Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * IPv4 specific functions
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 */
18
19/*
20 * Changes:
21 * David S. Miller : New socket lookup architecture.
22 * This code is dedicated to John Dyson.
23 * David S. Miller : Change semantics of established hash,
24 * half is devoted to TIME_WAIT sockets
25 * and the rest go in the other half.
26 * Andi Kleen : Add support for syncookies and fixed
27 * some bugs: ip options weren't passed to
28 * the TCP layer, missed a check for an
29 * ACK bit.
30 * Andi Kleen : Implemented fast path mtu discovery.
31 * Fixed many serious bugs in the
32 * request_sock handling and moved
33 * most of it into the af independent code.
34 * Added tail drop and some other bugfixes.
35 * Added new listen semantics.
36 * Mike McLagan : Routing by source
37 * Juan Jose Ciarlante: ip_dynaddr bits
38 * Andi Kleen: various fixes.
39 * Vitaly E. Lavrov : Transparent proxy revived after year
40 * coma.
41 * Andi Kleen : Fix new listen.
42 * Andi Kleen : Fix accept error reporting.
43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
45 * a single port at the same time.
46 */
47
48#define pr_fmt(fmt) "TCP: " fmt
49
50#include <linux/bottom_half.h>
51#include <linux/types.h>
52#include <linux/fcntl.h>
53#include <linux/module.h>
54#include <linux/random.h>
55#include <linux/cache.h>
56#include <linux/jhash.h>
57#include <linux/init.h>
58#include <linux/times.h>
59#include <linux/slab.h>
60
61#include <net/net_namespace.h>
62#include <net/icmp.h>
63#include <net/inet_hashtables.h>
64#include <net/tcp.h>
65#include <net/transp_v6.h>
66#include <net/ipv6.h>
67#include <net/inet_common.h>
68#include <net/timewait_sock.h>
69#include <net/xfrm.h>
70#include <net/secure_seq.h>
71#include <net/busy_poll.h>
72
73#include <linux/inet.h>
74#include <linux/ipv6.h>
75#include <linux/stddef.h>
76#include <linux/proc_fs.h>
77#include <linux/seq_file.h>
78#include <linux/inetdevice.h>
79#include <linux/btf_ids.h>
80
81#include <crypto/hash.h>
82#include <linux/scatterlist.h>
83
84#include <trace/events/tcp.h>
85
86#ifdef CONFIG_TCP_MD5SIG
87static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 __be32 daddr, __be32 saddr, const struct tcphdr *th);
89#endif
90
91struct inet_hashinfo tcp_hashinfo;
92EXPORT_SYMBOL(tcp_hashinfo);
93
94static u32 tcp_v4_init_seq(const struct sk_buff *skb)
95{
96 return secure_tcp_seq(ip_hdr(skb)->daddr,
97 ip_hdr(skb)->saddr,
98 tcp_hdr(skb)->dest,
99 tcp_hdr(skb)->source);
100}
101
102static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
103{
104 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
105}
106
107int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108{
109 const struct inet_timewait_sock *tw = inet_twsk(sktw);
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
113
114 if (reuse == 2) {
115 /* Still does not detect *everything* that goes through
116 * lo, since we require a loopback src or dst address
117 * or direct binding to 'lo' interface.
118 */
119 bool loopback = false;
120 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
121 loopback = true;
122#if IS_ENABLED(CONFIG_IPV6)
123 if (tw->tw_family == AF_INET6) {
124 if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
125 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
126 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
127 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
128 loopback = true;
129 } else
130#endif
131 {
132 if (ipv4_is_loopback(tw->tw_daddr) ||
133 ipv4_is_loopback(tw->tw_rcv_saddr))
134 loopback = true;
135 }
136 if (!loopback)
137 reuse = 0;
138 }
139
140 /* With PAWS, it is safe from the viewpoint
141 of data integrity. Even without PAWS it is safe provided sequence
142 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
143
144 Actually, the idea is close to VJ's one, only timestamp cache is
145 held not per host, but per port pair and TW bucket is used as state
146 holder.
147
148 If TW bucket has been already destroyed we fall back to VJ's scheme
149 and use initial timestamp retrieved from peer table.
150 */
151 if (tcptw->tw_ts_recent_stamp &&
152 (!twp || (reuse && time_after32(ktime_get_seconds(),
153 tcptw->tw_ts_recent_stamp)))) {
154 /* In case of repair and re-using TIME-WAIT sockets we still
155 * want to be sure that it is safe as above but honor the
156 * sequence numbers and time stamps set as part of the repair
157 * process.
158 *
159 * Without this check re-using a TIME-WAIT socket with TCP
160 * repair would accumulate a -1 on the repair assigned
161 * sequence number. The first time it is reused the sequence
162 * is -1, the second time -2, etc. This fixes that issue
163 * without appearing to create any others.
164 */
165 if (likely(!tp->repair)) {
166 u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
167
168 if (!seq)
169 seq = 1;
170 WRITE_ONCE(tp->write_seq, seq);
171 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
172 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
173 }
174 sock_hold(sktw);
175 return 1;
176 }
177
178 return 0;
179}
180EXPORT_SYMBOL_GPL(tcp_twsk_unique);
181
182static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
183 int addr_len)
184{
185 /* This check is replicated from tcp_v4_connect() and intended to
186 * prevent BPF program called below from accessing bytes that are out
187 * of the bound specified by user in addr_len.
188 */
189 if (addr_len < sizeof(struct sockaddr_in))
190 return -EINVAL;
191
192 sock_owned_by_me(sk);
193
194 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
195}
196
197/* This will initiate an outgoing connection. */
198int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
199{
200 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
201 struct inet_sock *inet = inet_sk(sk);
202 struct tcp_sock *tp = tcp_sk(sk);
203 __be16 orig_sport, orig_dport;
204 __be32 daddr, nexthop;
205 struct flowi4 *fl4;
206 struct rtable *rt;
207 int err;
208 struct ip_options_rcu *inet_opt;
209 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
210
211 if (addr_len < sizeof(struct sockaddr_in))
212 return -EINVAL;
213
214 if (usin->sin_family != AF_INET)
215 return -EAFNOSUPPORT;
216
217 nexthop = daddr = usin->sin_addr.s_addr;
218 inet_opt = rcu_dereference_protected(inet->inet_opt,
219 lockdep_sock_is_held(sk));
220 if (inet_opt && inet_opt->opt.srr) {
221 if (!daddr)
222 return -EINVAL;
223 nexthop = inet_opt->opt.faddr;
224 }
225
226 orig_sport = inet->inet_sport;
227 orig_dport = usin->sin_port;
228 fl4 = &inet->cork.fl.u.ip4;
229 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
230 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
231 IPPROTO_TCP,
232 orig_sport, orig_dport, sk);
233 if (IS_ERR(rt)) {
234 err = PTR_ERR(rt);
235 if (err == -ENETUNREACH)
236 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
237 return err;
238 }
239
240 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
241 ip_rt_put(rt);
242 return -ENETUNREACH;
243 }
244
245 if (!inet_opt || !inet_opt->opt.srr)
246 daddr = fl4->daddr;
247
248 if (!inet->inet_saddr)
249 inet->inet_saddr = fl4->saddr;
250 sk_rcv_saddr_set(sk, inet->inet_saddr);
251
252 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
253 /* Reset inherited state */
254 tp->rx_opt.ts_recent = 0;
255 tp->rx_opt.ts_recent_stamp = 0;
256 if (likely(!tp->repair))
257 WRITE_ONCE(tp->write_seq, 0);
258 }
259
260 inet->inet_dport = usin->sin_port;
261 sk_daddr_set(sk, daddr);
262
263 inet_csk(sk)->icsk_ext_hdr_len = 0;
264 if (inet_opt)
265 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
266
267 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
268
269 /* Socket identity is still unknown (sport may be zero).
270 * However we set state to SYN-SENT and not releasing socket
271 * lock select source port, enter ourselves into the hash tables and
272 * complete initialization after this.
273 */
274 tcp_set_state(sk, TCP_SYN_SENT);
275 err = inet_hash_connect(tcp_death_row, sk);
276 if (err)
277 goto failure;
278
279 sk_set_txhash(sk);
280
281 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
282 inet->inet_sport, inet->inet_dport, sk);
283 if (IS_ERR(rt)) {
284 err = PTR_ERR(rt);
285 rt = NULL;
286 goto failure;
287 }
288 /* OK, now commit destination to socket. */
289 sk->sk_gso_type = SKB_GSO_TCPV4;
290 sk_setup_caps(sk, &rt->dst);
291 rt = NULL;
292
293 if (likely(!tp->repair)) {
294 if (!tp->write_seq)
295 WRITE_ONCE(tp->write_seq,
296 secure_tcp_seq(inet->inet_saddr,
297 inet->inet_daddr,
298 inet->inet_sport,
299 usin->sin_port));
300 tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
301 inet->inet_saddr,
302 inet->inet_daddr);
303 }
304
305 inet->inet_id = prandom_u32();
306
307 if (tcp_fastopen_defer_connect(sk, &err))
308 return err;
309 if (err)
310 goto failure;
311
312 err = tcp_connect(sk);
313
314 if (err)
315 goto failure;
316
317 return 0;
318
319failure:
320 /*
321 * This unhashes the socket and releases the local port,
322 * if necessary.
323 */
324 tcp_set_state(sk, TCP_CLOSE);
325 ip_rt_put(rt);
326 sk->sk_route_caps = 0;
327 inet->inet_dport = 0;
328 return err;
329}
330EXPORT_SYMBOL(tcp_v4_connect);
331
332/*
333 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
334 * It can be called through tcp_release_cb() if socket was owned by user
335 * at the time tcp_v4_err() was called to handle ICMP message.
336 */
337void tcp_v4_mtu_reduced(struct sock *sk)
338{
339 struct inet_sock *inet = inet_sk(sk);
340 struct dst_entry *dst;
341 u32 mtu;
342
343 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
344 return;
345 mtu = tcp_sk(sk)->mtu_info;
346 dst = inet_csk_update_pmtu(sk, mtu);
347 if (!dst)
348 return;
349
350 /* Something is about to be wrong... Remember soft error
351 * for the case, if this connection will not able to recover.
352 */
353 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
354 sk->sk_err_soft = EMSGSIZE;
355
356 mtu = dst_mtu(dst);
357
358 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
359 ip_sk_accept_pmtu(sk) &&
360 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
361 tcp_sync_mss(sk, mtu);
362
363 /* Resend the TCP packet because it's
364 * clear that the old packet has been
365 * dropped. This is the new "fast" path mtu
366 * discovery.
367 */
368 tcp_simple_retransmit(sk);
369 } /* else let the usual retransmit timer handle it */
370}
371EXPORT_SYMBOL(tcp_v4_mtu_reduced);
372
373static void do_redirect(struct sk_buff *skb, struct sock *sk)
374{
375 struct dst_entry *dst = __sk_dst_check(sk, 0);
376
377 if (dst)
378 dst->ops->redirect(dst, sk, skb);
379}
380
381
382/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
383void tcp_req_err(struct sock *sk, u32 seq, bool abort)
384{
385 struct request_sock *req = inet_reqsk(sk);
386 struct net *net = sock_net(sk);
387
388 /* ICMPs are not backlogged, hence we cannot get
389 * an established socket here.
390 */
391 if (seq != tcp_rsk(req)->snt_isn) {
392 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
393 } else if (abort) {
394 /*
395 * Still in SYN_RECV, just remove it silently.
396 * There is no good way to pass the error to the newly
397 * created socket, and POSIX does not want network
398 * errors returned from accept().
399 */
400 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
401 tcp_listendrop(req->rsk_listener);
402 }
403 reqsk_put(req);
404}
405EXPORT_SYMBOL(tcp_req_err);
406
407/* TCP-LD (RFC 6069) logic */
408void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
409{
410 struct inet_connection_sock *icsk = inet_csk(sk);
411 struct tcp_sock *tp = tcp_sk(sk);
412 struct sk_buff *skb;
413 s32 remaining;
414 u32 delta_us;
415
416 if (sock_owned_by_user(sk))
417 return;
418
419 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
420 !icsk->icsk_backoff)
421 return;
422
423 skb = tcp_rtx_queue_head(sk);
424 if (WARN_ON_ONCE(!skb))
425 return;
426
427 icsk->icsk_backoff--;
428 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
429 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
430
431 tcp_mstamp_refresh(tp);
432 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
433 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
434
435 if (remaining > 0) {
436 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
437 remaining, TCP_RTO_MAX);
438 } else {
439 /* RTO revert clocked out retransmission.
440 * Will retransmit now.
441 */
442 tcp_retransmit_timer(sk);
443 }
444}
445EXPORT_SYMBOL(tcp_ld_RTO_revert);
446
447/*
448 * This routine is called by the ICMP module when it gets some
449 * sort of error condition. If err < 0 then the socket should
450 * be closed and the error returned to the user. If err > 0
451 * it's just the icmp type << 8 | icmp code. After adjustment
452 * header points to the first 8 bytes of the tcp header. We need
453 * to find the appropriate port.
454 *
455 * The locking strategy used here is very "optimistic". When
456 * someone else accesses the socket the ICMP is just dropped
457 * and for some paths there is no check at all.
458 * A more general error queue to queue errors for later handling
459 * is probably better.
460 *
461 */
462
463int tcp_v4_err(struct sk_buff *skb, u32 info)
464{
465 const struct iphdr *iph = (const struct iphdr *)skb->data;
466 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
467 struct tcp_sock *tp;
468 struct inet_sock *inet;
469 const int type = icmp_hdr(skb)->type;
470 const int code = icmp_hdr(skb)->code;
471 struct sock *sk;
472 struct request_sock *fastopen;
473 u32 seq, snd_una;
474 int err;
475 struct net *net = dev_net(skb->dev);
476
477 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
478 th->dest, iph->saddr, ntohs(th->source),
479 inet_iif(skb), 0);
480 if (!sk) {
481 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
482 return -ENOENT;
483 }
484 if (sk->sk_state == TCP_TIME_WAIT) {
485 inet_twsk_put(inet_twsk(sk));
486 return 0;
487 }
488 seq = ntohl(th->seq);
489 if (sk->sk_state == TCP_NEW_SYN_RECV) {
490 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
491 type == ICMP_TIME_EXCEEDED ||
492 (type == ICMP_DEST_UNREACH &&
493 (code == ICMP_NET_UNREACH ||
494 code == ICMP_HOST_UNREACH)));
495 return 0;
496 }
497
498 bh_lock_sock(sk);
499 /* If too many ICMPs get dropped on busy
500 * servers this needs to be solved differently.
501 * We do take care of PMTU discovery (RFC1191) special case :
502 * we can receive locally generated ICMP messages while socket is held.
503 */
504 if (sock_owned_by_user(sk)) {
505 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
506 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
507 }
508 if (sk->sk_state == TCP_CLOSE)
509 goto out;
510
511 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
512 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
513 goto out;
514 }
515
516 tp = tcp_sk(sk);
517 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
518 fastopen = rcu_dereference(tp->fastopen_rsk);
519 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
520 if (sk->sk_state != TCP_LISTEN &&
521 !between(seq, snd_una, tp->snd_nxt)) {
522 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
523 goto out;
524 }
525
526 switch (type) {
527 case ICMP_REDIRECT:
528 if (!sock_owned_by_user(sk))
529 do_redirect(skb, sk);
530 goto out;
531 case ICMP_SOURCE_QUENCH:
532 /* Just silently ignore these. */
533 goto out;
534 case ICMP_PARAMETERPROB:
535 err = EPROTO;
536 break;
537 case ICMP_DEST_UNREACH:
538 if (code > NR_ICMP_UNREACH)
539 goto out;
540
541 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
542 /* We are not interested in TCP_LISTEN and open_requests
543 * (SYN-ACKs send out by Linux are always <576bytes so
544 * they should go through unfragmented).
545 */
546 if (sk->sk_state == TCP_LISTEN)
547 goto out;
548
549 tp->mtu_info = info;
550 if (!sock_owned_by_user(sk)) {
551 tcp_v4_mtu_reduced(sk);
552 } else {
553 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
554 sock_hold(sk);
555 }
556 goto out;
557 }
558
559 err = icmp_err_convert[code].errno;
560 /* check if this ICMP message allows revert of backoff.
561 * (see RFC 6069)
562 */
563 if (!fastopen &&
564 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
565 tcp_ld_RTO_revert(sk, seq);
566 break;
567 case ICMP_TIME_EXCEEDED:
568 err = EHOSTUNREACH;
569 break;
570 default:
571 goto out;
572 }
573
574 switch (sk->sk_state) {
575 case TCP_SYN_SENT:
576 case TCP_SYN_RECV:
577 /* Only in fast or simultaneous open. If a fast open socket is
578 * is already accepted it is treated as a connected one below.
579 */
580 if (fastopen && !fastopen->sk)
581 break;
582
583 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
584
585 if (!sock_owned_by_user(sk)) {
586 sk->sk_err = err;
587
588 sk->sk_error_report(sk);
589
590 tcp_done(sk);
591 } else {
592 sk->sk_err_soft = err;
593 }
594 goto out;
595 }
596
597 /* If we've already connected we will keep trying
598 * until we time out, or the user gives up.
599 *
600 * rfc1122 4.2.3.9 allows to consider as hard errors
601 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
602 * but it is obsoleted by pmtu discovery).
603 *
604 * Note, that in modern internet, where routing is unreliable
605 * and in each dark corner broken firewalls sit, sending random
606 * errors ordered by their masters even this two messages finally lose
607 * their original sense (even Linux sends invalid PORT_UNREACHs)
608 *
609 * Now we are in compliance with RFCs.
610 * --ANK (980905)
611 */
612
613 inet = inet_sk(sk);
614 if (!sock_owned_by_user(sk) && inet->recverr) {
615 sk->sk_err = err;
616 sk->sk_error_report(sk);
617 } else { /* Only an error on timeout */
618 sk->sk_err_soft = err;
619 }
620
621out:
622 bh_unlock_sock(sk);
623 sock_put(sk);
624 return 0;
625}
626
627void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
628{
629 struct tcphdr *th = tcp_hdr(skb);
630
631 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
632 skb->csum_start = skb_transport_header(skb) - skb->head;
633 skb->csum_offset = offsetof(struct tcphdr, check);
634}
635
636/* This routine computes an IPv4 TCP checksum. */
637void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
638{
639 const struct inet_sock *inet = inet_sk(sk);
640
641 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
642}
643EXPORT_SYMBOL(tcp_v4_send_check);
644
645/*
646 * This routine will send an RST to the other tcp.
647 *
648 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
649 * for reset.
650 * Answer: if a packet caused RST, it is not for a socket
651 * existing in our system, if it is matched to a socket,
652 * it is just duplicate segment or bug in other side's TCP.
653 * So that we build reply only basing on parameters
654 * arrived with segment.
655 * Exception: precedence violation. We do not implement it in any case.
656 */
657
658static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
659{
660 const struct tcphdr *th = tcp_hdr(skb);
661 struct {
662 struct tcphdr th;
663#ifdef CONFIG_TCP_MD5SIG
664 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
665#endif
666 } rep;
667 struct ip_reply_arg arg;
668#ifdef CONFIG_TCP_MD5SIG
669 struct tcp_md5sig_key *key = NULL;
670 const __u8 *hash_location = NULL;
671 unsigned char newhash[16];
672 int genhash;
673 struct sock *sk1 = NULL;
674#endif
675 u64 transmit_time = 0;
676 struct sock *ctl_sk;
677 struct net *net;
678
679 /* Never send a reset in response to a reset. */
680 if (th->rst)
681 return;
682
683 /* If sk not NULL, it means we did a successful lookup and incoming
684 * route had to be correct. prequeue might have dropped our dst.
685 */
686 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
687 return;
688
689 /* Swap the send and the receive. */
690 memset(&rep, 0, sizeof(rep));
691 rep.th.dest = th->source;
692 rep.th.source = th->dest;
693 rep.th.doff = sizeof(struct tcphdr) / 4;
694 rep.th.rst = 1;
695
696 if (th->ack) {
697 rep.th.seq = th->ack_seq;
698 } else {
699 rep.th.ack = 1;
700 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
701 skb->len - (th->doff << 2));
702 }
703
704 memset(&arg, 0, sizeof(arg));
705 arg.iov[0].iov_base = (unsigned char *)&rep;
706 arg.iov[0].iov_len = sizeof(rep.th);
707
708 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
709#ifdef CONFIG_TCP_MD5SIG
710 rcu_read_lock();
711 hash_location = tcp_parse_md5sig_option(th);
712 if (sk && sk_fullsock(sk)) {
713 const union tcp_md5_addr *addr;
714 int l3index;
715
716 /* sdif set, means packet ingressed via a device
717 * in an L3 domain and inet_iif is set to it.
718 */
719 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
720 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
721 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
722 } else if (hash_location) {
723 const union tcp_md5_addr *addr;
724 int sdif = tcp_v4_sdif(skb);
725 int dif = inet_iif(skb);
726 int l3index;
727
728 /*
729 * active side is lost. Try to find listening socket through
730 * source port, and then find md5 key through listening socket.
731 * we are not loose security here:
732 * Incoming packet is checked with md5 hash with finding key,
733 * no RST generated if md5 hash doesn't match.
