488#endif
1489
1490	return;
1491
1492fault:
1493	/* roll back jump/branch */
1494	regs->cp0_epc = origpc;
1495	regs->regs[31] = orig31;
1496	/* Did we have an exception handler installed? */
1497	if (fixup_exception(regs))
1498		return;
1499
1500	die_if_kernel("Unhandled kernel unaligned access", regs);
1501	force_sig(SIGSEGV);
1502
1503	return;
1504
1505sigbus:
1506	die_if_kernel("Unhandled kernel unaligned access", regs);
1507	force_sig(SIGBUS);
1508
1509	return;
1510
1511sigill:
1512	die_if_kernel
1513	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1514	force_sig(SIGILL);
1515}
1516
1517asmlinkage void do_ade(struct pt_regs *regs)
1518{
1519	enum ctx_state prev_state;
1520	unsigned int *pc;
 
1521
1522	prev_state = exception_enter();
1523	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1524			1, regs, regs->cp0_badvaddr);
1525
1526#ifdef CONFIG_64BIT
1527	/*
1528	 * check, if we are hitting space between CPU implemented maximum
1529	 * virtual user address and 64bit maximum virtual user address
1530	 * and do exception handling to get EFAULTs for get_user/put_user
1531	 */
1532	if ((regs->cp0_badvaddr >= (1UL << cpu_vmbits)) &&
1533	    (regs->cp0_badvaddr < XKSSEG)) {
1534		if (fixup_exception(regs)) {
1535			current->thread.cp0_baduaddr = regs->cp0_badvaddr;
1536			return;
1537		}
1538		goto sigbus;
1539	}
1540#endif
1541
1542	/*
1543	 * Did we catch a fault trying to load an instruction?
1544	 */
1545	if (regs->cp0_badvaddr == regs->cp0_epc)
1546		goto sigbus;
1547
1548	if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1549		goto sigbus;
1550	if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1551		goto sigbus;
1552
1553	/*
1554	 * Do branch emulation only if we didn't forward the exception.
1555	 * This is all so but ugly ...
1556	 */
1557
1558	/*
1559	 * Are we running in microMIPS mode?
1560	 */
1561	if (get_isa16_mode(regs->cp0_epc)) {
1562		/*
1563		 * Did we catch a fault trying to load an instruction in
1564		 * 16-bit mode?
1565		 */
1566		if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1567			goto sigbus;
1568		if (unaligned_action == UNALIGNED_ACTION_SHOW)
1569			show_registers(regs);
1570
1571		if (cpu_has_mmips) {
 
 
 
1572			emulate_load_store_microMIPS(regs,
1573				(void __user *)regs->cp0_badvaddr);
 
 
1574			return;
1575		}
1576
1577		if (cpu_has_mips16) {
 
 
 
1578			emulate_load_store_MIPS16e(regs,
1579				(void __user *)regs->cp0_badvaddr);
 
 
1580			return;
1581		}
1582
1583		goto sigbus;
1584	}
1585
1586	if (unaligned_action == UNALIGNED_ACTION_SHOW)
1587		show_registers(regs);
1588	pc = (unsigned int *)exception_epc(regs);
1589
 
 
 
1590	emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
 
1591
1592	return;
1593
1594sigbus:
1595	die_if_kernel("Kernel unaligned instruction access", regs);
1596	force_sig(SIGBUS);
1597
1598	/*
1599	 * XXX On return from the signal handler we should advance the epc
1600	 */
1601	exception_exit(prev_state);
1602}
1603
1604#ifdef CONFIG_DEBUG_FS
1605static int __init debugfs_unaligned(void)
1606{
1607	debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
1608			   &unaligned_instructions);
1609	debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1610			   mips_debugfs_dir, &unaligned_action);
1611	return 0;
1612}
1613arch_initcall(debugfs_unaligned);
1614#endif