734 */
735 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
736 ip_hdr(skb)->saddr,
737 th->source, ip_hdr(skb)->daddr,
738 ntohs(th->source), dif, sdif);
739 /* don't send rst if it can't find key */
740 if (!sk1)
741 goto out;
742
743 /* sdif set, means packet ingressed via a device
744 * in an L3 domain and dif is set to it.
745 */
746 l3index = sdif ? dif : 0;
747 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
748 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
749 if (!key)
750 goto out;
751
752
753 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
754 if (genhash || memcmp(hash_location, newhash, 16) != 0)
755 goto out;
756
757 }
758
759 if (key) {
760 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
761 (TCPOPT_NOP << 16) |
762 (TCPOPT_MD5SIG << 8) |
763 TCPOLEN_MD5SIG);
764 /* Update length and the length the header thinks exists */
765 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
766 rep.th.doff = arg.iov[0].iov_len / 4;
767
768 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
769 key, ip_hdr(skb)->saddr,
770 ip_hdr(skb)->daddr, &rep.th);
771 }
772#endif
773 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
774 ip_hdr(skb)->saddr, /* XXX */
775 arg.iov[0].iov_len, IPPROTO_TCP, 0);
776 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
777 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
778
779 /* When socket is gone, all binding information is lost.
780 * routing might fail in this case. No choice here, if we choose to force
781 * input interface, we will misroute in case of asymmetric route.
782 */
783 if (sk) {
784 arg.bound_dev_if = sk->sk_bound_dev_if;
785 if (sk_fullsock(sk))
786 trace_tcp_send_reset(sk, skb);
787 }
788
789 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
790 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
791
792 arg.tos = ip_hdr(skb)->tos;
793 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
794 local_bh_disable();
795 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
796 if (sk) {
797 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
798 inet_twsk(sk)->tw_mark : sk->sk_mark;
799 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
800 inet_twsk(sk)->tw_priority : sk->sk_priority;
801 transmit_time = tcp_transmit_time(sk);
802 }
803 ip_send_unicast_reply(ctl_sk,
804 skb, &TCP_SKB_CB(skb)->header.h4.opt,
805 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
806 &arg, arg.iov[0].iov_len,
807 transmit_time);
808
809 ctl_sk->sk_mark = 0;
810 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
811 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
812 local_bh_enable();
813
814#ifdef CONFIG_TCP_MD5SIG
815out:
816 rcu_read_unlock();
817#endif
818}
819
820/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
821 outside socket context is ugly, certainly. What can I do?
822 */
823
824static void tcp_v4_send_ack(const struct sock *sk,
825 struct sk_buff *skb, u32 seq, u32 ack,
826 u32 win, u32 tsval, u32 tsecr, int oif,
827 struct tcp_md5sig_key *key,
828 int reply_flags, u8 tos)
829{
830 const struct tcphdr *th = tcp_hdr(skb);
831 struct {
832 struct tcphdr th;
833 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
834#ifdef CONFIG_TCP_MD5SIG
835 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
836#endif
837 ];
838 } rep;
839 struct net *net = sock_net(sk);
840 struct ip_reply_arg arg;
841 struct sock *ctl_sk;
842 u64 transmit_time;
843
844 memset(&rep.th, 0, sizeof(struct tcphdr));
845 memset(&arg, 0, sizeof(arg));
846
847 arg.iov[0].iov_base = (unsigned char *)&rep;
848 arg.iov[0].iov_len = sizeof(rep.th);
849 if (tsecr) {
850 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
851 (TCPOPT_TIMESTAMP << 8) |
852 TCPOLEN_TIMESTAMP);
853 rep.opt[1] = htonl(tsval);
854 rep.opt[2] = htonl(tsecr);
855 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
856 }
857
858 /* Swap the send and the receive. */
859 rep.th.dest = th->source;
860 rep.th.source = th->dest;
861 rep.th.doff = arg.iov[0].iov_len / 4;
862 rep.th.seq = htonl(seq);
863 rep.th.ack_seq = htonl(ack);
864 rep.th.ack = 1;
865 rep.th.window = htons(win);
866
867#ifdef CONFIG_TCP_MD5SIG
868 if (key) {
869 int offset = (tsecr) ? 3 : 0;
870
871 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
872 (TCPOPT_NOP << 16) |
873 (TCPOPT_MD5SIG << 8) |
874 TCPOLEN_MD5SIG);
875 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
876 rep.th.doff = arg.iov[0].iov_len/4;
877
878 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
879 key, ip_hdr(skb)->saddr,
880 ip_hdr(skb)->daddr, &rep.th);
881 }
882#endif
883 arg.flags = reply_flags;
884 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
885 ip_hdr(skb)->saddr, /* XXX */
886 arg.iov[0].iov_len, IPPROTO_TCP, 0);
887 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
888 if (oif)
889 arg.bound_dev_if = oif;
890 arg.tos = tos;
891 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
892 local_bh_disable();
893 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
894 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
895 inet_twsk(sk)->tw_mark : sk->sk_mark;
896 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
897 inet_twsk(sk)->tw_priority : sk->sk_priority;
898 transmit_time = tcp_transmit_time(sk);
899 ip_send_unicast_reply(ctl_sk,
900 skb, &TCP_SKB_CB(skb)->header.h4.opt,
901 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
902 &arg, arg.iov[0].iov_len,
903 transmit_time);
904
905 ctl_sk->sk_mark = 0;
906 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
907 local_bh_enable();
908}
909
910static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
911{
912 struct inet_timewait_sock *tw = inet_twsk(sk);
913 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
914
915 tcp_v4_send_ack(sk, skb,
916 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
917 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
918 tcp_time_stamp_raw() + tcptw->tw_ts_offset,
919 tcptw->tw_ts_recent,
920 tw->tw_bound_dev_if,
921 tcp_twsk_md5_key(tcptw),
922 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
923 tw->tw_tos
924 );
925
926 inet_twsk_put(tw);
927}
928
929static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
930 struct request_sock *req)
931{
932 const union tcp_md5_addr *addr;
933 int l3index;
934
935 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
936 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
937 */
938 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
939 tcp_sk(sk)->snd_nxt;
940
941 /* RFC 7323 2.3
942 * The window field (SEG.WND) of every outgoing segment, with the
943 * exception of <SYN> segments, MUST be right-shifted by
944 * Rcv.Wind.Shift bits:
945 */
946 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
947 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
948 tcp_v4_send_ack(sk, skb, seq,
949 tcp_rsk(req)->rcv_nxt,
950 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
951 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
952 req->ts_recent,
953 0,
954 tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
955 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
956 ip_hdr(skb)->tos);
957}
958
959/*
960 * Send a SYN-ACK after having received a SYN.
961 * This still operates on a request_sock only, not on a big
962 * socket.
963 */
964static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
965 struct flowi *fl,
966 struct request_sock *req,
967 struct tcp_fastopen_cookie *foc,
968 enum tcp_synack_type synack_type)
969{
970 const struct inet_request_sock *ireq = inet_rsk(req);
971 struct flowi4 fl4;
972 int err = -1;
973 struct sk_buff *skb;
974
975 /* First, grab a route. */
976 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
977 return -1;
978
979 skb = tcp_make_synack(sk, dst, req, foc, synack_type);
980
981 if (skb) {
982 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
983
984 rcu_read_lock();
985 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
986 ireq->ir_rmt_addr,
987 rcu_dereference(ireq->ireq_opt));
988 rcu_read_unlock();
989 err = net_xmit_eval(err);
990 }
991
992 return err;
993}
994
995/*
996 * IPv4 request_sock destructor.
997 */
998static void tcp_v4_reqsk_destructor(struct request_sock *req)
999{
1000 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1001}
1002
1003#ifdef CONFIG_TCP_MD5SIG
1004/*
1005 * RFC2385 MD5 checksumming requires a mapping of
1006 * IP address->MD5 Key.
1007 * We need to maintain these in the sk structure.
1008 */
1009
1010DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
1011EXPORT_SYMBOL(tcp_md5_needed);
1012
1013/* Find the Key structure for an address. */
1014struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1015 const union tcp_md5_addr *addr,
1016 int family)
1017{
1018 const struct tcp_sock *tp = tcp_sk(sk);
1019 struct tcp_md5sig_key *key;
1020 const struct tcp_md5sig_info *md5sig;
1021 __be32 mask;
1022 struct tcp_md5sig_key *best_match = NULL;
1023 bool match;
1024
1025 /* caller either holds rcu_read_lock() or socket lock */
1026 md5sig = rcu_dereference_check(tp->md5sig_info,
1027 lockdep_sock_is_held(sk));
1028 if (!md5sig)
1029 return NULL;
1030
1031 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1032 lockdep_sock_is_held(sk)) {
1033 if (key->family != family)
1034 continue;
1035 if (key->l3index && key->l3index != l3index)
1036 continue;
1037 if (family == AF_INET) {
1038 mask = inet_make_mask(key->prefixlen);
1039 match = (key->addr.a4.s_addr & mask) ==
1040 (addr->a4.s_addr & mask);
1041#if IS_ENABLED(CONFIG_IPV6)
1042 } else if (family == AF_INET6) {
1043 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1044 key->prefixlen);
1045#endif
1046 } else {
1047 match = false;
1048 }
1049
1050 if (match && (!best_match ||
1051 key->prefixlen > best_match->prefixlen))
1052 best_match = key;
1053 }
1054 return best_match;
1055}
1056EXPORT_SYMBOL(__tcp_md5_do_lookup);
1057
1058static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1059 const union tcp_md5_addr *addr,
1060 int family, u8 prefixlen,
1061 int l3index)
1062{
1063 const struct tcp_sock *tp = tcp_sk(sk);
1064 struct tcp_md5sig_key *key;
1065 unsigned int size = sizeof(struct in_addr);
1066 const struct tcp_md5sig_info *md5sig;
1067
1068 /* caller either holds rcu_read_lock() or socket lock */
1069 md5sig = rcu_dereference_check(tp->md5sig_info,
1070 lockdep_sock_is_held(sk));
1071 if (!md5sig)
1072 return NULL;
1073#if IS_ENABLED(CONFIG_IPV6)
1074 if (family == AF_INET6)
1075 size = sizeof(struct in6_addr);
1076#endif
1077 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1078 lockdep_sock_is_held(sk)) {
1079 if (key->family != family)
1080 continue;
1081 if (key->l3index && key->l3index != l3index)
1082 continue;
1083 if (!memcmp(&key->addr, addr, size) &&
1084 key->prefixlen == prefixlen)
1085 return key;
1086 }
1087 return NULL;
1088}
1089
1090struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1091 const struct sock *addr_sk)
1092{
1093 const union tcp_md5_addr *addr;
1094 int l3index;
1095
1096 l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1097 addr_sk->sk_bound_dev_if);
1098 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1099 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1100}
1101EXPORT_SYMBOL(tcp_v4_md5_lookup);
1102
1103/* This can be called on a newly created socket, from other files */
1104int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1105 int family, u8 prefixlen, int l3index,
1106 const u8 *newkey, u8 newkeylen, gfp_t gfp)
1107{
1108 /* Add Key to the list */
1109 struct tcp_md5sig_key *key;
1110 struct tcp_sock *tp = tcp_sk(sk);
1111 struct tcp_md5sig_info *md5sig;
1112
1113 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1114 if (key) {
1115 /* Pre-existing entry - just update that one.
1116 * Note that the key might be used concurrently.
1117 * data_race() is telling kcsan that we do not care of
1118 * key mismatches, since changing MD5 key on live flows
1119 * can lead to packet drops.
1120 */
1121 data_race(memcpy(key->key, newkey, newkeylen));
1122
1123 /* Pairs with READ_ONCE() in tcp_md5_hash_key().
1124 * Also note that a reader could catch new key->keylen value
1125 * but old key->key[], this is the reason we use __GFP_ZERO
1126 * at sock_kmalloc() time below these lines.
1127 */
1128 WRITE_ONCE(key->keylen, newkeylen);
1129
1130 return 0;
1131 }
1132
1133 md5sig = rcu_dereference_protected(tp->md5sig_info,
1134 lockdep_sock_is_held(sk));
1135 if (!md5sig) {
1136 md5sig = kmalloc(sizeof(*md5sig), gfp);
1137 if (!md5sig)
1138 return -ENOMEM;
1139
1140 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1141 INIT_HLIST_HEAD(&md5sig->head);
1142 rcu_assign_pointer(tp->md5sig_info, md5sig);
1143 }
1144
1145 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1146 if (!key)
1147 return -ENOMEM;
1148 if (!tcp_alloc_md5sig_pool()) {
1149 sock_kfree_s(sk, key, sizeof(*key));
1150 return -ENOMEM;
1151 }
1152
1153 memcpy(key->key, newkey, newkeylen);
1154 key->keylen = newkeylen;
1155 key->family = family;
1156 key->prefixlen = prefixlen;
1157 key->l3index = l3index;
1158 memcpy(&key->addr, addr,
1159 (family == AF_INET6) ? sizeof(struct in6_addr) :
1160 sizeof(struct in_addr));
1161 hlist_add_head_rcu(&key->node, &md5sig->head);
1162 return 0;
1163}
1164EXPORT_SYMBOL(tcp_md5_do_add);
1165
1166int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1167 u8 prefixlen, int l3index)
1168{
1169 struct tcp_md5sig_key *key;
1170
1171 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1172 if (!key)
1173 return -ENOENT;
1174 hlist_del_rcu(&key->node);
1175 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1176 kfree_rcu(key, rcu);
1177 return 0;
1178}
1179EXPORT_SYMBOL(tcp_md5_do_del);
1180
1181static void tcp_clear_md5_list(struct sock *sk)
1182{
1183 struct tcp_sock *tp = tcp_sk(sk);
1184 struct tcp_md5sig_key *key;
1185 struct hlist_node *n;
1186 struct tcp_md5sig_info *md5sig;
1187
1188 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1189
1190 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1191 hlist_del_rcu(&key->node);
1192 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1193 kfree_rcu(key, rcu);
1194 }
1195}
1196
1197static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1198 sockptr_t optval, int optlen)
1199{
1200 struct tcp_md5sig cmd;
1201 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1202 const union tcp_md5_addr *addr;
1203 u8 prefixlen = 32;
1204 int l3index = 0;
1205
1206 if (optlen < sizeof(cmd))
1207 return -EINVAL;
1208
1209 if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1210 return -EFAULT;
1211
1212 if (sin->sin_family != AF_INET)
1213 return -EINVAL;
1214
1215 if (optname == TCP_MD5SIG_EXT &&
1216 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1217 prefixlen = cmd.tcpm_prefixlen;
1218 if (prefixlen > 32)
1219 return -EINVAL;
1220 }
1221
1222 if (optname == TCP_MD5SIG_EXT &&
1223 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1224 struct net_device *dev;
1225
1226 rcu_read_lock();
1227 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1228 if (dev && netif_is_l3_master(dev))
1229 l3index = dev->ifindex;
1230
1231 rcu_read_unlock();
1232
1233 /* ok to reference set/not set outside of rcu;
1234 * right now device MUST be an L3 master
1235 */
1236 if (!dev || !l3index)
1237 return -EINVAL;
1238 }
1239
1240 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1241
1242 if (!cmd.tcpm_keylen)
1243 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index);
1244
1245 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1246 return -EINVAL;
1247
1248 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index,
1249 cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1250}
1251
1252static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1253 __be32 daddr, __be32 saddr,
1254 const struct tcphdr *th, int nbytes)
1255{
1256 struct tcp4_pseudohdr *bp;
1257 struct scatterlist sg;
1258 struct tcphdr *_th;
1259
1260 bp = hp->scratch;
1261 bp->saddr = saddr;
1262 bp->daddr = daddr;
1263 bp->pad = 0;
1264 bp->protocol = IPPROTO_TCP;
1265 bp->len = cpu_to_be16(nbytes);
1266
1267 _th = (struct tcphdr *)(bp + 1);
1268 memcpy(_th, th, sizeof(*th));
1269 _th->check = 0;
1270
1271 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1272 ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1273 sizeof(*bp) + sizeof(*th));
1274 return crypto_ahash_update(hp->md5_req);
1275}
1276
1277static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1278 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1279{
1280 struct tcp_md5sig_pool *hp;
1281 struct ahash_request *req;
1282
1283 hp = tcp_get_md5sig_pool();
1284 if (!hp)
1285 goto clear_hash_noput;
1286 req = hp->md5_req;
1287
1288 if (crypto_ahash_init(req))
1289 goto clear_hash;
1290 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1291 goto clear_hash;
1292 if (tcp_md5_hash_key(hp, key))
1293 goto clear_hash;
1294 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1295 if (crypto_ahash_final(req))
1296 goto clear_hash;
1297
1298 tcp_put_md5sig_pool();
1299 return 0;
1300
1301clear_hash:
1302 tcp_put_md5sig_pool();
1303clear_hash_noput:
1304 memset(md5_hash, 0, 16);
1305 return 1;
1306}
1307
1308int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1309 const struct sock *sk,
1310 const struct sk_buff *skb)
1311{
1312 struct tcp_md5sig_pool *hp;
1313 struct ahash_request *req;
1314 const struct tcphdr *th = tcp_hdr(skb);
1315 __be32 saddr, daddr;
1316
1317 if (sk) { /* valid for establish/request sockets */
1318 saddr = sk->sk_rcv_saddr;
1319 daddr = sk->sk_daddr;
1320 } else {
1321 const struct iphdr *iph = ip_hdr(skb);
1322 saddr = iph->saddr;
1323 daddr = iph->daddr;
1324 }
1325
1326 hp = tcp_get_md5sig_pool();
1327 if (!hp)
1328 goto clear_hash_noput;
1329 req = hp->md5_req;
1330
1331 if (crypto_ahash_init(req))
1332 goto clear_hash;
1333
1334 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1335 goto clear_hash;
1336 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1337 goto clear_hash;
1338 if (tcp_md5_hash_key(hp, key))
1339 goto clear_hash;
1340 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1341 if (crypto_ahash_final(req))
1342 goto clear_hash;
1343
1344 tcp_put_md5sig_pool();
1345 return 0;
1346
1347clear_hash:
1348 tcp_put_md5sig_pool();
1349clear_hash_noput:
1350 memset(md5_hash, 0, 16);
1351 return 1;
1352}
1353EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1354
1355#endif
1356
1357/* Called with rcu_read_lock() */
1358static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1359 const struct sk_buff *skb,
1360 int dif, int sdif)
1361{
1362#ifdef CONFIG_TCP_MD5SIG
1363 /*
1364 * This gets called for each TCP segment that arrives
1365 * so we want to be efficient.
1366 * We have 3 drop cases:
1367 * o No MD5 hash and one expected.
1368 * o MD5 hash and we're not expecting one.
1369 * o MD5 hash and its wrong.
1370 */
1371 const __u8 *hash_location = NULL;
1372 struct tcp_md5sig_key *hash_expected;
1373 const struct iphdr *iph = ip_hdr(skb);
1374 const struct tcphdr *th = tcp_hdr(skb);
1375 const union tcp_md5_addr *addr;
1376 unsigned char newhash[16];
1377 int genhash, l3index;
1378
1379 /* sdif set, means packet ingressed via a device
1380 * in an L3 domain and dif is set to the l3mdev
1381 */
1382 l3index = sdif ? dif : 0;
1383
1384 addr = (union tcp_md5_addr *)&iph->saddr;
1385 hash_expected = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1386 hash_location = tcp_parse_md5sig_option(th);
1387
1388 /* We've parsed the options - do we have a hash? */
1389 if (!hash_expected && !hash_location)
1390 return false;
1391
1392 if (hash_expected && !hash_location) {
1393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1394 return true;
1395 }
1396
1397 if (!hash_expected && hash_location) {
1398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1399 return true;
1400 }
1401
1402 /* Okay, so this is hash_expected and hash_location -
1403 * so we need to calculate the checksum.
1404 */
1405 genhash = tcp_v4_md5_hash_skb(newhash,
1406 hash_expected,
1407 NULL, skb);
1408
1409 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1410 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1411 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
1412 &iph->saddr, ntohs(th->source),
1413 &iph->daddr, ntohs(th->dest),
1414 genhash ? " tcp_v4_calc_md5_hash failed"
1415 : "", l3index);
1416 return true;
1417 }
1418 return false;
1419#endif
1420 return false;
1421}
1422
1423static void tcp_v4_init_req(struct request_sock *req,
1424 const struct sock *sk_listener,
1425 struct sk_buff *skb)
1426{
1427 struct inet_request_sock *ireq = inet_rsk(req);
1428 struct net *net = sock_net(sk_listener);
1429
1430 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1431 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1432 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1433}
1434
1435static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1436 struct flowi *fl,
1437 const struct request_sock *req)
1438{
1439 return inet_csk_route_req(sk, &fl->u.ip4, req);
1440}
1441
1442struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1443 .family = PF_INET,
1444 .obj_size = sizeof(struct tcp_request_sock),
1445 .rtx_syn_ack = tcp_rtx_synack,
1446 .send_ack = tcp_v4_reqsk_send_ack,
1447 .destructor = tcp_v4_reqsk_destructor,
1448 .send_reset = tcp_v4_send_reset,
1449 .syn_ack_timeout = tcp_syn_ack_timeout,
1450};
1451
1452const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1453 .mss_clamp = TCP_MSS_DEFAULT,
1454#ifdef CONFIG_TCP_MD5SIG
1455 .req_md5_lookup = tcp_v4_md5_lookup,
1456 .calc_md5_hash = tcp_v4_md5_hash_skb,
1457#endif
1458 .init_req = tcp_v4_init_req,
1459#ifdef CONFIG_SYN_COOKIES
1460 .cookie_init_seq = cookie_v4_init_sequence,
1461#endif
1462 .route_req = tcp_v4_route_req,
1463 .init_seq = tcp_v4_init_seq,
1464 .init_ts_off = tcp_v4_init_ts_off,
1465 .send_synack = tcp_v4_send_synack,
1466};
1467
1468int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1469{
1470 /* Never answer to SYNs send to broadcast or multicast */
1471 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1472 goto drop;
1473
1474 return tcp_conn_request(&tcp_request_sock_ops,
1475 &tcp_request_sock_ipv4_ops, sk, skb);
1476
1477drop:
1478 tcp_listendrop(sk);
1479 return 0;
1480}
1481EXPORT_SYMBOL(tcp_v4_conn_request);
1482
1483
1484/*
1485 * The three way handshake has completed - we got a valid synack -
1486 * now create the new socket.
1487 */
1488struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1489 struct request_sock *req,
1490 struct dst_entry *dst,
1491 struct request_sock *req_unhash,
1492 bool *own_req)
1493{
1494 struct inet_request_sock *ireq;
1495 struct inet_sock *newinet;
1496 struct tcp_sock *newtp;
1497 struct sock *newsk;
1498#ifdef CONFIG_TCP_MD5SIG
1499 const union tcp_md5_addr *addr;
1500 struct tcp_md5sig_key *key;
1501 int l3index;
1502#endif
1503 struct ip_options_rcu *inet_opt;
1504
1505 if (sk_acceptq_is_full(sk))
1506 goto exit_overflow;
1507
1508 newsk = tcp_create_openreq_child(sk, req, skb);
1509 if (!newsk)
1510 goto exit_nonewsk;
1511
1512 newsk->sk_gso_type = SKB_GSO_TCPV4;
1513 inet_sk_rx_dst_set(newsk, skb);
1514
1515 newtp = tcp_sk(newsk);
1516 newinet = inet_sk(newsk);
1517 ireq = inet_rsk(req);
1518 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1519 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1520 newsk->sk_bound_dev_if = ireq->ir_iif;
1521 newinet->inet_saddr = ireq->ir_loc_addr;
1522 inet_opt = rcu_dereference(ireq->ireq_opt);
1523 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1524 newinet->mc_index = inet_iif(skb);
1525 newinet->mc_ttl = ip_hdr(skb)->ttl;
1526 newinet->rcv_tos = ip_hdr(skb)->tos;
1527 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1528 if (inet_opt)
1529 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1530 newinet->inet_id = prandom_u32();
1531
1532 if (!dst) {
1533 dst = inet_csk_route_child_sock(sk, newsk, req);
1534 if (!dst)
1535 goto put_and_exit;
1536 } else {
1537 /* syncookie case : see end of cookie_v4_check() */
1538 }
1539 sk_setup_caps(newsk, dst);
1540
1541 tcp_ca_openreq_child(newsk, dst);
1542
1543 tcp_sync_mss(newsk, dst_mtu(dst));
1544 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1545
1546 tcp_initialize_rcv_mss(newsk);
1547
1548#ifdef CONFIG_TCP_MD5SIG
1549 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1550 /* Copy over the MD5 key from the original socket */
1551 addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1552 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1553 if (key) {
1554 /*
1555 * We're using one, so create a matching key
1556 * on the newsk structure. If we fail to get
1557 * memory, then we end up not copying the key
1558 * across. Shucks.
1559 */
1560 tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index,
1561 key->key, key->keylen, GFP_ATOMIC);
1562 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1563 }
1564#endif
1565
1566 if (__inet_inherit_port(sk, newsk) < 0)
1567 goto put_and_exit;
1568 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1569 if (likely(*own_req)) {
1570 tcp_move_syn(newtp, req);
1571 ireq->ireq_opt = NULL;
1572 } else {
1573 newinet->inet_opt = NULL;
1574 }
1575 return newsk;
1576
1577exit_overflow:
1578 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1579exit_nonewsk:
1580 dst_release(dst);
1581exit:
1582 tcp_listendrop(sk);
1583 return NULL;
1584put_and_exit:
1585 newinet->inet_opt = NULL;
1586 inet_csk_prepare_forced_close(newsk);
1587 tcp_done(newsk);
1588 goto exit;
1589}
1590EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1591
1592static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1593{
1594#ifdef CONFIG_SYN_COOKIES
1595 const struct tcphdr *th = tcp_hdr(skb);
1596
1597 if (!th->syn)
1598 sk = cookie_v4_check(sk, skb);
1599#endif
1600 return sk;
1601}
1602
1603u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1604 struct tcphdr *th, u32 *cookie)
1605{
1606 u16 mss = 0;
1607#ifdef CONFIG_SYN_COOKIES
1608 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1609 &tcp_request_sock_ipv4_ops, sk, th);
1610 if (mss) {
1611 *cookie = __cookie_v4_init_sequence(iph, th, &mss);
1612 tcp_synq_overflow(sk);
1613 }
1614#endif
1615 return mss;
1616}
1617
1618/* The socket must have it's spinlock held when we get
1619 * here, unless it is a TCP_LISTEN socket.
1620 *
1621 * We have a potential double-lock case here, so even when
1622 * doing backlog processing we use the BH locking scheme.
1623 * This is because we cannot sleep with the original spinlock
1624 * held.
1625 */
1626int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1627{
1628 struct sock *rsk;
1629
1630 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1631 struct dst_entry *dst = sk->sk_rx_dst;
1632
1633 sock_rps_save_rxhash(sk, skb);
1634 sk_mark_napi_id(sk, skb);
1635 if (dst) {
1636 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1637 !dst->ops->check(dst, 0)) {
1638 dst_release(dst);
1639 sk->sk_rx_dst = NULL;
1640 }
1641 }
1642 tcp_rcv_established(sk, skb);
1643 return 0;
1644 }
1645
1646 if (tcp_checksum_complete(skb))
1647 goto csum_err;
1648
1649 if (sk->sk_state == TCP_LISTEN) {
1650 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1651
1652 if (!nsk)
1653 goto discard;
1654 if (nsk != sk) {
1655 if (tcp_child_process(sk, nsk, skb)) {
1656 rsk = nsk;
1657 goto reset;
1658 }
1659 return 0;
1660 }
1661 } else
1662 sock_rps_save_rxhash(sk, skb);
1663
1664 if (tcp_rcv_state_process(sk, skb)) {
1665 rsk = sk;
1666 goto reset;
1667 }
1668 return 0;
1669
1670reset:
1671 tcp_v4_send_reset(rsk, skb);
1672discard:
1673 kfree_skb(skb);
1674 /* Be careful here. If this function gets more complicated and
1675 * gcc suffers from register pressure on the x86, sk (in %ebx)
1676 * might be destroyed here. This current version compiles correctly,
1677 * but you have been warned.
1678 */
1679 return 0;
1680
1681csum_err:
1682 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1683 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1684 goto discard;
1685}
1686EXPORT_SYMBOL(tcp_v4_do_rcv);
1687
1688int tcp_v4_early_demux(struct sk_buff *skb)
1689{
1690 const struct iphdr *iph;
1691 const struct tcphdr *th;
1692 struct sock *sk;
1693
1694 if (skb->pkt_type != PACKET_HOST)
1695 return 0;
1696
1697 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1698 return 0;
1699
1700 iph = ip_hdr(skb);
1701 th = tcp_hdr(skb);
1702
1703 if (th->doff < sizeof(struct tcphdr) / 4)
1704 return 0;
1705
1706 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1707 iph->saddr, th->source,
1708 iph->daddr, ntohs(th->dest),
1709 skb->skb_iif, inet_sdif(skb));
1710 if (sk) {
1711 skb->sk = sk;
1712 skb->destructor = sock_edemux;
1713 if (sk_fullsock(sk)) {
1714 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1715
1716 if (dst)
1717 dst = dst_check(dst, 0);
1718 if (dst &&
1719 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1720 skb_dst_set_noref(skb, dst);
1721 }
1722 }
1723 return 0;
1724}
1725
1726bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1727{
1728 u32 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf);
1729 struct skb_shared_info *shinfo;
1730 const struct tcphdr *th;
1731 struct tcphdr *thtail;
1732 struct sk_buff *tail;
1733 unsigned int hdrlen;
1734 bool fragstolen;
1735 u32 gso_segs;
1736 int delta;
1737
1738 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1739 * we can fix skb->truesize to its real value to avoid future drops.
1740 * This is valid because skb is not yet charged to the socket.
1741 * It has been noticed pure SACK packets were sometimes dropped
1742 * (if cooked by drivers without copybreak feature).
1743 */
1744 skb_condense(skb);
1745
1746 skb_dst_drop(skb);
1747
1748 if (unlikely(tcp_checksum_complete(skb))) {
1749 bh_unlock_sock(sk);
1750 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1751 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1752 return true;
1753 }
1754
1755 /* Attempt coalescing to last skb in backlog, even if we are
1756 * above the limits.
1757 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1758 */
1759 th = (const struct tcphdr *)skb->data;
1760 hdrlen = th->doff * 4;
1761 shinfo = skb_shinfo(skb);
1762
1763 if (!shinfo->gso_size)
1764 shinfo->gso_size = skb->len - hdrlen;
1765
1766 if (!shinfo->gso_segs)
1767 shinfo->gso_segs = 1;
1768
1769 tail = sk->sk_backlog.tail;
1770 if (!tail)
1771 goto no_coalesce;
1772 thtail = (struct tcphdr *)tail->data;
1773
1774 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1775 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1776 ((TCP_SKB_CB(tail)->tcp_flags |
1777 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1778 !((TCP_SKB_CB(tail)->tcp_flags &
1779 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1780 ((TCP_SKB_CB(tail)->tcp_flags ^
1781 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1782#ifdef CONFIG_TLS_DEVICE
1783 tail->decrypted != skb->decrypted ||
1784#endif
1785 thtail->doff != th->doff ||
1786 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1787 goto no_coalesce;
1788
1789 __skb_pull(skb, hdrlen);
1790 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1791 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1792
1793 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1794 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1795 thtail->window = th->window;
1796 }
1797
1798 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1799 * thtail->fin, so that the fast path in tcp_rcv_established()
1800 * is not entered if we append a packet with a FIN.
1801 * SYN, RST, URG are not present.
1802 * ACK is set on both packets.
1803 * PSH : we do not really care in TCP stack,
1804 * at least for 'GRO' packets.
1805 */
1806 thtail->fin |= th->fin;
1807 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1808
1809 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1810 TCP_SKB_CB(tail)->has_rxtstamp = true;
1811 tail->tstamp = skb->tstamp;
1812 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1813 }
1814
1815 /* Not as strict as GRO. We only need to carry mss max value */
1816 skb_shinfo(tail)->gso_size = max(shinfo->gso_size,
1817 skb_shinfo(tail)->gso_size);
1818
1819 gso_segs = skb_shinfo(tail)->gso_segs + shinfo->gso_segs;
1820 skb_shinfo(tail)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
1821
1822 sk->sk_backlog.len += delta;
1823 __NET_INC_STATS(sock_net(sk),
1824 LINUX_MIB_TCPBACKLOGCOALESCE);
1825 kfree_skb_partial(skb, fragstolen);
1826 return false;
1827 }
1828 __skb_push(skb, hdrlen);
1829
1830no_coalesce:
1831 /* Only socket owner can try to collapse/prune rx queues
1832 * to reduce memory overhead, so add a little headroom here.
1833 * Few sockets backlog are possibly concurrently non empty.
1834 */
1835 limit += 64*1024;
1836
1837 if (unlikely(sk_add_backlog(sk, skb, limit))) {
1838 bh_unlock_sock(sk);
1839 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1840 return true;
1841 }
1842 return false;
1843}
1844EXPORT_SYMBOL(tcp_add_backlog);
1845
1846int tcp_filter(struct sock *sk, struct sk_buff *skb)
1847{
1848 struct tcphdr *th = (struct tcphdr *)skb->data;
1849
1850 return sk_filter_trim_cap(sk, skb, th->doff * 4);
1851}
1852EXPORT_SYMBOL(tcp_filter);
1853
1854static void tcp_v4_restore_cb(struct sk_buff *skb)
1855{
1856 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1857 sizeof(struct inet_skb_parm));
1858}
1859
1860static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1861 const struct tcphdr *th)
1862{
1863 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1864 * barrier() makes sure compiler wont play fool^Waliasing games.
1865 */
1866 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1867 sizeof(struct inet_skb_parm));
1868 barrier();
1869
1870 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1871 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1872 skb->len - th->doff * 4);
1873 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1874 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1875 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1876 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1877 TCP_SKB_CB(skb)->sacked = 0;
1878 TCP_SKB_CB(skb)->has_rxtstamp =
1879 skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1880}
1881
1882/*
1883 * From tcp_input.c
1884 */
1885
1886int tcp_v4_rcv(struct sk_buff *skb)
1887{
1888 struct net *net = dev_net(skb->dev);
1889 struct sk_buff *skb_to_free;
1890 int sdif = inet_sdif(skb);
1891 int dif = inet_iif(skb);
1892 const struct iphdr *iph;
1893 const struct tcphdr *th;
1894 bool refcounted;
1895 struct sock *sk;
1896 int ret;
1897
1898 if (skb->pkt_type != PACKET_HOST)
1899 goto discard_it;
1900
1901 /* Count it even if it's bad */
1902 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1903
1904 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1905 goto discard_it;
1906
1907 th = (const struct tcphdr *)skb->data;
1908
1909 if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1910 goto bad_packet;
1911 if (!pskb_may_pull(skb, th->doff * 4))
1912 goto discard_it;
1913
1914 /* An explanation is required here, I think.
1915 * Packet length and doff are validated by header prediction,
1916 * provided case of th->doff==0 is eliminated.
1917 * So, we defer the checks. */
1918
1919 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1920 goto csum_error;
1921
1922 th = (const struct tcphdr *)skb->data;
1923 iph = ip_hdr(skb);
1924lookup:
1925 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1926 th->dest, sdif, &refcounted);
1927 if (!sk)
1928 goto no_tcp_socket;
1929
1930process:
1931 if (sk->sk_state == TCP_TIME_WAIT)
1932 goto do_time_wait;
1933
1934 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1935 struct request_sock *req = inet_reqsk(sk);
1936 bool req_stolen = false;
1937 struct sock *nsk;
1938
1939 sk = req->rsk_listener;
1940 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))) {
1941 sk_drops_add(sk, skb);
1942 reqsk_put(req);
1943 goto discard_it;
1944 }
1945 if (tcp_checksum_complete(skb)) {
1946 reqsk_put(req);
1947 goto csum_error;
1948 }
1949 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1950 inet_csk_reqsk_queue_drop_and_put(sk, req);
1951 goto lookup;
1952 }
1953 /* We own a reference on the listener, increase it again
1954 * as we might lose it too soon.
1955 */
1956 sock_hold(sk);
1957 refcounted = true;
1958 nsk = NULL;
1959 if (!tcp_filter(sk, skb)) {
1960 th = (const struct tcphdr *)skb->data;
1961 iph = ip_hdr(skb);
1962 tcp_v4_fill_cb(skb, iph, th);
1963 nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
1964 }
1965 if (!nsk) {
1966 reqsk_put(req);
1967 if (req_stolen) {
1968 /* Another cpu got exclusive access to req
1969 * and created a full blown socket.
1970 * Try to feed this packet to this socket
1971 * instead of discarding it.
1972 */
1973 tcp_v4_restore_cb(skb);
1974 sock_put(sk);
1975 goto lookup;
1976 }
1977 goto discard_and_relse;
1978 }
1979 if (nsk == sk) {
1980 reqsk_put(req);
1981 tcp_v4_restore_cb(skb);
1982 } else if (tcp_child_process(sk, nsk, skb)) {
1983 tcp_v4_send_reset(nsk, skb);
1984 goto discard_and_relse;
1985 } else {
1986 sock_put(sk);
1987 return 0;
1988 }
1989 }
1990 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1991 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1992 goto discard_and_relse;
1993 }
1994
1995 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1996 goto discard_and_relse;
1997
1998 if (tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))
1999 goto discard_and_relse;
2000
2001 nf_reset_ct(skb);
2002
2003 if (tcp_filter(sk, skb))
2004 goto discard_and_relse;
2005 th = (const struct tcphdr *)skb->data;
2006 iph = ip_hdr(skb);
2007 tcp_v4_fill_cb(skb, iph, th);
2008
2009 skb->dev = NULL;
2010
2011 if (sk->sk_state == TCP_LISTEN) {
2012 ret = tcp_v4_do_rcv(sk, skb);
2013 goto put_and_return;
2014 }
2015
2016 sk_incoming_cpu_update(sk);
2017
2018 bh_lock_sock_nested(sk);
2019 tcp_segs_in(tcp_sk(sk), skb);
2020 ret = 0;
2021 if (!sock_owned_by_user(sk)) {
2022 skb_to_free = sk->sk_rx_skb_cache;
2023 sk->sk_rx_skb_cache = NULL;
2024 ret = tcp_v4_do_rcv(sk, skb);
2025 } else {
2026 if (tcp_add_backlog(sk, skb))
2027 goto discard_and_relse;
2028 skb_to_free = NULL;
2029 }
2030 bh_unlock_sock(sk);
2031 if (skb_to_free)
2032 __kfree_skb(skb_to_free);
2033
2034put_and_return:
2035 if (refcounted)
2036 sock_put(sk);
2037
2038 return ret;
2039
2040no_tcp_socket:
2041 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2042 goto discard_it;
2043
2044 tcp_v4_fill_cb(skb, iph, th);
2045
2046 if (tcp_checksum_complete(skb)) {
2047csum_error:
2048 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2049bad_packet:
2050 __TCP_INC_STATS(net, TCP_MIB_INERRS);
2051 } else {
2052 tcp_v4_send_reset(NULL, skb);
2053 }
2054
2055discard_it:
2056 /* Discard frame. */
2057 kfree_skb(skb);
2058 return 0;
2059
2060discard_and_relse:
2061 sk_drops_add(sk, skb);
2062 if (refcounted)
2063 sock_put(sk);
2064 goto discard_it;
2065
2066do_time_wait:
2067 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2068 inet_twsk_put(inet_twsk(sk));
2069 goto discard_it;
2070 }
2071
2072 tcp_v4_fill_cb(skb, iph, th);
2073
2074 if (tcp_checksum_complete(skb)) {
2075 inet_twsk_put(inet_twsk(sk));
2076 goto csum_error;
2077 }
2078 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2079 case TCP_TW_SYN: {
2080 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2081 &tcp_hashinfo, skb,
2082 __tcp_hdrlen(th),
2083 iph->saddr, th->source,
2084 iph->daddr, th->dest,
2085 inet_iif(skb),
2086 sdif);
2087 if (sk2) {
2088 inet_twsk_deschedule_put(inet_twsk(sk));
2089 sk = sk2;
2090 tcp_v4_restore_cb(skb);
2091 refcounted = false;
2092 goto process;
2093 }
2094 }
2095 /* to ACK */
2096 fallthrough;
2097 case TCP_TW_ACK:
2098 tcp_v4_timewait_ack(sk, skb);
2099 break;
2100 case TCP_TW_RST:
2101 tcp_v4_send_reset(sk, skb);
2102 inet_twsk_deschedule_put(inet_twsk(sk));
2103 goto discard_it;
2104 case TCP_TW_SUCCESS:;
2105 }
2106 goto discard_it;
2107}
2108
2109static struct timewait_sock_ops tcp_timewait_sock_ops = {
2110 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2111 .twsk_unique = tcp_twsk_unique,
2112 .twsk_destructor= tcp_twsk_destructor,
2113};
2114
2115void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2116{
2117 struct dst_entry *dst = skb_dst(skb);
2118
2119 if (dst && dst_hold_safe(dst)) {
2120 sk->sk_rx_dst = dst;
2121 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2122 }
2123}
2124EXPORT_SYMBOL(inet_sk_rx_dst_set);
2125
2126const struct inet_connection_sock_af_ops ipv4_specific = {
2127 .queue_xmit = ip_queue_xmit,
2128 .send_check = tcp_v4_send_check,
2129 .rebuild_header = inet_sk_rebuild_header,
2130 .sk_rx_dst_set = inet_sk_rx_dst_set,
2131 .conn_request = tcp_v4_conn_request,
2132 .syn_recv_sock = tcp_v4_syn_recv_sock,
2133 .net_header_len = sizeof(struct iphdr),
2134 .setsockopt = ip_setsockopt,
2135 .getsockopt = ip_getsockopt,
2136 .addr2sockaddr = inet_csk_addr2sockaddr,
2137 .sockaddr_len = sizeof(struct sockaddr_in),
2138 .mtu_reduced = tcp_v4_mtu_reduced,
2139};
2140EXPORT_SYMBOL(ipv4_specific);
2141
2142#ifdef CONFIG_TCP_MD5SIG
2143static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2144 .md5_lookup = tcp_v4_md5_lookup,
2145 .calc_md5_hash = tcp_v4_md5_hash_skb,
2146 .md5_parse = tcp_v4_parse_md5_keys,
2147};
2148#endif
2149
2150/* NOTE: A lot of things set to zero explicitly by call to
2151 * sk_alloc() so need not be done here.
2152 */
2153static int tcp_v4_init_sock(struct sock *sk)
2154{
2155 struct inet_connection_sock *icsk = inet_csk(sk);
2156
2157 tcp_init_sock(sk);
2158
2159 icsk->icsk_af_ops = &ipv4_specific;
2160
2161#ifdef CONFIG_TCP_MD5SIG
2162 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2163#endif
2164
2165 return 0;
2166}
2167
2168void tcp_v4_destroy_sock(struct sock *sk)
2169{
2170 struct tcp_sock *tp = tcp_sk(sk);
2171
2172 trace_tcp_destroy_sock(sk);
2173
2174 tcp_clear_xmit_timers(sk);
2175
2176 tcp_cleanup_congestion_control(sk);
2177
2178 tcp_cleanup_ulp(sk);
2179
2180 /* Cleanup up the write buffer. */
2181 tcp_write_queue_purge(sk);
2182
2183 /* Check if we want to disable active TFO */
2184 tcp_fastopen_active_disable_ofo_check(sk);
2185
2186 /* Cleans up our, hopefully empty, out_of_order_queue. */
2187 skb_rbtree_purge(&tp->out_of_order_queue);
2188
2189#ifdef CONFIG_TCP_MD5SIG
2190 /* Clean up the MD5 key list, if any */
2191 if (tp->md5sig_info) {
2192 tcp_clear_md5_list(sk);
2193 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2194 tp->md5sig_info = NULL;
2195 }
2196#endif
2197
2198 /* Clean up a referenced TCP bind bucket. */
2199 if (inet_csk(sk)->icsk_bind_hash)
2200 inet_put_port(sk);
2201
2202 BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2203
2204 /* If socket is aborted during connect operation */
2205 tcp_free_fastopen_req(tp);
2206 tcp_fastopen_destroy_cipher(sk);
2207 tcp_saved_syn_free(tp);
2208
2209 sk_sockets_allocated_dec(sk);
2210}
2211EXPORT_SYMBOL(tcp_v4_destroy_sock);
2212
2213#ifdef CONFIG_PROC_FS
2214/* Proc filesystem TCP sock list dumping. */
2215
2216/*
2217 * Get next listener socket follow cur. If cur is NULL, get first socket
2218 * starting from bucket given in st->bucket; when st->bucket is zero the
2219 * very first socket in the hash table is returned.
2220 */
2221static void *listening_get_next(struct seq_file *seq, void *cur)
2222{
2223 struct tcp_seq_afinfo *afinfo;
2224 struct tcp_iter_state *st = seq->private;
2225 struct net *net = seq_file_net(seq);
2226 struct inet_listen_hashbucket *ilb;
2227 struct hlist_nulls_node *node;
2228 struct sock *sk = cur;
2229
2230 if (st->bpf_seq_afinfo)
2231 afinfo = st->bpf_seq_afinfo;
2232 else
2233 afinfo = PDE_DATA(file_inode(seq->file));
2234
2235 if (!sk) {
2236get_head:
2237 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2238 spin_lock(&ilb->lock);
2239 sk = sk_nulls_head(&ilb->nulls_head);
2240 st->offset = 0;
2241 goto get_sk;
2242 }
2243 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2244 ++st->num;
2245 ++st->offset;
2246
2247 sk = sk_nulls_next(sk);
2248get_sk:
2249 sk_nulls_for_each_from(sk, node) {
2250 if (!net_eq(sock_net(sk), net))
2251 continue;
2252 if (afinfo->family == AF_UNSPEC ||
2253 sk->sk_family == afinfo->family)
2254 return sk;
2255 }
2256 spin_unlock(&ilb->lock);
2257 st->offset = 0;
2258 if (++st->bucket < INET_LHTABLE_SIZE)
2259 goto get_head;
2260 return NULL;
2261}
2262
2263static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2264{
2265 struct tcp_iter_state *st = seq->private;
2266 void *rc;
2267
2268 st->bucket = 0;
2269 st->offset = 0;
2270 rc = listening_get_next(seq, NULL);
2271
2272 while (rc && *pos) {
2273 rc = listening_get_next(seq, rc);
2274 --*pos;
2275 }
2276 return rc;
2277}
2278
2279static inline bool empty_bucket(const struct tcp_iter_state *st)
2280{
2281 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2282}
2283
2284/*
2285 * Get first established socket starting from bucket given in st->bucket.
2286 * If st->bucket is zero, the very first socket in the hash is returned.
2287 */
2288static void *established_get_first(struct seq_file *seq)
2289{
2290 struct tcp_seq_afinfo *afinfo;
2291 struct tcp_iter_state *st = seq->private;
2292 struct net *net = seq_file_net(seq);
2293 void *rc = NULL;
2294
2295 if (st->bpf_seq_afinfo)
2296 afinfo = st->bpf_seq_afinfo;
2297 else
2298 afinfo = PDE_DATA(file_inode(seq->file));
2299
2300 st->offset = 0;
2301 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2302 struct sock *sk;
2303 struct hlist_nulls_node *node;
2304 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2305
2306 /* Lockless fast path for the common case of empty buckets */
2307 if (empty_bucket(st))
2308 continue;
2309
2310 spin_lock_bh(lock);
2311 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2312 if ((afinfo->family != AF_UNSPEC &&
2313 sk->sk_family != afinfo->family) ||
2314 !net_eq(sock_net(sk), net)) {
2315 continue;
2316 }
2317 rc = sk;
2318 goto out;
2319 }
2320 spin_unlock_bh(lock);
2321 }
2322out:
2323 return rc;
2324}
2325
2326static void *established_get_next(struct seq_file *seq, void *cur)
2327{
2328 struct tcp_seq_afinfo *afinfo;
2329 struct sock *sk = cur;
2330 struct hlist_nulls_node *node;
2331 struct tcp_iter_state *st = seq->private;
2332 struct net *net = seq_file_net(seq);
2333
2334 if (st->bpf_seq_afinfo)
2335 afinfo = st->bpf_seq_afinfo;
2336 else
2337 afinfo = PDE_DATA(file_inode(seq->file));
2338
2339 ++st->num;
2340 ++st->offset;
2341
2342 sk = sk_nulls_next(sk);
2343
2344 sk_nulls_for_each_from(sk, node) {
2345 if ((afinfo->family == AF_UNSPEC ||
2346 sk->sk_family == afinfo->family) &&
2347 net_eq(sock_net(sk), net))
2348 return sk;
2349 }
2350
2351 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2352 ++st->bucket;
2353 return established_get_first(seq);
2354}
2355
2356static void *established_get_idx(struct seq_file *seq, loff_t pos)
2357{
2358 struct tcp_iter_state *st = seq->private;
2359 void *rc;
2360
2361 st->bucket = 0;
2362 rc = established_get_first(seq);
2363
2364 while (rc && pos) {
2365 rc = established_get_next(seq, rc);
2366 --pos;
2367 }
2368 return rc;
2369}
2370
2371static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2372{
2373 void *rc;
2374 struct tcp_iter_state *st = seq->private;
2375
2376 st->state = TCP_SEQ_STATE_LISTENING;
2377 rc = listening_get_idx(seq, &pos);
2378
2379 if (!rc) {
2380 st->state = TCP_SEQ_STATE_ESTABLISHED;
2381 rc = established_get_idx(seq, pos);
2382 }
2383
2384 return rc;
2385}
2386
2387static void *tcp_seek_last_pos(struct seq_file *seq)
2388{
2389 struct tcp_iter_state *st = seq->private;
2390 int offset = st->offset;
2391 int orig_num = st->num;
2392 void *rc = NULL;
2393
2394 switch (st->state) {
2395 case TCP_SEQ_STATE_LISTENING:
2396 if (st->bucket >= INET_LHTABLE_SIZE)
2397 break;
2398 st->state = TCP_SEQ_STATE_LISTENING;
2399 rc = listening_get_next(seq, NULL);
2400 while (offset-- && rc)
2401 rc = listening_get_next(seq, rc);
2402 if (rc)
2403 break;
2404 st->bucket = 0;
2405 st->state = TCP_SEQ_STATE_ESTABLISHED;
2406 fallthrough;
2407 case TCP_SEQ_STATE_ESTABLISHED:
2408 if (st->bucket > tcp_hashinfo.ehash_mask)
2409 break;
2410 rc = established_get_first(seq);
2411 while (offset-- && rc)
2412 rc = established_get_next(seq, rc);
2413 }
2414
2415 st->num = orig_num;
2416
2417 return rc;
2418}
2419
2420void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2421{
2422 struct tcp_iter_state *st = seq->private;
2423 void *rc;
2424
2425 if (*pos && *pos == st->last_pos) {
2426 rc = tcp_seek_last_pos(seq);
2427 if (rc)
2428 goto out;
2429 }
2430
2431 st->state = TCP_SEQ_STATE_LISTENING;
2432 st->num = 0;
2433 st->bucket = 0;
2434 st->offset = 0;
2435 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2436
2437out:
2438 st->last_pos = *pos;
2439 return rc;
2440}
2441EXPORT_SYMBOL(tcp_seq_start);
2442
2443void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2444{
2445 struct tcp_iter_state *st = seq->private;
2446 void *rc = NULL;
2447
2448 if (v == SEQ_START_TOKEN) {
2449 rc = tcp_get_idx(seq, 0);
2450 goto out;
2451 }
2452
2453 switch (st->state) {
2454 case TCP_SEQ_STATE_LISTENING:
2455 rc = listening_get_next(seq, v);
2456 if (!rc) {
2457 st->state = TCP_SEQ_STATE_ESTABLISHED;
2458 st->bucket = 0;
2459 st->offset = 0;
2460 rc = established_get_first(seq);
2461 }
2462 break;
2463 case TCP_SEQ_STATE_ESTABLISHED:
2464 rc = established_get_next(seq, v);
2465 break;
2466 }
2467out:
2468 ++*pos;
2469 st->last_pos = *pos;
2470 return rc;
2471}
2472EXPORT_SYMBOL(tcp_seq_next);
2473
2474void tcp_seq_stop(struct seq_file *seq, void *v)
2475{
2476 struct tcp_iter_state *st = seq->private;
2477
2478 switch (st->state) {
2479 case TCP_SEQ_STATE_LISTENING:
2480 if (v != SEQ_START_TOKEN)
2481 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2482 break;
2483 case TCP_SEQ_STATE_ESTABLISHED:
2484 if (v)
2485 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2486 break;
2487 }
2488}
2489EXPORT_SYMBOL(tcp_seq_stop);
2490
2491static void get_openreq4(const struct request_sock *req,
2492 struct seq_file *f, int i)
2493{
2494 const struct inet_request_sock *ireq = inet_rsk(req);
2495 long delta = req->rsk_timer.expires - jiffies;
2496
2497 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2498 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2499 i,
2500 ireq->ir_loc_addr,
2501 ireq->ir_num,
2502 ireq->ir_rmt_addr,
2503 ntohs(ireq->ir_rmt_port),
2504 TCP_SYN_RECV,
2505 0, 0, /* could print option size, but that is af dependent. */
2506 1, /* timers active (only the expire timer) */
2507 jiffies_delta_to_clock_t(delta),
2508 req->num_timeout,
2509 from_kuid_munged(seq_user_ns(f),
2510 sock_i_uid(req->rsk_listener)),
2511 0, /* non standard timer */
2512 0, /* open_requests have no inode */
2513 0,
2514 req);
2515}
2516
2517static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2518{
2519 int timer_active;
2520 unsigned long timer_expires;
2521 const struct tcp_sock *tp = tcp_sk(sk);
2522 const struct inet_connection_sock *icsk = inet_csk(sk);
2523 const struct inet_sock *inet = inet_sk(sk);
2524 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2525 __be32 dest = inet->inet_daddr;
2526 __be32 src = inet->inet_rcv_saddr;
2527 __u16 destp = ntohs(inet->inet_dport);
2528 __u16 srcp = ntohs(inet->inet_sport);
2529 int rx_queue;
2530 int state;
2531
2532 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2533 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2534 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2535 timer_active = 1;
2536 timer_expires = icsk->icsk_timeout;
2537 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2538 timer_active = 4;
2539 timer_expires = icsk->icsk_timeout;
2540 } else if (timer_pending(&sk->sk_timer)) {
2541 timer_active = 2;
2542 timer_expires = sk->sk_timer.expires;
2543 } else {
2544 timer_active = 0;
2545 timer_expires = jiffies;
2546 }
2547
2548 state = inet_sk_state_load(sk);
2549 if (state == TCP_LISTEN)
2550 rx_queue = READ_ONCE(sk->sk_ack_backlog);
2551 else
2552 /* Because we don't lock the socket,
2553 * we might find a transient negative value.
2554 */
2555 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2556 READ_ONCE(tp->copied_seq), 0);
2557
2558 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2559 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2560 i, src, srcp, dest, destp, state,
2561 READ_ONCE(tp->write_seq) - tp->snd_una,
2562 rx_queue,
2563 timer_active,
2564 jiffies_delta_to_clock_t(timer_expires - jiffies),
2565 icsk->icsk_retransmits,
2566 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2567 icsk->icsk_probes_out,
2568 sock_i_ino(sk),
2569 refcount_read(&sk->sk_refcnt), sk,
2570 jiffies_to_clock_t(icsk->icsk_rto),
2571 jiffies_to_clock_t(icsk->icsk_ack.ato),
2572 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2573 tp->snd_cwnd,
2574 state == TCP_LISTEN ?
2575 fastopenq->max_qlen :
2576 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2577}
2578
2579static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2580 struct seq_file *f, int i)
2581{
2582 long delta = tw->tw_timer.expires - jiffies;
2583 __be32 dest, src;
2584 __u16 destp, srcp;
2585
2586 dest = tw->tw_daddr;
2587 src = tw->tw_rcv_saddr;
2588 destp = ntohs(tw->tw_dport);
2589 srcp = ntohs(tw->tw_sport);
2590
2591 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2592 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2593 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2594 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2595 refcount_read(&tw->tw_refcnt), tw);
2596}
2597
2598#define TMPSZ 150
2599
2600static int tcp4_seq_show(struct seq_file *seq, void *v)
2601{
2602 struct tcp_iter_state *st;
2603 struct sock *sk = v;
2604
2605 seq_setwidth(seq, TMPSZ - 1);
2606 if (v == SEQ_START_TOKEN) {
2607 seq_puts(seq, " sl local_address rem_address st tx_queue "
2608 "rx_queue tr tm->when retrnsmt uid timeout "
2609 "inode");
2610 goto out;
2611 }
2612 st = seq->private;
2613
2614 if (sk->sk_state == TCP_TIME_WAIT)
2615 get_timewait4_sock(v, seq, st->num);
2616 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2617 get_openreq4(v, seq, st->num);
2618 else
2619 get_tcp4_sock(v, seq, st->num);
2620out:
2621 seq_pad(seq, '\n');
2622 return 0;
2623}
2624
2625#ifdef CONFIG_BPF_SYSCALL
2626struct bpf_iter__tcp {
2627 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2628 __bpf_md_ptr(struct sock_common *, sk_common);
2629 uid_t uid __aligned(8);
2630};
2631
2632static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2633 struct sock_common *sk_common, uid_t uid)
2634{
2635 struct bpf_iter__tcp ctx;
2636
2637 meta->seq_num--; /* skip SEQ_START_TOKEN */
2638 ctx.meta = meta;
2639 ctx.sk_common = sk_common;
2640 ctx.uid = uid;
2641 return bpf_iter_run_prog(prog, &ctx);
2642}
2643
2644static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2645{
2646 struct bpf_iter_meta meta;
2647 struct bpf_prog *prog;
2648 struct sock *sk = v;
2649 uid_t uid;
2650
2651 if (v == SEQ_START_TOKEN)
2652 return 0;
2653
2654 if (sk->sk_state == TCP_TIME_WAIT) {
2655 uid = 0;
2656 } else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2657 const struct request_sock *req = v;
2658
2659 uid = from_kuid_munged(seq_user_ns(seq),
2660 sock_i_uid(req->rsk_listener));
2661 } else {
2662 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2663 }
2664
2665 meta.seq = seq;
2666 prog = bpf_iter_get_info(&meta, false);
2667 return tcp_prog_seq_show(prog, &meta, v, uid);
2668}
2669
2670static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
2671{
2672 struct bpf_iter_meta meta;
2673 struct bpf_prog *prog;
2674
2675 if (!v) {
2676 meta.seq = seq;
2677 prog = bpf_iter_get_info(&meta, true);
2678 if (prog)
2679 (void)tcp_prog_seq_show(prog, &meta, v, 0);
2680 }
2681
2682 tcp_seq_stop(seq, v);
2683}
2684
2685static const struct seq_operations bpf_iter_tcp_seq_ops = {
2686 .show = bpf_iter_tcp_seq_show,
2687 .start = tcp_seq_start,
2688 .next = tcp_seq_next,
2689 .stop = bpf_iter_tcp_seq_stop,
2690};
2691#endif
2692
2693static const struct seq_operations tcp4_seq_ops = {
2694 .show = tcp4_seq_show,
2695 .start = tcp_seq_start,
2696 .next = tcp_seq_next,
2697 .stop = tcp_seq_stop,
2698};
2699
2700static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2701 .family = AF_INET,
2702};
2703
2704static int __net_init tcp4_proc_init_net(struct net *net)
2705{
2706 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2707 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2708 return -ENOMEM;
2709 return 0;
2710}
2711
2712static void __net_exit tcp4_proc_exit_net(struct net *net)
2713{
2714 remove_proc_entry("tcp", net->proc_net);
2715}
2716
2717static struct pernet_operations tcp4_net_ops = {
2718 .init = tcp4_proc_init_net,
2719 .exit = tcp4_proc_exit_net,
2720};
2721
2722int __init tcp4_proc_init(void)
2723{
2724 return register_pernet_subsys(&tcp4_net_ops);
2725}
2726
2727void tcp4_proc_exit(void)
2728{
2729 unregister_pernet_subsys(&tcp4_net_ops);
2730}
2731#endif /* CONFIG_PROC_FS */
2732
2733struct proto tcp_prot = {
2734 .name = "TCP",
2735 .owner = THIS_MODULE,
2736 .close = tcp_close,
2737 .pre_connect = tcp_v4_pre_connect,
2738 .connect = tcp_v4_connect,
2739 .disconnect = tcp_disconnect,
2740 .accept = inet_csk_accept,
2741 .ioctl = tcp_ioctl,
2742 .init = tcp_v4_init_sock,
2743 .destroy = tcp_v4_destroy_sock,
2744 .shutdown = tcp_shutdown,
2745 .setsockopt = tcp_setsockopt,
2746 .getsockopt = tcp_getsockopt,
2747 .keepalive = tcp_set_keepalive,
2748 .recvmsg = tcp_recvmsg,
2749 .sendmsg = tcp_sendmsg,
2750 .sendpage = tcp_sendpage,
2751 .backlog_rcv = tcp_v4_do_rcv,
2752 .release_cb = tcp_release_cb,
2753 .hash = inet_hash,
2754 .unhash = inet_unhash,
2755 .get_port = inet_csk_get_port,
2756 .enter_memory_pressure = tcp_enter_memory_pressure,
2757 .leave_memory_pressure = tcp_leave_memory_pressure,
2758 .stream_memory_free = tcp_stream_memory_free,
2759 .sockets_allocated = &tcp_sockets_allocated,
2760 .orphan_count = &tcp_orphan_count,
2761 .memory_allocated = &tcp_memory_allocated,
2762 .memory_pressure = &tcp_memory_pressure,
2763 .sysctl_mem = sysctl_tcp_mem,
2764 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
2765 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
2766 .max_header = MAX_TCP_HEADER,
2767 .obj_size = sizeof(struct tcp_sock),
2768 .slab_flags = SLAB_TYPESAFE_BY_RCU,
2769 .twsk_prot = &tcp_timewait_sock_ops,
2770 .rsk_prot = &tcp_request_sock_ops,
2771 .h.hashinfo = &tcp_hashinfo,
2772 .no_autobind = true,
2773 .diag_destroy = tcp_abort,
2774};
2775EXPORT_SYMBOL(tcp_prot);
2776
2777static void __net_exit tcp_sk_exit(struct net *net)
2778{
2779 int cpu;
2780
2781 if (net->ipv4.tcp_congestion_control)
2782 bpf_module_put(net->ipv4.tcp_congestion_control,
2783 net->ipv4.tcp_congestion_control->owner);
2784
2785 for_each_possible_cpu(cpu)
2786 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2787 free_percpu(net->ipv4.tcp_sk);
2788}
2789
2790static int __net_init tcp_sk_init(struct net *net)
2791{
2792 int res, cpu, cnt;
2793
2794 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2795 if (!net->ipv4.tcp_sk)
2796 return -ENOMEM;
2797
2798 for_each_possible_cpu(cpu) {
2799 struct sock *sk;
2800
2801 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2802 IPPROTO_TCP, net);
2803 if (res)
2804 goto fail;
2805 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2806
2807 /* Please enforce IP_DF and IPID==0 for RST and
2808 * ACK sent in SYN-RECV and TIME-WAIT state.
2809 */
2810 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
2811
2812 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2813 }
2814
2815 net->ipv4.sysctl_tcp_ecn = 2;
2816 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2817
2818 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2819 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
2820 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2821 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2822 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
2823
2824 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2825 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2826 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2827
2828 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2829 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2830 net->ipv4.sysctl_tcp_syncookies = 1;
2831 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2832 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2833 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2834 net->ipv4.sysctl_tcp_orphan_retries = 0;
2835 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2836 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2837 net->ipv4.sysctl_tcp_tw_reuse = 2;
2838 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
2839
2840 cnt = tcp_hashinfo.ehash_mask + 1;
2841 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
2842 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2843
2844 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128);
2845 net->ipv4.sysctl_tcp_sack = 1;
2846 net->ipv4.sysctl_tcp_window_scaling = 1;
2847 net->ipv4.sysctl_tcp_timestamps = 1;
2848 net->ipv4.sysctl_tcp_early_retrans = 3;
2849 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2850 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
2851 net->ipv4.sysctl_tcp_retrans_collapse = 1;
2852 net->ipv4.sysctl_tcp_max_reordering = 300;
2853 net->ipv4.sysctl_tcp_dsack = 1;
2854 net->ipv4.sysctl_tcp_app_win = 31;
2855 net->ipv4.sysctl_tcp_adv_win_scale = 1;
2856 net->ipv4.sysctl_tcp_frto = 2;
2857 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2858 /* This limits the percentage of the congestion window which we
2859 * will allow a single TSO frame to consume. Building TSO frames
2860 * which are too large can cause TCP streams to be bursty.
2861 */
2862 net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2863 /* Default TSQ limit of 16 TSO segments */
2864 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
2865 /* rfc5961 challenge ack rate limiting */
2866 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2867 net->ipv4.sysctl_tcp_min_tso_segs = 2;
2868 net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2869 net->ipv4.sysctl_tcp_autocorking = 1;
2870 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2871 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2872 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2873 if (net != &init_net) {
2874 memcpy(net->ipv4.sysctl_tcp_rmem,
2875 init_net.ipv4.sysctl_tcp_rmem,
2876 sizeof(init_net.ipv4.sysctl_tcp_rmem));
2877 memcpy(net->ipv4.sysctl_tcp_wmem,
2878 init_net.ipv4.sysctl_tcp_wmem,
2879 sizeof(init_net.ipv4.sysctl_tcp_wmem));
2880 }
2881 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
2882 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
2883 net->ipv4.sysctl_tcp_comp_sack_nr = 44;
2884 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2885 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2886 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60;
2887 atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2888
2889 /* Reno is always built in */
2890 if (!net_eq(net, &init_net) &&
2891 bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
2892 init_net.ipv4.tcp_congestion_control->owner))
2893 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2894 else
2895 net->ipv4.tcp_congestion_control = &tcp_reno;
2896
2897 return 0;
2898fail:
2899 tcp_sk_exit(net);
2900
2901 return res;
2902}
2903
2904static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2905{
2906 struct net *net;
2907
2908 inet_twsk_purge(&tcp_hashinfo, AF_INET);
2909
2910 list_for_each_entry(net, net_exit_list, exit_list)
2911 tcp_fastopen_ctx_destroy(net);
2912}
2913
2914static struct pernet_operations __net_initdata tcp_sk_ops = {
2915 .init = tcp_sk_init,
2916 .exit = tcp_sk_exit,
2917 .exit_batch = tcp_sk_exit_batch,
2918};
2919
2920#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
2921DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
2922 struct sock_common *sk_common, uid_t uid)
2923
2924static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
2925{
2926 struct tcp_iter_state *st = priv_data;
2927 struct tcp_seq_afinfo *afinfo;
2928 int ret;
2929
2930 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
2931 if (!afinfo)
2932 return -ENOMEM;
2933
2934 afinfo->family = AF_UNSPEC;
2935 st->bpf_seq_afinfo = afinfo;
2936 ret = bpf_iter_init_seq_net(priv_data, aux);
2937 if (ret)
2938 kfree(afinfo);
2939 return ret;
2940}
2941
2942static void bpf_iter_fini_tcp(void *priv_data)
2943{
2944 struct tcp_iter_state *st = priv_data;
2945
2946 kfree(st->bpf_seq_afinfo);
2947 bpf_iter_fini_seq_net(priv_data);
2948}
2949
2950static const struct bpf_iter_seq_info tcp_seq_info = {
2951 .seq_ops = &bpf_iter_tcp_seq_ops,
2952 .init_seq_private = bpf_iter_init_tcp,
2953 .fini_seq_private = bpf_iter_fini_tcp,
2954 .seq_priv_size = sizeof(struct tcp_iter_state),
2955};
2956
2957static struct bpf_iter_reg tcp_reg_info = {
2958 .target = "tcp",
2959 .ctx_arg_info_size = 1,
2960 .ctx_arg_info = {
2961 { offsetof(struct bpf_iter__tcp, sk_common),
2962 PTR_TO_BTF_ID_OR_NULL },
2963 },
2964 .seq_info = &tcp_seq_info,
2965};
2966
2967static void __init bpf_iter_register(void)
2968{
2969 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
2970 if (bpf_iter_reg_target(&tcp_reg_info))
2971 pr_warn("Warning: could not register bpf iterator tcp\n");
2972}
2973
2974#endif
2975
2976void __init tcp_v4_init(void)
2977{
2978 if (register_pernet_subsys(&tcp_sk_ops))
2979 panic("Failed to create the TCP control socket.\n");
2980
2981#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
2982 bpf_iter_register();
2983#endif
2984}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/netdma.h>
76#include <net/secure_seq.h>
77#include <net/tcp_memcontrol.h>
78#include <net/busy_poll.h>
79
80#include <linux/inet.h>
81#include <linux/ipv6.h>
82#include <linux/stddef.h>
83#include <linux/proc_fs.h>
84#include <linux/seq_file.h>
85
86#include <linux/crypto.h>
87#include <linux/scatterlist.h>
88
89int sysctl_tcp_tw_reuse __read_mostly;
90int sysctl_tcp_low_latency __read_mostly;
91EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94#ifdef CONFIG_TCP_MD5SIG
95static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97#endif
98
99struct inet_hashinfo tcp_hashinfo;
100EXPORT_SYMBOL(tcp_hashinfo);
101
102static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103{
104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 ip_hdr(skb)->saddr,
106 tcp_hdr(skb)->dest,
107 tcp_hdr(skb)->source);
108}
109
110int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111{
112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 struct tcp_sock *tp = tcp_sk(sk);
114
115 /* With PAWS, it is safe from the viewpoint
116 of data integrity. Even without PAWS it is safe provided sequence
117 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119 Actually, the idea is close to VJ's one, only timestamp cache is
120 held not per host, but per port pair and TW bucket is used as state
121 holder.
122
123 If TW bucket has been already destroyed we fall back to VJ's scheme
124 and use initial timestamp retrieved from peer table.
125 */
126 if (tcptw->tw_ts_recent_stamp &&
127 (twp == NULL || (sysctl_tcp_tw_reuse &&
128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130 if (tp->write_seq == 0)
131 tp->write_seq = 1;
132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134 sock_hold(sktw);
135 return 1;
136 }
137
138 return 0;
139}
140EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142/* This will initiate an outgoing connection. */
143int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144{
145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146 struct inet_sock *inet = inet_sk(sk);
147 struct tcp_sock *tp = tcp_sk(sk);
148 __be16 orig_sport, orig_dport;
149 __be32 daddr, nexthop;
150 struct flowi4 *fl4;
151 struct rtable *rt;
152 int err;
153 struct ip_options_rcu *inet_opt;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 inet_opt = rcu_dereference_protected(inet->inet_opt,
163 sock_owned_by_user(sk));
164 if (inet_opt && inet_opt->opt.srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet_opt->opt.faddr;
168 }
169
170 orig_sport = inet->inet_sport;
171 orig_dport = usin->sin_port;
172 fl4 = &inet->cork.fl.u.ip4;
173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 IPPROTO_TCP,
176 orig_sport, orig_dport, sk);
177 if (IS_ERR(rt)) {
178 err = PTR_ERR(rt);
179 if (err == -ENETUNREACH)
180 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 return err;
182 }
183
184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185 ip_rt_put(rt);
186 return -ENETUNREACH;
187 }
188
189 if (!inet_opt || !inet_opt->opt.srr)
190 daddr = fl4->daddr;
191
192 if (!inet->inet_saddr)
193 inet->inet_saddr = fl4->saddr;
194 inet->inet_rcv_saddr = inet->inet_saddr;
195
196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197 /* Reset inherited state */
198 tp->rx_opt.ts_recent = 0;
199 tp->rx_opt.ts_recent_stamp = 0;
200 if (likely(!tp->repair))
201 tp->write_seq = 0;
202 }
203
204 if (tcp_death_row.sysctl_tw_recycle &&
205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208 inet->inet_dport = usin->sin_port;
209 inet->inet_daddr = daddr;
210
211 inet_csk(sk)->icsk_ext_hdr_len = 0;
212 if (inet_opt)
213 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
214
215 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
216
217 /* Socket identity is still unknown (sport may be zero).
218 * However we set state to SYN-SENT and not releasing socket
219 * lock select source port, enter ourselves into the hash tables and
220 * complete initialization after this.
221 */
222 tcp_set_state(sk, TCP_SYN_SENT);
223 err = inet_hash_connect(&tcp_death_row, sk);
224 if (err)
225 goto failure;
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264}
265EXPORT_SYMBOL(tcp_v4_connect);
266
267/*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272static void tcp_v4_mtu_reduced(struct sock *sk)
273{
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 ip_sk_accept_pmtu(sk) &&
292 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 tcp_sync_mss(sk, mtu);
294
295 /* Resend the TCP packet because it's
296 * clear that the old packet has been
297 * dropped. This is the new "fast" path mtu
298 * discovery.
299 */
300 tcp_simple_retransmit(sk);
301 } /* else let the usual retransmit timer handle it */
302}
303
304static void do_redirect(struct sk_buff *skb, struct sock *sk)
305{
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310}
311
312/*
313 * This routine is called by the ICMP module when it gets some
314 * sort of error condition. If err < 0 then the socket should
315 * be closed and the error returned to the user. If err > 0
316 * it's just the icmp type << 8 | icmp code. After adjustment
317 * header points to the first 8 bytes of the tcp header. We need
318 * to find the appropriate port.
319 *
320 * The locking strategy used here is very "optimistic". When
321 * someone else accesses the socket the ICMP is just dropped
322 * and for some paths there is no check at all.
323 * A more general error queue to queue errors for later handling
324 * is probably better.
325 *
326 */
327
328void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
329{
330 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
331 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
332 struct inet_connection_sock *icsk;
333 struct tcp_sock *tp;
334 struct inet_sock *inet;
335 const int type = icmp_hdr(icmp_skb)->type;
336 const int code = icmp_hdr(icmp_skb)->code;
337 struct sock *sk;
338 struct sk_buff *skb;
339 struct request_sock *req;
340 __u32 seq;
341 __u32 remaining;
342 int err;
343 struct net *net = dev_net(icmp_skb->dev);
344
345 if (icmp_skb->len < (iph->ihl << 2) + 8) {
346 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
347 return;
348 }
349
350 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
351 iph->saddr, th->source, inet_iif(icmp_skb));
352 if (!sk) {
353 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
354 return;
355 }
356 if (sk->sk_state == TCP_TIME_WAIT) {
357 inet_twsk_put(inet_twsk(sk));
358 return;
359 }
360
361 bh_lock_sock(sk);
362 /* If too many ICMPs get dropped on busy
363 * servers this needs to be solved differently.
364 * We do take care of PMTU discovery (RFC1191) special case :
365 * we can receive locally generated ICMP messages while socket is held.
366 */
367 if (sock_owned_by_user(sk)) {
368 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 }
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
373
374 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376 goto out;
377 }
378
379 icsk = inet_csk(sk);
380 tp = tcp_sk(sk);
381 req = tp->fastopen_rsk;
382 seq = ntohl(th->seq);
383 if (sk->sk_state != TCP_LISTEN &&
384 !between(seq, tp->snd_una, tp->snd_nxt) &&
385 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
386 /* For a Fast Open socket, allow seq to be snt_isn. */
387 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
388 goto out;
389 }
390
391 switch (type) {
392 case ICMP_REDIRECT:
393 do_redirect(icmp_skb, sk);
394 goto out;
395 case ICMP_SOURCE_QUENCH:
396 /* Just silently ignore these. */
397 goto out;
398 case ICMP_PARAMETERPROB:
399 err = EPROTO;
400 break;
401 case ICMP_DEST_UNREACH:
402 if (code > NR_ICMP_UNREACH)
403 goto out;
404
405 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
406 /* We are not interested in TCP_LISTEN and open_requests
407 * (SYN-ACKs send out by Linux are always <576bytes so
408 * they should go through unfragmented).
409 */
410 if (sk->sk_state == TCP_LISTEN)
411 goto out;
412
413 tp->mtu_info = info;
414 if (!sock_owned_by_user(sk)) {
415 tcp_v4_mtu_reduced(sk);
416 } else {
417 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
418 sock_hold(sk);
419 }
420 goto out;
421 }
422
423 err = icmp_err_convert[code].errno;
424 /* check if icmp_skb allows revert of backoff
425 * (see draft-zimmermann-tcp-lcd) */
426 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
427 break;
428 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
429 !icsk->icsk_backoff)
430 break;
431
432 /* XXX (TFO) - revisit the following logic for TFO */
433
434 if (sock_owned_by_user(sk))
435 break;
436
437 icsk->icsk_backoff--;
438 inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
439 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
440 tcp_bound_rto(sk);
441
442 skb = tcp_write_queue_head(sk);
443 BUG_ON(!skb);
444
445 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
446 tcp_time_stamp - TCP_SKB_CB(skb)->when);
447
448 if (remaining) {
449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
450 remaining, TCP_RTO_MAX);
451 } else {
452 /* RTO revert clocked out retransmission.
453 * Will retransmit now */
454 tcp_retransmit_timer(sk);
455 }
456
457 break;
458 case ICMP_TIME_EXCEEDED:
459 err = EHOSTUNREACH;
460 break;
461 default:
462 goto out;
463 }
464
465 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
466 * than following the TCP_SYN_RECV case and closing the socket,
467 * we ignore the ICMP error and keep trying like a fully established
468 * socket. Is this the right thing to do?
469 */
470 if (req && req->sk == NULL)
471 goto out;
472
473 switch (sk->sk_state) {
474 struct request_sock *req, **prev;
475 case TCP_LISTEN:
476 if (sock_owned_by_user(sk))
477 goto out;
478
479 req = inet_csk_search_req(sk, &prev, th->dest,
480 iph->daddr, iph->saddr);
481 if (!req)
482 goto out;
483
484 /* ICMPs are not backlogged, hence we cannot get
485 an established socket here.
486 */
487 WARN_ON(req->sk);
488
489 if (seq != tcp_rsk(req)->snt_isn) {
490 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
491 goto out;
492 }
493
494 /*
495 * Still in SYN_RECV, just remove it silently.
496 * There is no good way to pass the error to the newly
497 * created socket, and POSIX does not want network
498 * errors returned from accept().
499 */
500 inet_csk_reqsk_queue_drop(sk, req, prev);
501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
502 goto out;
503
504 case TCP_SYN_SENT:
505 case TCP_SYN_RECV: /* Cannot happen.
506 It can f.e. if SYNs crossed,
507 or Fast Open.
508 */
509 if (!sock_owned_by_user(sk)) {
510 sk->sk_err = err;
511
512 sk->sk_error_report(sk);
513
514 tcp_done(sk);
515 } else {
516 sk->sk_err_soft = err;
517 }
518 goto out;
519 }
520
521 /* If we've already connected we will keep trying
522 * until we time out, or the user gives up.
523 *
524 * rfc1122 4.2.3.9 allows to consider as hard errors
525 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
526 * but it is obsoleted by pmtu discovery).
527 *
528 * Note, that in modern internet, where routing is unreliable
529 * and in each dark corner broken firewalls sit, sending random
530 * errors ordered by their masters even this two messages finally lose
531 * their original sense (even Linux sends invalid PORT_UNREACHs)
532 *
533 * Now we are in compliance with RFCs.
534 * --ANK (980905)
535 */
536
537 inet = inet_sk(sk);
538 if (!sock_owned_by_user(sk) && inet->recverr) {
539 sk->sk_err = err;
540 sk->sk_error_report(sk);
541 } else { /* Only an error on timeout */
542 sk->sk_err_soft = err;
543 }
544
545out:
546 bh_unlock_sock(sk);
547 sock_put(sk);
548}
549
550void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
551{
552 struct tcphdr *th = tcp_hdr(skb);
553
554 if (skb->ip_summed == CHECKSUM_PARTIAL) {
555 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
556 skb->csum_start = skb_transport_header(skb) - skb->head;
557 skb->csum_offset = offsetof(struct tcphdr, check);
558 } else {
559 th->check = tcp_v4_check(skb->len, saddr, daddr,
560 csum_partial(th,
561 th->doff << 2,
562 skb->csum));
563 }
564}
565
566/* This routine computes an IPv4 TCP checksum. */
567void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
568{
569 const struct inet_sock *inet = inet_sk(sk);
570
571 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
572}
573EXPORT_SYMBOL(tcp_v4_send_check);
574
575/*
576 * This routine will send an RST to the other tcp.
577 *
578 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
579 * for reset.
580 * Answer: if a packet caused RST, it is not for a socket
581 * existing in our system, if it is matched to a socket,
582 * it is just duplicate segment or bug in other side's TCP.
583 * So that we build reply only basing on parameters
584 * arrived with segment.
585 * Exception: precedence violation. We do not implement it in any case.
586 */
587
588static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
589{
590 const struct tcphdr *th = tcp_hdr(skb);
591 struct {
592 struct tcphdr th;
593#ifdef CONFIG_TCP_MD5SIG
594 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
595#endif
596 } rep;
597 struct ip_reply_arg arg;
598#ifdef CONFIG_TCP_MD5SIG
599 struct tcp_md5sig_key *key;
600 const __u8 *hash_location = NULL;
601 unsigned char newhash[16];
602 int genhash;
603 struct sock *sk1 = NULL;
604#endif
605 struct net *net;
606
607 /* Never send a reset in response to a reset. */
608 if (th->rst)
609 return;
610
611 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
612 return;
613
614 /* Swap the send and the receive. */
615 memset(&rep, 0, sizeof(rep));
616 rep.th.dest = th->source;
617 rep.th.source = th->dest;
618 rep.th.doff = sizeof(struct tcphdr) / 4;
619 rep.th.rst = 1;
620
621 if (th->ack) {
622 rep.th.seq = th->ack_seq;
623 } else {
624 rep.th.ack = 1;
625 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
626 skb->len - (th->doff << 2));
627 }
628
629 memset(&arg, 0, sizeof(arg));
630 arg.iov[0].iov_base = (unsigned char *)&rep;
631 arg.iov[0].iov_len = sizeof(rep.th);
632
633#ifdef CONFIG_TCP_MD5SIG
634 hash_location = tcp_parse_md5sig_option(th);
635 if (!sk && hash_location) {
636 /*
637 * active side is lost. Try to find listening socket through
638 * source port, and then find md5 key through listening socket.
639 * we are not loose security here:
640 * Incoming packet is checked with md5 hash with finding key,
641 * no RST generated if md5 hash doesn't match.
642 */
643 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
644 &tcp_hashinfo, ip_hdr(skb)->saddr,
645 th->source, ip_hdr(skb)->daddr,
646 ntohs(th->source), inet_iif(skb));
647 /* don't send rst if it can't find key */
648 if (!sk1)
649 return;
650 rcu_read_lock();
651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
652 &ip_hdr(skb)->saddr, AF_INET);
653 if (!key)
654 goto release_sk1;
655
656 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
657 if (genhash || memcmp(hash_location, newhash, 16) != 0)
658 goto release_sk1;
659 } else {
660 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr,
662 AF_INET) : NULL;
663 }
664
665 if (key) {
666 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
667 (TCPOPT_NOP << 16) |
668 (TCPOPT_MD5SIG << 8) |
669 TCPOLEN_MD5SIG);
670 /* Update length and the length the header thinks exists */
671 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
672 rep.th.doff = arg.iov[0].iov_len / 4;
673
674 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
675 key, ip_hdr(skb)->saddr,
676 ip_hdr(skb)->daddr, &rep.th);
677 }
678#endif
679 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
680 ip_hdr(skb)->saddr, /* XXX */
681 arg.iov[0].iov_len, IPPROTO_TCP, 0);
682 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
683 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
684 /* When socket is gone, all binding information is lost.
685 * routing might fail in this case. No choice here, if we choose to force
686 * input interface, we will misroute in case of asymmetric route.
687 */
688 if (sk)
689 arg.bound_dev_if = sk->sk_bound_dev_if;
690
691 net = dev_net(skb_dst(skb)->dev);
692 arg.tos = ip_hdr(skb)->tos;
693 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
694 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
695
696 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
697 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
698
699#ifdef CONFIG_TCP_MD5SIG
700release_sk1:
701 if (sk1) {
702 rcu_read_unlock();
703 sock_put(sk1);
704 }
705#endif
706}
707
708/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
709 outside socket context is ugly, certainly. What can I do?
710 */
711
712static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
713 u32 win, u32 tsval, u32 tsecr, int oif,
714 struct tcp_md5sig_key *key,
715 int reply_flags, u8 tos)
716{
717 const struct tcphdr *th = tcp_hdr(skb);
718 struct {
719 struct tcphdr th;
720 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
721#ifdef CONFIG_TCP_MD5SIG
722 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
723#endif
724 ];
725 } rep;
726 struct ip_reply_arg arg;
727 struct net *net = dev_net(skb_dst(skb)->dev);
728
729 memset(&rep.th, 0, sizeof(struct tcphdr));
730 memset(&arg, 0, sizeof(arg));
731
732 arg.iov[0].iov_base = (unsigned char *)&rep;
733 arg.iov[0].iov_len = sizeof(rep.th);
734 if (tsecr) {
735 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
736 (TCPOPT_TIMESTAMP << 8) |
737 TCPOLEN_TIMESTAMP);
738 rep.opt[1] = htonl(tsval);
739 rep.opt[2] = htonl(tsecr);
740 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
741 }
742
743 /* Swap the send and the receive. */
744 rep.th.dest = th->source;
745 rep.th.source = th->dest;
746 rep.th.doff = arg.iov[0].iov_len / 4;
747 rep.th.seq = htonl(seq);
748 rep.th.ack_seq = htonl(ack);
749 rep.th.ack = 1;
750 rep.th.window = htons(win);
751
752#ifdef CONFIG_TCP_MD5SIG
753 if (key) {
754 int offset = (tsecr) ? 3 : 0;
755
756 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
757 (TCPOPT_NOP << 16) |
758 (TCPOPT_MD5SIG << 8) |
759 TCPOLEN_MD5SIG);
760 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
761 rep.th.doff = arg.iov[0].iov_len/4;
762
763 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
764 key, ip_hdr(skb)->saddr,
765 ip_hdr(skb)->daddr, &rep.th);
766 }
767#endif
768 arg.flags = reply_flags;
769 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
770 ip_hdr(skb)->saddr, /* XXX */
771 arg.iov[0].iov_len, IPPROTO_TCP, 0);
772 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
773 if (oif)
774 arg.bound_dev_if = oif;
775 arg.tos = tos;
776 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
777 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
778
779 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
780}
781
782static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
783{
784 struct inet_timewait_sock *tw = inet_twsk(sk);
785 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
786
787 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
788 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
789 tcp_time_stamp + tcptw->tw_ts_offset,
790 tcptw->tw_ts_recent,
791 tw->tw_bound_dev_if,
792 tcp_twsk_md5_key(tcptw),
793 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
794 tw->tw_tos
795 );
796
797 inet_twsk_put(tw);
798}
799
800static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
801 struct request_sock *req)
802{
803 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
804 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
805 */
806 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
807 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
808 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
809 tcp_time_stamp,
810 req->ts_recent,
811 0,
812 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
813 AF_INET),
814 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
815 ip_hdr(skb)->tos);
816}
817
818/*
819 * Send a SYN-ACK after having received a SYN.
820 * This still operates on a request_sock only, not on a big
821 * socket.
822 */
823static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
824 struct request_sock *req,
825 u16 queue_mapping)
826{
827 const struct inet_request_sock *ireq = inet_rsk(req);
828 struct flowi4 fl4;
829 int err = -1;
830 struct sk_buff *skb;
831
832 /* First, grab a route. */
833 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
834 return -1;
835
836 skb = tcp_make_synack(sk, dst, req, NULL);
837
838 if (skb) {
839 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
840
841 skb_set_queue_mapping(skb, queue_mapping);
842 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
843 ireq->ir_rmt_addr,
844 ireq->opt);
845 err = net_xmit_eval(err);
846 if (!tcp_rsk(req)->snt_synack && !err)
847 tcp_rsk(req)->snt_synack = tcp_time_stamp;
848 }
849
850 return err;
851}
852
853static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
854{
855 int res = tcp_v4_send_synack(sk, NULL, req, 0);
856
857 if (!res) {
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
860 }
861 return res;
862}
863
864/*
865 * IPv4 request_sock destructor.
866 */
867static void tcp_v4_reqsk_destructor(struct request_sock *req)
868{
869 kfree(inet_rsk(req)->opt);
870}
871
872/*
873 * Return true if a syncookie should be sent
874 */
875bool tcp_syn_flood_action(struct sock *sk,
876 const struct sk_buff *skb,
877 const char *proto)
878{
879 const char *msg = "Dropping request";
880 bool want_cookie = false;
881 struct listen_sock *lopt;
882
883#ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889#endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
897 }
898 return want_cookie;
899}
900EXPORT_SYMBOL(tcp_syn_flood_action);
901
902/*
903 * Save and compile IPv4 options into the request_sock if needed.
904 */
905static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
906{
907 const struct ip_options *opt = &(IPCB(skb)->opt);
908 struct ip_options_rcu *dopt = NULL;
909
910 if (opt && opt->optlen) {
911 int opt_size = sizeof(*dopt) + opt->optlen;
912
913 dopt = kmalloc(opt_size, GFP_ATOMIC);
914 if (dopt) {
915 if (ip_options_echo(&dopt->opt, skb)) {
916 kfree(dopt);
917 dopt = NULL;
918 }
919 }
920 }
921 return dopt;
922}
923
924#ifdef CONFIG_TCP_MD5SIG
925/*
926 * RFC2385 MD5 checksumming requires a mapping of
927 * IP address->MD5 Key.
928 * We need to maintain these in the sk structure.
929 */
930
931/* Find the Key structure for an address. */
932struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
933 const union tcp_md5_addr *addr,
934 int family)
935{
936 struct tcp_sock *tp = tcp_sk(sk);
937 struct tcp_md5sig_key *key;
938 unsigned int size = sizeof(struct in_addr);
939 struct tcp_md5sig_info *md5sig;
940
941 /* caller either holds rcu_read_lock() or socket lock */
942 md5sig = rcu_dereference_check(tp->md5sig_info,
943 sock_owned_by_user(sk) ||
944 lockdep_is_held(&sk->sk_lock.slock));
945 if (!md5sig)
946 return NULL;
947#if IS_ENABLED(CONFIG_IPV6)
948 if (family == AF_INET6)
949 size = sizeof(struct in6_addr);
950#endif
951 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
952 if (key->family != family)
953 continue;
954 if (!memcmp(&key->addr, addr, size))
955 return key;
956 }
957 return NULL;
958}
959EXPORT_SYMBOL(tcp_md5_do_lookup);
960
961struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
962 struct sock *addr_sk)
963{
964 union tcp_md5_addr *addr;
965
966 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
967 return tcp_md5_do_lookup(sk, addr, AF_INET);
968}
969EXPORT_SYMBOL(tcp_v4_md5_lookup);
970
971static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
972 struct request_sock *req)
973{
974 union tcp_md5_addr *addr;
975
976 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
977 return tcp_md5_do_lookup(sk, addr, AF_INET);
978}
979
980/* This can be called on a newly created socket, from other files */
981int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
982 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
983{
984 /* Add Key to the list */
985 struct tcp_md5sig_key *key;
986 struct tcp_sock *tp = tcp_sk(sk);
987 struct tcp_md5sig_info *md5sig;
988
989 key = tcp_md5_do_lookup(sk, addr, family);
990 if (key) {
991 /* Pre-existing entry - just update that one. */
992 memcpy(key->key, newkey, newkeylen);
993 key->keylen = newkeylen;
994 return 0;
995 }
996
997 md5sig = rcu_dereference_protected(tp->md5sig_info,
998 sock_owned_by_user(sk));
999 if (!md5sig) {
1000 md5sig = kmalloc(sizeof(*md5sig), gfp);
1001 if (!md5sig)
1002 return -ENOMEM;
1003
1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005 INIT_HLIST_HEAD(&md5sig->head);
1006 rcu_assign_pointer(tp->md5sig_info, md5sig);
1007 }
1008
1009 key = sock_kmalloc(sk, sizeof(*key), gfp);
1010 if (!key)
1011 return -ENOMEM;
1012 if (!tcp_alloc_md5sig_pool()) {
1013 sock_kfree_s(sk, key, sizeof(*key));
1014 return -ENOMEM;
1015 }
1016
1017 memcpy(key->key, newkey, newkeylen);
1018 key->keylen = newkeylen;
1019 key->family = family;
1020 memcpy(&key->addr, addr,
1021 (family == AF_INET6) ? sizeof(struct in6_addr) :
1022 sizeof(struct in_addr));
1023 hlist_add_head_rcu(&key->node, &md5sig->head);
1024 return 0;
1025}
1026EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029{
1030 struct tcp_md5sig_key *key;
1031
1032 key = tcp_md5_do_lookup(sk, addr, family);
1033 if (!key)
1034 return -ENOENT;
1035 hlist_del_rcu(&key->node);
1036 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1037 kfree_rcu(key, rcu);
1038 return 0;
1039}
1040EXPORT_SYMBOL(tcp_md5_do_del);
1041
1042static void tcp_clear_md5_list(struct sock *sk)
1043{
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 struct tcp_md5sig_key *key;
1046 struct hlist_node *n;
1047 struct tcp_md5sig_info *md5sig;
1048
1049 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1050
1051 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1052 hlist_del_rcu(&key->node);
1053 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1054 kfree_rcu(key, rcu);
1055 }
1056}
1057
1058static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1059 int optlen)
1060{
1061 struct tcp_md5sig cmd;
1062 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1063
1064 if (optlen < sizeof(cmd))
1065 return -EINVAL;
1066
1067 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1068 return -EFAULT;
1069
1070 if (sin->sin_family != AF_INET)
1071 return -EINVAL;
1072
1073 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1074 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075 AF_INET);
1076
1077 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1078 return -EINVAL;
1079
1080 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1081 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1082 GFP_KERNEL);
1083}
1084
1085static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1086 __be32 daddr, __be32 saddr, int nbytes)
1087{
1088 struct tcp4_pseudohdr *bp;
1089 struct scatterlist sg;
1090
1091 bp = &hp->md5_blk.ip4;
1092
1093 /*
1094 * 1. the TCP pseudo-header (in the order: source IP address,
1095 * destination IP address, zero-padded protocol number, and
1096 * segment length)
1097 */
1098 bp->saddr = saddr;
1099 bp->daddr = daddr;
1100 bp->pad = 0;
1101 bp->protocol = IPPROTO_TCP;
1102 bp->len = cpu_to_be16(nbytes);
1103
1104 sg_init_one(&sg, bp, sizeof(*bp));
1105 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1106}
1107
1108static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1109 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1110{
1111 struct tcp_md5sig_pool *hp;
1112 struct hash_desc *desc;
1113
1114 hp = tcp_get_md5sig_pool();
1115 if (!hp)
1116 goto clear_hash_noput;
1117 desc = &hp->md5_desc;
1118
1119 if (crypto_hash_init(desc))
1120 goto clear_hash;
1121 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1122 goto clear_hash;
1123 if (tcp_md5_hash_header(hp, th))
1124 goto clear_hash;
1125 if (tcp_md5_hash_key(hp, key))
1126 goto clear_hash;
1127 if (crypto_hash_final(desc, md5_hash))
1128 goto clear_hash;
1129
1130 tcp_put_md5sig_pool();
1131 return 0;
1132
1133clear_hash:
1134 tcp_put_md5sig_pool();
1135clear_hash_noput:
1136 memset(md5_hash, 0, 16);
1137 return 1;
1138}
1139
1140int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1141 const struct sock *sk, const struct request_sock *req,
1142 const struct sk_buff *skb)
1143{
1144 struct tcp_md5sig_pool *hp;
1145 struct hash_desc *desc;
1146 const struct tcphdr *th = tcp_hdr(skb);
1147 __be32 saddr, daddr;
1148
1149 if (sk) {
1150 saddr = inet_sk(sk)->inet_saddr;
1151 daddr = inet_sk(sk)->inet_daddr;
1152 } else if (req) {
1153 saddr = inet_rsk(req)->ir_loc_addr;
1154 daddr = inet_rsk(req)->ir_rmt_addr;
1155 } else {
1156 const struct iphdr *iph = ip_hdr(skb);
1157 saddr = iph->saddr;
1158 daddr = iph->daddr;
1159 }
1160
1161 hp = tcp_get_md5sig_pool();
1162 if (!hp)
1163 goto clear_hash_noput;
1164 desc = &hp->md5_desc;
1165
1166 if (crypto_hash_init(desc))
1167 goto clear_hash;
1168
1169 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1170 goto clear_hash;
1171 if (tcp_md5_hash_header(hp, th))
1172 goto clear_hash;
1173 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1174 goto clear_hash;
1175 if (tcp_md5_hash_key(hp, key))
1176 goto clear_hash;
1177 if (crypto_hash_final(desc, md5_hash))
1178 goto clear_hash;
1179
1180 tcp_put_md5sig_pool();
1181 return 0;
1182
1183clear_hash:
1184 tcp_put_md5sig_pool();
1185clear_hash_noput:
1186 memset(md5_hash, 0, 16);
1187 return 1;
1188}
1189EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1190
1191static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1192{
1193 /*
1194 * This gets called for each TCP segment that arrives
1195 * so we want to be efficient.
1196 * We have 3 drop cases:
1197 * o No MD5 hash and one expected.
1198 * o MD5 hash and we're not expecting one.
1199 * o MD5 hash and its wrong.
1200 */
1201 const __u8 *hash_location = NULL;
1202 struct tcp_md5sig_key *hash_expected;
1203 const struct iphdr *iph = ip_hdr(skb);
1204 const struct tcphdr *th = tcp_hdr(skb);
1205 int genhash;
1206 unsigned char newhash[16];
1207
1208 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1209 AF_INET);
1210 hash_location = tcp_parse_md5sig_option(th);
1211
1212 /* We've parsed the options - do we have a hash? */
1213 if (!hash_expected && !hash_location)
1214 return false;
1215
1216 if (hash_expected && !hash_location) {
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1218 return true;
1219 }
1220
1221 if (!hash_expected && hash_location) {
1222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1223 return true;
1224 }
1225
1226 /* Okay, so this is hash_expected and hash_location -
1227 * so we need to calculate the checksum.
1228 */
1229 genhash = tcp_v4_md5_hash_skb(newhash,
1230 hash_expected,
1231 NULL, NULL, skb);
1232
1233 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1234 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1235 &iph->saddr, ntohs(th->source),
1236 &iph->daddr, ntohs(th->dest),
1237 genhash ? " tcp_v4_calc_md5_hash failed"
1238 : "");
1239 return true;
1240 }
1241 return false;
1242}
1243
1244#endif
1245
1246struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1247 .family = PF_INET,
1248 .obj_size = sizeof(struct tcp_request_sock),
1249 .rtx_syn_ack = tcp_v4_rtx_synack,
1250 .send_ack = tcp_v4_reqsk_send_ack,
1251 .destructor = tcp_v4_reqsk_destructor,
1252 .send_reset = tcp_v4_send_reset,
1253 .syn_ack_timeout = tcp_syn_ack_timeout,
1254};
1255
1256#ifdef CONFIG_TCP_MD5SIG
1257static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1259 .calc_md5_hash = tcp_v4_md5_hash_skb,
1260};
1261#endif
1262
1263static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1264 struct request_sock *req,
1265 struct tcp_fastopen_cookie *foc,
1266 struct tcp_fastopen_cookie *valid_foc)
1267{
1268 bool skip_cookie = false;
1269 struct fastopen_queue *fastopenq;
1270
1271 if (likely(!fastopen_cookie_present(foc))) {
1272 /* See include/net/tcp.h for the meaning of these knobs */
1273 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1274 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1275 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1276 skip_cookie = true; /* no cookie to validate */
1277 else
1278 return false;
1279 }
1280 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1281 /* A FO option is present; bump the counter. */
1282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1283
1284 /* Make sure the listener has enabled fastopen, and we don't
1285 * exceed the max # of pending TFO requests allowed before trying
1286 * to validating the cookie in order to avoid burning CPU cycles
1287 * unnecessarily.
1288 *
1289 * XXX (TFO) - The implication of checking the max_qlen before
1290 * processing a cookie request is that clients can't differentiate
1291 * between qlen overflow causing Fast Open to be disabled
1292 * temporarily vs a server not supporting Fast Open at all.
1293 */
1294 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1295 fastopenq == NULL || fastopenq->max_qlen == 0)
1296 return false;
1297
1298 if (fastopenq->qlen >= fastopenq->max_qlen) {
1299 struct request_sock *req1;
1300 spin_lock(&fastopenq->lock);
1301 req1 = fastopenq->rskq_rst_head;
1302 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1303 spin_unlock(&fastopenq->lock);
1304 NET_INC_STATS_BH(sock_net(sk),
1305 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1306 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1307 foc->len = -1;
1308 return false;
1309 }
1310 fastopenq->rskq_rst_head = req1->dl_next;
1311 fastopenq->qlen--;
1312 spin_unlock(&fastopenq->lock);
1313 reqsk_free(req1);
1314 }
1315 if (skip_cookie) {
1316 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1317 return true;
1318 }
1319
1320 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1321 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1322 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1323 ip_hdr(skb)->daddr, valid_foc);
1324 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1325 memcmp(&foc->val[0], &valid_foc->val[0],
1326 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1327 return false;
1328 valid_foc->len = -1;
1329 }
1330 /* Acknowledge the data received from the peer. */
1331 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1332 return true;
1333 } else if (foc->len == 0) { /* Client requesting a cookie */
1334 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1335 ip_hdr(skb)->daddr, valid_foc);
1336 NET_INC_STATS_BH(sock_net(sk),
1337 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1338 } else {
1339 /* Client sent a cookie with wrong size. Treat it
1340 * the same as invalid and return a valid one.
1341 */
1342 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1343 ip_hdr(skb)->daddr, valid_foc);
1344 }
1345 return false;
1346}
1347
1348static int tcp_v4_conn_req_fastopen(struct sock *sk,
1349 struct sk_buff *skb,
1350 struct sk_buff *skb_synack,
1351 struct request_sock *req)
1352{
1353 struct tcp_sock *tp = tcp_sk(sk);
1354 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1355 const struct inet_request_sock *ireq = inet_rsk(req);
1356 struct sock *child;
1357 int err;
1358
1359 req->num_retrans = 0;
1360 req->num_timeout = 0;
1361 req->sk = NULL;
1362
1363 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1364 if (child == NULL) {
1365 NET_INC_STATS_BH(sock_net(sk),
1366 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1367 kfree_skb(skb_synack);
1368 return -1;
1369 }
1370 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1371 ireq->ir_rmt_addr, ireq->opt);
1372 err = net_xmit_eval(err);
1373 if (!err)
1374 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1375 /* XXX (TFO) - is it ok to ignore error and continue? */
1376
1377 spin_lock(&queue->fastopenq->lock);
1378 queue->fastopenq->qlen++;
1379 spin_unlock(&queue->fastopenq->lock);
1380
1381 /* Initialize the child socket. Have to fix some values to take
1382 * into account the child is a Fast Open socket and is created
1383 * only out of the bits carried in the SYN packet.
1384 */
1385 tp = tcp_sk(child);
1386
1387 tp->fastopen_rsk = req;
1388 /* Do a hold on the listner sk so that if the listener is being
1389 * closed, the child that has been accepted can live on and still
1390 * access listen_lock.
1391 */
1392 sock_hold(sk);
1393 tcp_rsk(req)->listener = sk;
1394
1395 /* RFC1323: The window in SYN & SYN/ACK segments is never
1396 * scaled. So correct it appropriately.
1397 */
1398 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1399
1400 /* Activate the retrans timer so that SYNACK can be retransmitted.
1401 * The request socket is not added to the SYN table of the parent
1402 * because it's been added to the accept queue directly.
1403 */
1404 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1405 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1406
1407 /* Add the child socket directly into the accept queue */
1408 inet_csk_reqsk_queue_add(sk, req, child);
1409
1410 /* Now finish processing the fastopen child socket. */
1411 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1412 tcp_init_congestion_control(child);
1413 tcp_mtup_init(child);
1414 tcp_init_metrics(child);
1415 tcp_init_buffer_space(child);
1416
1417 /* Queue the data carried in the SYN packet. We need to first
1418 * bump skb's refcnt because the caller will attempt to free it.
1419 *
1420 * XXX (TFO) - we honor a zero-payload TFO request for now.
1421 * (Any reason not to?)
1422 */
1423 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1424 /* Don't queue the skb if there is no payload in SYN.
1425 * XXX (TFO) - How about SYN+FIN?
1426 */
1427 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1428 } else {
1429 skb = skb_get(skb);
1430 skb_dst_drop(skb);
1431 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1432 skb_set_owner_r(skb, child);
1433 __skb_queue_tail(&child->sk_receive_queue, skb);
1434 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1435 tp->syn_data_acked = 1;
1436 }
1437 sk->sk_data_ready(sk);
1438 bh_unlock_sock(child);
1439 sock_put(child);
1440 WARN_ON(req->sk == NULL);
1441 return 0;
1442}
1443
1444int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1445{
1446 struct tcp_options_received tmp_opt;
1447 struct request_sock *req;
1448 struct inet_request_sock *ireq;
1449 struct tcp_sock *tp = tcp_sk(sk);
1450 struct dst_entry *dst = NULL;
1451 __be32 saddr = ip_hdr(skb)->saddr;
1452 __be32 daddr = ip_hdr(skb)->daddr;
1453 __u32 isn = TCP_SKB_CB(skb)->when;
1454 bool want_cookie = false;
1455 struct flowi4 fl4;
1456 struct tcp_fastopen_cookie foc = { .len = -1 };
1457 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1458 struct sk_buff *skb_synack;
1459 int do_fastopen;
1460
1461 /* Never answer to SYNs send to broadcast or multicast */
1462 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1463 goto drop;
1464
1465 /* TW buckets are converted to open requests without
1466 * limitations, they conserve resources and peer is
1467 * evidently real one.
1468 */
1469 if ((sysctl_tcp_syncookies == 2 ||
1470 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
1471 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1472 if (!want_cookie)
1473 goto drop;
1474 }
1475
1476 /* Accept backlog is full. If we have already queued enough
1477 * of warm entries in syn queue, drop request. It is better than
1478 * clogging syn queue with openreqs with exponentially increasing
1479 * timeout.
1480 */
1481 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1482 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1483 goto drop;
1484 }
1485
1486 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1487 if (!req)
1488 goto drop;
1489
1490#ifdef CONFIG_TCP_MD5SIG
1491 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1492#endif
1493
1494 tcp_clear_options(&tmp_opt);
1495 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1496 tmp_opt.user_mss = tp->rx_opt.user_mss;
1497 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1498
1499 if (want_cookie && !tmp_opt.saw_tstamp)
1500 tcp_clear_options(&tmp_opt);
1501
1502 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1503 tcp_openreq_init(req, &tmp_opt, skb);
1504
1505 ireq = inet_rsk(req);
1506 ireq->ir_loc_addr = daddr;
1507 ireq->ir_rmt_addr = saddr;
1508 ireq->no_srccheck = inet_sk(sk)->transparent;
1509 ireq->opt = tcp_v4_save_options(skb);
1510
1511 if (security_inet_conn_request(sk, skb, req))
1512 goto drop_and_free;
1513
1514 if (!want_cookie || tmp_opt.tstamp_ok)
1515 TCP_ECN_create_request(req, skb, sock_net(sk));
1516
1517 if (want_cookie) {
1518 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1519 req->cookie_ts = tmp_opt.tstamp_ok;
1520 } else if (!isn) {
1521 /* VJ's idea. We save last timestamp seen
1522 * from the destination in peer table, when entering
1523 * state TIME-WAIT, and check against it before
1524 * accepting new connection request.
1525 *
1526 * If "isn" is not zero, this request hit alive
1527 * timewait bucket, so that all the necessary checks
1528 * are made in the function processing timewait state.
1529 */
1530 if (tmp_opt.saw_tstamp &&
1531 tcp_death_row.sysctl_tw_recycle &&
1532 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1533 fl4.daddr == saddr) {
1534 if (!tcp_peer_is_proven(req, dst, true)) {
1535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1536 goto drop_and_release;
1537 }
1538 }
1539 /* Kill the following clause, if you dislike this way. */
1540 else if (!sysctl_tcp_syncookies &&
1541 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1542 (sysctl_max_syn_backlog >> 2)) &&
1543 !tcp_peer_is_proven(req, dst, false)) {
1544 /* Without syncookies last quarter of
1545 * backlog is filled with destinations,
1546 * proven to be alive.
1547 * It means that we continue to communicate
1548 * to destinations, already remembered
1549 * to the moment of synflood.
1550 */
1551 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1552 &saddr, ntohs(tcp_hdr(skb)->source));
1553 goto drop_and_release;
1554 }
1555
1556 isn = tcp_v4_init_sequence(skb);
1557 }
1558 tcp_rsk(req)->snt_isn = isn;
1559
1560 if (dst == NULL) {
1561 dst = inet_csk_route_req(sk, &fl4, req);
1562 if (dst == NULL)
1563 goto drop_and_free;
1564 }
1565 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1566
1567 /* We don't call tcp_v4_send_synack() directly because we need
1568 * to make sure a child socket can be created successfully before
1569 * sending back synack!
1570 *
1571 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1572 * (or better yet, call tcp_send_synack() in the child context
1573 * directly, but will have to fix bunch of other code first)
1574 * after syn_recv_sock() except one will need to first fix the
1575 * latter to remove its dependency on the current implementation
1576 * of tcp_v4_send_synack()->tcp_select_initial_window().
1577 */
1578 skb_synack = tcp_make_synack(sk, dst, req,
1579 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1580
1581 if (skb_synack) {
1582 __tcp_v4_send_check(skb_synack, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1583 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1584 } else
1585 goto drop_and_free;
1586
1587 if (likely(!do_fastopen)) {
1588 int err;
1589 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1590 ireq->ir_rmt_addr, ireq->opt);
1591 err = net_xmit_eval(err);
1592 if (err || want_cookie)
1593 goto drop_and_free;
1594
1595 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1596 tcp_rsk(req)->listener = NULL;
1597 /* Add the request_sock to the SYN table */
1598 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1599 if (fastopen_cookie_present(&foc) && foc.len != 0)
1600 NET_INC_STATS_BH(sock_net(sk),
1601 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1602 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1603 goto drop_and_free;
1604
1605 return 0;
1606
1607drop_and_release:
1608 dst_release(dst);
1609drop_and_free:
1610 reqsk_free(req);
1611drop:
1612 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1613 return 0;
1614}
1615EXPORT_SYMBOL(tcp_v4_conn_request);
1616
1617
1618/*
1619 * The three way handshake has completed - we got a valid synack -
1620 * now create the new socket.
1621 */
1622struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1623 struct request_sock *req,
1624 struct dst_entry *dst)
1625{
1626 struct inet_request_sock *ireq;
1627 struct inet_sock *newinet;
1628 struct tcp_sock *newtp;
1629 struct sock *newsk;
1630#ifdef CONFIG_TCP_MD5SIG
1631 struct tcp_md5sig_key *key;
1632#endif
1633 struct ip_options_rcu *inet_opt;
1634
1635 if (sk_acceptq_is_full(sk))
1636 goto exit_overflow;
1637
1638 newsk = tcp_create_openreq_child(sk, req, skb);
1639 if (!newsk)
1640 goto exit_nonewsk;
1641
1642 newsk->sk_gso_type = SKB_GSO_TCPV4;
1643 inet_sk_rx_dst_set(newsk, skb);
1644
1645 newtp = tcp_sk(newsk);
1646 newinet = inet_sk(newsk);
1647 ireq = inet_rsk(req);
1648 newinet->inet_daddr = ireq->ir_rmt_addr;
1649 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1650 newinet->inet_saddr = ireq->ir_loc_addr;
1651 inet_opt = ireq->opt;
1652 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1653 ireq->opt = NULL;
1654 newinet->mc_index = inet_iif(skb);
1655 newinet->mc_ttl = ip_hdr(skb)->ttl;
1656 newinet->rcv_tos = ip_hdr(skb)->tos;
1657 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1658 if (inet_opt)
1659 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1660 newinet->inet_id = newtp->write_seq ^ jiffies;
1661
1662 if (!dst) {
1663 dst = inet_csk_route_child_sock(sk, newsk, req);
1664 if (!dst)
1665 goto put_and_exit;
1666 } else {
1667 /* syncookie case : see end of cookie_v4_check() */
1668 }
1669 sk_setup_caps(newsk, dst);
1670
1671 tcp_sync_mss(newsk, dst_mtu(dst));
1672 newtp->advmss = dst_metric_advmss(dst);
1673 if (tcp_sk(sk)->rx_opt.user_mss &&
1674 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1675 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1676
1677 tcp_initialize_rcv_mss(newsk);
1678
1679#ifdef CONFIG_TCP_MD5SIG
1680 /* Copy over the MD5 key from the original socket */
1681 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1682 AF_INET);
1683 if (key != NULL) {
1684 /*
1685 * We're using one, so create a matching key
1686 * on the newsk structure. If we fail to get
1687 * memory, then we end up not copying the key
1688 * across. Shucks.
1689 */
1690 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1691 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1692 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1693 }
1694#endif
1695
1696 if (__inet_inherit_port(sk, newsk) < 0)
1697 goto put_and_exit;
1698 __inet_hash_nolisten(newsk, NULL);
1699
1700 return newsk;
1701
1702exit_overflow:
1703 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1704exit_nonewsk:
1705 dst_release(dst);
1706exit:
1707 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1708 return NULL;
1709put_and_exit:
1710 inet_csk_prepare_forced_close(newsk);
1711 tcp_done(newsk);
1712 goto exit;
1713}
1714EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1715
1716static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1717{
1718 struct tcphdr *th = tcp_hdr(skb);
1719 const struct iphdr *iph = ip_hdr(skb);
1720 struct sock *nsk;
1721 struct request_sock **prev;
1722 /* Find possible connection requests. */
1723 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1724 iph->saddr, iph->daddr);
1725 if (req)
1726 return tcp_check_req(sk, skb, req, prev, false);
1727
1728 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1729 th->source, iph->daddr, th->dest, inet_iif(skb));
1730
1731 if (nsk) {
1732 if (nsk->sk_state != TCP_TIME_WAIT) {
1733 bh_lock_sock(nsk);
1734 return nsk;
1735 }
1736 inet_twsk_put(inet_twsk(nsk));
1737 return NULL;
1738 }
1739
1740#ifdef CONFIG_SYN_COOKIES
1741 if (!th->syn)
1742 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1743#endif
1744 return sk;
1745}
1746
1747static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1748{
1749 const struct iphdr *iph = ip_hdr(skb);
1750
1751 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1752 if (!tcp_v4_check(skb->len, iph->saddr,
1753 iph->daddr, skb->csum)) {
1754 skb->ip_summed = CHECKSUM_UNNECESSARY;
1755 return 0;
1756 }
1757 }
1758
1759 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1760 skb->len, IPPROTO_TCP, 0);
1761
1762 if (skb->len <= 76) {
1763 return __skb_checksum_complete(skb);
1764 }
1765 return 0;
1766}
1767
1768
1769/* The socket must have it's spinlock held when we get
1770 * here.
1771 *
1772 * We have a potential double-lock case here, so even when
1773 * doing backlog processing we use the BH locking scheme.
1774 * This is because we cannot sleep with the original spinlock
1775 * held.
1776 */
1777int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1778{
1779 struct sock *rsk;
1780#ifdef CONFIG_TCP_MD5SIG
1781 /*
1782 * We really want to reject the packet as early as possible
1783 * if:
1784 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1785 * o There is an MD5 option and we're not expecting one
1786 */
1787 if (tcp_v4_inbound_md5_hash(sk, skb))
1788 goto discard;
1789#endif
1790
1791 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1792 struct dst_entry *dst = sk->sk_rx_dst;
1793
1794 sock_rps_save_rxhash(sk, skb);
1795 if (dst) {
1796 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1797 dst->ops->check(dst, 0) == NULL) {
1798 dst_release(dst);
1799 sk->sk_rx_dst = NULL;
1800 }
1801 }
1802 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1803 return 0;
1804 }
1805
1806 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1807 goto csum_err;
1808
1809 if (sk->sk_state == TCP_LISTEN) {
1810 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1811 if (!nsk)
1812 goto discard;
1813
1814 if (nsk != sk) {
1815 sock_rps_save_rxhash(nsk, skb);
1816 if (tcp_child_process(sk, nsk, skb)) {
1817 rsk = nsk;
1818 goto reset;
1819 }
1820 return 0;
1821 }
1822 } else
1823 sock_rps_save_rxhash(sk, skb);
1824
1825 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1826 rsk = sk;
1827 goto reset;
1828 }
1829 return 0;
1830
1831reset:
1832 tcp_v4_send_reset(rsk, skb);
1833discard:
1834 kfree_skb(skb);
1835 /* Be careful here. If this function gets more complicated and
1836 * gcc suffers from register pressure on the x86, sk (in %ebx)
1837 * might be destroyed here. This current version compiles correctly,
1838 * but you have been warned.
1839 */
1840 return 0;
1841
1842csum_err:
1843 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1844 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1845 goto discard;
1846}
1847EXPORT_SYMBOL(tcp_v4_do_rcv);
1848
1849void tcp_v4_early_demux(struct sk_buff *skb)
1850{
1851 const struct iphdr *iph;
1852 const struct tcphdr *th;
1853 struct sock *sk;
1854
1855 if (skb->pkt_type != PACKET_HOST)
1856 return;
1857
1858 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1859 return;
1860
1861 iph = ip_hdr(skb);
1862 th = tcp_hdr(skb);
1863
1864 if (th->doff < sizeof(struct tcphdr) / 4)
1865 return;
1866
1867 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1868 iph->saddr, th->source,
1869 iph->daddr, ntohs(th->dest),
1870 skb->skb_iif);
1871 if (sk) {
1872 skb->sk = sk;
1873 skb->destructor = sock_edemux;
1874 if (sk->sk_state != TCP_TIME_WAIT) {
1875 struct dst_entry *dst = sk->sk_rx_dst;
1876
1877 if (dst)
1878 dst = dst_check(dst, 0);
1879 if (dst &&
1880 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1881 skb_dst_set_noref(skb, dst);
1882 }
1883 }
1884}
1885
1886/* Packet is added to VJ-style prequeue for processing in process
1887 * context, if a reader task is waiting. Apparently, this exciting
1888 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1889 * failed somewhere. Latency? Burstiness? Well, at least now we will
1890 * see, why it failed. 8)8) --ANK
1891 *
1892 */
1893bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1894{
1895 struct tcp_sock *tp = tcp_sk(sk);
1896
1897 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1898 return false;
1899
1900 if (skb->len <= tcp_hdrlen(skb) &&
1901 skb_queue_len(&tp->ucopy.prequeue) == 0)
1902 return false;
1903
1904 skb_dst_force(skb);
1905 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1906 tp->ucopy.memory += skb->truesize;
1907 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1908 struct sk_buff *skb1;
1909
1910 BUG_ON(sock_owned_by_user(sk));
1911
1912 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1913 sk_backlog_rcv(sk, skb1);
1914 NET_INC_STATS_BH(sock_net(sk),
1915 LINUX_MIB_TCPPREQUEUEDROPPED);
1916 }
1917
1918 tp->ucopy.memory = 0;
1919 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1920 wake_up_interruptible_sync_poll(sk_sleep(sk),
1921 POLLIN | POLLRDNORM | POLLRDBAND);
1922 if (!inet_csk_ack_scheduled(sk))
1923 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1924 (3 * tcp_rto_min(sk)) / 4,
1925 TCP_RTO_MAX);
1926 }
1927 return true;
1928}
1929EXPORT_SYMBOL(tcp_prequeue);
1930
1931/*
1932 * From tcp_input.c
1933 */
1934
1935int tcp_v4_rcv(struct sk_buff *skb)
1936{
1937 const struct iphdr *iph;
1938 const struct tcphdr *th;
1939 struct sock *sk;
1940 int ret;
1941 struct net *net = dev_net(skb->dev);
1942
1943 if (skb->pkt_type != PACKET_HOST)
1944 goto discard_it;
1945
1946 /* Count it even if it's bad */
1947 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1948
1949 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1950 goto discard_it;
1951
1952 th = tcp_hdr(skb);
1953
1954 if (th->doff < sizeof(struct tcphdr) / 4)
1955 goto bad_packet;
1956 if (!pskb_may_pull(skb, th->doff * 4))
1957 goto discard_it;
1958
1959 /* An explanation is required here, I think.
1960 * Packet length and doff are validated by header prediction,
1961 * provided case of th->doff==0 is eliminated.
1962 * So, we defer the checks. */
1963 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1964 goto csum_error;
1965
1966 th = tcp_hdr(skb);
1967 iph = ip_hdr(skb);
1968 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1969 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1970 skb->len - th->doff * 4);
1971 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1972 TCP_SKB_CB(skb)->when = 0;
1973 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1974 TCP_SKB_CB(skb)->sacked = 0;
1975
1976 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1977 if (!sk)
1978 goto no_tcp_socket;
1979
1980process:
1981 if (sk->sk_state == TCP_TIME_WAIT)
1982 goto do_time_wait;
1983
1984 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1985 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1986 goto discard_and_relse;
1987 }
1988
1989 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1990 goto discard_and_relse;
1991 nf_reset(skb);
1992
1993 if (sk_filter(sk, skb))
1994 goto discard_and_relse;
1995
1996 sk_mark_napi_id(sk, skb);
1997 skb->dev = NULL;
1998
1999 bh_lock_sock_nested(sk);
2000 ret = 0;
2001 if (!sock_owned_by_user(sk)) {
2002#ifdef CONFIG_NET_DMA
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2005 tp->ucopy.dma_chan = net_dma_find_channel();
2006 if (tp->ucopy.dma_chan)
2007 ret = tcp_v4_do_rcv(sk, skb);
2008 else
2009#endif
2010 {
2011 if (!tcp_prequeue(sk, skb))
2012 ret = tcp_v4_do_rcv(sk, skb);
2013 }
2014 } else if (unlikely(sk_add_backlog(sk, skb,
2015 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2016 bh_unlock_sock(sk);
2017 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2018 goto discard_and_relse;
2019 }
2020 bh_unlock_sock(sk);
2021
2022 sock_put(sk);
2023
2024 return ret;
2025
2026no_tcp_socket:
2027 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2028 goto discard_it;
2029
2030 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2031csum_error:
2032 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2033bad_packet:
2034 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2035 } else {
2036 tcp_v4_send_reset(NULL, skb);
2037 }
2038
2039discard_it:
2040 /* Discard frame. */
2041 kfree_skb(skb);
2042 return 0;
2043
2044discard_and_relse:
2045 sock_put(sk);
2046 goto discard_it;
2047
2048do_time_wait:
2049 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2050 inet_twsk_put(inet_twsk(sk));
2051 goto discard_it;
2052 }
2053
2054 if (skb->len < (th->doff << 2)) {
2055 inet_twsk_put(inet_twsk(sk));
2056 goto bad_packet;
2057 }
2058 if (tcp_checksum_complete(skb)) {
2059 inet_twsk_put(inet_twsk(sk));
2060 goto csum_error;
2061 }
2062 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2063 case TCP_TW_SYN: {
2064 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2065 &tcp_hashinfo,
2066 iph->saddr, th->source,
2067 iph->daddr, th->dest,
2068 inet_iif(skb));
2069 if (sk2) {
2070 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2071 inet_twsk_put(inet_twsk(sk));
2072 sk = sk2;
2073 goto process;
2074 }
2075 /* Fall through to ACK */
2076 }
2077 case TCP_TW_ACK:
2078 tcp_v4_timewait_ack(sk, skb);
2079 break;
2080 case TCP_TW_RST:
2081 goto no_tcp_socket;
2082 case TCP_TW_SUCCESS:;
2083 }
2084 goto discard_it;
2085}
2086
2087static struct timewait_sock_ops tcp_timewait_sock_ops = {
2088 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2089 .twsk_unique = tcp_twsk_unique,
2090 .twsk_destructor= tcp_twsk_destructor,
2091};
2092
2093void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2094{
2095 struct dst_entry *dst = skb_dst(skb);
2096
2097 dst_hold(dst);
2098 sk->sk_rx_dst = dst;
2099 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2100}
2101EXPORT_SYMBOL(inet_sk_rx_dst_set);
2102
2103const struct inet_connection_sock_af_ops ipv4_specific = {
2104 .queue_xmit = ip_queue_xmit,
2105 .send_check = tcp_v4_send_check,
2106 .rebuild_header = inet_sk_rebuild_header,
2107 .sk_rx_dst_set = inet_sk_rx_dst_set,
2108 .conn_request = tcp_v4_conn_request,
2109 .syn_recv_sock = tcp_v4_syn_recv_sock,
2110 .net_header_len = sizeof(struct iphdr),
2111 .setsockopt = ip_setsockopt,
2112 .getsockopt = ip_getsockopt,
2113 .addr2sockaddr = inet_csk_addr2sockaddr,
2114 .sockaddr_len = sizeof(struct sockaddr_in),
2115 .bind_conflict = inet_csk_bind_conflict,
2116#ifdef CONFIG_COMPAT
2117 .compat_setsockopt = compat_ip_setsockopt,
2118 .compat_getsockopt = compat_ip_getsockopt,
2119#endif
2120};
2121EXPORT_SYMBOL(ipv4_specific);
2122
2123#ifdef CONFIG_TCP_MD5SIG
2124static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2125 .md5_lookup = tcp_v4_md5_lookup,
2126 .calc_md5_hash = tcp_v4_md5_hash_skb,
2127 .md5_parse = tcp_v4_parse_md5_keys,
2128};
2129#endif
2130
2131/* NOTE: A lot of things set to zero explicitly by call to
2132 * sk_alloc() so need not be done here.
2133 */
2134static int tcp_v4_init_sock(struct sock *sk)
2135{
2136 struct inet_connection_sock *icsk = inet_csk(sk);
2137
2138 tcp_init_sock(sk);
2139
2140 icsk->icsk_af_ops = &ipv4_specific;
2141
2142#ifdef CONFIG_TCP_MD5SIG
2143 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2144#endif
2145
2146 return 0;
2147}
2148
2149void tcp_v4_destroy_sock(struct sock *sk)
2150{
2151 struct tcp_sock *tp = tcp_sk(sk);
2152
2153 tcp_clear_xmit_timers(sk);
2154
2155 tcp_cleanup_congestion_control(sk);
2156
2157 /* Cleanup up the write buffer. */
2158 tcp_write_queue_purge(sk);
2159
2160 /* Cleans up our, hopefully empty, out_of_order_queue. */
2161 __skb_queue_purge(&tp->out_of_order_queue);
2162
2163#ifdef CONFIG_TCP_MD5SIG
2164 /* Clean up the MD5 key list, if any */
2165 if (tp->md5sig_info) {
2166 tcp_clear_md5_list(sk);
2167 kfree_rcu(tp->md5sig_info, rcu);
2168 tp->md5sig_info = NULL;
2169 }
2170#endif
2171
2172#ifdef CONFIG_NET_DMA
2173 /* Cleans up our sk_async_wait_queue */
2174 __skb_queue_purge(&sk->sk_async_wait_queue);
2175#endif
2176
2177 /* Clean prequeue, it must be empty really */
2178 __skb_queue_purge(&tp->ucopy.prequeue);
2179
2180 /* Clean up a referenced TCP bind bucket. */
2181 if (inet_csk(sk)->icsk_bind_hash)
2182 inet_put_port(sk);
2183
2184 BUG_ON(tp->fastopen_rsk != NULL);
2185
2186 /* If socket is aborted during connect operation */
2187 tcp_free_fastopen_req(tp);
2188
2189 sk_sockets_allocated_dec(sk);
2190 sock_release_memcg(sk);
2191}
2192EXPORT_SYMBOL(tcp_v4_destroy_sock);
2193
2194#ifdef CONFIG_PROC_FS
2195/* Proc filesystem TCP sock list dumping. */
2196
2197/*
2198 * Get next listener socket follow cur. If cur is NULL, get first socket
2199 * starting from bucket given in st->bucket; when st->bucket is zero the
2200 * very first socket in the hash table is returned.
2201 */
2202static void *listening_get_next(struct seq_file *seq, void *cur)
2203{
2204 struct inet_connection_sock *icsk;
2205 struct hlist_nulls_node *node;
2206 struct sock *sk = cur;
2207 struct inet_listen_hashbucket *ilb;
2208 struct tcp_iter_state *st = seq->private;
2209 struct net *net = seq_file_net(seq);
2210
2211 if (!sk) {
2212 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2213 spin_lock_bh(&ilb->lock);
2214 sk = sk_nulls_head(&ilb->head);
2215 st->offset = 0;
2216 goto get_sk;
2217 }
2218 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2219 ++st->num;
2220 ++st->offset;
2221
2222 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2223 struct request_sock *req = cur;
2224
2225 icsk = inet_csk(st->syn_wait_sk);
2226 req = req->dl_next;
2227 while (1) {
2228 while (req) {
2229 if (req->rsk_ops->family == st->family) {
2230 cur = req;
2231 goto out;
2232 }
2233 req = req->dl_next;
2234 }
2235 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2236 break;
2237get_req:
2238 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2239 }
2240 sk = sk_nulls_next(st->syn_wait_sk);
2241 st->state = TCP_SEQ_STATE_LISTENING;
2242 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2243 } else {
2244 icsk = inet_csk(sk);
2245 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2246 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2247 goto start_req;
2248 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2249 sk = sk_nulls_next(sk);
2250 }
2251get_sk:
2252 sk_nulls_for_each_from(sk, node) {
2253 if (!net_eq(sock_net(sk), net))
2254 continue;
2255 if (sk->sk_family == st->family) {
2256 cur = sk;
2257 goto out;
2258 }
2259 icsk = inet_csk(sk);
2260 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2261 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2262start_req:
2263 st->uid = sock_i_uid(sk);
2264 st->syn_wait_sk = sk;
2265 st->state = TCP_SEQ_STATE_OPENREQ;
2266 st->sbucket = 0;
2267 goto get_req;
2268 }
2269 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2270 }
2271 spin_unlock_bh(&ilb->lock);
2272 st->offset = 0;
2273 if (++st->bucket < INET_LHTABLE_SIZE) {
2274 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2275 spin_lock_bh(&ilb->lock);
2276 sk = sk_nulls_head(&ilb->head);
2277 goto get_sk;
2278 }
2279 cur = NULL;
2280out:
2281 return cur;
2282}
2283
2284static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2285{
2286 struct tcp_iter_state *st = seq->private;
2287 void *rc;
2288
2289 st->bucket = 0;
2290 st->offset = 0;
2291 rc = listening_get_next(seq, NULL);
2292
2293 while (rc && *pos) {
2294 rc = listening_get_next(seq, rc);
2295 --*pos;
2296 }
2297 return rc;
2298}
2299
2300static inline bool empty_bucket(const struct tcp_iter_state *st)
2301{
2302 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2303}
2304
2305/*
2306 * Get first established socket starting from bucket given in st->bucket.
2307 * If st->bucket is zero, the very first socket in the hash is returned.
2308 */
2309static void *established_get_first(struct seq_file *seq)
2310{
2311 struct tcp_iter_state *st = seq->private;
2312 struct net *net = seq_file_net(seq);
2313 void *rc = NULL;
2314
2315 st->offset = 0;
2316 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2317 struct sock *sk;
2318 struct hlist_nulls_node *node;
2319 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2320
2321 /* Lockless fast path for the common case of empty buckets */
2322 if (empty_bucket(st))
2323 continue;
2324
2325 spin_lock_bh(lock);
2326 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2327 if (sk->sk_family != st->family ||
2328 !net_eq(sock_net(sk), net)) {
2329 continue;
2330 }
2331 rc = sk;
2332 goto out;
2333 }
2334 spin_unlock_bh(lock);
2335 }
2336out:
2337 return rc;
2338}
2339
2340static void *established_get_next(struct seq_file *seq, void *cur)
2341{
2342 struct sock *sk = cur;
2343 struct hlist_nulls_node *node;
2344 struct tcp_iter_state *st = seq->private;
2345 struct net *net = seq_file_net(seq);
2346
2347 ++st->num;
2348 ++st->offset;
2349
2350 sk = sk_nulls_next(sk);
2351
2352 sk_nulls_for_each_from(sk, node) {
2353 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2354 return sk;
2355 }
2356
2357 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2358 ++st->bucket;
2359 return established_get_first(seq);
2360}
2361
2362static void *established_get_idx(struct seq_file *seq, loff_t pos)
2363{
2364 struct tcp_iter_state *st = seq->private;
2365 void *rc;
2366
2367 st->bucket = 0;
2368 rc = established_get_first(seq);
2369
2370 while (rc && pos) {
2371 rc = established_get_next(seq, rc);
2372 --pos;
2373 }
2374 return rc;
2375}
2376
2377static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2378{
2379 void *rc;
2380 struct tcp_iter_state *st = seq->private;
2381
2382 st->state = TCP_SEQ_STATE_LISTENING;
2383 rc = listening_get_idx(seq, &pos);
2384
2385 if (!rc) {
2386 st->state = TCP_SEQ_STATE_ESTABLISHED;
2387 rc = established_get_idx(seq, pos);
2388 }
2389
2390 return rc;
2391}
2392
2393static void *tcp_seek_last_pos(struct seq_file *seq)
2394{
2395 struct tcp_iter_state *st = seq->private;
2396 int offset = st->offset;
2397 int orig_num = st->num;
2398 void *rc = NULL;
2399
2400 switch (st->state) {
2401 case TCP_SEQ_STATE_OPENREQ:
2402 case TCP_SEQ_STATE_LISTENING:
2403 if (st->bucket >= INET_LHTABLE_SIZE)
2404 break;
2405 st->state = TCP_SEQ_STATE_LISTENING;
2406 rc = listening_get_next(seq, NULL);
2407 while (offset-- && rc)
2408 rc = listening_get_next(seq, rc);
2409 if (rc)
2410 break;
2411 st->bucket = 0;
2412 st->state = TCP_SEQ_STATE_ESTABLISHED;
2413 /* Fallthrough */
2414 case TCP_SEQ_STATE_ESTABLISHED:
2415 if (st->bucket > tcp_hashinfo.ehash_mask)
2416 break;
2417 rc = established_get_first(seq);
2418 while (offset-- && rc)
2419 rc = established_get_next(seq, rc);
2420 }
2421
2422 st->num = orig_num;
2423
2424 return rc;
2425}
2426
2427static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2428{
2429 struct tcp_iter_state *st = seq->private;
2430 void *rc;
2431
2432 if (*pos && *pos == st->last_pos) {
2433 rc = tcp_seek_last_pos(seq);
2434 if (rc)
2435 goto out;
2436 }
2437
2438 st->state = TCP_SEQ_STATE_LISTENING;
2439 st->num = 0;
2440 st->bucket = 0;
2441 st->offset = 0;
2442 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2443
2444out:
2445 st->last_pos = *pos;
2446 return rc;
2447}
2448
2449static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451 struct tcp_iter_state *st = seq->private;
2452 void *rc = NULL;
2453
2454 if (v == SEQ_START_TOKEN) {
2455 rc = tcp_get_idx(seq, 0);
2456 goto out;
2457 }
2458
2459 switch (st->state) {
2460 case TCP_SEQ_STATE_OPENREQ:
2461 case TCP_SEQ_STATE_LISTENING:
2462 rc = listening_get_next(seq, v);
2463 if (!rc) {
2464 st->state = TCP_SEQ_STATE_ESTABLISHED;
2465 st->bucket = 0;
2466 st->offset = 0;
2467 rc = established_get_first(seq);
2468 }
2469 break;
2470 case TCP_SEQ_STATE_ESTABLISHED:
2471 rc = established_get_next(seq, v);
2472 break;
2473 }
2474out:
2475 ++*pos;
2476 st->last_pos = *pos;
2477 return rc;
2478}
2479
2480static void tcp_seq_stop(struct seq_file *seq, void *v)
2481{
2482 struct tcp_iter_state *st = seq->private;
2483
2484 switch (st->state) {
2485 case TCP_SEQ_STATE_OPENREQ:
2486 if (v) {
2487 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2488 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2489 }
2490 case TCP_SEQ_STATE_LISTENING:
2491 if (v != SEQ_START_TOKEN)
2492 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2493 break;
2494 case TCP_SEQ_STATE_ESTABLISHED:
2495 if (v)
2496 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2497 break;
2498 }
2499}
2500
2501int tcp_seq_open(struct inode *inode, struct file *file)
2502{
2503 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2504 struct tcp_iter_state *s;
2505 int err;
2506
2507 err = seq_open_net(inode, file, &afinfo->seq_ops,
2508 sizeof(struct tcp_iter_state));
2509 if (err < 0)
2510 return err;
2511
2512 s = ((struct seq_file *)file->private_data)->private;
2513 s->family = afinfo->family;
2514 s->last_pos = 0;
2515 return 0;
2516}
2517EXPORT_SYMBOL(tcp_seq_open);
2518
2519int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2520{
2521 int rc = 0;
2522 struct proc_dir_entry *p;
2523
2524 afinfo->seq_ops.start = tcp_seq_start;
2525 afinfo->seq_ops.next = tcp_seq_next;
2526 afinfo->seq_ops.stop = tcp_seq_stop;
2527
2528 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2529 afinfo->seq_fops, afinfo);
2530 if (!p)
2531 rc = -ENOMEM;
2532 return rc;
2533}
2534EXPORT_SYMBOL(tcp_proc_register);
2535
2536void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2537{
2538 remove_proc_entry(afinfo->name, net->proc_net);
2539}
2540EXPORT_SYMBOL(tcp_proc_unregister);
2541
2542static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2543 struct seq_file *f, int i, kuid_t uid)
2544{
2545 const struct inet_request_sock *ireq = inet_rsk(req);
2546 long delta = req->expires - jiffies;
2547
2548 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2549 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2550 i,
2551 ireq->ir_loc_addr,
2552 ntohs(inet_sk(sk)->inet_sport),
2553 ireq->ir_rmt_addr,
2554 ntohs(ireq->ir_rmt_port),
2555 TCP_SYN_RECV,
2556 0, 0, /* could print option size, but that is af dependent. */
2557 1, /* timers active (only the expire timer) */
2558 jiffies_delta_to_clock_t(delta),
2559 req->num_timeout,
2560 from_kuid_munged(seq_user_ns(f), uid),
2561 0, /* non standard timer */
2562 0, /* open_requests have no inode */
2563 atomic_read(&sk->sk_refcnt),
2564 req);
2565}
2566
2567static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2568{
2569 int timer_active;
2570 unsigned long timer_expires;
2571 const struct tcp_sock *tp = tcp_sk(sk);
2572 const struct inet_connection_sock *icsk = inet_csk(sk);
2573 const struct inet_sock *inet = inet_sk(sk);
2574 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2575 __be32 dest = inet->inet_daddr;
2576 __be32 src = inet->inet_rcv_saddr;
2577 __u16 destp = ntohs(inet->inet_dport);
2578 __u16 srcp = ntohs(inet->inet_sport);
2579 int rx_queue;
2580
2581 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2582 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2583 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2584 timer_active = 1;
2585 timer_expires = icsk->icsk_timeout;
2586 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2587 timer_active = 4;
2588 timer_expires = icsk->icsk_timeout;
2589 } else if (timer_pending(&sk->sk_timer)) {
2590 timer_active = 2;
2591 timer_expires = sk->sk_timer.expires;
2592 } else {
2593 timer_active = 0;
2594 timer_expires = jiffies;
2595 }
2596
2597 if (sk->sk_state == TCP_LISTEN)
2598 rx_queue = sk->sk_ack_backlog;
2599 else
2600 /*
2601 * because we dont lock socket, we might find a transient negative value
2602 */
2603 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2604
2605 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2606 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2607 i, src, srcp, dest, destp, sk->sk_state,
2608 tp->write_seq - tp->snd_una,
2609 rx_queue,
2610 timer_active,
2611 jiffies_delta_to_clock_t(timer_expires - jiffies),
2612 icsk->icsk_retransmits,
2613 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2614 icsk->icsk_probes_out,
2615 sock_i_ino(sk),
2616 atomic_read(&sk->sk_refcnt), sk,
2617 jiffies_to_clock_t(icsk->icsk_rto),
2618 jiffies_to_clock_t(icsk->icsk_ack.ato),
2619 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2620 tp->snd_cwnd,
2621 sk->sk_state == TCP_LISTEN ?
2622 (fastopenq ? fastopenq->max_qlen : 0) :
2623 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2624}
2625
2626static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2627 struct seq_file *f, int i)
2628{
2629 __be32 dest, src;
2630 __u16 destp, srcp;
2631 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2632
2633 dest = tw->tw_daddr;
2634 src = tw->tw_rcv_saddr;
2635 destp = ntohs(tw->tw_dport);
2636 srcp = ntohs(tw->tw_sport);
2637
2638 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2639 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2640 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2641 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2642 atomic_read(&tw->tw_refcnt), tw);
2643}
2644
2645#define TMPSZ 150
2646
2647static int tcp4_seq_show(struct seq_file *seq, void *v)
2648{
2649 struct tcp_iter_state *st;
2650 struct sock *sk = v;
2651
2652 seq_setwidth(seq, TMPSZ - 1);
2653 if (v == SEQ_START_TOKEN) {
2654 seq_puts(seq, " sl local_address rem_address st tx_queue "
2655 "rx_queue tr tm->when retrnsmt uid timeout "
2656 "inode");
2657 goto out;
2658 }
2659 st = seq->private;
2660
2661 switch (st->state) {
2662 case TCP_SEQ_STATE_LISTENING:
2663 case TCP_SEQ_STATE_ESTABLISHED:
2664 if (sk->sk_state == TCP_TIME_WAIT)
2665 get_timewait4_sock(v, seq, st->num);
2666 else
2667 get_tcp4_sock(v, seq, st->num);
2668 break;
2669 case TCP_SEQ_STATE_OPENREQ:
2670 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2671 break;
2672 }
2673out:
2674 seq_pad(seq, '\n');
2675 return 0;
2676}
2677
2678static const struct file_operations tcp_afinfo_seq_fops = {
2679 .owner = THIS_MODULE,
2680 .open = tcp_seq_open,
2681 .read = seq_read,
2682 .llseek = seq_lseek,
2683 .release = seq_release_net
2684};
2685
2686static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2687 .name = "tcp",
2688 .family = AF_INET,
2689 .seq_fops = &tcp_afinfo_seq_fops,
2690 .seq_ops = {
2691 .show = tcp4_seq_show,
2692 },
2693};
2694
2695static int __net_init tcp4_proc_init_net(struct net *net)
2696{
2697 return tcp_proc_register(net, &tcp4_seq_afinfo);
2698}
2699
2700static void __net_exit tcp4_proc_exit_net(struct net *net)
2701{
2702 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2703}
2704
2705static struct pernet_operations tcp4_net_ops = {
2706 .init = tcp4_proc_init_net,
2707 .exit = tcp4_proc_exit_net,
2708};
2709
2710int __init tcp4_proc_init(void)
2711{
2712 return register_pernet_subsys(&tcp4_net_ops);
2713}
2714
2715void tcp4_proc_exit(void)
2716{
2717 unregister_pernet_subsys(&tcp4_net_ops);
2718}
2719#endif /* CONFIG_PROC_FS */
2720
2721struct proto tcp_prot = {
2722 .name = "TCP",
2723 .owner = THIS_MODULE,
2724 .close = tcp_close,
2725 .connect = tcp_v4_connect,
2726 .disconnect = tcp_disconnect,
2727 .accept = inet_csk_accept,
2728 .ioctl = tcp_ioctl,
2729 .init = tcp_v4_init_sock,
2730 .destroy = tcp_v4_destroy_sock,
2731 .shutdown = tcp_shutdown,
2732 .setsockopt = tcp_setsockopt,
2733 .getsockopt = tcp_getsockopt,
2734 .recvmsg = tcp_recvmsg,
2735 .sendmsg = tcp_sendmsg,
2736 .sendpage = tcp_sendpage,
2737 .backlog_rcv = tcp_v4_do_rcv,
2738 .release_cb = tcp_release_cb,
2739 .mtu_reduced = tcp_v4_mtu_reduced,
2740 .hash = inet_hash,
2741 .unhash = inet_unhash,
2742 .get_port = inet_csk_get_port,
2743 .enter_memory_pressure = tcp_enter_memory_pressure,
2744 .stream_memory_free = tcp_stream_memory_free,
2745 .sockets_allocated = &tcp_sockets_allocated,
2746 .orphan_count = &tcp_orphan_count,
2747 .memory_allocated = &tcp_memory_allocated,
2748 .memory_pressure = &tcp_memory_pressure,
2749 .sysctl_mem = sysctl_tcp_mem,
2750 .sysctl_wmem = sysctl_tcp_wmem,
2751 .sysctl_rmem = sysctl_tcp_rmem,
2752 .max_header = MAX_TCP_HEADER,
2753 .obj_size = sizeof(struct tcp_sock),
2754 .slab_flags = SLAB_DESTROY_BY_RCU,
2755 .twsk_prot = &tcp_timewait_sock_ops,
2756 .rsk_prot = &tcp_request_sock_ops,
2757 .h.hashinfo = &tcp_hashinfo,
2758 .no_autobind = true,
2759#ifdef CONFIG_COMPAT
2760 .compat_setsockopt = compat_tcp_setsockopt,
2761 .compat_getsockopt = compat_tcp_getsockopt,
2762#endif
2763#ifdef CONFIG_MEMCG_KMEM
2764 .init_cgroup = tcp_init_cgroup,
2765 .destroy_cgroup = tcp_destroy_cgroup,
2766 .proto_cgroup = tcp_proto_cgroup,
2767#endif
2768};
2769EXPORT_SYMBOL(tcp_prot);
2770
2771static int __net_init tcp_sk_init(struct net *net)
2772{
2773 net->ipv4.sysctl_tcp_ecn = 2;
2774 return 0;
2775}
2776
2777static void __net_exit tcp_sk_exit(struct net *net)
2778{
2779}
2780
2781static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2782{
2783 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2784}
2785
2786static struct pernet_operations __net_initdata tcp_sk_ops = {
2787 .init = tcp_sk_init,
2788 .exit = tcp_sk_exit,
2789 .exit_batch = tcp_sk_exit_batch,
2790};
2791
2792void __init tcp_v4_init(void)
2793{
2794 inet_hashinfo_init(&tcp_hashinfo);
2795 if (register_pernet_subsys(&tcp_sk_ops))
2796 panic("Failed to create the TCP control socket.\n");
2797}